]> code.delx.au - gnu-emacs/blob - src/editfns.c
Merge from origin/emacs-25
[gnu-emacs] / src / editfns.c
1 /* Lisp functions pertaining to editing. -*- coding: utf-8 -*-
2
3 Copyright (C) 1985-1987, 1989, 1993-2016 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or (at
10 your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include <config.h>
22 #include <sys/types.h>
23 #include <stdio.h>
24
25 #ifdef HAVE_PWD_H
26 #include <pwd.h>
27 #include <grp.h>
28 #endif
29
30 #include <unistd.h>
31
32 #ifdef HAVE_SYS_UTSNAME_H
33 #include <sys/utsname.h>
34 #endif
35
36 #include "lisp.h"
37
38 /* systime.h includes <sys/time.h> which, on some systems, is required
39 for <sys/resource.h>; thus systime.h must be included before
40 <sys/resource.h> */
41 #include "systime.h"
42
43 #if defined HAVE_SYS_RESOURCE_H
44 #include <sys/resource.h>
45 #endif
46
47 #include <errno.h>
48 #include <float.h>
49 #include <limits.h>
50
51 #include <intprops.h>
52 #include <strftime.h>
53 #include <verify.h>
54
55 #include "composite.h"
56 #include "intervals.h"
57 #include "character.h"
58 #include "buffer.h"
59 #include "coding.h"
60 #include "window.h"
61 #include "blockinput.h"
62
63 #define TM_YEAR_BASE 1900
64
65 #ifdef WINDOWSNT
66 extern Lisp_Object w32_get_internal_run_time (void);
67 #endif
68
69 static struct lisp_time lisp_time_struct (Lisp_Object, int *);
70 static Lisp_Object format_time_string (char const *, ptrdiff_t, struct timespec,
71 Lisp_Object, struct tm *);
72 static long int tm_gmtoff (struct tm *);
73 static int tm_diff (struct tm *, struct tm *);
74 static void update_buffer_properties (ptrdiff_t, ptrdiff_t);
75 static Lisp_Object styled_format (ptrdiff_t, Lisp_Object *, bool);
76
77 #ifndef HAVE_TM_GMTOFF
78 # define HAVE_TM_GMTOFF false
79 #endif
80
81 enum { tzeqlen = sizeof "TZ=" - 1 };
82
83 /* Time zones equivalent to current local time, to wall clock time,
84 and to UTC, respectively. */
85 static timezone_t local_tz;
86 static timezone_t wall_clock_tz;
87 static timezone_t const utc_tz = 0;
88
89 /* A valid but unlikely setting for the TZ environment variable.
90 It is OK (though a bit slower) if the user chooses this value. */
91 static char dump_tz_string[] = "TZ=UtC0";
92
93 /* The cached value of Vsystem_name. This is used only to compare it
94 to Vsystem_name, so it need not be visible to the GC. */
95 static Lisp_Object cached_system_name;
96
97 static void
98 init_and_cache_system_name (void)
99 {
100 init_system_name ();
101 cached_system_name = Vsystem_name;
102 }
103
104 static struct tm *
105 emacs_localtime_rz (timezone_t tz, time_t const *t, struct tm *tm)
106 {
107 tm = localtime_rz (tz, t, tm);
108 if (!tm && errno == ENOMEM)
109 memory_full (SIZE_MAX);
110 return tm;
111 }
112
113 static time_t
114 emacs_mktime_z (timezone_t tz, struct tm *tm)
115 {
116 errno = 0;
117 time_t t = mktime_z (tz, tm);
118 if (t == (time_t) -1 && errno == ENOMEM)
119 memory_full (SIZE_MAX);
120 return t;
121 }
122
123 /* Allocate a timezone, signaling on failure. */
124 static timezone_t
125 xtzalloc (char const *name)
126 {
127 timezone_t tz = tzalloc (name);
128 if (!tz)
129 memory_full (SIZE_MAX);
130 return tz;
131 }
132
133 /* Free a timezone, except do not free the time zone for local time.
134 Freeing utc_tz is also a no-op. */
135 static void
136 xtzfree (timezone_t tz)
137 {
138 if (tz != local_tz)
139 tzfree (tz);
140 }
141
142 /* Convert the Lisp time zone rule ZONE to a timezone_t object.
143 The returned value either is 0, or is LOCAL_TZ, or is newly allocated.
144 If SETTZ, set Emacs local time to the time zone rule; otherwise,
145 the caller should eventually pass the returned value to xtzfree. */
146 static timezone_t
147 tzlookup (Lisp_Object zone, bool settz)
148 {
149 static char const tzbuf_format[] = "XXX%s%"pI"d:%02d:%02d";
150 char tzbuf[sizeof tzbuf_format + INT_STRLEN_BOUND (EMACS_INT)];
151 char const *zone_string;
152 timezone_t new_tz;
153
154 if (NILP (zone))
155 return local_tz;
156 else if (EQ (zone, Qt))
157 {
158 zone_string = "UTC0";
159 new_tz = utc_tz;
160 }
161 else
162 {
163 if (EQ (zone, Qwall))
164 zone_string = 0;
165 else if (STRINGP (zone))
166 zone_string = SSDATA (zone);
167 else if (INTEGERP (zone))
168 {
169 EMACS_INT abszone = eabs (XINT (zone)), hour = abszone / (60 * 60);
170 int min = (abszone / 60) % 60, sec = abszone % 60;
171 sprintf (tzbuf, tzbuf_format, &"-"[XINT (zone) < 0], hour, min, sec);
172 zone_string = tzbuf;
173 }
174 else
175 xsignal2 (Qerror, build_string ("Invalid time zone specification"),
176 zone);
177 new_tz = xtzalloc (zone_string);
178 }
179
180 if (settz)
181 {
182 block_input ();
183 emacs_setenv_TZ (zone_string);
184 timezone_t old_tz = local_tz;
185 local_tz = new_tz;
186 tzfree (old_tz);
187 unblock_input ();
188 }
189
190 return new_tz;
191 }
192
193 void
194 init_editfns (bool dumping)
195 {
196 const char *user_name;
197 register char *p;
198 struct passwd *pw; /* password entry for the current user */
199 Lisp_Object tem;
200
201 /* Set up system_name even when dumping. */
202 init_and_cache_system_name ();
203
204 #ifndef CANNOT_DUMP
205 /* When just dumping out, set the time zone to a known unlikely value
206 and skip the rest of this function. */
207 if (dumping)
208 {
209 # ifdef HAVE_TZSET
210 xputenv (dump_tz_string);
211 tzset ();
212 # endif
213 return;
214 }
215 #endif
216
217 char *tz = getenv ("TZ");
218
219 #if !defined CANNOT_DUMP && defined HAVE_TZSET
220 /* If the execution TZ happens to be the same as the dump TZ,
221 change it to some other value and then change it back,
222 to force the underlying implementation to reload the TZ info.
223 This is needed on implementations that load TZ info from files,
224 since the TZ file contents may differ between dump and execution. */
225 if (tz && strcmp (tz, &dump_tz_string[tzeqlen]) == 0)
226 {
227 ++*tz;
228 tzset ();
229 --*tz;
230 }
231 #endif
232
233 /* Set the time zone rule now, so that the call to putenv is done
234 before multiple threads are active. */
235 wall_clock_tz = xtzalloc (0);
236 tzlookup (tz ? build_string (tz) : Qwall, true);
237
238 pw = getpwuid (getuid ());
239 #ifdef MSDOS
240 /* We let the real user name default to "root" because that's quite
241 accurate on MS-DOS and because it lets Emacs find the init file.
242 (The DVX libraries override the Djgpp libraries here.) */
243 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
244 #else
245 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
246 #endif
247
248 /* Get the effective user name, by consulting environment variables,
249 or the effective uid if those are unset. */
250 user_name = getenv ("LOGNAME");
251 if (!user_name)
252 #ifdef WINDOWSNT
253 user_name = getenv ("USERNAME"); /* it's USERNAME on NT */
254 #else /* WINDOWSNT */
255 user_name = getenv ("USER");
256 #endif /* WINDOWSNT */
257 if (!user_name)
258 {
259 pw = getpwuid (geteuid ());
260 user_name = pw ? pw->pw_name : "unknown";
261 }
262 Vuser_login_name = build_string (user_name);
263
264 /* If the user name claimed in the environment vars differs from
265 the real uid, use the claimed name to find the full name. */
266 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
267 if (! NILP (tem))
268 tem = Vuser_login_name;
269 else
270 {
271 uid_t euid = geteuid ();
272 tem = make_fixnum_or_float (euid);
273 }
274 Vuser_full_name = Fuser_full_name (tem);
275
276 p = getenv ("NAME");
277 if (p)
278 Vuser_full_name = build_string (p);
279 else if (NILP (Vuser_full_name))
280 Vuser_full_name = build_string ("unknown");
281
282 #ifdef HAVE_SYS_UTSNAME_H
283 {
284 struct utsname uts;
285 uname (&uts);
286 Voperating_system_release = build_string (uts.release);
287 }
288 #else
289 Voperating_system_release = Qnil;
290 #endif
291 }
292 \f
293 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
294 doc: /* Convert arg CHAR to a string containing that character.
295 usage: (char-to-string CHAR) */)
296 (Lisp_Object character)
297 {
298 int c, len;
299 unsigned char str[MAX_MULTIBYTE_LENGTH];
300
301 CHECK_CHARACTER (character);
302 c = XFASTINT (character);
303
304 len = CHAR_STRING (c, str);
305 return make_string_from_bytes ((char *) str, 1, len);
306 }
307
308 DEFUN ("byte-to-string", Fbyte_to_string, Sbyte_to_string, 1, 1, 0,
309 doc: /* Convert arg BYTE to a unibyte string containing that byte. */)
310 (Lisp_Object byte)
311 {
312 unsigned char b;
313 CHECK_NUMBER (byte);
314 if (XINT (byte) < 0 || XINT (byte) > 255)
315 error ("Invalid byte");
316 b = XINT (byte);
317 return make_string_from_bytes ((char *) &b, 1, 1);
318 }
319
320 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
321 doc: /* Return the first character in STRING. */)
322 (register Lisp_Object string)
323 {
324 register Lisp_Object val;
325 CHECK_STRING (string);
326 if (SCHARS (string))
327 {
328 if (STRING_MULTIBYTE (string))
329 XSETFASTINT (val, STRING_CHAR (SDATA (string)));
330 else
331 XSETFASTINT (val, SREF (string, 0));
332 }
333 else
334 XSETFASTINT (val, 0);
335 return val;
336 }
337
338 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
339 doc: /* Return value of point, as an integer.
340 Beginning of buffer is position (point-min). */)
341 (void)
342 {
343 Lisp_Object temp;
344 XSETFASTINT (temp, PT);
345 return temp;
346 }
347
348 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
349 doc: /* Return value of point, as a marker object. */)
350 (void)
351 {
352 return build_marker (current_buffer, PT, PT_BYTE);
353 }
354
355 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
356 doc: /* Set point to POSITION, a number or marker.
357 Beginning of buffer is position (point-min), end is (point-max).
358
359 The return value is POSITION. */)
360 (register Lisp_Object position)
361 {
362 if (MARKERP (position))
363 set_point_from_marker (position);
364 else if (INTEGERP (position))
365 SET_PT (clip_to_bounds (BEGV, XINT (position), ZV));
366 else
367 wrong_type_argument (Qinteger_or_marker_p, position);
368 return position;
369 }
370
371
372 /* Return the start or end position of the region.
373 BEGINNINGP means return the start.
374 If there is no region active, signal an error. */
375
376 static Lisp_Object
377 region_limit (bool beginningp)
378 {
379 Lisp_Object m;
380
381 if (!NILP (Vtransient_mark_mode)
382 && NILP (Vmark_even_if_inactive)
383 && NILP (BVAR (current_buffer, mark_active)))
384 xsignal0 (Qmark_inactive);
385
386 m = Fmarker_position (BVAR (current_buffer, mark));
387 if (NILP (m))
388 error ("The mark is not set now, so there is no region");
389
390 /* Clip to the current narrowing (bug#11770). */
391 return make_number ((PT < XFASTINT (m)) == beginningp
392 ? PT
393 : clip_to_bounds (BEGV, XFASTINT (m), ZV));
394 }
395
396 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
397 doc: /* Return the integer value of point or mark, whichever is smaller. */)
398 (void)
399 {
400 return region_limit (1);
401 }
402
403 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
404 doc: /* Return the integer value of point or mark, whichever is larger. */)
405 (void)
406 {
407 return region_limit (0);
408 }
409
410 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
411 doc: /* Return this buffer's mark, as a marker object.
412 Watch out! Moving this marker changes the mark position.
413 If you set the marker not to point anywhere, the buffer will have no mark. */)
414 (void)
415 {
416 return BVAR (current_buffer, mark);
417 }
418
419 \f
420 /* Find all the overlays in the current buffer that touch position POS.
421 Return the number found, and store them in a vector in VEC
422 of length LEN. */
423
424 static ptrdiff_t
425 overlays_around (EMACS_INT pos, Lisp_Object *vec, ptrdiff_t len)
426 {
427 Lisp_Object overlay, start, end;
428 struct Lisp_Overlay *tail;
429 ptrdiff_t startpos, endpos;
430 ptrdiff_t idx = 0;
431
432 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
433 {
434 XSETMISC (overlay, tail);
435
436 end = OVERLAY_END (overlay);
437 endpos = OVERLAY_POSITION (end);
438 if (endpos < pos)
439 break;
440 start = OVERLAY_START (overlay);
441 startpos = OVERLAY_POSITION (start);
442 if (startpos <= pos)
443 {
444 if (idx < len)
445 vec[idx] = overlay;
446 /* Keep counting overlays even if we can't return them all. */
447 idx++;
448 }
449 }
450
451 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
452 {
453 XSETMISC (overlay, tail);
454
455 start = OVERLAY_START (overlay);
456 startpos = OVERLAY_POSITION (start);
457 if (pos < startpos)
458 break;
459 end = OVERLAY_END (overlay);
460 endpos = OVERLAY_POSITION (end);
461 if (pos <= endpos)
462 {
463 if (idx < len)
464 vec[idx] = overlay;
465 idx++;
466 }
467 }
468
469 return idx;
470 }
471
472 DEFUN ("get-pos-property", Fget_pos_property, Sget_pos_property, 2, 3, 0,
473 doc: /* Return the value of POSITION's property PROP, in OBJECT.
474 Almost identical to `get-char-property' except for the following difference:
475 Whereas `get-char-property' returns the property of the char at (i.e. right
476 after) POSITION, this pays attention to properties's stickiness and overlays's
477 advancement settings, in order to find the property of POSITION itself,
478 i.e. the property that a char would inherit if it were inserted
479 at POSITION. */)
480 (Lisp_Object position, register Lisp_Object prop, Lisp_Object object)
481 {
482 CHECK_NUMBER_COERCE_MARKER (position);
483
484 if (NILP (object))
485 XSETBUFFER (object, current_buffer);
486 else if (WINDOWP (object))
487 object = XWINDOW (object)->contents;
488
489 if (!BUFFERP (object))
490 /* pos-property only makes sense in buffers right now, since strings
491 have no overlays and no notion of insertion for which stickiness
492 could be obeyed. */
493 return Fget_text_property (position, prop, object);
494 else
495 {
496 EMACS_INT posn = XINT (position);
497 ptrdiff_t noverlays;
498 Lisp_Object *overlay_vec, tem;
499 struct buffer *obuf = current_buffer;
500 USE_SAFE_ALLOCA;
501
502 set_buffer_temp (XBUFFER (object));
503
504 /* First try with room for 40 overlays. */
505 Lisp_Object overlay_vecbuf[40];
506 noverlays = ARRAYELTS (overlay_vecbuf);
507 overlay_vec = overlay_vecbuf;
508 noverlays = overlays_around (posn, overlay_vec, noverlays);
509
510 /* If there are more than 40,
511 make enough space for all, and try again. */
512 if (ARRAYELTS (overlay_vecbuf) < noverlays)
513 {
514 SAFE_ALLOCA_LISP (overlay_vec, noverlays);
515 noverlays = overlays_around (posn, overlay_vec, noverlays);
516 }
517 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
518
519 set_buffer_temp (obuf);
520
521 /* Now check the overlays in order of decreasing priority. */
522 while (--noverlays >= 0)
523 {
524 Lisp_Object ol = overlay_vec[noverlays];
525 tem = Foverlay_get (ol, prop);
526 if (!NILP (tem))
527 {
528 /* Check the overlay is indeed active at point. */
529 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
530 if ((OVERLAY_POSITION (start) == posn
531 && XMARKER (start)->insertion_type == 1)
532 || (OVERLAY_POSITION (finish) == posn
533 && XMARKER (finish)->insertion_type == 0))
534 ; /* The overlay will not cover a char inserted at point. */
535 else
536 {
537 SAFE_FREE ();
538 return tem;
539 }
540 }
541 }
542 SAFE_FREE ();
543
544 { /* Now check the text properties. */
545 int stickiness = text_property_stickiness (prop, position, object);
546 if (stickiness > 0)
547 return Fget_text_property (position, prop, object);
548 else if (stickiness < 0
549 && XINT (position) > BUF_BEGV (XBUFFER (object)))
550 return Fget_text_property (make_number (XINT (position) - 1),
551 prop, object);
552 else
553 return Qnil;
554 }
555 }
556 }
557
558 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
559 the value of point is used instead. If BEG or END is null,
560 means don't store the beginning or end of the field.
561
562 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
563 results; they do not effect boundary behavior.
564
565 If MERGE_AT_BOUNDARY is non-nil, then if POS is at the very first
566 position of a field, then the beginning of the previous field is
567 returned instead of the beginning of POS's field (since the end of a
568 field is actually also the beginning of the next input field, this
569 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
570 non-nil case, if two fields are separated by a field with the special
571 value `boundary', and POS lies within it, then the two separated
572 fields are considered to be adjacent, and POS between them, when
573 finding the beginning and ending of the "merged" field.
574
575 Either BEG or END may be 0, in which case the corresponding value
576 is not stored. */
577
578 static void
579 find_field (Lisp_Object pos, Lisp_Object merge_at_boundary,
580 Lisp_Object beg_limit,
581 ptrdiff_t *beg, Lisp_Object end_limit, ptrdiff_t *end)
582 {
583 /* Fields right before and after the point. */
584 Lisp_Object before_field, after_field;
585 /* True if POS counts as the start of a field. */
586 bool at_field_start = 0;
587 /* True if POS counts as the end of a field. */
588 bool at_field_end = 0;
589
590 if (NILP (pos))
591 XSETFASTINT (pos, PT);
592 else
593 CHECK_NUMBER_COERCE_MARKER (pos);
594
595 after_field
596 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
597 before_field
598 = (XFASTINT (pos) > BEGV
599 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
600 Qfield, Qnil, NULL)
601 /* Using nil here would be a more obvious choice, but it would
602 fail when the buffer starts with a non-sticky field. */
603 : after_field);
604
605 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
606 and POS is at beginning of a field, which can also be interpreted
607 as the end of the previous field. Note that the case where if
608 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
609 more natural one; then we avoid treating the beginning of a field
610 specially. */
611 if (NILP (merge_at_boundary))
612 {
613 Lisp_Object field = Fget_pos_property (pos, Qfield, Qnil);
614 if (!EQ (field, after_field))
615 at_field_end = 1;
616 if (!EQ (field, before_field))
617 at_field_start = 1;
618 if (NILP (field) && at_field_start && at_field_end)
619 /* If an inserted char would have a nil field while the surrounding
620 text is non-nil, we're probably not looking at a
621 zero-length field, but instead at a non-nil field that's
622 not intended for editing (such as comint's prompts). */
623 at_field_end = at_field_start = 0;
624 }
625
626 /* Note about special `boundary' fields:
627
628 Consider the case where the point (`.') is between the fields `x' and `y':
629
630 xxxx.yyyy
631
632 In this situation, if merge_at_boundary is non-nil, consider the
633 `x' and `y' fields as forming one big merged field, and so the end
634 of the field is the end of `y'.
635
636 However, if `x' and `y' are separated by a special `boundary' field
637 (a field with a `field' char-property of 'boundary), then ignore
638 this special field when merging adjacent fields. Here's the same
639 situation, but with a `boundary' field between the `x' and `y' fields:
640
641 xxx.BBBByyyy
642
643 Here, if point is at the end of `x', the beginning of `y', or
644 anywhere in-between (within the `boundary' field), merge all
645 three fields and consider the beginning as being the beginning of
646 the `x' field, and the end as being the end of the `y' field. */
647
648 if (beg)
649 {
650 if (at_field_start)
651 /* POS is at the edge of a field, and we should consider it as
652 the beginning of the following field. */
653 *beg = XFASTINT (pos);
654 else
655 /* Find the previous field boundary. */
656 {
657 Lisp_Object p = pos;
658 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
659 /* Skip a `boundary' field. */
660 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
661 beg_limit);
662
663 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
664 beg_limit);
665 *beg = NILP (p) ? BEGV : XFASTINT (p);
666 }
667 }
668
669 if (end)
670 {
671 if (at_field_end)
672 /* POS is at the edge of a field, and we should consider it as
673 the end of the previous field. */
674 *end = XFASTINT (pos);
675 else
676 /* Find the next field boundary. */
677 {
678 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
679 /* Skip a `boundary' field. */
680 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
681 end_limit);
682
683 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
684 end_limit);
685 *end = NILP (pos) ? ZV : XFASTINT (pos);
686 }
687 }
688 }
689
690 \f
691 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
692 doc: /* Delete the field surrounding POS.
693 A field is a region of text with the same `field' property.
694 If POS is nil, the value of point is used for POS. */)
695 (Lisp_Object pos)
696 {
697 ptrdiff_t beg, end;
698 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
699 if (beg != end)
700 del_range (beg, end);
701 return Qnil;
702 }
703
704 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
705 doc: /* Return the contents of the field surrounding POS as a string.
706 A field is a region of text with the same `field' property.
707 If POS is nil, the value of point is used for POS. */)
708 (Lisp_Object pos)
709 {
710 ptrdiff_t beg, end;
711 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
712 return make_buffer_string (beg, end, 1);
713 }
714
715 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
716 doc: /* Return the contents of the field around POS, without text properties.
717 A field is a region of text with the same `field' property.
718 If POS is nil, the value of point is used for POS. */)
719 (Lisp_Object pos)
720 {
721 ptrdiff_t beg, end;
722 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
723 return make_buffer_string (beg, end, 0);
724 }
725
726 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
727 doc: /* Return the beginning of the field surrounding POS.
728 A field is a region of text with the same `field' property.
729 If POS is nil, the value of point is used for POS.
730 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
731 field, then the beginning of the *previous* field is returned.
