]> code.delx.au - gnu-emacs/blob - src/coding.c
(MAX_ALLOCA): Remove define.
[gnu-emacs] / src / coding.c
1 /* Coding system handler (conversion, detection, and etc).
2 Copyright (C) 1995,97,1998,2002,2003 Electrotechnical Laboratory, JAPAN.
3 Licensed to the Free Software Foundation.
4 Copyright (C) 2001,2002,2003 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /*** TABLE OF CONTENTS ***
24
25 0. General comments
26 1. Preamble
27 2. Emacs' internal format (emacs-mule) handlers
28 3. ISO2022 handlers
29 4. Shift-JIS and BIG5 handlers
30 5. CCL handlers
31 6. End-of-line handlers
32 7. C library functions
33 8. Emacs Lisp library functions
34 9. Post-amble
35
36 */
37
38 /*** 0. General comments ***/
39
40
41 /*** GENERAL NOTE on CODING SYSTEMS ***
42
43 A coding system is an encoding mechanism for one or more character
44 sets. Here's a list of coding systems which Emacs can handle. When
45 we say "decode", it means converting some other coding system to
46 Emacs' internal format (emacs-mule), and when we say "encode",
47 it means converting the coding system emacs-mule to some other
48 coding system.
49
50 0. Emacs' internal format (emacs-mule)
51
52 Emacs itself holds a multi-lingual character in buffers and strings
53 in a special format. Details are described in section 2.
54
55 1. ISO2022
56
57 The most famous coding system for multiple character sets. X's
58 Compound Text, various EUCs (Extended Unix Code), and coding
59 systems used in Internet communication such as ISO-2022-JP are
60 all variants of ISO2022. Details are described in section 3.
61
62 2. SJIS (or Shift-JIS or MS-Kanji-Code)
63
64 A coding system to encode character sets: ASCII, JISX0201, and
65 JISX0208. Widely used for PC's in Japan. Details are described in
66 section 4.
67
68 3. BIG5
69
70 A coding system to encode the character sets ASCII and Big5. Widely
71 used for Chinese (mainly in Taiwan and Hong Kong). Details are
72 described in section 4. In this file, when we write "BIG5"
73 (all uppercase), we mean the coding system, and when we write
74 "Big5" (capitalized), we mean the character set.
75
76 4. Raw text
77
78 A coding system for text containing random 8-bit code. Emacs does
79 no code conversion on such text except for end-of-line format.
80
81 5. Other
82
83 If a user wants to read/write text encoded in a coding system not
84 listed above, he can supply a decoder and an encoder for it as CCL
85 (Code Conversion Language) programs. Emacs executes the CCL program
86 while reading/writing.
87
88 Emacs represents a coding system by a Lisp symbol that has a property
89 `coding-system'. But, before actually using the coding system, the
90 information about it is set in a structure of type `struct
91 coding_system' for rapid processing. See section 6 for more details.
92
93 */
94
95 /*** GENERAL NOTES on END-OF-LINE FORMAT ***
96
97 How end-of-line of text is encoded depends on the operating system.
98 For instance, Unix's format is just one byte of `line-feed' code,
99 whereas DOS's format is two-byte sequence of `carriage-return' and
100 `line-feed' codes. MacOS's format is usually one byte of
101 `carriage-return'.
102
103 Since text character encoding and end-of-line encoding are
104 independent, any coding system described above can have any
105 end-of-line format. So Emacs has information about end-of-line
106 format in each coding-system. See section 6 for more details.
107
108 */
109
110 /*** GENERAL NOTES on `detect_coding_XXX ()' functions ***
111
112 These functions check if a text between SRC and SRC_END is encoded
113 in the coding system category XXX. Each returns an integer value in
114 which appropriate flag bits for the category XXX are set. The flag
115 bits are defined in macros CODING_CATEGORY_MASK_XXX. Below is the
116 template for these functions. If MULTIBYTEP is nonzero, 8-bit codes
117 of the range 0x80..0x9F are in multibyte form. */
118 #if 0
119 int
120 detect_coding_emacs_mule (src, src_end, multibytep)
121 unsigned char *src, *src_end;
122 int multibytep;
123 {
124 ...
125 }
126 #endif
127
128 /*** GENERAL NOTES on `decode_coding_XXX ()' functions ***
129
130 These functions decode SRC_BYTES length of unibyte text at SOURCE
131 encoded in CODING to Emacs' internal format. The resulting
132 multibyte text goes to a place pointed to by DESTINATION, the length
133 of which should not exceed DST_BYTES.
134
135 These functions set the information about original and decoded texts
136 in the members `produced', `produced_char', `consumed', and
137 `consumed_char' of the structure *CODING. They also set the member
138 `result' to one of CODING_FINISH_XXX indicating how the decoding
139 finished.
140
141 DST_BYTES zero means that the source area and destination area are
142 overlapped, which means that we can produce a decoded text until it
143 reaches the head of the not-yet-decoded source text.
144
145 Below is a template for these functions. */
146 #if 0
147 static void
148 decode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
149 struct coding_system *coding;
150 unsigned char *source, *destination;
151 int src_bytes, dst_bytes;
152 {
153 ...
154 }
155 #endif
156
157 /*** GENERAL NOTES on `encode_coding_XXX ()' functions ***
158
159 These functions encode SRC_BYTES length text at SOURCE from Emacs'
160 internal multibyte format to CODING. The resulting unibyte text
161 goes to a place pointed to by DESTINATION, the length of which
162 should not exceed DST_BYTES.
163
164 These functions set the information about original and encoded texts
165 in the members `produced', `produced_char', `consumed', and
166 `consumed_char' of the structure *CODING. They also set the member
167 `result' to one of CODING_FINISH_XXX indicating how the encoding
168 finished.
169
170 DST_BYTES zero means that the source area and destination area are
171 overlapped, which means that we can produce encoded text until it
172 reaches at the head of the not-yet-encoded source text.
173
174 Below is a template for these functions. */
175 #if 0
176 static void
177 encode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
178 struct coding_system *coding;
179 unsigned char *source, *destination;
180 int src_bytes, dst_bytes;
181 {
182 ...
183 }
184 #endif
185
186 /*** COMMONLY USED MACROS ***/
187
188 /* The following two macros ONE_MORE_BYTE and TWO_MORE_BYTES safely
189 get one, two, and three bytes from the source text respectively.
190 If there are not enough bytes in the source, they jump to
191 `label_end_of_loop'. The caller should set variables `coding',
192 `src' and `src_end' to appropriate pointer in advance. These
193 macros are called from decoding routines `decode_coding_XXX', thus
194 it is assumed that the source text is unibyte. */
195
196 #define ONE_MORE_BYTE(c1) \
197 do { \
198 if (src >= src_end) \
199 { \
200 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
201 goto label_end_of_loop; \
202 } \
203 c1 = *src++; \
204 } while (0)
205
206 #define TWO_MORE_BYTES(c1, c2) \
207 do { \
208 if (src + 1 >= src_end) \
209 { \
210 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
211 goto label_end_of_loop; \
212 } \
213 c1 = *src++; \
214 c2 = *src++; \
215 } while (0)
216
217
218 /* Like ONE_MORE_BYTE, but 8-bit bytes of data at SRC are in multibyte
219 form if MULTIBYTEP is nonzero. */
220
221 #define ONE_MORE_BYTE_CHECK_MULTIBYTE(c1, multibytep) \
222 do { \
223 if (src >= src_end) \
224 { \
225 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
226 goto label_end_of_loop; \
227 } \
228 c1 = *src++; \
229 if (multibytep && c1 == LEADING_CODE_8_BIT_CONTROL) \
230 c1 = *src++ - 0x20; \
231 } while (0)
232
233 /* Set C to the next character at the source text pointed by `src'.
234 If there are not enough characters in the source, jump to
235 `label_end_of_loop'. The caller should set variables `coding'
236 `src', `src_end', and `translation_table' to appropriate pointers
237 in advance. This macro is used in encoding routines
238 `encode_coding_XXX', thus it assumes that the source text is in
239 multibyte form except for 8-bit characters. 8-bit characters are
240 in multibyte form if coding->src_multibyte is nonzero, else they
241 are represented by a single byte. */
242
243 #define ONE_MORE_CHAR(c) \
244 do { \
245 int len = src_end - src; \
246 int bytes; \
247 if (len <= 0) \
248 { \
249 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
250 goto label_end_of_loop; \
251 } \
252 if (coding->src_multibyte \
253 || UNIBYTE_STR_AS_MULTIBYTE_P (src, len, bytes)) \
254 c = STRING_CHAR_AND_LENGTH (src, len, bytes); \
255 else \
256 c = *src, bytes = 1; \
257 if (!NILP (translation_table)) \
258 c = translate_char (translation_table, c, -1, 0, 0); \
259 src += bytes; \
260 } while (0)
261
262
263 /* Produce a multibyte form of character C to `dst'. Jump to
264 `label_end_of_loop' if there's not enough space at `dst'.
265
266 If we are now in the middle of a composition sequence, the decoded
267 character may be ALTCHAR (for the current composition). In that
268 case, the character goes to coding->cmp_data->data instead of
269 `dst'.
270
271 This macro is used in decoding routines. */
272
273 #define EMIT_CHAR(c) \
274 do { \
275 if (! COMPOSING_P (coding) \
276 || coding->composing == COMPOSITION_RELATIVE \
277 || coding->composing == COMPOSITION_WITH_RULE) \
278 { \
279 int bytes = CHAR_BYTES (c); \
280 if ((dst + bytes) > (dst_bytes ? dst_end : src)) \
281 { \
282 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
283 goto label_end_of_loop; \
284 } \
285 dst += CHAR_STRING (c, dst); \
286 coding->produced_char++; \
287 } \
288 \
289 if (COMPOSING_P (coding) \
290 && coding->composing != COMPOSITION_RELATIVE) \
291 { \
292 CODING_ADD_COMPOSITION_COMPONENT (coding, c); \
293 coding->composition_rule_follows \
294 = coding->composing != COMPOSITION_WITH_ALTCHARS; \
295 } \
296 } while (0)
297
298
299 #define EMIT_ONE_BYTE(c) \
300 do { \
301 if (dst >= (dst_bytes ? dst_end : src)) \
302 { \
303 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
304 goto label_end_of_loop; \
305 } \
306 *dst++ = c; \
307 } while (0)
308
309 #define EMIT_TWO_BYTES(c1, c2) \
310 do { \
311 if (dst + 2 > (dst_bytes ? dst_end : src)) \
312 { \
313 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
314 goto label_end_of_loop; \
315 } \
316 *dst++ = c1, *dst++ = c2; \
317 } while (0)
318
319 #define EMIT_BYTES(from, to) \
320 do { \
321 if (dst + (to - from) > (dst_bytes ? dst_end : src)) \
322 { \
323 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
324 goto label_end_of_loop; \
325 } \
326 while (from < to) \
327 *dst++ = *from++; \
328 } while (0)
329
330 \f
331 /*** 1. Preamble ***/
332
333 #ifdef emacs
334 #include <config.h>
335 #endif
336
337 #include <stdio.h>
338
339 #ifdef emacs
340
341 #include "lisp.h"
342 #include "buffer.h"
343 #include "charset.h"
344 #include "composite.h"
345 #include "ccl.h"
346 #include "coding.h"
347 #include "window.h"
348 #include "intervals.h"
349
350 #else /* not emacs */
351
352 #include "mulelib.h"
353
354 #endif /* not emacs */
355
356 Lisp_Object Qcoding_system, Qeol_type;
357 Lisp_Object Qbuffer_file_coding_system;
358 Lisp_Object Qpost_read_conversion, Qpre_write_conversion;
359 Lisp_Object Qno_conversion, Qundecided;
360 Lisp_Object Qcoding_system_history;
361 Lisp_Object Qsafe_chars;
362 Lisp_Object Qvalid_codes;
363
364 extern Lisp_Object Qinsert_file_contents, Qwrite_region;
365 Lisp_Object Qcall_process, Qcall_process_region, Qprocess_argument;
366 Lisp_Object Qstart_process, Qopen_network_stream;
367 Lisp_Object Qtarget_idx;
368
369 /* If a symbol has this property, evaluate the value to define the
370 symbol as a coding system. */
371 Lisp_Object Qcoding_system_define_form;
372
373 Lisp_Object Vselect_safe_coding_system_function;
374
375 int coding_system_require_warning;
376
377 /* Mnemonic string for each format of end-of-line. */
378 Lisp_Object eol_mnemonic_unix, eol_mnemonic_dos, eol_mnemonic_mac;
379 /* Mnemonic string to indicate format of end-of-line is not yet
380 decided. */
381 Lisp_Object eol_mnemonic_undecided;
382
383 /* Format of end-of-line decided by system. This is CODING_EOL_LF on
384 Unix, CODING_EOL_CRLF on DOS/Windows, and CODING_EOL_CR on Mac. */
385 int system_eol_type;
386
387 #ifdef emacs
388
389 /* Information about which coding system is safe for which chars.
390 The value has the form (GENERIC-LIST . NON-GENERIC-ALIST).
391
392 GENERIC-LIST is a list of generic coding systems which can encode
393 any characters.
394
395 NON-GENERIC-ALIST is an alist of non generic coding systems vs the
396 corresponding char table that contains safe chars. */
397 Lisp_Object Vcoding_system_safe_chars;
398
399 Lisp_Object Vcoding_system_list, Vcoding_system_alist;
400
401 Lisp_Object Qcoding_system_p, Qcoding_system_error;
402
403 /* Coding system emacs-mule and raw-text are for converting only
404 end-of-line format. */
405 Lisp_Object Qemacs_mule, Qraw_text;
406
407 Lisp_Object Qutf_8;
408
409 /* Coding-systems are handed between Emacs Lisp programs and C internal
410 routines by the following three variables. */
411 /* Coding-system for reading files and receiving data from process. */
412 Lisp_Object Vcoding_system_for_read;
413 /* Coding-system for writing files and sending data to process. */
414 Lisp_Object Vcoding_system_for_write;
415 /* Coding-system actually used in the latest I/O. */
416 Lisp_Object Vlast_coding_system_used;
417
418 /* A vector of length 256 which contains information about special
419 Latin codes (especially for dealing with Microsoft codes). */
420 Lisp_Object Vlatin_extra_code_table;
421
422 /* Flag to inhibit code conversion of end-of-line format. */
423 int inhibit_eol_conversion;
424
425 /* Flag to inhibit ISO2022 escape sequence detection. */
426 int inhibit_iso_escape_detection;
427
428 /* Flag to make buffer-file-coding-system inherit from process-coding. */
429 int inherit_process_coding_system;
430
431 /* Coding system to be used to encode text for terminal display. */
432 struct coding_system terminal_coding;
433
434 /* Coding system to be used to encode text for terminal display when
435 terminal coding system is nil. */
436 struct coding_system safe_terminal_coding;
437
438 /* Coding system of what is sent from terminal keyboard. */
439 struct coding_system keyboard_coding;
440
441 /* Default coding system to be used to write a file. */
442 struct coding_system default_buffer_file_coding;
443
444 Lisp_Object Vfile_coding_system_alist;
445 Lisp_Object Vprocess_coding_system_alist;
446 Lisp_Object Vnetwork_coding_system_alist;
447
448 Lisp_Object Vlocale_coding_system;
449
450 #endif /* emacs */
451
452 Lisp_Object Qcoding_category, Qcoding_category_index;
453
454 /* List of symbols `coding-category-xxx' ordered by priority. */
455 Lisp_Object Vcoding_category_list;
456
457 /* Table of coding categories (Lisp symbols). */
458 Lisp_Object Vcoding_category_table;
459
460 /* Table of names of symbol for each coding-category. */
461 char *coding_category_name[CODING_CATEGORY_IDX_MAX] = {
462 "coding-category-emacs-mule",
463 "coding-category-sjis",
464 "coding-category-iso-7",
465 "coding-category-iso-7-tight",
466 "coding-category-iso-8-1",
467 "coding-category-iso-8-2",
468 "coding-category-iso-7-else",
469 "coding-category-iso-8-else",
470 "coding-category-ccl",
471 "coding-category-big5",
472 "coding-category-utf-8",
473 "coding-category-utf-16-be",
474 "coding-category-utf-16-le",
475 "coding-category-raw-text",
476 "coding-category-binary"
477 };
478
479 /* Table of pointers to coding systems corresponding to each coding
480 categories. */
481 struct coding_system *coding_system_table[CODING_CATEGORY_IDX_MAX];
482
483 /* Table of coding category masks. Nth element is a mask for a coding
484 category of which priority is Nth. */
485 static
486 int coding_priorities[CODING_CATEGORY_IDX_MAX];
487
488 /* Flag to tell if we look up translation table on character code
489 conversion. */
490 Lisp_Object Venable_character_translation;
491 /* Standard translation table to look up on decoding (reading). */
492 Lisp_Object Vstandard_translation_table_for_decode;
493 /* Standard translation table to look up on encoding (writing). */
494 Lisp_Object Vstandard_translation_table_for_encode;
495
496 Lisp_Object Qtranslation_table;
497 Lisp_Object Qtranslation_table_id;
498 Lisp_Object Qtranslation_table_for_decode;
499 Lisp_Object Qtranslation_table_for_encode;
500
501 /* Alist of charsets vs revision number. */
502 Lisp_Object Vcharset_revision_alist;
503
504 /* Default coding systems used for process I/O. */
505 Lisp_Object Vdefault_process_coding_system;
506
507 /* Char table for translating Quail and self-inserting input. */
508 Lisp_Object Vtranslation_table_for_input;
509
510 /* Global flag to tell that we can't call post-read-conversion and
511 pre-write-conversion functions. Usually the value is zero, but it
512 is set to 1 temporarily while such functions are running. This is
513 to avoid infinite recursive call. */
514 static int inhibit_pre_post_conversion;
515
516 Lisp_Object Qchar_coding_system;
517
518 /* Return `safe-chars' property of CODING_SYSTEM (symbol). Don't check
519 its validity. */
520
521 Lisp_Object
522 coding_safe_chars (coding_system)
523 Lisp_Object coding_system;
524 {
525 Lisp_Object coding_spec, plist, safe_chars;
526
527 coding_spec = Fget (coding_system, Qcoding_system);
528 plist = XVECTOR (coding_spec)->contents[3];
529 safe_chars = Fplist_get (XVECTOR (coding_spec)->contents[3], Qsafe_chars);
530 return (CHAR_TABLE_P (safe_chars) ? safe_chars : Qt);
531 }
532
533 #define CODING_SAFE_CHAR_P(safe_chars, c) \
534 (EQ (safe_chars, Qt) || !NILP (CHAR_TABLE_REF (safe_chars, c)))
535
536 \f
537 /*** 2. Emacs internal format (emacs-mule) handlers ***/
538
539 /* Emacs' internal format for representation of multiple character
540 sets is a kind of multi-byte encoding, i.e. characters are
541 represented by variable-length sequences of one-byte codes.
542
543 ASCII characters and control characters (e.g. `tab', `newline') are
544 represented by one-byte sequences which are their ASCII codes, in
545 the range 0x00 through 0x7F.
546
547 8-bit characters of the range 0x80..0x9F are represented by
548 two-byte sequences of LEADING_CODE_8_BIT_CONTROL and (their 8-bit
549 code + 0x20).
550
551 8-bit characters of the range 0xA0..0xFF are represented by
552 one-byte sequences which are their 8-bit code.
553
554 The other characters are represented by a sequence of `base
555 leading-code', optional `extended leading-code', and one or two
556 `position-code's. The length of the sequence is determined by the
557 base leading-code. Leading-code takes the range 0x81 through 0x9D,
558 whereas extended leading-code and position-code take the range 0xA0
559 through 0xFF. See `charset.h' for more details about leading-code
560 and position-code.
561
562 --- CODE RANGE of Emacs' internal format ---
563 character set range
564 ------------- -----
565 ascii 0x00..0x7F
566 eight-bit-control LEADING_CODE_8_BIT_CONTROL + 0xA0..0xBF
567 eight-bit-graphic 0xA0..0xBF
568 ELSE 0x81..0x9D + [0xA0..0xFF]+
569 ---------------------------------------------
570
571 As this is the internal character representation, the format is
572 usually not used externally (i.e. in a file or in a data sent to a
573 process). But, it is possible to have a text externally in this
574 format (i.e. by encoding by the coding system `emacs-mule').
575
576 In that case, a sequence of one-byte codes has a slightly different
577 form.
578
579 Firstly, all characters in eight-bit-control are represented by
580 one-byte sequences which are their 8-bit code.
581
582 Next, character composition data are represented by the byte
583 sequence of the form: 0x80 METHOD BYTES CHARS COMPONENT ...,
584 where,
585 METHOD is 0xF0 plus one of composition method (enum
586 composition_method),
587
588 BYTES is 0xA0 plus the byte length of these composition data,
589
590 CHARS is 0xA0 plus the number of characters composed by these
591 data,
592
593 COMPONENTs are characters of multibyte form or composition
594 rules encoded by two-byte of ASCII codes.
595
596 In addition, for backward compatibility, the following formats are
597 also recognized as composition data on decoding.
598
599 0x80 MSEQ ...
600 0x80 0xFF MSEQ RULE MSEQ RULE ... MSEQ
601
602 Here,
603 MSEQ is a multibyte form but in these special format:
604 ASCII: 0xA0 ASCII_CODE+0x80,
605 other: LEADING_CODE+0x20 FOLLOWING-BYTE ...,
606 RULE is a one byte code of the range 0xA0..0xF0 that
607 represents a composition rule.
608 */
609
610 enum emacs_code_class_type emacs_code_class[256];
611
612 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
613 Check if a text is encoded in Emacs' internal format. If it is,
614 return CODING_CATEGORY_MASK_EMACS_MULE, else return 0. */
615
616 static int
617 detect_coding_emacs_mule (src, src_end, multibytep)
618 unsigned char *src, *src_end;
619 int multibytep;
620 {
621 unsigned char c;
622 int composing = 0;
623 /* Dummy for ONE_MORE_BYTE. */
624 struct coding_system dummy_coding;
625 struct coding_system *coding = &dummy_coding;
626
627 while (1)
628 {
629 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
630
631 if (composing)
632 {
633 if (c < 0xA0)
634 composing = 0;
635 else if (c == 0xA0)
636 {
637 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
638 c &= 0x7F;
639 }
640 else
641 c -= 0x20;
642 }
643
644 if (c < 0x20)
645 {
646 if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
647 return 0;
648 }
649 else if (c >= 0x80 && c < 0xA0)
650 {
651 if (c == 0x80)
652 /* Old leading code for a composite character. */
653 composing = 1;
654 else
655 {
656 unsigned char *src_base = src - 1;
657 int bytes;
658
659 if (!UNIBYTE_STR_AS_MULTIBYTE_P (src_base, src_end - src_base,
660 bytes))
661 return 0;
662 src = src_base + bytes;
663 }
664 }
665 }
666 label_end_of_loop:
667 return CODING_CATEGORY_MASK_EMACS_MULE;
668 }
669
670
671 /* Record the starting position START and METHOD of one composition. */
672
673 #define CODING_ADD_COMPOSITION_START(coding, start, method) \
674 do { \
675 struct composition_data *cmp_data = coding->cmp_data; \
676 int *data = cmp_data->data + cmp_data->used; \
677 coding->cmp_data_start = cmp_data->used; \
678 data[0] = -1; \
679 data[1] = cmp_data->char_offset + start; \
680 data[3] = (int) method; \
681 cmp_data->used += 4; \
682 } while (0)
683
684 /* Record the ending position END of the current composition. */
685
686 #define CODING_ADD_COMPOSITION_END(coding, end) \
687 do { \
688 struct composition_data *cmp_data = coding->cmp_data; \
689 int *data = cmp_data->data + coding->cmp_data_start; \
690 data[0] = cmp_data->used - coding->cmp_data_start; \
691 data[2] = cmp_data->char_offset + end; \
692 } while (0)
693
694 /* Record one COMPONENT (alternate character or composition rule). */
695
696 #define CODING_ADD_COMPOSITION_COMPONENT(coding, component) \
697 do { \
698 coding->cmp_data->data[coding->cmp_data->used++] = component; \
699 if (coding->cmp_data->used - coding->cmp_data_start \
700 == COMPOSITION_DATA_MAX_BUNCH_LENGTH) \
701 { \
702 CODING_ADD_COMPOSITION_END (coding, coding->produced_char); \
703 coding->composing = COMPOSITION_NO; \
704 } \
705 } while (0)
706
707
708 /* Get one byte from a data pointed by SRC and increment SRC. If SRC
709 is not less than SRC_END, return -1 without incrementing Src. */
710
711 #define SAFE_ONE_MORE_BYTE() (src >= src_end ? -1 : *src++)
712
713
714 /* Decode a character represented as a component of composition
715 sequence of Emacs 20 style at SRC. Set C to that character, store
716 its multibyte form sequence at P, and set P to the end of that
717 sequence. If no valid character is found, set C to -1. */
718
719 #define DECODE_EMACS_MULE_COMPOSITION_CHAR(c, p) \
720 do { \
721 int bytes; \
722 \
723 c = SAFE_ONE_MORE_BYTE (); \
724 if (c < 0) \
725 break; \
726 if (CHAR_HEAD_P (c)) \
727 c = -1; \
728 else if (c == 0xA0) \
729 { \
730 c = SAFE_ONE_MORE_BYTE (); \
731 if (c < 0xA0) \
732 c = -1; \
733 else \
734 { \
735 c -= 0xA0; \
736 *p++ = c; \
737 } \
738 } \
739 else if (BASE_LEADING_CODE_P (c - 0x20)) \
740 { \
741 unsigned char *p0 = p; \
742 \
743 c -= 0x20; \
744 *p++ = c; \
745 bytes = BYTES_BY_CHAR_HEAD (c); \
746 while (--bytes) \
747 { \
748 c = SAFE_ONE_MORE_BYTE (); \
749 if (c < 0) \
750 break; \
751 *p++ = c; \
752 } \
753 if (UNIBYTE_STR_AS_MULTIBYTE_P (p0, p - p0, bytes) \
754 || (coding->flags /* We are recovering a file. */ \
755 && p0[0] == LEADING_CODE_8_BIT_CONTROL \
756 && ! CHAR_HEAD_P (p0[1]))) \
757 c = STRING_CHAR (p0, bytes); \
758 else \
759 c = -1; \
760 } \
761 else \
762 c = -1; \
763 } while (0)
764
765
766 /* Decode a composition rule represented as a component of composition
767 sequence of Emacs 20 style at SRC. Set C to the rule. If not
768 valid rule is found, set C to -1. */
769
770 #define DECODE_EMACS_MULE_COMPOSITION_RULE(c) \
771 do { \
772 c = SAFE_ONE_MORE_BYTE (); \
773 c -= 0xA0; \
774 if (c < 0 || c >= 81) \
775 c = -1; \
776 else \
777 { \
778 gref = c / 9, nref = c % 9; \
779 c = COMPOSITION_ENCODE_RULE (gref, nref); \
780 } \
781 } while (0)
782
783
784 /* Decode composition sequence encoded by `emacs-mule' at the source
785 pointed by SRC. SRC_END is the end of source. Store information
786 of the composition in CODING->cmp_data.
787
788 For backward compatibility, decode also a composition sequence of
789 Emacs 20 style. In that case, the composition sequence contains
790 characters that should be extracted into a buffer or string. Store
791 those characters at *DESTINATION in multibyte form.
792
793 If we encounter an invalid byte sequence, return 0.
794 If we encounter an insufficient source or destination, or
795 insufficient space in CODING->cmp_data, return 1.
796 Otherwise, return consumed bytes in the source.
797
798 */
799 static INLINE int
800 decode_composition_emacs_mule (coding, src, src_end,
801 destination, dst_end, dst_bytes)
802 struct coding_system *coding;
803 unsigned char *src, *src_end, **destination, *dst_end;
804 int dst_bytes;
805 {
806 unsigned char *dst = *destination;
807 int method, data_len, nchars;
808 unsigned char *src_base = src++;
809 /* Store components of composition. */
810 int component[COMPOSITION_DATA_MAX_BUNCH_LENGTH];
811 int ncomponent;
812 /* Store multibyte form of characters to be composed. This is for
813 Emacs 20 style composition sequence. */
814 unsigned char buf[MAX_COMPOSITION_COMPONENTS * MAX_MULTIBYTE_LENGTH];
815 unsigned char *bufp = buf;
816 int c, i, gref, nref;
817
818 if (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH
819 >= COMPOSITION_DATA_SIZE)
820 {
821 coding->result = CODING_FINISH_INSUFFICIENT_CMP;
822 return -1;
823 }
824
825 ONE_MORE_BYTE (c);
826 if (c - 0xF0 >= COMPOSITION_RELATIVE
827 && c - 0xF0 <= COMPOSITION_WITH_RULE_ALTCHARS)
828 {
829 int with_rule;
830
831 method = c - 0xF0;
832 with_rule = (method == COMPOSITION_WITH_RULE
833 || method == COMPOSITION_WITH_RULE_ALTCHARS);
834 ONE_MORE_BYTE (c);
835 data_len = c - 0xA0;
836 if (data_len < 4
837 || src_base + data_len > src_end)
838 return 0;
839 ONE_MORE_BYTE (c);
840 nchars = c - 0xA0;
841 if (c < 1)
842 return 0;
843 for (ncomponent = 0; src < src_base + data_len; ncomponent++)
844 {
845 /* If it is longer than this, it can't be valid. */
846 if (ncomponent >= COMPOSITION_DATA_MAX_BUNCH_LENGTH)
847 return 0;
848
849 if (ncomponent % 2 && with_rule)
850 {
851 ONE_MORE_BYTE (gref);
852 gref -= 32;
853 ONE_MORE_BYTE (nref);
854 nref -= 32;
855 c = COMPOSITION_ENCODE_RULE (gref, nref);
856 }
857 else
858 {
859 int bytes;
860 if (UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes)
861 || (coding->flags /* We are recovering a file. */
862 && src[0] == LEADING_CODE_8_BIT_CONTROL
863 && ! CHAR_HEAD_P (src[1])))
864 c = STRING_CHAR (src, bytes);
865 else
866 c = *src, bytes = 1;
867 src += bytes;
868 }
869 component[ncomponent] = c;
870 }
871 }
872 else
873 {
874 /* This may be an old Emacs 20 style format. See the comment at
875 the section 2 of this file. */
876 while (src < src_end && !CHAR_HEAD_P (*src)) src++;
877 if (src == src_end
878 && !(coding->mode & CODING_MODE_LAST_BLOCK))
879 goto label_end_of_loop;
880
881 src_end = src;
882 src = src_base + 1;
883 if (c < 0xC0)
884 {
885 method = COMPOSITION_RELATIVE;
886 for (ncomponent = 0; ncomponent < MAX_COMPOSITION_COMPONENTS;)
887 {
888 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
889 if (c < 0)
890 break;
891 component[ncomponent++] = c;
892 }
893 if (ncomponent < 2)
894 return 0;
895 nchars = ncomponent;
896 }
897 else if (c == 0xFF)
898 {
899 method = COMPOSITION_WITH_RULE;
900 src++;
901 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
902 if (c < 0)
903 return 0;
904 component[0] = c;
905 for (ncomponent = 1;
906 ncomponent < MAX_COMPOSITION_COMPONENTS * 2 - 1;)
907 {
908 DECODE_EMACS_MULE_COMPOSITION_RULE (c);
909 if (c < 0)
910 break;
911 component[ncomponent++] = c;
912 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
913 if (c < 0)
914 break;
915 component[ncomponent++] = c;
916 }
917 if (ncomponent < 3)
918 return 0;
919 nchars = (ncomponent + 1) / 2;
920 }
921 else
922 return 0;
923 }
924
925 if (buf == bufp || dst + (bufp - buf) <= (dst_bytes ? dst_end : src))
926 {
927 CODING_ADD_COMPOSITION_START (coding, coding->produced_char, method);
928 for (i = 0; i < ncomponent; i++)
929 CODING_ADD_COMPOSITION_COMPONENT (coding, component[i]);
930 CODING_ADD_COMPOSITION_END (coding, coding->produced_char + nchars);
931 if (buf < bufp)
932 {
933 unsigned char *p = buf;
934 EMIT_BYTES (p, bufp);
935 *destination += bufp - buf;
936 coding->produced_char += nchars;
937 }
938 return (src - src_base);
939 }
940 label_end_of_loop:
941 return -1;
942 }
943
944 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
945
946 static void
947 decode_coding_emacs_mule (coding, source, destination, src_bytes, dst_bytes)
948 struct coding_system *coding;
949 unsigned char *source, *destination;
950 int src_bytes, dst_bytes;
951 {
952 unsigned char *src = source;
953 unsigned char *src_end = source + src_bytes;
954 unsigned char *dst = destination;
955 unsigned char *dst_end = destination + dst_bytes;
956 /* SRC_BASE remembers the start position in source in each loop.
957 The loop will be exited when there's not enough source code, or
958 when there's not enough destination area to produce a
959 character. */
960 unsigned char *src_base;
961
962 coding->produced_char = 0;
963 while ((src_base = src) < src_end)
964 {
965 unsigned char tmp[MAX_MULTIBYTE_LENGTH], *p;
966 int bytes;
967
968 if (*src == '\r')
969 {
970 int c = *src++;
971
972 if (coding->eol_type == CODING_EOL_CR)
973 c = '\n';
974 else if (coding->eol_type == CODING_EOL_CRLF)
975 {
976 ONE_MORE_BYTE (c);
977 if (c != '\n')
978 {
979 src--;
980 c = '\r';
981 }
982 }
983 *dst++ = c;
984 coding->produced_char++;
985 continue;
986 }
987 else if (*src == '\n')
988 {
989 if ((coding->eol_type == CODING_EOL_CR
990 || coding->eol_type == CODING_EOL_CRLF)
991 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
992 {
993 coding->result = CODING_FINISH_INCONSISTENT_EOL;
994 goto label_end_of_loop;
995 }
996 *dst++ = *src++;
997 coding->produced_char++;
998 continue;
999 }
1000 else if (*src == 0x80 && coding->cmp_data)
1001 {
1002 /* Start of composition data. */
1003 int consumed = decode_composition_emacs_mule (coding, src, src_end,
1004 &dst, dst_end,
1005 dst_bytes);
1006 if (consumed < 0)
1007 goto label_end_of_loop;
1008 else if (consumed > 0)
1009 {
1010 src += consumed;
1011 continue;
1012 }
1013 bytes = CHAR_STRING (*src, tmp);
1014 p = tmp;
1015 src++;
1016 }
1017 else if (UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes)
1018 || (coding->flags /* We are recovering a file. */
1019 && src[0] == LEADING_CODE_8_BIT_CONTROL
1020 && ! CHAR_HEAD_P (src[1])))
1021 {
1022 p = src;
1023 src += bytes;
1024 }
1025 else
1026 {
1027 int i, c;
1028
1029 bytes = BYTES_BY_CHAR_HEAD (*src);
1030 src++;
1031 for (i = 1; i < bytes; i++)
1032 {
1033 ONE_MORE_BYTE (c);
1034 if (CHAR_HEAD_P (c))
1035 break;
1036 }
1037 if (i < bytes)
1038 {
1039 bytes = CHAR_STRING (*src_base, tmp);
1040 p = tmp;
1041 src = src_base + 1;
1042 }
1043 else
1044 {
1045 p = src_base;
1046 }
1047 }
1048 if (dst + bytes >= (dst_bytes ? dst_end : src))
1049 {
1050 coding->result = CODING_FINISH_INSUFFICIENT_DST;
1051 break;
1052 }
1053 while (bytes--) *dst++ = *p++;
1054 coding->produced_char++;
1055 }
1056 label_end_of_loop:
1057 coding->consumed = coding->consumed_char = src_base - source;
1058 coding->produced = dst - destination;
1059 }
1060
1061
1062 /* Encode composition data stored at DATA into a special byte sequence
1063 starting by 0x80. Update CODING->cmp_data_start and maybe
1064 CODING->cmp_data for the next call. */
1065
1066 #define ENCODE_COMPOSITION_EMACS_MULE(coding, data) \
1067 do { \
1068 unsigned char buf[1024], *p0 = buf, *p; \
1069 int len = data[0]; \
1070 int i; \
1071 \
1072 buf[0] = 0x80; \
1073 buf[1] = 0xF0 + data[3]; /* METHOD */ \
1074 buf[3] = 0xA0 + (data[2] - data[1]); /* COMPOSED-CHARS */ \
1075 p = buf + 4; \
1076 if (data[3] == COMPOSITION_WITH_RULE \
1077 || data[3] == COMPOSITION_WITH_RULE_ALTCHARS) \
1078 { \
1079 p += CHAR_STRING (data[4], p); \
1080 for (i = 5; i < len; i += 2) \
1081 { \
1082 int gref, nref; \
1083 COMPOSITION_DECODE_RULE (data[i], gref, nref); \
1084 *p++ = 0x20 + gref; \
1085 *p++ = 0x20 + nref; \
1086 p += CHAR_STRING (data[i + 1], p); \
1087 } \
1088 } \
1089 else \
1090 { \
1091 for (i = 4; i < len; i++) \
1092 p += CHAR_STRING (data[i], p); \
1093 } \
1094 buf[2] = 0xA0 + (p - buf); /* COMPONENTS-BYTES */ \
1095 \
1096 if (dst + (p - buf) + 4 > (dst_bytes ? dst_end : src)) \
1097 { \
1098 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
1099 goto label_end_of_loop; \
1100 } \
1101 while (p0 < p) \
1102 *dst++ = *p0++; \
1103 coding->cmp_data_start += data[0]; \
1104 if (coding->cmp_data_start == coding->cmp_data->used \
1105 && coding->cmp_data->next) \
1106 { \
1107 coding->cmp_data = coding->cmp_data->next; \
1108 coding->cmp_data_start = 0; \
1109 } \
1110 } while (0)
1111
1112
1113 static void encode_eol P_ ((struct coding_system *, const unsigned char *,
1114 unsigned char *, int, int));
1115
1116 static void
1117 encode_coding_emacs_mule (coding, source, destination, src_bytes, dst_bytes)
1118 struct coding_system *coding;
1119 unsigned char *source, *destination;
1120 int src_bytes, dst_bytes;
1121 {
1122 unsigned char *src = source;
1123 unsigned char *src_end = source + src_bytes;
1124 unsigned char *dst = destination;
1125 unsigned char *dst_end = destination + dst_bytes;
1126 unsigned char *src_base;
1127 int c;
1128 int char_offset;
1129 int *data;
1130
1131 Lisp_Object translation_table;
1132
1133 translation_table = Qnil;
1134
1135 /* Optimization for the case that there's no composition. */
1136 if (!coding->cmp_data || coding->cmp_data->used == 0)
1137 {
1138 encode_eol (coding, source, destination, src_bytes, dst_bytes);
1139 return;
1140 }
1141
1142 char_offset = coding->cmp_data->char_offset;
1143 data = coding->cmp_data->data + coding->cmp_data_start;
1144 while (1)
1145 {
1146 src_base = src;
1147
1148 /* If SRC starts a composition, encode the information about the
1149 composition in advance. */
1150 if (coding->cmp_data_start < coding->cmp_data->used
1151 && char_offset + coding->consumed_char == data[1])
1152 {
1153 ENCODE_COMPOSITION_EMACS_MULE (coding, data);
1154 char_offset = coding->cmp_data->char_offset;
1155 data = coding->cmp_data->data + coding->cmp_data_start;
1156 }
1157
1158 ONE_MORE_CHAR (c);
1159 if (c == '\n' && (coding->eol_type == CODING_EOL_CRLF
1160 || coding->eol_type == CODING_EOL_CR))
1161 {
1162 if (coding->eol_type == CODING_EOL_CRLF)
1163 EMIT_TWO_BYTES ('\r', c);
1164 else
1165 EMIT_ONE_BYTE ('\r');
1166 }
1167 else if (SINGLE_BYTE_CHAR_P (c))
1168 {
1169 if (coding->flags && ! ASCII_BYTE_P (c))
1170 {
1171 /* As we are auto saving, retain the multibyte form for
1172 8-bit chars. */
1173 unsigned char buf[MAX_MULTIBYTE_LENGTH];
1174 int bytes = CHAR_STRING (c, buf);
1175
1176 if (bytes == 1)
1177 EMIT_ONE_BYTE (buf[0]);
1178 else
1179 EMIT_TWO_BYTES (buf[0], buf[1]);
1180 }
1181 else
1182 EMIT_ONE_BYTE (c);
1183 }
1184 else
1185 EMIT_BYTES (src_base, src);
1186 coding->consumed_char++;
1187 }
1188 label_end_of_loop:
1189 coding->consumed = src_base - source;
1190 coding->produced = coding->produced_char = dst - destination;
1191 return;
1192 }
1193
1194 \f
1195 /*** 3. ISO2022 handlers ***/
1196
1197 /* The following note describes the coding system ISO2022 briefly.
