]> code.delx.au - gnu-emacs/blob - src/fns.c
(map_char_table): New arg TABLE gets the master table. All calls changed.
[gnu-emacs] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985, 86, 87, 93, 94, 95, 97, 98, 99, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23
24 #ifdef HAVE_UNISTD_H
25 #include <unistd.h>
26 #endif
27 #include <time.h>
28
29 #ifndef MAC_OSX
30 /* On Mac OS X, defining this conflicts with precompiled headers. */
31
32 /* Note on some machines this defines `vector' as a typedef,
33 so make sure we don't use that name in this file. */
34 #undef vector
35 #define vector *****
36
37 #endif /* ! MAC_OSX */
38
39 #include "lisp.h"
40 #include "commands.h"
41 #include "charset.h"
42 #include "coding.h"
43 #include "buffer.h"
44 #include "keyboard.h"
45 #include "keymap.h"
46 #include "intervals.h"
47 #include "frame.h"
48 #include "window.h"
49 #include "blockinput.h"
50 #if defined (HAVE_MENUS) && defined (HAVE_X_WINDOWS)
51 #include "xterm.h"
52 #endif
53
54 #ifndef NULL
55 #define NULL ((POINTER_TYPE *)0)
56 #endif
57
58 /* Nonzero enables use of dialog boxes for questions
59 asked by mouse commands. */
60 int use_dialog_box;
61
62 extern int minibuffer_auto_raise;
63 extern Lisp_Object minibuf_window;
64 extern Lisp_Object Vlocale_coding_system;
65
66 Lisp_Object Qstring_lessp, Qprovide, Qrequire;
67 Lisp_Object Qyes_or_no_p_history;
68 Lisp_Object Qcursor_in_echo_area;
69 Lisp_Object Qwidget_type;
70 Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
71
72 extern Lisp_Object Qinput_method_function;
73
74 static int internal_equal ();
75
76 extern long get_random ();
77 extern void seed_random ();
78
79 #ifndef HAVE_UNISTD_H
80 extern long time ();
81 #endif
82 \f
83 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
84 doc: /* Return the argument unchanged. */)
85 (arg)
86 Lisp_Object arg;
87 {
88 return arg;
89 }
90
91 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
92 doc: /* Return a pseudo-random number.
93 All integers representable in Lisp are equally likely.
94 On most systems, this is 28 bits' worth.
95 With positive integer argument N, return random number in interval [0,N).
96 With argument t, set the random number seed from the current time and pid. */)
97 (n)
98 Lisp_Object n;
99 {
100 EMACS_INT val;
101 Lisp_Object lispy_val;
102 unsigned long denominator;
103
104 if (EQ (n, Qt))
105 seed_random (getpid () + time (NULL));
106 if (NATNUMP (n) && XFASTINT (n) != 0)
107 {
108 /* Try to take our random number from the higher bits of VAL,
109 not the lower, since (says Gentzel) the low bits of `random'
110 are less random than the higher ones. We do this by using the
111 quotient rather than the remainder. At the high end of the RNG
112 it's possible to get a quotient larger than n; discarding
113 these values eliminates the bias that would otherwise appear
114 when using a large n. */
115 denominator = ((unsigned long)1 << VALBITS) / XFASTINT (n);
116 do
117 val = get_random () / denominator;
118 while (val >= XFASTINT (n));
119 }
120 else
121 val = get_random ();
122 XSETINT (lispy_val, val);
123 return lispy_val;
124 }
125 \f
126 /* Random data-structure functions */
127
128 DEFUN ("length", Flength, Slength, 1, 1, 0,
129 doc: /* Return the length of vector, list or string SEQUENCE.
130 A byte-code function object is also allowed.
131 If the string contains multibyte characters, this is not necessarily
132 the number of bytes in the string; it is the number of characters.
133 To get the number of bytes, use `string-bytes'. */)
134 (sequence)
135 register Lisp_Object sequence;
136 {
137 register Lisp_Object val;
138 register int i;
139
140 retry:
141 if (STRINGP (sequence))
142 XSETFASTINT (val, SCHARS (sequence));
143 else if (VECTORP (sequence))
144 XSETFASTINT (val, XVECTOR (sequence)->size);
145 else if (SUB_CHAR_TABLE_P (sequence))
146 XSETFASTINT (val, SUB_CHAR_TABLE_ORDINARY_SLOTS);
147 else if (CHAR_TABLE_P (sequence))
148 XSETFASTINT (val, MAX_CHAR);
149 else if (BOOL_VECTOR_P (sequence))
150 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
151 else if (COMPILEDP (sequence))
152 XSETFASTINT (val, XVECTOR (sequence)->size & PSEUDOVECTOR_SIZE_MASK);
153 else if (CONSP (sequence))
154 {
155 i = 0;
156 while (CONSP (sequence))
157 {
158 sequence = XCDR (sequence);
159 ++i;
160
161 if (!CONSP (sequence))
162 break;
163
164 sequence = XCDR (sequence);
165 ++i;
166 QUIT;
167 }
168
169 if (!NILP (sequence))
170 wrong_type_argument (Qlistp, sequence);
171
172 val = make_number (i);
173 }
174 else if (NILP (sequence))
175 XSETFASTINT (val, 0);
176 else
177 {
178 sequence = wrong_type_argument (Qsequencep, sequence);
179 goto retry;
180 }
181 return val;
182 }
183
184 /* This does not check for quits. That is safe
185 since it must terminate. */
186
187 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
188 doc: /* Return the length of a list, but avoid error or infinite loop.
189 This function never gets an error. If LIST is not really a list,
190 it returns 0. If LIST is circular, it returns a finite value
191 which is at least the number of distinct elements. */)
192 (list)
193 Lisp_Object list;
194 {
195 Lisp_Object tail, halftail, length;
196 int len = 0;
197
198 /* halftail is used to detect circular lists. */
199 halftail = list;
200 for (tail = list; CONSP (tail); tail = XCDR (tail))
201 {
202 if (EQ (tail, halftail) && len != 0)
203 break;
204 len++;
205 if ((len & 1) == 0)
206 halftail = XCDR (halftail);
207 }
208
209 XSETINT (length, len);
210 return length;
211 }
212
213 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
214 doc: /* Return the number of bytes in STRING.
215 If STRING is a multibyte string, this is greater than the length of STRING. */)
216 (string)
217 Lisp_Object string;
218 {
219 CHECK_STRING (string);
220 return make_number (SBYTES (string));
221 }
222
223 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
224 doc: /* Return t if two strings have identical contents.
225 Case is significant, but text properties are ignored.
226 Symbols are also allowed; their print names are used instead. */)
227 (s1, s2)
228 register Lisp_Object s1, s2;
229 {
230 if (SYMBOLP (s1))
231 s1 = SYMBOL_NAME (s1);
232 if (SYMBOLP (s2))
233 s2 = SYMBOL_NAME (s2);
234 CHECK_STRING (s1);
235 CHECK_STRING (s2);
236
237 if (SCHARS (s1) != SCHARS (s2)
238 || SBYTES (s1) != SBYTES (s2)
239 || bcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
240 return Qnil;
241 return Qt;
242 }
243
244 DEFUN ("compare-strings", Fcompare_strings,
245 Scompare_strings, 6, 7, 0,
246 doc: /* Compare the contents of two strings, converting to multibyte if needed.
247 In string STR1, skip the first START1 characters and stop at END1.
248 In string STR2, skip the first START2 characters and stop at END2.
249 END1 and END2 default to the full lengths of the respective strings.
250
251 Case is significant in this comparison if IGNORE-CASE is nil.
252 Unibyte strings are converted to multibyte for comparison.
253
254 The value is t if the strings (or specified portions) match.
255 If string STR1 is less, the value is a negative number N;
256 - 1 - N is the number of characters that match at the beginning.
257 If string STR1 is greater, the value is a positive number N;
258 N - 1 is the number of characters that match at the beginning. */)
259 (str1, start1, end1, str2, start2, end2, ignore_case)
260 Lisp_Object str1, start1, end1, start2, str2, end2, ignore_case;
261 {
262 register int end1_char, end2_char;
263 register int i1, i1_byte, i2, i2_byte;
264
265 CHECK_STRING (str1);
266 CHECK_STRING (str2);
267 if (NILP (start1))
268 start1 = make_number (0);
269 if (NILP (start2))
270 start2 = make_number (0);
271 CHECK_NATNUM (start1);
272 CHECK_NATNUM (start2);
273 if (! NILP (end1))
274 CHECK_NATNUM (end1);
275 if (! NILP (end2))
276 CHECK_NATNUM (end2);
277
278 i1 = XINT (start1);
279 i2 = XINT (start2);
280
281 i1_byte = string_char_to_byte (str1, i1);
282 i2_byte = string_char_to_byte (str2, i2);
283
284 end1_char = SCHARS (str1);
285 if (! NILP (end1) && end1_char > XINT (end1))
286 end1_char = XINT (end1);
287
288 end2_char = SCHARS (str2);
289 if (! NILP (end2) && end2_char > XINT (end2))
290 end2_char = XINT (end2);
291
292 while (i1 < end1_char && i2 < end2_char)
293 {
294 /* When we find a mismatch, we must compare the
295 characters, not just the bytes. */
296 int c1, c2;
297
298 if (STRING_MULTIBYTE (str1))
299 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
300 else
301 {
302 c1 = SREF (str1, i1++);
303 c1 = unibyte_char_to_multibyte (c1);
304 }
305
306 if (STRING_MULTIBYTE (str2))
307 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
308 else
309 {
310 c2 = SREF (str2, i2++);
311 c2 = unibyte_char_to_multibyte (c2);
312 }
313
314 if (c1 == c2)
315 continue;
316
317 if (! NILP (ignore_case))
318 {
319 Lisp_Object tem;
320
321 tem = Fupcase (make_number (c1));
322 c1 = XINT (tem);
323 tem = Fupcase (make_number (c2));
324 c2 = XINT (tem);
325 }
326
327 if (c1 == c2)
328 continue;
329
330 /* Note that I1 has already been incremented
331 past the character that we are comparing;
332 hence we don't add or subtract 1 here. */
333 if (c1 < c2)
334 return make_number (- i1 + XINT (start1));
335 else
336 return make_number (i1 - XINT (start1));
337 }
338
339 if (i1 < end1_char)
340 return make_number (i1 - XINT (start1) + 1);
341 if (i2 < end2_char)
342 return make_number (- i1 + XINT (start1) - 1);
343
344 return Qt;
345 }
346
347 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
348 doc: /* Return t if first arg string is less than second in lexicographic order.
349 Case is significant.
350 Symbols are also allowed; their print names are used instead. */)
351 (s1, s2)
352 register Lisp_Object s1, s2;
353 {
354 register int end;
355 register int i1, i1_byte, i2, i2_byte;
356
357 if (SYMBOLP (s1))
358 s1 = SYMBOL_NAME (s1);
359 if (SYMBOLP (s2))
360 s2 = SYMBOL_NAME (s2);
361 CHECK_STRING (s1);
362 CHECK_STRING (s2);
363
364 i1 = i1_byte = i2 = i2_byte = 0;
365
366 end = SCHARS (s1);
367 if (end > SCHARS (s2))
368 end = SCHARS (s2);
369
370 while (i1 < end)
371 {
372 /* When we find a mismatch, we must compare the
373 characters, not just the bytes. */
374 int c1, c2;
375
376 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
377 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
378
379 if (c1 != c2)
380 return c1 < c2 ? Qt : Qnil;
381 }
382 return i1 < SCHARS (s2) ? Qt : Qnil;
383 }
384 \f
385 static Lisp_Object concat ();
386
387 /* ARGSUSED */
388 Lisp_Object
389 concat2 (s1, s2)
390 Lisp_Object s1, s2;
391 {
392 #ifdef NO_ARG_ARRAY
393 Lisp_Object args[2];
394 args[0] = s1;
395 args[1] = s2;
396 return concat (2, args, Lisp_String, 0);
397 #else
398 return concat (2, &s1, Lisp_String, 0);
399 #endif /* NO_ARG_ARRAY */
400 }
401
402 /* ARGSUSED */
403 Lisp_Object
404 concat3 (s1, s2, s3)
405 Lisp_Object s1, s2, s3;
406 {
407 #ifdef NO_ARG_ARRAY
408 Lisp_Object args[3];
409 args[0] = s1;
410 args[1] = s2;
411 args[2] = s3;
412 return concat (3, args, Lisp_String, 0);
413 #else
414 return concat (3, &s1, Lisp_String, 0);
415 #endif /* NO_ARG_ARRAY */
416 }
417
418 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
419 doc: /* Concatenate all the arguments and make the result a list.
420 The result is a list whose elements are the elements of all the arguments.
421 Each argument may be a list, vector or string.
422 The last argument is not copied, just used as the tail of the new list.
423 usage: (append &rest SEQUENCES) */)
424 (nargs, args)
425 int nargs;
426 Lisp_Object *args;
427 {
428 return concat (nargs, args, Lisp_Cons, 1);
429 }
430
431 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
432 doc: /* Concatenate all the arguments and make the result a string.