732 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
733 is before LIMIT, then LIMIT will be returned instead. */)
734 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
735 {
736 ptrdiff_t beg;
737 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
738 return make_number (beg);
739 }
740
741 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
742 doc: /* Return the end of the field surrounding POS.
743 A field is a region of text with the same `field' property.
744 If POS is nil, the value of point is used for POS.
745 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
746 then the end of the *following* field is returned.
747 If LIMIT is non-nil, it is a buffer position; if the end of the field
748 is after LIMIT, then LIMIT will be returned instead. */)
749 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
750 {
751 ptrdiff_t end;
752 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
753 return make_number (end);
754 }
755
756 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
757 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
758 A field is a region of text with the same `field' property.
759
760 If NEW-POS is nil, then use the current point instead, and move point
761 to the resulting constrained position, in addition to returning that
762 position.
763
764 If OLD-POS is at the boundary of two fields, then the allowable
765 positions for NEW-POS depends on the value of the optional argument
766 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
767 constrained to the field that has the same `field' char-property
768 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
769 is non-nil, NEW-POS is constrained to the union of the two adjacent
770 fields. Additionally, if two fields are separated by another field with
771 the special value `boundary', then any point within this special field is
772 also considered to be `on the boundary'.
773
774 If the optional argument ONLY-IN-LINE is non-nil and constraining
775 NEW-POS would move it to a different line, NEW-POS is returned
776 unconstrained. This is useful for commands that move by line, like
777 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
778 only in the case where they can still move to the right line.
779
780 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
781 a non-nil property of that name, then any field boundaries are ignored.
782
783 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
784 (Lisp_Object new_pos, Lisp_Object old_pos, Lisp_Object escape_from_edge,
785 Lisp_Object only_in_line, Lisp_Object inhibit_capture_property)
786 {
787 /* If non-zero, then the original point, before re-positioning. */
788 ptrdiff_t orig_point = 0;
789 bool fwd;
790 Lisp_Object prev_old, prev_new;
791
792 if (NILP (new_pos))
793 /* Use the current point, and afterwards, set it. */
794 {
795 orig_point = PT;
796 XSETFASTINT (new_pos, PT);
797 }
798
799 CHECK_NUMBER_COERCE_MARKER (new_pos);
800 CHECK_NUMBER_COERCE_MARKER (old_pos);
801
802 fwd = (XINT (new_pos) > XINT (old_pos));
803
804 prev_old = make_number (XINT (old_pos) - 1);
805 prev_new = make_number (XINT (new_pos) - 1);
806
807 if (NILP (Vinhibit_field_text_motion)
808 && !EQ (new_pos, old_pos)
809 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
810 || !NILP (Fget_char_property (old_pos, Qfield, Qnil))
811 /* To recognize field boundaries, we must also look at the
812 previous positions; we could use `Fget_pos_property'
813 instead, but in itself that would fail inside non-sticky
814 fields (like comint prompts). */
815 || (XFASTINT (new_pos) > BEGV
816 && !NILP (Fget_char_property (prev_new, Qfield, Qnil)))
817 || (XFASTINT (old_pos) > BEGV
818 && !NILP (Fget_char_property (prev_old, Qfield, Qnil))))
819 && (NILP (inhibit_capture_property)
820 /* Field boundaries are again a problem; but now we must
821 decide the case exactly, so we need to call
822 `get_pos_property' as well. */
823 || (NILP (Fget_pos_property (old_pos, inhibit_capture_property, Qnil))
824 && (XFASTINT (old_pos) <= BEGV
825 || NILP (Fget_char_property
826 (old_pos, inhibit_capture_property, Qnil))
827 || NILP (Fget_char_property
828 (prev_old, inhibit_capture_property, Qnil))))))
829 /* It is possible that NEW_POS is not within the same field as
830 OLD_POS; try to move NEW_POS so that it is. */
831 {
832 ptrdiff_t shortage;
833 Lisp_Object field_bound;
834
835 if (fwd)
836 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
837 else
838 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
839
840 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
841 other side of NEW_POS, which would mean that NEW_POS is
842 already acceptable, and it's not necessary to constrain it
843 to FIELD_BOUND. */
844 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
845 /* NEW_POS should be constrained, but only if either
846 ONLY_IN_LINE is nil (in which case any constraint is OK),
847 or NEW_POS and FIELD_BOUND are on the same line (in which
848 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
849 && (NILP (only_in_line)
850 /* This is the ONLY_IN_LINE case, check that NEW_POS and
851 FIELD_BOUND are on the same line by seeing whether
852 there's an intervening newline or not. */
853 || (find_newline (XFASTINT (new_pos), -1,
854 XFASTINT (field_bound), -1,
855 fwd ? -1 : 1, &shortage, NULL, 1),
856 shortage != 0)))
857 /* Constrain NEW_POS to FIELD_BOUND. */
858 new_pos = field_bound;
859
860 if (orig_point && XFASTINT (new_pos) != orig_point)
861 /* The NEW_POS argument was originally nil, so automatically set PT. */
862 SET_PT (XFASTINT (new_pos));
863 }
864
865 return new_pos;
866 }
867
868 \f
869 DEFUN ("line-beginning-position",
870 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
871 doc: /* Return the character position of the first character on the current line.
872 With optional argument N, scan forward N - 1 lines first.
873 If the scan reaches the end of the buffer, return that position.
874
875 This function ignores text display directionality; it returns the
876 position of the first character in logical order, i.e. the smallest
877 character position on the line.
878
879 This function constrains the returned position to the current field
880 unless that position would be on a different line than the original,
881 unconstrained result. If N is nil or 1, and a front-sticky field
882 starts at point, the scan stops as soon as it starts. To ignore field
883 boundaries, bind `inhibit-field-text-motion' to t.
884
885 This function does not move point. */)
886 (Lisp_Object n)
887 {
888 ptrdiff_t charpos, bytepos;
889
890 if (NILP (n))
891 XSETFASTINT (n, 1);
892 else
893 CHECK_NUMBER (n);
894
895 scan_newline_from_point (XINT (n) - 1, &charpos, &bytepos);
896
897 /* Return END constrained to the current input field. */
898 return Fconstrain_to_field (make_number (charpos), make_number (PT),
899 XINT (n) != 1 ? Qt : Qnil,
900 Qt, Qnil);
901 }
902
903 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
904 doc: /* Return the character position of the last character on the current line.
905 With argument N not nil or 1, move forward N - 1 lines first.
906 If scan reaches end of buffer, return that position.
907
908 This function ignores text display directionality; it returns the
909 position of the last character in logical order, i.e. the largest
910 character position on the line.
911
912 This function constrains the returned position to the current field
913 unless that would be on a different line than the original,
914 unconstrained result. If N is nil or 1, and a rear-sticky field ends
915 at point, the scan stops as soon as it starts. To ignore field
916 boundaries bind `inhibit-field-text-motion' to t.
917
918 This function does not move point. */)
919 (Lisp_Object n)
920 {
921 ptrdiff_t clipped_n;
922 ptrdiff_t end_pos;
923 ptrdiff_t orig = PT;
924
925 if (NILP (n))
926 XSETFASTINT (n, 1);
927 else
928 CHECK_NUMBER (n);
929
930 clipped_n = clip_to_bounds (PTRDIFF_MIN + 1, XINT (n), PTRDIFF_MAX);
931 end_pos = find_before_next_newline (orig, 0, clipped_n - (clipped_n <= 0),
932 NULL);
933
934 /* Return END_POS constrained to the current input field. */
935 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
936 Qnil, Qt, Qnil);
937 }
938
939 /* Save current buffer state for `save-excursion' special form.
940 We (ab)use Lisp_Misc_Save_Value to allow explicit free and so
941 offload some work from GC. */
942
943 Lisp_Object
944 save_excursion_save (void)
945 {
946 return make_save_obj_obj_obj_obj
947 (Fpoint_marker (),
948 Qnil,
949 /* Selected window if current buffer is shown in it, nil otherwise. */
950 (EQ (XWINDOW (selected_window)->contents, Fcurrent_buffer ())
951 ? selected_window : Qnil),
952 Qnil);
953 }
954
955 /* Restore saved buffer before leaving `save-excursion' special form. */
956
957 void
958 save_excursion_restore (Lisp_Object info)
959 {
960 Lisp_Object tem, tem1;
961
962 tem = Fmarker_buffer (XSAVE_OBJECT (info, 0));
963 /* If we're unwinding to top level, saved buffer may be deleted. This
964 means that all of its markers are unchained and so tem is nil. */
965 if (NILP (tem))
966 goto out;
967
968 Fset_buffer (tem);
969
970 /* Point marker. */
971 tem = XSAVE_OBJECT (info, 0);
972 Fgoto_char (tem);
973 unchain_marker (XMARKER (tem));
974
975 /* If buffer was visible in a window, and a different window was
976 selected, and the old selected window is still showing this
977 buffer, restore point in that window. */
978 tem = XSAVE_OBJECT (info, 2);
979 if (WINDOWP (tem)
980 && !EQ (tem, selected_window)
981 && (tem1 = XWINDOW (tem)->contents,
982 (/* Window is live... */
983 BUFFERP (tem1)
984 /* ...and it shows the current buffer. */
985 && XBUFFER (tem1) == current_buffer)))
986 Fset_window_point (tem, make_number (PT));
987
988 out:
989
990 free_misc (info);
991 }
992
993 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
994 doc: /* Save point, and current buffer; execute BODY; restore those things.
995 Executes BODY just like `progn'.
996 The values of point and the current buffer are restored
997 even in case of abnormal exit (throw or error).
998
999 If you only want to save the current buffer but not point,
1000 then just use `save-current-buffer', or even `with-current-buffer'.
1001
1002 Before Emacs 25.1, `save-excursion' used to save the mark state.
1003 To save the marker state as well as the point and buffer, use
1004 `save-mark-and-excursion'.
1005
1006 usage: (save-excursion &rest BODY) */)
1007 (Lisp_Object args)
1008 {
1009 register Lisp_Object val;
1010 ptrdiff_t count = SPECPDL_INDEX ();
1011
1012 record_unwind_protect (save_excursion_restore, save_excursion_save ());
1013
1014 val = Fprogn (args);
1015 return unbind_to (count, val);
1016 }
1017
1018 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
1019 doc: /* Record which buffer is current; execute BODY; make that buffer current.
1020 BODY is executed just like `progn'.
1021 usage: (save-current-buffer &rest BODY) */)
1022 (Lisp_Object args)
1023 {
1024 ptrdiff_t count = SPECPDL_INDEX ();
1025
1026 record_unwind_current_buffer ();
1027 return unbind_to (count, Fprogn (args));
1028 }
1029 \f
1030 DEFUN ("buffer-size", Fbuffer_size, Sbuffer_size, 0, 1, 0,
1031 doc: /* Return the number of characters in the current buffer.
1032 If BUFFER, return the number of characters in that buffer instead. */)
1033 (Lisp_Object buffer)
1034 {
1035 if (NILP (buffer))
1036 return make_number (Z - BEG);
1037 else
1038 {
1039 CHECK_BUFFER (buffer);
1040 return make_number (BUF_Z (XBUFFER (buffer))
1041 - BUF_BEG (XBUFFER (buffer)));
1042 }
1043 }
1044
1045 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
1046 doc: /* Return the minimum permissible value of point in the current buffer.
1047 This is 1, unless narrowing (a buffer restriction) is in effect. */)
1048 (void)
1049 {
1050 Lisp_Object temp;
1051 XSETFASTINT (temp, BEGV);
1052 return temp;
1053 }
1054
1055 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
1056 doc: /* Return a marker to the minimum permissible value of point in this buffer.
1057 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
1058 (void)
1059 {
1060 return build_marker (current_buffer, BEGV, BEGV_BYTE);
1061 }
1062
1063 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
1064 doc: /* Return the maximum permissible value of point in the current buffer.
1065 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1066 is in effect, in which case it is less. */)
1067 (void)
1068 {
1069 Lisp_Object temp;
1070 XSETFASTINT (temp, ZV);
1071 return temp;
1072 }
1073
1074 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1075 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1076 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1077 is in effect, in which case it is less. */)
1078 (void)
1079 {
1080 return build_marker (current_buffer, ZV, ZV_BYTE);
1081 }
1082
1083 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1084 doc: /* Return the position of the gap, in the current buffer.
1085 See also `gap-size'. */)
1086 (void)
1087 {
1088 Lisp_Object temp;
1089 XSETFASTINT (temp, GPT);
1090 return temp;
1091 }
1092
1093 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1094 doc: /* Return the size of the current buffer's gap.
1095 See also `gap-position'. */)
1096 (void)
1097 {
1098 Lisp_Object temp;
1099 XSETFASTINT (temp, GAP_SIZE);
1100 return temp;
1101 }
1102
1103 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1104 doc: /* Return the byte position for character position POSITION.
1105 If POSITION is out of range, the value is nil. */)
1106 (Lisp_Object position)
1107 {
1108 CHECK_NUMBER_COERCE_MARKER (position);
1109 if (XINT (position) < BEG || XINT (position) > Z)
1110 return Qnil;
1111 return make_number (CHAR_TO_BYTE (XINT (position)));
1112 }
1113
1114 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1115 doc: /* Return the character position for byte position BYTEPOS.
1116 If BYTEPOS is out of range, the value is nil. */)
1117 (Lisp_Object bytepos)
1118 {
1119 ptrdiff_t pos_byte;
1120
1121 CHECK_NUMBER (bytepos);
1122 pos_byte = XINT (bytepos);
1123 if (pos_byte < BEG_BYTE || pos_byte > Z_BYTE)
1124 return Qnil;
1125 if (Z != Z_BYTE)
1126 /* There are multibyte characters in the buffer.
1127 The argument of BYTE_TO_CHAR must be a byte position at
1128 a character boundary, so search for the start of the current
1129 character. */
1130 while (!CHAR_HEAD_P (FETCH_BYTE (pos_byte)))
1131 pos_byte--;
1132 return make_number (BYTE_TO_CHAR (pos_byte));
1133 }
1134 \f
1135 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1136 doc: /* Return the character following point, as a number.
1137 At the end of the buffer or accessible region, return 0. */)
1138 (void)
1139 {
1140 Lisp_Object temp;
1141 if (PT >= ZV)
1142 XSETFASTINT (temp, 0);
1143 else
1144 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1145 return temp;
1146 }
1147
1148 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1149 doc: /* Return the character preceding point, as a number.
1150 At the beginning of the buffer or accessible region, return 0. */)
1151 (void)
1152 {
1153 Lisp_Object temp;
1154 if (PT <= BEGV)
1155 XSETFASTINT (temp, 0);
1156 else if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1157 {
1158 ptrdiff_t pos = PT_BYTE;
1159 DEC_POS (pos);
1160 XSETFASTINT (temp, FETCH_CHAR (pos));
1161 }
1162 else
1163 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1164 return temp;
1165 }
1166
1167 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1168 doc: /* Return t if point is at the beginning of the buffer.
1169 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1170 (void)
1171 {
1172 if (PT == BEGV)
1173 return Qt;
1174 return Qnil;
1175 }
1176
1177 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1178 doc: /* Return t if point is at the end of the buffer.
1179 If the buffer is narrowed, this means the end of the narrowed part. */)
1180 (void)
1181 {
1182 if (PT == ZV)
1183 return Qt;
1184 return Qnil;
1185 }
1186
1187 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1188 doc: /* Return t if point is at the beginning of a line. */)
1189 (void)
1190 {
1191 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1192 return Qt;
1193 return Qnil;
1194 }
1195
1196 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1197 doc: /* Return t if point is at the end of a line.
1198 `End of a line' includes point being at the end of the buffer. */)
1199 (void)
1200 {
1201 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1202 return Qt;
1203 return Qnil;
1204 }
1205
1206 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1207 doc: /* Return character in current buffer at position POS.
1208 POS is an integer or a marker and defaults to point.
1209 If POS is out of range, the value is nil. */)
1210 (Lisp_Object pos)
1211 {
1212 register ptrdiff_t pos_byte;
1213
1214 if (NILP (pos))
1215 {
1216 pos_byte = PT_BYTE;
1217 XSETFASTINT (pos, PT);
1218 }
1219
1220 if (MARKERP (pos))
1221 {
1222 pos_byte = marker_byte_position (pos);
1223 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1224 return Qnil;
1225 }
1226 else
1227 {
1228 CHECK_NUMBER_COERCE_MARKER (pos);
1229 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1230 return Qnil;
1231
1232 pos_byte = CHAR_TO_BYTE (XINT (pos));
1233 }
1234
1235 return make_number (FETCH_CHAR (pos_byte));
1236 }
1237
1238 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1239 doc: /* Return character in current buffer preceding position POS.
1240 POS is an integer or a marker and defaults to point.
1241 If POS is out of range, the value is nil. */)
1242 (Lisp_Object pos)
1243 {
1244 register Lisp_Object val;
1245 register ptrdiff_t pos_byte;
1246
1247 if (NILP (pos))
1248 {
1249 pos_byte = PT_BYTE;
1250 XSETFASTINT (pos, PT);
1251 }
1252
1253 if (MARKERP (pos))
1254 {
1255 pos_byte = marker_byte_position (pos);
1256
1257 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1258 return Qnil;
1259 }
1260 else
1261 {
1262 CHECK_NUMBER_COERCE_MARKER (pos);
1263
1264 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1265 return Qnil;
1266
1267 pos_byte = CHAR_TO_BYTE (XINT (pos));
1268 }
1269
1270 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1271 {
1272 DEC_POS (pos_byte);
1273 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1274 }
1275 else
1276 {
1277 pos_byte--;
1278 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1279 }
1280 return val;
1281 }
1282 \f
1283 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1284 doc: /* Return the name under which the user logged in, as a string.
1285 This is based on the effective uid, not the real uid.
1286 Also, if the environment variables LOGNAME or USER are set,
1287 that determines the value of this function.
1288
1289 If optional argument UID is an integer or a float, return the login name
1290 of the user with that uid, or nil if there is no such user. */)
1291 (Lisp_Object uid)
1292 {
1293 struct passwd *pw;
1294 uid_t id;
1295
1296 /* Set up the user name info if we didn't do it before.
1297 (That can happen if Emacs is dumpable
1298 but you decide to run `temacs -l loadup' and not dump. */
1299 if (NILP (Vuser_login_name))
1300 init_editfns (false);
1301
1302 if (NILP (uid))
1303 return Vuser_login_name;
1304
1305 CONS_TO_INTEGER (uid, uid_t, id);
1306 block_input ();
1307 pw = getpwuid (id);
1308 unblock_input ();
1309 return (pw ? build_string (pw->pw_name) : Qnil);
1310 }
1311
1312 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1313 0, 0, 0,
1314 doc: /* Return the name of the user's real uid, as a string.
1315 This ignores the environment variables LOGNAME and USER, so it differs from
1316 `user-login-name' when running under `su'. */)
1317 (void)
1318 {
1319 /* Set up the user name info if we didn't do it before.
1320 (That can happen if Emacs is dumpable
1321 but you decide to run `temacs -l loadup' and not dump. */
1322 if (NILP (Vuser_login_name))
1323 init_editfns (false);
1324 return Vuser_real_login_name;
1325 }
1326
1327 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1328 doc: /* Return the effective uid of Emacs.
1329 Value is an integer or a float, depending on the value. */)
1330 (void)
1331 {
1332 uid_t euid = geteuid ();
1333 return make_fixnum_or_float (euid);
1334 }
1335
1336 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1337 doc: /* Return the real uid of Emacs.
1338 Value is an integer or a float, depending on the value. */)
1339 (void)
1340 {
1341 uid_t uid = getuid ();
1342 return make_fixnum_or_float (uid);
1343 }
1344
1345 DEFUN ("group-gid", Fgroup_gid, Sgroup_gid, 0, 0, 0,
1346 doc: /* Return the effective gid of Emacs.
1347 Value is an integer or a float, depending on the value. */)
1348 (void)
1349 {
1350 gid_t egid = getegid ();
1351 return make_fixnum_or_float (egid);
1352 }
1353
1354 DEFUN ("group-real-gid", Fgroup_real_gid, Sgroup_real_gid, 0, 0, 0,
1355 doc: /* Return the real gid of Emacs.
1356 Value is an integer or a float, depending on the value. */)
1357 (void)
1358 {
1359 gid_t gid = getgid ();
1360 return make_fixnum_or_float (gid);
1361 }
1362
1363 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1364 doc: /* Return the full name of the user logged in, as a string.
1365 If the full name corresponding to Emacs's userid is not known,
1366 return "unknown".
1367
1368 If optional argument UID is an integer or float, return the full name
1369 of the user with that uid, or nil if there is no such user.