1198 Since the intention of this note is to help understand the
1199 functions in this file, some parts are NOT ACCURATE or are OVERLY
1200 SIMPLIFIED. For thorough understanding, please refer to the
1201 original document of ISO2022. This is equivalent to the standard
1202 ECMA-35, obtainable from <URL:http://www.ecma.ch/> (*).
1203
1204 ISO2022 provides many mechanisms to encode several character sets
1205 in 7-bit and 8-bit environments. For 7-bit environments, all text
1206 is encoded using bytes less than 128. This may make the encoded
1207 text a little bit longer, but the text passes more easily through
1208 several types of gateway, some of which strip off the MSB (Most
1209 Significant Bit).
1210
1211 There are two kinds of character sets: control character sets and
1212 graphic character sets. The former contain control characters such
1213 as `newline' and `escape' to provide control functions (control
1214 functions are also provided by escape sequences). The latter
1215 contain graphic characters such as 'A' and '-'. Emacs recognizes
1216 two control character sets and many graphic character sets.
1217
1218 Graphic character sets are classified into one of the following
1219 four classes, according to the number of bytes (DIMENSION) and
1220 number of characters in one dimension (CHARS) of the set:
1221 - DIMENSION1_CHARS94
1222 - DIMENSION1_CHARS96
1223 - DIMENSION2_CHARS94
1224 - DIMENSION2_CHARS96
1225
1226 In addition, each character set is assigned an identification tag,
1227 unique for each set, called the "final character" (denoted as <F>
1228 hereafter). The <F> of each character set is decided by ECMA(*)
1229 when it is registered in ISO. The code range of <F> is 0x30..0x7F
1230 (0x30..0x3F are for private use only).
1231
1232 Note (*): ECMA = European Computer Manufacturers Association
1233
1234 Here are examples of graphic character sets [NAME(<F>)]:
1235 o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
1236 o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
1237 o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
1238 o DIMENSION2_CHARS96 -- none for the moment
1239
1240 A code area (1 byte=8 bits) is divided into 4 areas, C0, GL, C1, and GR.
1241 C0 [0x00..0x1F] -- control character plane 0
1242 GL [0x20..0x7F] -- graphic character plane 0
1243 C1 [0x80..0x9F] -- control character plane 1
1244 GR [0xA0..0xFF] -- graphic character plane 1
1245
1246 A control character set is directly designated and invoked to C0 or
1247 C1 by an escape sequence. The most common case is that:
1248 - ISO646's control character set is designated/invoked to C0, and
1249 - ISO6429's control character set is designated/invoked to C1,
1250 and usually these designations/invocations are omitted in encoded
1251 text. In a 7-bit environment, only C0 can be used, and a control
1252 character for C1 is encoded by an appropriate escape sequence to
1253 fit into the environment. All control characters for C1 are
1254 defined to have corresponding escape sequences.
1255
1256 A graphic character set is at first designated to one of four
1257 graphic registers (G0 through G3), then these graphic registers are
1258 invoked to GL or GR. These designations and invocations can be
1259 done independently. The most common case is that G0 is invoked to
1260 GL, G1 is invoked to GR, and ASCII is designated to G0. Usually
1261 these invocations and designations are omitted in encoded text.
1262 In a 7-bit environment, only GL can be used.
1263
1264 When a graphic character set of CHARS94 is invoked to GL, codes
1265 0x20 and 0x7F of the GL area work as control characters SPACE and
1266 DEL respectively, and codes 0xA0 and 0xFF of the GR area should not
1267 be used.
1268
1269 There are two ways of invocation: locking-shift and single-shift.
1270 With locking-shift, the invocation lasts until the next different
1271 invocation, whereas with single-shift, the invocation affects the
1272 following character only and doesn't affect the locking-shift
1273 state. Invocations are done by the following control characters or
1274 escape sequences:
1275
1276 ----------------------------------------------------------------------
1277 abbrev function cntrl escape seq description
1278 ----------------------------------------------------------------------
1279 SI/LS0 (shift-in) 0x0F none invoke G0 into GL
1280 SO/LS1 (shift-out) 0x0E none invoke G1 into GL
1281 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL
1282 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL
1283 LS1R (locking-shift-1 right) none ESC '~' invoke G1 into GR (*)
1284 LS2R (locking-shift-2 right) none ESC '}' invoke G2 into GR (*)
1285 LS3R (locking-shift 3 right) none ESC '|' invoke G3 into GR (*)
1286 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 for one char
1287 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 for one char
1288 ----------------------------------------------------------------------
1289 (*) These are not used by any known coding system.
1290
1291 Control characters for these functions are defined by macros
1292 ISO_CODE_XXX in `coding.h'.
1293
1294 Designations are done by the following escape sequences:
1295 ----------------------------------------------------------------------
1296 escape sequence description
1297 ----------------------------------------------------------------------
1298 ESC '(' <F> designate DIMENSION1_CHARS94<F> to G0
1299 ESC ')' <F> designate DIMENSION1_CHARS94<F> to G1
1300 ESC '*' <F> designate DIMENSION1_CHARS94<F> to G2
1301 ESC '+' <F> designate DIMENSION1_CHARS94<F> to G3
1302 ESC ',' <F> designate DIMENSION1_CHARS96<F> to G0 (*)
1303 ESC '-' <F> designate DIMENSION1_CHARS96<F> to G1
1304 ESC '.' <F> designate DIMENSION1_CHARS96<F> to G2
1305 ESC '/' <F> designate DIMENSION1_CHARS96<F> to G3
1306 ESC '$' '(' <F> designate DIMENSION2_CHARS94<F> to G0 (**)
1307 ESC '$' ')' <F> designate DIMENSION2_CHARS94<F> to G1
1308 ESC '$' '*' <F> designate DIMENSION2_CHARS94<F> to G2
1309 ESC '$' '+' <F> designate DIMENSION2_CHARS94<F> to G3
1310 ESC '$' ',' <F> designate DIMENSION2_CHARS96<F> to G0 (*)
1311 ESC '$' '-' <F> designate DIMENSION2_CHARS96<F> to G1
1312 ESC '$' '.' <F> designate DIMENSION2_CHARS96<F> to G2
1313 ESC '$' '/' <F> designate DIMENSION2_CHARS96<F> to G3
1314 ----------------------------------------------------------------------
1315
1316 In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
1317 of dimension 1, chars 94, and final character <F>, etc...
1318
1319 Note (*): Although these designations are not allowed in ISO2022,
1320 Emacs accepts them on decoding, and produces them on encoding
1321 CHARS96 character sets in a coding system which is characterized as
1322 7-bit environment, non-locking-shift, and non-single-shift.
1323
1324 Note (**): If <F> is '@', 'A', or 'B', the intermediate character
1325 '(' can be omitted. We refer to this as "short-form" hereafter.
1326
1327 Now you may notice that there are a lot of ways of encoding the
1328 same multilingual text in ISO2022. Actually, there exist many
1329 coding systems such as Compound Text (used in X11's inter client
1330 communication, ISO-2022-JP (used in Japanese Internet), ISO-2022-KR
1331 (used in Korean Internet), EUC (Extended UNIX Code, used in Asian
1332 localized platforms), and all of these are variants of ISO2022.
1333
1334 In addition to the above, Emacs handles two more kinds of escape
1335 sequences: ISO6429's direction specification and Emacs' private
1336 sequence for specifying character composition.
1337
1338 ISO6429's direction specification takes the following form:
1339 o CSI ']' -- end of the current direction
1340 o CSI '0' ']' -- end of the current direction
1341 o CSI '1' ']' -- start of left-to-right text
1342 o CSI '2' ']' -- start of right-to-left text
1343 The control character CSI (0x9B: control sequence introducer) is
1344 abbreviated to the escape sequence ESC '[' in a 7-bit environment.
1345
1346 Character composition specification takes the following form:
1347 o ESC '0' -- start relative composition
1348 o ESC '1' -- end composition
1349 o ESC '2' -- start rule-base composition (*)
1350 o ESC '3' -- start relative composition with alternate chars (**)
1351 o ESC '4' -- start rule-base composition with alternate chars (**)
1352 Since these are not standard escape sequences of any ISO standard,
1353 the use of them with these meanings is restricted to Emacs only.
1354
1355 (*) This form is used only in Emacs 20.5 and older versions,
1356 but the newer versions can safely decode it.
1357 (**) This form is used only in Emacs 21.1 and newer versions,
1358 and the older versions can't decode it.
1359
1360 Here's a list of example usages of these composition escape
1361 sequences (categorized by `enum composition_method').
1362
1363 COMPOSITION_RELATIVE:
1364 ESC 0 CHAR [ CHAR ] ESC 1
1365 COMPOSITION_WITH_RULE:
1366 ESC 2 CHAR [ RULE CHAR ] ESC 1
1367 COMPOSITION_WITH_ALTCHARS:
1368 ESC 3 ALTCHAR [ ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1
1369 COMPOSITION_WITH_RULE_ALTCHARS:
1370 ESC 4 ALTCHAR [ RULE ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1 */
1371
1372 enum iso_code_class_type iso_code_class[256];
1373
1374 #define CHARSET_OK(idx, charset, c) \
1375 (coding_system_table[idx] \
1376 && (charset == CHARSET_ASCII \
1377 || (safe_chars = coding_safe_chars (coding_system_table[idx]->symbol), \
1378 CODING_SAFE_CHAR_P (safe_chars, c))) \
1379 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding_system_table[idx], \
1380 charset) \
1381 != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
1382
1383 #define SHIFT_OUT_OK(idx) \
1384 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding_system_table[idx], 1) >= 0)
1385
1386 #define COMPOSITION_OK(idx) \
1387 (coding_system_table[idx]->composing != COMPOSITION_DISABLED)
1388
1389 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1390 Check if a text is encoded in ISO2022. If it is, return an
1391 integer in which appropriate flag bits any of:
1392 CODING_CATEGORY_MASK_ISO_7
1393 CODING_CATEGORY_MASK_ISO_7_TIGHT
1394 CODING_CATEGORY_MASK_ISO_8_1
1395 CODING_CATEGORY_MASK_ISO_8_2
1396 CODING_CATEGORY_MASK_ISO_7_ELSE
1397 CODING_CATEGORY_MASK_ISO_8_ELSE
1398 are set. If a code which should never appear in ISO2022 is found,
1399 returns 0. */
1400
1401 static int
1402 detect_coding_iso2022 (src, src_end, multibytep)
1403 unsigned char *src, *src_end;
1404 int multibytep;
1405 {
1406 int mask = CODING_CATEGORY_MASK_ISO;
1407 int mask_found = 0;
1408 int reg[4], shift_out = 0, single_shifting = 0;
1409 int c, c1, charset;
1410 /* Dummy for ONE_MORE_BYTE. */
1411 struct coding_system dummy_coding;
1412 struct coding_system *coding = &dummy_coding;
1413 Lisp_Object safe_chars;
1414
1415 reg[0] = CHARSET_ASCII, reg[1] = reg[2] = reg[3] = -1;
1416 while (mask && src < src_end)
1417 {
1418 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1419 retry:
1420 switch (c)
1421 {
1422 case ISO_CODE_ESC:
1423 if (inhibit_iso_escape_detection)
1424 break;
1425 single_shifting = 0;
1426 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1427 if (c >= '(' && c <= '/')
1428 {
1429 /* Designation sequence for a charset of dimension 1. */
1430 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
1431 if (c1 < ' ' || c1 >= 0x80
1432 || (charset = iso_charset_table[0][c >= ','][c1]) < 0)
1433 /* Invalid designation sequence. Just ignore. */
1434 break;
1435 reg[(c - '(') % 4] = charset;
1436 }
1437 else if (c == '$')
1438 {
1439 /* Designation sequence for a charset of dimension 2. */
1440 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1441 if (c >= '@' && c <= 'B')
1442 /* Designation for JISX0208.1978, GB2312, or JISX0208. */
1443 reg[0] = charset = iso_charset_table[1][0][c];
1444 else if (c >= '(' && c <= '/')
1445 {
1446 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
1447 if (c1 < ' ' || c1 >= 0x80
1448 || (charset = iso_charset_table[1][c >= ','][c1]) < 0)
1449 /* Invalid designation sequence. Just ignore. */
1450 break;
1451 reg[(c - '(') % 4] = charset;
1452 }
1453 else
1454 /* Invalid designation sequence. Just ignore. */
1455 break;
1456 }
1457 else if (c == 'N' || c == 'O')
1458 {
1459 /* ESC <Fe> for SS2 or SS3. */
1460 mask &= CODING_CATEGORY_MASK_ISO_7_ELSE;
1461 break;
1462 }
1463 else if (c >= '0' && c <= '4')
1464 {
1465 /* ESC <Fp> for start/end composition. */
1466 if (COMPOSITION_OK (CODING_CATEGORY_IDX_ISO_7))
1467 mask_found |= CODING_CATEGORY_MASK_ISO_7;
1468 else
1469 mask &= ~CODING_CATEGORY_MASK_ISO_7;
1470 if (COMPOSITION_OK (CODING_CATEGORY_IDX_ISO_7_TIGHT))
1471 mask_found |= CODING_CATEGORY_MASK_ISO_7_TIGHT;
1472 else
1473 mask &= ~CODING_CATEGORY_MASK_ISO_7_TIGHT;
1474 if (COMPOSITION_OK (CODING_CATEGORY_IDX_ISO_8_1))
1475 mask_found |= CODING_CATEGORY_MASK_ISO_8_1;
1476 else
1477 mask &= ~CODING_CATEGORY_MASK_ISO_8_1;
1478 if (COMPOSITION_OK (CODING_CATEGORY_IDX_ISO_8_2))
1479 mask_found |= CODING_CATEGORY_MASK_ISO_8_2;
1480 else
1481 mask &= ~CODING_CATEGORY_MASK_ISO_8_2;
1482 if (COMPOSITION_OK (CODING_CATEGORY_IDX_ISO_7_ELSE))
1483 mask_found |= CODING_CATEGORY_MASK_ISO_7_ELSE;
1484 else
1485 mask &= ~CODING_CATEGORY_MASK_ISO_7_ELSE;
1486 if (COMPOSITION_OK (CODING_CATEGORY_IDX_ISO_8_ELSE))
1487 mask_found |= CODING_CATEGORY_MASK_ISO_8_ELSE;
1488 else
1489 mask &= ~CODING_CATEGORY_MASK_ISO_8_ELSE;
1490 break;
1491 }
1492 else
1493 /* Invalid escape sequence. Just ignore. */
1494 break;
1495
1496 /* We found a valid designation sequence for CHARSET. */
1497 mask &= ~CODING_CATEGORY_MASK_ISO_8BIT;
1498 c = MAKE_CHAR (charset, 0, 0);
1499 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7, charset, c))
1500 mask_found |= CODING_CATEGORY_MASK_ISO_7;
1501 else
1502 mask &= ~CODING_CATEGORY_MASK_ISO_7;
1503 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_TIGHT, charset, c))
1504 mask_found |= CODING_CATEGORY_MASK_ISO_7_TIGHT;
1505 else
1506 mask &= ~CODING_CATEGORY_MASK_ISO_7_TIGHT;
1507 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_ELSE, charset, c))
1508 mask_found |= CODING_CATEGORY_MASK_ISO_7_ELSE;
1509 else
1510 mask &= ~CODING_CATEGORY_MASK_ISO_7_ELSE;
1511 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_8_ELSE, charset, c))
1512 mask_found |= CODING_CATEGORY_MASK_ISO_8_ELSE;
1513 else
1514 mask &= ~CODING_CATEGORY_MASK_ISO_8_ELSE;
1515 break;
1516
1517 case ISO_CODE_SO:
1518 if (inhibit_iso_escape_detection)
1519 break;
1520 single_shifting = 0;
1521 if (shift_out == 0
1522 && (reg[1] >= 0
1523 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_7_ELSE)
1524 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_8_ELSE)))
1525 {
1526 /* Locking shift out. */
1527 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
1528 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
1529 }
1530 break;
1531
1532 case ISO_CODE_SI:
1533 if (inhibit_iso_escape_detection)
1534 break;
1535 single_shifting = 0;
1536 if (shift_out == 1)
1537 {
1538 /* Locking shift in. */
1539 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
1540 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
1541 }
1542 break;
1543
1544 case ISO_CODE_CSI:
1545 single_shifting = 0;
1546 case ISO_CODE_SS2:
1547 case ISO_CODE_SS3:
1548 {
1549 int newmask = CODING_CATEGORY_MASK_ISO_8_ELSE;
1550
1551 if (inhibit_iso_escape_detection)
1552 break;
1553 if (c != ISO_CODE_CSI)
1554 {
1555 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1556 & CODING_FLAG_ISO_SINGLE_SHIFT)
1557 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1558 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1559 & CODING_FLAG_ISO_SINGLE_SHIFT)
1560 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1561 single_shifting = 1;
1562 }
1563 if (VECTORP (Vlatin_extra_code_table)
1564 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
1565 {
1566 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1567 & CODING_FLAG_ISO_LATIN_EXTRA)
1568 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1569 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1570 & CODING_FLAG_ISO_LATIN_EXTRA)
1571 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1572 }
1573 mask &= newmask;
1574 mask_found |= newmask;
1575 }
1576 break;
1577
1578 default:
1579 if (c < 0x80)
1580 {
1581 single_shifting = 0;
1582 break;
1583 }
1584 else if (c < 0xA0)
1585 {
1586 single_shifting = 0;
1587 if (VECTORP (Vlatin_extra_code_table)
1588 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
1589 {
1590 int newmask = 0;
1591
1592 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1593 & CODING_FLAG_ISO_LATIN_EXTRA)
1594 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1595 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1596 & CODING_FLAG_ISO_LATIN_EXTRA)
1597 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1598 mask &= newmask;
1599 mask_found |= newmask;
1600 }
1601 else
1602 return 0;
1603 }
1604 else
1605 {
1606 mask &= ~(CODING_CATEGORY_MASK_ISO_7BIT
1607 | CODING_CATEGORY_MASK_ISO_7_ELSE);
1608 mask_found |= CODING_CATEGORY_MASK_ISO_8_1;
1609 /* Check the length of succeeding codes of the range
1610 0xA0..0FF. If the byte length is odd, we exclude
1611 CODING_CATEGORY_MASK_ISO_8_2. We can check this only
1612 when we are not single shifting. */
1613 if (!single_shifting
1614 && mask & CODING_CATEGORY_MASK_ISO_8_2)
1615 {
1616 int i = 1;
1617
1618 c = -1;
1619 while (src < src_end)
1620 {
1621 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1622 if (c < 0xA0)
1623 break;
1624 i++;
1625 }
1626
1627 if (i & 1 && src < src_end)
1628 mask &= ~CODING_CATEGORY_MASK_ISO_8_2;
1629 else
1630 mask_found |= CODING_CATEGORY_MASK_ISO_8_2;
1631 if (c >= 0)
1632 /* This means that we have read one extra byte. */
1633 goto retry;
1634 }
1635 }
1636 break;
1637 }
1638 }
1639 label_end_of_loop:
1640 return (mask & mask_found);
1641 }
1642
1643 /* Decode a character of which charset is CHARSET, the 1st position
1644 code is C1, the 2nd position code is C2, and return the decoded
1645 character code. If the variable `translation_table' is non-nil,
1646 returned the translated code. */
1647
1648 #define DECODE_ISO_CHARACTER(charset, c1, c2) \
1649 (NILP (translation_table) \
1650 ? MAKE_CHAR (charset, c1, c2) \
1651 : translate_char (translation_table, -1, charset, c1, c2))
1652
1653 /* Set designation state into CODING. */
1654 #define DECODE_DESIGNATION(reg, dimension, chars, final_char) \
1655 do { \
1656 int charset, c; \
1657 \
1658 if (final_char < '0' || final_char >= 128) \
1659 goto label_invalid_code; \
1660 charset = ISO_CHARSET_TABLE (make_number (dimension), \
1661 make_number (chars), \
1662 make_number (final_char)); \
1663 c = MAKE_CHAR (charset, 0, 0); \
1664 if (charset >= 0 \
1665 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) == reg \
1666 || CODING_SAFE_CHAR_P (safe_chars, c))) \
1667 { \
1668 if (coding->spec.iso2022.last_invalid_designation_register == 0 \
1669 && reg == 0 \
1670 && charset == CHARSET_ASCII) \
1671 { \
1672 /* We should insert this designation sequence as is so \
1673 that it is surely written back to a file. */ \
1674 coding->spec.iso2022.last_invalid_designation_register = -1; \
1675 goto label_invalid_code; \
1676 } \
1677 coding->spec.iso2022.last_invalid_designation_register = -1; \
1678 if ((coding->mode & CODING_MODE_DIRECTION) \
1679 && CHARSET_REVERSE_CHARSET (charset) >= 0) \
1680 charset = CHARSET_REVERSE_CHARSET (charset); \
1681 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
1682 } \
1683 else \
1684 { \
1685 coding->spec.iso2022.last_invalid_designation_register = reg; \
1686 goto label_invalid_code; \
1687 } \
1688 } while (0)
1689
1690 /* Allocate a memory block for storing information about compositions.
1691 The block is chained to the already allocated blocks. */
1692
1693 void
1694 coding_allocate_composition_data (coding, char_offset)
1695 struct coding_system *coding;
1696 int char_offset;
1697 {
1698 struct composition_data *cmp_data
1699 = (struct composition_data *) xmalloc (sizeof *cmp_data);
1700
1701 cmp_data->char_offset = char_offset;
1702 cmp_data->used = 0;
1703 cmp_data->prev = coding->cmp_data;
1704 cmp_data->next = NULL;
1705 if (coding->cmp_data)
1706 coding->cmp_data->next = cmp_data;
1707 coding->cmp_data = cmp_data;
1708 coding->cmp_data_start = 0;
1709 coding->composing = COMPOSITION_NO;
1710 }
1711
1712 /* Handle composition start sequence ESC 0, ESC 2, ESC 3, or ESC 4.
1713 ESC 0 : relative composition : ESC 0 CHAR ... ESC 1
1714 ESC 2 : rulebase composition : ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
1715 ESC 3 : altchar composition : ESC 3 ALT ... ESC 0 CHAR ... ESC 1
1716 ESC 4 : alt&rule composition : ESC 4 ALT RULE .. ALT ESC 0 CHAR ... ESC 1
1717 */
1718
1719 #define DECODE_COMPOSITION_START(c1) \
1720 do { \
1721 if (coding->composing == COMPOSITION_DISABLED) \
1722 { \
1723 *dst++ = ISO_CODE_ESC; \
1724 *dst++ = c1 & 0x7f; \
1725 coding->produced_char += 2; \
1726 } \
1727 else if (!COMPOSING_P (coding)) \
1728 { \
1729 /* This is surely the start of a composition. We must be sure \
1730 that coding->cmp_data has enough space to store the \
1731 information about the composition. If not, terminate the \
1732 current decoding loop, allocate one more memory block for \
1733 coding->cmp_data in the caller, then start the decoding \
1734 loop again. We can't allocate memory here directly because \
1735 it may cause buffer/string relocation. */ \
1736 if (!coding->cmp_data \
1737 || (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH \
1738 >= COMPOSITION_DATA_SIZE)) \
1739 { \
1740 coding->result = CODING_FINISH_INSUFFICIENT_CMP; \
1741 goto label_end_of_loop; \
1742 } \
1743 coding->composing = (c1 == '0' ? COMPOSITION_RELATIVE \
1744 : c1 == '2' ? COMPOSITION_WITH_RULE \
1745 : c1 == '3' ? COMPOSITION_WITH_ALTCHARS \
1746 : COMPOSITION_WITH_RULE_ALTCHARS); \
1747 CODING_ADD_COMPOSITION_START (coding, coding->produced_char, \
1748 coding->composing); \
1749 coding->composition_rule_follows = 0; \
1750 } \
1751 else \
1752 { \
1753 /* We are already handling a composition. If the method is \
1754 the following two, the codes following the current escape \
1755 sequence are actual characters stored in a buffer. */ \
1756 if (coding->composing == COMPOSITION_WITH_ALTCHARS \
1757 || coding->composing == COMPOSITION_WITH_RULE_ALTCHARS) \
1758 { \
1759 coding->composing = COMPOSITION_RELATIVE; \
1760 coding->composition_rule_follows = 0; \
1761 } \
1762 } \
1763 } while (0)
1764
1765 /* Handle composition end sequence ESC 1. */
1766
1767 #define DECODE_COMPOSITION_END(c1) \
1768 do { \
1769 if (! COMPOSING_P (coding)) \
1770 { \
1771 *dst++ = ISO_CODE_ESC; \
1772 *dst++ = c1; \
1773 coding->produced_char += 2; \
1774 } \
1775 else \
1776 { \
1777 CODING_ADD_COMPOSITION_END (coding, coding->produced_char); \
1778 coding->composing = COMPOSITION_NO; \
1779 } \
1780 } while (0)
1781
1782 /* Decode a composition rule from the byte C1 (and maybe one more byte
1783 from SRC) and store one encoded composition rule in
1784 coding->cmp_data. */
1785
1786 #define DECODE_COMPOSITION_RULE(c1) \
1787 do { \
1788 int rule = 0; \
1789 (c1) -= 32; \
1790 if (c1 < 81) /* old format (before ver.21) */ \
1791 { \
1792 int gref = (c1) / 9; \
1793 int nref = (c1) % 9; \
1794 if (gref == 4) gref = 10; \
1795 if (nref == 4) nref = 10; \
1796 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
1797 } \
1798 else if (c1 < 93) /* new format (after ver.21) */ \
1799 { \
1800 ONE_MORE_BYTE (c2); \
1801 rule = COMPOSITION_ENCODE_RULE (c1 - 81, c2 - 32); \
1802 } \
1803 CODING_ADD_COMPOSITION_COMPONENT (coding, rule); \
1804 coding->composition_rule_follows = 0; \
1805 } while (0)
1806
1807
1808 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
1809
1810 static void
1811 decode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
1812 struct coding_system *coding;
1813 unsigned char *source, *destination;
1814 int src_bytes, dst_bytes;
1815 {
1816 unsigned char *src = source;
1817 unsigned char *src_end = source + src_bytes;
1818 unsigned char *dst = destination;
1819 unsigned char *dst_end = destination + dst_bytes;
1820 /* Charsets invoked to graphic plane 0 and 1 respectively. */
1821 int charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1822 int charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
1823 /* SRC_BASE remembers the start position in source in each loop.
1824 The loop will be exited when there's not enough source code
1825 (within macro ONE_MORE_BYTE), or when there's not enough
1826 destination area to produce a character (within macro
1827 EMIT_CHAR). */
1828 unsigned char *src_base;
1829 int c, charset;
1830 Lisp_Object translation_table;
1831 Lisp_Object safe_chars;
1832
1833 safe_chars = coding_safe_chars (coding->symbol);
1834
1835 if (NILP (Venable_character_translation))
1836 translation_table = Qnil;
1837 else
1838 {
1839 translation_table = coding->translation_table_for_decode;
1840 if (NILP (translation_table))
1841 translation_table = Vstandard_translation_table_for_decode;
1842 }
1843
1844 coding->result = CODING_FINISH_NORMAL;
1845
1846 while (1)
1847 {
1848 int c1, c2 = 0;
1849
1850 src_base = src;
1851 ONE_MORE_BYTE (c1);
1852
1853 /* We produce no character or one character. */
1854 switch (iso_code_class [c1])
1855 {
1856 case ISO_0x20_or_0x7F:
1857 if (COMPOSING_P (coding) && coding->composition_rule_follows)
1858 {
1859 DECODE_COMPOSITION_RULE (c1);
1860 continue;
1861 }
1862 if (charset0 < 0 || CHARSET_CHARS (charset0) == 94)
1863 {
1864 /* This is SPACE or DEL. */
1865 charset = CHARSET_ASCII;
1866 break;
1867 }
1868 /* This is a graphic character, we fall down ... */
1869
1870 case ISO_graphic_plane_0:
1871 if (COMPOSING_P (coding) && coding->composition_rule_follows)
1872 {
1873 DECODE_COMPOSITION_RULE (c1);
1874 continue;
1875 }
1876 charset = charset0;
1877 break;
1878
1879 case ISO_0xA0_or_0xFF:
1880 if (charset1 < 0 || CHARSET_CHARS (charset1) == 94
1881 || coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
1882 goto label_invalid_code;
1883 /* This is a graphic character, we fall down ... */
1884
1885 case ISO_graphic_plane_1:
1886 if (charset1 < 0)
1887 goto label_invalid_code;
1888 charset = charset1;
1889 break;
1890
1891 case ISO_control_0:
1892 if (COMPOSING_P (coding))
1893 DECODE_COMPOSITION_END ('1');
1894
1895 /* All ISO2022 control characters in this class have the
1896 same representation in Emacs internal format. */
1897 if (c1 == '\n'
1898 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
1899 && (coding->eol_type == CODING_EOL_CR
1900 || coding->eol_type == CODING_EOL_CRLF))
1901 {
1902 coding->result = CODING_FINISH_INCONSISTENT_EOL;
1903 goto label_end_of_loop;
1904 }
1905 charset = CHARSET_ASCII;
1906 break;
1907
1908 case ISO_control_1:
1909 if (COMPOSING_P (coding))
1910 DECODE_COMPOSITION_END ('1');
1911 goto label_invalid_code;
1912
1913 case ISO_carriage_return:
1914 if (COMPOSING_P (coding))
1915 DECODE_COMPOSITION_END ('1');
1916
1917 if (coding->eol_type == CODING_EOL_CR)
1918 c1 = '\n';
1919 else if (coding->eol_type == CODING_EOL_CRLF)
1920 {
1921 ONE_MORE_BYTE (c1);
1922 if (c1 != ISO_CODE_LF)
1923 {
1924 src--;
1925 c1 = '\r';
1926 }
1927 }
1928 charset = CHARSET_ASCII;
1929 break;
1930
1931 case ISO_shift_out:
1932 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1933 || CODING_SPEC_ISO_DESIGNATION (coding, 1) < 0)
1934 goto label_invalid_code;
1935 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1;
1936 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1937 continue;
1938
1939 case ISO_shift_in:
1940 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
1941 goto label_invalid_code;
1942 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
1943 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1944 continue;
1945
1946 case ISO_single_shift_2_7:
1947 case ISO_single_shift_2:
1948 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1949 goto label_invalid_code;
1950 /* SS2 is handled as an escape sequence of ESC 'N' */
1951 c1 = 'N';
1952 goto label_escape_sequence;
1953
1954 case ISO_single_shift_3:
1955 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1956 goto label_invalid_code;
1957 /* SS2 is handled as an escape sequence of ESC 'O' */
1958 c1 = 'O';
1959 goto label_escape_sequence;
1960
1961 case ISO_control_sequence_introducer:
1962 /* CSI is handled as an escape sequence of ESC '[' ... */
1963 c1 = '[';
1964 goto label_escape_sequence;
1965
1966 case ISO_escape:
1967 ONE_MORE_BYTE (c1);
1968 label_escape_sequence:
1969 /* Escape sequences handled by Emacs are invocation,
1970 designation, direction specification, and character
1971 composition specification. */
1972 switch (c1)
1973 {
1974 case '&': /* revision of following character set */
1975 ONE_MORE_BYTE (c1);
1976 if (!(c1 >= '@' && c1 <= '~'))
1977 goto label_invalid_code;
1978 ONE_MORE_BYTE (c1);
1979 if (c1 != ISO_CODE_ESC)
1980 goto label_invalid_code;
1981 ONE_MORE_BYTE (c1);
1982 goto label_escape_sequence;
1983
1984 case '$': /* designation of 2-byte character set */
1985 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
1986 goto label_invalid_code;
1987 ONE_MORE_BYTE (c1);
1988 if (c1 >= '@' && c1 <= 'B')
1989 { /* designation of JISX0208.1978, GB2312.1980,
1990 or JISX0208.1980 */
1991 DECODE_DESIGNATION (0, 2, 94, c1);
1992 }
1993 else if (c1 >= 0x28 && c1 <= 0x2B)
1994 { /* designation of DIMENSION2_CHARS94 character set */
1995 ONE_MORE_BYTE (c2);
1996 DECODE_DESIGNATION (c1 - 0x28, 2, 94, c2);
1997 }
1998 else if (c1 >= 0x2C && c1 <= 0x2F)
1999 { /* designation of DIMENSION2_CHARS96 character set */
2000 ONE_MORE_BYTE (c2);
2001 DECODE_DESIGNATION (c1 - 0x2C, 2, 96, c2);
2002 }
2003 else
2004 goto label_invalid_code;
2005 /* We must update these variables now. */
2006 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
2007 charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
2008 continue;
2009
2010 case 'n': /* invocation of locking-shift-2 */
2011 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
2012 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
2013 goto label_invalid_code;
2014 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2;
2015 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
2016 continue;
2017
2018 case 'o': /* invocation of locking-shift-3 */
2019 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
2020 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
2021 goto label_invalid_code;
2022 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3;
2023 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
2024 continue;
2025
2026 case 'N': /* invocation of single-shift-2 */
2027 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
2028 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
2029 goto label_invalid_code;
2030 charset = CODING_SPEC_ISO_DESIGNATION (coding, 2);
2031 ONE_MORE_BYTE (c1);
2032 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
2033 goto label_invalid_code;
2034 break;
2035
2036 case 'O': /* invocation of single-shift-3 */
2037 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
2038 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
2039 goto label_invalid_code;
2040 charset = CODING_SPEC_ISO_DESIGNATION (coding, 3);
2041 ONE_MORE_BYTE (c1);
2042 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
2043 goto label_invalid_code;
2044 break;
2045
2046 case '0': case '2': case '3': case '4': /* start composition */
2047 DECODE_COMPOSITION_START (c1);
2048 continue;
2049
2050 case '1': /* end composition */
2051 DECODE_COMPOSITION_END (c1);
2052 continue;
2053
2054 case '[': /* specification of direction */
2055 if (coding->flags & CODING_FLAG_ISO_NO_DIRECTION)
2056 goto label_invalid_code;
2057 /* For the moment, nested direction is not supported.