433 The result is a string whose elements are the elements of all the arguments.
434 Each argument may be a string or a list or vector of characters (integers).
435 usage: (concat &rest SEQUENCES) */)
436 (nargs, args)
437 int nargs;
438 Lisp_Object *args;
439 {
440 return concat (nargs, args, Lisp_String, 0);
441 }
442
443 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
444 doc: /* Concatenate all the arguments and make the result a vector.
445 The result is a vector whose elements are the elements of all the arguments.
446 Each argument may be a list, vector or string.
447 usage: (vconcat &rest SEQUENCES) */)
448 (nargs, args)
449 int nargs;
450 Lisp_Object *args;
451 {
452 return concat (nargs, args, Lisp_Vectorlike, 0);
453 }
454
455 /* Return a copy of a sub char table ARG. The elements except for a
456 nested sub char table are not copied. */
457 static Lisp_Object
458 copy_sub_char_table (arg)
459 Lisp_Object arg;
460 {
461 Lisp_Object copy = make_sub_char_table (XCHAR_TABLE (arg)->defalt);
462 int i;
463
464 /* Copy all the contents. */
465 bcopy (XCHAR_TABLE (arg)->contents, XCHAR_TABLE (copy)->contents,
466 SUB_CHAR_TABLE_ORDINARY_SLOTS * sizeof (Lisp_Object));
467 /* Recursively copy any sub char-tables in the ordinary slots. */
468 for (i = 32; i < SUB_CHAR_TABLE_ORDINARY_SLOTS; i++)
469 if (SUB_CHAR_TABLE_P (XCHAR_TABLE (arg)->contents[i]))
470 XCHAR_TABLE (copy)->contents[i]
471 = copy_sub_char_table (XCHAR_TABLE (copy)->contents[i]);
472
473 return copy;
474 }
475
476
477 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
478 doc: /* Return a copy of a list, vector, string or char-table.
479 The elements of a list or vector are not copied; they are shared
480 with the original. */)
481 (arg)
482 Lisp_Object arg;
483 {
484 if (NILP (arg)) return arg;
485
486 if (CHAR_TABLE_P (arg))
487 {
488 int i;
489 Lisp_Object copy;
490
491 copy = Fmake_char_table (XCHAR_TABLE (arg)->purpose, Qnil);
492 /* Copy all the slots, including the extra ones. */
493 bcopy (XVECTOR (arg)->contents, XVECTOR (copy)->contents,
494 ((XCHAR_TABLE (arg)->size & PSEUDOVECTOR_SIZE_MASK)
495 * sizeof (Lisp_Object)));
496
497 /* Recursively copy any sub char tables in the ordinary slots
498 for multibyte characters. */
499 for (i = CHAR_TABLE_SINGLE_BYTE_SLOTS;
500 i < CHAR_TABLE_ORDINARY_SLOTS; i++)
501 if (SUB_CHAR_TABLE_P (XCHAR_TABLE (arg)->contents[i]))
502 XCHAR_TABLE (copy)->contents[i]
503 = copy_sub_char_table (XCHAR_TABLE (copy)->contents[i]);
504
505 return copy;
506 }
507
508 if (BOOL_VECTOR_P (arg))
509 {
510 Lisp_Object val;
511 int size_in_chars
512 = (XBOOL_VECTOR (arg)->size + BITS_PER_CHAR - 1) / BITS_PER_CHAR;
513
514 val = Fmake_bool_vector (Flength (arg), Qnil);
515 bcopy (XBOOL_VECTOR (arg)->data, XBOOL_VECTOR (val)->data,
516 size_in_chars);
517 return val;
518 }
519
520 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
521 arg = wrong_type_argument (Qsequencep, arg);
522 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
523 }
524
525 /* In string STR of length LEN, see if bytes before STR[I] combine
526 with bytes after STR[I] to form a single character. If so, return
527 the number of bytes after STR[I] which combine in this way.
528 Otherwize, return 0. */
529
530 static int
531 count_combining (str, len, i)
532 unsigned char *str;
533 int len, i;
534 {
535 int j = i - 1, bytes;
536
537 if (i == 0 || i == len || CHAR_HEAD_P (str[i]))
538 return 0;
539 while (j >= 0 && !CHAR_HEAD_P (str[j])) j--;
540 if (j < 0 || ! BASE_LEADING_CODE_P (str[j]))
541 return 0;
542 PARSE_MULTIBYTE_SEQ (str + j, len - j, bytes);
543 return (bytes <= i - j ? 0 : bytes - (i - j));
544 }
545
546 /* This structure holds information of an argument of `concat' that is
547 a string and has text properties to be copied. */
548 struct textprop_rec
549 {
550 int argnum; /* refer to ARGS (arguments of `concat') */
551 int from; /* refer to ARGS[argnum] (argument string) */
552 int to; /* refer to VAL (the target string) */
553 };
554
555 static Lisp_Object
556 concat (nargs, args, target_type, last_special)
557 int nargs;
558 Lisp_Object *args;
559 enum Lisp_Type target_type;
560 int last_special;
561 {
562 Lisp_Object val;
563 register Lisp_Object tail;
564 register Lisp_Object this;
565 int toindex;
566 int toindex_byte = 0;
567 register int result_len;
568 register int result_len_byte;
569 register int argnum;
570 Lisp_Object last_tail;
571 Lisp_Object prev;
572 int some_multibyte;
573 /* When we make a multibyte string, we can't copy text properties
574 while concatinating each string because the length of resulting
575 string can't be decided until we finish the whole concatination.
576 So, we record strings that have text properties to be copied
577 here, and copy the text properties after the concatination. */
578 struct textprop_rec *textprops = NULL;
579 /* Number of elments in textprops. */
580 int num_textprops = 0;
581
582 tail = Qnil;
583
584 /* In append, the last arg isn't treated like the others */
585 if (last_special && nargs > 0)
586 {
587 nargs--;
588 last_tail = args[nargs];
589 }
590 else
591 last_tail = Qnil;
592
593 /* Canonicalize each argument. */
594 for (argnum = 0; argnum < nargs; argnum++)
595 {
596 this = args[argnum];
597 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
598 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
599 {
600 args[argnum] = wrong_type_argument (Qsequencep, this);
601 }
602 }
603
604 /* Compute total length in chars of arguments in RESULT_LEN.
605 If desired output is a string, also compute length in bytes
606 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
607 whether the result should be a multibyte string. */
608 result_len_byte = 0;
609 result_len = 0;
610 some_multibyte = 0;
611 for (argnum = 0; argnum < nargs; argnum++)
612 {
613 int len;
614 this = args[argnum];
615 len = XFASTINT (Flength (this));
616 if (target_type == Lisp_String)
617 {
618 /* We must count the number of bytes needed in the string
619 as well as the number of characters. */
620 int i;
621 Lisp_Object ch;
622 int this_len_byte;
623
624 if (VECTORP (this))
625 for (i = 0; i < len; i++)
626 {
627 ch = XVECTOR (this)->contents[i];
628 if (! INTEGERP (ch))
629 wrong_type_argument (Qintegerp, ch);
630 this_len_byte = CHAR_BYTES (XINT (ch));
631 result_len_byte += this_len_byte;
632 if (!SINGLE_BYTE_CHAR_P (XINT (ch)))
633 some_multibyte = 1;
634 }
635 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
636 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
637 else if (CONSP (this))
638 for (; CONSP (this); this = XCDR (this))
639 {
640 ch = XCAR (this);
641 if (! INTEGERP (ch))
642 wrong_type_argument (Qintegerp, ch);
643 this_len_byte = CHAR_BYTES (XINT (ch));
644 result_len_byte += this_len_byte;
645 if (!SINGLE_BYTE_CHAR_P (XINT (ch)))
646 some_multibyte = 1;
647 }
648 else if (STRINGP (this))
649 {
650 if (STRING_MULTIBYTE (this))
651 {
652 some_multibyte = 1;
653 result_len_byte += SBYTES (this);
654 }
655 else
656 result_len_byte += count_size_as_multibyte (SDATA (this),
657 SCHARS (this));
658 }
659 }
660
661 result_len += len;
662 }
663
664 if (! some_multibyte)
665 result_len_byte = result_len;
666
667 /* Create the output object. */
668 if (target_type == Lisp_Cons)
669 val = Fmake_list (make_number (result_len), Qnil);
670 else if (target_type == Lisp_Vectorlike)
671 val = Fmake_vector (make_number (result_len), Qnil);
672 else if (some_multibyte)
673 val = make_uninit_multibyte_string (result_len, result_len_byte);
674 else
675 val = make_uninit_string (result_len);
676
677 /* In `append', if all but last arg are nil, return last arg. */
678 if (target_type == Lisp_Cons && EQ (val, Qnil))
679 return last_tail;
680
681 /* Copy the contents of the args into the result. */
682 if (CONSP (val))
683 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
684 else
685 toindex = 0, toindex_byte = 0;
686
687 prev = Qnil;
688 if (STRINGP (val))
689 textprops
690 = (struct textprop_rec *) alloca (sizeof (struct textprop_rec) * nargs);
691
692 for (argnum = 0; argnum < nargs; argnum++)
693 {
694 Lisp_Object thislen;
695 int thisleni = 0;
696 register unsigned int thisindex = 0;
697 register unsigned int thisindex_byte = 0;
698
699 this = args[argnum];
700 if (!CONSP (this))
701 thislen = Flength (this), thisleni = XINT (thislen);
702
703 /* Between strings of the same kind, copy fast. */
704 if (STRINGP (this) && STRINGP (val)
705 && STRING_MULTIBYTE (this) == some_multibyte)
706 {
707 int thislen_byte = SBYTES (this);
708 int combined;
709
710 bcopy (SDATA (this), SDATA (val) + toindex_byte,
711 SBYTES (this));
712 combined = (some_multibyte && toindex_byte > 0
713 ? count_combining (SDATA (val),
714 toindex_byte + thislen_byte,
715 toindex_byte)
716 : 0);
717 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
718 {
719 textprops[num_textprops].argnum = argnum;
720 /* We ignore text properties on characters being combined. */
721 textprops[num_textprops].from = combined;
722 textprops[num_textprops++].to = toindex;
723 }
724 toindex_byte += thislen_byte;
725 toindex += thisleni - combined;
726 STRING_SET_CHARS (val, SCHARS (val) - combined);
727 }
728 /* Copy a single-byte string to a multibyte string. */
729 else if (STRINGP (this) && STRINGP (val))
730 {
731 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
732 {
733 textprops[num_textprops].argnum = argnum;
734 textprops[num_textprops].from = 0;
735 textprops[num_textprops++].to = toindex;
736 }
737 toindex_byte += copy_text (SDATA (this),
738 SDATA (val) + toindex_byte,
739 SCHARS (this), 0, 1);
740 toindex += thisleni;
741 }
742 else
743 /* Copy element by element. */
744 while (1)
745 {
746 register Lisp_Object elt;
747
748 /* Fetch next element of `this' arg into `elt', or break if
749 `this' is exhausted. */
750 if (NILP (this)) break;
751 if (CONSP (this))
752 elt = XCAR (this), this = XCDR (this);
753 else if (thisindex >= thisleni)
754 break;
755 else if (STRINGP (this))
756 {
757 int c;
758 if (STRING_MULTIBYTE (this))
759 {
760 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
761 thisindex,
762 thisindex_byte);
763 XSETFASTINT (elt, c);
764 }
765 else
766 {
767 XSETFASTINT (elt, SREF (this, thisindex++));
768 if (some_multibyte
769 && (XINT (elt) >= 0240
770 || (XINT (elt) >= 0200
771 && ! NILP (Vnonascii_translation_table)))
772 && XINT (elt) < 0400)
773 {
774 c = unibyte_char_to_multibyte (XINT (elt));
775 XSETINT (elt, c);
776 }
777 }
778 }
779 else if (BOOL_VECTOR_P (this))
780 {
781 int byte;
782 byte = XBOOL_VECTOR (this)->data[thisindex / BITS_PER_CHAR];
783 if (byte & (1 << (thisindex % BITS_PER_CHAR)))
784 elt = Qt;
785 else
786 elt = Qnil;
787 thisindex++;
788 }
789 else
790 elt = XVECTOR (this)->contents[thisindex++];
791
792 /* Store this element into the result. */
793 if (toindex < 0)
794 {
795 XSETCAR (tail, elt);
796 prev = tail;
797 tail = XCDR (tail);
798 }
799 else if (VECTORP (val))
800 XVECTOR (val)->contents[toindex++] = elt;
801 else
802 {
803 CHECK_NUMBER (elt);
804 if (SINGLE_BYTE_CHAR_P (XINT (elt)))
805 {
806 if (some_multibyte)
807 toindex_byte
808 += CHAR_STRING (XINT (elt),
809 SDATA (val) + toindex_byte);
810 else
811 SSET (val, toindex_byte++, XINT (elt));
812 if (some_multibyte
813 && toindex_byte > 0
814 && count_combining (SDATA (val),
815 toindex_byte, toindex_byte - 1))
816 STRING_SET_CHARS (val, SCHARS (val) - 1);
817 else
818 toindex++;
819 }
820 else
821 /* If we have any multibyte characters,
822 we already decided to make a multibyte string. */
823 {
824 int c = XINT (elt);
825 /* P exists as a variable