1370 If UID is a string, return the full name of the user with that login
1371 name, or nil if there is no such user. */)
1372 (Lisp_Object uid)
1373 {
1374 struct passwd *pw;
1375 register char *p, *q;
1376 Lisp_Object full;
1377
1378 if (NILP (uid))
1379 return Vuser_full_name;
1380 else if (NUMBERP (uid))
1381 {
1382 uid_t u;
1383 CONS_TO_INTEGER (uid, uid_t, u);
1384 block_input ();
1385 pw = getpwuid (u);
1386 unblock_input ();
1387 }
1388 else if (STRINGP (uid))
1389 {
1390 block_input ();
1391 pw = getpwnam (SSDATA (uid));
1392 unblock_input ();
1393 }
1394 else
1395 error ("Invalid UID specification");
1396
1397 if (!pw)
1398 return Qnil;
1399
1400 p = USER_FULL_NAME;
1401 /* Chop off everything after the first comma. */
1402 q = strchr (p, ',');
1403 full = make_string (p, q ? q - p : strlen (p));
1404
1405 #ifdef AMPERSAND_FULL_NAME
1406 p = SSDATA (full);
1407 q = strchr (p, '&');
1408 /* Substitute the login name for the &, upcasing the first character. */
1409 if (q)
1410 {
1411 Lisp_Object login = Fuser_login_name (make_number (pw->pw_uid));
1412 USE_SAFE_ALLOCA;
1413 char *r = SAFE_ALLOCA (strlen (p) + SBYTES (login) + 1);
1414 memcpy (r, p, q - p);
1415 char *s = lispstpcpy (&r[q - p], login);
1416 r[q - p] = upcase ((unsigned char) r[q - p]);
1417 strcpy (s, q + 1);
1418 full = build_string (r);
1419 SAFE_FREE ();
1420 }
1421 #endif /* AMPERSAND_FULL_NAME */
1422
1423 return full;
1424 }
1425
1426 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1427 doc: /* Return the host name of the machine you are running on, as a string. */)
1428 (void)
1429 {
1430 if (EQ (Vsystem_name, cached_system_name))
1431 init_and_cache_system_name ();
1432 return Vsystem_name;
1433 }
1434
1435 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1436 doc: /* Return the process ID of Emacs, as a number. */)
1437 (void)
1438 {
1439 pid_t pid = getpid ();
1440 return make_fixnum_or_float (pid);
1441 }
1442
1443 \f
1444
1445 #ifndef TIME_T_MIN
1446 # define TIME_T_MIN TYPE_MINIMUM (time_t)
1447 #endif
1448 #ifndef TIME_T_MAX
1449 # define TIME_T_MAX TYPE_MAXIMUM (time_t)
1450 #endif
1451
1452 /* Report that a time value is out of range for Emacs. */
1453 void
1454 time_overflow (void)
1455 {
1456 error ("Specified time is not representable");
1457 }
1458
1459 static _Noreturn void
1460 invalid_time (void)
1461 {
1462 error ("Invalid time specification");
1463 }
1464
1465 /* Check a return value compatible with that of decode_time_components. */
1466 static void
1467 check_time_validity (int validity)
1468 {
1469 if (validity <= 0)
1470 {
1471 if (validity < 0)
1472 time_overflow ();
1473 else
1474 invalid_time ();
1475 }
1476 }
1477
1478 /* Return the upper part of the time T (everything but the bottom 16 bits). */
1479 static EMACS_INT
1480 hi_time (time_t t)
1481 {
1482 time_t hi = t >> LO_TIME_BITS;
1483
1484 /* Check for overflow, helping the compiler for common cases where
1485 no runtime check is needed, and taking care not to convert
1486 negative numbers to unsigned before comparing them. */
1487 if (! ((! TYPE_SIGNED (time_t)
1488 || MOST_NEGATIVE_FIXNUM <= TIME_T_MIN >> LO_TIME_BITS
1489 || MOST_NEGATIVE_FIXNUM <= hi)
1490 && (TIME_T_MAX >> LO_TIME_BITS <= MOST_POSITIVE_FIXNUM
1491 || hi <= MOST_POSITIVE_FIXNUM)))
1492 time_overflow ();
1493
1494 return hi;
1495 }
1496
1497 /* Return the bottom bits of the time T. */
1498 static int
1499 lo_time (time_t t)
1500 {
1501 return t & ((1 << LO_TIME_BITS) - 1);
1502 }
1503
1504 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1505 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1506 The time is returned as a list of integers (HIGH LOW USEC PSEC).
1507 HIGH has the most significant bits of the seconds, while LOW has the
1508 least significant 16 bits. USEC and PSEC are the microsecond and
1509 picosecond counts. */)
1510 (void)
1511 {
1512 return make_lisp_time (current_timespec ());
1513 }
1514
1515 static struct lisp_time
1516 time_add (struct lisp_time ta, struct lisp_time tb)
1517 {
1518 EMACS_INT hi = ta.hi + tb.hi;
1519 int lo = ta.lo + tb.lo;
1520 int us = ta.us + tb.us;
1521 int ps = ta.ps + tb.ps;
1522 us += (1000000 <= ps);
1523 ps -= (1000000 <= ps) * 1000000;
1524 lo += (1000000 <= us);
1525 us -= (1000000 <= us) * 1000000;
1526 hi += (1 << LO_TIME_BITS <= lo);
1527 lo -= (1 << LO_TIME_BITS <= lo) << LO_TIME_BITS;
1528 return (struct lisp_time) { hi, lo, us, ps };
1529 }
1530
1531 static struct lisp_time
1532 time_subtract (struct lisp_time ta, struct lisp_time tb)
1533 {
1534 EMACS_INT hi = ta.hi - tb.hi;
1535 int lo = ta.lo - tb.lo;
1536 int us = ta.us - tb.us;
1537 int ps = ta.ps - tb.ps;
1538 us -= (ps < 0);
1539 ps += (ps < 0) * 1000000;
1540 lo -= (us < 0);
1541 us += (us < 0) * 1000000;
1542 hi -= (lo < 0);
1543 lo += (lo < 0) << LO_TIME_BITS;
1544 return (struct lisp_time) { hi, lo, us, ps };
1545 }
1546
1547 static Lisp_Object
1548 time_arith (Lisp_Object a, Lisp_Object b,
1549 struct lisp_time (*op) (struct lisp_time, struct lisp_time))
1550 {
1551 int alen, blen;
1552 struct lisp_time ta = lisp_time_struct (a, &alen);
1553 struct lisp_time tb = lisp_time_struct (b, &blen);
1554 struct lisp_time t = op (ta, tb);
1555 if (! (MOST_NEGATIVE_FIXNUM <= t.hi && t.hi <= MOST_POSITIVE_FIXNUM))
1556 time_overflow ();
1557 Lisp_Object val = Qnil;
1558
1559 switch (max (alen, blen))
1560 {
1561 default:
1562 val = Fcons (make_number (t.ps), val);
1563 /* Fall through. */
1564 case 3:
1565 val = Fcons (make_number (t.us), val);
1566 /* Fall through. */
1567 case 2:
1568 val = Fcons (make_number (t.lo), val);
1569 val = Fcons (make_number (t.hi), val);
1570 break;
1571 }
1572
1573 return val;
1574 }
1575
1576 DEFUN ("time-add", Ftime_add, Stime_add, 2, 2, 0,
1577 doc: /* Return the sum of two time values A and B, as a time value. */)
1578 (Lisp_Object a, Lisp_Object b)
1579 {
1580 return time_arith (a, b, time_add);
1581 }
1582
1583 DEFUN ("time-subtract", Ftime_subtract, Stime_subtract, 2, 2, 0,
1584 doc: /* Return the difference between two time values A and B, as a time value. */)
1585 (Lisp_Object a, Lisp_Object b)
1586 {
1587 return time_arith (a, b, time_subtract);
1588 }
1589
1590 DEFUN ("time-less-p", Ftime_less_p, Stime_less_p, 2, 2, 0,
1591 doc: /* Return non-nil if time value T1 is earlier than time value T2. */)
1592 (Lisp_Object t1, Lisp_Object t2)
1593 {
1594 int t1len, t2len;
1595 struct lisp_time a = lisp_time_struct (t1, &t1len);
1596 struct lisp_time b = lisp_time_struct (t2, &t2len);
1597 return ((a.hi != b.hi ? a.hi < b.hi
1598 : a.lo != b.lo ? a.lo < b.lo
1599 : a.us != b.us ? a.us < b.us
1600 : a.ps < b.ps)
1601 ? Qt : Qnil);
1602 }
1603
1604
1605 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1606 0, 0, 0,
1607 doc: /* Return the current run time used by Emacs.
1608 The time is returned as a list (HIGH LOW USEC PSEC), using the same
1609 style as (current-time).
1610
1611 On systems that can't determine the run time, `get-internal-run-time'
1612 does the same thing as `current-time'. */)
1613 (void)
1614 {
1615 #ifdef HAVE_GETRUSAGE
1616 struct rusage usage;
1617 time_t secs;
1618 int usecs;
1619
1620 if (getrusage (RUSAGE_SELF, &usage) < 0)
1621 /* This shouldn't happen. What action is appropriate? */
1622 xsignal0 (Qerror);
1623
1624 /* Sum up user time and system time. */
1625 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1626 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1627 if (usecs >= 1000000)
1628 {
1629 usecs -= 1000000;
1630 secs++;
1631 }
1632 return make_lisp_time (make_timespec (secs, usecs * 1000));
1633 #else /* ! HAVE_GETRUSAGE */
1634 #ifdef WINDOWSNT
1635 return w32_get_internal_run_time ();
1636 #else /* ! WINDOWSNT */
1637 return Fcurrent_time ();
1638 #endif /* WINDOWSNT */
1639 #endif /* HAVE_GETRUSAGE */
1640 }
1641 \f
1642
1643 /* Make a Lisp list that represents the Emacs time T. T may be an
1644 invalid time, with a slightly negative tv_nsec value such as
1645 UNKNOWN_MODTIME_NSECS; in that case, the Lisp list contains a
1646 correspondingly negative picosecond count. */
1647 Lisp_Object
1648 make_lisp_time (struct timespec t)
1649 {
1650 time_t s = t.tv_sec;
1651 int ns = t.tv_nsec;
1652 return list4i (hi_time (s), lo_time (s), ns / 1000, ns % 1000 * 1000);
1653 }
1654
1655 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1656 Set *PHIGH, *PLOW, *PUSEC, *PPSEC to its parts; do not check their values.
1657 Return 2, 3, or 4 to indicate the effective length of SPECIFIED_TIME
1658 if successful, 0 if unsuccessful. */
1659 static int
1660 disassemble_lisp_time (Lisp_Object specified_time, Lisp_Object *phigh,
1661 Lisp_Object *plow, Lisp_Object *pusec,
1662 Lisp_Object *ppsec)
1663 {
1664 Lisp_Object high = make_number (0);
1665 Lisp_Object low = specified_time;
1666 Lisp_Object usec = make_number (0);
1667 Lisp_Object psec = make_number (0);
1668 int len = 4;
1669
1670 if (CONSP (specified_time))
1671 {
1672 high = XCAR (specified_time);
1673 low = XCDR (specified_time);
1674 if (CONSP (low))
1675 {
1676 Lisp_Object low_tail = XCDR (low);
1677 low = XCAR (low);
1678 if (CONSP (low_tail))
1679 {
1680 usec = XCAR (low_tail);
1681 low_tail = XCDR (low_tail);
1682 if (CONSP (low_tail))
1683 psec = XCAR (low_tail);
1684 else
1685 len = 3;
1686 }
1687 else if (!NILP (low_tail))
1688 {
1689 usec = low_tail;
1690 len = 3;
1691 }
1692 else
1693 len = 2;
1694 }
1695 else
1696 len = 2;
1697
1698 /* When combining components, require LOW to be an integer,
1699 as otherwise it would be a pain to add up times. */
1700 if (! INTEGERP (low))
1701 return 0;
1702 }
1703 else if (INTEGERP (specified_time))
1704 len = 2;
1705
1706 *phigh = high;
1707 *plow = low;
1708 *pusec = usec;
1709 *ppsec = psec;
1710 return len;
1711 }
1712
1713 /* Convert T into an Emacs time *RESULT, truncating toward minus infinity.
1714 Return true if T is in range, false otherwise. */
1715 static bool
1716 decode_float_time (double t, struct lisp_time *result)
1717 {
1718 double lo_multiplier = 1 << LO_TIME_BITS;
1719 double emacs_time_min = MOST_NEGATIVE_FIXNUM * lo_multiplier;
1720 if (! (emacs_time_min <= t && t < -emacs_time_min))
1721 return false;
1722
1723 double small_t = t / lo_multiplier;
1724 EMACS_INT hi = small_t;
1725 double t_sans_hi = t - hi * lo_multiplier;
1726 int lo = t_sans_hi;
1727 long double fracps = (t_sans_hi - lo) * 1e12L;
1728 #ifdef INT_FAST64_MAX
1729 int_fast64_t ifracps = fracps;
1730 int us = ifracps / 1000000;
1731 int ps = ifracps % 1000000;
1732 #else
1733 int us = fracps / 1e6L;
1734 int ps = fracps - us * 1e6L;
1735 #endif
1736 us -= (ps < 0);
1737 ps += (ps < 0) * 1000000;
1738 lo -= (us < 0);
1739 us += (us < 0) * 1000000;
1740 hi -= (lo < 0);
1741 lo += (lo < 0) << LO_TIME_BITS;
1742 result->hi = hi;
1743 result->lo = lo;
1744 result->us = us;
1745 result->ps = ps;
1746 return true;
1747 }
1748
1749 /* From the time components HIGH, LOW, USEC and PSEC taken from a Lisp
1750 list, generate the corresponding time value.
1751 If LOW is floating point, the other components should be zero.
1752
1753 If RESULT is not null, store into *RESULT the converted time.
1754 If *DRESULT is not null, store into *DRESULT the number of
1755 seconds since the start of the POSIX Epoch.
1756
1757 Return 1 if successful, 0 if the components are of the
1758 wrong type, and -1 if the time is out of range. */
1759 int
1760 decode_time_components (Lisp_Object high, Lisp_Object low, Lisp_Object usec,
1761 Lisp_Object psec,
1762 struct lisp_time *result, double *dresult)
1763 {
1764 EMACS_INT hi, lo, us, ps;
1765 if (! (INTEGERP (high)
1766 && INTEGERP (usec) && INTEGERP (psec)))
1767 return 0;
1768 if (! INTEGERP (low))
1769 {
1770 if (FLOATP (low))
1771 {
1772 double t = XFLOAT_DATA (low);
1773 if (result && ! decode_float_time (t, result))
1774 return -1;
1775 if (dresult)
1776 *dresult = t;
1777 return 1;
1778 }
1779 else if (NILP (low))
1780 {
1781 struct timespec now = current_timespec ();
1782 if (result)
1783 {
1784 result->hi = hi_time (now.tv_sec);
1785 result->lo = lo_time (now.tv_sec);
1786 result->us = now.tv_nsec / 1000;
1787 result->ps = now.tv_nsec % 1000 * 1000;
1788 }
1789 if (dresult)
1790 *dresult = now.tv_sec + now.tv_nsec / 1e9;
1791 return 1;
1792 }
1793 else
1794 return 0;
1795 }
1796
1797 hi = XINT (high);
1798 lo = XINT (low);
1799 us = XINT (usec);
1800 ps = XINT (psec);
1801
1802 /* Normalize out-of-range lower-order components by carrying
1803 each overflow into the next higher-order component. */
1804 us += ps / 1000000 - (ps % 1000000 < 0);
1805 lo += us / 1000000 - (us % 1000000 < 0);
1806 hi += lo >> LO_TIME_BITS;
1807 ps = ps % 1000000 + 1000000 * (ps % 1000000 < 0);
1808 us = us % 1000000 + 1000000 * (us % 1000000 < 0);
1809 lo &= (1 << LO_TIME_BITS) - 1;
1810
1811 if (result)
1812 {
1813 if (! (MOST_NEGATIVE_FIXNUM <= hi && hi <= MOST_POSITIVE_FIXNUM))
1814 return -1;
1815 result->hi = hi;
1816 result->lo = lo;
1817 result->us = us;
1818 result->ps = ps;
1819 }
1820
1821 if (dresult)
1822 {
1823 double dhi = hi;
1824 *dresult = (us * 1e6 + ps) / 1e12 + lo + dhi * (1 << LO_TIME_BITS);
1825 }
1826
1827 return 1;
1828 }
1829
1830 struct timespec
1831 lisp_to_timespec (struct lisp_time t)
1832 {
1833 if (! ((TYPE_SIGNED (time_t) ? TIME_T_MIN >> LO_TIME_BITS <= t.hi : 0 <= t.hi)
1834 && t.hi <= TIME_T_MAX >> LO_TIME_BITS))
1835 return invalid_timespec ();
1836 time_t s = (t.hi << LO_TIME_BITS) + t.lo;
1837 int ns = t.us * 1000 + t.ps / 1000;
1838 return make_timespec (s, ns);
1839 }
1840
1841 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1842 Store its effective length into *PLEN.
1843 If SPECIFIED_TIME is nil, use the current time.
1844 Signal an error if SPECIFIED_TIME does not represent a time. */
1845 static struct lisp_time
1846 lisp_time_struct (Lisp_Object specified_time, int *plen)
1847 {
1848 Lisp_Object high, low, usec, psec;
1849 struct lisp_time t;
1850 int len = disassemble_lisp_time (specified_time, &high, &low, &usec, &psec);
1851 if (!len)
1852 invalid_time ();
1853 int val = decode_time_components (high, low, usec, psec, &t, 0);
1854 check_time_validity (val);
1855 *plen = len;
1856 return t;
1857 }
1858
1859 /* Like lisp_time_struct, except return a struct timespec.
1860 Discard any low-order digits. */
1861 struct timespec
1862 lisp_time_argument (Lisp_Object specified_time)
1863 {
1864 int len;
1865 struct lisp_time lt = lisp_time_struct (specified_time, &len);
1866 struct timespec t = lisp_to_timespec (lt);
1867 if (! timespec_valid_p (t))
1868 time_overflow ();
1869 return t;
1870 }
1871
1872 /* Like lisp_time_argument, except decode only the seconds part,
1873 and do not check the subseconds part. */
1874 static time_t
1875 lisp_seconds_argument (Lisp_Object specified_time)
1876 {
1877 Lisp_Object high, low, usec, psec;
1878 struct lisp_time t;
1879
1880 int val = disassemble_lisp_time (specified_time, &high, &low, &usec, &psec);
1881 if (val != 0)
1882 {
1883 val = decode_time_components (high, low, make_number (0),
1884 make_number (0), &t, 0);
1885 if (0 < val
1886 && ! ((TYPE_SIGNED (time_t)
1887 ? TIME_T_MIN >> LO_TIME_BITS <= t.hi
1888 : 0 <= t.hi)
1889 && t.hi <= TIME_T_MAX >> LO_TIME_BITS))
1890 val = -1;
1891 }
1892 check_time_validity (val);
1893 return (t.hi << LO_TIME_BITS) + t.lo;
1894 }
1895
1896 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1897 doc: /* Return the current time, as a float number of seconds since the epoch.
1898 If SPECIFIED-TIME is given, it is the time to convert to float
1899 instead of the current time. The argument should have the form
1900 \(HIGH LOW) or (HIGH LOW USEC) or (HIGH LOW USEC PSEC). Thus,
1901 you can use times from `current-time' and from `file-attributes'.
1902 SPECIFIED-TIME can also have the form (HIGH . LOW), but this is
1903 considered obsolete.
1904
1905 WARNING: Since the result is floating point, it may not be exact.
1906 If precise time stamps are required, use either `current-time',
1907 or (if you need time as a string) `format-time-string'. */)
1908 (Lisp_Object specified_time)
1909 {
1910 double t;
1911 Lisp_Object high, low, usec, psec;
1912 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1913 && decode_time_components (high, low, usec, psec, 0, &t)))
1914 invalid_time ();
1915 return make_float (t);
1916 }
1917
1918 /* Write information into buffer S of size MAXSIZE, according to the
1919 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1920 Use the time zone specified by TZ.
1921 Use NS as the number of nanoseconds in the %N directive.
1922 Return the number of bytes written, not including the terminating
1923 '\0'. If S is NULL, nothing will be written anywhere; so to
1924 determine how many bytes would be written, use NULL for S and
1925 ((size_t) -1) for MAXSIZE.
1926
1927 This function behaves like nstrftime, except it allows null
1928 bytes in FORMAT and it does not support nanoseconds. */
1929 static size_t
1930 emacs_nmemftime (char *s, size_t maxsize, const char *format,
1931 size_t format_len, const struct tm *tp, timezone_t tz, int ns)
1932 {
1933 size_t total = 0;
1934
1935 /* Loop through all the null-terminated strings in the format
1936 argument. Normally there's just one null-terminated string, but
1937 there can be arbitrarily many, concatenated together, if the
1938 format contains '\0' bytes. nstrftime stops at the first
1939 '\0' byte so we must invoke it separately for each such string. */
1940 for (;;)
1941 {
1942 size_t len;
1943 size_t result;
1944
1945 if (s)
1946 s[0] = '\1';
1947
1948 result = nstrftime (s, maxsize, format, tp, tz, ns);
1949
1950 if (s)
1951 {
1952 if (result == 0 && s[0] != '\0')
1953 return 0;
1954 s += result + 1;
1955 }
1956
1957 maxsize -= result + 1;
1958 total += result;
1959 len = strlen (format);
1960 if (len == format_len)
1961 return total;
1962 total++;
1963 format += len + 1;
1964 format_len -= len + 1;
1965 }
1966 }
1967
1968 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1969 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1970 TIME is specified as (HIGH LOW USEC PSEC), as returned by
1971 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1972 is also still accepted.
1973 The optional ZONE is omitted or nil for Emacs local time, t for
1974 Universal Time, `wall' for system wall clock time, or a string as in
1975 `set-time-zone-rule' for a time zone rule.
1976 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1977 by text that describes the specified date and time in TIME:
1978
1979 %Y is the year, %y within the century, %C the century.
1980 %G is the year corresponding to the ISO week, %g within the century.
1981 %m is the numeric month.
1982 %b and %h are the locale's abbreviated month name, %B the full name.
1983 (%h is not supported on MS-Windows.)
1984 %d is the day of the month, zero-padded, %e is blank-padded.
1985 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1986 %a is the locale's abbreviated name of the day of week, %A the full name.
1987 %U is the week number starting on Sunday, %W starting on Monday,
1988 %V according to ISO 8601.
1989 %j is the day of the year.
1990
1991 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1992 only blank-padded, %l is like %I blank-padded.
1993 %p is the locale's equivalent of either AM or PM.
1994 %M is the minute.
1995 %S is the second.
1996 %N is the nanosecond, %6N the microsecond, %3N the millisecond, etc.
1997 %Z is the time zone name, %z is the numeric form.
1998 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1999
2000 %c is the locale's date and time format.
2001 %x is the locale's "preferred" date format.
2002 %D is like "%m/%d/%y".
2003 %F is the ISO 8601 date format (like "%Y-%m-%d").
2004
2005 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
2006 %X is the locale's "preferred" time format.
2007
2008 Finally, %n is a newline, %t is a tab, %% is a literal %.
2009
2010 Certain flags and modifiers are available with some format controls.
2011 The flags are `_', `-', `^' and `#'. For certain characters X,
2012 %_X is like %X, but padded with blanks; %-X is like %X,
2013 but without padding. %^X is like %X, but with all textual
2014 characters up-cased; %#X is like %X, but with letter-case of
2015 all textual characters reversed.
2016 %NX (where N stands for an integer) is like %X,
2017 but takes up at least N (a number) positions.
2018 The modifiers are `E' and `O'. For certain characters X,
2019 %EX is a locale's alternative version of %X;
2020 %OX is like %X, but uses the locale's number symbols.