2058 So, `coding->mode & CODING_MODE_DIRECTION' zero means
2059 left-to-right, and nonzero means right-to-left. */
2060 ONE_MORE_BYTE (c1);
2061 switch (c1)
2062 {
2063 case ']': /* end of the current direction */
2064 coding->mode &= ~CODING_MODE_DIRECTION;
2065
2066 case '0': /* end of the current direction */
2067 case '1': /* start of left-to-right direction */
2068 ONE_MORE_BYTE (c1);
2069 if (c1 == ']')
2070 coding->mode &= ~CODING_MODE_DIRECTION;
2071 else
2072 goto label_invalid_code;
2073 break;
2074
2075 case '2': /* start of right-to-left direction */
2076 ONE_MORE_BYTE (c1);
2077 if (c1 == ']')
2078 coding->mode |= CODING_MODE_DIRECTION;
2079 else
2080 goto label_invalid_code;
2081 break;
2082
2083 default:
2084 goto label_invalid_code;
2085 }
2086 continue;
2087
2088 case '%':
2089 if (COMPOSING_P (coding))
2090 DECODE_COMPOSITION_END ('1');
2091 ONE_MORE_BYTE (c1);
2092 if (c1 == '/')
2093 {
2094 /* CTEXT extended segment:
2095 ESC % / [0-4] M L --ENCODING-NAME-- \002 --BYTES--
2096 We keep these bytes as is for the moment.
2097 They may be decoded by post-read-conversion. */
2098 int dim, M, L;
2099 int size, required;
2100 int produced_chars;
2101
2102 ONE_MORE_BYTE (dim);
2103 ONE_MORE_BYTE (M);
2104 ONE_MORE_BYTE (L);
2105 size = ((M - 128) * 128) + (L - 128);
2106 required = 8 + size * 2;
2107 if (dst + required > (dst_bytes ? dst_end : src))
2108 goto label_end_of_loop;
2109 *dst++ = ISO_CODE_ESC;
2110 *dst++ = '%';
2111 *dst++ = '/';
2112 *dst++ = dim;
2113 produced_chars = 4;
2114 dst += CHAR_STRING (M, dst), produced_chars++;
2115 dst += CHAR_STRING (L, dst), produced_chars++;
2116 while (size-- > 0)
2117 {
2118 ONE_MORE_BYTE (c1);
2119 dst += CHAR_STRING (c1, dst), produced_chars++;
2120 }
2121 coding->produced_char += produced_chars;
2122 }
2123 else if (c1 == 'G')
2124 {
2125 unsigned char *d = dst;
2126 int produced_chars;
2127
2128 /* XFree86 extension for embedding UTF-8 in CTEXT:
2129 ESC % G --UTF-8-BYTES-- ESC % @
2130 We keep these bytes as is for the moment.
2131 They may be decoded by post-read-conversion. */
2132 if (d + 6 > (dst_bytes ? dst_end : src))
2133 goto label_end_of_loop;
2134 *d++ = ISO_CODE_ESC;
2135 *d++ = '%';
2136 *d++ = 'G';
2137 produced_chars = 3;
2138 while (d + 1 < (dst_bytes ? dst_end : src))
2139 {
2140 ONE_MORE_BYTE (c1);
2141 if (c1 == ISO_CODE_ESC
2142 && src + 1 < src_end
2143 && src[0] == '%'
2144 && src[1] == '@')
2145 {
2146 src += 2;
2147 break;
2148 }
2149 d += CHAR_STRING (c1, d), produced_chars++;
2150 }
2151 if (d + 3 > (dst_bytes ? dst_end : src))
2152 goto label_end_of_loop;
2153 *d++ = ISO_CODE_ESC;
2154 *d++ = '%';
2155 *d++ = '@';
2156 dst = d;
2157 coding->produced_char += produced_chars + 3;
2158 }
2159 else
2160 goto label_invalid_code;
2161 continue;
2162
2163 default:
2164 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
2165 goto label_invalid_code;
2166 if (c1 >= 0x28 && c1 <= 0x2B)
2167 { /* designation of DIMENSION1_CHARS94 character set */
2168 ONE_MORE_BYTE (c2);
2169 DECODE_DESIGNATION (c1 - 0x28, 1, 94, c2);
2170 }
2171 else if (c1 >= 0x2C && c1 <= 0x2F)
2172 { /* designation of DIMENSION1_CHARS96 character set */
2173 ONE_MORE_BYTE (c2);
2174 DECODE_DESIGNATION (c1 - 0x2C, 1, 96, c2);
2175 }
2176 else
2177 goto label_invalid_code;
2178 /* We must update these variables now. */
2179 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
2180 charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
2181 continue;
2182 }
2183 }
2184
2185 /* Now we know CHARSET and 1st position code C1 of a character.
2186 Produce a multibyte sequence for that character while getting
2187 2nd position code C2 if necessary. */
2188 if (CHARSET_DIMENSION (charset) == 2)
2189 {
2190 ONE_MORE_BYTE (c2);
2191 if (c1 < 0x80 ? c2 < 0x20 || c2 >= 0x80 : c2 < 0xA0)
2192 /* C2 is not in a valid range. */
2193 goto label_invalid_code;
2194 }
2195 c = DECODE_ISO_CHARACTER (charset, c1, c2);
2196 EMIT_CHAR (c);
2197 continue;
2198
2199 label_invalid_code:
2200 coding->errors++;
2201 if (COMPOSING_P (coding))
2202 DECODE_COMPOSITION_END ('1');
2203 src = src_base;
2204 c = *src++;
2205 EMIT_CHAR (c);
2206 }
2207
2208 label_end_of_loop:
2209 coding->consumed = coding->consumed_char = src_base - source;
2210 coding->produced = dst - destination;
2211 return;
2212 }
2213
2214
2215 /* ISO2022 encoding stuff. */
2216
2217 /*
2218 It is not enough to say just "ISO2022" on encoding, we have to
2219 specify more details. In Emacs, each ISO2022 coding system
2220 variant has the following specifications:
2221 1. Initial designation to G0 through G3.
2222 2. Allows short-form designation?
2223 3. ASCII should be designated to G0 before control characters?
2224 4. ASCII should be designated to G0 at end of line?
2225 5. 7-bit environment or 8-bit environment?
2226 6. Use locking-shift?
2227 7. Use Single-shift?
2228 And the following two are only for Japanese:
2229 8. Use ASCII in place of JIS0201-1976-Roman?
2230 9. Use JISX0208-1983 in place of JISX0208-1978?
2231 These specifications are encoded in `coding->flags' as flag bits
2232 defined by macros CODING_FLAG_ISO_XXX. See `coding.h' for more
2233 details.
2234 */
2235
2236 /* Produce codes (escape sequence) for designating CHARSET to graphic
2237 register REG at DST, and increment DST. If <final-char> of CHARSET is
2238 '@', 'A', or 'B' and the coding system CODING allows, produce
2239 designation sequence of short-form. */
2240
2241 #define ENCODE_DESIGNATION(charset, reg, coding) \
2242 do { \
2243 unsigned char final_char = CHARSET_ISO_FINAL_CHAR (charset); \
2244 char *intermediate_char_94 = "()*+"; \
2245 char *intermediate_char_96 = ",-./"; \
2246 int revision = CODING_SPEC_ISO_REVISION_NUMBER(coding, charset); \
2247 \
2248 if (revision < 255) \
2249 { \
2250 *dst++ = ISO_CODE_ESC; \
2251 *dst++ = '&'; \
2252 *dst++ = '@' + revision; \
2253 } \
2254 *dst++ = ISO_CODE_ESC; \
2255 if (CHARSET_DIMENSION (charset) == 1) \
2256 { \
2257 if (CHARSET_CHARS (charset) == 94) \
2258 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
2259 else \
2260 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
2261 } \
2262 else \
2263 { \
2264 *dst++ = '$'; \
2265 if (CHARSET_CHARS (charset) == 94) \
2266 { \
2267 if (! (coding->flags & CODING_FLAG_ISO_SHORT_FORM) \
2268 || reg != 0 \
2269 || final_char < '@' || final_char > 'B') \
2270 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
2271 } \
2272 else \
2273 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
2274 } \
2275 *dst++ = final_char; \
2276 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
2277 } while (0)
2278
2279 /* The following two macros produce codes (control character or escape
2280 sequence) for ISO2022 single-shift functions (single-shift-2 and
2281 single-shift-3). */
2282
2283 #define ENCODE_SINGLE_SHIFT_2 \
2284 do { \
2285 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2286 *dst++ = ISO_CODE_ESC, *dst++ = 'N'; \
2287 else \
2288 *dst++ = ISO_CODE_SS2; \
2289 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
2290 } while (0)
2291
2292 #define ENCODE_SINGLE_SHIFT_3 \
2293 do { \
2294 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2295 *dst++ = ISO_CODE_ESC, *dst++ = 'O'; \
2296 else \
2297 *dst++ = ISO_CODE_SS3; \
2298 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
2299 } while (0)
2300
2301 /* The following four macros produce codes (control character or
2302 escape sequence) for ISO2022 locking-shift functions (shift-in,
2303 shift-out, locking-shift-2, and locking-shift-3). */
2304
2305 #define ENCODE_SHIFT_IN \
2306 do { \
2307 *dst++ = ISO_CODE_SI; \
2308 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0; \
2309 } while (0)
2310
2311 #define ENCODE_SHIFT_OUT \
2312 do { \
2313 *dst++ = ISO_CODE_SO; \
2314 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1; \
2315 } while (0)
2316
2317 #define ENCODE_LOCKING_SHIFT_2 \
2318 do { \
2319 *dst++ = ISO_CODE_ESC, *dst++ = 'n'; \
2320 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2; \
2321 } while (0)
2322
2323 #define ENCODE_LOCKING_SHIFT_3 \
2324 do { \
2325 *dst++ = ISO_CODE_ESC, *dst++ = 'o'; \
2326 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3; \
2327 } while (0)
2328
2329 /* Produce codes for a DIMENSION1 character whose character set is
2330 CHARSET and whose position-code is C1. Designation and invocation
2331 sequences are also produced in advance if necessary. */
2332
2333 #define ENCODE_ISO_CHARACTER_DIMENSION1(charset, c1) \
2334 do { \
2335 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
2336 { \
2337 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2338 *dst++ = c1 & 0x7F; \
2339 else \
2340 *dst++ = c1 | 0x80; \
2341 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
2342 break; \
2343 } \
2344 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
2345 { \
2346 *dst++ = c1 & 0x7F; \
2347 break; \
2348 } \
2349 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
2350 { \
2351 *dst++ = c1 | 0x80; \
2352 break; \
2353 } \
2354 else \
2355 /* Since CHARSET is not yet invoked to any graphic planes, we \
2356 must invoke it, or, at first, designate it to some graphic \
2357 register. Then repeat the loop to actually produce the \
2358 character. */ \
2359 dst = encode_invocation_designation (charset, coding, dst); \
2360 } while (1)
2361
2362 /* Produce codes for a DIMENSION2 character whose character set is
2363 CHARSET and whose position-codes are C1 and C2. Designation and
2364 invocation codes are also produced in advance if necessary. */
2365
2366 #define ENCODE_ISO_CHARACTER_DIMENSION2(charset, c1, c2) \
2367 do { \
2368 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
2369 { \
2370 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2371 *dst++ = c1 & 0x7F, *dst++ = c2 & 0x7F; \
2372 else \
2373 *dst++ = c1 | 0x80, *dst++ = c2 | 0x80; \
2374 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
2375 break; \
2376 } \
2377 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
2378 { \
2379 *dst++ = c1 & 0x7F, *dst++= c2 & 0x7F; \
2380 break; \
2381 } \
2382 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
2383 { \
2384 *dst++ = c1 | 0x80, *dst++= c2 | 0x80; \
2385 break; \
2386 } \
2387 else \
2388 /* Since CHARSET is not yet invoked to any graphic planes, we \
2389 must invoke it, or, at first, designate it to some graphic \
2390 register. Then repeat the loop to actually produce the \
2391 character. */ \
2392 dst = encode_invocation_designation (charset, coding, dst); \
2393 } while (1)
2394
2395 #define ENCODE_ISO_CHARACTER(c) \
2396 do { \
2397 int charset, c1, c2; \
2398 \
2399 SPLIT_CHAR (c, charset, c1, c2); \
2400 if (CHARSET_DEFINED_P (charset)) \
2401 { \
2402 if (CHARSET_DIMENSION (charset) == 1) \
2403 { \
2404 if (charset == CHARSET_ASCII \
2405 && coding->flags & CODING_FLAG_ISO_USE_ROMAN) \
2406 charset = charset_latin_jisx0201; \
2407 ENCODE_ISO_CHARACTER_DIMENSION1 (charset, c1); \
2408 } \
2409 else \
2410 { \
2411 if (charset == charset_jisx0208 \
2412 && coding->flags & CODING_FLAG_ISO_USE_OLDJIS) \
2413 charset = charset_jisx0208_1978; \
2414 ENCODE_ISO_CHARACTER_DIMENSION2 (charset, c1, c2); \
2415 } \
2416 } \
2417 else \
2418 { \
2419 *dst++ = c1; \
2420 if (c2 >= 0) \
2421 *dst++ = c2; \
2422 } \
2423 } while (0)
2424
2425
2426 /* Instead of encoding character C, produce one or two `?'s. */
2427
2428 #define ENCODE_UNSAFE_CHARACTER(c) \
2429 do { \
2430 ENCODE_ISO_CHARACTER (CODING_REPLACEMENT_CHARACTER); \
2431 if (CHARSET_WIDTH (CHAR_CHARSET (c)) > 1) \
2432 ENCODE_ISO_CHARACTER (CODING_REPLACEMENT_CHARACTER); \
2433 } while (0)
2434
2435
2436 /* Produce designation and invocation codes at a place pointed by DST
2437 to use CHARSET. The element `spec.iso2022' of *CODING is updated.
2438 Return new DST. */
2439
2440 unsigned char *
2441 encode_invocation_designation (charset, coding, dst)
2442 int charset;
2443 struct coding_system *coding;
2444 unsigned char *dst;
2445 {
2446 int reg; /* graphic register number */
2447
2448 /* At first, check designations. */
2449 for (reg = 0; reg < 4; reg++)
2450 if (charset == CODING_SPEC_ISO_DESIGNATION (coding, reg))
2451 break;
2452
2453 if (reg >= 4)
2454 {
2455 /* CHARSET is not yet designated to any graphic registers. */
2456 /* At first check the requested designation. */
2457 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
2458 if (reg == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION)
2459 /* Since CHARSET requests no special designation, designate it
2460 to graphic register 0. */
2461 reg = 0;
2462
2463 ENCODE_DESIGNATION (charset, reg, coding);
2464 }
2465
2466 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != reg
2467 && CODING_SPEC_ISO_INVOCATION (coding, 1) != reg)
2468 {
2469 /* Since the graphic register REG is not invoked to any graphic
2470 planes, invoke it to graphic plane 0. */
2471 switch (reg)
2472 {
2473 case 0: /* graphic register 0 */
2474 ENCODE_SHIFT_IN;
2475 break;
2476
2477 case 1: /* graphic register 1 */
2478 ENCODE_SHIFT_OUT;
2479 break;
2480
2481 case 2: /* graphic register 2 */
2482 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
2483 ENCODE_SINGLE_SHIFT_2;
2484 else
2485 ENCODE_LOCKING_SHIFT_2;
2486 break;
2487
2488 case 3: /* graphic register 3 */
2489 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
2490 ENCODE_SINGLE_SHIFT_3;
2491 else
2492 ENCODE_LOCKING_SHIFT_3;
2493 break;
2494 }
2495 }
2496
2497 return dst;
2498 }
2499
2500 /* Produce 2-byte codes for encoded composition rule RULE. */
2501
2502 #define ENCODE_COMPOSITION_RULE(rule) \
2503 do { \
2504 int gref, nref; \
2505 COMPOSITION_DECODE_RULE (rule, gref, nref); \
2506 *dst++ = 32 + 81 + gref; \
2507 *dst++ = 32 + nref; \
2508 } while (0)
2509
2510 /* Produce codes for indicating the start of a composition sequence
2511 (ESC 0, ESC 3, or ESC 4). DATA points to an array of integers
2512 which specify information about the composition. See the comment
2513 in coding.h for the format of DATA. */
2514
2515 #define ENCODE_COMPOSITION_START(coding, data) \
2516 do { \
2517 coding->composing = data[3]; \
2518 *dst++ = ISO_CODE_ESC; \
2519 if (coding->composing == COMPOSITION_RELATIVE) \
2520 *dst++ = '0'; \
2521 else \
2522 { \
2523 *dst++ = (coding->composing == COMPOSITION_WITH_ALTCHARS \
2524 ? '3' : '4'); \
2525 coding->cmp_data_index = coding->cmp_data_start + 4; \
2526 coding->composition_rule_follows = 0; \
2527 } \
2528 } while (0)
2529
2530 /* Produce codes for indicating the end of the current composition. */
2531
2532 #define ENCODE_COMPOSITION_END(coding, data) \
2533 do { \
2534 *dst++ = ISO_CODE_ESC; \
2535 *dst++ = '1'; \
2536 coding->cmp_data_start += data[0]; \
2537 coding->composing = COMPOSITION_NO; \
2538 if (coding->cmp_data_start == coding->cmp_data->used \
2539 && coding->cmp_data->next) \
2540 { \
2541 coding->cmp_data = coding->cmp_data->next; \
2542 coding->cmp_data_start = 0; \
2543 } \
2544 } while (0)
2545
2546 /* Produce composition start sequence ESC 0. Here, this sequence
2547 doesn't mean the start of a new composition but means that we have
2548 just produced components (alternate chars and composition rules) of
2549 the composition and the actual text follows in SRC. */
2550
2551 #define ENCODE_COMPOSITION_FAKE_START(coding) \
2552 do { \
2553 *dst++ = ISO_CODE_ESC; \
2554 *dst++ = '0'; \
2555 coding->composing = COMPOSITION_RELATIVE; \
2556 } while (0)
2557
2558 /* The following three macros produce codes for indicating direction
2559 of text. */
2560 #define ENCODE_CONTROL_SEQUENCE_INTRODUCER \
2561 do { \
2562 if (coding->flags == CODING_FLAG_ISO_SEVEN_BITS) \
2563 *dst++ = ISO_CODE_ESC, *dst++ = '['; \
2564 else \
2565 *dst++ = ISO_CODE_CSI; \
2566 } while (0)
2567
2568 #define ENCODE_DIRECTION_R2L \
2569 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst), *dst++ = '2', *dst++ = ']'
2570
2571 #define ENCODE_DIRECTION_L2R \
2572 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst), *dst++ = '0', *dst++ = ']'
2573
2574 /* Produce codes for designation and invocation to reset the graphic
2575 planes and registers to initial state. */
2576 #define ENCODE_RESET_PLANE_AND_REGISTER \
2577 do { \
2578 int reg; \
2579 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != 0) \
2580 ENCODE_SHIFT_IN; \
2581 for (reg = 0; reg < 4; reg++) \
2582 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg) >= 0 \
2583 && (CODING_SPEC_ISO_DESIGNATION (coding, reg) \
2584 != CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg))) \
2585 ENCODE_DESIGNATION \
2586 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg), reg, coding); \
2587 } while (0)
2588
2589 /* Produce designation sequences of charsets in the line started from
2590 SRC to a place pointed by DST, and return updated DST.
2591
2592 If the current block ends before any end-of-line, we may fail to
2593 find all the necessary designations. */
2594
2595 static unsigned char *
2596 encode_designation_at_bol (coding, translation_table, src, src_end, dst)
2597 struct coding_system *coding;
2598 Lisp_Object translation_table;
2599 unsigned char *src, *src_end, *dst;
2600 {
2601 int charset, c, found = 0, reg;
2602 /* Table of charsets to be designated to each graphic register. */
2603 int r[4];
2604
2605 for (reg = 0; reg < 4; reg++)
2606 r[reg] = -1;
2607
2608 while (found < 4)
2609 {
2610 ONE_MORE_CHAR (c);
2611 if (c == '\n')
2612 break;
2613
2614 charset = CHAR_CHARSET (c);
2615 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
2616 if (reg != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION && r[reg] < 0)
2617 {
2618 found++;
2619 r[reg] = charset;
2620 }
2621 }
2622
2623 label_end_of_loop:
2624 if (found)
2625 {
2626 for (reg = 0; reg < 4; reg++)
2627 if (r[reg] >= 0
2628 && CODING_SPEC_ISO_DESIGNATION (coding, reg) != r[reg])
2629 ENCODE_DESIGNATION (r[reg], reg, coding);
2630 }
2631
2632 return dst;
2633 }
2634
2635 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions". */
2636
2637 static void
2638 encode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
2639 struct coding_system *coding;
2640 unsigned char *source, *destination;
2641 int src_bytes, dst_bytes;
2642 {
2643 unsigned char *src = source;
2644 unsigned char *src_end = source + src_bytes;
2645 unsigned char *dst = destination;
2646 unsigned char *dst_end = destination + dst_bytes;
2647 /* Since the maximum bytes produced by each loop is 20, we subtract 19
2648 from DST_END to assure overflow checking is necessary only at the
2649 head of loop. */
2650 unsigned char *adjusted_dst_end = dst_end - 19;
2651 /* SRC_BASE remembers the start position in source in each loop.
2652 The loop will be exited when there's not enough source text to
2653 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
2654 there's not enough destination area to produce encoded codes
2655 (within macro EMIT_BYTES). */
2656 unsigned char *src_base;
2657 int c;
2658 Lisp_Object translation_table;
2659 Lisp_Object safe_chars;
2660
2661 if (coding->flags & CODING_FLAG_ISO_SAFE)
2662 coding->mode |= CODING_MODE_INHIBIT_UNENCODABLE_CHAR;
2663
2664 safe_chars = coding_safe_chars (coding->symbol);
2665
2666 if (NILP (Venable_character_translation))
2667 translation_table = Qnil;
2668 else
2669 {
2670 translation_table = coding->translation_table_for_encode;
2671 if (NILP (translation_table))
2672 translation_table = Vstandard_translation_table_for_encode;
2673 }
2674
2675 coding->consumed_char = 0;
2676 coding->errors = 0;
2677 while (1)
2678 {
2679 src_base = src;
2680
2681 if (dst >= (dst_bytes ? adjusted_dst_end : (src - 19)))
2682 {
2683 coding->result = CODING_FINISH_INSUFFICIENT_DST;
2684 break;
2685 }
2686
2687 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL
2688 && CODING_SPEC_ISO_BOL (coding))
2689 {
2690 /* We have to produce designation sequences if any now. */
2691 dst = encode_designation_at_bol (coding, translation_table,
2692 src, src_end, dst);
2693 CODING_SPEC_ISO_BOL (coding) = 0;
2694 }
2695
2696 /* Check composition start and end. */
2697 if (coding->composing != COMPOSITION_DISABLED
2698 && coding->cmp_data_start < coding->cmp_data->used)
2699 {
2700 struct composition_data *cmp_data = coding->cmp_data;
2701 int *data = cmp_data->data + coding->cmp_data_start;
2702 int this_pos = cmp_data->char_offset + coding->consumed_char;
2703
2704 if (coding->composing == COMPOSITION_RELATIVE)
2705 {
2706 if (this_pos == data[2])
2707 {
2708 ENCODE_COMPOSITION_END (coding, data);
2709 cmp_data = coding->cmp_data;
2710 data = cmp_data->data + coding->cmp_data_start;
2711 }
2712 }
2713 else if (COMPOSING_P (coding))
2714 {
2715 /* COMPOSITION_WITH_ALTCHARS or COMPOSITION_WITH_RULE_ALTCHAR */
2716 if (coding->cmp_data_index == coding->cmp_data_start + data[0])
2717 /* We have consumed components of the composition.
2718 What follows in SRC is the composition's base
2719 text. */
2720 ENCODE_COMPOSITION_FAKE_START (coding);
2721 else
2722 {
2723 int c = cmp_data->data[coding->cmp_data_index++];
2724 if (coding->composition_rule_follows)
2725 {
2726 ENCODE_COMPOSITION_RULE (c);
2727 coding->composition_rule_follows = 0;
2728 }
2729 else
2730 {
2731 if (coding->mode & CODING_MODE_INHIBIT_UNENCODABLE_CHAR
2732 && ! CODING_SAFE_CHAR_P (safe_chars, c))
2733 ENCODE_UNSAFE_CHARACTER (c);
2734 else
2735 ENCODE_ISO_CHARACTER (c);
2736 if (coding->composing == COMPOSITION_WITH_RULE_ALTCHARS)
2737 coding->composition_rule_follows = 1;
2738 }
2739 continue;
2740 }
2741 }
2742 if (!COMPOSING_P (coding))
2743 {
2744 if (this_pos == data[1])
2745 {
2746 ENCODE_COMPOSITION_START (coding, data);
2747 continue;
2748 }
2749 }
2750 }
2751
2752 ONE_MORE_CHAR (c);
2753
2754 /* Now encode the character C. */
2755 if (c < 0x20 || c == 0x7F)
2756 {
2757 if (c == '\r')
2758 {
2759 if (! (coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
2760 {
2761 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
2762 ENCODE_RESET_PLANE_AND_REGISTER;
2763 *dst++ = c;
2764 continue;
2765 }
2766 /* fall down to treat '\r' as '\n' ... */
2767 c = '\n';
2768 }
2769 if (c == '\n')
2770 {
2771 if (coding->flags & CODING_FLAG_ISO_RESET_AT_EOL)
2772 ENCODE_RESET_PLANE_AND_REGISTER;
2773 if (coding->flags & CODING_FLAG_ISO_INIT_AT_BOL)
2774 bcopy (coding->spec.iso2022.initial_designation,
2775 coding->spec.iso2022.current_designation,
2776 sizeof coding->spec.iso2022.initial_designation);
2777 if (coding->eol_type == CODING_EOL_LF
2778 || coding->eol_type == CODING_EOL_UNDECIDED)
2779 *dst++ = ISO_CODE_LF;
2780 else if (coding->eol_type == CODING_EOL_CRLF)
2781 *dst++ = ISO_CODE_CR, *dst++ = ISO_CODE_LF;
2782 else
2783 *dst++ = ISO_CODE_CR;
2784 CODING_SPEC_ISO_BOL (coding) = 1;
2785 }
2786 else
2787 {
2788 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
2789 ENCODE_RESET_PLANE_AND_REGISTER;
2790 *dst++ = c;
2791 }
2792 }
2793 else if (ASCII_BYTE_P (c))
2794 ENCODE_ISO_CHARACTER (c);
2795 else if (SINGLE_BYTE_CHAR_P (c))
2796 {
2797 *dst++ = c;
2798 coding->errors++;
2799 }
2800 else if (coding->mode & CODING_MODE_INHIBIT_UNENCODABLE_CHAR
2801 && ! CODING_SAFE_CHAR_P (safe_chars, c))
2802 ENCODE_UNSAFE_CHARACTER (c);
2803 else
2804 ENCODE_ISO_CHARACTER (c);
2805
2806 coding->consumed_char++;
2807 }
2808
2809 label_end_of_loop:
2810 coding->consumed = src_base - source;
2811 coding->produced = coding->produced_char = dst - destination;
2812 }
2813
2814 \f
2815 /*** 4. SJIS and BIG5 handlers ***/
2816
2817 /* Although SJIS and BIG5 are not ISO coding systems, they are used
2818 quite widely. So, for the moment, Emacs supports them in the bare
2819 C code. But, in the future, they may be supported only by CCL. */
2820
2821 /* SJIS is a coding system encoding three character sets: ASCII, right
2822 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded
2823 as is. A character of charset katakana-jisx0201 is encoded by
2824 "position-code + 0x80". A character of charset japanese-jisx0208
2825 is encoded in 2-byte but two position-codes are divided and shifted
2826 so that it fits in the range below.
2827
2828 --- CODE RANGE of SJIS ---
2829 (character set) (range)
2830 ASCII 0x00 .. 0x7F
2831 KATAKANA-JISX0201 0xA1 .. 0xDF
2832 JISX0208 (1st byte) 0x81 .. 0x9F and 0xE0 .. 0xEF
2833 (2nd byte) 0x40 .. 0x7E and 0x80 .. 0xFC
2834 -------------------------------
2835
2836 */
2837
2838 /* BIG5 is a coding system encoding two character sets: ASCII and
2839 Big5. An ASCII character is encoded as is. Big5 is a two-byte
2840 character set and is encoded in two bytes.
2841
2842 --- CODE RANGE of BIG5 ---
2843 (character set) (range)
2844 ASCII 0x00 .. 0x7F
2845 Big5 (1st byte) 0xA1 .. 0xFE
2846 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE
2847 --------------------------
2848
2849 Since the number of characters in Big5 is larger than maximum
2850 characters in Emacs' charset (96x96), it can't be handled as one
2851 charset. So, in Emacs, Big5 is divided into two: `charset-big5-1'
2852 and `charset-big5-2'. Both are DIMENSION2 and CHARS94. The former
2853 contains frequently used characters and the latter contains less
2854 frequently used characters. */
2855
2856 /* Macros to decode or encode a character of Big5 in BIG5. B1 and B2
2857 are the 1st and 2nd position-codes of Big5 in BIG5 coding system.
2858 C1 and C2 are the 1st and 2nd position-codes of Emacs' internal
2859 format. CHARSET is `charset_big5_1' or `charset_big5_2'. */
2860
2861 /* Number of Big5 characters which have the same code in 1st byte. */
2862 #define BIG5_SAME_ROW (0xFF - 0xA1 + 0x7F - 0x40)
2863
2864 #define DECODE_BIG5(b1, b2, charset, c1, c2) \
2865 do { \
2866 unsigned int temp \
2867 = (b1 - 0xA1) * BIG5_SAME_ROW + b2 - (b2 < 0x7F ? 0x40 : 0x62); \
2868 if (b1 < 0xC9) \
2869 charset = charset_big5_1; \
2870 else \
2871 { \
2872 charset = charset_big5_2; \
2873 temp -= (0xC9 - 0xA1) * BIG5_SAME_ROW; \
2874 } \
2875 c1 = temp / (0xFF - 0xA1) + 0x21; \
2876 c2 = temp % (0xFF - 0xA1) + 0x21; \
2877 } while (0)
2878
2879 #define ENCODE_BIG5(charset, c1, c2, b1, b2) \
2880 do { \
2881 unsigned int temp = (c1 - 0x21) * (0xFF - 0xA1) + (c2 - 0x21); \
2882 if (charset == charset_big5_2) \
2883 temp += BIG5_SAME_ROW * (0xC9 - 0xA1); \
2884 b1 = temp / BIG5_SAME_ROW + 0xA1; \
2885 b2 = temp % BIG5_SAME_ROW; \
2886 b2 += b2 < 0x3F ? 0x40 : 0x62; \
2887 } while (0)
2888
2889 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2890 Check if a text is encoded in SJIS. If it is, return
2891 CODING_CATEGORY_MASK_SJIS, else return 0. */
2892
2893 static int
2894 detect_coding_sjis (src, src_end, multibytep)
2895 unsigned char *src, *src_end;
2896 int multibytep;
2897 {
2898 int c;
2899 /* Dummy for ONE_MORE_BYTE. */
2900 struct coding_system dummy_coding;
2901 struct coding_system *coding = &dummy_coding;
2902
2903 while (1)
2904 {
2905 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2906 if (c < 0x80)
2907 continue;
2908 if (c == 0x80 || c == 0xA0 || c > 0xEF)
2909 return 0;
2910 if (c <= 0x9F || c >= 0xE0)
2911 {
2912 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2913 if (c < 0x40 || c == 0x7F || c > 0xFC)
2914 return 0;
2915 }
2916 }
2917 label_end_of_loop:
2918 return CODING_CATEGORY_MASK_SJIS;
2919 }
2920
2921 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2922 Check if a text is encoded in BIG5. If it is, return
2923 CODING_CATEGORY_MASK_BIG5, else return 0. */
2924
2925 static int
2926 detect_coding_big5 (src, src_end, multibytep)
2927 unsigned char *src, *src_end;
2928 int multibytep;
2929 {
2930 int c;
2931 /* Dummy for ONE_MORE_BYTE. */
2932 struct coding_system dummy_coding;
2933 struct coding_system *coding = &dummy_coding;
2934
2935 while (1)
2936 {
2937 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2938 if (c < 0x80)
2939 continue;
2940 if (c < 0xA1 || c > 0xFE)
2941 return 0;
2942 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2943 if (c < 0x40 || (c > 0x7F && c < 0xA1) || c > 0xFE)
2944 return 0;
2945 }
2946 label_end_of_loop:
2947 return CODING_CATEGORY_MASK_BIG5;
2948 }
2949
2950 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2951 Check if a text is encoded in UTF-8. If it is, return
2952 CODING_CATEGORY_MASK_UTF_8, else return 0. */
2953
2954 #define UTF_8_1_OCTET_P(c) ((c) < 0x80)
2955 #define UTF_8_EXTRA_OCTET_P(c) (((c) & 0xC0) == 0x80)
2956 #define UTF_8_2_OCTET_LEADING_P(c) (((c) & 0xE0) == 0xC0)
2957 #define UTF_8_3_OCTET_LEADING_P(c) (((c) & 0xF0) == 0xE0)
2958 #define UTF_8_4_OCTET_LEADING_P(c) (((c) & 0xF8) == 0xF0)
2959 #define UTF_8_5_OCTET_LEADING_P(c) (((c) & 0xFC) == 0xF8)
2960 #define UTF_8_6_OCTET_LEADING_P(c) (((c) & 0xFE) == 0xFC)
2961
2962 static int
2963 detect_coding_utf_8 (src, src_end, multibytep)
2964 unsigned char *src, *src_end;
2965 int multibytep;
2966 {
2967 unsigned char c;
2968 int seq_maybe_bytes;
2969 /* Dummy for ONE_MORE_BYTE. */
2970 struct coding_system dummy_coding;
2971 struct coding_system *coding = &dummy_coding;
2972
2973 while (1)
2974 {
2975 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2976 if (UTF_8_1_OCTET_P (c))
2977 continue;
2978 else if (UTF_8_2_OCTET_LEADING_P (c))
2979 seq_maybe_bytes = 1;
2980 else if (UTF_8_3_OCTET_LEADING_P (c))
2981 seq_maybe_bytes = 2;
2982 else if (UTF_8_4_OCTET_LEADING_P (c))
2983 seq_maybe_bytes = 3;
2984 else if (UTF_8_5_OCTET_LEADING_P (c))
2985 seq_maybe_bytes = 4;
2986 else if (UTF_8_6_OCTET_LEADING_P (c))
2987 seq_maybe_bytes = 5;
2988 else
2989 return 0;
2990
2991 do
2992 {
2993 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2994 if (!UTF_8_EXTRA_OCTET_P (c))
2995 return 0;
2996 seq_maybe_bytes--;
2997 }
2998 while (seq_maybe_bytes > 0);
2999 }
3000
3001 label_end_of_loop:
3002 return CODING_CATEGORY_MASK_UTF_8;
3003 }
3004
3005 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
3006 Check if a text is encoded in UTF-16 Big Endian (endian == 1) or
3007 Little Endian (otherwise). If it is, return
3008 CODING_CATEGORY_MASK_UTF_16_BE or CODING_CATEGORY_MASK_UTF_16_LE,
3009 else return 0. */
3010
3011 #define UTF_16_INVALID_P(val) \
3012 (((val) == 0xFFFE) \
3013 || ((val) == 0xFFFF))
3014
3015 #define UTF_16_HIGH_SURROGATE_P(val) \
3016 (((val) & 0xD800) == 0xD800)
3017
3018 #define UTF_16_LOW_SURROGATE_P(val) \
3019 (((val) & 0xDC00) == 0xDC00)
3020
3021 static int
3022 detect_coding_utf_16 (src, src_end, multibytep)
3023 unsigned char *src, *src_end;
3024 int multibytep;
3025 {
3026 unsigned char c1, c2;
3027 /* Dummy for ONE_MORE_BYTE_CHECK_MULTIBYTE. */
3028 struct coding_system dummy_coding;
3029 struct coding_system *coding = &dummy_coding;
3030
3031 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
3032 ONE_MORE_BYTE_CHECK_MULTIBYTE (c2, multibytep);
3033
3034 if ((c1 == 0xFF) && (c2 == 0xFE))
3035 return CODING_CATEGORY_MASK_UTF_16_LE;
3036 else if ((c1 == 0xFE) && (c2 == 0xFF))
3037 return CODING_CATEGORY_MASK_UTF_16_BE;
3038
3039 label_end_of_loop:
3040 return 0;
3041 }
3042
3043 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
3044 If SJIS_P is 1, decode SJIS text, else decode BIG5 test. */
3045
3046 static void
3047 decode_coding_sjis_big5 (coding, source, destination,
3048 src_bytes, dst_bytes, sjis_p)
3049 struct coding_system *coding;
3050 unsigned char *source, *destination;
3051 int src_bytes, dst_bytes;
3052 int sjis_p;
3053 {
3054 unsigned char *src = source;
3055 unsigned char *src_end = source + src_bytes;
3056 unsigned char *dst = destination;
3057 unsigned char *dst_end = destination + dst_bytes;
3058 /* SRC_BASE remembers the start position in source in each loop.