826 to avoid a bug on the Masscomp C compiler. */
827 unsigned char *p = SDATA (val) + toindex_byte;
828
829 toindex_byte += CHAR_STRING (c, p);
830 toindex++;
831 }
832 }
833 }
834 }
835 if (!NILP (prev))
836 XSETCDR (prev, last_tail);
837
838 if (num_textprops > 0)
839 {
840 Lisp_Object props;
841 int last_to_end = -1;
842
843 for (argnum = 0; argnum < num_textprops; argnum++)
844 {
845 this = args[textprops[argnum].argnum];
846 props = text_property_list (this,
847 make_number (0),
848 make_number (SCHARS (this)),
849 Qnil);
850 /* If successive arguments have properites, be sure that the
851 value of `composition' property be the copy. */
852 if (last_to_end == textprops[argnum].to)
853 make_composition_value_copy (props);
854 add_text_properties_from_list (val, props,
855 make_number (textprops[argnum].to));
856 last_to_end = textprops[argnum].to + SCHARS (this);
857 }
858 }
859 return val;
860 }
861 \f
862 static Lisp_Object string_char_byte_cache_string;
863 static int string_char_byte_cache_charpos;
864 static int string_char_byte_cache_bytepos;
865
866 void
867 clear_string_char_byte_cache ()
868 {
869 string_char_byte_cache_string = Qnil;
870 }
871
872 /* Return the character index corresponding to CHAR_INDEX in STRING. */
873
874 int
875 string_char_to_byte (string, char_index)
876 Lisp_Object string;
877 int char_index;
878 {
879 int i, i_byte;
880 int best_below, best_below_byte;
881 int best_above, best_above_byte;
882
883 if (! STRING_MULTIBYTE (string))
884 return char_index;
885
886 best_below = best_below_byte = 0;
887 best_above = SCHARS (string);
888 best_above_byte = SBYTES (string);
889
890 if (EQ (string, string_char_byte_cache_string))
891 {
892 if (string_char_byte_cache_charpos < char_index)
893 {
894 best_below = string_char_byte_cache_charpos;
895 best_below_byte = string_char_byte_cache_bytepos;
896 }
897 else
898 {
899 best_above = string_char_byte_cache_charpos;
900 best_above_byte = string_char_byte_cache_bytepos;
901 }
902 }
903
904 if (char_index - best_below < best_above - char_index)
905 {
906 while (best_below < char_index)
907 {
908 int c;
909 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, string,
910 best_below, best_below_byte);
911 }
912 i = best_below;
913 i_byte = best_below_byte;
914 }
915 else
916 {
917 while (best_above > char_index)
918 {
919 unsigned char *pend = SDATA (string) + best_above_byte;
920 unsigned char *pbeg = pend - best_above_byte;
921 unsigned char *p = pend - 1;
922 int bytes;
923
924 while (p > pbeg && !CHAR_HEAD_P (*p)) p--;
925 PARSE_MULTIBYTE_SEQ (p, pend - p, bytes);
926 if (bytes == pend - p)
927 best_above_byte -= bytes;
928 else if (bytes > pend - p)
929 best_above_byte -= (pend - p);
930 else
931 best_above_byte--;
932 best_above--;
933 }
934 i = best_above;
935 i_byte = best_above_byte;
936 }
937
938 string_char_byte_cache_bytepos = i_byte;
939 string_char_byte_cache_charpos = i;
940 string_char_byte_cache_string = string;
941
942 return i_byte;
943 }
944 \f
945 /* Return the character index corresponding to BYTE_INDEX in STRING. */
946
947 int
948 string_byte_to_char (string, byte_index)
949 Lisp_Object string;
950 int byte_index;
951 {
952 int i, i_byte;
953 int best_below, best_below_byte;
954 int best_above, best_above_byte;
955
956 if (! STRING_MULTIBYTE (string))
957 return byte_index;
958
959 best_below = best_below_byte = 0;
960 best_above = SCHARS (string);
961 best_above_byte = SBYTES (string);
962
963 if (EQ (string, string_char_byte_cache_string))
964 {
965 if (string_char_byte_cache_bytepos < byte_index)
966 {
967 best_below = string_char_byte_cache_charpos;
968 best_below_byte = string_char_byte_cache_bytepos;
969 }
970 else
971 {
972 best_above = string_char_byte_cache_charpos;
973 best_above_byte = string_char_byte_cache_bytepos;
974 }
975 }
976
977 if (byte_index - best_below_byte < best_above_byte - byte_index)
978 {
979 while (best_below_byte < byte_index)
980 {
981 int c;
982 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, string,
983 best_below, best_below_byte);
984 }
985 i = best_below;
986 i_byte = best_below_byte;
987 }
988 else
989 {
990 while (best_above_byte > byte_index)
991 {
992 unsigned char *pend = SDATA (string) + best_above_byte;
993 unsigned char *pbeg = pend - best_above_byte;
994 unsigned char *p = pend - 1;
995 int bytes;
996
997 while (p > pbeg && !CHAR_HEAD_P (*p)) p--;
998 PARSE_MULTIBYTE_SEQ (p, pend - p, bytes);
999 if (bytes == pend - p)
1000 best_above_byte -= bytes;
1001 else if (bytes > pend - p)
1002 best_above_byte -= (pend - p);
1003 else
1004 best_above_byte--;
1005 best_above--;
1006 }
1007 i = best_above;
1008 i_byte = best_above_byte;
1009 }
1010
1011 string_char_byte_cache_bytepos = i_byte;
1012 string_char_byte_cache_charpos = i;
1013 string_char_byte_cache_string = string;
1014
1015 return i;
1016 }
1017 \f
1018 /* Convert STRING to a multibyte string.
1019 Single-byte characters 0240 through 0377 are converted
1020 by adding nonascii_insert_offset to each. */
1021
1022 Lisp_Object
1023 string_make_multibyte (string)
1024 Lisp_Object string;
1025 {
1026 unsigned char *buf;
1027 int nbytes;
1028
1029 if (STRING_MULTIBYTE (string))
1030 return string;
1031
1032 nbytes = count_size_as_multibyte (SDATA (string),
1033 SCHARS (string));
1034 /* If all the chars are ASCII, they won't need any more bytes
1035 once converted. In that case, we can return STRING itself. */
1036 if (nbytes == SBYTES (string))
1037 return string;
1038
1039 buf = (unsigned char *) alloca (nbytes);
1040 copy_text (SDATA (string), buf, SBYTES (string),
1041 0, 1);
1042
1043 return make_multibyte_string (buf, SCHARS (string), nbytes);
1044 }
1045
1046
1047 /* Convert STRING to a multibyte string without changing each
1048 character codes. Thus, characters 0200 trough 0237 are converted
1049 to eight-bit-control characters, and characters 0240 through 0377
1050 are converted eight-bit-graphic characters. */
1051
1052 Lisp_Object
1053 string_to_multibyte (string)
1054 Lisp_Object string;
1055 {
1056 unsigned char *buf;
1057 int nbytes;
1058
1059 if (STRING_MULTIBYTE (string))
1060 return string;
1061
1062 nbytes = parse_str_to_multibyte (SDATA (string), SBYTES (string));
1063 /* If all the chars are ASCII or eight-bit-graphic, they won't need
1064 any more bytes once converted. */
1065 if (nbytes == SBYTES (string))
1066 return make_multibyte_string (SDATA (string), nbytes, nbytes);
1067
1068 buf = (unsigned char *) alloca (nbytes);
1069 bcopy (SDATA (string), buf, SBYTES (string));
1070 str_to_multibyte (buf, nbytes, SBYTES (string));
1071
1072 return make_multibyte_string (buf, SCHARS (string), nbytes);
1073 }
1074
1075
1076 /* Convert STRING to a single-byte string. */
1077
1078 Lisp_Object
1079 string_make_unibyte (string)
1080 Lisp_Object string;
1081 {
1082 unsigned char *buf;
1083
1084 if (! STRING_MULTIBYTE (string))
1085 return string;
1086
1087 buf = (unsigned char *) alloca (SCHARS (string));
1088
1089 copy_text (SDATA (string), buf, SBYTES (string),
1090 1, 0);
1091
1092 return make_unibyte_string (buf, SCHARS (string));
1093 }
1094
1095 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
1096 1, 1, 0,
1097 doc: /* Return the multibyte equivalent of STRING.
1098 The function `unibyte-char-to-multibyte' is used to convert
1099 each unibyte character to a multibyte character. */)
1100 (string)
1101 Lisp_Object string;
1102 {
1103 CHECK_STRING (string);
1104
1105 return string_make_multibyte (string);
1106 }
1107
1108 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
1109 1, 1, 0,
1110 doc: /* Return the unibyte equivalent of STRING.
1111 Multibyte character codes are converted to unibyte according to
1112 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
1113 If the lookup in the translation table fails, this function takes just
1114 the low 8 bits of each character. */)
1115 (string)
1116 Lisp_Object string;
1117 {
1118 CHECK_STRING (string);
1119
1120 return string_make_unibyte (string);
1121 }
1122
1123 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1124 1, 1, 0,
1125 doc: /* Return a unibyte string with the same individual bytes as STRING.
1126 If STRING is unibyte, the result is STRING itself.
1127 Otherwise it is a newly created string, with no text properties.
1128 If STRING is multibyte and contains a character of charset
1129 `eight-bit-control' or `eight-bit-graphic', it is converted to the
1130 corresponding single byte. */)
1131 (string)
1132 Lisp_Object string;
1133 {
1134 CHECK_STRING (string);
1135
1136 if (STRING_MULTIBYTE (string))
1137 {
1138 int bytes = SBYTES (string);
1139 unsigned char *str = (unsigned char *) xmalloc (bytes);
1140
1141 bcopy (SDATA (string), str, bytes);
1142 bytes = str_as_unibyte (str, bytes);
1143 string = make_unibyte_string (str, bytes);
1144 xfree (str);
1145 }
1146 return string;
1147 }
1148
1149 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1150 1, 1, 0,
1151 doc: /* Return a multibyte string with the same individual bytes as STRING.
1152 If STRING is multibyte, the result is STRING itself.
1153 Otherwise it is a newly created string, with no text properties.
1154 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1155 part of a multibyte form), it is converted to the corresponding
1156 multibyte character of charset `eight-bit-control' or `eight-bit-graphic'. */)
1157 (string)
1158 Lisp_Object string;
1159 {
1160 CHECK_STRING (string);
1161
1162 if (! STRING_MULTIBYTE (string))
1163 {
1164 Lisp_Object new_string;
1165 int nchars, nbytes;
1166
1167 parse_str_as_multibyte (SDATA (string),
1168 SBYTES (string),
1169 &nchars, &nbytes);
1170 new_string = make_uninit_multibyte_string (nchars, nbytes);
1171 bcopy (SDATA (string), SDATA (new_string),
1172 SBYTES (string));
1173 if (nbytes != SBYTES (string))
1174 str_as_multibyte (SDATA (new_string), nbytes,
1175 SBYTES (string), NULL);
1176 string = new_string;
1177 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1178 }
1179 return string;
1180 }
1181
1182 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1183 1, 1, 0,
1184 doc: /* Return a multibyte string with the same individual chars as STRING.
1185 If STRING is multibyte, the result is STRING itself.
1186 Otherwise it is a newly created string, with no text properties.
1187 Characters 0200 through 0237 are converted to eight-bit-control
1188 characters of the same character code. Characters 0240 through 0377
1189 are converted to eight-bit-control characters of the same character
1190 codes. */)
1191 (string)
1192 Lisp_Object string;
1193 {
1194 CHECK_STRING (string);
1195
1196 return string_to_multibyte (string);
1197 }
1198
1199 \f
1200 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1201 doc: /* Return a copy of ALIST.
1202 This is an alist which represents the same mapping from objects to objects,
1203 but does not share the alist structure with ALIST.
1204 The objects mapped (cars and cdrs of elements of the alist)
1205 are shared, however.
1206 Elements of ALIST that are not conses are also shared. */)
1207 (alist)
1208 Lisp_Object alist;
1209 {
1210 register Lisp_Object tem;
1211
1212 CHECK_LIST (alist);
1213 if (NILP (alist))
1214 return alist;
1215 alist = concat (1, &alist, Lisp_Cons, 0);
1216 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1217 {
1218 register Lisp_Object car;
1219 car = XCAR (tem);
1220
1221 if (CONSP (car))
1222 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1223 }
1224 return alist;
1225 }
1226
1227 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1228 doc: /* Return a substring of STRING, starting at index FROM and ending before TO.