2021
2022 For example, to produce full ISO 8601 format, use "%FT%T%z".
2023
2024 usage: (format-time-string FORMAT-STRING &optional TIME ZONE) */)
2025 (Lisp_Object format_string, Lisp_Object timeval, Lisp_Object zone)
2026 {
2027 struct timespec t = lisp_time_argument (timeval);
2028 struct tm tm;
2029
2030 CHECK_STRING (format_string);
2031 format_string = code_convert_string_norecord (format_string,
2032 Vlocale_coding_system, 1);
2033 return format_time_string (SSDATA (format_string), SBYTES (format_string),
2034 t, zone, &tm);
2035 }
2036
2037 static Lisp_Object
2038 format_time_string (char const *format, ptrdiff_t formatlen,
2039 struct timespec t, Lisp_Object zone, struct tm *tmp)
2040 {
2041 char buffer[4000];
2042 char *buf = buffer;
2043 ptrdiff_t size = sizeof buffer;
2044 size_t len;
2045 int ns = t.tv_nsec;
2046 USE_SAFE_ALLOCA;
2047
2048 timezone_t tz = tzlookup (zone, false);
2049 tmp = emacs_localtime_rz (tz, &t.tv_sec, tmp);
2050 if (! tmp)
2051 {
2052 xtzfree (tz);
2053 time_overflow ();
2054 }
2055 synchronize_system_time_locale ();
2056
2057 while (true)
2058 {
2059 buf[0] = '\1';
2060 len = emacs_nmemftime (buf, size, format, formatlen, tmp, tz, ns);
2061 if ((0 < len && len < size) || (len == 0 && buf[0] == '\0'))
2062 break;
2063
2064 /* Buffer was too small, so make it bigger and try again. */
2065 len = emacs_nmemftime (NULL, SIZE_MAX, format, formatlen, tmp, tz, ns);
2066 if (STRING_BYTES_BOUND <= len)
2067 {
2068 xtzfree (tz);
2069 string_overflow ();
2070 }
2071 size = len + 1;
2072 buf = SAFE_ALLOCA (size);
2073 }
2074
2075 xtzfree (tz);
2076 AUTO_STRING_WITH_LEN (bufstring, buf, len);
2077 Lisp_Object result = code_convert_string_norecord (bufstring,
2078 Vlocale_coding_system, 0);
2079 SAFE_FREE ();
2080 return result;
2081 }
2082
2083 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 2, 0,
2084 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST UTCOFF).
2085 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
2086 as from `current-time' and `file-attributes', or nil to use the
2087 current time. The obsolete form (HIGH . LOW) is also still accepted.
2088 The optional ZONE is omitted or nil for Emacs local time, t for
2089 Universal Time, `wall' for system wall clock time, or a string as in
2090 `set-time-zone-rule' for a time zone rule.
2091
2092 The list has the following nine members: SEC is an integer between 0
2093 and 60; SEC is 60 for a leap second, which only some operating systems
2094 support. MINUTE is an integer between 0 and 59. HOUR is an integer
2095 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
2096 integer between 1 and 12. YEAR is an integer indicating the
2097 four-digit year. DOW is the day of week, an integer between 0 and 6,
2098 where 0 is Sunday. DST is t if daylight saving time is in effect,
2099 otherwise nil. UTCOFF is an integer indicating the UTC offset in
2100 seconds, i.e., the number of seconds east of Greenwich. (Note that
2101 Common Lisp has different meanings for DOW and UTCOFF.)
2102
2103 usage: (decode-time &optional TIME ZONE) */)
2104 (Lisp_Object specified_time, Lisp_Object zone)
2105 {
2106 time_t time_spec = lisp_seconds_argument (specified_time);
2107 struct tm local_tm, gmt_tm;
2108 timezone_t tz = tzlookup (zone, false);
2109 struct tm *tm = emacs_localtime_rz (tz, &time_spec, &local_tm);
2110 xtzfree (tz);
2111
2112 if (! (tm
2113 && MOST_NEGATIVE_FIXNUM - TM_YEAR_BASE <= local_tm.tm_year
2114 && local_tm.tm_year <= MOST_POSITIVE_FIXNUM - TM_YEAR_BASE))
2115 time_overflow ();
2116
2117 /* Avoid overflow when INT_MAX < EMACS_INT_MAX. */
2118 EMACS_INT tm_year_base = TM_YEAR_BASE;
2119
2120 return CALLN (Flist,
2121 make_number (local_tm.tm_sec),
2122 make_number (local_tm.tm_min),
2123 make_number (local_tm.tm_hour),
2124 make_number (local_tm.tm_mday),
2125 make_number (local_tm.tm_mon + 1),
2126 make_number (local_tm.tm_year + tm_year_base),
2127 make_number (local_tm.tm_wday),
2128 local_tm.tm_isdst ? Qt : Qnil,
2129 (HAVE_TM_GMTOFF
2130 ? make_number (tm_gmtoff (&local_tm))
2131 : gmtime_r (&time_spec, &gmt_tm)
2132 ? make_number (tm_diff (&local_tm, &gmt_tm))
2133 : Qnil));
2134 }
2135
2136 /* Return OBJ - OFFSET, checking that OBJ is a valid fixnum and that
2137 the result is representable as an int. Assume OFFSET is small and
2138 nonnegative. */
2139 static int
2140 check_tm_member (Lisp_Object obj, int offset)
2141 {
2142 EMACS_INT n;
2143 CHECK_NUMBER (obj);
2144 n = XINT (obj);
2145 if (! (INT_MIN + offset <= n && n - offset <= INT_MAX))
2146 time_overflow ();
2147 return n - offset;
2148 }
2149
2150 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
2151 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
2152 This is the reverse operation of `decode-time', which see.
2153 The optional ZONE is omitted or nil for Emacs local time, t for
2154 Universal Time, `wall' for system wall clock time, or a string as in
2155 `set-time-zone-rule' for a time zone rule. It can also be a list (as
2156 from `current-time-zone') or an integer (as from `decode-time')
2157 applied without consideration for daylight saving time.
2158
2159 You can pass more than 7 arguments; then the first six arguments
2160 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
2161 The intervening arguments are ignored.
2162 This feature lets (apply \\='encode-time (decode-time ...)) work.
2163
2164 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
2165 for example, a DAY of 0 means the day preceding the given month.
2166 Year numbers less than 100 are treated just like other year numbers.
2167 If you want them to stand for years in this century, you must do that yourself.
2168
2169 Years before 1970 are not guaranteed to work. On some systems,
2170 year values as low as 1901 do work.
2171
2172 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
2173 (ptrdiff_t nargs, Lisp_Object *args)
2174 {
2175 time_t value;
2176 struct tm tm;
2177 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
2178
2179 tm.tm_sec = check_tm_member (args[0], 0);
2180 tm.tm_min = check_tm_member (args[1], 0);
2181 tm.tm_hour = check_tm_member (args[2], 0);
2182 tm.tm_mday = check_tm_member (args[3], 0);
2183 tm.tm_mon = check_tm_member (args[4], 1);
2184 tm.tm_year = check_tm_member (args[5], TM_YEAR_BASE);
2185 tm.tm_isdst = -1;
2186
2187 if (CONSP (zone))
2188 zone = XCAR (zone);
2189 timezone_t tz = tzlookup (zone, false);
2190 value = emacs_mktime_z (tz, &tm);
2191 xtzfree (tz);
2192
2193 if (value == (time_t) -1)
2194 time_overflow ();
2195
2196 return list2i (hi_time (value), lo_time (value));
2197 }
2198
2199 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string,
2200 0, 2, 0,
2201 doc: /* Return the current local time, as a human-readable string.
2202 Programs can use this function to decode a time,
2203 since the number of columns in each field is fixed
2204 if the year is in the range 1000-9999.
2205 The format is `Sun Sep 16 01:03:52 1973'.
2206 However, see also the functions `decode-time' and `format-time-string'
2207 which provide a much more powerful and general facility.
2208
2209 If SPECIFIED-TIME is given, it is a time to format instead of the
2210 current time. The argument should have the form (HIGH LOW . IGNORED).
2211 Thus, you can use times obtained from `current-time' and from
2212 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
2213 but this is considered obsolete.
2214
2215 The optional ZONE is omitted or nil for Emacs local time, t for
2216 Universal Time, `wall' for system wall clock time, or a string as in
2217 `set-time-zone-rule' for a time zone rule. */)
2218 (Lisp_Object specified_time, Lisp_Object zone)
2219 {
2220 time_t value = lisp_seconds_argument (specified_time);
2221 timezone_t tz = tzlookup (zone, false);
2222
2223 /* Convert to a string in ctime format, except without the trailing
2224 newline, and without the 4-digit year limit. Don't use asctime
2225 or ctime, as they might dump core if the year is outside the
2226 range -999 .. 9999. */
2227 struct tm tm;
2228 struct tm *tmp = emacs_localtime_rz (tz, &value, &tm);
2229 xtzfree (tz);
2230 if (! tmp)
2231 time_overflow ();
2232
2233 static char const wday_name[][4] =
2234 { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
2235 static char const mon_name[][4] =
2236 { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
2237 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
2238 printmax_t year_base = TM_YEAR_BASE;
2239 char buf[sizeof "Mon Apr 30 12:49:17 " + INT_STRLEN_BOUND (int) + 1];
2240 int len = sprintf (buf, "%s %s%3d %02d:%02d:%02d %"pMd,
2241 wday_name[tm.tm_wday], mon_name[tm.tm_mon], tm.tm_mday,
2242 tm.tm_hour, tm.tm_min, tm.tm_sec,
2243 tm.tm_year + year_base);
2244
2245 return make_unibyte_string (buf, len);
2246 }
2247
2248 /* Yield A - B, measured in seconds.
2249 This function is copied from the GNU C Library. */
2250 static int
2251 tm_diff (struct tm *a, struct tm *b)
2252 {
2253 /* Compute intervening leap days correctly even if year is negative.
2254 Take care to avoid int overflow in leap day calculations,
2255 but it's OK to assume that A and B are close to each other. */
2256 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
2257 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
2258 int a100 = a4 / 25 - (a4 % 25 < 0);
2259 int b100 = b4 / 25 - (b4 % 25 < 0);
2260 int a400 = a100 >> 2;
2261 int b400 = b100 >> 2;
2262 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
2263 int years = a->tm_year - b->tm_year;
2264 int days = (365 * years + intervening_leap_days
2265 + (a->tm_yday - b->tm_yday));
2266 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
2267 + (a->tm_min - b->tm_min))
2268 + (a->tm_sec - b->tm_sec));
2269 }
2270
2271 /* Yield A's UTC offset, or an unspecified value if unknown. */
2272 static long int
2273 tm_gmtoff (struct tm *a)
2274 {
2275 #if HAVE_TM_GMTOFF
2276 return a->tm_gmtoff;
2277 #else
2278 return 0;
2279 #endif
2280 }
2281
2282 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 2, 0,
2283 doc: /* Return the offset and name for the local time zone.
2284 This returns a list of the form (OFFSET NAME).
2285 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
2286 A negative value means west of Greenwich.
2287 NAME is a string giving the name of the time zone.
2288 If SPECIFIED-TIME is given, the time zone offset is determined from it
2289 instead of using the current time. The argument should have the form
2290 \(HIGH LOW . IGNORED). Thus, you can use times obtained from
2291 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
2292 have the form (HIGH . LOW), but this is considered obsolete.
2293 Optional second arg ZONE is omitted or nil for the local time zone, or
2294 a string as in `set-time-zone-rule'.
2295
2296 Some operating systems cannot provide all this information to Emacs;
2297 in this case, `current-time-zone' returns a list containing nil for
2298 the data it can't find. */)
2299 (Lisp_Object specified_time, Lisp_Object zone)
2300 {
2301 struct timespec value;
2302 struct tm local_tm, gmt_tm;
2303 Lisp_Object zone_offset, zone_name;
2304
2305 zone_offset = Qnil;
2306 value = make_timespec (lisp_seconds_argument (specified_time), 0);
2307 zone_name = format_time_string ("%Z", sizeof "%Z" - 1, value,
2308 zone, &local_tm);
2309
2310 if (HAVE_TM_GMTOFF || gmtime_r (&value.tv_sec, &gmt_tm))
2311 {
2312 long int offset = (HAVE_TM_GMTOFF
2313 ? tm_gmtoff (&local_tm)
2314 : tm_diff (&local_tm, &gmt_tm));
2315 zone_offset = make_number (offset);
2316 if (SCHARS (zone_name) == 0)
2317 {
2318 /* No local time zone name is available; use "+-NNNN" instead. */
2319 long int m = offset / 60;
2320 long int am = offset < 0 ? - m : m;
2321 long int hour = am / 60;
2322 int min = am % 60;
2323 char buf[sizeof "+00" + INT_STRLEN_BOUND (long int)];
2324 zone_name = make_formatted_string (buf, "%c%02ld%02d",
2325 (offset < 0 ? '-' : '+'),
2326 hour, min);
2327 }
2328 }
2329
2330 return list2 (zone_offset, zone_name);
2331 }
2332
2333 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
2334 doc: /* Set the Emacs local time zone using TZ, a string specifying a time zone rule.
2335 If TZ is nil or `wall', use system wall clock time. If TZ is t, use
2336 Universal Time. If TZ is an integer, treat it as in `encode-time'.
2337
2338 Instead of calling this function, you typically want something else.
2339 To temporarily use a different time zone rule for just one invocation
2340 of `decode-time', `encode-time', or `format-time-string', pass the
2341 function a ZONE argument. To change local time consistently
2342 throughout Emacs, call (setenv "TZ" TZ): this changes both the
2343 environment of the Emacs process and the variable
2344 `process-environment', whereas `set-time-zone-rule' affects only the
2345 former. */)
2346 (Lisp_Object tz)
2347 {
2348 tzlookup (NILP (tz) ? Qwall : tz, true);
2349 return Qnil;
2350 }
2351
2352 /* A buffer holding a string of the form "TZ=value", intended
2353 to be part of the environment. If TZ is supposed to be unset,
2354 the buffer string is "tZ=". */
2355 static char *tzvalbuf;
2356
2357 /* Get the local time zone rule. */
2358 char *
2359 emacs_getenv_TZ (void)
2360 {
2361 return tzvalbuf[0] == 'T' ? tzvalbuf + tzeqlen : 0;
2362 }
2363
2364 /* Set the local time zone rule to TZSTRING, which can be null to
2365 denote wall clock time. Do not record the setting in LOCAL_TZ.
2366
2367 This function is not thread-safe, in theory because putenv is not,
2368 but mostly because of the static storage it updates. Other threads
2369 that invoke localtime etc. may be adversely affected while this
2370 function is executing. */
2371
2372 int
2373 emacs_setenv_TZ (const char *tzstring)
2374 {
2375 static ptrdiff_t tzvalbufsize;
2376 ptrdiff_t tzstringlen = tzstring ? strlen (tzstring) : 0;
2377 char *tzval = tzvalbuf;
2378 bool new_tzvalbuf = tzvalbufsize <= tzeqlen + tzstringlen;
2379
2380 if (new_tzvalbuf)
2381 {
2382 /* Do not attempt to free the old tzvalbuf, since another thread
2383 may be using it. In practice, the first allocation is large
2384 enough and memory does not leak. */
2385 tzval = xpalloc (NULL, &tzvalbufsize,
2386 tzeqlen + tzstringlen - tzvalbufsize + 1, -1, 1);
2387 tzvalbuf = tzval;
2388 tzval[1] = 'Z';
2389 tzval[2] = '=';
2390 }
2391
2392 if (tzstring)
2393 {
2394 /* Modify TZVAL in place. Although this is dicey in a
2395 multithreaded environment, we know of no portable alternative.
2396 Calling putenv or setenv could crash some other thread. */
2397 tzval[0] = 'T';
2398 strcpy (tzval + tzeqlen, tzstring);
2399 }
2400 else
2401 {
2402 /* Turn 'TZ=whatever' into an empty environment variable 'tZ='.
2403 Although this is also dicey, calling unsetenv here can crash Emacs.
2404 See Bug#8705. */
2405 tzval[0] = 't';
2406 tzval[tzeqlen] = 0;
2407 }
2408
2409 if (new_tzvalbuf
2410 #ifdef WINDOWSNT
2411 /* MS-Windows implementation of 'putenv' copies the argument
2412 string into a block it allocates, so modifying tzval string
2413 does not change the environment. OTOH, the other threads run
2414 by Emacs on MS-Windows never call 'xputenv' or 'putenv' or
2415 'unsetenv', so the original cause for the dicey in-place
2416 modification technique doesn't exist there in the first
2417 place. */
2418 || 1
2419 #endif
2420 )
2421 {
2422 /* Although this is not thread-safe, in practice this runs only
2423 on startup when there is only one thread. */
2424 xputenv (tzval);
2425 }
2426
2427 return 0;
2428 }
2429 \f
2430 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2431 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2432 type of object is Lisp_String). INHERIT is passed to
2433 INSERT_FROM_STRING_FUNC as the last argument. */
2434
2435 static void
2436 general_insert_function (void (*insert_func)
2437 (const char *, ptrdiff_t),
2438 void (*insert_from_string_func)
2439 (Lisp_Object, ptrdiff_t, ptrdiff_t,
2440 ptrdiff_t, ptrdiff_t, bool),
2441 bool inherit, ptrdiff_t nargs, Lisp_Object *args)
2442 {
2443 ptrdiff_t argnum;
2444 Lisp_Object val;
2445
2446 for (argnum = 0; argnum < nargs; argnum++)
2447 {
2448 val = args[argnum];
2449 if (CHARACTERP (val))
2450 {
2451 int c = XFASTINT (val);
2452 unsigned char str[MAX_MULTIBYTE_LENGTH];
2453 int len;
2454
2455 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2456 len = CHAR_STRING (c, str);
2457 else
2458 {
2459 str[0] = CHAR_TO_BYTE8 (c);
2460 len = 1;
2461 }
2462 (*insert_func) ((char *) str, len);
2463 }
2464 else if (STRINGP (val))
2465 {
2466 (*insert_from_string_func) (val, 0, 0,
2467 SCHARS (val),
2468 SBYTES (val),
2469 inherit);
2470 }
2471 else
2472 wrong_type_argument (Qchar_or_string_p, val);
2473 }
2474 }
2475
2476 void
2477 insert1 (Lisp_Object arg)
2478 {
2479 Finsert (1, &arg);
2480 }
2481
2482
2483 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2484 doc: /* Insert the arguments, either strings or characters, at point.
2485 Point and before-insertion markers move forward to end up
2486 after the inserted text.
2487 Any other markers at the point of insertion remain before the text.
2488
2489 If the current buffer is multibyte, unibyte strings are converted
2490 to multibyte for insertion (see `string-make-multibyte').
2491 If the current buffer is unibyte, multibyte strings are converted
2492 to unibyte for insertion (see `string-make-unibyte').
2493
2494 When operating on binary data, it may be necessary to preserve the
2495 original bytes of a unibyte string when inserting it into a multibyte
2496 buffer; to accomplish this, apply `string-as-multibyte' to the string
2497 and insert the result.
2498
2499 usage: (insert &rest ARGS) */)
2500 (ptrdiff_t nargs, Lisp_Object *args)
2501 {
2502 general_insert_function (insert, insert_from_string, 0, nargs, args);
2503 return Qnil;
2504 }
2505
2506 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2507 0, MANY, 0,
2508 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2509 Point and before-insertion markers move forward to end up
2510 after the inserted text.
2511 Any other markers at the point of insertion remain before the text.
2512
2513 If the current buffer is multibyte, unibyte strings are converted
2514 to multibyte for insertion (see `unibyte-char-to-multibyte').
2515 If the current buffer is unibyte, multibyte strings are converted
2516 to unibyte for insertion.
2517
2518 usage: (insert-and-inherit &rest ARGS) */)
2519 (ptrdiff_t nargs, Lisp_Object *args)
2520 {
2521 general_insert_function (insert_and_inherit, insert_from_string, 1,
2522 nargs, args);
2523 return Qnil;
2524 }
2525
2526 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2527 doc: /* Insert strings or characters at point, relocating markers after the text.
2528 Point and markers move forward to end up after the inserted text.
2529
2530 If the current buffer is multibyte, unibyte strings are converted
2531 to multibyte for insertion (see `unibyte-char-to-multibyte').
2532 If the current buffer is unibyte, multibyte strings are converted
2533 to unibyte for insertion.
2534
2535 If an overlay begins at the insertion point, the inserted text falls
2536 outside the overlay; if a nonempty overlay ends at the insertion
2537 point, the inserted text falls inside that overlay.
2538
2539 usage: (insert-before-markers &rest ARGS) */)
2540 (ptrdiff_t nargs, Lisp_Object *args)
2541 {
2542 general_insert_function (insert_before_markers,
2543 insert_from_string_before_markers, 0,
2544 nargs, args);
2545 return Qnil;
2546 }
2547
2548 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2549 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2550 doc: /* Insert text at point, relocating markers and inheriting properties.
2551 Point and markers move forward to end up after the inserted text.
2552
2553 If the current buffer is multibyte, unibyte strings are converted
2554 to multibyte for insertion (see `unibyte-char-to-multibyte').
2555 If the current buffer is unibyte, multibyte strings are converted
2556 to unibyte for insertion.
2557
2558 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2559 (ptrdiff_t nargs, Lisp_Object *args)
2560 {
2561 general_insert_function (insert_before_markers_and_inherit,
2562 insert_from_string_before_markers, 1,
2563 nargs, args);
2564 return Qnil;
2565 }
2566 \f
2567 DEFUN ("insert-char", Finsert_char, Sinsert_char, 1, 3,
2568 "(list (read-char-by-name \"Insert character (Unicode name or hex): \")\
2569 (prefix-numeric-value current-prefix-arg)\
2570 t))",
2571 doc: /* Insert COUNT copies of CHARACTER.
2572 Interactively, prompt for CHARACTER. You can specify CHARACTER in one
2573 of these ways:
2574
2575 - As its Unicode character name, e.g. \"LATIN SMALL LETTER A\".
2576 Completion is available; if you type a substring of the name
2577 preceded by an asterisk `*', Emacs shows all names which include
2578 that substring, not necessarily at the beginning of the name.
2579
2580 - As a hexadecimal code point, e.g. 263A. Note that code points in
2581 Emacs are equivalent to Unicode up to 10FFFF (which is the limit of
2582 the Unicode code space).
2583
2584 - As a code point with a radix specified with #, e.g. #o21430
2585 (octal), #x2318 (hex), or #10r8984 (decimal).
2586
2587 If called interactively, COUNT is given by the prefix argument. If
2588 omitted or nil, it defaults to 1.
2589
2590 Inserting the character(s) relocates point and before-insertion
2591 markers in the same ways as the function `insert'.