3059 The loop will be exited when there's not enough source code
3060 (within macro ONE_MORE_BYTE), or when there's not enough
3061 destination area to produce a character (within macro
3062 EMIT_CHAR). */
3063 unsigned char *src_base;
3064 Lisp_Object translation_table;
3065
3066 if (NILP (Venable_character_translation))
3067 translation_table = Qnil;
3068 else
3069 {
3070 translation_table = coding->translation_table_for_decode;
3071 if (NILP (translation_table))
3072 translation_table = Vstandard_translation_table_for_decode;
3073 }
3074
3075 coding->produced_char = 0;
3076 while (1)
3077 {
3078 int c, charset, c1, c2 = 0;
3079
3080 src_base = src;
3081 ONE_MORE_BYTE (c1);
3082
3083 if (c1 < 0x80)
3084 {
3085 charset = CHARSET_ASCII;
3086 if (c1 < 0x20)
3087 {
3088 if (c1 == '\r')
3089 {
3090 if (coding->eol_type == CODING_EOL_CRLF)
3091 {
3092 ONE_MORE_BYTE (c2);
3093 if (c2 == '\n')
3094 c1 = c2;
3095 else
3096 /* To process C2 again, SRC is subtracted by 1. */
3097 src--;
3098 }
3099 else if (coding->eol_type == CODING_EOL_CR)
3100 c1 = '\n';
3101 }
3102 else if (c1 == '\n'
3103 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
3104 && (coding->eol_type == CODING_EOL_CR
3105 || coding->eol_type == CODING_EOL_CRLF))
3106 {
3107 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3108 goto label_end_of_loop;
3109 }
3110 }
3111 }
3112 else
3113 {
3114 if (sjis_p)
3115 {
3116 if (c1 == 0x80 || c1 == 0xA0 || c1 > 0xEF)
3117 goto label_invalid_code;
3118 if (c1 <= 0x9F || c1 >= 0xE0)
3119 {
3120 /* SJIS -> JISX0208 */
3121 ONE_MORE_BYTE (c2);
3122 if (c2 < 0x40 || c2 == 0x7F || c2 > 0xFC)
3123 goto label_invalid_code;
3124 DECODE_SJIS (c1, c2, c1, c2);
3125 charset = charset_jisx0208;
3126 }
3127 else
3128 /* SJIS -> JISX0201-Kana */
3129 charset = charset_katakana_jisx0201;
3130 }
3131 else
3132 {
3133 /* BIG5 -> Big5 */
3134 if (c1 < 0xA0 || c1 > 0xFE)
3135 goto label_invalid_code;
3136 ONE_MORE_BYTE (c2);
3137 if (c2 < 0x40 || (c2 > 0x7E && c2 < 0xA1) || c2 > 0xFE)
3138 goto label_invalid_code;
3139 DECODE_BIG5 (c1, c2, charset, c1, c2);
3140 }
3141 }
3142
3143 c = DECODE_ISO_CHARACTER (charset, c1, c2);
3144 EMIT_CHAR (c);
3145 continue;
3146
3147 label_invalid_code:
3148 coding->errors++;
3149 src = src_base;
3150 c = *src++;
3151 EMIT_CHAR (c);
3152 }
3153
3154 label_end_of_loop:
3155 coding->consumed = coding->consumed_char = src_base - source;
3156 coding->produced = dst - destination;
3157 return;
3158 }
3159
3160 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions".
3161 This function can encode charsets `ascii', `katakana-jisx0201',
3162 `japanese-jisx0208', `chinese-big5-1', and `chinese-big5-2'. We
3163 are sure that all these charsets are registered as official charset
3164 (i.e. do not have extended leading-codes). Characters of other
3165 charsets are produced without any encoding. If SJIS_P is 1, encode
3166 SJIS text, else encode BIG5 text. */
3167
3168 static void
3169 encode_coding_sjis_big5 (coding, source, destination,
3170 src_bytes, dst_bytes, sjis_p)
3171 struct coding_system *coding;
3172 unsigned char *source, *destination;
3173 int src_bytes, dst_bytes;
3174 int sjis_p;
3175 {
3176 unsigned char *src = source;
3177 unsigned char *src_end = source + src_bytes;
3178 unsigned char *dst = destination;
3179 unsigned char *dst_end = destination + dst_bytes;
3180 /* SRC_BASE remembers the start position in source in each loop.
3181 The loop will be exited when there's not enough source text to
3182 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
3183 there's not enough destination area to produce encoded codes
3184 (within macro EMIT_BYTES). */
3185 unsigned char *src_base;
3186 Lisp_Object translation_table;
3187
3188 if (NILP (Venable_character_translation))
3189 translation_table = Qnil;
3190 else
3191 {
3192 translation_table = coding->translation_table_for_encode;
3193 if (NILP (translation_table))
3194 translation_table = Vstandard_translation_table_for_encode;
3195 }
3196
3197 while (1)
3198 {
3199 int c, charset, c1, c2;
3200
3201 src_base = src;
3202 ONE_MORE_CHAR (c);
3203
3204 /* Now encode the character C. */
3205 if (SINGLE_BYTE_CHAR_P (c))
3206 {
3207 switch (c)
3208 {
3209 case '\r':
3210 if (!(coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
3211 {
3212 EMIT_ONE_BYTE (c);
3213 break;
3214 }
3215 c = '\n';
3216 case '\n':
3217 if (coding->eol_type == CODING_EOL_CRLF)
3218 {
3219 EMIT_TWO_BYTES ('\r', c);
3220 break;
3221 }
3222 else if (coding->eol_type == CODING_EOL_CR)
3223 c = '\r';
3224 default:
3225 EMIT_ONE_BYTE (c);
3226 }
3227 }
3228 else
3229 {
3230 SPLIT_CHAR (c, charset, c1, c2);
3231 if (sjis_p)
3232 {
3233 if (charset == charset_jisx0208
3234 || charset == charset_jisx0208_1978)
3235 {
3236 ENCODE_SJIS (c1, c2, c1, c2);
3237 EMIT_TWO_BYTES (c1, c2);
3238 }
3239 else if (charset == charset_katakana_jisx0201)
3240 EMIT_ONE_BYTE (c1 | 0x80);
3241 else if (charset == charset_latin_jisx0201)
3242 EMIT_ONE_BYTE (c1);
3243 else if (coding->mode & CODING_MODE_INHIBIT_UNENCODABLE_CHAR)
3244 {
3245 EMIT_ONE_BYTE (CODING_REPLACEMENT_CHARACTER);
3246 if (CHARSET_WIDTH (charset) > 1)
3247 EMIT_ONE_BYTE (CODING_REPLACEMENT_CHARACTER);
3248 }
3249 else
3250 /* There's no way other than producing the internal
3251 codes as is. */
3252 EMIT_BYTES (src_base, src);
3253 }
3254 else
3255 {
3256 if (charset == charset_big5_1 || charset == charset_big5_2)
3257 {
3258 ENCODE_BIG5 (charset, c1, c2, c1, c2);
3259 EMIT_TWO_BYTES (c1, c2);
3260 }
3261 else if (coding->mode & CODING_MODE_INHIBIT_UNENCODABLE_CHAR)
3262 {
3263 EMIT_ONE_BYTE (CODING_REPLACEMENT_CHARACTER);
3264 if (CHARSET_WIDTH (charset) > 1)
3265 EMIT_ONE_BYTE (CODING_REPLACEMENT_CHARACTER);
3266 }
3267 else
3268 /* There's no way other than producing the internal
3269 codes as is. */
3270 EMIT_BYTES (src_base, src);
3271 }
3272 }
3273 coding->consumed_char++;
3274 }
3275
3276 label_end_of_loop:
3277 coding->consumed = src_base - source;
3278 coding->produced = coding->produced_char = dst - destination;
3279 }
3280
3281 \f
3282 /*** 5. CCL handlers ***/
3283
3284 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
3285 Check if a text is encoded in a coding system of which
3286 encoder/decoder are written in CCL program. If it is, return
3287 CODING_CATEGORY_MASK_CCL, else return 0. */
3288
3289 static int
3290 detect_coding_ccl (src, src_end, multibytep)
3291 unsigned char *src, *src_end;
3292 int multibytep;
3293 {
3294 unsigned char *valid;
3295 int c;
3296 /* Dummy for ONE_MORE_BYTE. */
3297 struct coding_system dummy_coding;
3298 struct coding_system *coding = &dummy_coding;
3299
3300 /* No coding system is assigned to coding-category-ccl. */
3301 if (!coding_system_table[CODING_CATEGORY_IDX_CCL])
3302 return 0;
3303
3304 valid = coding_system_table[CODING_CATEGORY_IDX_CCL]->spec.ccl.valid_codes;
3305 while (1)
3306 {
3307 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
3308 if (! valid[c])
3309 return 0;
3310 }
3311 label_end_of_loop:
3312 return CODING_CATEGORY_MASK_CCL;
3313 }
3314
3315 \f
3316 /*** 6. End-of-line handlers ***/
3317
3318 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
3319
3320 static void
3321 decode_eol (coding, source, destination, src_bytes, dst_bytes)
3322 struct coding_system *coding;
3323 unsigned char *source, *destination;
3324 int src_bytes, dst_bytes;
3325 {
3326 unsigned char *src = source;
3327 unsigned char *dst = destination;
3328 unsigned char *src_end = src + src_bytes;
3329 unsigned char *dst_end = dst + dst_bytes;
3330 Lisp_Object translation_table;
3331 /* SRC_BASE remembers the start position in source in each loop.
3332 The loop will be exited when there's not enough source code
3333 (within macro ONE_MORE_BYTE), or when there's not enough
3334 destination area to produce a character (within macro
3335 EMIT_CHAR). */
3336 unsigned char *src_base;
3337 int c;
3338
3339 translation_table = Qnil;
3340 switch (coding->eol_type)
3341 {
3342 case CODING_EOL_CRLF:
3343 while (1)
3344 {
3345 src_base = src;
3346 ONE_MORE_BYTE (c);
3347 if (c == '\r')
3348 {
3349 ONE_MORE_BYTE (c);
3350 if (c != '\n')
3351 {
3352 src--;
3353 c = '\r';
3354 }
3355 }
3356 else if (c == '\n'
3357 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL))
3358 {
3359 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3360 goto label_end_of_loop;
3361 }
3362 EMIT_CHAR (c);
3363 }
3364 break;
3365
3366 case CODING_EOL_CR:
3367 while (1)
3368 {
3369 src_base = src;
3370 ONE_MORE_BYTE (c);
3371 if (c == '\n')
3372 {
3373 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
3374 {
3375 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3376 goto label_end_of_loop;
3377 }
3378 }
3379 else if (c == '\r')
3380 c = '\n';
3381 EMIT_CHAR (c);
3382 }
3383 break;
3384
3385 default: /* no need for EOL handling */
3386 while (1)
3387 {
3388 src_base = src;
3389 ONE_MORE_BYTE (c);
3390 EMIT_CHAR (c);
3391 }
3392 }
3393
3394 label_end_of_loop:
3395 coding->consumed = coding->consumed_char = src_base - source;
3396 coding->produced = dst - destination;
3397 return;
3398 }
3399
3400 /* See "GENERAL NOTES about `encode_coding_XXX ()' functions". Encode
3401 format of end-of-line according to `coding->eol_type'. It also
3402 convert multibyte form 8-bit characters to unibyte if
3403 CODING->src_multibyte is nonzero. If `coding->mode &
3404 CODING_MODE_SELECTIVE_DISPLAY' is nonzero, code '\r' in source text
3405 also means end-of-line. */
3406
3407 static void
3408 encode_eol (coding, source, destination, src_bytes, dst_bytes)
3409 struct coding_system *coding;
3410 const unsigned char *source;
3411 unsigned char *destination;
3412 int src_bytes, dst_bytes;
3413 {
3414 const unsigned char *src = source;
3415 unsigned char *dst = destination;
3416 const unsigned char *src_end = src + src_bytes;
3417 unsigned char *dst_end = dst + dst_bytes;
3418 Lisp_Object translation_table;
3419 /* SRC_BASE remembers the start position in source in each loop.
3420 The loop will be exited when there's not enough source text to
3421 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
3422 there's not enough destination area to produce encoded codes
3423 (within macro EMIT_BYTES). */
3424 const unsigned char *src_base;
3425 unsigned char *tmp;
3426 int c;
3427 int selective_display = coding->mode & CODING_MODE_SELECTIVE_DISPLAY;
3428
3429 translation_table = Qnil;
3430 if (coding->src_multibyte
3431 && *(src_end - 1) == LEADING_CODE_8_BIT_CONTROL)
3432 {
3433 src_end--;
3434 src_bytes--;
3435 coding->result = CODING_FINISH_INSUFFICIENT_SRC;
3436 }
3437
3438 if (coding->eol_type == CODING_EOL_CRLF)
3439 {
3440 while (src < src_end)
3441 {
3442 src_base = src;
3443 c = *src++;
3444 if (c >= 0x20)
3445 EMIT_ONE_BYTE (c);
3446 else if (c == '\n' || (c == '\r' && selective_display))
3447 EMIT_TWO_BYTES ('\r', '\n');
3448 else
3449 EMIT_ONE_BYTE (c);
3450 }
3451 src_base = src;
3452 label_end_of_loop:
3453 ;
3454 }
3455 else
3456 {
3457 if (!dst_bytes || src_bytes <= dst_bytes)
3458 {
3459 safe_bcopy (src, dst, src_bytes);
3460 src_base = src_end;
3461 dst += src_bytes;
3462 }
3463 else
3464 {
3465 if (coding->src_multibyte
3466 && *(src + dst_bytes - 1) == LEADING_CODE_8_BIT_CONTROL)
3467 dst_bytes--;
3468 safe_bcopy (src, dst, dst_bytes);
3469 src_base = src + dst_bytes;
3470 dst = destination + dst_bytes;
3471 coding->result = CODING_FINISH_INSUFFICIENT_DST;
3472 }
3473 if (coding->eol_type == CODING_EOL_CR)
3474 {
3475 for (tmp = destination; tmp < dst; tmp++)
3476 if (*tmp == '\n') *tmp = '\r';
3477 }
3478 else if (selective_display)
3479 {
3480 for (tmp = destination; tmp < dst; tmp++)
3481 if (*tmp == '\r') *tmp = '\n';
3482 }
3483 }
3484 if (coding->src_multibyte)
3485 dst = destination + str_as_unibyte (destination, dst - destination);
3486
3487 coding->consumed = src_base - source;
3488 coding->produced = dst - destination;
3489 coding->produced_char = coding->produced;
3490 }
3491
3492 \f
3493 /*** 7. C library functions ***/
3494
3495 /* In Emacs Lisp, a coding system is represented by a Lisp symbol which
3496 has a property `coding-system'. The value of this property is a
3497 vector of length 5 (called the coding-vector). Among elements of
3498 this vector, the first (element[0]) and the fifth (element[4])
3499 carry important information for decoding/encoding. Before
3500 decoding/encoding, this information should be set in fields of a
3501 structure of type `coding_system'.
3502
3503 The value of the property `coding-system' can be a symbol of another
3504 subsidiary coding-system. In that case, Emacs gets coding-vector
3505 from that symbol.
3506
3507 `element[0]' contains information to be set in `coding->type'. The
3508 value and its meaning is as follows:
3509
3510 0 -- coding_type_emacs_mule
3511 1 -- coding_type_sjis
3512 2 -- coding_type_iso2022
3513 3 -- coding_type_big5
3514 4 -- coding_type_ccl encoder/decoder written in CCL
3515 nil -- coding_type_no_conversion
3516 t -- coding_type_undecided (automatic conversion on decoding,
3517 no-conversion on encoding)
3518
3519 `element[4]' contains information to be set in `coding->flags' and
3520 `coding->spec'. The meaning varies by `coding->type'.
3521
3522 If `coding->type' is `coding_type_iso2022', element[4] is a vector
3523 of length 32 (of which the first 13 sub-elements are used now).
3524 Meanings of these sub-elements are:
3525
3526 sub-element[N] where N is 0 through 3: to be set in `coding->spec.iso2022'
3527 If the value is an integer of valid charset, the charset is
3528 assumed to be designated to graphic register N initially.
3529
3530 If the value is minus, it is a minus value of charset which
3531 reserves graphic register N, which means that the charset is
3532 not designated initially but should be designated to graphic
3533 register N just before encoding a character in that charset.
3534
3535 If the value is nil, graphic register N is never used on
3536 encoding.
3537
3538 sub-element[N] where N is 4 through 11: to be set in `coding->flags'
3539 Each value takes t or nil. See the section ISO2022 of
3540 `coding.h' for more information.
3541
3542 If `coding->type' is `coding_type_big5', element[4] is t to denote
3543 BIG5-ETen or nil to denote BIG5-HKU.
3544
3545 If `coding->type' takes the other value, element[4] is ignored.
3546
3547 Emacs Lisp's coding systems also carry information about format of
3548 end-of-line in a value of property `eol-type'. If the value is
3549 integer, 0 means CODING_EOL_LF, 1 means CODING_EOL_CRLF, and 2
3550 means CODING_EOL_CR. If it is not integer, it should be a vector
3551 of subsidiary coding systems of which property `eol-type' has one
3552 of the above values.
3553
3554 */
3555
3556 /* Extract information for decoding/encoding from CODING_SYSTEM_SYMBOL
3557 and set it in CODING. If CODING_SYSTEM_SYMBOL is invalid, CODING
3558 is setup so that no conversion is necessary and return -1, else
3559 return 0. */
3560
3561 int
3562 setup_coding_system (coding_system, coding)
3563 Lisp_Object coding_system;
3564 struct coding_system *coding;
3565 {
3566 Lisp_Object coding_spec, coding_type, eol_type, plist;
3567 Lisp_Object val;
3568
3569 /* At first, zero clear all members. */
3570 bzero (coding, sizeof (struct coding_system));
3571
3572 /* Initialize some fields required for all kinds of coding systems. */
3573 coding->symbol = coding_system;
3574 coding->heading_ascii = -1;
3575 coding->post_read_conversion = coding->pre_write_conversion = Qnil;
3576 coding->composing = COMPOSITION_DISABLED;
3577 coding->cmp_data = NULL;
3578
3579 if (NILP (coding_system))
3580 goto label_invalid_coding_system;
3581
3582 coding_spec = Fget (coding_system, Qcoding_system);
3583
3584 if (!VECTORP (coding_spec)
3585 || XVECTOR (coding_spec)->size != 5
3586 || !CONSP (XVECTOR (coding_spec)->contents[3]))
3587 goto label_invalid_coding_system;
3588
3589 eol_type = inhibit_eol_conversion ? Qnil : Fget (coding_system, Qeol_type);
3590 if (VECTORP (eol_type))
3591 {
3592 coding->eol_type = CODING_EOL_UNDECIDED;
3593 coding->common_flags = CODING_REQUIRE_DETECTION_MASK;
3594 }
3595 else if (XFASTINT (eol_type) == 1)
3596 {
3597 coding->eol_type = CODING_EOL_CRLF;
3598 coding->common_flags
3599 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3600 }
3601 else if (XFASTINT (eol_type) == 2)
3602 {
3603 coding->eol_type = CODING_EOL_CR;
3604 coding->common_flags
3605 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3606 }
3607 else
3608 coding->eol_type = CODING_EOL_LF;
3609
3610 coding_type = XVECTOR (coding_spec)->contents[0];
3611 /* Try short cut. */
3612 if (SYMBOLP (coding_type))
3613 {
3614 if (EQ (coding_type, Qt))
3615 {
3616 coding->type = coding_type_undecided;
3617 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
3618 }
3619 else
3620 coding->type = coding_type_no_conversion;
3621 /* Initialize this member. Any thing other than
3622 CODING_CATEGORY_IDX_UTF_16_BE and
3623 CODING_CATEGORY_IDX_UTF_16_LE are ok because they have
3624 special treatment in detect_eol. */
3625 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
3626
3627 return 0;
3628 }
3629
3630 /* Get values of coding system properties:
3631 `post-read-conversion', `pre-write-conversion',
3632 `translation-table-for-decode', `translation-table-for-encode'. */
3633 plist = XVECTOR (coding_spec)->contents[3];
3634 /* Pre & post conversion functions should be disabled if
3635 inhibit_eol_conversion is nonzero. This is the case that a code
3636 conversion function is called while those functions are running. */
3637 if (! inhibit_pre_post_conversion)
3638 {
3639 coding->post_read_conversion = Fplist_get (plist, Qpost_read_conversion);
3640 coding->pre_write_conversion = Fplist_get (plist, Qpre_write_conversion);
3641 }
3642 val = Fplist_get (plist, Qtranslation_table_for_decode);
3643 if (SYMBOLP (val))
3644 val = Fget (val, Qtranslation_table_for_decode);
3645 coding->translation_table_for_decode = CHAR_TABLE_P (val) ? val : Qnil;
3646 val = Fplist_get (plist, Qtranslation_table_for_encode);
3647 if (SYMBOLP (val))
3648 val = Fget (val, Qtranslation_table_for_encode);
3649 coding->translation_table_for_encode = CHAR_TABLE_P (val) ? val : Qnil;
3650 val = Fplist_get (plist, Qcoding_category);
3651 if (!NILP (val))
3652 {
3653 val = Fget (val, Qcoding_category_index);
3654 if (INTEGERP (val))
3655 coding->category_idx = XINT (val);
3656 else
3657 goto label_invalid_coding_system;
3658 }
3659 else
3660 goto label_invalid_coding_system;
3661
3662 /* If the coding system has non-nil `composition' property, enable
3663 composition handling. */
3664 val = Fplist_get (plist, Qcomposition);
3665 if (!NILP (val))
3666 coding->composing = COMPOSITION_NO;
3667
3668 switch (XFASTINT (coding_type))
3669 {
3670 case 0:
3671 coding->type = coding_type_emacs_mule;
3672 coding->common_flags
3673 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3674 if (!NILP (coding->post_read_conversion))
3675 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
3676 if (!NILP (coding->pre_write_conversion))
3677 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
3678 break;
3679
3680 case 1:
3681 coding->type = coding_type_sjis;
3682 coding->common_flags
3683 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3684 break;
3685
3686 case 2:
3687 coding->type = coding_type_iso2022;
3688 coding->common_flags
3689 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3690 {
3691 Lisp_Object val, temp;
3692 Lisp_Object *flags;
3693 int i, charset, reg_bits = 0;
3694
3695 val = XVECTOR (coding_spec)->contents[4];
3696
3697 if (!VECTORP (val) || XVECTOR (val)->size != 32)
3698 goto label_invalid_coding_system;
3699
3700 flags = XVECTOR (val)->contents;
3701 coding->flags
3702 = ((NILP (flags[4]) ? 0 : CODING_FLAG_ISO_SHORT_FORM)
3703 | (NILP (flags[5]) ? 0 : CODING_FLAG_ISO_RESET_AT_EOL)
3704 | (NILP (flags[6]) ? 0 : CODING_FLAG_ISO_RESET_AT_CNTL)
3705 | (NILP (flags[7]) ? 0 : CODING_FLAG_ISO_SEVEN_BITS)
3706 | (NILP (flags[8]) ? 0 : CODING_FLAG_ISO_LOCKING_SHIFT)
3707 | (NILP (flags[9]) ? 0 : CODING_FLAG_ISO_SINGLE_SHIFT)
3708 | (NILP (flags[10]) ? 0 : CODING_FLAG_ISO_USE_ROMAN)
3709 | (NILP (flags[11]) ? 0 : CODING_FLAG_ISO_USE_OLDJIS)
3710 | (NILP (flags[12]) ? 0 : CODING_FLAG_ISO_NO_DIRECTION)
3711 | (NILP (flags[13]) ? 0 : CODING_FLAG_ISO_INIT_AT_BOL)
3712 | (NILP (flags[14]) ? 0 : CODING_FLAG_ISO_DESIGNATE_AT_BOL)
3713 | (NILP (flags[15]) ? 0 : CODING_FLAG_ISO_SAFE)
3714 | (NILP (flags[16]) ? 0 : CODING_FLAG_ISO_LATIN_EXTRA)
3715 );
3716
3717 /* Invoke graphic register 0 to plane 0. */
3718 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
3719 /* Invoke graphic register 1 to plane 1 if we can use full 8-bit. */
3720 CODING_SPEC_ISO_INVOCATION (coding, 1)
3721 = (coding->flags & CODING_FLAG_ISO_SEVEN_BITS ? -1 : 1);
3722 /* Not single shifting at first. */
3723 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0;
3724 /* Beginning of buffer should also be regarded as bol. */
3725 CODING_SPEC_ISO_BOL (coding) = 1;
3726
3727 for (charset = 0; charset <= MAX_CHARSET; charset++)
3728 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = 255;
3729 val = Vcharset_revision_alist;
3730 while (CONSP (val))
3731 {
3732 charset = get_charset_id (Fcar_safe (XCAR (val)));
3733 if (charset >= 0
3734 && (temp = Fcdr_safe (XCAR (val)), INTEGERP (temp))
3735 && (i = XINT (temp), (i >= 0 && (i + '@') < 128)))
3736 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = i;
3737 val = XCDR (val);
3738 }
3739
3740 /* Checks FLAGS[REG] (REG = 0, 1, 2 3) and decide designations.
3741 FLAGS[REG] can be one of below:
3742 integer CHARSET: CHARSET occupies register I,
3743 t: designate nothing to REG initially, but can be used
3744 by any charsets,
3745 list of integer, nil, or t: designate the first
3746 element (if integer) to REG initially, the remaining
3747 elements (if integer) is designated to REG on request,
3748 if an element is t, REG can be used by any charsets,
3749 nil: REG is never used. */
3750 for (charset = 0; charset <= MAX_CHARSET; charset++)
3751 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3752 = CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION;
3753 for (i = 0; i < 4; i++)
3754 {
3755 if ((INTEGERP (flags[i])
3756 && (charset = XINT (flags[i]), CHARSET_VALID_P (charset)))
3757 || (charset = get_charset_id (flags[i])) >= 0)
3758 {
3759 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
3760 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) = i;
3761 }
3762 else if (EQ (flags[i], Qt))
3763 {
3764 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3765 reg_bits |= 1 << i;
3766 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
3767 }
3768 else if (CONSP (flags[i]))
3769 {
3770 Lisp_Object tail;
3771 tail = flags[i];
3772
3773 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
3774 if ((INTEGERP (XCAR (tail))
3775 && (charset = XINT (XCAR (tail)),
3776 CHARSET_VALID_P (charset)))
3777 || (charset = get_charset_id (XCAR (tail))) >= 0)
3778 {
3779 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
3780 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) =i;
3781 }
3782 else
3783 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3784 tail = XCDR (tail);
3785 while (CONSP (tail))
3786 {
3787 if ((INTEGERP (XCAR (tail))
3788 && (charset = XINT (XCAR (tail)),
3789 CHARSET_VALID_P (charset)))
3790 || (charset = get_charset_id (XCAR (tail))) >= 0)
3791 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3792 = i;
3793 else if (EQ (XCAR (tail), Qt))
3794 reg_bits |= 1 << i;
3795 tail = XCDR (tail);
3796 }
3797 }
3798 else
3799 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3800
3801 CODING_SPEC_ISO_DESIGNATION (coding, i)
3802 = CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i);
3803 }
3804
3805 if (reg_bits && ! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
3806 {
3807 /* REG 1 can be used only by locking shift in 7-bit env. */
3808 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
3809 reg_bits &= ~2;
3810 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
3811 /* Without any shifting, only REG 0 and 1 can be used. */
3812 reg_bits &= 3;
3813 }
3814
3815 if (reg_bits)
3816 for (charset = 0; charset <= MAX_CHARSET; charset++)
3817 {
3818 if (CHARSET_DEFINED_P (charset)
3819 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3820 == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
3821 {
3822 /* There exist some default graphic registers to be
3823 used by CHARSET. */
3824
3825 /* We had better avoid designating a charset of
3826 CHARS96 to REG 0 as far as possible. */
3827 if (CHARSET_CHARS (charset) == 96)
3828 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3829 = (reg_bits & 2
3830 ? 1 : (reg_bits & 4 ? 2 : (reg_bits & 8 ? 3 : 0)));
3831 else
3832 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3833 = (reg_bits & 1
3834 ? 0 : (reg_bits & 2 ? 1 : (reg_bits & 4 ? 2 : 3)));
3835 }
3836 }
3837 }
3838 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3839 coding->spec.iso2022.last_invalid_designation_register = -1;
3840 break;
3841
3842 case 3:
3843 coding->type = coding_type_big5;
3844 coding->common_flags
3845 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3846 coding->flags
3847 = (NILP (XVECTOR (coding_spec)->contents[4])
3848 ? CODING_FLAG_BIG5_HKU
3849 : CODING_FLAG_BIG5_ETEN);
3850 break;
3851
3852 case 4:
3853 coding->type = coding_type_ccl;
3854 coding->common_flags
3855 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3856 {
3857 val = XVECTOR (coding_spec)->contents[4];
3858 if (! CONSP (val)
3859 || setup_ccl_program (&(coding->spec.ccl.decoder),
3860 XCAR (val)) < 0
3861 || setup_ccl_program (&(coding->spec.ccl.encoder),
3862 XCDR (val)) < 0)
3863 goto label_invalid_coding_system;
3864
3865 bzero (coding->spec.ccl.valid_codes, 256);
3866 val = Fplist_get (plist, Qvalid_codes);
3867 if (CONSP (val))
3868 {
3869 Lisp_Object this;
3870
3871 for (; CONSP (val); val = XCDR (val))
3872 {
3873 this = XCAR (val);
3874 if (INTEGERP (this)
3875 && XINT (this) >= 0 && XINT (this) < 256)
3876 coding->spec.ccl.valid_codes[XINT (this)] = 1;
3877 else if (CONSP (this)
3878 && INTEGERP (XCAR (this))
3879 && INTEGERP (XCDR (this)))
3880 {
3881 int start = XINT (XCAR (this));
3882 int end = XINT (XCDR (this));
3883
3884 if (start >= 0 && start <= end && end < 256)
3885 while (start <= end)
3886 coding->spec.ccl.valid_codes[start++] = 1;
3887 }
3888 }
3889 }
3890 }
3891 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3892 coding->spec.ccl.cr_carryover = 0;
3893 coding->spec.ccl.eight_bit_carryover[0] = 0;
3894 break;
3895
3896 case 5:
3897 coding->type = coding_type_raw_text;
3898 break;
3899
3900 default:
3901 goto label_invalid_coding_system;
3902 }
3903 return 0;
3904
3905 label_invalid_coding_system:
3906 coding->type = coding_type_no_conversion;
3907 coding->category_idx = CODING_CATEGORY_IDX_BINARY;
3908 coding->common_flags = 0;
3909 coding->eol_type = CODING_EOL_LF;
3910 coding->pre_write_conversion = coding->post_read_conversion = Qnil;
3911 return -1;
3912 }
3913
3914 /* Free memory blocks allocated for storing composition information. */
3915
3916 void
3917 coding_free_composition_data (coding)
3918 struct coding_system *coding;
3919 {
3920 struct composition_data *cmp_data = coding->cmp_data, *next;
3921
3922 if (!cmp_data)
3923 return;
3924 /* Memory blocks are chained. At first, rewind to the first, then,
3925 free blocks one by one. */
3926 while (cmp_data->prev)
3927 cmp_data = cmp_data->prev;
3928 while (cmp_data)
3929 {
3930 next = cmp_data->next;
3931 xfree (cmp_data);
3932 cmp_data = next;
3933 }
3934 coding->cmp_data = NULL;
3935 }
3936
3937 /* Set `char_offset' member of all memory blocks pointed by
3938 coding->cmp_data to POS. */
3939
3940 void
3941 coding_adjust_composition_offset (coding, pos)
3942 struct coding_system *coding;
3943 int pos;
3944 {
3945 struct composition_data *cmp_data;
3946
3947 for (cmp_data = coding->cmp_data; cmp_data; cmp_data = cmp_data->next)
3948 cmp_data->char_offset = pos;
3949 }
3950
3951 /* Setup raw-text or one of its subsidiaries in the structure
3952 coding_system CODING according to the already setup value eol_type
3953 in CODING. CODING should be setup for some coding system in
3954 advance. */
3955
3956 void
3957 setup_raw_text_coding_system (coding)
3958 struct coding_system *coding;
3959 {
3960 if (coding->type != coding_type_raw_text)
3961 {
3962 coding->symbol = Qraw_text;
3963 coding->type = coding_type_raw_text;
3964 if (coding->eol_type != CODING_EOL_UNDECIDED)
3965 {
3966 Lisp_Object subsidiaries;
3967 subsidiaries = Fget (Qraw_text, Qeol_type);
3968
3969 if (VECTORP (subsidiaries)
3970 && XVECTOR (subsidiaries)->size == 3)
3971 coding->symbol
3972 = XVECTOR (subsidiaries)->contents[coding->eol_type];
3973 }
3974 setup_coding_system (coding->symbol, coding);
3975 }
3976 return;
3977 }
3978
3979 /* Emacs has a mechanism to automatically detect a coding system if it
3980 is one of Emacs' internal format, ISO2022, SJIS, and BIG5. But,
3981 it's impossible to distinguish some coding systems accurately
3982 because they use the same range of codes. So, at first, coding
3983 systems are categorized into 7, those are:
3984
3985 o coding-category-emacs-mule
3986
3987 The category for a coding system which has the same code range
3988 as Emacs' internal format. Assigned the coding-system (Lisp
3989 symbol) `emacs-mule' by default.
3990
3991 o coding-category-sjis
3992
3993 The category for a coding system which has the same code range
3994 as SJIS. Assigned the coding-system (Lisp
3995 symbol) `japanese-shift-jis' by default.
3996
3997 o coding-category-iso-7
3998
3999 The category for a coding system which has the same code range
4000 as ISO2022 of 7-bit environment. This doesn't use any locking
4001 shift and single shift functions. This can encode/decode all
4002 charsets. Assigned the coding-system (Lisp symbol)
4003 `iso-2022-7bit' by default.
4004
4005 o coding-category-iso-7-tight
4006
4007 Same as coding-category-iso-7 except that this can
4008 encode/decode only the specified charsets.
4009
4010 o coding-category-iso-8-1
4011
4012 The category for a coding system which has the same code range
4013 as ISO2022 of 8-bit environment and graphic plane 1 used only
4014 for DIMENSION1 charset. This doesn't use any locking shift
4015 and single shift functions. Assigned the coding-system (Lisp
4016 symbol) `iso-latin-1' by default.
4017
4018 o coding-category-iso-8-2
4019
4020 The category for a coding system which has the same code range
4021 as ISO2022 of 8-bit environment and graphic plane 1 used only
4022 for DIMENSION2 charset. This doesn't use any locking shift
4023 and single shift functions. Assigned the coding-system (Lisp
4024 symbol) `japanese-iso-8bit' by default.
4025
4026 o coding-category-iso-7-else
4027
4028 The category for a coding system which has the same code range
4029 as ISO2022 of 7-bit environment but uses locking shift or
4030 single shift functions. Assigned the coding-system (Lisp
4031 symbol) `iso-2022-7bit-lock' by default.
4032
4033 o coding-category-iso-8-else
4034
4035 The category for a coding system which has the same code range
4036 as ISO2022 of 8-bit environment but uses locking shift or
4037 single shift functions. Assigned the coding-system (Lisp
4038 symbol) `iso-2022-8bit-ss2' by default.
4039
4040 o coding-category-big5
4041
4042 The category for a coding system which has the same code range
4043 as BIG5. Assigned the coding-system (Lisp symbol)
4044 `cn-big5' by default.
4045
4046 o coding-category-utf-8
4047
4048 The category for a coding system which has the same code range
4049 as UTF-8 (cf. RFC3629). Assigned the coding-system (Lisp
4050 symbol) `utf-8' by default.
4051
4052 o coding-category-utf-16-be
4053
4054 The category for a coding system in which a text has an
4055 Unicode signature (cf. Unicode Standard) in the order of BIG
4056 endian at the head. Assigned the coding-system (Lisp symbol)
4057 `utf-16-be' by default.
4058
4059 o coding-category-utf-16-le
4060
4061 The category for a coding system in which a text has an
4062 Unicode signature (cf. Unicode Standard) in the order of
4063 LITTLE endian at the head. Assigned the coding-system (Lisp
4064 symbol) `utf-16-le' by default.
4065
4066 o coding-category-ccl
4067
4068 The category for a coding system of which encoder/decoder is
4069 written in CCL programs. The default value is nil, i.e., no
4070 coding system is assigned.
4071
4072 o coding-category-binary
4073
4074 The category for a coding system not categorized in any of the
4075 above. Assigned the coding-system (Lisp symbol)
4076 `no-conversion' by default.
4077
4078 Each of them is a Lisp symbol and the value is an actual
4079 `coding-system' (this is also a Lisp symbol) assigned by a user.
4080 What Emacs does actually is to detect a category of coding system.
4081 Then, it uses a `coding-system' assigned to it. If Emacs can't
4082 decide a single possible category, it selects a category of the
4083 highest priority. Priorities of categories are also specified by a
4084 user in a Lisp variable `coding-category-list'.
4085
4086 */
4087
4088 static
4089 int ascii_skip_code[256];
4090
4091 /* Detect how a text of length SRC_BYTES pointed by SOURCE is encoded.
4092 If it detects possible coding systems, return an integer in which
4093 appropriate flag bits are set. Flag bits are defined by macros
4094 CODING_CATEGORY_MASK_XXX in `coding.h'. If PRIORITIES is non-NULL,
4095 it should point the table `coding_priorities'. In that case, only
4096 the flag bit for a coding system of the highest priority is set in
4097 the returned value. If MULTIBYTEP is nonzero, 8-bit codes of the
4098 range 0x80..0x9F are in multibyte form.