1229 TO may be nil or omitted; then the substring runs to the end of STRING.
1230 FROM and TO start at 0. If either is negative, it counts from the end.
1231
1232 This function allows vectors as well as strings. */)
1233 (string, from, to)
1234 Lisp_Object string;
1235 register Lisp_Object from, to;
1236 {
1237 Lisp_Object res;
1238 int size;
1239 int size_byte = 0;
1240 int from_char, to_char;
1241 int from_byte = 0, to_byte = 0;
1242
1243 if (! (STRINGP (string) || VECTORP (string)))
1244 wrong_type_argument (Qarrayp, string);
1245
1246 CHECK_NUMBER (from);
1247
1248 if (STRINGP (string))
1249 {
1250 size = SCHARS (string);
1251 size_byte = SBYTES (string);
1252 }
1253 else
1254 size = XVECTOR (string)->size;
1255
1256 if (NILP (to))
1257 {
1258 to_char = size;
1259 to_byte = size_byte;
1260 }
1261 else
1262 {
1263 CHECK_NUMBER (to);
1264
1265 to_char = XINT (to);
1266 if (to_char < 0)
1267 to_char += size;
1268
1269 if (STRINGP (string))
1270 to_byte = string_char_to_byte (string, to_char);
1271 }
1272
1273 from_char = XINT (from);
1274 if (from_char < 0)
1275 from_char += size;
1276 if (STRINGP (string))
1277 from_byte = string_char_to_byte (string, from_char);
1278
1279 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1280 args_out_of_range_3 (string, make_number (from_char),
1281 make_number (to_char));
1282
1283 if (STRINGP (string))
1284 {
1285 res = make_specified_string (SDATA (string) + from_byte,
1286 to_char - from_char, to_byte - from_byte,
1287 STRING_MULTIBYTE (string));
1288 copy_text_properties (make_number (from_char), make_number (to_char),
1289 string, make_number (0), res, Qnil);
1290 }
1291 else
1292 res = Fvector (to_char - from_char,
1293 XVECTOR (string)->contents + from_char);
1294
1295 return res;
1296 }
1297
1298
1299 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1300 doc: /* Return a substring of STRING, without text properties.
1301 It starts at index FROM and ending before TO.
1302 TO may be nil or omitted; then the substring runs to the end of STRING.
1303 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1304 If FROM or TO is negative, it counts from the end.
1305
1306 With one argument, just copy STRING without its properties. */)
1307 (string, from, to)
1308 Lisp_Object string;
1309 register Lisp_Object from, to;
1310 {
1311 int size, size_byte;
1312 int from_char, to_char;
1313 int from_byte, to_byte;
1314
1315 CHECK_STRING (string);
1316
1317 size = SCHARS (string);
1318 size_byte = SBYTES (string);
1319
1320 if (NILP (from))
1321 from_char = from_byte = 0;
1322 else
1323 {
1324 CHECK_NUMBER (from);
1325 from_char = XINT (from);
1326 if (from_char < 0)
1327 from_char += size;
1328
1329 from_byte = string_char_to_byte (string, from_char);
1330 }
1331
1332 if (NILP (to))
1333 {
1334 to_char = size;
1335 to_byte = size_byte;
1336 }
1337 else
1338 {
1339 CHECK_NUMBER (to);
1340
1341 to_char = XINT (to);
1342 if (to_char < 0)
1343 to_char += size;
1344
1345 to_byte = string_char_to_byte (string, to_char);
1346 }
1347
1348 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1349 args_out_of_range_3 (string, make_number (from_char),
1350 make_number (to_char));
1351
1352 return make_specified_string (SDATA (string) + from_byte,
1353 to_char - from_char, to_byte - from_byte,
1354 STRING_MULTIBYTE (string));
1355 }
1356
1357 /* Extract a substring of STRING, giving start and end positions
1358 both in characters and in bytes. */
1359
1360 Lisp_Object
1361 substring_both (string, from, from_byte, to, to_byte)
1362 Lisp_Object string;
1363 int from, from_byte, to, to_byte;
1364 {
1365 Lisp_Object res;
1366 int size;
1367 int size_byte;
1368
1369 if (! (STRINGP (string) || VECTORP (string)))
1370 wrong_type_argument (Qarrayp, string);
1371
1372 if (STRINGP (string))
1373 {
1374 size = SCHARS (string);
1375 size_byte = SBYTES (string);
1376 }
1377 else
1378 size = XVECTOR (string)->size;
1379
1380 if (!(0 <= from && from <= to && to <= size))
1381 args_out_of_range_3 (string, make_number (from), make_number (to));
1382
1383 if (STRINGP (string))
1384 {
1385 res = make_specified_string (SDATA (string) + from_byte,
1386 to - from, to_byte - from_byte,
1387 STRING_MULTIBYTE (string));
1388 copy_text_properties (make_number (from), make_number (to),
1389 string, make_number (0), res, Qnil);
1390 }
1391 else
1392 res = Fvector (to - from,
1393 XVECTOR (string)->contents + from);
1394
1395 return res;
1396 }
1397 \f
1398 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1399 doc: /* Take cdr N times on LIST, returns the result. */)
1400 (n, list)
1401 Lisp_Object n;
1402 register Lisp_Object list;
1403 {
1404 register int i, num;
1405 CHECK_NUMBER (n);
1406 num = XINT (n);
1407 for (i = 0; i < num && !NILP (list); i++)
1408 {
1409 QUIT;
1410 if (! CONSP (list))
1411 wrong_type_argument (Qlistp, list);
1412 list = XCDR (list);
1413 }
1414 return list;
1415 }
1416
1417 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1418 doc: /* Return the Nth element of LIST.
1419 N counts from zero. If LIST is not that long, nil is returned. */)
1420 (n, list)
1421 Lisp_Object n, list;
1422 {
1423 return Fcar (Fnthcdr (n, list));
1424 }
1425
1426 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1427 doc: /* Return element of SEQUENCE at index N. */)
1428 (sequence, n)
1429 register Lisp_Object sequence, n;
1430 {
1431 CHECK_NUMBER (n);
1432 while (1)
1433 {
1434 if (CONSP (sequence) || NILP (sequence))
1435 return Fcar (Fnthcdr (n, sequence));
1436 else if (STRINGP (sequence) || VECTORP (sequence)
1437 || BOOL_VECTOR_P (sequence) || CHAR_TABLE_P (sequence))
1438 return Faref (sequence, n);
1439 else
1440 sequence = wrong_type_argument (Qsequencep, sequence);
1441 }
1442 }
1443
1444 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1445 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1446 The value is actually the tail of LIST whose car is ELT. */)
1447 (elt, list)
1448 register Lisp_Object elt;
1449 Lisp_Object list;
1450 {
1451 register Lisp_Object tail;
1452 for (tail = list; !NILP (tail); tail = XCDR (tail))
1453 {
1454 register Lisp_Object tem;
1455 if (! CONSP (tail))
1456 wrong_type_argument (Qlistp, list);
1457 tem = XCAR (tail);
1458 if (! NILP (Fequal (elt, tem)))
1459 return tail;
1460 QUIT;
1461 }
1462 return Qnil;
1463 }
1464
1465 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1466 doc: /* Return non-nil if ELT is an element of LIST.
1467 Comparison done with EQ. The value is actually the tail of LIST
1468 whose car is ELT. */)
1469 (elt, list)
1470 Lisp_Object elt, list;
1471 {
1472 while (1)
1473 {
1474 if (!CONSP (list) || EQ (XCAR (list), elt))
1475 break;
1476
1477 list = XCDR (list);
1478 if (!CONSP (list) || EQ (XCAR (list), elt))
1479 break;
1480
1481 list = XCDR (list);
1482 if (!CONSP (list) || EQ (XCAR (list), elt))
1483 break;
1484
1485 list = XCDR (list);
1486 QUIT;
1487 }
1488
1489 if (!CONSP (list) && !NILP (list))
1490 list = wrong_type_argument (Qlistp, list);
1491
1492 return list;
1493 }
1494
1495 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1496 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1497 The value is actually the element of LIST whose car is KEY.
1498 Elements of LIST that are not conses are ignored. */)
1499 (key, list)
1500 Lisp_Object key, list;
1501 {
1502 Lisp_Object result;
1503
1504 while (1)
1505 {
1506 if (!CONSP (list)
1507 || (CONSP (XCAR (list))
1508 && EQ (XCAR (XCAR (list)), key)))
1509 break;
1510
1511 list = XCDR (list);
1512 if (!CONSP (list)
1513 || (CONSP (XCAR (list))
1514 && EQ (XCAR (XCAR (list)), key)))
1515 break;
1516
1517 list = XCDR (list);
1518 if (!CONSP (list)
1519 || (CONSP (XCAR (list))
1520 && EQ (XCAR (XCAR (list)), key)))
1521 break;
1522
1523 list = XCDR (list);
1524 QUIT;
1525 }
1526
1527 if (CONSP (list))
1528 result = XCAR (list);
1529 else if (NILP (list))
1530 result = Qnil;
1531 else
1532 result = wrong_type_argument (Qlistp, list);
1533
1534 return result;
1535 }
1536
1537 /* Like Fassq but never report an error and do not allow quits.
1538 Use only on lists known never to be circular. */
1539
1540 Lisp_Object
1541 assq_no_quit (key, list)
1542 Lisp_Object key, list;
1543 {
1544 while (CONSP (list)
1545 && (!CONSP (XCAR (list))
1546 || !EQ (XCAR (XCAR (list)), key)))
1547 list = XCDR (list);
1548
1549 return CONSP (list) ? XCAR (list) : Qnil;
1550 }
1551
1552 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1553 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1554 The value is actually the element of LIST whose car equals KEY. */)
1555 (key, list)
1556 Lisp_Object key, list;
1557 {
1558 Lisp_Object result, car;
1559
1560 while (1)
1561 {
1562 if (!CONSP (list)
1563 || (CONSP (XCAR (list))
1564 && (car = XCAR (XCAR (list)),
1565 EQ (car, key) || !NILP (Fequal (car, key)))))
1566 break;
1567
1568 list = XCDR (list);
1569 if (!CONSP (list)
1570 || (CONSP (XCAR (list))
1571 && (car = XCAR (XCAR (list)),
1572 EQ (car, key) || !NILP (Fequal (car, key)))))
1573 break;
1574
1575 list = XCDR (list);
1576 if (!CONSP (list)
1577 || (CONSP (XCAR (list))
1578 && (car = XCAR (XCAR (list)),
1579 EQ (car, key) || !NILP (Fequal (car, key)))))
1580 break;
1581
1582 list = XCDR (list);
1583 QUIT;
1584 }
1585
1586 if (CONSP (list))
1587 result = XCAR (list);
1588 else if (NILP (list))
1589 result = Qnil;
1590 else
1591 result = wrong_type_argument (Qlistp, list);
1592
1593 return result;
1594 }
1595
1596 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1597 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1598 The value is actually the element of LIST whose cdr is KEY. */)
1599 (key, list)
1600 register Lisp_Object key;
1601 Lisp_Object list;
1602 {
1603 Lisp_Object result;
1604
1605 while (1)
1606 {
1607 if (!CONSP (list)
1608 || (CONSP (XCAR (list))
1609 && EQ (XCDR (XCAR (list)), key)))
1610 break;
1611
1612 list = XCDR (list);
1613 if (!CONSP (list)
1614 || (CONSP (XCAR (list))
1615 && EQ (XCDR (XCAR (list)), key)))
1616 break;
1617
1618 list = XCDR (list);
1619 if (!CONSP (list)
1620 || (CONSP (XCAR (list))
1621 && EQ (XCDR (XCAR (list)), key)))
1622 break;
1623
1624 list = XCDR (list);
1625 QUIT;
1626 }
1627
1628 if (NILP (list))
1629 result = Qnil;
1630 else if (CONSP (list))
1631 result = XCAR (list);
1632 else
1633 result = wrong_type_argument (Qlistp, list);
1634
1635 return result;
1636 }
1637
1638 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1639 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1640 The value is actually the element of LIST whose cdr equals KEY. */)
1641 (key, list)
1642 Lisp_Object key, list;
1643 {
1644 Lisp_Object result, cdr;
1645
1646 while (1)
1647 {
1648 if (!CONSP (list)
1649 || (CONSP (XCAR (list))
1650 && (cdr = XCDR (XCAR (list)),
1651 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1652 break;
1653
1654 list = XCDR (list);
1655 if (!CONSP (list)
1656 || (CONSP (XCAR (list))
1657 && (cdr = XCDR (XCAR (list)),
1658 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1659 break;
1660
1661 list = XCDR (list);
1662 if (!CONSP (list)
1663 || (CONSP (XCAR (list))
1664 && (cdr = XCDR (XCAR (list)),
1665 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1666 break;
1667
1668 list = XCDR (list);
1669 QUIT;
1670 }
1671
1672 if (CONSP (list))
1673 result = XCAR (list);
1674 else if (NILP (list))
1675 result = Qnil;
1676 else
1677 result = wrong_type_argument (Qlistp, list);
1678
1679 return result;
1680 }
1681 \f
1682 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1683 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1684 The modified LIST is returned. Comparison is done with `eq'.