2592
2593 The optional third argument INHERIT, if non-nil, says to inherit text
2594 properties from adjoining text, if those properties are sticky. If
2595 called interactively, INHERIT is t. */)
2596 (Lisp_Object character, Lisp_Object count, Lisp_Object inherit)
2597 {
2598 int i, stringlen;
2599 register ptrdiff_t n;
2600 int c, len;
2601 unsigned char str[MAX_MULTIBYTE_LENGTH];
2602 char string[4000];
2603
2604 CHECK_CHARACTER (character);
2605 if (NILP (count))
2606 XSETFASTINT (count, 1);
2607 CHECK_NUMBER (count);
2608 c = XFASTINT (character);
2609
2610 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2611 len = CHAR_STRING (c, str);
2612 else
2613 str[0] = c, len = 1;
2614 if (XINT (count) <= 0)
2615 return Qnil;
2616 if (BUF_BYTES_MAX / len < XINT (count))
2617 buffer_overflow ();
2618 n = XINT (count) * len;
2619 stringlen = min (n, sizeof string - sizeof string % len);
2620 for (i = 0; i < stringlen; i++)
2621 string[i] = str[i % len];
2622 while (n > stringlen)
2623 {
2624 QUIT;
2625 if (!NILP (inherit))
2626 insert_and_inherit (string, stringlen);
2627 else
2628 insert (string, stringlen);
2629 n -= stringlen;
2630 }
2631 if (!NILP (inherit))
2632 insert_and_inherit (string, n);
2633 else
2634 insert (string, n);
2635 return Qnil;
2636 }
2637
2638 DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0,
2639 doc: /* Insert COUNT (second arg) copies of BYTE (first arg).
2640 Both arguments are required.
2641 BYTE is a number of the range 0..255.
2642
2643 If BYTE is 128..255 and the current buffer is multibyte, the
2644 corresponding eight-bit character is inserted.
2645
2646 Point, and before-insertion markers, are relocated as in the function `insert'.
2647 The optional third arg INHERIT, if non-nil, says to inherit text properties
2648 from adjoining text, if those properties are sticky. */)
2649 (Lisp_Object byte, Lisp_Object count, Lisp_Object inherit)
2650 {
2651 CHECK_NUMBER (byte);
2652 if (XINT (byte) < 0 || XINT (byte) > 255)
2653 args_out_of_range_3 (byte, make_number (0), make_number (255));
2654 if (XINT (byte) >= 128
2655 && ! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2656 XSETFASTINT (byte, BYTE8_TO_CHAR (XINT (byte)));
2657 return Finsert_char (byte, count, inherit);
2658 }
2659
2660 \f
2661 /* Making strings from buffer contents. */
2662
2663 /* Return a Lisp_String containing the text of the current buffer from
2664 START to END. If text properties are in use and the current buffer
2665 has properties in the range specified, the resulting string will also
2666 have them, if PROPS is true.
2667
2668 We don't want to use plain old make_string here, because it calls
2669 make_uninit_string, which can cause the buffer arena to be
2670 compacted. make_string has no way of knowing that the data has
2671 been moved, and thus copies the wrong data into the string. This
2672 doesn't effect most of the other users of make_string, so it should
2673 be left as is. But we should use this function when conjuring
2674 buffer substrings. */
2675
2676 Lisp_Object
2677 make_buffer_string (ptrdiff_t start, ptrdiff_t end, bool props)
2678 {
2679 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
2680 ptrdiff_t end_byte = CHAR_TO_BYTE (end);
2681
2682 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2683 }
2684
2685 /* Return a Lisp_String containing the text of the current buffer from
2686 START / START_BYTE to END / END_BYTE.
2687
2688 If text properties are in use and the current buffer
2689 has properties in the range specified, the resulting string will also
2690 have them, if PROPS is true.
2691
2692 We don't want to use plain old make_string here, because it calls
2693 make_uninit_string, which can cause the buffer arena to be
2694 compacted. make_string has no way of knowing that the data has
2695 been moved, and thus copies the wrong data into the string. This
2696 doesn't effect most of the other users of make_string, so it should
2697 be left as is. But we should use this function when conjuring
2698 buffer substrings. */
2699
2700 Lisp_Object
2701 make_buffer_string_both (ptrdiff_t start, ptrdiff_t start_byte,
2702 ptrdiff_t end, ptrdiff_t end_byte, bool props)
2703 {
2704 Lisp_Object result, tem, tem1;
2705 ptrdiff_t beg0, end0, beg1, end1, size;
2706
2707 if (start_byte < GPT_BYTE && GPT_BYTE < end_byte)
2708 {
2709 /* Two regions, before and after the gap. */
2710 beg0 = start_byte;
2711 end0 = GPT_BYTE;
2712 beg1 = GPT_BYTE + GAP_SIZE - BEG_BYTE;
2713 end1 = end_byte + GAP_SIZE - BEG_BYTE;
2714 }
2715 else
2716 {
2717 /* The only region. */
2718 beg0 = start_byte;
2719 end0 = end_byte;
2720 beg1 = -1;
2721 end1 = -1;
2722 }
2723
2724 if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2725 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2726 else
2727 result = make_uninit_string (end - start);
2728
2729 size = end0 - beg0;
2730 memcpy (SDATA (result), BYTE_POS_ADDR (beg0), size);
2731 if (beg1 != -1)
2732 memcpy (SDATA (result) + size, BEG_ADDR + beg1, end1 - beg1);
2733
2734 /* If desired, update and copy the text properties. */
2735 if (props)
2736 {
2737 update_buffer_properties (start, end);
2738
2739 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2740 tem1 = Ftext_properties_at (make_number (start), Qnil);
2741
2742 if (XINT (tem) != end || !NILP (tem1))
2743 copy_intervals_to_string (result, current_buffer, start,
2744 end - start);
2745 }
2746
2747 return result;
2748 }
2749
2750 /* Call Vbuffer_access_fontify_functions for the range START ... END
2751 in the current buffer, if necessary. */
2752
2753 static void
2754 update_buffer_properties (ptrdiff_t start, ptrdiff_t end)
2755 {
2756 /* If this buffer has some access functions,
2757 call them, specifying the range of the buffer being accessed. */
2758 if (!NILP (Vbuffer_access_fontify_functions))
2759 {
2760 /* But don't call them if we can tell that the work
2761 has already been done. */
2762 if (!NILP (Vbuffer_access_fontified_property))
2763 {
2764 Lisp_Object tem
2765 = Ftext_property_any (make_number (start), make_number (end),
2766 Vbuffer_access_fontified_property,
2767 Qnil, Qnil);
2768 if (NILP (tem))
2769 return;
2770 }
2771
2772 CALLN (Frun_hook_with_args, Qbuffer_access_fontify_functions,
2773 make_number (start), make_number (end));
2774 }
2775 }
2776
2777 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2778 doc: /* Return the contents of part of the current buffer as a string.
2779 The two arguments START and END are character positions;
2780 they can be in either order.
2781 The string returned is multibyte if the buffer is multibyte.
2782
2783 This function copies the text properties of that part of the buffer
2784 into the result string; if you don't want the text properties,
2785 use `buffer-substring-no-properties' instead. */)
2786 (Lisp_Object start, Lisp_Object end)
2787 {
2788 register ptrdiff_t b, e;
2789
2790 validate_region (&start, &end);
2791 b = XINT (start);
2792 e = XINT (end);
2793
2794 return make_buffer_string (b, e, 1);
2795 }
2796
2797 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2798 Sbuffer_substring_no_properties, 2, 2, 0,
2799 doc: /* Return the characters of part of the buffer, without the text properties.
2800 The two arguments START and END are character positions;
2801 they can be in either order. */)
2802 (Lisp_Object start, Lisp_Object end)
2803 {
2804 register ptrdiff_t b, e;
2805
2806 validate_region (&start, &end);
2807 b = XINT (start);
2808 e = XINT (end);
2809
2810 return make_buffer_string (b, e, 0);
2811 }
2812
2813 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2814 doc: /* Return the contents of the current buffer as a string.
2815 If narrowing is in effect, this function returns only the visible part
2816 of the buffer. */)
2817 (void)
2818 {
2819 return make_buffer_string_both (BEGV, BEGV_BYTE, ZV, ZV_BYTE, 1);
2820 }
2821
2822 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2823 1, 3, 0,
2824 doc: /* Insert before point a substring of the contents of BUFFER.
2825 BUFFER may be a buffer or a buffer name.
2826 Arguments START and END are character positions specifying the substring.
2827 They default to the values of (point-min) and (point-max) in BUFFER.
2828
2829 Point and before-insertion markers move forward to end up after the
2830 inserted text.
2831 Any other markers at the point of insertion remain before the text.
2832
2833 If the current buffer is multibyte and BUFFER is unibyte, or vice
2834 versa, strings are converted from unibyte to multibyte or vice versa
2835 using `string-make-multibyte' or `string-make-unibyte', which see. */)
2836 (Lisp_Object buffer, Lisp_Object start, Lisp_Object end)
2837 {
2838 register EMACS_INT b, e, temp;
2839 register struct buffer *bp, *obuf;
2840 Lisp_Object buf;
2841
2842 buf = Fget_buffer (buffer);
2843 if (NILP (buf))
2844 nsberror (buffer);
2845 bp = XBUFFER (buf);
2846 if (!BUFFER_LIVE_P (bp))
2847 error ("Selecting deleted buffer");
2848
2849 if (NILP (start))
2850 b = BUF_BEGV (bp);
2851 else
2852 {
2853 CHECK_NUMBER_COERCE_MARKER (start);
2854 b = XINT (start);
2855 }
2856 if (NILP (end))
2857 e = BUF_ZV (bp);
2858 else
2859 {
2860 CHECK_NUMBER_COERCE_MARKER (end);
2861 e = XINT (end);
2862 }
2863
2864 if (b > e)
2865 temp = b, b = e, e = temp;
2866
2867 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2868 args_out_of_range (start, end);
2869
2870 obuf = current_buffer;
2871 set_buffer_internal_1 (bp);
2872 update_buffer_properties (b, e);
2873 set_buffer_internal_1 (obuf);
2874
2875 insert_from_buffer (bp, b, e - b, 0);
2876 return Qnil;
2877 }
2878
2879 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2880 6, 6, 0,
2881 doc: /* Compare two substrings of two buffers; return result as number.
2882 Return -N if first string is less after N-1 chars, +N if first string is
2883 greater after N-1 chars, or 0 if strings match. Each substring is
2884 represented as three arguments: BUFFER, START and END. That makes six
2885 args in all, three for each substring.
2886
2887 The value of `case-fold-search' in the current buffer
2888 determines whether case is significant or ignored. */)
2889 (Lisp_Object buffer1, Lisp_Object start1, Lisp_Object end1, Lisp_Object buffer2, Lisp_Object start2, Lisp_Object end2)
2890 {
2891 register EMACS_INT begp1, endp1, begp2, endp2, temp;
2892 register struct buffer *bp1, *bp2;
2893 register Lisp_Object trt
2894 = (!NILP (BVAR (current_buffer, case_fold_search))
2895 ? BVAR (current_buffer, case_canon_table) : Qnil);
2896 ptrdiff_t chars = 0;
2897 ptrdiff_t i1, i2, i1_byte, i2_byte;
2898
2899 /* Find the first buffer and its substring. */
2900
2901 if (NILP (buffer1))
2902 bp1 = current_buffer;
2903 else
2904 {
2905 Lisp_Object buf1;
2906 buf1 = Fget_buffer (buffer1);
2907 if (NILP (buf1))
2908 nsberror (buffer1);
2909 bp1 = XBUFFER (buf1);
2910 if (!BUFFER_LIVE_P (bp1))
2911 error ("Selecting deleted buffer");
2912 }
2913
2914 if (NILP (start1))
2915 begp1 = BUF_BEGV (bp1);
2916 else
2917 {
2918 CHECK_NUMBER_COERCE_MARKER (start1);
2919 begp1 = XINT (start1);
2920 }
2921 if (NILP (end1))
2922 endp1 = BUF_ZV (bp1);
2923 else
2924 {
2925 CHECK_NUMBER_COERCE_MARKER (end1);
2926 endp1 = XINT (end1);
2927 }
2928
2929 if (begp1 > endp1)
2930 temp = begp1, begp1 = endp1, endp1 = temp;
2931
2932 if (!(BUF_BEGV (bp1) <= begp1
2933 && begp1 <= endp1
2934 && endp1 <= BUF_ZV (bp1)))
2935 args_out_of_range (start1, end1);
2936
2937 /* Likewise for second substring. */
2938
2939 if (NILP (buffer2))
2940 bp2 = current_buffer;
2941 else
2942 {
2943 Lisp_Object buf2;
2944 buf2 = Fget_buffer (buffer2);
2945 if (NILP (buf2))
2946 nsberror (buffer2);
2947 bp2 = XBUFFER (buf2);
2948 if (!BUFFER_LIVE_P (bp2))
2949 error ("Selecting deleted buffer");
2950 }
2951
2952 if (NILP (start2))
2953 begp2 = BUF_BEGV (bp2);
2954 else
2955 {
2956 CHECK_NUMBER_COERCE_MARKER (start2);
2957 begp2 = XINT (start2);
2958 }
2959 if (NILP (end2))
2960 endp2 = BUF_ZV (bp2);
2961 else
2962 {
2963 CHECK_NUMBER_COERCE_MARKER (end2);
2964 endp2 = XINT (end2);
2965 }
2966
2967 if (begp2 > endp2)
2968 temp = begp2, begp2 = endp2, endp2 = temp;
2969
2970 if (!(BUF_BEGV (bp2) <= begp2
2971 && begp2 <= endp2
2972 && endp2 <= BUF_ZV (bp2)))
2973 args_out_of_range (start2, end2);
2974
2975 i1 = begp1;
2976 i2 = begp2;
2977 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2978 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2979
2980 while (i1 < endp1 && i2 < endp2)
2981 {
2982 /* When we find a mismatch, we must compare the
2983 characters, not just the bytes. */
2984 int c1, c2;
2985
2986 QUIT;
2987
2988 if (! NILP (BVAR (bp1, enable_multibyte_characters)))
2989 {
2990 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2991 BUF_INC_POS (bp1, i1_byte);
2992 i1++;
2993 }
2994 else
2995 {
2996 c1 = BUF_FETCH_BYTE (bp1, i1);
2997 MAKE_CHAR_MULTIBYTE (c1);
2998 i1++;
2999 }
3000
3001 if (! NILP (BVAR (bp2, enable_multibyte_characters)))
3002 {
3003 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
3004 BUF_INC_POS (bp2, i2_byte);
3005 i2++;
3006 }
3007 else
3008 {
3009 c2 = BUF_FETCH_BYTE (bp2, i2);
3010 MAKE_CHAR_MULTIBYTE (c2);
3011 i2++;
3012 }
3013
3014 if (!NILP (trt))
3015 {
3016 c1 = char_table_translate (trt, c1);
3017 c2 = char_table_translate (trt, c2);
3018 }
3019 if (c1 < c2)
3020 return make_number (- 1 - chars);
3021 if (c1 > c2)
3022 return make_number (chars + 1);
3023
3024 chars++;
3025 }
3026
3027 /* The strings match as far as they go.
3028 If one is shorter, that one is less. */
3029 if (chars < endp1 - begp1)
3030 return make_number (chars + 1);
3031 else if (chars < endp2 - begp2)
3032 return make_number (- chars - 1);
3033
3034 /* Same length too => they are equal. */
3035 return make_number (0);
3036 }
3037 \f
3038 static void
3039 subst_char_in_region_unwind (Lisp_Object arg)
3040 {
3041 bset_undo_list (current_buffer, arg);
3042 }
3043
3044 static void
3045 subst_char_in_region_unwind_1 (Lisp_Object arg)
3046 {
3047 bset_filename (current_buffer, arg);
3048 }
3049
3050 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
3051 Ssubst_char_in_region, 4, 5, 0,
3052 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
3053 If optional arg NOUNDO is non-nil, don't record this change for undo
3054 and don't mark the buffer as really changed.
3055 Both characters must have the same length of multi-byte form. */)
3056 (Lisp_Object start, Lisp_Object end, Lisp_Object fromchar, Lisp_Object tochar, Lisp_Object noundo)
3057 {
3058 register ptrdiff_t pos, pos_byte, stop, i, len, end_byte;
3059 /* Keep track of the first change in the buffer:
3060 if 0 we haven't found it yet.
3061 if < 0 we've found it and we've run the before-change-function.
3062 if > 0 we've actually performed it and the value is its position. */
3063 ptrdiff_t changed = 0;
3064 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
3065 unsigned char *p;
3066 ptrdiff_t count = SPECPDL_INDEX ();
3067 #define COMBINING_NO 0
3068 #define COMBINING_BEFORE 1
3069 #define COMBINING_AFTER 2
3070 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
3071 int maybe_byte_combining = COMBINING_NO;
3072 ptrdiff_t last_changed = 0;
3073 bool multibyte_p
3074 = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3075 int fromc, toc;
3076
3077 restart:
3078
3079 validate_region (&start, &end);
3080 CHECK_CHARACTER (fromchar);
3081 CHECK_CHARACTER (tochar);
3082 fromc = XFASTINT (fromchar);
3083 toc = XFASTINT (tochar);
3084
3085 if (multibyte_p)
3086 {
3087 len = CHAR_STRING (fromc, fromstr);
3088 if (CHAR_STRING (toc, tostr) != len)
3089 error ("Characters in `subst-char-in-region' have different byte-lengths");
3090 if (!ASCII_CHAR_P (*tostr))
3091 {
3092 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
3093 complete multibyte character, it may be combined with the
3094 after bytes. If it is in the range 0xA0..0xFF, it may be
3095 combined with the before and after bytes. */
3096 if (!CHAR_HEAD_P (*tostr))
3097 maybe_byte_combining = COMBINING_BOTH;
3098 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
3099 maybe_byte_combining = COMBINING_AFTER;
3100 }
3101 }
3102 else
3103 {
3104 len = 1;
3105 fromstr[0] = fromc;
3106 tostr[0] = toc;
3107 }
3108
3109 pos = XINT (start);
3110 pos_byte = CHAR_TO_BYTE (pos);
3111 stop = CHAR_TO_BYTE (XINT (end));
3112 end_byte = stop;
3113
3114 /* If we don't want undo, turn off putting stuff on the list.
3115 That's faster than getting rid of things,
3116 and it prevents even the entry for a first change.
3117 Also inhibit locking the file. */
3118 if (!changed && !NILP (noundo))
3119 {
3120 record_unwind_protect (subst_char_in_region_unwind,
3121 BVAR (current_buffer, undo_list));
3122 bset_undo_list (current_buffer, Qt);
3123 /* Don't do file-locking. */
3124 record_unwind_protect (subst_char_in_region_unwind_1,
3125 BVAR (current_buffer, filename));
3126 bset_filename (current_buffer, Qnil);
3127 }
3128
3129 if (pos_byte < GPT_BYTE)
3130 stop = min (stop, GPT_BYTE);
3131 while (1)
3132 {
3133 ptrdiff_t pos_byte_next = pos_byte;
3134
3135 if (pos_byte >= stop)
3136 {
3137 if (pos_byte >= end_byte) break;
3138 stop = end_byte;
3139 }
3140 p = BYTE_POS_ADDR (pos_byte);
3141 if (multibyte_p)
3142 INC_POS (pos_byte_next);
3143 else
3144 ++pos_byte_next;
3145 if (pos_byte_next - pos_byte == len
3146 && p[0] == fromstr[0]
3147 && (len == 1
3148 || (p[1] == fromstr[1]
3149 && (len == 2 || (p[2] == fromstr[2]
3150 && (len == 3 || p[3] == fromstr[3]))))))
3151 {
3152 if (changed < 0)
3153 /* We've already seen this and run the before-change-function;
3154 this time we only need to record the actual position. */
3155 changed = pos;
3156 else if (!changed)
3157 {
3158 changed = -1;
3159 modify_text (pos, XINT (end));
3160
3161 if (! NILP (noundo))
3162 {
3163 if (MODIFF - 1 == SAVE_MODIFF)
3164 SAVE_MODIFF++;
3165 if (MODIFF - 1 == BUF_AUTOSAVE_MODIFF (current_buffer))
3166 BUF_AUTOSAVE_MODIFF (current_buffer)++;
3167 }
3168
3169 /* The before-change-function may have moved the gap
3170 or even modified the buffer so we should start over. */
3171 goto restart;
3172 }
3173
3174 /* Take care of the case where the new character
3175 combines with neighboring bytes. */
3176 if (maybe_byte_combining
3177 && (maybe_byte_combining == COMBINING_AFTER
3178 ? (pos_byte_next < Z_BYTE
3179 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
3180 : ((pos_byte_next < Z_BYTE
3181 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
3182 || (pos_byte > BEG_BYTE
3183 && ! ASCII_CHAR_P (FETCH_BYTE (pos_byte - 1))))))
3184 {
3185 Lisp_Object tem, string;
3186
3187 tem = BVAR (current_buffer, undo_list);
3188
3189 /* Make a multibyte string containing this single character. */
3190 string = make_multibyte_string ((char *) tostr, 1, len);
3191 /* replace_range is less efficient, because it moves the gap,
3192 but it handles combining correctly. */
3193 replace_range (pos, pos + 1, string,
3194 0, 0, 1);
3195 pos_byte_next = CHAR_TO_BYTE (pos);
3196 if (pos_byte_next > pos_byte)
3197 /* Before combining happened. We should not increment
3198 POS. So, to cancel the later increment of POS,
3199 decrease it now. */
3200 pos--;
3201 else
3202 INC_POS (pos_byte_next);
3203
3204 if (! NILP (noundo))
3205 bset_undo_list (current_buffer, tem);
3206 }
3207 else
3208 {
3209 if (NILP (noundo))
3210 record_change (pos, 1);
3211 for (i = 0; i < len; i++) *p++ = tostr[i];
3212 }
3213 last_changed = pos + 1;
3214 }
3215 pos_byte = pos_byte_next;
3216 pos++;
3217 }
3218
3219 if (changed > 0)
3220 {
3221 signal_after_change (changed,
3222 last_changed - changed, last_changed - changed);
3223 update_compositions (changed, last_changed, CHECK_ALL);
3224 }
3225
3226 unbind_to (count, Qnil);
3227 return Qnil;
3228 }
3229
3230
3231 static Lisp_Object check_translation (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3232 Lisp_Object);
3233
3234 /* Helper function for Ftranslate_region_internal.