4099
4100 How many ASCII characters are at the head is returned as *SKIP. */
4101
4102 static int
4103 detect_coding_mask (source, src_bytes, priorities, skip, multibytep)
4104 unsigned char *source;
4105 int src_bytes, *priorities, *skip;
4106 int multibytep;
4107 {
4108 register unsigned char c;
4109 unsigned char *src = source, *src_end = source + src_bytes;
4110 unsigned int mask, utf16_examined_p, iso2022_examined_p;
4111 int i;
4112
4113 /* At first, skip all ASCII characters and control characters except
4114 for three ISO2022 specific control characters. */
4115 ascii_skip_code[ISO_CODE_SO] = 0;
4116 ascii_skip_code[ISO_CODE_SI] = 0;
4117 ascii_skip_code[ISO_CODE_ESC] = 0;
4118
4119 label_loop_detect_coding:
4120 while (src < src_end && ascii_skip_code[*src]) src++;
4121 *skip = src - source;
4122
4123 if (src >= src_end)
4124 /* We found nothing other than ASCII. There's nothing to do. */
4125 return 0;
4126
4127 c = *src;
4128 /* The text seems to be encoded in some multilingual coding system.
4129 Now, try to find in which coding system the text is encoded. */
4130 if (c < 0x80)
4131 {
4132 /* i.e. (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO) */
4133 /* C is an ISO2022 specific control code of C0. */
4134 mask = detect_coding_iso2022 (src, src_end, multibytep);
4135 if (mask == 0)
4136 {
4137 /* No valid ISO2022 code follows C. Try again. */
4138 src++;
4139 if (c == ISO_CODE_ESC)
4140 ascii_skip_code[ISO_CODE_ESC] = 1;
4141 else
4142 ascii_skip_code[ISO_CODE_SO] = ascii_skip_code[ISO_CODE_SI] = 1;
4143 goto label_loop_detect_coding;
4144 }
4145 if (priorities)
4146 {
4147 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
4148 {
4149 if (mask & priorities[i])
4150 return priorities[i];
4151 }
4152 return CODING_CATEGORY_MASK_RAW_TEXT;
4153 }
4154 }
4155 else
4156 {
4157 int try;
4158
4159 if (multibytep && c == LEADING_CODE_8_BIT_CONTROL)
4160 c = src[1] - 0x20;
4161
4162 if (c < 0xA0)
4163 {
4164 /* C is the first byte of SJIS character code,
4165 or a leading-code of Emacs' internal format (emacs-mule),
4166 or the first byte of UTF-16. */
4167 try = (CODING_CATEGORY_MASK_SJIS
4168 | CODING_CATEGORY_MASK_EMACS_MULE
4169 | CODING_CATEGORY_MASK_UTF_16_BE
4170 | CODING_CATEGORY_MASK_UTF_16_LE);
4171
4172 /* Or, if C is a special latin extra code,
4173 or is an ISO2022 specific control code of C1 (SS2 or SS3),
4174 or is an ISO2022 control-sequence-introducer (CSI),
4175 we should also consider the possibility of ISO2022 codings. */
4176 if ((VECTORP (Vlatin_extra_code_table)
4177 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
4178 || (c == ISO_CODE_SS2 || c == ISO_CODE_SS3)
4179 || (c == ISO_CODE_CSI
4180 && (src < src_end
4181 && (*src == ']'
4182 || ((*src == '0' || *src == '1' || *src == '2')
4183 && src + 1 < src_end
4184 && src[1] == ']')))))
4185 try |= (CODING_CATEGORY_MASK_ISO_8_ELSE
4186 | CODING_CATEGORY_MASK_ISO_8BIT);
4187 }
4188 else
4189 /* C is a character of ISO2022 in graphic plane right,
4190 or a SJIS's 1-byte character code (i.e. JISX0201),
4191 or the first byte of BIG5's 2-byte code,
4192 or the first byte of UTF-8/16. */
4193 try = (CODING_CATEGORY_MASK_ISO_8_ELSE
4194 | CODING_CATEGORY_MASK_ISO_8BIT
4195 | CODING_CATEGORY_MASK_SJIS
4196 | CODING_CATEGORY_MASK_BIG5
4197 | CODING_CATEGORY_MASK_UTF_8
4198 | CODING_CATEGORY_MASK_UTF_16_BE
4199 | CODING_CATEGORY_MASK_UTF_16_LE);
4200
4201 /* Or, we may have to consider the possibility of CCL. */
4202 if (coding_system_table[CODING_CATEGORY_IDX_CCL]
4203 && (coding_system_table[CODING_CATEGORY_IDX_CCL]
4204 ->spec.ccl.valid_codes)[c])
4205 try |= CODING_CATEGORY_MASK_CCL;
4206
4207 mask = 0;
4208 utf16_examined_p = iso2022_examined_p = 0;
4209 if (priorities)
4210 {
4211 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
4212 {
4213 if (!iso2022_examined_p
4214 && (priorities[i] & try & CODING_CATEGORY_MASK_ISO))
4215 {
4216 mask |= detect_coding_iso2022 (src, src_end, multibytep);
4217 iso2022_examined_p = 1;
4218 }
4219 else if (priorities[i] & try & CODING_CATEGORY_MASK_SJIS)
4220 mask |= detect_coding_sjis (src, src_end, multibytep);
4221 else if (priorities[i] & try & CODING_CATEGORY_MASK_UTF_8)
4222 mask |= detect_coding_utf_8 (src, src_end, multibytep);
4223 else if (!utf16_examined_p
4224 && (priorities[i] & try &
4225 CODING_CATEGORY_MASK_UTF_16_BE_LE))
4226 {
4227 mask |= detect_coding_utf_16 (src, src_end, multibytep);
4228 utf16_examined_p = 1;
4229 }
4230 else if (priorities[i] & try & CODING_CATEGORY_MASK_BIG5)
4231 mask |= detect_coding_big5 (src, src_end, multibytep);
4232 else if (priorities[i] & try & CODING_CATEGORY_MASK_EMACS_MULE)
4233 mask |= detect_coding_emacs_mule (src, src_end, multibytep);
4234 else if (priorities[i] & try & CODING_CATEGORY_MASK_CCL)
4235 mask |= detect_coding_ccl (src, src_end, multibytep);
4236 else if (priorities[i] & CODING_CATEGORY_MASK_RAW_TEXT)
4237 mask |= CODING_CATEGORY_MASK_RAW_TEXT;
4238 else if (priorities[i] & CODING_CATEGORY_MASK_BINARY)
4239 mask |= CODING_CATEGORY_MASK_BINARY;
4240 if (mask & priorities[i])
4241 return priorities[i];
4242 }
4243 return CODING_CATEGORY_MASK_RAW_TEXT;
4244 }
4245 if (try & CODING_CATEGORY_MASK_ISO)
4246 mask |= detect_coding_iso2022 (src, src_end, multibytep);
4247 if (try & CODING_CATEGORY_MASK_SJIS)
4248 mask |= detect_coding_sjis (src, src_end, multibytep);
4249 if (try & CODING_CATEGORY_MASK_BIG5)
4250 mask |= detect_coding_big5 (src, src_end, multibytep);
4251 if (try & CODING_CATEGORY_MASK_UTF_8)
4252 mask |= detect_coding_utf_8 (src, src_end, multibytep);
4253 if (try & CODING_CATEGORY_MASK_UTF_16_BE_LE)
4254 mask |= detect_coding_utf_16 (src, src_end, multibytep);
4255 if (try & CODING_CATEGORY_MASK_EMACS_MULE)
4256 mask |= detect_coding_emacs_mule (src, src_end, multibytep);
4257 if (try & CODING_CATEGORY_MASK_CCL)
4258 mask |= detect_coding_ccl (src, src_end, multibytep);
4259 }
4260 return (mask | CODING_CATEGORY_MASK_RAW_TEXT | CODING_CATEGORY_MASK_BINARY);
4261 }
4262
4263 /* Detect how a text of length SRC_BYTES pointed by SRC is encoded.
4264 The information of the detected coding system is set in CODING. */
4265
4266 void
4267 detect_coding (coding, src, src_bytes)
4268 struct coding_system *coding;
4269 const unsigned char *src;
4270 int src_bytes;
4271 {
4272 unsigned int idx;
4273 int skip, mask;
4274 Lisp_Object val;
4275
4276 val = Vcoding_category_list;
4277 mask = detect_coding_mask (src, src_bytes, coding_priorities, &skip,
4278 coding->src_multibyte);
4279 coding->heading_ascii = skip;
4280
4281 if (!mask) return;
4282
4283 /* We found a single coding system of the highest priority in MASK. */
4284 idx = 0;
4285 while (mask && ! (mask & 1)) mask >>= 1, idx++;
4286 if (! mask)
4287 idx = CODING_CATEGORY_IDX_RAW_TEXT;
4288
4289 val = SYMBOL_VALUE (XVECTOR (Vcoding_category_table)->contents[idx]);
4290
4291 if (coding->eol_type != CODING_EOL_UNDECIDED)
4292 {
4293 Lisp_Object tmp;
4294
4295 tmp = Fget (val, Qeol_type);
4296 if (VECTORP (tmp))
4297 val = XVECTOR (tmp)->contents[coding->eol_type];
4298 }
4299
4300 /* Setup this new coding system while preserving some slots. */
4301 {
4302 int src_multibyte = coding->src_multibyte;
4303 int dst_multibyte = coding->dst_multibyte;
4304
4305 setup_coding_system (val, coding);
4306 coding->src_multibyte = src_multibyte;
4307 coding->dst_multibyte = dst_multibyte;
4308 coding->heading_ascii = skip;
4309 }
4310 }
4311
4312 /* Detect how end-of-line of a text of length SRC_BYTES pointed by
4313 SOURCE is encoded. Return one of CODING_EOL_LF, CODING_EOL_CRLF,
4314 CODING_EOL_CR, and CODING_EOL_UNDECIDED.
4315
4316 How many non-eol characters are at the head is returned as *SKIP. */
4317
4318 #define MAX_EOL_CHECK_COUNT 3
4319
4320 static int
4321 detect_eol_type (source, src_bytes, skip)
4322 unsigned char *source;
4323 int src_bytes, *skip;
4324 {
4325 unsigned char *src = source, *src_end = src + src_bytes;
4326 unsigned char c;
4327 int total = 0; /* How many end-of-lines are found so far. */
4328 int eol_type = CODING_EOL_UNDECIDED;
4329 int this_eol_type;
4330
4331 *skip = 0;
4332
4333 while (src < src_end && total < MAX_EOL_CHECK_COUNT)
4334 {
4335 c = *src++;
4336 if (c == '\n' || c == '\r')
4337 {
4338 if (*skip == 0)
4339 *skip = src - 1 - source;
4340 total++;
4341 if (c == '\n')
4342 this_eol_type = CODING_EOL_LF;
4343 else if (src >= src_end || *src != '\n')
4344 this_eol_type = CODING_EOL_CR;
4345 else
4346 this_eol_type = CODING_EOL_CRLF, src++;
4347
4348 if (eol_type == CODING_EOL_UNDECIDED)
4349 /* This is the first end-of-line. */
4350 eol_type = this_eol_type;
4351 else if (eol_type != this_eol_type)
4352 {
4353 /* The found type is different from what found before. */
4354 eol_type = CODING_EOL_INCONSISTENT;
4355 break;
4356 }
4357 }
4358 }
4359
4360 if (*skip == 0)
4361 *skip = src_end - source;
4362 return eol_type;
4363 }
4364
4365 /* Like detect_eol_type, but detect EOL type in 2-octet
4366 big-endian/little-endian format for coding systems utf-16-be and
4367 utf-16-le. */
4368
4369 static int
4370 detect_eol_type_in_2_octet_form (source, src_bytes, skip, big_endian_p)
4371 unsigned char *source;
4372 int src_bytes, *skip, big_endian_p;
4373 {
4374 unsigned char *src = source, *src_end = src + src_bytes;
4375 unsigned int c1, c2;
4376 int total = 0; /* How many end-of-lines are found so far. */
4377 int eol_type = CODING_EOL_UNDECIDED;
4378 int this_eol_type;
4379 int msb, lsb;
4380
4381 if (big_endian_p)
4382 msb = 0, lsb = 1;
4383 else
4384 msb = 1, lsb = 0;
4385
4386 *skip = 0;
4387
4388 while ((src + 1) < src_end && total < MAX_EOL_CHECK_COUNT)
4389 {
4390 c1 = (src[msb] << 8) | (src[lsb]);
4391 src += 2;
4392
4393 if (c1 == '\n' || c1 == '\r')
4394 {
4395 if (*skip == 0)
4396 *skip = src - 2 - source;
4397 total++;
4398 if (c1 == '\n')
4399 {
4400 this_eol_type = CODING_EOL_LF;
4401 }
4402 else
4403 {
4404 if ((src + 1) >= src_end)
4405 {
4406 this_eol_type = CODING_EOL_CR;
4407 }
4408 else
4409 {
4410 c2 = (src[msb] << 8) | (src[lsb]);
4411 if (c2 == '\n')
4412 this_eol_type = CODING_EOL_CRLF, src += 2;
4413 else
4414 this_eol_type = CODING_EOL_CR;
4415 }
4416 }
4417
4418 if (eol_type == CODING_EOL_UNDECIDED)
4419 /* This is the first end-of-line. */
4420 eol_type = this_eol_type;
4421 else if (eol_type != this_eol_type)
4422 {
4423 /* The found type is different from what found before. */
4424 eol_type = CODING_EOL_INCONSISTENT;
4425 break;
4426 }
4427 }
4428 }
4429
4430 if (*skip == 0)
4431 *skip = src_end - source;
4432 return eol_type;
4433 }
4434
4435 /* Detect how end-of-line of a text of length SRC_BYTES pointed by SRC
4436 is encoded. If it detects an appropriate format of end-of-line, it
4437 sets the information in *CODING. */
4438
4439 void
4440 detect_eol (coding, src, src_bytes)
4441 struct coding_system *coding;
4442 const unsigned char *src;
4443 int src_bytes;
4444 {
4445 Lisp_Object val;
4446 int skip;
4447 int eol_type;
4448
4449 switch (coding->category_idx)
4450 {
4451 case CODING_CATEGORY_IDX_UTF_16_BE:
4452 eol_type = detect_eol_type_in_2_octet_form (src, src_bytes, &skip, 1);
4453 break;
4454 case CODING_CATEGORY_IDX_UTF_16_LE:
4455 eol_type = detect_eol_type_in_2_octet_form (src, src_bytes, &skip, 0);
4456 break;
4457 default:
4458 eol_type = detect_eol_type (src, src_bytes, &skip);
4459 break;
4460 }
4461
4462 if (coding->heading_ascii > skip)
4463 coding->heading_ascii = skip;
4464 else
4465 skip = coding->heading_ascii;
4466
4467 if (eol_type == CODING_EOL_UNDECIDED)
4468 return;
4469 if (eol_type == CODING_EOL_INCONSISTENT)
4470 {
4471 #if 0
4472 /* This code is suppressed until we find a better way to
4473 distinguish raw text file and binary file. */
4474
4475 /* If we have already detected that the coding is raw-text, the
4476 coding should actually be no-conversion. */
4477 if (coding->type == coding_type_raw_text)
4478 {
4479 setup_coding_system (Qno_conversion, coding);
4480 return;
4481 }
4482 /* Else, let's decode only text code anyway. */
4483 #endif /* 0 */
4484 eol_type = CODING_EOL_LF;
4485 }
4486
4487 val = Fget (coding->symbol, Qeol_type);
4488 if (VECTORP (val) && XVECTOR (val)->size == 3)
4489 {
4490 int src_multibyte = coding->src_multibyte;
4491 int dst_multibyte = coding->dst_multibyte;
4492 struct composition_data *cmp_data = coding->cmp_data;
4493
4494 setup_coding_system (XVECTOR (val)->contents[eol_type], coding);
4495 coding->src_multibyte = src_multibyte;
4496 coding->dst_multibyte = dst_multibyte;
4497 coding->heading_ascii = skip;
4498 coding->cmp_data = cmp_data;
4499 }
4500 }
4501
4502 #define CONVERSION_BUFFER_EXTRA_ROOM 256
4503
4504 #define DECODING_BUFFER_MAG(coding) \
4505 (coding->type == coding_type_iso2022 \
4506 ? 3 \
4507 : (coding->type == coding_type_ccl \
4508 ? coding->spec.ccl.decoder.buf_magnification \
4509 : 2))
4510
4511 /* Return maximum size (bytes) of a buffer enough for decoding
4512 SRC_BYTES of text encoded in CODING. */
4513
4514 int
4515 decoding_buffer_size (coding, src_bytes)
4516 struct coding_system *coding;
4517 int src_bytes;
4518 {
4519 return (src_bytes * DECODING_BUFFER_MAG (coding)
4520 + CONVERSION_BUFFER_EXTRA_ROOM);
4521 }
4522
4523 /* Return maximum size (bytes) of a buffer enough for encoding
4524 SRC_BYTES of text to CODING. */
4525
4526 int
4527 encoding_buffer_size (coding, src_bytes)
4528 struct coding_system *coding;
4529 int src_bytes;
4530 {
4531 int magnification;
4532
4533 if (coding->type == coding_type_ccl)
4534 {
4535 magnification = coding->spec.ccl.encoder.buf_magnification;
4536 if (coding->eol_type == CODING_EOL_CRLF)
4537 magnification *= 2;
4538 }
4539 else if (CODING_REQUIRE_ENCODING (coding))
4540 magnification = 3;
4541 else
4542 magnification = 1;
4543
4544 return (src_bytes * magnification + CONVERSION_BUFFER_EXTRA_ROOM);
4545 }
4546
4547 /* Working buffer for code conversion. */
4548 struct conversion_buffer
4549 {
4550 int size; /* size of data. */
4551 int on_stack; /* 1 if allocated by alloca. */
4552 unsigned char *data;
4553 };
4554
4555 /* Allocate LEN bytes of memory for BUF (struct conversion_buffer). */
4556 #define allocate_conversion_buffer(buf, len) \
4557 do { \
4558 if (len < MAX_ALLOCA) \
4559 { \
4560 buf.data = (unsigned char *) alloca (len); \
4561 buf.on_stack = 1; \
4562 } \
4563 else \
4564 { \
4565 buf.data = (unsigned char *) xmalloc (len); \
4566 buf.on_stack = 0; \
4567 } \
4568 buf.size = len; \
4569 } while (0)
4570
4571 /* Double the allocated memory for *BUF. */
4572 static void
4573 extend_conversion_buffer (buf)
4574 struct conversion_buffer *buf;
4575 {
4576 if (buf->on_stack)
4577 {
4578 unsigned char *save = buf->data;
4579 buf->data = (unsigned char *) xmalloc (buf->size * 2);
4580 bcopy (save, buf->data, buf->size);
4581 buf->on_stack = 0;
4582 }
4583 else
4584 {
4585 buf->data = (unsigned char *) xrealloc (buf->data, buf->size * 2);
4586 }
4587 buf->size *= 2;
4588 }
4589
4590 /* Free the allocated memory for BUF if it is not on stack. */
4591 static void
4592 free_conversion_buffer (buf)
4593 struct conversion_buffer *buf;
4594 {
4595 if (!buf->on_stack)
4596 xfree (buf->data);
4597 }
4598
4599 int
4600 ccl_coding_driver (coding, source, destination, src_bytes, dst_bytes, encodep)
4601 struct coding_system *coding;
4602 unsigned char *source, *destination;
4603 int src_bytes, dst_bytes, encodep;
4604 {
4605 struct ccl_program *ccl
4606 = encodep ? &coding->spec.ccl.encoder : &coding->spec.ccl.decoder;
4607 unsigned char *dst = destination;
4608
4609 ccl->suppress_error = coding->suppress_error;
4610 ccl->last_block = coding->mode & CODING_MODE_LAST_BLOCK;
4611 if (encodep)
4612 {
4613 /* On encoding, EOL format is converted within ccl_driver. For
4614 that, setup proper information in the structure CCL. */
4615 ccl->eol_type = coding->eol_type;
4616 if (ccl->eol_type ==CODING_EOL_UNDECIDED)
4617 ccl->eol_type = CODING_EOL_LF;
4618 ccl->cr_consumed = coding->spec.ccl.cr_carryover;
4619 ccl->eight_bit_control = coding->dst_multibyte;
4620 }
4621 else
4622 ccl->eight_bit_control = 1;
4623 ccl->multibyte = coding->src_multibyte;
4624 if (coding->spec.ccl.eight_bit_carryover[0] != 0)
4625 {
4626 /* Move carryover bytes to DESTINATION. */
4627 unsigned char *p = coding->spec.ccl.eight_bit_carryover;
4628 while (*p)
4629 *dst++ = *p++;
4630 coding->spec.ccl.eight_bit_carryover[0] = 0;
4631 if (dst_bytes)
4632 dst_bytes -= dst - destination;
4633 }
4634
4635 coding->produced = (ccl_driver (ccl, source, dst, src_bytes, dst_bytes,
4636 &(coding->consumed))
4637 + dst - destination);
4638
4639 if (encodep)
4640 {
4641 coding->produced_char = coding->produced;
4642 coding->spec.ccl.cr_carryover = ccl->cr_consumed;
4643 }
4644 else if (!ccl->eight_bit_control)
4645 {
4646 /* The produced bytes forms a valid multibyte sequence. */
4647 coding->produced_char
4648 = multibyte_chars_in_text (destination, coding->produced);
4649 coding->spec.ccl.eight_bit_carryover[0] = 0;
4650 }
4651 else
4652 {
4653 /* On decoding, the destination should always multibyte. But,
4654 CCL program might have been generated an invalid multibyte
4655 sequence. Here we make such a sequence valid as
4656 multibyte. */
4657 int bytes
4658 = dst_bytes ? dst_bytes : source + coding->consumed - destination;
4659
4660 if ((coding->consumed < src_bytes
4661 || !ccl->last_block)
4662 && coding->produced >= 1
4663 && destination[coding->produced - 1] >= 0x80)
4664 {
4665 /* We should not convert the tailing 8-bit codes to
4666 multibyte form even if they doesn't form a valid
4667 multibyte sequence. They may form a valid sequence in
4668 the next call. */
4669 int carryover = 0;
4670
4671 if (destination[coding->produced - 1] < 0xA0)
4672 carryover = 1;
4673 else if (coding->produced >= 2)
4674 {
4675 if (destination[coding->produced - 2] >= 0x80)
4676 {
4677 if (destination[coding->produced - 2] < 0xA0)
4678 carryover = 2;
4679 else if (coding->produced >= 3
4680 && destination[coding->produced - 3] >= 0x80
4681 && destination[coding->produced - 3] < 0xA0)
4682 carryover = 3;
4683 }
4684 }
4685 if (carryover > 0)
4686 {
4687 BCOPY_SHORT (destination + coding->produced - carryover,
4688 coding->spec.ccl.eight_bit_carryover,
4689 carryover);
4690 coding->spec.ccl.eight_bit_carryover[carryover] = 0;
4691 coding->produced -= carryover;
4692 }
4693 }
4694 coding->produced = str_as_multibyte (destination, bytes,
4695 coding->produced,
4696 &(coding->produced_char));
4697 }
4698
4699 switch (ccl->status)
4700 {
4701 case CCL_STAT_SUSPEND_BY_SRC:
4702 coding->result = CODING_FINISH_INSUFFICIENT_SRC;
4703 break;
4704 case CCL_STAT_SUSPEND_BY_DST:
4705 coding->result = CODING_FINISH_INSUFFICIENT_DST;
4706 break;
4707 case CCL_STAT_QUIT:
4708 case CCL_STAT_INVALID_CMD:
4709 coding->result = CODING_FINISH_INTERRUPT;
4710 break;
4711 default:
4712 coding->result = CODING_FINISH_NORMAL;
4713 break;
4714 }
4715 return coding->result;
4716 }
4717
4718 /* Decode EOL format of the text at PTR of BYTES length destructively
4719 according to CODING->eol_type. This is called after the CCL
4720 program produced a decoded text at PTR. If we do CRLF->LF
4721 conversion, update CODING->produced and CODING->produced_char. */
4722
4723 static void
4724 decode_eol_post_ccl (coding, ptr, bytes)
4725 struct coding_system *coding;
4726 unsigned char *ptr;
4727 int bytes;
4728 {
4729 Lisp_Object val, saved_coding_symbol;
4730 unsigned char *pend = ptr + bytes;
4731 int dummy;
4732
4733 /* Remember the current coding system symbol. We set it back when
4734 an inconsistent EOL is found so that `last-coding-system-used' is
4735 set to the coding system that doesn't specify EOL conversion. */
4736 saved_coding_symbol = coding->symbol;
4737
4738 coding->spec.ccl.cr_carryover = 0;
4739 if (coding->eol_type == CODING_EOL_UNDECIDED)
4740 {
4741 /* Here, to avoid the call of setup_coding_system, we directly
4742 call detect_eol_type. */
4743 coding->eol_type = detect_eol_type (ptr, bytes, &dummy);
4744 if (coding->eol_type == CODING_EOL_INCONSISTENT)
4745 coding->eol_type = CODING_EOL_LF;
4746 if (coding->eol_type != CODING_EOL_UNDECIDED)
4747 {
4748 val = Fget (coding->symbol, Qeol_type);
4749 if (VECTORP (val) && XVECTOR (val)->size == 3)
4750 coding->symbol = XVECTOR (val)->contents[coding->eol_type];
4751 }
4752 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4753 }
4754
4755 if (coding->eol_type == CODING_EOL_LF
4756 || coding->eol_type == CODING_EOL_UNDECIDED)
4757 {
4758 /* We have nothing to do. */
4759 ptr = pend;
4760 }
4761 else if (coding->eol_type == CODING_EOL_CRLF)
4762 {
4763 unsigned char *pstart = ptr, *p = ptr;
4764
4765 if (! (coding->mode & CODING_MODE_LAST_BLOCK)
4766 && *(pend - 1) == '\r')
4767 {
4768 /* If the last character is CR, we can't handle it here
4769 because LF will be in the not-yet-decoded source text.
4770 Record that the CR is not yet processed. */
4771 coding->spec.ccl.cr_carryover = 1;
4772 coding->produced--;
4773 coding->produced_char--;
4774 pend--;
4775 }
4776 while (ptr < pend)
4777 {
4778 if (*ptr == '\r')
4779 {
4780 if (ptr + 1 < pend && *(ptr + 1) == '\n')
4781 {
4782 *p++ = '\n';
4783 ptr += 2;
4784 }
4785 else
4786 {
4787 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4788 goto undo_eol_conversion;
4789 *p++ = *ptr++;
4790 }
4791 }
4792 else if (*ptr == '\n'
4793 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4794 goto undo_eol_conversion;
4795 else
4796 *p++ = *ptr++;
4797 continue;
4798
4799 undo_eol_conversion:
4800 /* We have faced with inconsistent EOL format at PTR.
4801 Convert all LFs before PTR back to CRLFs. */
4802 for (p--, ptr--; p >= pstart; p--)
4803 {
4804 if (*p == '\n')
4805 *ptr-- = '\n', *ptr-- = '\r';
4806 else
4807 *ptr-- = *p;
4808 }
4809 /* If carryover is recorded, cancel it because we don't
4810 convert CRLF anymore. */
4811 if (coding->spec.ccl.cr_carryover)
4812 {
4813 coding->spec.ccl.cr_carryover = 0;
4814 coding->produced++;
4815 coding->produced_char++;
4816 pend++;
4817 }
4818 p = ptr = pend;
4819 coding->eol_type = CODING_EOL_LF;
4820 coding->symbol = saved_coding_symbol;
4821 }
4822 if (p < pend)
4823 {
4824 /* As each two-byte sequence CRLF was converted to LF, (PEND
4825 - P) is the number of deleted characters. */
4826 coding->produced -= pend - p;
4827 coding->produced_char -= pend - p;
4828 }
4829 }
4830 else /* i.e. coding->eol_type == CODING_EOL_CR */
4831 {
4832 unsigned char *p = ptr;
4833
4834 for (; ptr < pend; ptr++)
4835 {
4836 if (*ptr == '\r')
4837 *ptr = '\n';
4838 else if (*ptr == '\n'
4839 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4840 {
4841 for (; p < ptr; p++)
4842 {
4843 if (*p == '\n')
4844 *p = '\r';
4845 }
4846 ptr = pend;
4847 coding->eol_type = CODING_EOL_LF;
4848 coding->symbol = saved_coding_symbol;
4849 }
4850 }
4851 }
4852 }
4853
4854 /* See "GENERAL NOTES about `decode_coding_XXX ()' functions". Before
4855 decoding, it may detect coding system and format of end-of-line if
4856 those are not yet decided. The source should be unibyte, the
4857 result is multibyte if CODING->dst_multibyte is nonzero, else
4858 unibyte. */
4859
4860 int
4861 decode_coding (coding, source, destination, src_bytes, dst_bytes)
4862 struct coding_system *coding;
4863 const unsigned char *source;
4864 unsigned char *destination;
4865 int src_bytes, dst_bytes;
4866 {
4867 int extra = 0;
4868
4869 if (coding->type == coding_type_undecided)
4870 detect_coding (coding, source, src_bytes);
4871
4872 if (coding->eol_type == CODING_EOL_UNDECIDED
4873 && coding->type != coding_type_ccl)
4874 {
4875 detect_eol (coding, source, src_bytes);
4876 /* We had better recover the original eol format if we
4877 encounter an inconsistent eol format while decoding. */
4878 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4879 }
4880
4881 coding->produced = coding->produced_char = 0;
4882 coding->consumed = coding->consumed_char = 0;
4883 coding->errors = 0;
4884 coding->result = CODING_FINISH_NORMAL;
4885
4886 switch (coding->type)
4887 {
4888 case coding_type_sjis:
4889 decode_coding_sjis_big5 (coding, source, destination,
4890 src_bytes, dst_bytes, 1);
4891 break;
4892
4893 case coding_type_iso2022:
4894 decode_coding_iso2022 (coding, source, destination,
4895 src_bytes, dst_bytes);
4896 break;
4897
4898 case coding_type_big5:
4899 decode_coding_sjis_big5 (coding, source, destination,
4900 src_bytes, dst_bytes, 0);
4901 break;
4902
4903 case coding_type_emacs_mule:
4904 decode_coding_emacs_mule (coding, source, destination,
4905 src_bytes, dst_bytes);
4906 break;
4907
4908 case coding_type_ccl:
4909 if (coding->spec.ccl.cr_carryover)
4910 {
4911 /* Put the CR which was not processed by the previous call
4912 of decode_eol_post_ccl in DESTINATION. It will be
4913 decoded together with the following LF by the call to
4914 decode_eol_post_ccl below. */
4915 *destination = '\r';
4916 coding->produced++;
4917 coding->produced_char++;
4918 dst_bytes--;
4919 extra = coding->spec.ccl.cr_carryover;
4920 }
4921 ccl_coding_driver (coding, source, destination + extra,
4922 src_bytes, dst_bytes, 0);
4923 if (coding->eol_type != CODING_EOL_LF)
4924 {
4925 coding->produced += extra;
4926 coding->produced_char += extra;
4927 decode_eol_post_ccl (coding, destination, coding->produced);
4928 }
4929 break;
4930
4931 default:
4932 decode_eol (coding, source, destination, src_bytes, dst_bytes);
4933 }
4934
4935 if (coding->result == CODING_FINISH_INSUFFICIENT_SRC
4936 && coding->mode & CODING_MODE_LAST_BLOCK
4937 && coding->consumed == src_bytes)
4938 coding->result = CODING_FINISH_NORMAL;
4939
4940 if (coding->mode & CODING_MODE_LAST_BLOCK
4941 && coding->result == CODING_FINISH_INSUFFICIENT_SRC)
4942 {
4943 const unsigned char *src = source + coding->consumed;
4944 unsigned char *dst = destination + coding->produced;
4945
4946 src_bytes -= coding->consumed;
4947 coding->errors++;
4948 if (COMPOSING_P (coding))
4949 DECODE_COMPOSITION_END ('1');
4950 while (src_bytes--)
4951 {
4952 int c = *src++;
4953 dst += CHAR_STRING (c, dst);
4954 coding->produced_char++;
4955 }
4956 coding->consumed = coding->consumed_char = src - source;
4957 coding->produced = dst - destination;
4958 coding->result = CODING_FINISH_NORMAL;
4959 }
4960
4961 if (!coding->dst_multibyte)
4962 {
4963 coding->produced = str_as_unibyte (destination, coding->produced);
4964 coding->produced_char = coding->produced;
4965 }
4966
4967 return coding->result;
4968 }
4969
4970 /* See "GENERAL NOTES about `encode_coding_XXX ()' functions". The
4971 multibyteness of the source is CODING->src_multibyte, the
4972 multibyteness of the result is always unibyte. */
4973
4974 int
4975 encode_coding (coding, source, destination, src_bytes, dst_bytes)
4976 struct coding_system *coding;
4977 const unsigned char *source;
4978 unsigned char *destination;
4979 int src_bytes, dst_bytes;
4980 {
4981 coding->produced = coding->produced_char = 0;
4982 coding->consumed = coding->consumed_char = 0;
4983 coding->errors = 0;
4984 coding->result = CODING_FINISH_NORMAL;
4985
4986 switch (coding->type)
4987 {
4988 case coding_type_sjis:
4989 encode_coding_sjis_big5 (coding, source, destination,
4990 src_bytes, dst_bytes, 1);
4991 break;
4992
4993 case coding_type_iso2022:
4994 encode_coding_iso2022 (coding, source, destination,
4995 src_bytes, dst_bytes);
4996 break;
4997
4998 case coding_type_big5:
4999 encode_coding_sjis_big5 (coding, source, destination,
5000 src_bytes, dst_bytes, 0);
5001 break;
5002
5003 case coding_type_emacs_mule:
5004 encode_coding_emacs_mule (coding, source, destination,
5005 src_bytes, dst_bytes);
5006 break;
5007
5008 case coding_type_ccl:
5009 ccl_coding_driver (coding, source, destination,
5010 src_bytes, dst_bytes, 1);
5011 break;
5012
5013 default:
5014 encode_eol (coding, source, destination, src_bytes, dst_bytes);
5015 }
5016
5017 if (coding->mode & CODING_MODE_LAST_BLOCK
5018 && coding->result == CODING_FINISH_INSUFFICIENT_SRC)
5019 {
5020 const unsigned char *src = source + coding->consumed;
5021 unsigned char *dst = destination + coding->produced;
5022
5023 if (coding->type == coding_type_iso2022)
5024 ENCODE_RESET_PLANE_AND_REGISTER;
5025 if (COMPOSING_P (coding))
5026 *dst++ = ISO_CODE_ESC, *dst++ = '1';
5027 if (coding->consumed < src_bytes)
5028 {
5029 int len = src_bytes - coding->consumed;
5030
5031 BCOPY_SHORT (src, dst, len);
5032 if (coding->src_multibyte)
5033 len = str_as_unibyte (dst, len);
5034 dst += len;
5035 coding->consumed = src_bytes;
5036 }
5037 coding->produced = coding->produced_char = dst - destination;
5038 coding->result = CODING_FINISH_NORMAL;
5039 }
5040
5041 if (coding->result == CODING_FINISH_INSUFFICIENT_SRC
5042 && coding->consumed == src_bytes)
5043 coding->result = CODING_FINISH_NORMAL;
5044
5045 return coding->result;
5046 }
5047
5048 /* Scan text in the region between *BEG and *END (byte positions),
5049 skip characters which we don't have to decode by coding system
5050 CODING at the head and tail, then set *BEG and *END to the region
5051 of the text we actually have to convert. The caller should move
5052 the gap out of the region in advance if the region is from a
5053 buffer.
5054
5055 If STR is not NULL, *BEG and *END are indices into STR. */
5056
5057 static void
5058 shrink_decoding_region (beg, end, coding, str)
5059 int *beg, *end;
5060 struct coding_system *coding;
5061 unsigned char *str;
5062 {
5063 unsigned char *begp_orig, *begp, *endp_orig, *endp, c;
5064 int eol_conversion;
5065 Lisp_Object translation_table;
5066
5067 if (coding->type == coding_type_ccl
5068 || coding->type == coding_type_undecided
5069 || coding->eol_type != CODING_EOL_LF
5070 || !NILP (coding->post_read_conversion)
5071 || coding->composing != COMPOSITION_DISABLED)
5072 {
5073 /* We can't skip any data. */
5074 return;
5075 }
5076 if (coding->type == coding_type_no_conversion
5077 || coding->type == coding_type_raw_text
5078 || coding->type == coding_type_emacs_mule)
5079 {
5080 /* We need no conversion, but don't have to skip any data here.