1685 If the first member of LIST is ELT, there is no way to remove it by side effect;
1686 therefore, write `(setq foo (delq element foo))'
1687 to be sure of changing the value of `foo'. */)
1688 (elt, list)
1689 register Lisp_Object elt;
1690 Lisp_Object list;
1691 {
1692 register Lisp_Object tail, prev;
1693 register Lisp_Object tem;
1694
1695 tail = list;
1696 prev = Qnil;
1697 while (!NILP (tail))
1698 {
1699 if (! CONSP (tail))
1700 wrong_type_argument (Qlistp, list);
1701 tem = XCAR (tail);
1702 if (EQ (elt, tem))
1703 {
1704 if (NILP (prev))
1705 list = XCDR (tail);
1706 else
1707 Fsetcdr (prev, XCDR (tail));
1708 }
1709 else
1710 prev = tail;
1711 tail = XCDR (tail);
1712 QUIT;
1713 }
1714 return list;
1715 }
1716
1717 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1718 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1719 SEQ must be a list, a vector, or a string.
1720 The modified SEQ is returned. Comparison is done with `equal'.
1721 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1722 is not a side effect; it is simply using a different sequence.
1723 Therefore, write `(setq foo (delete element foo))'
1724 to be sure of changing the value of `foo'. */)
1725 (elt, seq)
1726 Lisp_Object elt, seq;
1727 {
1728 if (VECTORP (seq))
1729 {
1730 EMACS_INT i, n;
1731
1732 for (i = n = 0; i < ASIZE (seq); ++i)
1733 if (NILP (Fequal (AREF (seq, i), elt)))
1734 ++n;
1735
1736 if (n != ASIZE (seq))
1737 {
1738 struct Lisp_Vector *p = allocate_vector (n);
1739
1740 for (i = n = 0; i < ASIZE (seq); ++i)
1741 if (NILP (Fequal (AREF (seq, i), elt)))
1742 p->contents[n++] = AREF (seq, i);
1743
1744 XSETVECTOR (seq, p);
1745 }
1746 }
1747 else if (STRINGP (seq))
1748 {
1749 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1750 int c;
1751
1752 for (i = nchars = nbytes = ibyte = 0;
1753 i < SCHARS (seq);
1754 ++i, ibyte += cbytes)
1755 {
1756 if (STRING_MULTIBYTE (seq))
1757 {
1758 c = STRING_CHAR (SDATA (seq) + ibyte,
1759 SBYTES (seq) - ibyte);
1760 cbytes = CHAR_BYTES (c);
1761 }
1762 else
1763 {
1764 c = SREF (seq, i);
1765 cbytes = 1;
1766 }
1767
1768 if (!INTEGERP (elt) || c != XINT (elt))
1769 {
1770 ++nchars;
1771 nbytes += cbytes;
1772 }
1773 }
1774
1775 if (nchars != SCHARS (seq))
1776 {
1777 Lisp_Object tem;
1778
1779 tem = make_uninit_multibyte_string (nchars, nbytes);
1780 if (!STRING_MULTIBYTE (seq))
1781 STRING_SET_UNIBYTE (tem);
1782
1783 for (i = nchars = nbytes = ibyte = 0;
1784 i < SCHARS (seq);
1785 ++i, ibyte += cbytes)
1786 {
1787 if (STRING_MULTIBYTE (seq))
1788 {
1789 c = STRING_CHAR (SDATA (seq) + ibyte,
1790 SBYTES (seq) - ibyte);
1791 cbytes = CHAR_BYTES (c);
1792 }
1793 else
1794 {
1795 c = SREF (seq, i);
1796 cbytes = 1;
1797 }
1798
1799 if (!INTEGERP (elt) || c != XINT (elt))
1800 {
1801 unsigned char *from = SDATA (seq) + ibyte;
1802 unsigned char *to = SDATA (tem) + nbytes;
1803 EMACS_INT n;
1804
1805 ++nchars;
1806 nbytes += cbytes;
1807
1808 for (n = cbytes; n--; )
1809 *to++ = *from++;
1810 }
1811 }
1812
1813 seq = tem;
1814 }
1815 }
1816 else
1817 {
1818 Lisp_Object tail, prev;
1819
1820 for (tail = seq, prev = Qnil; !NILP (tail); tail = XCDR (tail))
1821 {
1822 if (!CONSP (tail))
1823 wrong_type_argument (Qlistp, seq);
1824
1825 if (!NILP (Fequal (elt, XCAR (tail))))
1826 {
1827 if (NILP (prev))
1828 seq = XCDR (tail);
1829 else
1830 Fsetcdr (prev, XCDR (tail));
1831 }
1832 else
1833 prev = tail;
1834 QUIT;
1835 }
1836 }
1837
1838 return seq;
1839 }
1840
1841 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1842 doc: /* Reverse LIST by modifying cdr pointers.
1843 Returns the beginning of the reversed list. */)
1844 (list)
1845 Lisp_Object list;
1846 {
1847 register Lisp_Object prev, tail, next;
1848
1849 if (NILP (list)) return list;
1850 prev = Qnil;
1851 tail = list;
1852 while (!NILP (tail))
1853 {
1854 QUIT;
1855 if (! CONSP (tail))
1856 wrong_type_argument (Qlistp, list);
1857 next = XCDR (tail);
1858 Fsetcdr (tail, prev);
1859 prev = tail;
1860 tail = next;
1861 }
1862 return prev;
1863 }
1864
1865 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1866 doc: /* Reverse LIST, copying. Returns the beginning of the reversed list.
1867 See also the function `nreverse', which is used more often. */)
1868 (list)
1869 Lisp_Object list;
1870 {
1871 Lisp_Object new;
1872
1873 for (new = Qnil; CONSP (list); list = XCDR (list))
1874 {
1875 QUIT;
1876 new = Fcons (XCAR (list), new);
1877 }
1878 if (!NILP (list))
1879 wrong_type_argument (Qconsp, list);
1880 return new;
1881 }
1882 \f
1883 Lisp_Object merge ();
1884
1885 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1886 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1887 Returns the sorted list. LIST is modified by side effects.
1888 PREDICATE is called with two elements of LIST, and should return t
1889 if the first element is "less" than the second. */)
1890 (list, predicate)
1891 Lisp_Object list, predicate;
1892 {
1893 Lisp_Object front, back;
1894 register Lisp_Object len, tem;
1895 struct gcpro gcpro1, gcpro2;
1896 register int length;
1897
1898 front = list;
1899 len = Flength (list);
1900 length = XINT (len);
1901 if (length < 2)
1902 return list;
1903
1904 XSETINT (len, (length / 2) - 1);
1905 tem = Fnthcdr (len, list);
1906 back = Fcdr (tem);
1907 Fsetcdr (tem, Qnil);
1908
1909 GCPRO2 (front, back);
1910 front = Fsort (front, predicate);
1911 back = Fsort (back, predicate);
1912 UNGCPRO;
1913 return merge (front, back, predicate);
1914 }
1915
1916 Lisp_Object
1917 merge (org_l1, org_l2, pred)
1918 Lisp_Object org_l1, org_l2;
1919 Lisp_Object pred;
1920 {
1921 Lisp_Object value;
1922 register Lisp_Object tail;
1923 Lisp_Object tem;
1924 register Lisp_Object l1, l2;
1925 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1926
1927 l1 = org_l1;
1928 l2 = org_l2;
1929 tail = Qnil;
1930 value = Qnil;
1931
1932 /* It is sufficient to protect org_l1 and org_l2.
1933 When l1 and l2 are updated, we copy the new values
1934 back into the org_ vars. */
1935 GCPRO4 (org_l1, org_l2, pred, value);
1936
1937 while (1)
1938 {
1939 if (NILP (l1))
1940 {
1941 UNGCPRO;
1942 if (NILP (tail))
1943 return l2;
1944 Fsetcdr (tail, l2);
1945 return value;
1946 }
1947 if (NILP (l2))
1948 {
1949 UNGCPRO;
1950 if (NILP (tail))
1951 return l1;
1952 Fsetcdr (tail, l1);
1953 return value;
1954 }
1955 tem = call2 (pred, Fcar (l2), Fcar (l1));
1956 if (NILP (tem))
1957 {
1958 tem = l1;
1959 l1 = Fcdr (l1);
1960 org_l1 = l1;
1961 }
1962 else
1963 {
1964 tem = l2;
1965 l2 = Fcdr (l2);
1966 org_l2 = l2;
1967 }
1968 if (NILP (tail))
1969 value = tem;
1970 else
1971 Fsetcdr (tail, tem);
1972 tail = tem;
1973 }
1974 }
1975
1976 \f
1977 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1978 doc: /* Extract a value from a property list.
1979 PLIST is a property list, which is a list of the form
1980 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1981 corresponding to the given PROP, or nil if PROP is not
1982 one of the properties on the list. */)
1983 (plist, prop)
1984 Lisp_Object plist;
1985 Lisp_Object prop;
1986 {
1987 Lisp_Object tail;
1988
1989 for (tail = plist;
1990 CONSP (tail) && CONSP (XCDR (tail));
1991 tail = XCDR (XCDR (tail)))
1992 {
1993 if (EQ (prop, XCAR (tail)))
1994 return XCAR (XCDR (tail));
1995
1996 /* This function can be called asynchronously
1997 (setup_coding_system). Don't QUIT in that case. */
1998 if (!interrupt_input_blocked)
1999 QUIT;
2000 }
2001
2002 if (!NILP (tail))
2003 wrong_type_argument (Qlistp, prop);
2004
2005 return Qnil;
2006 }
2007
2008 DEFUN ("get", Fget, Sget, 2, 2, 0,
2009 doc: /* Return the value of SYMBOL's PROPNAME property.
2010 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
2011 (symbol, propname)
2012 Lisp_Object symbol, propname;
2013 {
2014 CHECK_SYMBOL (symbol);
2015 return Fplist_get (XSYMBOL (symbol)->plist, propname);
2016 }
2017
2018 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
2019 doc: /* Change value in PLIST of PROP to VAL.
2020 PLIST is a property list, which is a list of the form
2021 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
2022 If PROP is already a property on the list, its value is set to VAL,
2023 otherwise the new PROP VAL pair is added. The new plist is returned;
2024 use `(setq x (plist-put x prop val))' to be sure to use the new value.
2025 The PLIST is modified by side effects. */)
2026 (plist, prop, val)
2027 Lisp_Object plist;
2028 register Lisp_Object prop;
2029 Lisp_Object val;
2030 {
2031 register Lisp_Object tail, prev;
2032 Lisp_Object newcell;
2033 prev = Qnil;
2034 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2035 tail = XCDR (XCDR (tail)))
2036 {
2037 if (EQ (prop, XCAR (tail)))
2038 {
2039 Fsetcar (XCDR (tail), val);
2040 return plist;
2041 }
2042
2043 prev = tail;
2044 QUIT;
2045 }
2046 newcell = Fcons (prop, Fcons (val, Qnil));
2047 if (NILP (prev))
2048 return newcell;
2049 else
2050 Fsetcdr (XCDR (prev), newcell);
2051 return plist;
2052 }
2053
2054 DEFUN ("put", Fput, Sput, 3, 3, 0,
2055 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
2056 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
2057 (symbol, propname, value)
2058 Lisp_Object symbol, propname, value;
2059 {
2060 CHECK_SYMBOL (symbol);
2061 XSYMBOL (symbol)->plist
2062 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
2063 return value;
2064 }
2065 \f
2066 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
2067 doc: /* Extract a value from a property list, comparing with `equal'.
2068 PLIST is a property list, which is a list of the form
2069 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
2070 corresponding to the given PROP, or nil if PROP is not
2071 one of the properties on the list. */)
2072 (plist, prop)
2073 Lisp_Object plist;
2074 Lisp_Object prop;
2075 {
2076 Lisp_Object tail;
2077
2078 for (tail = plist;
2079 CONSP (tail) && CONSP (XCDR (tail));
2080 tail = XCDR (XCDR (tail)))
2081 {
2082 if (! NILP (Fequal (prop, XCAR (tail))))
2083 return XCAR (XCDR (tail));
2084
2085 QUIT;
2086 }
2087
2088 if (!NILP (tail))
2089 wrong_type_argument (Qlistp, prop);
2090
2091 return Qnil;
2092 }
2093
2094 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
2095 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
2096 PLIST is a property list, which is a list of the form
2097 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
2098 If PROP is already a property on the list, its value is set to VAL,
2099 otherwise the new PROP VAL pair is added. The new plist is returned;
2100 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
2101 The PLIST is modified by side effects. */)
2102 (plist, prop, val)
2103 Lisp_Object plist;
2104 register Lisp_Object prop;
2105 Lisp_Object val;
2106 {
2107 register Lisp_Object tail, prev;
2108 Lisp_Object newcell;
2109 prev = Qnil;
2110 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2111 tail = XCDR (XCDR (tail)))
2112 {
2113 if (! NILP (Fequal (prop, XCAR (tail))))
2114 {
2115 Fsetcar (XCDR (tail), val);
2116 return plist;
2117 }
2118
2119 prev = tail;
2120 QUIT;
2121 }
2122 newcell = Fcons (prop, Fcons (val, Qnil));
2123 if (NILP (prev))
2124 return newcell;
2125 else
2126 Fsetcdr (XCDR (prev), newcell);
2127 return plist;
2128 }
2129 \f
2130 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
2131 doc: /* Return t if two Lisp objects have similar structure and contents.