3235
3236 Check if a character sequence at POS (POS_BYTE) matches an element
3237 of VAL. VAL is a list (([FROM-CHAR ...] . TO) ...). If a matching
3238 element is found, return it. Otherwise return Qnil. */
3239
3240 static Lisp_Object
3241 check_translation (ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t end,
3242 Lisp_Object val)
3243 {
3244 int initial_buf[16];
3245 int *buf = initial_buf;
3246 ptrdiff_t buf_size = ARRAYELTS (initial_buf);
3247 int *bufalloc = 0;
3248 ptrdiff_t buf_used = 0;
3249 Lisp_Object result = Qnil;
3250
3251 for (; CONSP (val); val = XCDR (val))
3252 {
3253 Lisp_Object elt;
3254 ptrdiff_t len, i;
3255
3256 elt = XCAR (val);
3257 if (! CONSP (elt))
3258 continue;
3259 elt = XCAR (elt);
3260 if (! VECTORP (elt))
3261 continue;
3262 len = ASIZE (elt);
3263 if (len <= end - pos)
3264 {
3265 for (i = 0; i < len; i++)
3266 {
3267 if (buf_used <= i)
3268 {
3269 unsigned char *p = BYTE_POS_ADDR (pos_byte);
3270 int len1;
3271
3272 if (buf_used == buf_size)
3273 {
3274 bufalloc = xpalloc (bufalloc, &buf_size, 1, -1,
3275 sizeof *bufalloc);
3276 if (buf == initial_buf)
3277 memcpy (bufalloc, buf, sizeof initial_buf);
3278 buf = bufalloc;
3279 }
3280 buf[buf_used++] = STRING_CHAR_AND_LENGTH (p, len1);
3281 pos_byte += len1;
3282 }
3283 if (XINT (AREF (elt, i)) != buf[i])
3284 break;
3285 }
3286 if (i == len)
3287 {
3288 result = XCAR (val);
3289 break;
3290 }
3291 }
3292 }
3293
3294 xfree (bufalloc);
3295 return result;
3296 }
3297
3298
3299 DEFUN ("translate-region-internal", Ftranslate_region_internal,
3300 Stranslate_region_internal, 3, 3, 0,
3301 doc: /* Internal use only.
3302 From START to END, translate characters according to TABLE.
3303 TABLE is a string or a char-table; the Nth character in it is the
3304 mapping for the character with code N.
3305 It returns the number of characters changed. */)
3306 (Lisp_Object start, Lisp_Object end, register Lisp_Object table)
3307 {
3308 register unsigned char *tt; /* Trans table. */
3309 register int nc; /* New character. */
3310 int cnt; /* Number of changes made. */
3311 ptrdiff_t size; /* Size of translate table. */
3312 ptrdiff_t pos, pos_byte, end_pos;
3313 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3314 bool string_multibyte IF_LINT (= 0);
3315
3316 validate_region (&start, &end);
3317 if (CHAR_TABLE_P (table))
3318 {
3319 if (! EQ (XCHAR_TABLE (table)->purpose, Qtranslation_table))
3320 error ("Not a translation table");
3321 size = MAX_CHAR;
3322 tt = NULL;
3323 }
3324 else
3325 {
3326 CHECK_STRING (table);
3327
3328 if (! multibyte && (SCHARS (table) < SBYTES (table)))
3329 table = string_make_unibyte (table);
3330 string_multibyte = SCHARS (table) < SBYTES (table);
3331 size = SBYTES (table);
3332 tt = SDATA (table);
3333 }
3334
3335 pos = XINT (start);
3336 pos_byte = CHAR_TO_BYTE (pos);
3337 end_pos = XINT (end);
3338 modify_text (pos, end_pos);
3339
3340 cnt = 0;
3341 for (; pos < end_pos; )
3342 {
3343 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
3344 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
3345 int len, str_len;
3346 int oc;
3347 Lisp_Object val;
3348
3349 if (multibyte)
3350 oc = STRING_CHAR_AND_LENGTH (p, len);
3351 else
3352 oc = *p, len = 1;
3353 if (oc < size)
3354 {
3355 if (tt)
3356 {
3357 /* Reload as signal_after_change in last iteration may GC. */
3358 tt = SDATA (table);
3359 if (string_multibyte)
3360 {
3361 str = tt + string_char_to_byte (table, oc);
3362 nc = STRING_CHAR_AND_LENGTH (str, str_len);
3363 }
3364 else
3365 {
3366 nc = tt[oc];
3367 if (! ASCII_CHAR_P (nc) && multibyte)
3368 {
3369 str_len = BYTE8_STRING (nc, buf);
3370 str = buf;
3371 }
3372 else
3373 {
3374 str_len = 1;
3375 str = tt + oc;
3376 }
3377 }
3378 }
3379 else
3380 {
3381 nc = oc;
3382 val = CHAR_TABLE_REF (table, oc);
3383 if (CHARACTERP (val))
3384 {
3385 nc = XFASTINT (val);
3386 str_len = CHAR_STRING (nc, buf);
3387 str = buf;
3388 }
3389 else if (VECTORP (val) || (CONSP (val)))
3390 {
3391 /* VAL is [TO_CHAR ...] or (([FROM-CHAR ...] . TO) ...)
3392 where TO is TO-CHAR or [TO-CHAR ...]. */
3393 nc = -1;
3394 }
3395 }
3396
3397 if (nc != oc && nc >= 0)
3398 {
3399 /* Simple one char to one char translation. */
3400 if (len != str_len)
3401 {
3402 Lisp_Object string;
3403
3404 /* This is less efficient, because it moves the gap,
3405 but it should handle multibyte characters correctly. */
3406 string = make_multibyte_string ((char *) str, 1, str_len);
3407 replace_range (pos, pos + 1, string, 1, 0, 1);
3408 len = str_len;
3409 }
3410 else
3411 {
3412 record_change (pos, 1);
3413 while (str_len-- > 0)
3414 *p++ = *str++;
3415 signal_after_change (pos, 1, 1);
3416 update_compositions (pos, pos + 1, CHECK_BORDER);
3417 }
3418 ++cnt;
3419 }
3420 else if (nc < 0)
3421 {
3422 Lisp_Object string;
3423
3424 if (CONSP (val))
3425 {
3426 val = check_translation (pos, pos_byte, end_pos, val);
3427 if (NILP (val))
3428 {
3429 pos_byte += len;
3430 pos++;
3431 continue;
3432 }
3433 /* VAL is ([FROM-CHAR ...] . TO). */
3434 len = ASIZE (XCAR (val));
3435 val = XCDR (val);
3436 }
3437 else
3438 len = 1;
3439
3440 if (VECTORP (val))
3441 {
3442 string = Fconcat (1, &val);
3443 }
3444 else
3445 {
3446 string = Fmake_string (make_number (1), val);
3447 }
3448 replace_range (pos, pos + len, string, 1, 0, 1);
3449 pos_byte += SBYTES (string);
3450 pos += SCHARS (string);
3451 cnt += SCHARS (string);
3452 end_pos += SCHARS (string) - len;
3453 continue;
3454 }
3455 }
3456 pos_byte += len;
3457 pos++;
3458 }
3459
3460 return make_number (cnt);
3461 }
3462
3463 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
3464 doc: /* Delete the text between START and END.
3465 If called interactively, delete the region between point and mark.
3466 This command deletes buffer text without modifying the kill ring. */)
3467 (Lisp_Object start, Lisp_Object end)
3468 {
3469 validate_region (&start, &end);
3470 del_range (XINT (start), XINT (end));
3471 return Qnil;
3472 }
3473
3474 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
3475 Sdelete_and_extract_region, 2, 2, 0,
3476 doc: /* Delete the text between START and END and return it. */)
3477 (Lisp_Object start, Lisp_Object end)
3478 {
3479 validate_region (&start, &end);
3480 if (XINT (start) == XINT (end))
3481 return empty_unibyte_string;
3482 return del_range_1 (XINT (start), XINT (end), 1, 1);
3483 }
3484 \f
3485 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3486 doc: /* Remove restrictions (narrowing) from current buffer.
3487 This allows the buffer's full text to be seen and edited. */)
3488 (void)
3489 {
3490 if (BEG != BEGV || Z != ZV)
3491 current_buffer->clip_changed = 1;
3492 BEGV = BEG;
3493 BEGV_BYTE = BEG_BYTE;
3494 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3495 /* Changing the buffer bounds invalidates any recorded current column. */
3496 invalidate_current_column ();
3497 return Qnil;
3498 }
3499
3500 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3501 doc: /* Restrict editing in this buffer to the current region.
3502 The rest of the text becomes temporarily invisible and untouchable
3503 but is not deleted; if you save the buffer in a file, the invisible
3504 text is included in the file. \\[widen] makes all visible again.
3505 See also `save-restriction'.
3506
3507 When calling from a program, pass two arguments; positions (integers
3508 or markers) bounding the text that should remain visible. */)
3509 (register Lisp_Object start, Lisp_Object end)
3510 {
3511 CHECK_NUMBER_COERCE_MARKER (start);
3512 CHECK_NUMBER_COERCE_MARKER (end);
3513
3514 if (XINT (start) > XINT (end))
3515 {
3516 Lisp_Object tem;
3517 tem = start; start = end; end = tem;
3518 }
3519
3520 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3521 args_out_of_range (start, end);
3522
3523 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3524 current_buffer->clip_changed = 1;
3525
3526 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3527 SET_BUF_ZV (current_buffer, XFASTINT (end));
3528 if (PT < XFASTINT (start))
3529 SET_PT (XFASTINT (start));
3530 if (PT > XFASTINT (end))
3531 SET_PT (XFASTINT (end));
3532 /* Changing the buffer bounds invalidates any recorded current column. */
3533 invalidate_current_column ();
3534 return Qnil;
3535 }
3536
3537 Lisp_Object
3538 save_restriction_save (void)
3539 {
3540 if (BEGV == BEG && ZV == Z)
3541 /* The common case that the buffer isn't narrowed.
3542 We return just the buffer object, which save_restriction_restore
3543 recognizes as meaning `no restriction'. */
3544 return Fcurrent_buffer ();
3545 else
3546 /* We have to save a restriction, so return a pair of markers, one
3547 for the beginning and one for the end. */
3548 {
3549 Lisp_Object beg, end;
3550
3551 beg = build_marker (current_buffer, BEGV, BEGV_BYTE);
3552 end = build_marker (current_buffer, ZV, ZV_BYTE);
3553
3554 /* END must move forward if text is inserted at its exact location. */
3555 XMARKER (end)->insertion_type = 1;
3556
3557 return Fcons (beg, end);
3558 }
3559 }
3560
3561 void
3562 save_restriction_restore (Lisp_Object data)
3563 {
3564 struct buffer *cur = NULL;
3565 struct buffer *buf = (CONSP (data)
3566 ? XMARKER (XCAR (data))->buffer
3567 : XBUFFER (data));
3568
3569 if (buf && buf != current_buffer && !NILP (BVAR (buf, pt_marker)))
3570 { /* If `buf' uses markers to keep track of PT, BEGV, and ZV (as
3571 is the case if it is or has an indirect buffer), then make
3572 sure it is current before we update BEGV, so
3573 set_buffer_internal takes care of managing those markers. */
3574 cur = current_buffer;
3575 set_buffer_internal (buf);
3576 }
3577
3578 if (CONSP (data))
3579 /* A pair of marks bounding a saved restriction. */
3580 {
3581 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3582 struct Lisp_Marker *end = XMARKER (XCDR (data));
3583 eassert (buf == end->buffer);
3584
3585 if (buf /* Verify marker still points to a buffer. */
3586 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3587 /* The restriction has changed from the saved one, so restore
3588 the saved restriction. */
3589 {
3590 ptrdiff_t pt = BUF_PT (buf);
3591
3592 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3593 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3594
3595 if (pt < beg->charpos || pt > end->charpos)
3596 /* The point is outside the new visible range, move it inside. */
3597 SET_BUF_PT_BOTH (buf,
3598 clip_to_bounds (beg->charpos, pt, end->charpos),
3599 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3600 end->bytepos));
3601
3602 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3603 }
3604 /* These aren't needed anymore, so don't wait for GC. */
3605 free_marker (XCAR (data));
3606 free_marker (XCDR (data));
3607 free_cons (XCONS (data));
3608 }
3609 else
3610 /* A buffer, which means that there was no old restriction. */
3611 {
3612 if (buf /* Verify marker still points to a buffer. */
3613 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3614 /* The buffer has been narrowed, get rid of the narrowing. */
3615 {
3616 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3617 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3618
3619 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3620 }
3621 }
3622
3623 /* Changing the buffer bounds invalidates any recorded current column. */
3624 invalidate_current_column ();
3625
3626 if (cur)
3627 set_buffer_internal (cur);
3628 }
3629
3630 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3631 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3632 The buffer's restrictions make parts of the beginning and end invisible.
3633 \(They are set up with `narrow-to-region' and eliminated with `widen'.)
3634 This special form, `save-restriction', saves the current buffer's restrictions
3635 when it is entered, and restores them when it is exited.
3636 So any `narrow-to-region' within BODY lasts only until the end of the form.
3637 The old restrictions settings are restored
3638 even in case of abnormal exit (throw or error).
3639
3640 The value returned is the value of the last form in BODY.
3641
3642 Note: if you are using both `save-excursion' and `save-restriction',
3643 use `save-excursion' outermost:
3644 (save-excursion (save-restriction ...))
3645
3646 usage: (save-restriction &rest BODY) */)
3647 (Lisp_Object body)
3648 {
3649 register Lisp_Object val;
3650 ptrdiff_t count = SPECPDL_INDEX ();
3651
3652 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3653 val = Fprogn (body);
3654 return unbind_to (count, val);
3655 }
3656 \f
3657 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3658 doc: /* Display a message at the bottom of the screen.
3659 The message also goes into the `*Messages*' buffer, if `message-log-max'
3660 is non-nil. (In keyboard macros, that's all it does.)
3661 Return the message.
3662
3663 In batch mode, the message is printed to the standard error stream,
3664 followed by a newline.
3665
3666 The first argument is a format control string, and the rest are data
3667 to be formatted under control of the string. See `format' for details.
3668
3669 Note: Use (message "%s" VALUE) to print the value of expressions and
3670 variables to avoid accidentally interpreting `%' as format specifiers.
3671
3672 If the first argument is nil or the empty string, the function clears
3673 any existing message; this lets the minibuffer contents show. See
3674 also `current-message'.
3675
3676 usage: (message FORMAT-STRING &rest ARGS) */)
3677 (ptrdiff_t nargs, Lisp_Object *args)
3678 {
3679 if (NILP (args[0])
3680 || (STRINGP (args[0])
3681 && SBYTES (args[0]) == 0))
3682 {
3683 message1 (0);
3684 return args[0];
3685 }
3686 else
3687 {
3688 Lisp_Object val = Fformat_message (nargs, args);
3689 message3 (val);
3690 return val;
3691 }
3692 }
3693
3694 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3695 doc: /* Display a message, in a dialog box if possible.
3696 If a dialog box is not available, use the echo area.
3697 The first argument is a format control string, and the rest are data
3698 to be formatted under control of the string. See `format' for details.
3699
3700 If the first argument is nil or the empty string, clear any existing
3701 message; let the minibuffer contents show.
3702
3703 usage: (message-box FORMAT-STRING &rest ARGS) */)
3704 (ptrdiff_t nargs, Lisp_Object *args)
3705 {
3706 if (NILP (args[0]))
3707 {
3708 message1 (0);
3709 return Qnil;
3710 }
3711 else
3712 {
3713 Lisp_Object val = Fformat_message (nargs, args);
3714 Lisp_Object pane, menu;
3715
3716 pane = list1 (Fcons (build_string ("OK"), Qt));
3717 menu = Fcons (val, pane);
3718 Fx_popup_dialog (Qt, menu, Qt);
3719 return val;
3720 }
3721 }
3722
3723 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3724 doc: /* Display a message in a dialog box or in the echo area.
3725 If this command was invoked with the mouse, use a dialog box if
3726 `use-dialog-box' is non-nil.
3727 Otherwise, use the echo area.
3728 The first argument is a format control string, and the rest are data
3729 to be formatted under control of the string. See `format' for details.
3730
3731 If the first argument is nil or the empty string, clear any existing
3732 message; let the minibuffer contents show.
3733
3734 usage: (message-or-box FORMAT-STRING &rest ARGS) */)
3735 (ptrdiff_t nargs, Lisp_Object *args)
3736 {
3737 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3738 && use_dialog_box)
3739 return Fmessage_box (nargs, args);
3740 return Fmessage (nargs, args);
3741 }
3742
3743 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3744 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3745 (void)
3746 {
3747 return current_message ();
3748 }
3749
3750
3751 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3752 doc: /* Return a copy of STRING with text properties added.
3753 First argument is the string to copy.
3754 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3755 properties to add to the result.
3756 usage: (propertize STRING &rest PROPERTIES) */)
3757 (ptrdiff_t nargs, Lisp_Object *args)
3758 {
3759 Lisp_Object properties, string;
3760 ptrdiff_t i;
3761
3762 /* Number of args must be odd. */
3763 if ((nargs & 1) == 0)
3764 error ("Wrong number of arguments");
3765
3766 properties = string = Qnil;
3767
3768 /* First argument must be a string. */
3769 CHECK_STRING (args[0]);
3770 string = Fcopy_sequence (args[0]);
3771
3772 for (i = 1; i < nargs; i += 2)
3773 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3774
3775 Fadd_text_properties (make_number (0),
3776 make_number (SCHARS (string)),
3777 properties, string);
3778 return string;
3779 }
3780
3781 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3782 doc: /* Format a string out of a format-string and arguments.
3783 The first argument is a format control string.
3784 The other arguments are substituted into it to make the result, a string.
3785
3786 The format control string may contain %-sequences meaning to substitute
3787 the next available argument:
3788
3789 %s means print a string argument. Actually, prints any object, with `princ'.
3790 %d means print as number in decimal (%o octal, %x hex).
3791 %X is like %x, but uses upper case.
3792 %e means print a number in exponential notation.
3793 %f means print a number in decimal-point notation.
3794 %g means print a number in exponential notation
3795 or decimal-point notation, whichever uses fewer characters.
3796 %c means print a number as a single character.
3797 %S means print any object as an s-expression (using `prin1').
3798
3799 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3800 Use %% to put a single % into the output.
3801
3802 A %-sequence may contain optional flag, width, and precision
3803 specifiers, as follows:
3804
3805 %<flags><width><precision>character
3806
3807 where flags is [+ #-0]+, width is [0-9]+, and precision is .[0-9]+
3808
3809 The + flag character inserts a + before any positive number, while a
3810 space inserts a space before any positive number; these flags only
3811 affect %d, %e, %f, and %g sequences, and the + flag takes precedence.
3812 The - and 0 flags affect the width specifier, as described below.
3813
3814 The # flag means to use an alternate display form for %o, %x, %X, %e,
3815 %f, and %g sequences: for %o, it ensures that the result begins with
3816 \"0\"; for %x and %X, it prefixes the result with \"0x\" or \"0X\";
3817 for %e, %f, and %g, it causes a decimal point to be included even if
3818 the precision is zero.
3819
3820 The width specifier supplies a lower limit for the length of the
3821 printed representation. The padding, if any, normally goes on the
3822 left, but it goes on the right if the - flag is present. The padding
3823 character is normally a space, but it is 0 if the 0 flag is present.
3824 The 0 flag is ignored if the - flag is present, or the format sequence
3825 is something other than %d, %e, %f, and %g.
3826
3827 For %e, %f, and %g sequences, the number after the "." in the
3828 precision specifier says how many decimal places to show; if zero, the
3829 decimal point itself is omitted. For %s and %S, the precision
3830 specifier truncates the string to the given width.
3831
3832 usage: (format STRING &rest OBJECTS) */)
3833 (ptrdiff_t nargs, Lisp_Object *args)
3834 {
3835 return styled_format (nargs, args, false);
3836 }
3837
3838 DEFUN ("format-message", Fformat_message, Sformat_message, 1, MANY, 0,
3839 doc: /* Format a string out of a format-string and arguments.
3840 The first argument is a format control string.
3841 The other arguments are substituted into it to make the result, a string.
3842
3843 This acts like `format', except it also replaces each left single
3844 quotation mark (\\=‘) and grave accent (\\=`) by a left quote, and each
3845 right single quotation mark (\\=’) and apostrophe (\\=') by a right quote.
3846 The left and right quote replacement characters are specified by
3847 `text-quoting-style'.
3848
3849 usage: (format-message STRING &rest OBJECTS) */)
3850 (ptrdiff_t nargs, Lisp_Object *args)
3851 {
3852 return styled_format (nargs, args, true);
3853 }
3854
3855 /* Implement ‘format-message’ if MESSAGE is true, ‘format’ otherwise. */
3856
3857 static Lisp_Object
3858 styled_format (ptrdiff_t nargs, Lisp_Object *args, bool message)
3859 {
3860 ptrdiff_t n; /* The number of the next arg to substitute. */
3861 char initial_buffer[4000];
3862 char *buf = initial_buffer;
3863 ptrdiff_t bufsize = sizeof initial_buffer;
3864 ptrdiff_t max_bufsize = STRING_BYTES_BOUND + 1;
3865 char *p;
3866 ptrdiff_t buf_save_value_index IF_LINT (= 0);
3867 char *format, *end;
3868 ptrdiff_t nchars;
3869 /* When we make a multibyte string, we must pay attention to the
3870 byte combining problem, i.e., a byte may be combined with a
3871 multibyte character of the previous string. This flag tells if we
3872 must consider such a situation or not. */
3873 bool maybe_combine_byte;
3874 bool arg_intervals = false;
3875 USE_SAFE_ALLOCA;
3876
3877 /* Each element records, for one argument,
3878 the start and end bytepos in the output string,
3879 whether the argument has been converted to string (e.g., due to "%S"),
3880 and whether the argument is a string with intervals. */
3881 struct info
3882 {
3883 ptrdiff_t start, end;
3884 bool_bf converted_to_string : 1;
3885 bool_bf intervals : 1;
3886 } *info;
3887
3888 CHECK_STRING (args[0]);
3889 char *format_start = SSDATA (args[0]);
3890 ptrdiff_t formatlen = SBYTES (args[0]);
3891
3892 /* Allocate the info and discarded tables. */
3893 ptrdiff_t alloca_size;
3894 if (INT_MULTIPLY_WRAPV (nargs, sizeof *info, &alloca_size)
3895 || INT_ADD_WRAPV (sizeof *info, alloca_size, &alloca_size)
3896 || INT_ADD_WRAPV (formatlen, alloca_size, &alloca_size)
3897 || SIZE_MAX < alloca_size)
3898 memory_full (SIZE_MAX);
3899 /* info[0] is unused. Unused elements have -1 for start. */
3900 info = SAFE_ALLOCA (alloca_size);
3901 memset (info, 0, alloca_size);
3902 for (ptrdiff_t i = 0; i < nargs + 1; i++)
3903 info[i].start = -1;
3904 /* discarded[I] is 1 if byte I of the format
3905 string was not copied into the output.
3906 It is 2 if byte I was not the first byte of its character. */
3907 char *discarded = (char *) &info[nargs + 1];
3908
3909 /* Try to determine whether the result should be multibyte.
3910 This is not always right; sometimes the result needs to be multibyte
3911 because of an object that we will pass through prin1.