5081 Decoding routine handles them effectively anyway. */
5082 return;
5083 }
5084
5085 translation_table = coding->translation_table_for_decode;
5086 if (NILP (translation_table) && !NILP (Venable_character_translation))
5087 translation_table = Vstandard_translation_table_for_decode;
5088 if (CHAR_TABLE_P (translation_table))
5089 {
5090 int i;
5091 for (i = 0; i < 128; i++)
5092 if (!NILP (CHAR_TABLE_REF (translation_table, i)))
5093 break;
5094 if (i < 128)
5095 /* Some ASCII character should be translated. We give up
5096 shrinking. */
5097 return;
5098 }
5099
5100 if (coding->heading_ascii >= 0)
5101 /* Detection routine has already found how much we can skip at the
5102 head. */
5103 *beg += coding->heading_ascii;
5104
5105 if (str)
5106 {
5107 begp_orig = begp = str + *beg;
5108 endp_orig = endp = str + *end;
5109 }
5110 else
5111 {
5112 begp_orig = begp = BYTE_POS_ADDR (*beg);
5113 endp_orig = endp = begp + *end - *beg;
5114 }
5115
5116 eol_conversion = (coding->eol_type == CODING_EOL_CR
5117 || coding->eol_type == CODING_EOL_CRLF);
5118
5119 switch (coding->type)
5120 {
5121 case coding_type_sjis:
5122 case coding_type_big5:
5123 /* We can skip all ASCII characters at the head. */
5124 if (coding->heading_ascii < 0)
5125 {
5126 if (eol_conversion)
5127 while (begp < endp && *begp < 0x80 && *begp != '\r') begp++;
5128 else
5129 while (begp < endp && *begp < 0x80) begp++;
5130 }
5131 /* We can skip all ASCII characters at the tail except for the
5132 second byte of SJIS or BIG5 code. */
5133 if (eol_conversion)
5134 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\r') endp--;
5135 else
5136 while (begp < endp && endp[-1] < 0x80) endp--;
5137 /* Do not consider LF as ascii if preceded by CR, since that
5138 confuses eol decoding. */
5139 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
5140 endp++;
5141 if (begp < endp && endp < endp_orig && endp[-1] >= 0x80)
5142 endp++;
5143 break;
5144
5145 case coding_type_iso2022:
5146 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, 0) != CHARSET_ASCII)
5147 /* We can't skip any data. */
5148 break;
5149 if (coding->heading_ascii < 0)
5150 {
5151 /* We can skip all ASCII characters at the head except for a
5152 few control codes. */
5153 while (begp < endp && (c = *begp) < 0x80
5154 && c != ISO_CODE_CR && c != ISO_CODE_SO
5155 && c != ISO_CODE_SI && c != ISO_CODE_ESC
5156 && (!eol_conversion || c != ISO_CODE_LF))
5157 begp++;
5158 }
5159 switch (coding->category_idx)
5160 {
5161 case CODING_CATEGORY_IDX_ISO_8_1:
5162 case CODING_CATEGORY_IDX_ISO_8_2:
5163 /* We can skip all ASCII characters at the tail. */
5164 if (eol_conversion)
5165 while (begp < endp && (c = endp[-1]) < 0x80 && c != '\r') endp--;
5166 else
5167 while (begp < endp && endp[-1] < 0x80) endp--;
5168 /* Do not consider LF as ascii if preceded by CR, since that
5169 confuses eol decoding. */
5170 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
5171 endp++;
5172 break;
5173
5174 case CODING_CATEGORY_IDX_ISO_7:
5175 case CODING_CATEGORY_IDX_ISO_7_TIGHT:
5176 {
5177 /* We can skip all characters at the tail except for 8-bit
5178 codes and ESC and the following 2-byte at the tail. */
5179 unsigned char *eight_bit = NULL;
5180
5181 if (eol_conversion)
5182 while (begp < endp
5183 && (c = endp[-1]) != ISO_CODE_ESC && c != '\r')
5184 {
5185 if (!eight_bit && c & 0x80) eight_bit = endp;
5186 endp--;
5187 }
5188 else
5189 while (begp < endp
5190 && (c = endp[-1]) != ISO_CODE_ESC)
5191 {
5192 if (!eight_bit && c & 0x80) eight_bit = endp;
5193 endp--;
5194 }
5195 /* Do not consider LF as ascii if preceded by CR, since that
5196 confuses eol decoding. */
5197 if (begp < endp && endp < endp_orig
5198 && endp[-1] == '\r' && endp[0] == '\n')
5199 endp++;
5200 if (begp < endp && endp[-1] == ISO_CODE_ESC)
5201 {
5202 if (endp + 1 < endp_orig && end[0] == '(' && end[1] == 'B')
5203 /* This is an ASCII designation sequence. We can
5204 surely skip the tail. But, if we have
5205 encountered an 8-bit code, skip only the codes
5206 after that. */
5207 endp = eight_bit ? eight_bit : endp + 2;
5208 else
5209 /* Hmmm, we can't skip the tail. */
5210 endp = endp_orig;
5211 }
5212 else if (eight_bit)
5213 endp = eight_bit;
5214 }
5215 }
5216 break;
5217
5218 default:
5219 abort ();
5220 }
5221 *beg += begp - begp_orig;
5222 *end += endp - endp_orig;
5223 return;
5224 }
5225
5226 /* Like shrink_decoding_region but for encoding. */
5227
5228 static void
5229 shrink_encoding_region (beg, end, coding, str)
5230 int *beg, *end;
5231 struct coding_system *coding;
5232 unsigned char *str;
5233 {
5234 unsigned char *begp_orig, *begp, *endp_orig, *endp;
5235 int eol_conversion;
5236 Lisp_Object translation_table;
5237
5238 if (coding->type == coding_type_ccl
5239 || coding->eol_type == CODING_EOL_CRLF
5240 || coding->eol_type == CODING_EOL_CR
5241 || (coding->cmp_data && coding->cmp_data->used > 0))
5242 {
5243 /* We can't skip any data. */
5244 return;
5245 }
5246 if (coding->type == coding_type_no_conversion
5247 || coding->type == coding_type_raw_text
5248 || coding->type == coding_type_emacs_mule
5249 || coding->type == coding_type_undecided)
5250 {
5251 /* We need no conversion, but don't have to skip any data here.
5252 Encoding routine handles them effectively anyway. */
5253 return;
5254 }
5255
5256 translation_table = coding->translation_table_for_encode;
5257 if (NILP (translation_table) && !NILP (Venable_character_translation))
5258 translation_table = Vstandard_translation_table_for_encode;
5259 if (CHAR_TABLE_P (translation_table))
5260 {
5261 int i;
5262 for (i = 0; i < 128; i++)
5263 if (!NILP (CHAR_TABLE_REF (translation_table, i)))
5264 break;
5265 if (i < 128)
5266 /* Some ASCII character should be translated. We give up
5267 shrinking. */
5268 return;
5269 }
5270
5271 if (str)
5272 {
5273 begp_orig = begp = str + *beg;
5274 endp_orig = endp = str + *end;
5275 }
5276 else
5277 {
5278 begp_orig = begp = BYTE_POS_ADDR (*beg);
5279 endp_orig = endp = begp + *end - *beg;
5280 }
5281
5282 eol_conversion = (coding->eol_type == CODING_EOL_CR
5283 || coding->eol_type == CODING_EOL_CRLF);
5284
5285 /* Here, we don't have to check coding->pre_write_conversion because
5286 the caller is expected to have handled it already. */
5287 switch (coding->type)
5288 {
5289 case coding_type_iso2022:
5290 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, 0) != CHARSET_ASCII)
5291 /* We can't skip any data. */
5292 break;
5293 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL)
5294 {
5295 unsigned char *bol = begp;
5296 while (begp < endp && *begp < 0x80)
5297 {
5298 begp++;
5299 if (begp[-1] == '\n')
5300 bol = begp;
5301 }
5302 begp = bol;
5303 goto label_skip_tail;
5304 }
5305 /* fall down ... */
5306
5307 case coding_type_sjis:
5308 case coding_type_big5:
5309 /* We can skip all ASCII characters at the head and tail. */
5310 if (eol_conversion)
5311 while (begp < endp && *begp < 0x80 && *begp != '\n') begp++;
5312 else
5313 while (begp < endp && *begp < 0x80) begp++;
5314 label_skip_tail:
5315 if (eol_conversion)
5316 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\n') endp--;
5317 else
5318 while (begp < endp && *(endp - 1) < 0x80) endp--;
5319 break;
5320
5321 default:
5322 abort ();
5323 }
5324
5325 *beg += begp - begp_orig;
5326 *end += endp - endp_orig;
5327 return;
5328 }
5329
5330 /* As shrinking conversion region requires some overhead, we don't try
5331 shrinking if the length of conversion region is less than this
5332 value. */
5333 static int shrink_conversion_region_threshhold = 1024;
5334
5335 #define SHRINK_CONVERSION_REGION(beg, end, coding, str, encodep) \
5336 do { \
5337 if (*(end) - *(beg) > shrink_conversion_region_threshhold) \
5338 { \
5339 if (encodep) shrink_encoding_region (beg, end, coding, str); \
5340 else shrink_decoding_region (beg, end, coding, str); \
5341 } \
5342 } while (0)
5343
5344 static Lisp_Object
5345 code_convert_region_unwind (arg)
5346 Lisp_Object arg;
5347 {
5348 inhibit_pre_post_conversion = 0;
5349 Vlast_coding_system_used = arg;
5350 return Qnil;
5351 }
5352
5353 /* Store information about all compositions in the range FROM and TO
5354 of OBJ in memory blocks pointed by CODING->cmp_data. OBJ is a
5355 buffer or a string, defaults to the current buffer. */
5356
5357 void
5358 coding_save_composition (coding, from, to, obj)
5359 struct coding_system *coding;
5360 int from, to;
5361 Lisp_Object obj;
5362 {
5363 Lisp_Object prop;
5364 int start, end;
5365
5366 if (coding->composing == COMPOSITION_DISABLED)
5367 return;
5368 if (!coding->cmp_data)
5369 coding_allocate_composition_data (coding, from);
5370 if (!find_composition (from, to, &start, &end, &prop, obj)
5371 || end > to)
5372 return;
5373 if (start < from
5374 && (!find_composition (end, to, &start, &end, &prop, obj)
5375 || end > to))
5376 return;
5377 coding->composing = COMPOSITION_NO;
5378 do
5379 {
5380 if (COMPOSITION_VALID_P (start, end, prop))
5381 {
5382 enum composition_method method = COMPOSITION_METHOD (prop);
5383 if (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH
5384 >= COMPOSITION_DATA_SIZE)
5385 coding_allocate_composition_data (coding, from);
5386 /* For relative composition, we remember start and end
5387 positions, for the other compositions, we also remember
5388 components. */
5389 CODING_ADD_COMPOSITION_START (coding, start - from, method);
5390 if (method != COMPOSITION_RELATIVE)
5391 {
5392 /* We must store a*/
5393 Lisp_Object val, ch;
5394
5395 val = COMPOSITION_COMPONENTS (prop);
5396 if (CONSP (val))
5397 while (CONSP (val))
5398 {
5399 ch = XCAR (val), val = XCDR (val);
5400 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (ch));
5401 }
5402 else if (VECTORP (val) || STRINGP (val))
5403 {
5404 int len = (VECTORP (val)
5405 ? XVECTOR (val)->size : SCHARS (val));
5406 int i;
5407 for (i = 0; i < len; i++)
5408 {
5409 ch = (STRINGP (val)
5410 ? Faref (val, make_number (i))
5411 : XVECTOR (val)->contents[i]);
5412 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (ch));
5413 }
5414 }
5415 else /* INTEGERP (val) */
5416 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (val));
5417 }
5418 CODING_ADD_COMPOSITION_END (coding, end - from);
5419 }
5420 start = end;
5421 }
5422 while (start < to
5423 && find_composition (start, to, &start, &end, &prop, obj)
5424 && end <= to);
5425
5426 /* Make coding->cmp_data point to the first memory block. */
5427 while (coding->cmp_data->prev)
5428 coding->cmp_data = coding->cmp_data->prev;
5429 coding->cmp_data_start = 0;
5430 }
5431
5432 /* Reflect the saved information about compositions to OBJ.
5433 CODING->cmp_data points to a memory block for the information. OBJ
5434 is a buffer or a string, defaults to the current buffer. */
5435
5436 void
5437 coding_restore_composition (coding, obj)
5438 struct coding_system *coding;
5439 Lisp_Object obj;
5440 {
5441 struct composition_data *cmp_data = coding->cmp_data;
5442
5443 if (!cmp_data)
5444 return;
5445
5446 while (cmp_data->prev)
5447 cmp_data = cmp_data->prev;
5448
5449 while (cmp_data)
5450 {
5451 int i;
5452
5453 for (i = 0; i < cmp_data->used && cmp_data->data[i] > 0;
5454 i += cmp_data->data[i])
5455 {
5456 int *data = cmp_data->data + i;
5457 enum composition_method method = (enum composition_method) data[3];
5458 Lisp_Object components;
5459
5460 if (data[0] < 0 || i + data[0] > cmp_data->used)
5461 /* Invalid composition data. */
5462 break;
5463
5464 if (method == COMPOSITION_RELATIVE)
5465 components = Qnil;
5466 else
5467 {
5468 int len = data[0] - 4, j;
5469 Lisp_Object args[MAX_COMPOSITION_COMPONENTS * 2 - 1];
5470
5471 if (method == COMPOSITION_WITH_RULE_ALTCHARS
5472 && len % 2 == 0)
5473 len --;
5474 if (len < 1)
5475 /* Invalid composition data. */
5476 break;
5477 for (j = 0; j < len; j++)
5478 args[j] = make_number (data[4 + j]);
5479 components = (method == COMPOSITION_WITH_ALTCHARS
5480 ? Fstring (len, args)
5481 : Fvector (len, args));
5482 }
5483 compose_text (data[1], data[2], components, Qnil, obj);
5484 }
5485 cmp_data = cmp_data->next;
5486 }
5487 }
5488
5489 /* Decode (if ENCODEP is zero) or encode (if ENCODEP is nonzero) the
5490 text from FROM to TO (byte positions are FROM_BYTE and TO_BYTE) by
5491 coding system CODING, and return the status code of code conversion
5492 (currently, this value has no meaning).
5493
5494 How many characters (and bytes) are converted to how many
5495 characters (and bytes) are recorded in members of the structure
5496 CODING.
5497
5498 If REPLACE is nonzero, we do various things as if the original text
5499 is deleted and a new text is inserted. See the comments in
5500 replace_range (insdel.c) to know what we are doing.
5501
5502 If REPLACE is zero, it is assumed that the source text is unibyte.
5503 Otherwise, it is assumed that the source text is multibyte. */
5504
5505 int
5506 code_convert_region (from, from_byte, to, to_byte, coding, encodep, replace)
5507 int from, from_byte, to, to_byte, encodep, replace;
5508 struct coding_system *coding;
5509 {
5510 int len = to - from, len_byte = to_byte - from_byte;
5511 int nchars_del = 0, nbytes_del = 0;
5512 int require, inserted, inserted_byte;
5513 int head_skip, tail_skip, total_skip = 0;
5514 Lisp_Object saved_coding_symbol;
5515 int first = 1;
5516 unsigned char *src, *dst;
5517 Lisp_Object deletion;
5518 int orig_point = PT, orig_len = len;
5519 int prev_Z;
5520 int multibyte_p = !NILP (current_buffer->enable_multibyte_characters);
5521
5522 deletion = Qnil;
5523 saved_coding_symbol = coding->symbol;
5524
5525 if (from < PT && PT < to)
5526 {
5527 TEMP_SET_PT_BOTH (from, from_byte);
5528 orig_point = from;
5529 }
5530
5531 if (replace)
5532 {
5533 int saved_from = from;
5534 int saved_inhibit_modification_hooks;
5535
5536 prepare_to_modify_buffer (from, to, &from);
5537 if (saved_from != from)
5538 {
5539 to = from + len;
5540 from_byte = CHAR_TO_BYTE (from), to_byte = CHAR_TO_BYTE (to);
5541 len_byte = to_byte - from_byte;
5542 }
5543
5544 /* The code conversion routine can not preserve text properties
5545 for now. So, we must remove all text properties in the
5546 region. Here, we must suppress all modification hooks. */
5547 saved_inhibit_modification_hooks = inhibit_modification_hooks;
5548 inhibit_modification_hooks = 1;
5549 Fset_text_properties (make_number (from), make_number (to), Qnil, Qnil);
5550 inhibit_modification_hooks = saved_inhibit_modification_hooks;
5551 }
5552
5553 if (! encodep && CODING_REQUIRE_DETECTION (coding))
5554 {
5555 /* We must detect encoding of text and eol format. */
5556
5557 if (from < GPT && to > GPT)
5558 move_gap_both (from, from_byte);
5559 if (coding->type == coding_type_undecided)
5560 {
5561 detect_coding (coding, BYTE_POS_ADDR (from_byte), len_byte);
5562 if (coding->type == coding_type_undecided)
5563 {
5564 /* It seems that the text contains only ASCII, but we
5565 should not leave it undecided because the deeper
5566 decoding routine (decode_coding) tries to detect the
5567 encodings again in vain. */
5568 coding->type = coding_type_emacs_mule;
5569 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
5570 /* As emacs-mule decoder will handle composition, we
5571 need this setting to allocate coding->cmp_data
5572 later. */
5573 coding->composing = COMPOSITION_NO;
5574 }
5575 }
5576 if (coding->eol_type == CODING_EOL_UNDECIDED
5577 && coding->type != coding_type_ccl)
5578 {
5579 detect_eol (coding, BYTE_POS_ADDR (from_byte), len_byte);
5580 if (coding->eol_type == CODING_EOL_UNDECIDED)
5581 coding->eol_type = CODING_EOL_LF;
5582 /* We had better recover the original eol format if we
5583 encounter an inconsistent eol format while decoding. */
5584 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
5585 }
5586 }
5587
5588 /* Now we convert the text. */
5589
5590 /* For encoding, we must process pre-write-conversion in advance. */
5591 if (! inhibit_pre_post_conversion
5592 && encodep
5593 && SYMBOLP (coding->pre_write_conversion)
5594 && ! NILP (Ffboundp (coding->pre_write_conversion)))
5595 {
5596 /* The function in pre-write-conversion may put a new text in a
5597 new buffer. */
5598 struct buffer *prev = current_buffer;
5599 Lisp_Object new;
5600
5601 record_unwind_protect (code_convert_region_unwind,
5602 Vlast_coding_system_used);
5603 /* We should not call any more pre-write/post-read-conversion
5604 functions while this pre-write-conversion is running. */
5605 inhibit_pre_post_conversion = 1;
5606 call2 (coding->pre_write_conversion,
5607 make_number (from), make_number (to));
5608 inhibit_pre_post_conversion = 0;
5609 /* Discard the unwind protect. */
5610 specpdl_ptr--;
5611
5612 if (current_buffer != prev)
5613 {
5614 len = ZV - BEGV;
5615 new = Fcurrent_buffer ();
5616 set_buffer_internal_1 (prev);
5617 del_range_2 (from, from_byte, to, to_byte, 0);
5618 TEMP_SET_PT_BOTH (from, from_byte);
5619 insert_from_buffer (XBUFFER (new), 1, len, 0);
5620 Fkill_buffer (new);
5621 if (orig_point >= to)
5622 orig_point += len - orig_len;
5623 else if (orig_point > from)
5624 orig_point = from;
5625 orig_len = len;
5626 to = from + len;
5627 from_byte = CHAR_TO_BYTE (from);
5628 to_byte = CHAR_TO_BYTE (to);
5629 len_byte = to_byte - from_byte;
5630 TEMP_SET_PT_BOTH (from, from_byte);
5631 }
5632 }
5633
5634 if (replace)
5635 {
5636 if (! EQ (current_buffer->undo_list, Qt))
5637 deletion = make_buffer_string_both (from, from_byte, to, to_byte, 1);
5638 else
5639 {
5640 nchars_del = to - from;
5641 nbytes_del = to_byte - from_byte;
5642 }
5643 }
5644
5645 if (coding->composing != COMPOSITION_DISABLED)
5646 {
5647 if (encodep)
5648 coding_save_composition (coding, from, to, Fcurrent_buffer ());
5649 else
5650 coding_allocate_composition_data (coding, from);
5651 }
5652
5653 /* Try to skip the heading and tailing ASCIIs. */
5654 if (coding->type != coding_type_ccl)
5655 {
5656 int from_byte_orig = from_byte, to_byte_orig = to_byte;
5657
5658 if (from < GPT && GPT < to)
5659 move_gap_both (from, from_byte);
5660 SHRINK_CONVERSION_REGION (&from_byte, &to_byte, coding, NULL, encodep);
5661 if (from_byte == to_byte
5662 && (encodep || NILP (coding->post_read_conversion))
5663 && ! CODING_REQUIRE_FLUSHING (coding))
5664 {
5665 coding->produced = len_byte;
5666 coding->produced_char = len;
5667 if (!replace)
5668 /* We must record and adjust for this new text now. */
5669 adjust_after_insert (from, from_byte_orig, to, to_byte_orig, len);
5670 return 0;
5671 }
5672
5673 head_skip = from_byte - from_byte_orig;
5674 tail_skip = to_byte_orig - to_byte;
5675 total_skip = head_skip + tail_skip;
5676 from += head_skip;
5677 to -= tail_skip;
5678 len -= total_skip; len_byte -= total_skip;
5679 }
5680
5681 /* For conversion, we must put the gap before the text in addition to
5682 making the gap larger for efficient decoding. The required gap
5683 size starts from 2000 which is the magic number used in make_gap.
5684 But, after one batch of conversion, it will be incremented if we
5685 find that it is not enough . */
5686 require = 2000;
5687
5688 if (GAP_SIZE < require)
5689 make_gap (require - GAP_SIZE);
5690 move_gap_both (from, from_byte);
5691
5692 inserted = inserted_byte = 0;
5693
5694 GAP_SIZE += len_byte;
5695 ZV -= len;
5696 Z -= len;
5697 ZV_BYTE -= len_byte;
5698 Z_BYTE -= len_byte;
5699
5700 if (GPT - BEG < BEG_UNCHANGED)
5701 BEG_UNCHANGED = GPT - BEG;
5702 if (Z - GPT < END_UNCHANGED)
5703 END_UNCHANGED = Z - GPT;
5704
5705 if (!encodep && coding->src_multibyte)
5706 {
5707 /* Decoding routines expects that the source text is unibyte.
5708 We must convert 8-bit characters of multibyte form to
5709 unibyte. */
5710 int len_byte_orig = len_byte;
5711 len_byte = str_as_unibyte (GAP_END_ADDR - len_byte, len_byte);
5712 if (len_byte < len_byte_orig)
5713 safe_bcopy (GAP_END_ADDR - len_byte_orig, GAP_END_ADDR - len_byte,
5714 len_byte);
5715 coding->src_multibyte = 0;
5716 }
5717
5718 for (;;)
5719 {
5720 int result;
5721
5722 /* The buffer memory is now:
5723 +--------+converted-text+---------+-------original-text-------+---+
5724 |<-from->|<--inserted-->|---------|<--------len_byte--------->|---|
5725 |<---------------------- GAP ----------------------->| */
5726 src = GAP_END_ADDR - len_byte;
5727 dst = GPT_ADDR + inserted_byte;
5728
5729 if (encodep)
5730 result = encode_coding (coding, src, dst, len_byte, 0);
5731 else
5732 {
5733 if (coding->composing != COMPOSITION_DISABLED)
5734 coding->cmp_data->char_offset = from + inserted;
5735 result = decode_coding (coding, src, dst, len_byte, 0);
5736 }
5737
5738 /* The buffer memory is now:
5739 +--------+-------converted-text----+--+------original-text----+---+
5740 |<-from->|<-inserted->|<-produced->|--|<-(len_byte-consumed)->|---|
5741 |<---------------------- GAP ----------------------->| */
5742
5743 inserted += coding->produced_char;
5744 inserted_byte += coding->produced;
5745 len_byte -= coding->consumed;
5746
5747 if (result == CODING_FINISH_INSUFFICIENT_CMP)
5748 {
5749 coding_allocate_composition_data (coding, from + inserted);
5750 continue;
5751 }
5752
5753 src += coding->consumed;
5754 dst += coding->produced;
5755
5756 if (result == CODING_FINISH_NORMAL)
5757 {
5758 src += len_byte;
5759 break;
5760 }
5761 if (! encodep && result == CODING_FINISH_INCONSISTENT_EOL)
5762 {
5763 unsigned char *pend = dst, *p = pend - inserted_byte;
5764 Lisp_Object eol_type;
5765
5766 /* Encode LFs back to the original eol format (CR or CRLF). */
5767 if (coding->eol_type == CODING_EOL_CR)
5768 {
5769 while (p < pend) if (*p++ == '\n') p[-1] = '\r';
5770 }
5771 else
5772 {
5773 int count = 0;
5774
5775 while (p < pend) if (*p++ == '\n') count++;
5776 if (src - dst < count)
5777 {
5778 /* We don't have sufficient room for encoding LFs
5779 back to CRLF. We must record converted and
5780 not-yet-converted text back to the buffer
5781 content, enlarge the gap, then record them out of
5782 the buffer contents again. */
5783 int add = len_byte + inserted_byte;
5784
5785 GAP_SIZE -= add;
5786 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
5787 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5788 make_gap (count - GAP_SIZE);
5789 GAP_SIZE += add;
5790 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
5791 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5792 /* Don't forget to update SRC, DST, and PEND. */
5793 src = GAP_END_ADDR - len_byte;
5794 dst = GPT_ADDR + inserted_byte;
5795 pend = dst;
5796 }
5797 inserted += count;
5798 inserted_byte += count;
5799 coding->produced += count;
5800 p = dst = pend + count;
5801 while (count)
5802 {
5803 *--p = *--pend;
5804 if (*p == '\n') count--, *--p = '\r';
5805 }
5806 }
5807
5808 /* Suppress eol-format conversion in the further conversion. */
5809 coding->eol_type = CODING_EOL_LF;
5810
5811 /* Set the coding system symbol to that for Unix-like EOL. */
5812 eol_type = Fget (saved_coding_symbol, Qeol_type);
5813 if (VECTORP (eol_type)
5814 && XVECTOR (eol_type)->size == 3
5815 && SYMBOLP (XVECTOR (eol_type)->contents[CODING_EOL_LF]))
5816 coding->symbol = XVECTOR (eol_type)->contents[CODING_EOL_LF];
5817 else
5818 coding->symbol = saved_coding_symbol;
5819
5820 continue;
5821 }
5822 if (len_byte <= 0)
5823 {
5824 if (coding->type != coding_type_ccl
5825 || coding->mode & CODING_MODE_LAST_BLOCK)
5826 break;
5827 coding->mode |= CODING_MODE_LAST_BLOCK;
5828 continue;
5829 }
5830 if (result == CODING_FINISH_INSUFFICIENT_SRC)
5831 {
5832 /* The source text ends in invalid codes. Let's just
5833 make them valid buffer contents, and finish conversion. */
5834 if (multibyte_p)
5835 {
5836 unsigned char *start = dst;
5837
5838 inserted += len_byte;
5839 while (len_byte--)
5840 {
5841 int c = *src++;
5842 dst += CHAR_STRING (c, dst);
5843 }
5844
5845 inserted_byte += dst - start;
5846 }
5847 else
5848 {
5849 inserted += len_byte;
5850 inserted_byte += len_byte;
5851 while (len_byte--)
5852 *dst++ = *src++;
5853 }
5854 break;
5855 }
5856 if (result == CODING_FINISH_INTERRUPT)
5857 {
5858 /* The conversion procedure was interrupted by a user. */
5859 break;
5860 }
5861 /* Now RESULT == CODING_FINISH_INSUFFICIENT_DST */
5862 if (coding->consumed < 1)
5863 {
5864 /* It's quite strange to require more memory without
5865 consuming any bytes. Perhaps CCL program bug. */
5866 break;
5867 }
5868 if (first)
5869 {
5870 /* We have just done the first batch of conversion which was
5871 stopped because of insufficient gap. Let's reconsider the
5872 required gap size (i.e. SRT - DST) now.
5873
5874 We have converted ORIG bytes (== coding->consumed) into
5875 NEW bytes (coding->produced). To convert the remaining
5876 LEN bytes, we may need REQUIRE bytes of gap, where:
5877 REQUIRE + LEN_BYTE = LEN_BYTE * (NEW / ORIG)
5878 REQUIRE = LEN_BYTE * (NEW - ORIG) / ORIG
5879 Here, we are sure that NEW >= ORIG. */
5880 float ratio;
5881
5882 if (coding->produced <= coding->consumed)
5883 {
5884 /* This happens because of CCL-based coding system with
5885 eol-type CRLF. */
5886 require = 0;
5887 }
5888 else
5889 {
5890 ratio = (coding->produced - coding->consumed) / coding->consumed;
5891 require = len_byte * ratio;
5892 }
5893 first = 0;
5894 }
5895 if ((src - dst) < (require + 2000))
5896 {
5897 /* See the comment above the previous call of make_gap. */
5898 int add = len_byte + inserted_byte;
5899
5900 GAP_SIZE -= add;
5901 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
5902 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5903 make_gap (require + 2000);
5904 GAP_SIZE += add;
5905 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
5906 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5907 }
5908 }
5909 if (src - dst > 0) *dst = 0; /* Put an anchor. */
5910
5911 if (encodep && coding->dst_multibyte)
5912 {
5913 /* The output is unibyte. We must convert 8-bit characters to
5914 multibyte form. */
5915 if (inserted_byte * 2 > GAP_SIZE)
5916 {
5917 GAP_SIZE -= inserted_byte;
5918 ZV += inserted_byte; Z += inserted_byte;
5919 ZV_BYTE += inserted_byte; Z_BYTE += inserted_byte;
5920 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5921 make_gap (inserted_byte - GAP_SIZE);
5922 GAP_SIZE += inserted_byte;
5923 ZV -= inserted_byte; Z -= inserted_byte;
5924 ZV_BYTE -= inserted_byte; Z_BYTE -= inserted_byte;
5925 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5926 }
5927 inserted_byte = str_to_multibyte (GPT_ADDR, GAP_SIZE, inserted_byte);
5928 }
5929
5930 /* If we shrank the conversion area, adjust it now. */
5931 if (total_skip > 0)
5932 {
5933 if (tail_skip > 0)
5934 safe_bcopy (GAP_END_ADDR, GPT_ADDR + inserted_byte, tail_skip);
5935 inserted += total_skip; inserted_byte += total_skip;
5936 GAP_SIZE += total_skip;
5937 GPT -= head_skip; GPT_BYTE -= head_skip;
5938 ZV -= total_skip; ZV_BYTE -= total_skip;
5939 Z -= total_skip; Z_BYTE -= total_skip;
5940 from -= head_skip; from_byte -= head_skip;
5941 to += tail_skip; to_byte += tail_skip;
5942 }
5943
5944 prev_Z = Z;
5945 if (! EQ (current_buffer->undo_list, Qt))
5946 adjust_after_replace (from, from_byte, deletion, inserted, inserted_byte);
5947 else
5948 adjust_after_replace_noundo (from, from_byte, nchars_del, nbytes_del,
5949 inserted, inserted_byte);
5950 inserted = Z - prev_Z;
5951
5952 if (!encodep && coding->cmp_data && coding->cmp_data->used)
5953 coding_restore_composition (coding, Fcurrent_buffer ());
5954 coding_free_composition_data (coding);
5955
5956 if (! inhibit_pre_post_conversion
5957 && ! encodep && ! NILP (coding->post_read_conversion))
5958 {
5959 Lisp_Object val;
5960 Lisp_Object saved_coding_system;
5961
5962 if (from != PT)
5963 TEMP_SET_PT_BOTH (from, from_byte);
5964 prev_Z = Z;
5965 record_unwind_protect (code_convert_region_unwind,
5966 Vlast_coding_system_used);
5967 saved_coding_system = Vlast_coding_system_used;
5968 Vlast_coding_system_used = coding->symbol;
5969 /* We should not call any more pre-write/post-read-conversion
5970 functions while this post-read-conversion is running. */
5971 inhibit_pre_post_conversion = 1;
5972 val = call1 (coding->post_read_conversion, make_number (inserted));
5973 inhibit_pre_post_conversion = 0;
5974 coding->symbol = Vlast_coding_system_used;
5975 Vlast_coding_system_used = saved_coding_system;
5976 /* Discard the unwind protect. */
5977 specpdl_ptr--;
5978 CHECK_NUMBER (val);
5979 inserted += Z - prev_Z;
5980 }
5981
5982 if (orig_point >= from)
5983 {
5984 if (orig_point >= from + orig_len)
5985 orig_point += inserted - orig_len;
5986 else
5987 orig_point = from;
5988 TEMP_SET_PT (orig_point);
5989 }
5990
5991 if (replace)
5992 {
5993 signal_after_change (from, to - from, inserted);
5994 update_compositions (from, from + inserted, CHECK_BORDER);
5995 }
5996
5997 {
5998 coding->consumed = to_byte - from_byte;
5999 coding->consumed_char = to - from;
6000 coding->produced = inserted_byte;
6001 coding->produced_char = inserted;
6002 }
6003
6004 return 0;
6005 }
6006
6007 Lisp_Object
6008 run_pre_post_conversion_on_str (str, coding, encodep)
6009 Lisp_Object str;
6010 struct coding_system *coding;
6011 int encodep;
6012 {
6013 int count = SPECPDL_INDEX ();
6014 struct gcpro gcpro1, gcpro2;
6015 int multibyte = STRING_MULTIBYTE (str);
6016 Lisp_Object buffer;
6017 struct buffer *buf;
6018 Lisp_Object old_deactivate_mark;
6019
6020 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
6021 record_unwind_protect (code_convert_region_unwind,
6022 Vlast_coding_system_used);
6023 /* It is not crucial to specbind this. */
6024 old_deactivate_mark = Vdeactivate_mark;
6025 GCPRO2 (str, old_deactivate_mark);
6026
6027 buffer = Fget_buffer_create (build_string (" *code-converting-work*"));
6028 buf = XBUFFER (buffer);
6029
6030 delete_all_overlays (buf);
6031 buf->directory = current_buffer->directory;
6032 buf->read_only = Qnil;
6033 buf->filename = Qnil;
6034 buf->undo_list = Qt;
6035 eassert (buf->overlays_before == NULL);
6036 eassert (buf->overlays_after == NULL);
6037
6038 set_buffer_internal (buf);
6039 /* We must insert the contents of STR as is without
6040 unibyte<->multibyte conversion. For that, we adjust the
6041 multibyteness of the working buffer to that of STR. */
6042 Ferase_buffer ();
6043 buf->enable_multibyte_characters = multibyte ? Qt : Qnil;
6044
6045 insert_from_string (str, 0, 0,
6046 SCHARS (str), SBYTES (str), 0);
6047 UNGCPRO;
6048 inhibit_pre_post_conversion = 1;
6049 if (encodep)
6050 call2 (coding->pre_write_conversion, make_number (BEG), make_number (Z));
6051 else
6052 {
6053 Vlast_coding_system_used = coding->symbol;
6054 TEMP_SET_PT_BOTH (BEG, BEG_BYTE);
6055 call1 (coding->post_read_conversion, make_number (Z - BEG));
6056 coding->symbol = Vlast_coding_system_used;
6057 }
6058 inhibit_pre_post_conversion = 0;
6059 Vdeactivate_mark = old_deactivate_mark;
6060 str = make_buffer_string (BEG, Z, 1);
6061 return unbind_to (count, str);
6062 }
6063
6064 Lisp_Object
6065 decode_coding_string (str, coding, nocopy)
6066 Lisp_Object str;
6067 struct coding_system *coding;
6068 int nocopy;
6069 {
6070 int len;
6071 struct conversion_buffer buf;
6072 int from, to_byte;
6073 Lisp_Object saved_coding_symbol;
6074 int result;
6075 int require_decoding;
6076 int shrinked_bytes = 0;
6077 Lisp_Object newstr;
6078 int consumed, consumed_char, produced, produced_char;
6079
6080 from = 0;
6081 to_byte = SBYTES (str);
6082
6083 saved_coding_symbol = coding->symbol;
6084 coding->src_multibyte = STRING_MULTIBYTE (str);
6085 coding->dst_multibyte = 1;
6086 if (CODING_REQUIRE_DETECTION (coding))
6087 {
6088 /* See the comments in code_convert_region. */
6089 if (coding->type == coding_type_undecided)
6090 {
6091 detect_coding (coding, SDATA (str), to_byte);
6092 if (coding->type == coding_type_undecided)
6093 {
6094 coding->type = coding_type_emacs_mule;
6095 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
6096 /* As emacs-mule decoder will handle composition, we
6097 need this setting to allocate coding->cmp_data
6098 later. */
6099 coding->composing = COMPOSITION_NO;
6100 }
6101 }
6102 if (coding->eol_type == CODING_EOL_UNDECIDED
6103 && coding->type != coding_type_ccl)
6104 {
6105 saved_coding_symbol = coding->symbol;
6106 detect_eol (coding, SDATA (str), to_byte);
6107 if (coding->eol_type == CODING_EOL_UNDECIDED)
6108 coding->eol_type = CODING_EOL_LF;
6109 /* We had better recover the original eol format if we
6110 encounter an inconsistent eol format while decoding. */
6111 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
6112 }
6113 }
6114
6115 if (coding->type == coding_type_no_conversion
6116 || coding->type == coding_type_raw_text)
6117 coding->dst_multibyte = 0;
6118
6119 require_decoding = CODING_REQUIRE_DECODING (coding);
6120
6121 if (STRING_MULTIBYTE (str))
6122 {
6123 /* Decoding routines expect the source text to be unibyte. */
6124 str = Fstring_as_unibyte (str);
6125 to_byte = SBYTES (str);
6126 nocopy = 1;
6127 coding->src_multibyte = 0;
6128 }
6129
6130 /* Try to skip the heading and tailing ASCIIs. */
6131 if (require_decoding && coding->type != coding_type_ccl)
6132 {
6133 SHRINK_CONVERSION_REGION (&from, &to_byte, coding, SDATA (str),
6134 0);
6135 if (from == to_byte)
6136 require_decoding = 0;
6137 shrinked_bytes = from + (SBYTES (str) - to_byte);
6138 }
6139
6140 if (!require_decoding
6141 && !(SYMBOLP (coding->post_read_conversion)
6142 && !NILP (Ffboundp (coding->post_read_conversion))))
6143 {
6144 coding->consumed = SBYTES (str);
6145 coding->consumed_char = SCHARS (str);
6146 if (coding->dst_multibyte)
6147 {
6148 str = Fstring_as_multibyte (str);
6149 nocopy = 1;
6150 }
6151 coding->produced = SBYTES (str);
6152 coding->produced_char = SCHARS (str);
6153 return (nocopy ? str : Fcopy_sequence (str));
6154 }
6155
6156 if (coding->composing != COMPOSITION_DISABLED)
6157 coding_allocate_composition_data (coding, from);
6158 len = decoding_buffer_size (coding, to_byte - from);
6159 allocate_conversion_buffer (buf, len);
6160
6161 consumed = consumed_char = produced = produced_char = 0;
6162 while (1)
6163 {
6164 result = decode_coding (coding, SDATA (str) + from + consumed,
6165 buf.data + produced, to_byte - from - consumed,
6166 buf.size - produced);
6167 consumed += coding->consumed;
6168 consumed_char += coding->consumed_char;
6169 produced += coding->produced;
6170 produced_char += coding->produced_char;
6171 if (result == CODING_FINISH_NORMAL
6172 || (result == CODING_FINISH_INSUFFICIENT_SRC
6173 && coding->consumed == 0))
6174 break;
6175 if (result == CODING_FINISH_INSUFFICIENT_CMP)
6176 coding_allocate_composition_data (coding, from + produced_char);
6177 else if (result == CODING_FINISH_INSUFFICIENT_DST)
6178 extend_conversion_buffer (&buf);
6179 else if (result == CODING_FINISH_INCONSISTENT_EOL)
6180 {
6181 Lisp_Object eol_type;
6182
6183 /* Recover the original EOL format. */
6184 if (coding->eol_type == CODING_EOL_CR)
6185 {
6186 unsigned char *p;
6187 for (p = buf.data; p < buf.data + produced; p++)
6188 if (*p == '\n') *p = '\r';
6189 }
6190 else if (coding->eol_type == CODING_EOL_CRLF)
6191 {
6192 int num_eol = 0;
6193 unsigned char *p0, *p1;
6194 for (p0 = buf.data, p1 = p0 + produced; p0 < p1; p0++)
6195 if (*p0 == '\n') num_eol++;
6196 if (produced + num_eol >= buf.size)
6197 extend_conversion_buffer (&buf);
6198 for (p0 = buf.data + produced, p1 = p0 + num_eol; p0 > buf.data;)
6199 {
6200 *--p1 = *--p0;
6201 if (*p0 == '\n') *--p1 = '\r';
6202 }
6203 produced += num_eol;
6204 produced_char += num_eol;
6205 }
6206 /* Suppress eol-format conversion in the further conversion. */
6207 coding->eol_type = CODING_EOL_LF;
6208
6209 /* Set the coding system symbol to that for Unix-like EOL. */
6210 eol_type = Fget (saved_coding_symbol, Qeol_type);
6211 if (VECTORP (eol_type)
6212 && XVECTOR (eol_type)->size == 3
6213 && SYMBOLP (XVECTOR (eol_type)->contents[CODING_EOL_LF]))
6214 coding->symbol = XVECTOR (eol_type)->contents[CODING_EOL_LF];
6215 else
6216 coding->symbol = saved_coding_symbol;
6217
6218
6219 }
6220 }
6221
6222 coding->consumed = consumed;
6223 coding->consumed_char = consumed_char;
6224 coding->produced = produced;
6225 coding->produced_char = produced_char;
6226
6227 if (coding->dst_multibyte)
6228 newstr = make_uninit_multibyte_string (produced_char + shrinked_bytes,
6229 produced + shrinked_bytes);
6230 else
6231 newstr = make_uninit_string (produced + shrinked_bytes);
6232 if (from > 0)
6233 STRING_COPYIN (newstr, 0, SDATA (str), from);
6234 STRING_COPYIN (newstr, from, buf.data, produced);
6235 if (shrinked_bytes > from)
6236 STRING_COPYIN (newstr, from + produced,
6237 SDATA (str) + to_byte,
6238 shrinked_bytes - from);
6239 free_conversion_buffer (&buf);
6240
6241 if (coding->cmp_data && coding->cmp_data->used)
6242 coding_restore_composition (coding, newstr);
6243 coding_free_composition_data (coding);
6244
6245 if (SYMBOLP (coding->post_read_conversion)
6246 && !NILP (Ffboundp (coding->post_read_conversion)))
6247 newstr = run_pre_post_conversion_on_str (newstr, coding, 0);
6248
6249 return newstr;
6250 }
6251
6252 Lisp_Object
6253 encode_coding_string (str, coding, nocopy)
6254 Lisp_Object str;
6255 struct coding_system *coding;
6256 int nocopy;
6257 {
6258 int len;
6259 struct conversion_buffer buf;
6260 int from, to, to_byte;
6261 int result;
6262 int shrinked_bytes = 0;
6263 Lisp_Object newstr;
6264 int consumed, consumed_char, produced, produced_char;
6265
6266 if (SYMBOLP (coding->pre_write_conversion)
6267 && !NILP (Ffboundp (coding->pre_write_conversion)))
6268 str = run_pre_post_conversion_on_str (str, coding, 1);
6269
6270 from = 0;
6271 to = SCHARS (str);
6272 to_byte = SBYTES (str);
6273
6274 /* Encoding routines determine the multibyteness of the source text
6275 by coding->src_multibyte. */
6276 coding->src_multibyte = STRING_MULTIBYTE (str);
6277 coding->dst_multibyte = 0;
6278 if (! CODING_REQUIRE_ENCODING (coding))
6279 {
6280 coding->consumed = SBYTES (str);
6281 coding->consumed_char = SCHARS (str);
6282 if (STRING_MULTIBYTE (str))
6283 {
6284 str = Fstring_as_unibyte (str);
6285 nocopy = 1;
6286 }
6287 coding->produced = SBYTES (str);
6288 coding->produced_char = SCHARS (str);
6289 return (nocopy ? str : Fcopy_sequence (str));
6290 }
6291
6292 if (coding->composing != COMPOSITION_DISABLED)
6293 coding_save_composition (coding, from, to, str);
6294
6295 /* Try to skip the heading and tailing ASCIIs. */
6296 if (coding->type != coding_type_ccl)
6297 {
6298 SHRINK_CONVERSION_REGION (&from, &to_byte, coding, SDATA (str),
6299 1);
6300 if (from == to_byte)
6301 return (nocopy ? str : Fcopy_sequence (str));
6302 shrinked_bytes = from + (SBYTES (str) - to_byte);
6303 }
6304
6305 len = encoding_buffer_size (coding, to_byte - from);
6306 allocate_conversion_buffer (buf, len);
6307
6308 consumed = consumed_char = produced = produced_char = 0;
6309 while (1)
6310 {
6311 result = encode_coding (coding, SDATA (str) + from + consumed,
6312 buf.data + produced, to_byte - from - consumed,
6313 buf.size - produced);
6314 consumed += coding->consumed;
6315 consumed_char += coding->consumed_char;
6316 produced += coding->produced;
6317 produced_char += coding->produced_char;
6318 if (result == CODING_FINISH_NORMAL
6319 || result == CODING_FINISH_INTERRUPT
6320 || (result == CODING_FINISH_INSUFFICIENT_SRC
6321 && coding->consumed == 0))
6322 break;
6323 /* Now result should be CODING_FINISH_INSUFFICIENT_DST. */
6324 extend_conversion_buffer (&buf);
6325 }
6326
6327 coding->consumed = consumed;
6328 coding->consumed_char = consumed_char;
6329 coding->produced = produced;
6330 coding->produced_char = produced_char;
6331
6332 newstr = make_uninit_string (produced + shrinked_bytes);
6333 if (from > 0)
6334 STRING_COPYIN (newstr, 0, SDATA (str), from);
6335 STRING_COPYIN (newstr, from, buf.data, produced);
6336 if (shrinked_bytes > from)
6337 STRING_COPYIN (newstr, from + produced,
6338 SDATA (str) + to_byte,
6339 shrinked_bytes - from);
6340
6341 free_conversion_buffer (&buf);
6342 coding_free_composition_data (coding);
6343
6344 return newstr;
6345 }
6346
6347 \f
6348 #ifdef emacs
6349 /*** 8. Emacs Lisp library functions ***/
6350
6351 DEFUN ("coding-system-p", Fcoding_system_p, Scoding_system_p, 1, 1, 0,
6352 doc: /* Return t if OBJECT is nil or a coding-system.