2132 They must have the same data type.
2133 Conses are compared by comparing the cars and the cdrs.
2134 Vectors and strings are compared element by element.
2135 Numbers are compared by value, but integers cannot equal floats.
2136 (Use `=' if you want integers and floats to be able to be equal.)
2137 Symbols must match exactly. */)
2138 (o1, o2)
2139 register Lisp_Object o1, o2;
2140 {
2141 return internal_equal (o1, o2, 0) ? Qt : Qnil;
2142 }
2143
2144 static int
2145 internal_equal (o1, o2, depth)
2146 register Lisp_Object o1, o2;
2147 int depth;
2148 {
2149 if (depth > 200)
2150 error ("Stack overflow in equal");
2151
2152 tail_recurse:
2153 QUIT;
2154 if (EQ (o1, o2))
2155 return 1;
2156 if (XTYPE (o1) != XTYPE (o2))
2157 return 0;
2158
2159 switch (XTYPE (o1))
2160 {
2161 case Lisp_Float:
2162 return (extract_float (o1) == extract_float (o2));
2163
2164 case Lisp_Cons:
2165 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1))
2166 return 0;
2167 o1 = XCDR (o1);
2168 o2 = XCDR (o2);
2169 goto tail_recurse;
2170
2171 case Lisp_Misc:
2172 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2173 return 0;
2174 if (OVERLAYP (o1))
2175 {
2176 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2177 depth + 1)
2178 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2179 depth + 1))
2180 return 0;
2181 o1 = XOVERLAY (o1)->plist;
2182 o2 = XOVERLAY (o2)->plist;
2183 goto tail_recurse;
2184 }
2185 if (MARKERP (o1))
2186 {
2187 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2188 && (XMARKER (o1)->buffer == 0
2189 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2190 }
2191 break;
2192
2193 case Lisp_Vectorlike:
2194 {
2195 register int i, size;
2196 size = XVECTOR (o1)->size;
2197 /* Pseudovectors have the type encoded in the size field, so this test
2198 actually checks that the objects have the same type as well as the
2199 same size. */
2200 if (XVECTOR (o2)->size != size)
2201 return 0;
2202 /* Boolvectors are compared much like strings. */
2203 if (BOOL_VECTOR_P (o1))
2204 {
2205 int size_in_chars
2206 = (XBOOL_VECTOR (o1)->size + BITS_PER_CHAR - 1) / BITS_PER_CHAR;
2207
2208 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2209 return 0;
2210 if (bcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2211 size_in_chars))
2212 return 0;
2213 return 1;
2214 }
2215 if (WINDOW_CONFIGURATIONP (o1))
2216 return compare_window_configurations (o1, o2, 0);
2217
2218 /* Aside from them, only true vectors, char-tables, and compiled
2219 functions are sensible to compare, so eliminate the others now. */
2220 if (size & PSEUDOVECTOR_FLAG)
2221 {
2222 if (!(size & (PVEC_COMPILED | PVEC_CHAR_TABLE)))
2223 return 0;
2224 size &= PSEUDOVECTOR_SIZE_MASK;
2225 }
2226 for (i = 0; i < size; i++)
2227 {
2228 Lisp_Object v1, v2;
2229 v1 = XVECTOR (o1)->contents [i];
2230 v2 = XVECTOR (o2)->contents [i];
2231 if (!internal_equal (v1, v2, depth + 1))
2232 return 0;
2233 }
2234 return 1;
2235 }
2236 break;
2237
2238 case Lisp_String:
2239 if (SCHARS (o1) != SCHARS (o2))
2240 return 0;
2241 if (SBYTES (o1) != SBYTES (o2))
2242 return 0;
2243 if (bcmp (SDATA (o1), SDATA (o2),
2244 SBYTES (o1)))
2245 return 0;
2246 return 1;
2247
2248 case Lisp_Int:
2249 case Lisp_Symbol:
2250 case Lisp_Type_Limit:
2251 break;
2252 }
2253
2254 return 0;
2255 }
2256 \f
2257 extern Lisp_Object Fmake_char_internal ();
2258
2259 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2260 doc: /* Store each element of ARRAY with ITEM.
2261 ARRAY is a vector, string, char-table, or bool-vector. */)
2262 (array, item)
2263 Lisp_Object array, item;
2264 {
2265 register int size, index, charval;
2266 retry:
2267 if (VECTORP (array))
2268 {
2269 register Lisp_Object *p = XVECTOR (array)->contents;
2270 size = XVECTOR (array)->size;
2271 for (index = 0; index < size; index++)
2272 p[index] = item;
2273 }
2274 else if (CHAR_TABLE_P (array))
2275 {
2276 register Lisp_Object *p = XCHAR_TABLE (array)->contents;
2277 size = CHAR_TABLE_ORDINARY_SLOTS;
2278 for (index = 0; index < size; index++)
2279 p[index] = item;
2280 XCHAR_TABLE (array)->defalt = Qnil;
2281 }
2282 else if (STRINGP (array))
2283 {
2284 register unsigned char *p = SDATA (array);
2285 CHECK_NUMBER (item);
2286 charval = XINT (item);
2287 size = SCHARS (array);
2288 if (STRING_MULTIBYTE (array))
2289 {
2290 unsigned char str[MAX_MULTIBYTE_LENGTH];
2291 int len = CHAR_STRING (charval, str);
2292 int size_byte = SBYTES (array);
2293 unsigned char *p1 = p, *endp = p + size_byte;
2294 int i;
2295
2296 if (size != size_byte)
2297 while (p1 < endp)
2298 {
2299 int this_len = MULTIBYTE_FORM_LENGTH (p1, endp - p1);
2300 if (len != this_len)
2301 error ("Attempt to change byte length of a string");
2302 p1 += this_len;
2303 }
2304 for (i = 0; i < size_byte; i++)
2305 *p++ = str[i % len];
2306 }
2307 else
2308 for (index = 0; index < size; index++)
2309 p[index] = charval;
2310 }
2311 else if (BOOL_VECTOR_P (array))
2312 {
2313 register unsigned char *p = XBOOL_VECTOR (array)->data;
2314 int size_in_chars
2315 = (XBOOL_VECTOR (array)->size + BITS_PER_CHAR - 1) / BITS_PER_CHAR;
2316
2317 charval = (! NILP (item) ? -1 : 0);
2318 for (index = 0; index < size_in_chars; index++)
2319 p[index] = charval;
2320 }
2321 else
2322 {
2323 array = wrong_type_argument (Qarrayp, array);
2324 goto retry;
2325 }
2326 return array;
2327 }
2328 \f
2329 DEFUN ("char-table-subtype", Fchar_table_subtype, Schar_table_subtype,
2330 1, 1, 0,
2331 doc: /* Return the subtype of char-table CHAR-TABLE. The value is a symbol. */)
2332 (char_table)
2333 Lisp_Object char_table;
2334 {
2335 CHECK_CHAR_TABLE (char_table);
2336
2337 return XCHAR_TABLE (char_table)->purpose;
2338 }
2339
2340 DEFUN ("char-table-parent", Fchar_table_parent, Schar_table_parent,
2341 1, 1, 0,
2342 doc: /* Return the parent char-table of CHAR-TABLE.
2343 The value is either nil or another char-table.
2344 If CHAR-TABLE holds nil for a given character,
2345 then the actual applicable value is inherited from the parent char-table
2346 \(or from its parents, if necessary). */)
2347 (char_table)
2348 Lisp_Object char_table;
2349 {
2350 CHECK_CHAR_TABLE (char_table);
2351
2352 return XCHAR_TABLE (char_table)->parent;
2353 }
2354
2355 DEFUN ("set-char-table-parent", Fset_char_table_parent, Sset_char_table_parent,
2356 2, 2, 0,
2357 doc: /* Set the parent char-table of CHAR-TABLE to PARENT.
2358 PARENT must be either nil or another char-table. */)
2359 (char_table, parent)
2360 Lisp_Object char_table, parent;
2361 {
2362 Lisp_Object temp;
2363
2364 CHECK_CHAR_TABLE (char_table);
2365
2366 if (!NILP (parent))
2367 {
2368 CHECK_CHAR_TABLE (parent);
2369
2370 for (temp = parent; !NILP (temp); temp = XCHAR_TABLE (temp)->parent)
2371 if (EQ (temp, char_table))
2372 error ("Attempt to make a chartable be its own parent");
2373 }
2374
2375 XCHAR_TABLE (char_table)->parent = parent;
2376
2377 return parent;
2378 }
2379
2380 DEFUN ("char-table-extra-slot", Fchar_table_extra_slot, Schar_table_extra_slot,
2381 2, 2, 0,
2382 doc: /* Return the value of CHAR-TABLE's extra-slot number N. */)
2383 (char_table, n)
2384 Lisp_Object char_table, n;
2385 {
2386 CHECK_CHAR_TABLE (char_table);
2387 CHECK_NUMBER (n);
2388 if (XINT (n) < 0
2389 || XINT (n) >= CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (char_table)))
2390 args_out_of_range (char_table, n);
2391
2392 return XCHAR_TABLE (char_table)->extras[XINT (n)];
2393 }
2394
2395 DEFUN ("set-char-table-extra-slot", Fset_char_table_extra_slot,
2396 Sset_char_table_extra_slot,
2397 3, 3, 0,
2398 doc: /* Set CHAR-TABLE's extra-slot number N to VALUE. */)
2399 (char_table, n, value)
2400 Lisp_Object char_table, n, value;
2401 {
2402 CHECK_CHAR_TABLE (char_table);
2403 CHECK_NUMBER (n);
2404 if (XINT (n) < 0
2405 || XINT (n) >= CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (char_table)))
2406 args_out_of_range (char_table, n);
2407
2408 return XCHAR_TABLE (char_table)->extras[XINT (n)] = value;
2409 }
2410 \f
2411 DEFUN ("char-table-range", Fchar_table_range, Schar_table_range,
2412 2, 2, 0,
2413 doc: /* Return the value in CHAR-TABLE for a range of characters RANGE.
2414 RANGE should be nil (for the default value)
2415 a vector which identifies a character set or a row of a character set,
2416 a character set name, or a character code. */)
2417 (char_table, range)
2418 Lisp_Object char_table, range;
2419 {
2420 CHECK_CHAR_TABLE (char_table);
2421
2422 if (EQ (range, Qnil))
2423 return XCHAR_TABLE (char_table)->defalt;
2424 else if (INTEGERP (range))
2425 return Faref (char_table, range);
2426 else if (SYMBOLP (range))
2427 {
2428 Lisp_Object charset_info;
2429
2430 charset_info = Fget (range, Qcharset);
2431 CHECK_VECTOR (charset_info);
2432
2433 return Faref (char_table,
2434 make_number (XINT (XVECTOR (charset_info)->contents[0])
2435 + 128));
2436 }
2437 else if (VECTORP (range))
2438 {
2439 if (XVECTOR (range)->size == 1)
2440 return Faref (char_table,
2441 make_number (XINT (XVECTOR (range)->contents[0]) + 128));
2442 else
2443 {
2444 int size = XVECTOR (range)->size;
2445 Lisp_Object *val = XVECTOR (range)->contents;
2446 Lisp_Object ch = Fmake_char_internal (size <= 0 ? Qnil : val[0],
2447 size <= 1 ? Qnil : val[1],
2448 size <= 2 ? Qnil : val[2]);
2449 return Faref (char_table, ch);
2450 }
2451 }
2452 else
2453 error ("Invalid RANGE argument to `char-table-range'");
2454 return Qt;
2455 }
2456
2457 DEFUN ("set-char-table-range", Fset_char_table_range, Sset_char_table_range,
2458 3, 3, 0,
2459 doc: /* Set the value in CHAR-TABLE for a range of characters RANGE to VALUE.
2460 RANGE should be t (for all characters), nil (for the default value)
2461 a vector which identifies a character set or a row of a character set,
2462 a coding system, or a character code. */)
2463 (char_table, range, value)
2464 Lisp_Object char_table, range, value;
2465 {
2466 int i;
2467
2468 CHECK_CHAR_TABLE (char_table);
2469
2470 if (EQ (range, Qt))
2471 for (i = 0; i < CHAR_TABLE_ORDINARY_SLOTS; i++)
2472 XCHAR_TABLE (char_table)->contents[i] = value;
2473 else if (EQ (range, Qnil))
2474 XCHAR_TABLE (char_table)->defalt = value;
2475 else if (SYMBOLP (range))
2476 {
2477 Lisp_Object charset_info;
2478
2479 charset_info = Fget (range, Qcharset);
2480 CHECK_VECTOR (charset_info);
2481
2482 return Faset (char_table,
2483 make_number (XINT (XVECTOR (charset_info)->contents[0])
2484 + 128),
2485 value);
2486 }
2487 else if (INTEGERP (range))
2488 Faset (char_table, range, value);
2489 else if (VECTORP (range))
2490 {
2491 if (XVECTOR (range)->size == 1)
2492 return Faset (char_table,
2493 make_number (XINT (XVECTOR (range)->contents[0]) + 128),
2494 value);
2495 else
2496 {
2497 int size = XVECTOR (range)->size;
2498 Lisp_Object *val = XVECTOR (range)->contents;
2499 Lisp_Object ch = Fmake_char_internal (size <= 0 ? Qnil : val[0],
2500 size <= 1 ? Qnil : val[1],
2501 size <= 2 ? Qnil : val[2]);
2502 return Faset (char_table, ch, value);
2503 }
2504 }
2505 else
2506 error ("Invalid RANGE argument to `set-char-table-range'");
2507
2508 return value;
2509 }
2510
2511 DEFUN ("set-char-table-default", Fset_char_table_default,
2512 Sset_char_table_default, 3, 3, 0,
2513 doc: /* Set the default value in CHAR-TABLE for a generic character CHAR to VALUE.