3912 or because a grave accent or apostrophe is requoted,
3913 and in that case, we won't know it here. */
3914
3915 /* True if the format is multibyte. */
3916 bool multibyte_format = STRING_MULTIBYTE (args[0]);
3917 /* True if the output should be a multibyte string,
3918 which is true if any of the inputs is one. */
3919 bool multibyte = multibyte_format;
3920 for (ptrdiff_t i = 1; !multibyte && i < nargs; i++)
3921 if (STRINGP (args[i]) && STRING_MULTIBYTE (args[i]))
3922 multibyte = true;
3923
3924 int quoting_style = message ? text_quoting_style () : -1;
3925
3926 /* If we start out planning a unibyte result,
3927 then discover it has to be multibyte, we jump back to retry. */
3928 retry:
3929
3930 p = buf;
3931 nchars = 0;
3932 n = 0;
3933
3934 /* Scan the format and store result in BUF. */
3935 format = format_start;
3936 end = format + formatlen;
3937 maybe_combine_byte = false;
3938
3939 while (format != end)
3940 {
3941 /* The values of N and FORMAT when the loop body is entered. */
3942 ptrdiff_t n0 = n;
3943 char *format0 = format;
3944 char const *convsrc = format;
3945 unsigned char format_char = *format++;
3946
3947 /* Bytes needed to represent the output of this conversion. */
3948 ptrdiff_t convbytes = 1;
3949
3950 if (format_char == '%')
3951 {
3952 /* General format specifications look like
3953
3954 '%' [flags] [field-width] [precision] format
3955
3956 where
3957
3958 flags ::= [-+0# ]+
3959 field-width ::= [0-9]+
3960 precision ::= '.' [0-9]*
3961
3962 If a field-width is specified, it specifies to which width
3963 the output should be padded with blanks, if the output
3964 string is shorter than field-width.
3965
3966 If precision is specified, it specifies the number of
3967 digits to print after the '.' for floats, or the max.
3968 number of chars to print from a string. */
3969
3970 bool minus_flag = false;
3971 bool plus_flag = false;
3972 bool space_flag = false;
3973 bool sharp_flag = false;
3974 bool zero_flag = false;
3975
3976 for (; ; format++)
3977 {
3978 switch (*format)
3979 {
3980 case '-': minus_flag = true; continue;
3981 case '+': plus_flag = true; continue;
3982 case ' ': space_flag = true; continue;
3983 case '#': sharp_flag = true; continue;
3984 case '0': zero_flag = true; continue;
3985 }
3986 break;
3987 }
3988
3989 /* Ignore flags when sprintf ignores them. */
3990 space_flag &= ~ plus_flag;
3991 zero_flag &= ~ minus_flag;
3992
3993 char *num_end;
3994 uintmax_t raw_field_width = strtoumax (format, &num_end, 10);
3995 if (max_bufsize <= raw_field_width)
3996 string_overflow ();
3997 ptrdiff_t field_width = raw_field_width;
3998
3999 bool precision_given = *num_end == '.';
4000 uintmax_t precision = (precision_given
4001 ? strtoumax (num_end + 1, &num_end, 10)
4002 : UINTMAX_MAX);
4003 format = num_end;
4004
4005 if (format == end)
4006 error ("Format string ends in middle of format specifier");
4007
4008 char conversion = *format++;
4009 memset (&discarded[format0 - format_start], 1,
4010 format - format0 - (conversion == '%'));
4011 if (conversion == '%')
4012 goto copy_char;
4013
4014 ++n;
4015 if (! (n < nargs))
4016 error ("Not enough arguments for format string");
4017
4018 /* For 'S', prin1 the argument, and then treat like 's'.
4019 For 's', princ any argument that is not a string or
4020 symbol. But don't do this conversion twice, which might
4021 happen after retrying. */
4022 if ((conversion == 'S'
4023 || (conversion == 's'
4024 && ! STRINGP (args[n]) && ! SYMBOLP (args[n]))))
4025 {
4026 if (! info[n].converted_to_string)
4027 {
4028 Lisp_Object noescape = conversion == 'S' ? Qnil : Qt;
4029 args[n] = Fprin1_to_string (args[n], noescape);
4030 info[n].converted_to_string = true;
4031 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
4032 {
4033 multibyte = true;
4034 goto retry;
4035 }
4036 }
4037 conversion = 's';
4038 }
4039 else if (conversion == 'c')
4040 {
4041 if (FLOATP (args[n]))
4042 {
4043 double d = XFLOAT_DATA (args[n]);
4044 args[n] = make_number (FIXNUM_OVERFLOW_P (d) ? -1 : d);
4045 }
4046
4047 if (INTEGERP (args[n]) && ! ASCII_CHAR_P (XINT (args[n])))
4048 {
4049 if (!multibyte)
4050 {
4051 multibyte = true;
4052 goto retry;
4053 }
4054 args[n] = Fchar_to_string (args[n]);
4055 info[n].converted_to_string = true;
4056 }
4057
4058 if (info[n].converted_to_string)
4059 conversion = 's';
4060 zero_flag = false;
4061 }
4062
4063 if (SYMBOLP (args[n]))
4064 {
4065 args[n] = SYMBOL_NAME (args[n]);
4066 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
4067 {
4068 multibyte = true;
4069 goto retry;
4070 }
4071 }
4072
4073 if (conversion == 's')
4074 {
4075 /* handle case (precision[n] >= 0) */
4076
4077 ptrdiff_t prec = -1;
4078 if (precision_given && precision <= TYPE_MAXIMUM (ptrdiff_t))
4079 prec = precision;
4080
4081 /* lisp_string_width ignores a precision of 0, but GNU
4082 libc functions print 0 characters when the precision
4083 is 0. Imitate libc behavior here. Changing
4084 lisp_string_width is the right thing, and will be
4085 done, but meanwhile we work with it. */
4086
4087 ptrdiff_t width, nbytes;
4088 ptrdiff_t nchars_string;
4089 if (prec == 0)
4090 width = nchars_string = nbytes = 0;
4091 else
4092 {
4093 ptrdiff_t nch, nby;
4094 width = lisp_string_width (args[n], prec, &nch, &nby);
4095 if (prec < 0)
4096 {
4097 nchars_string = SCHARS (args[n]);
4098 nbytes = SBYTES (args[n]);
4099 }
4100 else
4101 {
4102 nchars_string = nch;
4103 nbytes = nby;
4104 }
4105 }
4106
4107 convbytes = nbytes;
4108 if (convbytes && multibyte && ! STRING_MULTIBYTE (args[n]))
4109 convbytes = count_size_as_multibyte (SDATA (args[n]), nbytes);
4110
4111 ptrdiff_t padding
4112 = width < field_width ? field_width - width : 0;
4113
4114 if (max_bufsize - padding <= convbytes)
4115 string_overflow ();
4116 convbytes += padding;
4117 if (convbytes <= buf + bufsize - p)
4118 {
4119 if (! minus_flag)
4120 {
4121 memset (p, ' ', padding);
4122 p += padding;
4123 nchars += padding;
4124 }
4125
4126 if (p > buf
4127 && multibyte
4128 && !ASCII_CHAR_P (*((unsigned char *) p - 1))
4129 && STRING_MULTIBYTE (args[n])
4130 && !CHAR_HEAD_P (SREF (args[n], 0)))
4131 maybe_combine_byte = true;
4132
4133 p += copy_text (SDATA (args[n]), (unsigned char *) p,
4134 nbytes,
4135 STRING_MULTIBYTE (args[n]), multibyte);
4136
4137 info[n].start = nchars;
4138 nchars += nchars_string;
4139 info[n].end = nchars;
4140
4141 if (minus_flag)
4142 {
4143 memset (p, ' ', padding);
4144 p += padding;
4145 nchars += padding;
4146 }
4147
4148 /* If this argument has text properties, record where
4149 in the result string it appears. */
4150 if (string_intervals (args[n]))
4151 info[n].intervals = arg_intervals = true;
4152
4153 continue;
4154 }
4155 }
4156 else if (! (conversion == 'c' || conversion == 'd'
4157 || conversion == 'e' || conversion == 'f'
4158 || conversion == 'g' || conversion == 'i'
4159 || conversion == 'o' || conversion == 'x'
4160 || conversion == 'X'))
4161 error ("Invalid format operation %%%c",
4162 STRING_CHAR ((unsigned char *) format - 1));
4163 else if (! NUMBERP (args[n]))
4164 error ("Format specifier doesn't match argument type");
4165 else
4166 {
4167 enum
4168 {
4169 /* Maximum precision for a %f conversion such that the
4170 trailing output digit might be nonzero. Any precision
4171 larger than this will not yield useful information. */
4172 USEFUL_PRECISION_MAX =
4173 ((1 - DBL_MIN_EXP)
4174 * (FLT_RADIX == 2 || FLT_RADIX == 10 ? 1
4175 : FLT_RADIX == 16 ? 4
4176 : -1)),
4177
4178 /* Maximum number of bytes generated by any format, if
4179 precision is no more than USEFUL_PRECISION_MAX.
4180 On all practical hosts, %f is the worst case. */
4181 SPRINTF_BUFSIZE =
4182 sizeof "-." + (DBL_MAX_10_EXP + 1) + USEFUL_PRECISION_MAX,
4183
4184 /* Length of pM (that is, of pMd without the
4185 trailing "d"). */
4186 pMlen = sizeof pMd - 2
4187 };
4188 verify (USEFUL_PRECISION_MAX > 0);
4189
4190 /* Avoid undefined behavior in underlying sprintf. */
4191 if (conversion == 'd' || conversion == 'i')
4192 sharp_flag = false;
4193
4194 /* Create the copy of the conversion specification, with
4195 any width and precision removed, with ".*" inserted,
4196 and with pM inserted for integer formats.
4197 At most three flags F can be specified at once. */
4198 char convspec[sizeof "%FFF.*d" + pMlen];
4199 {
4200 char *f = convspec;
4201 *f++ = '%';
4202 *f = '-'; f += minus_flag;
4203 *f = '+'; f += plus_flag;
4204 *f = ' '; f += space_flag;
4205 *f = '#'; f += sharp_flag;
4206 *f = '0'; f += zero_flag;
4207 *f++ = '.';
4208 *f++ = '*';
4209 if (conversion == 'd' || conversion == 'i'
4210 || conversion == 'o' || conversion == 'x'
4211 || conversion == 'X')
4212 {
4213 memcpy (f, pMd, pMlen);
4214 f += pMlen;
4215 zero_flag &= ~ precision_given;
4216 }
4217 *f++ = conversion;
4218 *f = '\0';
4219 }
4220
4221 int prec = -1;
4222 if (precision_given)
4223 prec = min (precision, USEFUL_PRECISION_MAX);
4224
4225 /* Use sprintf to format this number into sprintf_buf. Omit
4226 padding and excess precision, though, because sprintf limits
4227 output length to INT_MAX.
4228
4229 There are four types of conversion: double, unsigned
4230 char (passed as int), wide signed int, and wide
4231 unsigned int. Treat them separately because the
4232 sprintf ABI is sensitive to which type is passed. Be
4233 careful about integer overflow, NaNs, infinities, and
4234 conversions; for example, the min and max macros are
4235 not suitable here. */
4236 char sprintf_buf[SPRINTF_BUFSIZE];
4237 ptrdiff_t sprintf_bytes;
4238 if (conversion == 'e' || conversion == 'f' || conversion == 'g')
4239 {
4240 double x = (INTEGERP (args[n])
4241 ? XINT (args[n])
4242 : XFLOAT_DATA (args[n]));
4243 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4244 }
4245 else if (conversion == 'c')
4246 {
4247 /* Don't use sprintf here, as it might mishandle prec. */
4248 sprintf_buf[0] = XINT (args[n]);
4249 sprintf_bytes = prec != 0;
4250 }
4251 else if (conversion == 'd')
4252 {
4253 /* For float, maybe we should use "%1.0f"
4254 instead so it also works for values outside
4255 the integer range. */
4256 printmax_t x;
4257 if (INTEGERP (args[n]))
4258 x = XINT (args[n]);
4259 else
4260 {
4261 double d = XFLOAT_DATA (args[n]);
4262 if (d < 0)
4263 {
4264 x = TYPE_MINIMUM (printmax_t);
4265 if (x < d)
4266 x = d;
4267 }
4268 else
4269 {
4270 x = TYPE_MAXIMUM (printmax_t);
4271 if (d < x)
4272 x = d;
4273 }
4274 }
4275 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4276 }
4277 else
4278 {
4279 /* Don't sign-extend for octal or hex printing. */
4280 uprintmax_t x;
4281 if (INTEGERP (args[n]))
4282 x = XUINT (args[n]);
4283 else
4284 {
4285 double d = XFLOAT_DATA (args[n]);
4286 if (d < 0)
4287 x = 0;
4288 else
4289 {
4290 x = TYPE_MAXIMUM (uprintmax_t);
4291 if (d < x)
4292 x = d;
4293 }
4294 }
4295 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4296 }
4297
4298 /* Now the length of the formatted item is known, except it omits
4299 padding and excess precision. Deal with excess precision
4300 first. This happens only when the format specifies
4301 ridiculously large precision. */
4302 uintmax_t excess_precision = precision - prec;
4303 uintmax_t leading_zeros = 0, trailing_zeros = 0;
4304 if (excess_precision)
4305 {
4306 if (conversion == 'e' || conversion == 'f'
4307 || conversion == 'g')
4308 {
4309 if ((conversion == 'g' && ! sharp_flag)
4310 || ! ('0' <= sprintf_buf[sprintf_bytes - 1]
4311 && sprintf_buf[sprintf_bytes - 1] <= '9'))
4312 excess_precision = 0;
4313 else
4314 {
4315 if (conversion == 'g')
4316 {
4317 char *dot = strchr (sprintf_buf, '.');
4318 if (!dot)
4319 excess_precision = 0;
4320 }
4321 }
4322 trailing_zeros = excess_precision;
4323 }
4324 else
4325 leading_zeros = excess_precision;
4326 }
4327
4328 /* Compute the total bytes needed for this item, including
4329 excess precision and padding. */
4330 uintmax_t numwidth = sprintf_bytes + excess_precision;
4331 ptrdiff_t padding
4332 = numwidth < field_width ? field_width - numwidth : 0;
4333 if (max_bufsize - sprintf_bytes <= excess_precision
4334 || max_bufsize - padding <= numwidth)
4335 string_overflow ();
4336 convbytes = numwidth + padding;
4337
4338 if (convbytes <= buf + bufsize - p)
4339 {
4340 /* Copy the formatted item from sprintf_buf into buf,
4341 inserting padding and excess-precision zeros. */
4342
4343 char *src = sprintf_buf;
4344 char src0 = src[0];
4345 int exponent_bytes = 0;
4346 bool signedp = src0 == '-' || src0 == '+' || src0 == ' ';
4347 if (zero_flag
4348 && ((src[signedp] >= '0' && src[signedp] <= '9')
4349 || (src[signedp] >= 'a' && src[signedp] <= 'f')
4350 || (src[signedp] >= 'A' && src[signedp] <= 'F')))
4351 {
4352 leading_zeros += padding;
4353 padding = 0;
4354 }
4355
4356 if (excess_precision
4357 && (conversion == 'e' || conversion == 'g'))
4358 {
4359 char *e = strchr (src, 'e');
4360 if (e)
4361 exponent_bytes = src + sprintf_bytes - e;
4362 }
4363
4364 if (! minus_flag)
4365 {
4366 memset (p, ' ', padding);
4367 p += padding;
4368 nchars += padding;
4369 }
4370
4371 *p = src0;
4372 src += signedp;
4373 p += signedp;
4374 memset (p, '0', leading_zeros);
4375 p += leading_zeros;
4376 int significand_bytes
4377 = sprintf_bytes - signedp - exponent_bytes;
4378 memcpy (p, src, significand_bytes);
4379 p += significand_bytes;
4380 src += significand_bytes;
4381 memset (p, '0', trailing_zeros);
4382 p += trailing_zeros;
4383 memcpy (p, src, exponent_bytes);
4384 p += exponent_bytes;
4385
4386 info[n].start = nchars;
4387 nchars += leading_zeros + sprintf_bytes + trailing_zeros;
4388 info[n].end = nchars;
4389
4390 if (minus_flag)
4391 {
4392 memset (p, ' ', padding);
4393 p += padding;
4394 nchars += padding;
4395 }
4396
4397 continue;
4398 }
4399 }
4400 }
4401 else
4402 {
4403 /* Named constants for the UTF-8 encodings of U+2018 LEFT SINGLE
4404 QUOTATION MARK and U+2019 RIGHT SINGLE QUOTATION MARK. */
4405 enum
4406 {
4407 uLSQM0 = 0xE2, uLSQM1 = 0x80, uLSQM2 = 0x98,
4408 /* uRSQM0 = 0xE2, uRSQM1 = 0x80, */ uRSQM2 = 0x99
4409 };
4410
4411 unsigned char str[MAX_MULTIBYTE_LENGTH];
4412
4413 if ((format_char == '`' || format_char == '\'')
4414 && quoting_style == CURVE_QUOTING_STYLE)
4415 {
4416 if (! multibyte)
4417 {
4418 multibyte = true;
4419 goto retry;
4420 }
4421 convsrc = format_char == '`' ? uLSQM : uRSQM;
4422 convbytes = 3;
4423 }
4424 else if (format_char == '`' && quoting_style == STRAIGHT_QUOTING_STYLE)
4425 convsrc = "'";
4426 else if (format_char == uLSQM0 && CURVE_QUOTING_STYLE < quoting_style
4427 && multibyte_format
4428 && (unsigned char) format[0] == uLSQM1
4429 && ((unsigned char) format[1] == uLSQM2
4430 || (unsigned char) format[1] == uRSQM2))
4431 {
4432 convsrc = (((unsigned char) format[1] == uLSQM2
4433 && quoting_style == GRAVE_QUOTING_STYLE)
4434 ? "`" : "'");
4435 format += 2;
4436 memset (&discarded[format0 + 1 - format_start], 2, 2);
4437 }
4438 else
4439 {
4440 /* Copy a single character from format to buf. */
4441 if (multibyte_format)
4442 {
4443 /* Copy a whole multibyte character. */
4444 if (p > buf
4445 && !ASCII_CHAR_P (*((unsigned char *) p - 1))
4446 && !CHAR_HEAD_P (format_char))
4447 maybe_combine_byte = true;
4448
4449 while (! CHAR_HEAD_P (*format))
4450 format++;
4451
4452 convbytes = format - format0;
4453 memset (&discarded[format0 + 1 - format_start], 2,
4454 convbytes - 1);
4455 }
4456 else if (multibyte && !ASCII_CHAR_P (format_char))
4457 {
4458 int c = BYTE8_TO_CHAR (format_char);
4459 convbytes = CHAR_STRING (c, str);
4460 convsrc = (char *) str;
4461 }
4462 }
4463
4464 copy_char:
4465 if (convbytes <= buf + bufsize - p)
4466 {
4467 memcpy (p, convsrc, convbytes);
4468 p += convbytes;
4469 nchars++;
4470 continue;
4471 }
4472 }
4473
4474 /* There wasn't enough room to store this conversion or single
4475 character. CONVBYTES says how much room is needed. Allocate
4476 enough room (and then some) and do it again. */
4477
4478 ptrdiff_t used = p - buf;
4479 if (max_bufsize - used < convbytes)
4480 string_overflow ();
4481 bufsize = used + convbytes;
4482 bufsize = bufsize < max_bufsize / 2 ? bufsize * 2 : max_bufsize;
4483
4484 if (buf == initial_buffer)
4485 {
4486 buf = xmalloc (bufsize);
4487 sa_must_free = true;
4488 buf_save_value_index = SPECPDL_INDEX ();
4489 record_unwind_protect_ptr (xfree, buf);
4490 memcpy (buf, initial_buffer, used);
4491 }
4492 else
4493 {
4494 buf = xrealloc (buf, bufsize);
4495 set_unwind_protect_ptr (buf_save_value_index, xfree, buf);
4496 }
4497
4498 p = buf + used;
4499 format = format0;
4500 n = n0;
4501 }
4502
4503 if (bufsize < p - buf)
4504 emacs_abort ();
4505
4506 if (maybe_combine_byte)
4507 nchars = multibyte_chars_in_text ((unsigned char *) buf, p - buf);
4508 Lisp_Object val = make_specified_string (buf, nchars, p - buf, multibyte);
4509
4510 /* If the format string has text properties, or any of the string
4511 arguments has text properties, set up text properties of the
4512 result string. */
4513
4514 if (string_intervals (args[0]) || arg_intervals)
4515 {
4516 /* Add text properties from the format string. */
4517 Lisp_Object len = make_number (SCHARS (args[0]));
4518 Lisp_Object props = text_property_list (args[0], make_number (0),
4519 len, Qnil);
4520 if (CONSP (props))
4521 {
4522 ptrdiff_t bytepos = 0, position = 0, translated = 0;
4523 ptrdiff_t argn = 1;
4524
4525 /* Adjust the bounds of each text property
4526 to the proper start and end in the output string. */
4527
4528 /* Put the positions in PROPS in increasing order, so that
4529 we can do (effectively) one scan through the position
4530 space of the format string. */
4531 props = Fnreverse (props);
4532
4533 /* BYTEPOS is the byte position in the format string,
4534 POSITION is the untranslated char position in it,
4535 TRANSLATED is the translated char position in BUF,
4536 and ARGN is the number of the next arg we will come to. */
4537 for (Lisp_Object list = props; CONSP (list); list = XCDR (list))
4538 {
4539 Lisp_Object item = XCAR (list);
4540
4541 /* First adjust the property start position. */
4542 ptrdiff_t pos = XINT (XCAR (item));
4543
4544 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
4545 up to this position. */
4546 for (; position < pos; bytepos++)
4547 {
4548 if (! discarded[bytepos])
4549 position++, translated++;
4550 else if (discarded[bytepos] == 1)
4551 {
4552 position++;
4553 if (translated == info[argn].start)
4554 {
4555 translated += info[argn].end - info[argn].start;
4556 argn++;
4557 }
4558 }
4559 }
4560
4561 XSETCAR (item, make_number (translated));
4562
4563 /* Likewise adjust the property end position. */
4564 pos = XINT (XCAR (XCDR (item)));
4565
4566 for (; position < pos; bytepos++)
4567 {
4568 if (! discarded[bytepos])
4569 position++, translated++;
4570 else if (discarded[bytepos] == 1)
4571 {
4572 position++;
4573 if (translated == info[argn].start)
4574 {
4575 translated += info[argn].end - info[argn].start;
4576 argn++;
4577 }
4578 }
4579 }
4580
4581 XSETCAR (XCDR (item), make_number (translated));
4582 }
4583
4584 add_text_properties_from_list (val, props, make_number (0));
4585 }
4586
4587 /* Add text properties from arguments. */
4588 if (arg_intervals)
4589 for (ptrdiff_t i = 1; i < nargs; i++)
4590 if (info[i].intervals)
4591 {
4592 len = make_number (SCHARS (args[i]));
4593 Lisp_Object new_len = make_number (info[i].end - info[i].start);
4594 props = text_property_list (args[i], make_number (0), len, Qnil);
4595 props = extend_property_ranges (props, new_len);
4596 /* If successive arguments have properties, be sure that
4597 the value of `composition' property be the copy. */
4598 if (1 < i && info[i - 1].end)
4599 make_composition_value_copy (props);
4600 add_text_properties_from_list (val, props,
4601 make_number (info[i].start));
4602 }
4603 }
4604
4605 /* If we allocated BUF or INFO with malloc, free it too. */
4606 SAFE_FREE ();
4607
4608 return val;
4609 }
4610 \f
4611 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
4612 doc: /* Return t if two characters match, optionally ignoring case.