6353 See the documentation of `make-coding-system' for information
6354 about coding-system objects. */)
6355 (obj)
6356 Lisp_Object obj;
6357 {
6358 if (NILP (obj))
6359 return Qt;
6360 if (!SYMBOLP (obj))
6361 return Qnil;
6362 if (! NILP (Fget (obj, Qcoding_system_define_form)))
6363 return Qt;
6364 /* Get coding-spec vector for OBJ. */
6365 obj = Fget (obj, Qcoding_system);
6366 return ((VECTORP (obj) && XVECTOR (obj)->size == 5)
6367 ? Qt : Qnil);
6368 }
6369
6370 DEFUN ("read-non-nil-coding-system", Fread_non_nil_coding_system,
6371 Sread_non_nil_coding_system, 1, 1, 0,
6372 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT. */)
6373 (prompt)
6374 Lisp_Object prompt;
6375 {
6376 Lisp_Object val;
6377 do
6378 {
6379 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
6380 Qt, Qnil, Qcoding_system_history, Qnil, Qnil);
6381 }
6382 while (SCHARS (val) == 0);
6383 return (Fintern (val, Qnil));
6384 }
6385
6386 DEFUN ("read-coding-system", Fread_coding_system, Sread_coding_system, 1, 2, 0,
6387 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT.
6388 If the user enters null input, return second argument DEFAULT-CODING-SYSTEM. */)
6389 (prompt, default_coding_system)
6390 Lisp_Object prompt, default_coding_system;
6391 {
6392 Lisp_Object val;
6393 if (SYMBOLP (default_coding_system))
6394 default_coding_system = SYMBOL_NAME (default_coding_system);
6395 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
6396 Qt, Qnil, Qcoding_system_history,
6397 default_coding_system, Qnil);
6398 return (SCHARS (val) == 0 ? Qnil : Fintern (val, Qnil));
6399 }
6400
6401 DEFUN ("check-coding-system", Fcheck_coding_system, Scheck_coding_system,
6402 1, 1, 0,
6403 doc: /* Check validity of CODING-SYSTEM.
6404 If valid, return CODING-SYSTEM, else signal a `coding-system-error' error.
6405 It is valid if it is nil or a symbol with a non-nil `coding-system' property.
6406 The value of this property should be a vector of length 5. */)
6407 (coding_system)
6408 Lisp_Object coding_system;
6409 {
6410 Lisp_Object define_form;
6411
6412 define_form = Fget (coding_system, Qcoding_system_define_form);
6413 if (! NILP (define_form))
6414 {
6415 Fput (coding_system, Qcoding_system_define_form, Qnil);
6416 safe_eval (define_form);
6417 }
6418 if (!NILP (Fcoding_system_p (coding_system)))
6419 return coding_system;
6420 while (1)
6421 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
6422 }
6423 \f
6424 Lisp_Object
6425 detect_coding_system (src, src_bytes, highest, multibytep)
6426 const unsigned char *src;
6427 int src_bytes, highest;
6428 int multibytep;
6429 {
6430 int coding_mask, eol_type;
6431 Lisp_Object val, tmp;
6432 int dummy;
6433
6434 coding_mask = detect_coding_mask (src, src_bytes, NULL, &dummy, multibytep);
6435 eol_type = detect_eol_type (src, src_bytes, &dummy);
6436 if (eol_type == CODING_EOL_INCONSISTENT)
6437 eol_type = CODING_EOL_UNDECIDED;
6438
6439 if (!coding_mask)
6440 {
6441 val = Qundecided;
6442 if (eol_type != CODING_EOL_UNDECIDED)
6443 {
6444 Lisp_Object val2;
6445 val2 = Fget (Qundecided, Qeol_type);
6446 if (VECTORP (val2))
6447 val = XVECTOR (val2)->contents[eol_type];
6448 }
6449 return (highest ? val : Fcons (val, Qnil));
6450 }
6451
6452 /* At first, gather possible coding systems in VAL. */
6453 val = Qnil;
6454 for (tmp = Vcoding_category_list; CONSP (tmp); tmp = XCDR (tmp))
6455 {
6456 Lisp_Object category_val, category_index;
6457
6458 category_index = Fget (XCAR (tmp), Qcoding_category_index);
6459 category_val = Fsymbol_value (XCAR (tmp));
6460 if (!NILP (category_val)
6461 && NATNUMP (category_index)
6462 && (coding_mask & (1 << XFASTINT (category_index))))
6463 {
6464 val = Fcons (category_val, val);
6465 if (highest)
6466 break;
6467 }
6468 }
6469 if (!highest)
6470 val = Fnreverse (val);
6471
6472 /* Then, replace the elements with subsidiary coding systems. */
6473 for (tmp = val; CONSP (tmp); tmp = XCDR (tmp))
6474 {
6475 if (eol_type != CODING_EOL_UNDECIDED
6476 && eol_type != CODING_EOL_INCONSISTENT)
6477 {
6478 Lisp_Object eol;
6479 eol = Fget (XCAR (tmp), Qeol_type);
6480 if (VECTORP (eol))
6481 XSETCAR (tmp, XVECTOR (eol)->contents[eol_type]);
6482 }
6483 }
6484 return (highest ? XCAR (val) : val);
6485 }
6486
6487 DEFUN ("detect-coding-region", Fdetect_coding_region, Sdetect_coding_region,
6488 2, 3, 0,
6489 doc: /* Detect how the byte sequence in the region is encoded.
6490 Return a list of possible coding systems used on decoding a byte
6491 sequence containing the bytes in the region between START and END when
6492 the coding system `undecided' is specified. The list is ordered by
6493 priority decided in the current language environment.
6494
6495 If only ASCII characters are found, it returns a list of single element
6496 `undecided' or its subsidiary coding system according to a detected
6497 end-of-line format.
6498
6499 If optional argument HIGHEST is non-nil, return the coding system of
6500 highest priority. */)
6501 (start, end, highest)
6502 Lisp_Object start, end, highest;
6503 {
6504 int from, to;
6505 int from_byte, to_byte;
6506 int include_anchor_byte = 0;
6507
6508 CHECK_NUMBER_COERCE_MARKER (start);
6509 CHECK_NUMBER_COERCE_MARKER (end);
6510
6511 validate_region (&start, &end);
6512 from = XINT (start), to = XINT (end);
6513 from_byte = CHAR_TO_BYTE (from);
6514 to_byte = CHAR_TO_BYTE (to);
6515
6516 if (from < GPT && to >= GPT)
6517 move_gap_both (to, to_byte);
6518 /* If we an anchor byte `\0' follows the region, we include it in
6519 the detecting source. Then code detectors can handle the tailing
6520 byte sequence more accurately.
6521
6522 Fix me: This is not a perfect solution. It is better that we
6523 add one more argument, say LAST_BLOCK, to all detect_coding_XXX.
6524 */
6525 if (to == Z || (to == GPT && GAP_SIZE > 0))
6526 include_anchor_byte = 1;
6527 return detect_coding_system (BYTE_POS_ADDR (from_byte),
6528 to_byte - from_byte + include_anchor_byte,
6529 !NILP (highest),
6530 !NILP (current_buffer
6531 ->enable_multibyte_characters));
6532 }
6533
6534 DEFUN ("detect-coding-string", Fdetect_coding_string, Sdetect_coding_string,
6535 1, 2, 0,
6536 doc: /* Detect how the byte sequence in STRING is encoded.
6537 Return a list of possible coding systems used on decoding a byte
6538 sequence containing the bytes in STRING when the coding system
6539 `undecided' is specified. The list is ordered by priority decided in
6540 the current language environment.
6541
6542 If only ASCII characters are found, it returns a list of single element
6543 `undecided' or its subsidiary coding system according to a detected
6544 end-of-line format.
6545
6546 If optional argument HIGHEST is non-nil, return the coding system of
6547 highest priority. */)
6548 (string, highest)
6549 Lisp_Object string, highest;
6550 {
6551 CHECK_STRING (string);
6552
6553 return detect_coding_system (SDATA (string),
6554 /* "+ 1" is to include the anchor byte
6555 `\0'. With this, code detectors can
6556 handle the tailing bytes more
6557 accurately. */
6558 SBYTES (string) + 1,
6559 !NILP (highest),
6560 STRING_MULTIBYTE (string));
6561 }
6562
6563 /* Subroutine for Fsafe_coding_systems_region_internal.
6564
6565 Return a list of coding systems that safely encode the multibyte
6566 text between P and PEND. SAFE_CODINGS, if non-nil, is an alist of
6567 possible coding systems. If it is nil, it means that we have not
6568 yet found any coding systems.
6569
6570 WORK_TABLE a char-table of which element is set to t once the
6571 element is looked up.
6572
6573 If a non-ASCII single byte char is found, set
6574 *single_byte_char_found to 1. */
6575
6576 static Lisp_Object
6577 find_safe_codings (p, pend, safe_codings, work_table, single_byte_char_found)
6578 unsigned char *p, *pend;
6579 Lisp_Object safe_codings, work_table;
6580 int *single_byte_char_found;
6581 {
6582 int c, len;
6583 Lisp_Object val, ch;
6584 Lisp_Object prev, tail;
6585
6586 if (NILP (safe_codings))
6587 goto done_safe_codings;
6588 while (p < pend)
6589 {
6590 c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
6591 p += len;
6592 if (ASCII_BYTE_P (c))
6593 /* We can ignore ASCII characters here. */
6594 continue;
6595 if (SINGLE_BYTE_CHAR_P (c))
6596 *single_byte_char_found = 1;
6597 /* Check the safe coding systems for C. */
6598 ch = make_number (c);
6599 val = Faref (work_table, ch);
6600 if (EQ (val, Qt))
6601 /* This element was already checked. Ignore it. */
6602 continue;
6603 /* Remember that we checked this element. */
6604 Faset (work_table, ch, Qt);
6605
6606 for (prev = tail = safe_codings; CONSP (tail); tail = XCDR (tail))
6607 {
6608 Lisp_Object elt, translation_table, hash_table, accept_latin_extra;
6609 int encodable;
6610
6611 elt = XCAR (tail);
6612 if (CONSP (XCDR (elt)))
6613 {
6614 /* This entry has this format now:
6615 ( CODING SAFE-CHARS TRANSLATION-TABLE HASH-TABLE
6616 ACCEPT-LATIN-EXTRA ) */
6617 val = XCDR (elt);
6618 encodable = ! NILP (Faref (XCAR (val), ch));
6619 if (! encodable)
6620 {
6621 val = XCDR (val);
6622 translation_table = XCAR (val);
6623 hash_table = XCAR (XCDR (val));
6624 accept_latin_extra = XCAR (XCDR (XCDR (val)));
6625 }
6626 }
6627 else
6628 {
6629 /* This entry has this format now: ( CODING . SAFE-CHARS) */
6630 encodable = ! NILP (Faref (XCDR (elt), ch));
6631 if (! encodable)
6632 {
6633 /* Transform the format to:
6634 ( CODING SAFE-CHARS TRANSLATION-TABLE HASH-TABLE
6635 ACCEPT-LATIN-EXTRA ) */
6636 val = Fget (XCAR (elt), Qcoding_system);
6637 translation_table
6638 = Fplist_get (AREF (val, 3),
6639 Qtranslation_table_for_encode);
6640 if (SYMBOLP (translation_table))
6641 translation_table = Fget (translation_table,
6642 Qtranslation_table);
6643 hash_table
6644 = (CHAR_TABLE_P (translation_table)
6645 ? XCHAR_TABLE (translation_table)->extras[1]
6646 : Qnil);
6647 accept_latin_extra
6648 = ((EQ (AREF (val, 0), make_number (2))
6649 && VECTORP (AREF (val, 4)))
6650 ? AREF (AREF (val, 4), 16)
6651 : Qnil);
6652 XSETCAR (tail, list5 (XCAR (elt), XCDR (elt),
6653 translation_table, hash_table,
6654 accept_latin_extra));
6655 }
6656 }
6657
6658 if (! encodable
6659 && ((CHAR_TABLE_P (translation_table)
6660 && ! NILP (Faref (translation_table, ch)))
6661 || (HASH_TABLE_P (hash_table)
6662 && ! NILP (Fgethash (ch, hash_table, Qnil)))
6663 || (SINGLE_BYTE_CHAR_P (c)
6664 && ! NILP (accept_latin_extra)
6665 && VECTORP (Vlatin_extra_code_table)
6666 && ! NILP (AREF (Vlatin_extra_code_table, c)))))
6667 encodable = 1;
6668 if (encodable)
6669 prev = tail;
6670 else
6671 {
6672 /* Exclude this coding system from SAFE_CODINGS. */
6673 if (EQ (tail, safe_codings))
6674 {
6675 safe_codings = XCDR (safe_codings);
6676 if (NILP (safe_codings))
6677 goto done_safe_codings;
6678 }
6679 else
6680 XSETCDR (prev, XCDR (tail));
6681 }
6682 }
6683 }
6684
6685 done_safe_codings:
6686 /* If the above loop was terminated before P reaches PEND, it means
6687 SAFE_CODINGS was set to nil. If we have not yet found an
6688 non-ASCII single-byte char, check it now. */
6689 if (! *single_byte_char_found)
6690 while (p < pend)
6691 {
6692 c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
6693 p += len;
6694 if (! ASCII_BYTE_P (c)
6695 && SINGLE_BYTE_CHAR_P (c))
6696 {
6697 *single_byte_char_found = 1;
6698 break;
6699 }
6700 }
6701 return safe_codings;
6702 }
6703
6704 DEFUN ("find-coding-systems-region-internal",
6705 Ffind_coding_systems_region_internal,
6706 Sfind_coding_systems_region_internal, 2, 2, 0,
6707 doc: /* Internal use only. */)
6708 (start, end)
6709 Lisp_Object start, end;
6710 {
6711 Lisp_Object work_table, safe_codings;
6712 int non_ascii_p = 0;
6713 int single_byte_char_found = 0;
6714 const unsigned char *p1, *p1end, *p2, *p2end, *p;
6715
6716 if (STRINGP (start))
6717 {
6718 if (!STRING_MULTIBYTE (start))
6719 return Qt;
6720 p1 = SDATA (start), p1end = p1 + SBYTES (start);
6721 p2 = p2end = p1end;
6722 if (SCHARS (start) != SBYTES (start))
6723 non_ascii_p = 1;
6724 }
6725 else
6726 {
6727 int from, to, stop;
6728
6729 CHECK_NUMBER_COERCE_MARKER (start);
6730 CHECK_NUMBER_COERCE_MARKER (end);
6731 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
6732 args_out_of_range (start, end);
6733 if (NILP (current_buffer->enable_multibyte_characters))
6734 return Qt;
6735 from = CHAR_TO_BYTE (XINT (start));
6736 to = CHAR_TO_BYTE (XINT (end));
6737 stop = from < GPT_BYTE && GPT_BYTE < to ? GPT_BYTE : to;
6738 p1 = BYTE_POS_ADDR (from), p1end = p1 + (stop - from);
6739 if (stop == to)
6740 p2 = p2end = p1end;
6741 else
6742 p2 = BYTE_POS_ADDR (stop), p2end = p2 + (to - stop);
6743 if (XINT (end) - XINT (start) != to - from)
6744 non_ascii_p = 1;
6745 }
6746
6747 if (!non_ascii_p)
6748 {
6749 /* We are sure that the text contains no multibyte character.
6750 Check if it contains eight-bit-graphic. */
6751 p = p1;
6752 for (p = p1; p < p1end && ASCII_BYTE_P (*p); p++);
6753 if (p == p1end)
6754 {
6755 for (p = p2; p < p2end && ASCII_BYTE_P (*p); p++);
6756 if (p == p2end)
6757 return Qt;
6758 }
6759 }
6760
6761 /* The text contains non-ASCII characters. */
6762
6763 work_table = Fmake_char_table (Qchar_coding_system, Qnil);
6764 safe_codings = Fcopy_sequence (XCDR (Vcoding_system_safe_chars));
6765
6766 safe_codings = find_safe_codings (p1, p1end, safe_codings, work_table,
6767 &single_byte_char_found);
6768 if (p2 < p2end)
6769 safe_codings = find_safe_codings (p2, p2end, safe_codings, work_table,
6770 &single_byte_char_found);
6771 if (EQ (safe_codings, XCDR (Vcoding_system_safe_chars)))
6772 safe_codings = Qt;
6773 else
6774 {
6775 /* Turn safe_codings to a list of coding systems... */
6776 Lisp_Object val;
6777
6778 if (single_byte_char_found)
6779 /* ... and append these for eight-bit chars. */
6780 val = Fcons (Qraw_text,
6781 Fcons (Qemacs_mule, Fcons (Qno_conversion, Qnil)));
6782 else
6783 /* ... and append generic coding systems. */
6784 val = Fcopy_sequence (XCAR (Vcoding_system_safe_chars));
6785
6786 for (; CONSP (safe_codings); safe_codings = XCDR (safe_codings))
6787 val = Fcons (XCAR (XCAR (safe_codings)), val);
6788 safe_codings = val;
6789 }
6790
6791 return safe_codings;
6792 }
6793
6794
6795 /* Search from position POS for such characters that are unencodable
6796 accoding to SAFE_CHARS, and return a list of their positions. P
6797 points where in the memory the character at POS exists. Limit the
6798 search at PEND or when Nth unencodable characters are found.
6799
6800 If SAFE_CHARS is a char table, an element for an unencodable
6801 character is nil.
6802
6803 If SAFE_CHARS is nil, all non-ASCII characters are unencodable.
6804
6805 Otherwise, SAFE_CHARS is t, and only eight-bit-contrl and
6806 eight-bit-graphic characters are unencodable. */
6807
6808 static Lisp_Object
6809 unencodable_char_position (safe_chars, pos, p, pend, n)
6810 Lisp_Object safe_chars;
6811 int pos;
6812 unsigned char *p, *pend;
6813 int n;
6814 {
6815 Lisp_Object pos_list;
6816
6817 pos_list = Qnil;
6818 while (p < pend)
6819 {
6820 int len;
6821 int c = STRING_CHAR_AND_LENGTH (p, MAX_MULTIBYTE_LENGTH, len);
6822
6823 if (c >= 128
6824 && (CHAR_TABLE_P (safe_chars)
6825 ? NILP (CHAR_TABLE_REF (safe_chars, c))
6826 : (NILP (safe_chars) || c < 256)))
6827 {
6828 pos_list = Fcons (make_number (pos), pos_list);
6829 if (--n <= 0)
6830 break;
6831 }
6832 pos++;
6833 p += len;
6834 }
6835 return Fnreverse (pos_list);
6836 }
6837
6838
6839 DEFUN ("unencodable-char-position", Funencodable_char_position,
6840 Sunencodable_char_position, 3, 5, 0,
6841 doc: /*
6842 Return position of first un-encodable character in a region.
6843 START and END specfiy the region and CODING-SYSTEM specifies the
6844 encoding to check. Return nil if CODING-SYSTEM does encode the region.
6845
6846 If optional 4th argument COUNT is non-nil, it specifies at most how
6847 many un-encodable characters to search. In this case, the value is a
6848 list of positions.
6849
6850 If optional 5th argument STRING is non-nil, it is a string to search
6851 for un-encodable characters. In that case, START and END are indexes
6852 to the string. */)
6853 (start, end, coding_system, count, string)
6854 Lisp_Object start, end, coding_system, count, string;
6855 {
6856 int n;
6857 Lisp_Object safe_chars;
6858 struct coding_system coding;
6859 Lisp_Object positions;
6860 int from, to;
6861 unsigned char *p, *pend;
6862
6863 if (NILP (string))
6864 {
6865 validate_region (&start, &end);
6866 from = XINT (start);
6867 to = XINT (end);
6868 if (NILP (current_buffer->enable_multibyte_characters))
6869 return Qnil;
6870 p = CHAR_POS_ADDR (from);
6871 if (to == GPT)
6872 pend = GPT_ADDR;
6873 else
6874 pend = CHAR_POS_ADDR (to);
6875 }
6876 else
6877 {
6878 CHECK_STRING (string);
6879 CHECK_NATNUM (start);
6880 CHECK_NATNUM (end);
6881 from = XINT (start);
6882 to = XINT (end);
6883 if (from > to
6884 || to > SCHARS (string))
6885 args_out_of_range_3 (string, start, end);
6886 if (! STRING_MULTIBYTE (string))
6887 return Qnil;
6888 p = SDATA (string) + string_char_to_byte (string, from);
6889 pend = SDATA (string) + string_char_to_byte (string, to);
6890 }
6891
6892 setup_coding_system (Fcheck_coding_system (coding_system), &coding);
6893
6894 if (NILP (count))
6895 n = 1;
6896 else
6897 {
6898 CHECK_NATNUM (count);
6899 n = XINT (count);
6900 }
6901
6902 if (coding.type == coding_type_no_conversion
6903 || coding.type == coding_type_raw_text)
6904 return Qnil;
6905
6906 if (coding.type == coding_type_undecided)
6907 safe_chars = Qnil;
6908 else
6909 safe_chars = coding_safe_chars (coding_system);
6910
6911 if (STRINGP (string)
6912 || from >= GPT || to <= GPT)
6913 positions = unencodable_char_position (safe_chars, from, p, pend, n);
6914 else
6915 {
6916 Lisp_Object args[2];
6917
6918 args[0] = unencodable_char_position (safe_chars, from, p, GPT_ADDR, n);
6919 n -= XINT (Flength (args[0]));
6920 if (n <= 0)
6921 positions = args[0];
6922 else
6923 {
6924 args[1] = unencodable_char_position (safe_chars, GPT, GAP_END_ADDR,
6925 pend, n);
6926 positions = Fappend (2, args);
6927 }
6928 }
6929
6930 return (NILP (count) ? Fcar (positions) : positions);
6931 }
6932
6933
6934 Lisp_Object
6935 code_convert_region1 (start, end, coding_system, encodep)
6936 Lisp_Object start, end, coding_system;
6937 int encodep;
6938 {
6939 struct coding_system coding;
6940 int from, to;
6941
6942 CHECK_NUMBER_COERCE_MARKER (start);
6943 CHECK_NUMBER_COERCE_MARKER (end);
6944 CHECK_SYMBOL (coding_system);
6945
6946 validate_region (&start, &end);
6947 from = XFASTINT (start);
6948 to = XFASTINT (end);
6949
6950 if (NILP (coding_system))
6951 return make_number (to - from);
6952
6953 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
6954 error ("Invalid coding system: %s", SDATA (SYMBOL_NAME (coding_system)));
6955
6956 coding.mode |= CODING_MODE_LAST_BLOCK;
6957 coding.src_multibyte = coding.dst_multibyte
6958 = !NILP (current_buffer->enable_multibyte_characters);
6959 code_convert_region (from, CHAR_TO_BYTE (from), to, CHAR_TO_BYTE (to),
6960 &coding, encodep, 1);
6961 Vlast_coding_system_used = coding.symbol;
6962 return make_number (coding.produced_char);
6963 }
6964
6965 DEFUN ("decode-coding-region", Fdecode_coding_region, Sdecode_coding_region,
6966 3, 3, "r\nzCoding system: ",
6967 doc: /* Decode the current region from the specified coding system.
6968 When called from a program, takes three arguments:
6969 START, END, and CODING-SYSTEM. START and END are buffer positions.
6970 This function sets `last-coding-system-used' to the precise coding system
6971 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
6972 not fully specified.)
6973 It returns the length of the decoded text. */)
6974 (start, end, coding_system)
6975 Lisp_Object start, end, coding_system;
6976 {
6977 return code_convert_region1 (start, end, coding_system, 0);
6978 }
6979
6980 DEFUN ("encode-coding-region", Fencode_coding_region, Sencode_coding_region,
6981 3, 3, "r\nzCoding system: ",
6982 doc: /* Encode the current region into the specified coding system.
6983 When called from a program, takes three arguments:
6984 START, END, and CODING-SYSTEM. START and END are buffer positions.
6985 This function sets `last-coding-system-used' to the precise coding system
6986 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
6987 not fully specified.)
6988 It returns the length of the encoded text. */)
6989 (start, end, coding_system)
6990 Lisp_Object start, end, coding_system;
6991 {
6992 return code_convert_region1 (start, end, coding_system, 1);
6993 }
6994
6995 Lisp_Object
6996 code_convert_string1 (string, coding_system, nocopy, encodep)
6997 Lisp_Object string, coding_system, nocopy;
6998 int encodep;
6999 {
7000 struct coding_system coding;
7001
7002 CHECK_STRING (string);
7003 CHECK_SYMBOL (coding_system);
7004
7005 if (NILP (coding_system))
7006 return (NILP (nocopy) ? Fcopy_sequence (string) : string);
7007
7008 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
7009 error ("Invalid coding system: %s", SDATA (SYMBOL_NAME (coding_system)));
7010
7011 coding.mode |= CODING_MODE_LAST_BLOCK;
7012 string = (encodep
7013 ? encode_coding_string (string, &coding, !NILP (nocopy))
7014 : decode_coding_string (string, &coding, !NILP (nocopy)));
7015 Vlast_coding_system_used = coding.symbol;
7016
7017 return string;
7018 }
7019
7020 DEFUN ("decode-coding-string", Fdecode_coding_string, Sdecode_coding_string,
7021 2, 3, 0,
7022 doc: /* Decode STRING which is encoded in CODING-SYSTEM, and return the result.
7023 Optional arg NOCOPY non-nil means it is OK to return STRING itself
7024 if the decoding operation is trivial.
7025 This function sets `last-coding-system-used' to the precise coding system
7026 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
7027 not fully specified.) */)
7028 (string, coding_system, nocopy)
7029 Lisp_Object string, coding_system, nocopy;
7030 {
7031 return code_convert_string1 (string, coding_system, nocopy, 0);
7032 }
7033
7034 DEFUN ("encode-coding-string", Fencode_coding_string, Sencode_coding_string,
7035 2, 3, 0,
7036 doc: /* Encode STRING to CODING-SYSTEM, and return the result.
7037 Optional arg NOCOPY non-nil means it is OK to return STRING itself
7038 if the encoding operation is trivial.
7039 This function sets `last-coding-system-used' to the precise coding system
7040 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
7041 not fully specified.) */)
7042 (string, coding_system, nocopy)
7043 Lisp_Object string, coding_system, nocopy;
7044 {
7045 return code_convert_string1 (string, coding_system, nocopy, 1);
7046 }
7047
7048 /* Encode or decode STRING according to CODING_SYSTEM.
7049 Do not set Vlast_coding_system_used.
7050
7051 This function is called only from macros DECODE_FILE and
7052 ENCODE_FILE, thus we ignore character composition. */
7053
7054 Lisp_Object
7055 code_convert_string_norecord (string, coding_system, encodep)
7056 Lisp_Object string, coding_system;
7057 int encodep;
7058 {
7059 struct coding_system coding;
7060
7061 CHECK_STRING (string);
7062 CHECK_SYMBOL (coding_system);
7063
7064 if (NILP (coding_system))
7065 return string;
7066
7067 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
7068 error ("Invalid coding system: %s", SDATA (SYMBOL_NAME (coding_system)));
7069
7070 coding.composing = COMPOSITION_DISABLED;
7071 coding.mode |= CODING_MODE_LAST_BLOCK;
7072 return (encodep
7073 ? encode_coding_string (string, &coding, 1)
7074 : decode_coding_string (string, &coding, 1));
7075 }
7076 \f
7077 DEFUN ("decode-sjis-char", Fdecode_sjis_char, Sdecode_sjis_char, 1, 1, 0,
7078 doc: /* Decode a Japanese character which has CODE in shift_jis encoding.
7079 Return the corresponding character. */)
7080 (code)
7081 Lisp_Object code;
7082 {
7083 unsigned char c1, c2, s1, s2;
7084 Lisp_Object val;
7085
7086 CHECK_NUMBER (code);
7087 s1 = (XFASTINT (code)) >> 8, s2 = (XFASTINT (code)) & 0xFF;
7088 if (s1 == 0)
7089 {
7090 if (s2 < 0x80)
7091 XSETFASTINT (val, s2);
7092 else if (s2 >= 0xA0 || s2 <= 0xDF)
7093 XSETFASTINT (val, MAKE_CHAR (charset_katakana_jisx0201, s2, 0));
7094 else
7095 error ("Invalid Shift JIS code: %x", XFASTINT (code));
7096 }
7097 else
7098 {
7099 if ((s1 < 0x80 || (s1 > 0x9F && s1 < 0xE0) || s1 > 0xEF)
7100 || (s2 < 0x40 || s2 == 0x7F || s2 > 0xFC))
7101 error ("Invalid Shift JIS code: %x", XFASTINT (code));
7102 DECODE_SJIS (s1, s2, c1, c2);
7103 XSETFASTINT (val, MAKE_CHAR (charset_jisx0208, c1, c2));
7104 }
7105 return val;
7106 }
7107
7108 DEFUN ("encode-sjis-char", Fencode_sjis_char, Sencode_sjis_char, 1, 1, 0,
7109 doc: /* Encode a Japanese character CHAR to shift_jis encoding.