2514 The generic character specifies the group of characters.
2515 See also the documentation of make-char. */)
2516 (char_table, ch, value)
2517 Lisp_Object char_table, ch, value;
2518 {
2519 int c, charset, code1, code2;
2520 Lisp_Object temp;
2521
2522 CHECK_CHAR_TABLE (char_table);
2523 CHECK_NUMBER (ch);
2524
2525 c = XINT (ch);
2526 SPLIT_CHAR (c, charset, code1, code2);
2527
2528 /* Since we may want to set the default value for a character set
2529 not yet defined, we check only if the character set is in the
2530 valid range or not, instead of it is already defined or not. */
2531 if (! CHARSET_VALID_P (charset))
2532 invalid_character (c);
2533
2534 if (charset == CHARSET_ASCII)
2535 return (XCHAR_TABLE (char_table)->defalt = value);
2536
2537 /* Even if C is not a generic char, we had better behave as if a
2538 generic char is specified. */
2539 if (!CHARSET_DEFINED_P (charset) || CHARSET_DIMENSION (charset) == 1)
2540 code1 = 0;
2541 temp = XCHAR_TABLE (char_table)->contents[charset + 128];
2542 if (!code1)
2543 {
2544 if (SUB_CHAR_TABLE_P (temp))
2545 XCHAR_TABLE (temp)->defalt = value;
2546 else
2547 XCHAR_TABLE (char_table)->contents[charset + 128] = value;
2548 return value;
2549 }
2550 if (SUB_CHAR_TABLE_P (temp))
2551 char_table = temp;
2552 else
2553 char_table = (XCHAR_TABLE (char_table)->contents[charset + 128]
2554 = make_sub_char_table (temp));
2555 temp = XCHAR_TABLE (char_table)->contents[code1];
2556 if (SUB_CHAR_TABLE_P (temp))
2557 XCHAR_TABLE (temp)->defalt = value;
2558 else
2559 XCHAR_TABLE (char_table)->contents[code1] = value;
2560 return value;
2561 }
2562
2563 /* Look up the element in TABLE at index CH,
2564 and return it as an integer.
2565 If the element is nil, return CH itself.
2566 (Actually we do that for any non-integer.) */
2567
2568 int
2569 char_table_translate (table, ch)
2570 Lisp_Object table;
2571 int ch;
2572 {
2573 Lisp_Object value;
2574 value = Faref (table, make_number (ch));
2575 if (! INTEGERP (value))
2576 return ch;
2577 return XINT (value);
2578 }
2579
2580 static void
2581 optimize_sub_char_table (table, chars)
2582 Lisp_Object *table;
2583 int chars;
2584 {
2585 Lisp_Object elt;
2586 int from, to;
2587
2588 if (chars == 94)
2589 from = 33, to = 127;
2590 else
2591 from = 32, to = 128;
2592
2593 if (!SUB_CHAR_TABLE_P (*table))
2594 return;
2595 elt = XCHAR_TABLE (*table)->contents[from++];
2596 for (; from < to; from++)
2597 if (NILP (Fequal (elt, XCHAR_TABLE (*table)->contents[from])))
2598 return;
2599 *table = elt;
2600 }
2601
2602 DEFUN ("optimize-char-table", Foptimize_char_table, Soptimize_char_table,
2603 1, 1, 0, doc: /* Optimize char table TABLE. */)
2604 (table)
2605 Lisp_Object table;
2606 {
2607 Lisp_Object elt;
2608 int dim;
2609 int i, j;
2610
2611 CHECK_CHAR_TABLE (table);
2612
2613 for (i = CHAR_TABLE_SINGLE_BYTE_SLOTS; i < CHAR_TABLE_ORDINARY_SLOTS; i++)
2614 {
2615 elt = XCHAR_TABLE (table)->contents[i];
2616 if (!SUB_CHAR_TABLE_P (elt))
2617 continue;
2618 dim = CHARSET_DIMENSION (i - 128);
2619 if (dim == 2)
2620 for (j = 32; j < SUB_CHAR_TABLE_ORDINARY_SLOTS; j++)
2621 optimize_sub_char_table (XCHAR_TABLE (elt)->contents + j, dim);
2622 optimize_sub_char_table (XCHAR_TABLE (table)->contents + i, dim);
2623 }
2624 return Qnil;
2625 }
2626
2627 \f
2628 /* Map C_FUNCTION or FUNCTION over SUBTABLE, calling it for each
2629 character or group of characters that share a value.
2630 DEPTH is the current depth in the originally specified
2631 chartable, and INDICES contains the vector indices
2632 for the levels our callers have descended.
2633
2634 ARG is passed to C_FUNCTION when that is called. */
2635
2636 void
2637 map_char_table (c_function, function, table, subtable, arg, depth, indices)
2638 void (*c_function) P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
2639 Lisp_Object function, table, subtable, arg, *indices;
2640 int depth;
2641 {
2642 int i, to;
2643
2644 if (depth == 0)
2645 {
2646 /* At first, handle ASCII and 8-bit European characters. */
2647 for (i = 0; i < CHAR_TABLE_SINGLE_BYTE_SLOTS; i++)
2648 {
2649 Lisp_Object elt= XCHAR_TABLE (subtable)->contents[i];
2650 if (NILP (elt))
2651 elt = XCHAR_TABLE (subtable)->defalt;
2652 if (NILP (elt))
2653 elt = Faref (subtable, make_number (i));
2654 if (c_function)
2655 (*c_function) (arg, make_number (i), elt);
2656 else
2657 call2 (function, make_number (i), elt);
2658 }
2659 #if 0 /* If the char table has entries for higher characters,
2660 we should report them. */
2661 if (NILP (current_buffer->enable_multibyte_characters))
2662 return;
2663 #endif
2664 to = CHAR_TABLE_ORDINARY_SLOTS;
2665 }
2666 else
2667 {
2668 int charset = XFASTINT (indices[0]) - 128;
2669
2670 i = 32;
2671 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
2672 if (CHARSET_CHARS (charset) == 94)
2673 i++, to--;
2674 }
2675
2676 for (; i < to; i++)
2677 {
2678 Lisp_Object elt;
2679 int charset;
2680
2681 elt = XCHAR_TABLE (subtable)->contents[i];
2682 XSETFASTINT (indices[depth], i);
2683 charset = XFASTINT (indices[0]) - 128;
2684 if (depth == 0
2685 && (!CHARSET_DEFINED_P (charset)
2686 || charset == CHARSET_8_BIT_CONTROL
2687 || charset == CHARSET_8_BIT_GRAPHIC))
2688 continue;
2689
2690 if (SUB_CHAR_TABLE_P (elt))
2691 {
2692 if (depth >= 3)
2693 error ("Too deep char table");
2694 map_char_table (c_function, function, table, elt, arg, depth + 1, indices);
2695 }
2696 else
2697 {
2698 int c1, c2, c;
2699
2700 if (NILP (elt))
2701 elt = XCHAR_TABLE (subtable)->defalt;
2702 if (NILP (elt))
2703 elt = Faref (table, make_number (i));
2704 c1 = depth >= 1 ? XFASTINT (indices[1]) : 0;
2705 c2 = depth >= 2 ? XFASTINT (indices[2]) : 0;
2706 c = MAKE_CHAR (charset, c1, c2);
2707 if (c_function)
2708 (*c_function) (arg, make_number (c), elt);
2709 else
2710 call2 (function, make_number (c), elt);
2711 }
2712 }
2713 }
2714
2715 static void void_call2 P_ ((Lisp_Object a, Lisp_Object b, Lisp_Object c));
2716 static void
2717 void_call2 (a, b, c)
2718 Lisp_Object a, b, c;
2719 {
2720 call2 (a, b, c);
2721 }
2722
2723 DEFUN ("map-char-table", Fmap_char_table, Smap_char_table,
2724 2, 2, 0,
2725 doc: /* Call FUNCTION for each (normal and generic) characters in CHAR-TABLE.
2726 FUNCTION is called with two arguments--a key and a value.
2727 The key is always a possible IDX argument to `aref'. */)
2728 (function, char_table)
2729 Lisp_Object function, char_table;
2730 {
2731 /* The depth of char table is at most 3. */
2732 Lisp_Object indices[3];
2733
2734 CHECK_CHAR_TABLE (char_table);
2735
2736 /* When Lisp_Object is represented as a union, `call2' cannot directly
2737 be passed to map_char_table because it returns a Lisp_Object rather
2738 than returning nothing.
2739 Casting leads to crashes on some architectures. -stef */
2740 map_char_table (void_call2, Qnil, char_table, char_table, function, 0, indices);
2741 return Qnil;
2742 }
2743
2744 /* Return a value for character C in char-table TABLE. Store the
2745 actual index for that value in *IDX. Ignore the default value of
2746 TABLE. */
2747
2748 Lisp_Object
2749 char_table_ref_and_index (table, c, idx)
2750 Lisp_Object table;
2751 int c, *idx;
2752 {
2753 int charset, c1, c2;
2754 Lisp_Object elt;
2755
2756 if (SINGLE_BYTE_CHAR_P (c))
2757 {
2758 *idx = c;
2759 return XCHAR_TABLE (table)->contents[c];
2760 }
2761 SPLIT_CHAR (c, charset, c1, c2);
2762 elt = XCHAR_TABLE (table)->contents[charset + 128];
2763 *idx = MAKE_CHAR (charset, 0, 0);
2764 if (!SUB_CHAR_TABLE_P (elt))
2765 return elt;
2766 if (c1 < 32 || NILP (XCHAR_TABLE (elt)->contents[c1]))
2767 return XCHAR_TABLE (elt)->defalt;
2768 elt = XCHAR_TABLE (elt)->contents[c1];
2769 *idx = MAKE_CHAR (charset, c1, 0);
2770 if (!SUB_CHAR_TABLE_P (elt))
2771 return elt;
2772 if (c2 < 32 || NILP (XCHAR_TABLE (elt)->contents[c2]))
2773 return XCHAR_TABLE (elt)->defalt;
2774 *idx = c;
2775 return XCHAR_TABLE (elt)->contents[c2];
2776 }
2777
2778 \f
2779 /* ARGSUSED */
2780 Lisp_Object
2781 nconc2 (s1, s2)
2782 Lisp_Object s1, s2;
2783 {
2784 #ifdef NO_ARG_ARRAY
2785 Lisp_Object args[2];
2786 args[0] = s1;
2787 args[1] = s2;
2788 return Fnconc (2, args);
2789 #else
2790 return Fnconc (2, &s1);
2791 #endif /* NO_ARG_ARRAY */
2792 }
2793
2794 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2795 doc: /* Concatenate any number of lists by altering them.
2796 Only the last argument is not altered, and need not be a list.
2797 usage: (nconc &rest LISTS) */)
2798 (nargs, args)
2799 int nargs;
2800 Lisp_Object *args;
2801 {
2802 register int argnum;
2803 register Lisp_Object tail, tem, val;
2804
2805 val = tail = Qnil;
2806
2807 for (argnum = 0; argnum < nargs; argnum++)
2808 {
2809 tem = args[argnum];
2810 if (NILP (tem)) continue;
2811
2812 if (NILP (val))
2813 val = tem;
2814
2815 if (argnum + 1 == nargs) break;
2816
2817 if (!CONSP (tem))
2818 tem = wrong_type_argument (Qlistp, tem);
2819
2820 while (CONSP (tem))
2821 {
2822 tail = tem;
2823 tem = XCDR (tail);
2824 QUIT;
2825 }
2826
2827 tem = args[argnum + 1];
2828 Fsetcdr (tail, tem);
2829 if (NILP (tem))
2830 args[argnum + 1] = tail;
2831 }
2832
2833 return val;
2834 }
2835 \f
2836 /* This is the guts of all mapping functions.
2837 Apply FN to each element of SEQ, one by one,
2838 storing the results into elements of VALS, a C vector of Lisp_Objects.