4613 Both arguments must be characters (i.e. integers).
4614 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
4615 (register Lisp_Object c1, Lisp_Object c2)
4616 {
4617 int i1, i2;
4618 /* Check they're chars, not just integers, otherwise we could get array
4619 bounds violations in downcase. */
4620 CHECK_CHARACTER (c1);
4621 CHECK_CHARACTER (c2);
4622
4623 if (XINT (c1) == XINT (c2))
4624 return Qt;
4625 if (NILP (BVAR (current_buffer, case_fold_search)))
4626 return Qnil;
4627
4628 i1 = XFASTINT (c1);
4629 i2 = XFASTINT (c2);
4630
4631 /* FIXME: It is possible to compare multibyte characters even when
4632 the current buffer is unibyte. Unfortunately this is ambiguous
4633 for characters between 128 and 255, as they could be either
4634 eight-bit raw bytes or Latin-1 characters. Assume the former for
4635 now. See Bug#17011, and also see casefiddle.c's casify_object,
4636 which has a similar problem. */
4637 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4638 {
4639 if (SINGLE_BYTE_CHAR_P (i1))
4640 i1 = UNIBYTE_TO_CHAR (i1);
4641 if (SINGLE_BYTE_CHAR_P (i2))
4642 i2 = UNIBYTE_TO_CHAR (i2);
4643 }
4644
4645 return (downcase (i1) == downcase (i2) ? Qt : Qnil);
4646 }
4647 \f
4648 /* Transpose the markers in two regions of the current buffer, and
4649 adjust the ones between them if necessary (i.e.: if the regions
4650 differ in size).
4651
4652 START1, END1 are the character positions of the first region.
4653 START1_BYTE, END1_BYTE are the byte positions.
4654 START2, END2 are the character positions of the second region.
4655 START2_BYTE, END2_BYTE are the byte positions.
4656
4657 Traverses the entire marker list of the buffer to do so, adding an
4658 appropriate amount to some, subtracting from some, and leaving the
4659 rest untouched. Most of this is copied from adjust_markers in insdel.c.
4660
4661 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
4662
4663 static void
4664 transpose_markers (ptrdiff_t start1, ptrdiff_t end1,
4665 ptrdiff_t start2, ptrdiff_t end2,
4666 ptrdiff_t start1_byte, ptrdiff_t end1_byte,
4667 ptrdiff_t start2_byte, ptrdiff_t end2_byte)
4668 {
4669 register ptrdiff_t amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
4670 register struct Lisp_Marker *marker;
4671
4672 /* Update point as if it were a marker. */
4673 if (PT < start1)
4674 ;
4675 else if (PT < end1)
4676 TEMP_SET_PT_BOTH (PT + (end2 - end1),
4677 PT_BYTE + (end2_byte - end1_byte));
4678 else if (PT < start2)
4679 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
4680 (PT_BYTE + (end2_byte - start2_byte)
4681 - (end1_byte - start1_byte)));
4682 else if (PT < end2)
4683 TEMP_SET_PT_BOTH (PT - (start2 - start1),
4684 PT_BYTE - (start2_byte - start1_byte));
4685
4686 /* We used to adjust the endpoints here to account for the gap, but that
4687 isn't good enough. Even if we assume the caller has tried to move the
4688 gap out of our way, it might still be at start1 exactly, for example;
4689 and that places it `inside' the interval, for our purposes. The amount
4690 of adjustment is nontrivial if there's a `denormalized' marker whose
4691 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4692 the dirty work to Fmarker_position, below. */
4693
4694 /* The difference between the region's lengths */
4695 diff = (end2 - start2) - (end1 - start1);
4696 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4697
4698 /* For shifting each marker in a region by the length of the other
4699 region plus the distance between the regions. */
4700 amt1 = (end2 - start2) + (start2 - end1);
4701 amt2 = (end1 - start1) + (start2 - end1);
4702 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4703 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4704
4705 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4706 {
4707 mpos = marker->bytepos;
4708 if (mpos >= start1_byte && mpos < end2_byte)
4709 {
4710 if (mpos < end1_byte)
4711 mpos += amt1_byte;
4712 else if (mpos < start2_byte)
4713 mpos += diff_byte;
4714 else
4715 mpos -= amt2_byte;
4716 marker->bytepos = mpos;
4717 }
4718 mpos = marker->charpos;
4719 if (mpos >= start1 && mpos < end2)
4720 {
4721 if (mpos < end1)
4722 mpos += amt1;
4723 else if (mpos < start2)
4724 mpos += diff;
4725 else
4726 mpos -= amt2;
4727 }
4728 marker->charpos = mpos;
4729 }
4730 }
4731
4732 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4733 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
4734 The regions should not be overlapping, because the size of the buffer is
4735 never changed in a transposition.
4736
4737 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
4738 any markers that happen to be located in the regions.
4739
4740 Transposing beyond buffer boundaries is an error. */)
4741 (Lisp_Object startr1, Lisp_Object endr1, Lisp_Object startr2, Lisp_Object endr2, Lisp_Object leave_markers)
4742 {
4743 register ptrdiff_t start1, end1, start2, end2;
4744 ptrdiff_t start1_byte, start2_byte, len1_byte, len2_byte, end2_byte;
4745 ptrdiff_t gap, len1, len_mid, len2;
4746 unsigned char *start1_addr, *start2_addr, *temp;
4747
4748 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2, tmp_interval3;
4749 Lisp_Object buf;
4750
4751 XSETBUFFER (buf, current_buffer);
4752 cur_intv = buffer_intervals (current_buffer);
4753
4754 validate_region (&startr1, &endr1);
4755 validate_region (&startr2, &endr2);
4756
4757 start1 = XFASTINT (startr1);
4758 end1 = XFASTINT (endr1);
4759 start2 = XFASTINT (startr2);
4760 end2 = XFASTINT (endr2);
4761 gap = GPT;
4762
4763 /* Swap the regions if they're reversed. */
4764 if (start2 < end1)
4765 {
4766 register ptrdiff_t glumph = start1;
4767 start1 = start2;
4768 start2 = glumph;
4769 glumph = end1;
4770 end1 = end2;
4771 end2 = glumph;
4772 }
4773
4774 len1 = end1 - start1;
4775 len2 = end2 - start2;
4776
4777 if (start2 < end1)
4778 error ("Transposed regions overlap");
4779 /* Nothing to change for adjacent regions with one being empty */
4780 else if ((start1 == end1 || start2 == end2) && end1 == start2)
4781 return Qnil;
4782
4783 /* The possibilities are:
4784 1. Adjacent (contiguous) regions, or separate but equal regions
4785 (no, really equal, in this case!), or
4786 2. Separate regions of unequal size.
4787
4788 The worst case is usually No. 2. It means that (aside from
4789 potential need for getting the gap out of the way), there also
4790 needs to be a shifting of the text between the two regions. So
4791 if they are spread far apart, we are that much slower... sigh. */
4792
4793 /* It must be pointed out that the really studly thing to do would
4794 be not to move the gap at all, but to leave it in place and work
4795 around it if necessary. This would be extremely efficient,
4796 especially considering that people are likely to do
4797 transpositions near where they are working interactively, which
4798 is exactly where the gap would be found. However, such code
4799 would be much harder to write and to read. So, if you are
4800 reading this comment and are feeling squirrely, by all means have
4801 a go! I just didn't feel like doing it, so I will simply move
4802 the gap the minimum distance to get it out of the way, and then
4803 deal with an unbroken array. */
4804
4805 start1_byte = CHAR_TO_BYTE (start1);
4806 end2_byte = CHAR_TO_BYTE (end2);
4807
4808 /* Make sure the gap won't interfere, by moving it out of the text
4809 we will operate on. */
4810 if (start1 < gap && gap < end2)
4811 {
4812 if (gap - start1 < end2 - gap)
4813 move_gap_both (start1, start1_byte);
4814 else
4815 move_gap_both (end2, end2_byte);
4816 }
4817
4818 start2_byte = CHAR_TO_BYTE (start2);
4819 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4820 len2_byte = end2_byte - start2_byte;
4821
4822 #ifdef BYTE_COMBINING_DEBUG
4823 if (end1 == start2)
4824 {
4825 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4826 len2_byte, start1, start1_byte)
4827 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4828 len1_byte, end2, start2_byte + len2_byte)
4829 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4830 len1_byte, end2, start2_byte + len2_byte))
4831 emacs_abort ();
4832 }
4833 else
4834 {
4835 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4836 len2_byte, start1, start1_byte)
4837 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4838 len1_byte, start2, start2_byte)
4839 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4840 len2_byte, end1, start1_byte + len1_byte)
4841 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4842 len1_byte, end2, start2_byte + len2_byte))
4843 emacs_abort ();
4844 }
4845 #endif
4846
4847 /* Hmmm... how about checking to see if the gap is large
4848 enough to use as the temporary storage? That would avoid an
4849 allocation... interesting. Later, don't fool with it now. */
4850
4851 /* Working without memmove, for portability (sigh), so must be
4852 careful of overlapping subsections of the array... */
4853
4854 if (end1 == start2) /* adjacent regions */
4855 {
4856 modify_text (start1, end2);
4857 record_change (start1, len1 + len2);
4858
4859 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4860 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4861 /* Don't use Fset_text_properties: that can cause GC, which can
4862 clobber objects stored in the tmp_intervals. */
4863 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4864 if (tmp_interval3)
4865 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4866
4867 USE_SAFE_ALLOCA;
4868
4869 /* First region smaller than second. */
4870 if (len1_byte < len2_byte)
4871 {
4872 temp = SAFE_ALLOCA (len2_byte);
4873
4874 /* Don't precompute these addresses. We have to compute them
4875 at the last minute, because the relocating allocator might
4876 have moved the buffer around during the xmalloc. */
4877 start1_addr = BYTE_POS_ADDR (start1_byte);
4878 start2_addr = BYTE_POS_ADDR (start2_byte);
4879
4880 memcpy (temp, start2_addr, len2_byte);
4881 memcpy (start1_addr + len2_byte, start1_addr, len1_byte);
4882 memcpy (start1_addr, temp, len2_byte);
4883 }
4884 else
4885 /* First region not smaller than second. */
4886 {
4887 temp = SAFE_ALLOCA (len1_byte);
4888 start1_addr = BYTE_POS_ADDR (start1_byte);
4889 start2_addr = BYTE_POS_ADDR (start2_byte);
4890 memcpy (temp, start1_addr, len1_byte);
4891 memcpy (start1_addr, start2_addr, len2_byte);
4892 memcpy (start1_addr + len2_byte, temp, len1_byte);
4893 }
4894
4895 SAFE_FREE ();
4896 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4897 len1, current_buffer, 0);
4898 graft_intervals_into_buffer (tmp_interval2, start1,
4899 len2, current_buffer, 0);
4900 update_compositions (start1, start1 + len2, CHECK_BORDER);
4901 update_compositions (start1 + len2, end2, CHECK_TAIL);
4902 }
4903 /* Non-adjacent regions, because end1 != start2, bleagh... */
4904 else
4905 {
4906 len_mid = start2_byte - (start1_byte + len1_byte);
4907
4908 if (len1_byte == len2_byte)
4909 /* Regions are same size, though, how nice. */
4910 {
4911 USE_SAFE_ALLOCA;
4912
4913 modify_text (start1, end1);
4914 modify_text (start2, end2);
4915 record_change (start1, len1);
4916 record_change (start2, len2);
4917 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4918 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4919
4920 tmp_interval3 = validate_interval_range (buf, &startr1, &endr1, 0);
4921 if (tmp_interval3)
4922 set_text_properties_1 (startr1, endr1, Qnil, buf, tmp_interval3);
4923
4924 tmp_interval3 = validate_interval_range (buf, &startr2, &endr2, 0);
4925 if (tmp_interval3)
4926 set_text_properties_1 (startr2, endr2, Qnil, buf, tmp_interval3);
4927
4928 temp = SAFE_ALLOCA (len1_byte);
4929 start1_addr = BYTE_POS_ADDR (start1_byte);
4930 start2_addr = BYTE_POS_ADDR (start2_byte);
4931 memcpy (temp, start1_addr, len1_byte);
4932 memcpy (start1_addr, start2_addr, len2_byte);
4933 memcpy (start2_addr, temp, len1_byte);
4934 SAFE_FREE ();
4935
4936 graft_intervals_into_buffer (tmp_interval1, start2,
4937 len1, current_buffer, 0);
4938 graft_intervals_into_buffer (tmp_interval2, start1,
4939 len2, current_buffer, 0);
4940 }
4941
4942 else if (len1_byte < len2_byte) /* Second region larger than first */
4943 /* Non-adjacent & unequal size, area between must also be shifted. */
4944 {
4945 USE_SAFE_ALLOCA;
4946
4947 modify_text (start1, end2);
4948 record_change (start1, (end2 - start1));
4949 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4950 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4951 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4952
4953 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4954 if (tmp_interval3)
4955 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4956
4957 /* holds region 2 */
4958 temp = SAFE_ALLOCA (len2_byte);
4959 start1_addr = BYTE_POS_ADDR (start1_byte);
4960 start2_addr = BYTE_POS_ADDR (start2_byte);
4961 memcpy (temp, start2_addr, len2_byte);
4962 memcpy (start1_addr + len_mid + len2_byte, start1_addr, len1_byte);
4963 memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4964 memcpy (start1_addr, temp, len2_byte);
4965 SAFE_FREE ();
4966
4967 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4968 len1, current_buffer, 0);
4969 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4970 len_mid, current_buffer, 0);
4971 graft_intervals_into_buffer (tmp_interval2, start1,
4972 len2, current_buffer, 0);
4973 }
4974 else
4975 /* Second region smaller than first. */
4976 {
4977 USE_SAFE_ALLOCA;
4978
4979 record_change (start1, (end2 - start1));
4980 modify_text (start1, end2);
4981
4982 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4983 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4984 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4985
4986 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4987 if (tmp_interval3)
4988 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4989
4990 /* holds region 1 */
4991 temp = SAFE_ALLOCA (len1_byte);
4992 start1_addr = BYTE_POS_ADDR (start1_byte);
4993 start2_addr = BYTE_POS_ADDR (start2_byte);
4994 memcpy (temp, start1_addr, len1_byte);
4995 memcpy (start1_addr, start2_addr, len2_byte);
4996 memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4997 memcpy (start1_addr + len2_byte + len_mid, temp, len1_byte);
4998 SAFE_FREE ();
4999
5000 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
5001 len1, current_buffer, 0);
5002 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
5003 len_mid, current_buffer, 0);
5004 graft_intervals_into_buffer (tmp_interval2, start1,
5005 len2, current_buffer, 0);
5006 }
5007
5008 update_compositions (start1, start1 + len2, CHECK_BORDER);
5009 update_compositions (end2 - len1, end2, CHECK_BORDER);
5010 }
5011
5012 /* When doing multiple transpositions, it might be nice
5013 to optimize this. Perhaps the markers in any one buffer
5014 should be organized in some sorted data tree. */
5015 if (NILP (leave_markers))
5016 {
5017 transpose_markers (start1, end1, start2, end2,
5018 start1_byte, start1_byte + len1_byte,
5019 start2_byte, start2_byte + len2_byte);
5020 fix_start_end_in_overlays (start1, end2);
5021 }
5022
5023 signal_after_change (start1, end2 - start1, end2 - start1);
5024 return Qnil;
5025 }
5026
5027 \f
5028 void
5029 syms_of_editfns (void)
5030 {
5031 DEFSYM (Qbuffer_access_fontify_functions, "buffer-access-fontify-functions");
5032 DEFSYM (Qwall, "wall");
5033
5034 DEFVAR_LISP ("inhibit-field-text-motion", Vinhibit_field_text_motion,
5035 doc: /* Non-nil means text motion commands don't notice fields. */);
5036 Vinhibit_field_text_motion = Qnil;
5037
5038 DEFVAR_LISP ("buffer-access-fontify-functions",
5039 Vbuffer_access_fontify_functions,
5040 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
5041 Each function is called with two arguments which specify the range
5042 of the buffer being accessed. */);
5043 Vbuffer_access_fontify_functions = Qnil;
5044
5045 {
5046 Lisp_Object obuf;
5047 obuf = Fcurrent_buffer ();
5048 /* Do this here, because init_buffer_once is too early--it won't work. */
5049 Fset_buffer (Vprin1_to_string_buffer);
5050 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
5051 Fset (Fmake_local_variable (Qbuffer_access_fontify_functions), Qnil);
5052 Fset_buffer (obuf);
5053 }
5054
5055 DEFVAR_LISP ("buffer-access-fontified-property",
5056 Vbuffer_access_fontified_property,
5057 doc: /* Property which (if non-nil) indicates text has been fontified.
5058 `buffer-substring' need not call the `buffer-access-fontify-functions'
5059 functions if all the text being accessed has this property. */);
5060 Vbuffer_access_fontified_property = Qnil;
5061
5062 DEFVAR_LISP ("system-name", Vsystem_name,
5063 doc: /* The host name of the machine Emacs is running on. */);
5064 Vsystem_name = cached_system_name = Qnil;
5065
5066 DEFVAR_LISP ("user-full-name", Vuser_full_name,
5067 doc: /* The full name of the user logged in. */);
5068
5069 DEFVAR_LISP ("user-login-name", Vuser_login_name,
5070 doc: /* The user's name, taken from environment variables if possible. */);
5071 Vuser_login_name = Qnil;
5072
5073 DEFVAR_LISP ("user-real-login-name", Vuser_real_login_name,
5074 doc: /* The user's name, based upon the real uid only. */);
5075
5076 DEFVAR_LISP ("operating-system-release", Voperating_system_release,
5077 doc: /* The release of the operating system Emacs is running on. */);
5078
5079 defsubr (&Spropertize);
5080 defsubr (&Schar_equal);
5081 defsubr (&Sgoto_char);
5082 defsubr (&Sstring_to_char);
5083 defsubr (&Schar_to_string);
5084 defsubr (&Sbyte_to_string);
5085 defsubr (&Sbuffer_substring);
5086 defsubr (&Sbuffer_substring_no_properties);
5087 defsubr (&Sbuffer_string);
5088 defsubr (&Sget_pos_property);
5089
5090 defsubr (&Spoint_marker);
5091 defsubr (&Smark_marker);
5092 defsubr (&Spoint);
5093 defsubr (&Sregion_beginning);
5094 defsubr (&Sregion_end);
5095
5096 /* Symbol for the text property used to mark fields. */
5097 DEFSYM (Qfield, "field");
5098
5099 /* A special value for Qfield properties. */
5100 DEFSYM (Qboundary, "boundary");
5101
5102 defsubr (&Sfield_beginning);
5103 defsubr (&Sfield_end);
5104 defsubr (&Sfield_string);
5105 defsubr (&Sfield_string_no_properties);
5106 defsubr (&Sdelete_field);
5107 defsubr (&Sconstrain_to_field);
5108
5109 defsubr (&Sline_beginning_position);
5110 defsubr (&Sline_end_position);
5111
5112 defsubr (&Ssave_excursion);
5113 defsubr (&Ssave_current_buffer);
5114
5115 defsubr (&Sbuffer_size);
5116 defsubr (&Spoint_max);
5117 defsubr (&Spoint_min);
5118 defsubr (&Spoint_min_marker);
5119 defsubr (&Spoint_max_marker);
5120 defsubr (&Sgap_position);
5121 defsubr (&Sgap_size);
5122 defsubr (&Sposition_bytes);
5123 defsubr (&Sbyte_to_position);
5124
5125 defsubr (&Sbobp);
5126 defsubr (&Seobp);
5127 defsubr (&Sbolp);
5128 defsubr (&Seolp);
5129 defsubr (&Sfollowing_char);
5130 defsubr (&Sprevious_char);
5131 defsubr (&Schar_after);
5132 defsubr (&Schar_before);
5133 defsubr (&Sinsert);
5134 defsubr (&Sinsert_before_markers);
5135 defsubr (&Sinsert_and_inherit);
5136 defsubr (&Sinsert_and_inherit_before_markers);
5137 defsubr (&Sinsert_char);
5138 defsubr (&Sinsert_byte);
5139
5140 defsubr (&Suser_login_name);
5141 defsubr (&Suser_real_login_name);
5142 defsubr (&Suser_uid);
5143 defsubr (&Suser_real_uid);
5144 defsubr (&Sgroup_gid);
5145 defsubr (&Sgroup_real_gid);
5146 defsubr (&Suser_full_name);
5147 defsubr (&Semacs_pid);
5148 defsubr (&Scurrent_time);
5149 defsubr (&Stime_add);
5150 defsubr (&Stime_subtract);
5151 defsubr (&Stime_less_p);
5152 defsubr (&Sget_internal_run_time);
5153 defsubr (&Sformat_time_string);
5154 defsubr (&Sfloat_time);
5155 defsubr (&Sdecode_time);
5156 defsubr (&Sencode_time);
5157 defsubr (&Scurrent_time_string);
5158 defsubr (&Scurrent_time_zone);
5159 defsubr (&Sset_time_zone_rule);
5160 defsubr (&Ssystem_name);
5161 defsubr (&Smessage);
5162 defsubr (&Smessage_box);
5163 defsubr (&Smessage_or_box);
5164 defsubr (&Scurrent_message);
5165 defsubr (&Sformat);
5166 defsubr (&Sformat_message);
5167
5168 defsubr (&Sinsert_buffer_substring);
5169 defsubr (&Scompare_buffer_substrings);
5170 defsubr (&Ssubst_char_in_region);
5171 defsubr (&Stranslate_region_internal);
5172 defsubr (&Sdelete_region);
5173 defsubr (&Sdelete_and_extract_region);
5174 defsubr (&Swiden);
5175 defsubr (&Snarrow_to_region);
5176 defsubr (&Ssave_restriction);
5177 defsubr (&Stranspose_regions);
5178 }