7110 Return the corresponding code in SJIS. */)
7111 (ch)
7112 Lisp_Object ch;
7113 {
7114 int charset, c1, c2, s1, s2;
7115 Lisp_Object val;
7116
7117 CHECK_NUMBER (ch);
7118 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
7119 if (charset == CHARSET_ASCII)
7120 {
7121 val = ch;
7122 }
7123 else if (charset == charset_jisx0208
7124 && c1 > 0x20 && c1 < 0x7F && c2 > 0x20 && c2 < 0x7F)
7125 {
7126 ENCODE_SJIS (c1, c2, s1, s2);
7127 XSETFASTINT (val, (s1 << 8) | s2);
7128 }
7129 else if (charset == charset_katakana_jisx0201
7130 && c1 > 0x20 && c2 < 0xE0)
7131 {
7132 XSETFASTINT (val, c1 | 0x80);
7133 }
7134 else
7135 error ("Can't encode to shift_jis: %d", XFASTINT (ch));
7136 return val;
7137 }
7138
7139 DEFUN ("decode-big5-char", Fdecode_big5_char, Sdecode_big5_char, 1, 1, 0,
7140 doc: /* Decode a Big5 character which has CODE in BIG5 coding system.
7141 Return the corresponding character. */)
7142 (code)
7143 Lisp_Object code;
7144 {
7145 int charset;
7146 unsigned char b1, b2, c1, c2;
7147 Lisp_Object val;
7148
7149 CHECK_NUMBER (code);
7150 b1 = (XFASTINT (code)) >> 8, b2 = (XFASTINT (code)) & 0xFF;
7151 if (b1 == 0)
7152 {
7153 if (b2 >= 0x80)
7154 error ("Invalid BIG5 code: %x", XFASTINT (code));
7155 val = code;
7156 }
7157 else
7158 {
7159 if ((b1 < 0xA1 || b1 > 0xFE)
7160 || (b2 < 0x40 || (b2 > 0x7E && b2 < 0xA1) || b2 > 0xFE))
7161 error ("Invalid BIG5 code: %x", XFASTINT (code));
7162 DECODE_BIG5 (b1, b2, charset, c1, c2);
7163 XSETFASTINT (val, MAKE_CHAR (charset, c1, c2));
7164 }
7165 return val;
7166 }
7167
7168 DEFUN ("encode-big5-char", Fencode_big5_char, Sencode_big5_char, 1, 1, 0,
7169 doc: /* Encode the Big5 character CHAR to BIG5 coding system.
7170 Return the corresponding character code in Big5. */)
7171 (ch)
7172 Lisp_Object ch;
7173 {
7174 int charset, c1, c2, b1, b2;
7175 Lisp_Object val;
7176
7177 CHECK_NUMBER (ch);
7178 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
7179 if (charset == CHARSET_ASCII)
7180 {
7181 val = ch;
7182 }
7183 else if ((charset == charset_big5_1
7184 && (XFASTINT (ch) >= 0x250a1 && XFASTINT (ch) <= 0x271ec))
7185 || (charset == charset_big5_2
7186 && XFASTINT (ch) >= 0x290a1 && XFASTINT (ch) <= 0x2bdb2))
7187 {
7188 ENCODE_BIG5 (charset, c1, c2, b1, b2);
7189 XSETFASTINT (val, (b1 << 8) | b2);
7190 }
7191 else
7192 error ("Can't encode to Big5: %d", XFASTINT (ch));
7193 return val;
7194 }
7195 \f
7196 DEFUN ("set-terminal-coding-system-internal", Fset_terminal_coding_system_internal,
7197 Sset_terminal_coding_system_internal, 1, 1, 0,
7198 doc: /* Internal use only. */)
7199 (coding_system)
7200 Lisp_Object coding_system;
7201 {
7202 CHECK_SYMBOL (coding_system);
7203 setup_coding_system (Fcheck_coding_system (coding_system), &terminal_coding);
7204 /* We had better not send unsafe characters to terminal. */
7205 terminal_coding.mode |= CODING_MODE_INHIBIT_UNENCODABLE_CHAR;
7206 /* Character composition should be disabled. */
7207 terminal_coding.composing = COMPOSITION_DISABLED;
7208 /* Error notification should be suppressed. */
7209 terminal_coding.suppress_error = 1;
7210 terminal_coding.src_multibyte = 1;
7211 terminal_coding.dst_multibyte = 0;
7212 return Qnil;
7213 }
7214
7215 DEFUN ("set-safe-terminal-coding-system-internal", Fset_safe_terminal_coding_system_internal,
7216 Sset_safe_terminal_coding_system_internal, 1, 1, 0,
7217 doc: /* Internal use only. */)
7218 (coding_system)
7219 Lisp_Object coding_system;
7220 {
7221 CHECK_SYMBOL (coding_system);
7222 setup_coding_system (Fcheck_coding_system (coding_system),
7223 &safe_terminal_coding);
7224 /* Character composition should be disabled. */
7225 safe_terminal_coding.composing = COMPOSITION_DISABLED;
7226 /* Error notification should be suppressed. */
7227 safe_terminal_coding.suppress_error = 1;
7228 safe_terminal_coding.src_multibyte = 1;
7229 safe_terminal_coding.dst_multibyte = 0;
7230 return Qnil;
7231 }
7232
7233 DEFUN ("terminal-coding-system", Fterminal_coding_system,
7234 Sterminal_coding_system, 0, 0, 0,
7235 doc: /* Return coding system specified for terminal output. */)
7236 ()
7237 {
7238 return terminal_coding.symbol;
7239 }
7240
7241 DEFUN ("set-keyboard-coding-system-internal", Fset_keyboard_coding_system_internal,
7242 Sset_keyboard_coding_system_internal, 1, 1, 0,
7243 doc: /* Internal use only. */)
7244 (coding_system)
7245 Lisp_Object coding_system;
7246 {
7247 CHECK_SYMBOL (coding_system);
7248 setup_coding_system (Fcheck_coding_system (coding_system), &keyboard_coding);
7249 /* Character composition should be disabled. */
7250 keyboard_coding.composing = COMPOSITION_DISABLED;
7251 return Qnil;
7252 }
7253
7254 DEFUN ("keyboard-coding-system", Fkeyboard_coding_system,
7255 Skeyboard_coding_system, 0, 0, 0,
7256 doc: /* Return coding system specified for decoding keyboard input. */)
7257 ()
7258 {
7259 return keyboard_coding.symbol;
7260 }
7261
7262 \f
7263 DEFUN ("find-operation-coding-system", Ffind_operation_coding_system,
7264 Sfind_operation_coding_system, 1, MANY, 0,
7265 doc: /* Choose a coding system for an operation based on the target name.
7266 The value names a pair of coding systems: (DECODING-SYSTEM . ENCODING-SYSTEM).
7267 DECODING-SYSTEM is the coding system to use for decoding
7268 \(in case OPERATION does decoding), and ENCODING-SYSTEM is the coding system
7269 for encoding (in case OPERATION does encoding).
7270
7271 The first argument OPERATION specifies an I/O primitive:
7272 For file I/O, `insert-file-contents' or `write-region'.
7273 For process I/O, `call-process', `call-process-region', or `start-process'.
7274 For network I/O, `open-network-stream'.
7275
7276 The remaining arguments should be the same arguments that were passed
7277 to the primitive. Depending on which primitive, one of those arguments
7278 is selected as the TARGET. For example, if OPERATION does file I/O,
7279 whichever argument specifies the file name is TARGET.
7280
7281 TARGET has a meaning which depends on OPERATION:
7282 For file I/O, TARGET is a file name.
7283 For process I/O, TARGET is a process name.
7284 For network I/O, TARGET is a service name or a port number
7285
7286 This function looks up what specified for TARGET in,
7287 `file-coding-system-alist', `process-coding-system-alist',
7288 or `network-coding-system-alist' depending on OPERATION.
7289 They may specify a coding system, a cons of coding systems,
7290 or a function symbol to call.
7291 In the last case, we call the function with one argument,
7292 which is a list of all the arguments given to this function.
7293
7294 usage: (find-operation-coding-system OPERATION ARGUMENTS ...) */)
7295 (nargs, args)
7296 int nargs;
7297 Lisp_Object *args;
7298 {
7299 Lisp_Object operation, target_idx, target, val;
7300 register Lisp_Object chain;
7301
7302 if (nargs < 2)
7303 error ("Too few arguments");
7304 operation = args[0];
7305 if (!SYMBOLP (operation)
7306 || !INTEGERP (target_idx = Fget (operation, Qtarget_idx)))
7307 error ("Invalid first argument");
7308 if (nargs < 1 + XINT (target_idx))
7309 error ("Too few arguments for operation: %s",
7310 SDATA (SYMBOL_NAME (operation)));
7311 /* For write-region, if the 6th argument (i.e. VISIT, the 5th
7312 argument to write-region) is string, it must be treated as a
7313 target file name. */
7314 if (EQ (operation, Qwrite_region)
7315 && nargs > 5
7316 && STRINGP (args[5]))
7317 target_idx = make_number (4);
7318 target = args[XINT (target_idx) + 1];
7319 if (!(STRINGP (target)
7320 || (EQ (operation, Qopen_network_stream) && INTEGERP (target))))
7321 error ("Invalid argument %d", XINT (target_idx) + 1);
7322
7323 chain = ((EQ (operation, Qinsert_file_contents)
7324 || EQ (operation, Qwrite_region))
7325 ? Vfile_coding_system_alist
7326 : (EQ (operation, Qopen_network_stream)
7327 ? Vnetwork_coding_system_alist
7328 : Vprocess_coding_system_alist));
7329 if (NILP (chain))
7330 return Qnil;
7331
7332 for (; CONSP (chain); chain = XCDR (chain))
7333 {
7334 Lisp_Object elt;
7335 elt = XCAR (chain);
7336
7337 if (CONSP (elt)
7338 && ((STRINGP (target)
7339 && STRINGP (XCAR (elt))
7340 && fast_string_match (XCAR (elt), target) >= 0)
7341 || (INTEGERP (target) && EQ (target, XCAR (elt)))))
7342 {
7343 val = XCDR (elt);
7344 /* Here, if VAL is both a valid coding system and a valid
7345 function symbol, we return VAL as a coding system. */
7346 if (CONSP (val))
7347 return val;
7348 if (! SYMBOLP (val))
7349 return Qnil;
7350 if (! NILP (Fcoding_system_p (val)))
7351 return Fcons (val, val);
7352 if (! NILP (Ffboundp (val)))
7353 {
7354 val = call1 (val, Flist (nargs, args));
7355 if (CONSP (val))
7356 return val;
7357 if (SYMBOLP (val) && ! NILP (Fcoding_system_p (val)))
7358 return Fcons (val, val);
7359 }
7360 return Qnil;
7361 }
7362 }
7363 return Qnil;
7364 }
7365
7366 DEFUN ("update-coding-systems-internal", Fupdate_coding_systems_internal,
7367 Supdate_coding_systems_internal, 0, 0, 0,
7368 doc: /* Update internal database for ISO2022 and CCL based coding systems.
7369 When values of any coding categories are changed, you must
7370 call this function. */)
7371 ()
7372 {
7373 int i;
7374
7375 for (i = CODING_CATEGORY_IDX_EMACS_MULE; i < CODING_CATEGORY_IDX_MAX; i++)
7376 {
7377 Lisp_Object val;
7378
7379 val = SYMBOL_VALUE (XVECTOR (Vcoding_category_table)->contents[i]);
7380 if (!NILP (val))
7381 {
7382 if (! coding_system_table[i])
7383 coding_system_table[i] = ((struct coding_system *)
7384 xmalloc (sizeof (struct coding_system)));
7385 setup_coding_system (val, coding_system_table[i]);
7386 }
7387 else if (coding_system_table[i])
7388 {
7389 xfree (coding_system_table[i]);
7390 coding_system_table[i] = NULL;
7391 }
7392 }
7393
7394 return Qnil;
7395 }
7396
7397 DEFUN ("set-coding-priority-internal", Fset_coding_priority_internal,
7398 Sset_coding_priority_internal, 0, 0, 0,
7399 doc: /* Update internal database for the current value of `coding-category-list'.
7400 This function is internal use only. */)
7401 ()
7402 {
7403 int i = 0, idx;
7404 Lisp_Object val;
7405
7406 val = Vcoding_category_list;
7407
7408 while (CONSP (val) && i < CODING_CATEGORY_IDX_MAX)
7409 {
7410 if (! SYMBOLP (XCAR (val)))
7411 break;
7412 idx = XFASTINT (Fget (XCAR (val), Qcoding_category_index));
7413 if (idx >= CODING_CATEGORY_IDX_MAX)
7414 break;
7415 coding_priorities[i++] = (1 << idx);
7416 val = XCDR (val);
7417 }
7418 /* If coding-category-list is valid and contains all coding
7419 categories, `i' should be CODING_CATEGORY_IDX_MAX now. If not,
7420 the following code saves Emacs from crashing. */
7421 while (i < CODING_CATEGORY_IDX_MAX)
7422 coding_priorities[i++] = CODING_CATEGORY_MASK_RAW_TEXT;
7423
7424 return Qnil;
7425 }
7426
7427 DEFUN ("define-coding-system-internal", Fdefine_coding_system_internal,
7428 Sdefine_coding_system_internal, 1, 1, 0,
7429 doc: /* Register CODING-SYSTEM as a base coding system.
7430 This function is internal use only. */)
7431 (coding_system)
7432 Lisp_Object coding_system;
7433 {
7434 Lisp_Object safe_chars, slot;
7435
7436 if (NILP (Fcheck_coding_system (coding_system)))
7437 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
7438 safe_chars = coding_safe_chars (coding_system);
7439 if (! EQ (safe_chars, Qt) && ! CHAR_TABLE_P (safe_chars))
7440 error ("No valid safe-chars property for %s",
7441 SDATA (SYMBOL_NAME (coding_system)));
7442 if (EQ (safe_chars, Qt))
7443 {
7444 if (NILP (Fmemq (coding_system, XCAR (Vcoding_system_safe_chars))))
7445 XSETCAR (Vcoding_system_safe_chars,
7446 Fcons (coding_system, XCAR (Vcoding_system_safe_chars)));
7447 }
7448 else
7449 {
7450 slot = Fassq (coding_system, XCDR (Vcoding_system_safe_chars));
7451 if (NILP (slot))
7452 XSETCDR (Vcoding_system_safe_chars,
7453 nconc2 (XCDR (Vcoding_system_safe_chars),
7454 Fcons (Fcons (coding_system, safe_chars), Qnil)));
7455 else
7456 XSETCDR (slot, safe_chars);
7457 }
7458 return Qnil;
7459 }
7460
7461 #endif /* emacs */
7462
7463 \f
7464 /*** 9. Post-amble ***/
7465
7466 void
7467 init_coding_once ()
7468 {
7469 int i;
7470
7471 /* Emacs' internal format specific initialize routine. */
7472 for (i = 0; i <= 0x20; i++)
7473 emacs_code_class[i] = EMACS_control_code;
7474 emacs_code_class[0x0A] = EMACS_linefeed_code;
7475 emacs_code_class[0x0D] = EMACS_carriage_return_code;
7476 for (i = 0x21 ; i < 0x7F; i++)
7477 emacs_code_class[i] = EMACS_ascii_code;
7478 emacs_code_class[0x7F] = EMACS_control_code;
7479 for (i = 0x80; i < 0xFF; i++)
7480 emacs_code_class[i] = EMACS_invalid_code;
7481 emacs_code_class[LEADING_CODE_PRIVATE_11] = EMACS_leading_code_3;
7482 emacs_code_class[LEADING_CODE_PRIVATE_12] = EMACS_leading_code_3;
7483 emacs_code_class[LEADING_CODE_PRIVATE_21] = EMACS_leading_code_4;
7484 emacs_code_class[LEADING_CODE_PRIVATE_22] = EMACS_leading_code_4;
7485
7486 /* ISO2022 specific initialize routine. */
7487 for (i = 0; i < 0x20; i++)
7488 iso_code_class[i] = ISO_control_0;
7489 for (i = 0x21; i < 0x7F; i++)
7490 iso_code_class[i] = ISO_graphic_plane_0;
7491 for (i = 0x80; i < 0xA0; i++)
7492 iso_code_class[i] = ISO_control_1;
7493 for (i = 0xA1; i < 0xFF; i++)
7494 iso_code_class[i] = ISO_graphic_plane_1;
7495 iso_code_class[0x20] = iso_code_class[0x7F] = ISO_0x20_or_0x7F;
7496 iso_code_class[0xA0] = iso_code_class[0xFF] = ISO_0xA0_or_0xFF;
7497 iso_code_class[ISO_CODE_CR] = ISO_carriage_return;
7498 iso_code_class[ISO_CODE_SO] = ISO_shift_out;
7499 iso_code_class[ISO_CODE_SI] = ISO_shift_in;
7500 iso_code_class[ISO_CODE_SS2_7] = ISO_single_shift_2_7;
7501 iso_code_class[ISO_CODE_ESC] = ISO_escape;
7502 iso_code_class[ISO_CODE_SS2] = ISO_single_shift_2;
7503 iso_code_class[ISO_CODE_SS3] = ISO_single_shift_3;
7504 iso_code_class[ISO_CODE_CSI] = ISO_control_sequence_introducer;
7505
7506 setup_coding_system (Qnil, &keyboard_coding);
7507 setup_coding_system (Qnil, &terminal_coding);
7508 setup_coding_system (Qnil, &safe_terminal_coding);
7509 setup_coding_system (Qnil, &default_buffer_file_coding);
7510
7511 bzero (coding_system_table, sizeof coding_system_table);
7512
7513 bzero (ascii_skip_code, sizeof ascii_skip_code);
7514 for (i = 0; i < 128; i++)
7515 ascii_skip_code[i] = 1;
7516
7517 #if defined (MSDOS) || defined (WINDOWSNT)
7518 system_eol_type = CODING_EOL_CRLF;
7519 #else
7520 system_eol_type = CODING_EOL_LF;
7521 #endif
7522
7523 inhibit_pre_post_conversion = 0;
7524 }
7525
7526 #ifdef emacs
7527
7528 void
7529 syms_of_coding ()
7530 {
7531 Qtarget_idx = intern ("target-idx");
7532 staticpro (&Qtarget_idx);
7533
7534 Qcoding_system_history = intern ("coding-system-history");
7535 staticpro (&Qcoding_system_history);
7536 Fset (Qcoding_system_history, Qnil);
7537
7538 /* Target FILENAME is the first argument. */
7539 Fput (Qinsert_file_contents, Qtarget_idx, make_number (0));
7540 /* Target FILENAME is the third argument. */
7541 Fput (Qwrite_region, Qtarget_idx, make_number (2));
7542
7543 Qcall_process = intern ("call-process");
7544 staticpro (&Qcall_process);
7545 /* Target PROGRAM is the first argument. */
7546 Fput (Qcall_process, Qtarget_idx, make_number (0));
7547
7548 Qcall_process_region = intern ("call-process-region");
7549 staticpro (&Qcall_process_region);
7550 /* Target PROGRAM is the third argument. */
7551 Fput (Qcall_process_region, Qtarget_idx, make_number (2));
7552
7553 Qstart_process = intern ("start-process");
7554 staticpro (&Qstart_process);
7555 /* Target PROGRAM is the third argument. */
7556 Fput (Qstart_process, Qtarget_idx, make_number (2));
7557
7558 Qopen_network_stream = intern ("open-network-stream");
7559 staticpro (&Qopen_network_stream);
7560 /* Target SERVICE is the fourth argument. */
7561 Fput (Qopen_network_stream, Qtarget_idx, make_number (3));
7562
7563 Qcoding_system = intern ("coding-system");
7564 staticpro (&Qcoding_system);
7565
7566 Qeol_type = intern ("eol-type");
7567 staticpro (&Qeol_type);
7568
7569 Qbuffer_file_coding_system = intern ("buffer-file-coding-system");
7570 staticpro (&Qbuffer_file_coding_system);
7571
7572 Qpost_read_conversion = intern ("post-read-conversion");
7573 staticpro (&Qpost_read_conversion);
7574
7575 Qpre_write_conversion = intern ("pre-write-conversion");
7576 staticpro (&Qpre_write_conversion);
7577
7578 Qno_conversion = intern ("no-conversion");
7579 staticpro (&Qno_conversion);
7580
7581 Qundecided = intern ("undecided");
7582 staticpro (&Qundecided);
7583
7584 Qcoding_system_p = intern ("coding-system-p");
7585 staticpro (&Qcoding_system_p);
7586
7587 Qcoding_system_error = intern ("coding-system-error");
7588 staticpro (&Qcoding_system_error);
7589
7590 Fput (Qcoding_system_error, Qerror_conditions,
7591 Fcons (Qcoding_system_error, Fcons (Qerror, Qnil)));
7592 Fput (Qcoding_system_error, Qerror_message,
7593 build_string ("Invalid coding system"));
7594
7595 Qcoding_category = intern ("coding-category");
7596 staticpro (&Qcoding_category);
7597 Qcoding_category_index = intern ("coding-category-index");
7598 staticpro (&Qcoding_category_index);
7599
7600 Vcoding_category_table
7601 = Fmake_vector (make_number (CODING_CATEGORY_IDX_MAX), Qnil);
7602 staticpro (&Vcoding_category_table);
7603 {
7604 int i;
7605 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
7606 {
7607 XVECTOR (Vcoding_category_table)->contents[i]
7608 = intern (coding_category_name[i]);
7609 Fput (XVECTOR (Vcoding_category_table)->contents[i],
7610 Qcoding_category_index, make_number (i));
7611 }
7612 }
7613
7614 Vcoding_system_safe_chars = Fcons (Qnil, Qnil);
7615 staticpro (&Vcoding_system_safe_chars);
7616
7617 Qtranslation_table = intern ("translation-table");
7618 staticpro (&Qtranslation_table);
7619 Fput (Qtranslation_table, Qchar_table_extra_slots, make_number (2));
7620
7621 Qtranslation_table_id = intern ("translation-table-id");
7622 staticpro (&Qtranslation_table_id);
7623
7624 Qtranslation_table_for_decode = intern ("translation-table-for-decode");
7625 staticpro (&Qtranslation_table_for_decode);
7626
7627 Qtranslation_table_for_encode = intern ("translation-table-for-encode");
7628 staticpro (&Qtranslation_table_for_encode);
7629
7630 Qsafe_chars = intern ("safe-chars");
7631 staticpro (&Qsafe_chars);
7632
7633 Qchar_coding_system = intern ("char-coding-system");
7634 staticpro (&Qchar_coding_system);
7635
7636 /* Intern this now in case it isn't already done.
7637 Setting this variable twice is harmless.
7638 But don't staticpro it here--that is done in alloc.c. */
7639 Qchar_table_extra_slots = intern ("char-table-extra-slots");
7640 Fput (Qsafe_chars, Qchar_table_extra_slots, make_number (0));
7641 Fput (Qchar_coding_system, Qchar_table_extra_slots, make_number (0));
7642
7643 Qvalid_codes = intern ("valid-codes");
7644 staticpro (&Qvalid_codes);
7645
7646 Qemacs_mule = intern ("emacs-mule");
7647 staticpro (&Qemacs_mule);
7648
7649 Qraw_text = intern ("raw-text");
7650 staticpro (&Qraw_text);
7651
7652 Qutf_8 = intern ("utf-8");
7653 staticpro (&Qutf_8);
7654
7655 Qcoding_system_define_form = intern ("coding-system-define-form");
7656 staticpro (&Qcoding_system_define_form);
7657
7658 defsubr (&Scoding_system_p);
7659 defsubr (&Sread_coding_system);
7660 defsubr (&Sread_non_nil_coding_system);
7661 defsubr (&Scheck_coding_system);
7662 defsubr (&Sdetect_coding_region);
7663 defsubr (&Sdetect_coding_string);
7664 defsubr (&Sfind_coding_systems_region_internal);
7665 defsubr (&Sunencodable_char_position);
7666 defsubr (&Sdecode_coding_region);
7667 defsubr (&Sencode_coding_region);
7668 defsubr (&Sdecode_coding_string);
7669 defsubr (&Sencode_coding_string);
7670 defsubr (&Sdecode_sjis_char);
7671 defsubr (&Sencode_sjis_char);
7672 defsubr (&Sdecode_big5_char);
7673 defsubr (&Sencode_big5_char);
7674 defsubr (&Sset_terminal_coding_system_internal);
7675 defsubr (&Sset_safe_terminal_coding_system_internal);
7676 defsubr (&Sterminal_coding_system);
7677 defsubr (&Sset_keyboard_coding_system_internal);
7678 defsubr (&Skeyboard_coding_system);
7679 defsubr (&Sfind_operation_coding_system);
7680 defsubr (&Supdate_coding_systems_internal);
7681 defsubr (&Sset_coding_priority_internal);
7682 defsubr (&Sdefine_coding_system_internal);
7683
7684 DEFVAR_LISP ("coding-system-list", &Vcoding_system_list,
7685 doc: /* List of coding systems.
7686
7687 Do not alter the value of this variable manually. This variable should be
7688 updated by the functions `make-coding-system' and
7689 `define-coding-system-alias'. */);
7690 Vcoding_system_list = Qnil;
7691
7692 DEFVAR_LISP ("coding-system-alist", &Vcoding_system_alist,
7693 doc: /* Alist of coding system names.
7694 Each element is one element list of coding system name.
7695 This variable is given to `completing-read' as TABLE argument.
7696
7697 Do not alter the value of this variable manually. This variable should be
7698 updated by the functions `make-coding-system' and
7699 `define-coding-system-alias'. */);
7700 Vcoding_system_alist = Qnil;
7701
7702 DEFVAR_LISP ("coding-category-list", &Vcoding_category_list,
7703 doc: /* List of coding-categories (symbols) ordered by priority.
7704
7705 On detecting a coding system, Emacs tries code detection algorithms
7706 associated with each coding-category one by one in this order. When
7707 one algorithm agrees with a byte sequence of source text, the coding
7708 system bound to the corresponding coding-category is selected. */);
7709 {
7710 int i;
7711
7712 Vcoding_category_list = Qnil;
7713 for (i = CODING_CATEGORY_IDX_MAX - 1; i >= 0; i--)
7714 Vcoding_category_list
7715 = Fcons (XVECTOR (Vcoding_category_table)->contents[i],
7716 Vcoding_category_list);
7717 }
7718
7719 DEFVAR_LISP ("coding-system-for-read", &Vcoding_system_for_read,
7720 doc: /* Specify the coding system for read operations.
7721 It is useful to bind this variable with `let', but do not set it globally.
7722 If the value is a coding system, it is used for decoding on read operation.
7723 If not, an appropriate element is used from one of the coding system alists:
7724 There are three such tables, `file-coding-system-alist',
7725 `process-coding-system-alist', and `network-coding-system-alist'. */);
7726 Vcoding_system_for_read = Qnil;
7727
7728 DEFVAR_LISP ("coding-system-for-write", &Vcoding_system_for_write,
7729 doc: /* Specify the coding system for write operations.
7730 Programs bind this variable with `let', but you should not set it globally.
7731 If the value is a coding system, it is used for encoding of output,
7732 when writing it to a file and when sending it to a file or subprocess.
7733
7734 If this does not specify a coding system, an appropriate element
7735 is used from one of the coding system alists:
7736 There are three such tables, `file-coding-system-alist',
7737 `process-coding-system-alist', and `network-coding-system-alist'.
7738 For output to files, if the above procedure does not specify a coding system,
7739 the value of `buffer-file-coding-system' is used. */);
7740 Vcoding_system_for_write = Qnil;
7741
7742 DEFVAR_LISP ("last-coding-system-used", &Vlast_coding_system_used,
7743 doc: /* Coding system used in the latest file or process I/O.
7744 Also set by `encode-coding-region', `decode-coding-region',
7745 `encode-coding-string' and `decode-coding-string'. */);
7746 Vlast_coding_system_used = Qnil;
7747
7748 DEFVAR_BOOL ("inhibit-eol-conversion", &inhibit_eol_conversion,
7749 doc: /* *Non-nil means always inhibit code conversion of end-of-line format.
7750 See info node `Coding Systems' and info node `Text and Binary' concerning
7751 such conversion. */);
7752 inhibit_eol_conversion = 0;
7753
7754 DEFVAR_BOOL ("inherit-process-coding-system", &inherit_process_coding_system,
7755 doc: /* Non-nil means process buffer inherits coding system of process output.
7756 Bind it to t if the process output is to be treated as if it were a file
7757 read from some filesystem. */);
7758 inherit_process_coding_system = 0;
7759
7760 DEFVAR_LISP ("file-coding-system-alist", &Vfile_coding_system_alist,
7761 doc: /* Alist to decide a coding system to use for a file I/O operation.
7762 The format is ((PATTERN . VAL) ...),
7763 where PATTERN is a regular expression matching a file name,
7764 VAL is a coding system, a cons of coding systems, or a function symbol.
7765 If VAL is a coding system, it is used for both decoding and encoding
7766 the file contents.
7767 If VAL is a cons of coding systems, the car part is used for decoding,
7768 and the cdr part is used for encoding.
7769 If VAL is a function symbol, the function must return a coding system
7770 or a cons of coding systems which are used as above. The function gets
7771 the arguments with which `find-operation-coding-system' was called.
7772
7773 See also the function `find-operation-coding-system'
7774 and the variable `auto-coding-alist'. */);
7775 Vfile_coding_system_alist = Qnil;
7776
7777 DEFVAR_LISP ("process-coding-system-alist", &Vprocess_coding_system_alist,
7778 doc: /* Alist to decide a coding system to use for a process I/O operation.
7779 The format is ((PATTERN . VAL) ...),
7780 where PATTERN is a regular expression matching a program name,
7781 VAL is a coding system, a cons of coding systems, or a function symbol.
7782 If VAL is a coding system, it is used for both decoding what received
7783 from the program and encoding what sent to the program.
7784 If VAL is a cons of coding systems, the car part is used for decoding,
7785 and the cdr part is used for encoding.
7786 If VAL is a function symbol, the function must return a coding system
7787 or a cons of coding systems which are used as above.
7788
7789 See also the function `find-operation-coding-system'. */);
7790 Vprocess_coding_system_alist = Qnil;
7791
7792 DEFVAR_LISP ("network-coding-system-alist", &Vnetwork_coding_system_alist,
7793 doc: /* Alist to decide a coding system to use for a network I/O operation.
7794 The format is ((PATTERN . VAL) ...),
7795 where PATTERN is a regular expression matching a network service name
7796 or is a port number to connect to,
7797 VAL is a coding system, a cons of coding systems, or a function symbol.
7798 If VAL is a coding system, it is used for both decoding what received
7799 from the network stream and encoding what sent to the network stream.
7800 If VAL is a cons of coding systems, the car part is used for decoding,
7801 and the cdr part is used for encoding.
7802 If VAL is a function symbol, the function must return a coding system
7803 or a cons of coding systems which are used as above.
7804
7805 See also the function `find-operation-coding-system'. */);
7806 Vnetwork_coding_system_alist = Qnil;
7807
7808 DEFVAR_LISP ("locale-coding-system", &Vlocale_coding_system,
7809 doc: /* Coding system to use with system messages.
7810 Also used for decoding keyboard input on X Window system. */);
7811 Vlocale_coding_system = Qnil;
7812
7813 /* The eol mnemonics are reset in startup.el system-dependently. */
7814 DEFVAR_LISP ("eol-mnemonic-unix", &eol_mnemonic_unix,
7815 doc: /* *String displayed in mode line for UNIX-like (LF) end-of-line format. */);
7816 eol_mnemonic_unix = build_string (":");
7817
7818 DEFVAR_LISP ("eol-mnemonic-dos", &eol_mnemonic_dos,
7819 doc: /* *String displayed in mode line for DOS-like (CRLF) end-of-line format. */);
7820 eol_mnemonic_dos = build_string ("\\");
7821
7822 DEFVAR_LISP ("eol-mnemonic-mac", &eol_mnemonic_mac,
7823 doc: /* *String displayed in mode line for MAC-like (CR) end-of-line format. */);
7824 eol_mnemonic_mac = build_string ("/");
7825
7826 DEFVAR_LISP ("eol-mnemonic-undecided", &eol_mnemonic_undecided,
7827 doc: /* *String displayed in mode line when end-of-line format is not yet determined. */);
7828 eol_mnemonic_undecided = build_string (":");
7829
7830 DEFVAR_LISP ("enable-character-translation", &Venable_character_translation,
7831 doc: /* *Non-nil enables character translation while encoding and decoding. */);
7832 Venable_character_translation = Qt;
7833
7834 DEFVAR_LISP ("standard-translation-table-for-decode",
7835 &Vstandard_translation_table_for_decode,
7836 doc: /* Table for translating characters while decoding. */);
7837 Vstandard_translation_table_for_decode = Qnil;
7838
7839 DEFVAR_LISP ("standard-translation-table-for-encode",
7840 &Vstandard_translation_table_for_encode,
7841 doc: /* Table for translating characters while encoding. */);
7842 Vstandard_translation_table_for_encode = Qnil;
7843
7844 DEFVAR_LISP ("charset-revision-table", &Vcharset_revision_alist,
7845 doc: /* Alist of charsets vs revision numbers.
7846 While encoding, if a charset (car part of an element) is found,
7847 designate it with the escape sequence identifying revision (cdr part of the element). */);
7848 Vcharset_revision_alist = Qnil;
7849
7850 DEFVAR_LISP ("default-process-coding-system",
7851 &Vdefault_process_coding_system,
7852 doc: /* Cons of coding systems used for process I/O by default.
7853 The car part is used for decoding a process output,
7854 the cdr part is used for encoding a text to be sent to a process. */);
7855 Vdefault_process_coding_system = Qnil;
7856
7857 DEFVAR_LISP ("latin-extra-code-table", &Vlatin_extra_code_table,
7858 doc: /* Table of extra Latin codes in the range 128..159 (inclusive).
7859 This is a vector of length 256.
7860 If Nth element is non-nil, the existence of code N in a file
7861 \(or output of subprocess) doesn't prevent it to be detected as
7862 a coding system of ISO 2022 variant which has a flag
7863 `accept-latin-extra-code' t (e.g. iso-latin-1) on reading a file
7864 or reading output of a subprocess.
7865 Only 128th through 159th elements has a meaning. */);
7866 Vlatin_extra_code_table = Fmake_vector (make_number (256), Qnil);
7867
7868 DEFVAR_LISP ("select-safe-coding-system-function",
7869 &Vselect_safe_coding_system_function,
7870 doc: /* Function to call to select safe coding system for encoding a text.
7871
7872 If set, this function is called to force a user to select a proper
7873 coding system which can encode the text in the case that a default
7874 coding system used in each operation can't encode the text.
7875
7876 The default value is `select-safe-coding-system' (which see). */);
7877 Vselect_safe_coding_system_function = Qnil;
7878
7879 DEFVAR_BOOL ("coding-system-require-warning",
7880 &coding_system_require_warning,
7881 doc: /* Internal use only.
7882 If non-nil, on writing a file, `select-safe-coding-system-function' is
7883 called even if `coding-system-for-write' is non-nil. The command
7884 `universal-coding-system-argument' binds this variable to t temporarily. */);
7885 coding_system_require_warning = 0;
7886
7887
7888 DEFVAR_BOOL ("inhibit-iso-escape-detection",
7889 &inhibit_iso_escape_detection,
7890 doc: /* If non-nil, Emacs ignores ISO2022's escape sequence on code detection.
7891
7892 By default, on reading a file, Emacs tries to detect how the text is
7893 encoded. This code detection is sensitive to escape sequences. If
7894 the sequence is valid as ISO2022, the code is determined as one of
7895 the ISO2022 encodings, and the file is decoded by the corresponding
7896 coding system (e.g. `iso-2022-7bit').
7897
7898 However, there may be a case that you want to read escape sequences in
7899 a file as is. In such a case, you can set this variable to non-nil.
7900 Then, as the code detection ignores any escape sequences, no file is
7901 detected as encoded in some ISO2022 encoding. The result is that all
7902 escape sequences become visible in a buffer.
7903
7904 The default value is nil, and it is strongly recommended not to change
7905 it. That is because many Emacs Lisp source files that contain
7906 non-ASCII characters are encoded by the coding system `iso-2022-7bit'
7907 in Emacs's distribution, and they won't be decoded correctly on
7908 reading if you suppress escape sequence detection.
7909
7910 The other way to read escape sequences in a file without decoding is
7911 to explicitly specify some coding system that doesn't use ISO2022's
7912 escape sequence (e.g `latin-1') on reading by \\[universal-coding-system-argument]. */);
7913 inhibit_iso_escape_detection = 0;
7914
7915 DEFVAR_LISP ("translation-table-for-input", &Vtranslation_table_for_input,
7916 doc: /* Char table for translating self-inserting characters.
7917 This is applied to the result of input methods, not their input. See also
7918 `keyboard-translate-table'. */);
7919 Vtranslation_table_for_input = Qnil;
7920 }
7921
7922 char *
7923 emacs_strerror (error_number)
7924 int error_number;
7925 {
7926 char *str;
7927
7928 synchronize_system_messages_locale ();
7929 str = strerror (error_number);
7930
7931 if (! NILP (Vlocale_coding_system))
7932 {
7933 Lisp_Object dec = code_convert_string_norecord (build_string (str),
7934 Vlocale_coding_system,
7935 0);
7936 str = (char *) SDATA (dec);
7937 }
7938
7939 return str;
7940 }
7941
7942 #endif /* emacs */
7943
7944 /* arch-tag: 3a3a2b01-5ff6-4071-9afe-f5b808d9229d
7945 (do not change this comment) */