2839 LENI is the length of VALS, which should also be the length of SEQ. */
2840
2841 static void
2842 mapcar1 (leni, vals, fn, seq)
2843 int leni;
2844 Lisp_Object *vals;
2845 Lisp_Object fn, seq;
2846 {
2847 register Lisp_Object tail;
2848 Lisp_Object dummy;
2849 register int i;
2850 struct gcpro gcpro1, gcpro2, gcpro3;
2851
2852 if (vals)
2853 {
2854 /* Don't let vals contain any garbage when GC happens. */
2855 for (i = 0; i < leni; i++)
2856 vals[i] = Qnil;
2857
2858 GCPRO3 (dummy, fn, seq);
2859 gcpro1.var = vals;
2860 gcpro1.nvars = leni;
2861 }
2862 else
2863 GCPRO2 (fn, seq);
2864 /* We need not explicitly protect `tail' because it is used only on lists, and
2865 1) lists are not relocated and 2) the list is marked via `seq' so will not be freed */
2866
2867 if (VECTORP (seq))
2868 {
2869 for (i = 0; i < leni; i++)
2870 {
2871 dummy = XVECTOR (seq)->contents[i];
2872 dummy = call1 (fn, dummy);
2873 if (vals)
2874 vals[i] = dummy;
2875 }
2876 }
2877 else if (BOOL_VECTOR_P (seq))
2878 {
2879 for (i = 0; i < leni; i++)
2880 {
2881 int byte;
2882 byte = XBOOL_VECTOR (seq)->data[i / BITS_PER_CHAR];
2883 if (byte & (1 << (i % BITS_PER_CHAR)))
2884 dummy = Qt;
2885 else
2886 dummy = Qnil;
2887
2888 dummy = call1 (fn, dummy);
2889 if (vals)
2890 vals[i] = dummy;
2891 }
2892 }
2893 else if (STRINGP (seq))
2894 {
2895 int i_byte;
2896
2897 for (i = 0, i_byte = 0; i < leni;)
2898 {
2899 int c;
2900 int i_before = i;
2901
2902 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2903 XSETFASTINT (dummy, c);
2904 dummy = call1 (fn, dummy);
2905 if (vals)
2906 vals[i_before] = dummy;
2907 }
2908 }
2909 else /* Must be a list, since Flength did not get an error */
2910 {
2911 tail = seq;
2912 for (i = 0; i < leni; i++)
2913 {
2914 dummy = call1 (fn, Fcar (tail));
2915 if (vals)
2916 vals[i] = dummy;
2917 tail = XCDR (tail);
2918 }
2919 }
2920
2921 UNGCPRO;
2922 }
2923
2924 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2925 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2926 In between each pair of results, stick in SEPARATOR. Thus, " " as
2927 SEPARATOR results in spaces between the values returned by FUNCTION.
2928 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2929 (function, sequence, separator)
2930 Lisp_Object function, sequence, separator;
2931 {
2932 Lisp_Object len;
2933 register int leni;
2934 int nargs;
2935 register Lisp_Object *args;
2936 register int i;
2937 struct gcpro gcpro1;
2938
2939 len = Flength (sequence);
2940 leni = XINT (len);
2941 nargs = leni + leni - 1;
2942 if (nargs < 0) return build_string ("");
2943
2944 args = (Lisp_Object *) alloca (nargs * sizeof (Lisp_Object));
2945
2946 GCPRO1 (separator);
2947 mapcar1 (leni, args, function, sequence);
2948 UNGCPRO;
2949
2950 for (i = leni - 1; i >= 0; i--)
2951 args[i + i] = args[i];
2952
2953 for (i = 1; i < nargs; i += 2)
2954 args[i] = separator;
2955
2956 return Fconcat (nargs, args);
2957 }
2958
2959 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2960 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2961 The result is a list just as long as SEQUENCE.
2962 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2963 (function, sequence)
2964 Lisp_Object function, sequence;
2965 {
2966 register Lisp_Object len;
2967 register int leni;
2968 register Lisp_Object *args;
2969
2970 len = Flength (sequence);
2971 leni = XFASTINT (len);
2972 args = (Lisp_Object *) alloca (leni * sizeof (Lisp_Object));
2973
2974 mapcar1 (leni, args, function, sequence);
2975
2976 return Flist (leni, args);
2977 }
2978
2979 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2980 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2981 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2982 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2983 (function, sequence)
2984 Lisp_Object function, sequence;
2985 {
2986 register int leni;
2987
2988 leni = XFASTINT (Flength (sequence));
2989 mapcar1 (leni, 0, function, sequence);
2990
2991 return sequence;
2992 }
2993 \f
2994 /* Anything that calls this function must protect from GC! */
2995
2996 DEFUN ("y-or-n-p", Fy_or_n_p, Sy_or_n_p, 1, 1, 0,
2997 doc: /* Ask user a "y or n" question. Return t if answer is "y".
2998 Takes one argument, which is the string to display to ask the question.
2999 It should end in a space; `y-or-n-p' adds `(y or n) ' to it.
3000 No confirmation of the answer is requested; a single character is enough.
3001 Also accepts Space to mean yes, or Delete to mean no. \(Actually, it uses
3002 the bindings in `query-replace-map'; see the documentation of that variable
3003 for more information. In this case, the useful bindings are `act', `skip',
3004 `recenter', and `quit'.\)
3005
3006 Under a windowing system a dialog box will be used if `last-nonmenu-event'
3007 is nil and `use-dialog-box' is non-nil. */)
3008 (prompt)
3009 Lisp_Object prompt;
3010 {
3011 register Lisp_Object obj, key, def, map;
3012 register int answer;
3013 Lisp_Object xprompt;
3014 Lisp_Object args[2];
3015 struct gcpro gcpro1, gcpro2;
3016 int count = SPECPDL_INDEX ();
3017
3018 specbind (Qcursor_in_echo_area, Qt);
3019
3020 map = Fsymbol_value (intern ("query-replace-map"));
3021
3022 CHECK_STRING (prompt);
3023 xprompt = prompt;
3024 GCPRO2 (prompt, xprompt);
3025
3026 #ifdef HAVE_X_WINDOWS
3027 if (display_hourglass_p)
3028 cancel_hourglass ();
3029 #endif
3030
3031 while (1)
3032 {
3033
3034 #ifdef HAVE_MENUS
3035 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3036 && use_dialog_box
3037 && have_menus_p ())
3038 {
3039 Lisp_Object pane, menu;
3040 redisplay_preserve_echo_area (3);
3041 pane = Fcons (Fcons (build_string ("Yes"), Qt),
3042 Fcons (Fcons (build_string ("No"), Qnil),
3043 Qnil));
3044 menu = Fcons (prompt, pane);
3045 obj = Fx_popup_dialog (Qt, menu);
3046 answer = !NILP (obj);
3047 break;
3048 }
3049 #endif /* HAVE_MENUS */
3050 cursor_in_echo_area = 1;
3051 choose_minibuf_frame ();
3052
3053 {
3054 Lisp_Object pargs[3];
3055
3056 /* Colorize prompt according to `minibuffer-prompt' face. */
3057 pargs[0] = build_string ("%s(y or n) ");
3058 pargs[1] = intern ("face");
3059 pargs[2] = intern ("minibuffer-prompt");
3060 args[0] = Fpropertize (3, pargs);
3061 args[1] = xprompt;
3062 Fmessage (2, args);
3063 }
3064
3065 if (minibuffer_auto_raise)
3066 {
3067 Lisp_Object mini_frame;
3068
3069 mini_frame = WINDOW_FRAME (XWINDOW (minibuf_window));
3070
3071 Fraise_frame (mini_frame);
3072 }
3073
3074 obj = read_filtered_event (1, 0, 0, 0);
3075 cursor_in_echo_area = 0;
3076 /* If we need to quit, quit with cursor_in_echo_area = 0. */
3077 QUIT;
3078
3079 key = Fmake_vector (make_number (1), obj);
3080 def = Flookup_key (map, key, Qt);
3081
3082 if (EQ (def, intern ("skip")))
3083 {
3084 answer = 0;
3085 break;
3086 }
3087 else if (EQ (def, intern ("act")))
3088 {
3089 answer = 1;
3090 break;
3091 }
3092 else if (EQ (def, intern ("recenter")))
3093 {
3094 Frecenter (Qnil);
3095 xprompt = prompt;
3096 continue;
3097 }
3098 else if (EQ (def, intern ("quit")))
3099 Vquit_flag = Qt;
3100 /* We want to exit this command for exit-prefix,
3101 and this is the only way to do it. */
3102 else if (EQ (def, intern ("exit-prefix")))
3103 Vquit_flag = Qt;
3104
3105 QUIT;
3106
3107 /* If we don't clear this, then the next call to read_char will
3108 return quit_char again, and we'll enter an infinite loop. */
3109 Vquit_flag = Qnil;
3110
3111 Fding (Qnil);
3112 Fdiscard_input ();
3113 if (EQ (xprompt, prompt))
3114 {
3115 args[0] = build_string ("Please answer y or n. ");
3116 args[1] = prompt;
3117 xprompt = Fconcat (2, args);
3118 }
3119 }
3120 UNGCPRO;
3121
3122 if (! noninteractive)
3123 {
3124 cursor_in_echo_area = -1;
3125 message_with_string (answer ? "%s(y or n) y" : "%s(y or n) n",
3126 xprompt, 0);
3127 }
3128
3129 unbind_to (count, Qnil);
3130 return answer ? Qt : Qnil;
3131 }
3132 \f
3133 /* This is how C code calls `yes-or-no-p' and allows the user
3134 to redefined it.
3135
3136 Anything that calls this function must protect from GC! */
3137
3138 Lisp_Object
3139 do_yes_or_no_p (prompt)
3140 Lisp_Object prompt;
3141 {
3142 return call1 (intern ("yes-or-no-p"), prompt);
3143 }
3144
3145 /* Anything that calls this function must protect from GC! */
3146
3147 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
3148 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
3149 Takes one argument, which is the string to display to ask the question.
3150 It should end in a space; `yes-or-no-p' adds `(yes or no) ' to it.
3151 The user must confirm the answer with RET,
3152 and can edit it until it has been confirmed.
3153
3154 Under a windowing system a dialog box will be used if `last-nonmenu-event'
3155 is nil, and `use-dialog-box' is non-nil. */)
3156 (prompt)
3157 Lisp_Object prompt;
3158 {
3159 register Lisp_Object ans;
3160 Lisp_Object args[2];
3161 struct gcpro gcpro1;
3162
3163 CHECK_STRING (prompt);
3164
3165 #ifdef HAVE_MENUS
3166 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3167 && use_dialog_box
3168 && have_menus_p ())
3169 {
3170 Lisp_Object pane, menu, obj;
3171 redisplay_preserve_echo_area (4);
3172 pane = Fcons (Fcons (build_string ("Yes"), Qt),
3173 Fcons (Fcons (build_string ("No"), Qnil),
3174 Qnil));
3175 GCPRO1 (pane);
3176 menu = Fcons (prompt, pane);
3177 obj = Fx_popup_dialog (Qt, menu);
3178 UNGCPRO;
3179 return obj;
3180 }
3181 #endif /* HAVE_MENUS */
3182
3183 args[0] = prompt;
3184 args[1] = build_string ("(yes or no) ");
3185 prompt = Fconcat (2, args);
3186
3187 GCPRO1 (prompt);
3188
3189 while (1)
3190 {
3191 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
3192 Qyes_or_no_p_history, Qnil,
3193 Qnil));
3194 if (SCHARS (ans) == 3 && !strcmp (SDATA (ans), "yes"))
3195 {
3196 UNGCPRO;
3197 return Qt;
3198 }
3199 if (SCHARS (ans) == 2 && !strcmp (SDATA (ans), "no"))
3200 {
3201 UNGCPRO;
3202 return Qnil;
3203 }
3204
3205 Fding (Qnil);
3206 Fdiscard_input ();
3207 message ("Please answer yes or no.");
3208 Fsleep_for (make_number (2), Qnil);
3209 }
3210 }
3211 \f
3212 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
3213 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
3214
3215 Each of the three load averages is multiplied by 100, then converted
3216 to integer.
3217
3218 When USE-FLOATS is non-nil, floats will be used instead of integers.
3219 These floats are not multiplied by 100.
3220
3221 If the 5-minute or 15-minute load averages are not available, return a
3222 shortened list, containing only those averages which are available. */)
3223 (use_floats)
3224 Lisp_Object use_floats;
3225 {
3226 double load_ave[3];
3227 int loads = getloadavg (load_ave, 3);
3228 Lisp_Object ret = Qnil;
3229
3230 if (loads < 0)
3231 error ("load-average not implemented for this operating system");
3232
3233 while (loads-- > 0)
3234 {
3235 Lisp_Object load = (NILP (use_floats) ?
3236 make_number ((int) (100.0 * load_ave[loads]))
3237 : make_float (load_ave[loads]));
3238 ret = Fcons (load, ret);
3239 }
3240
3241 return ret;
3242 }
3243 \f
3244 Lisp_Object Vfeatures, Qsubfeatures;
3245 extern Lisp_Object Vafter_load_alist;
3246
3247 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
3248 doc: /* Returns t if FEATURE is present in this Emacs.
3249
3250 Use this to conditionalize execution of lisp code based on the
3251 presence or absence of emacs or environment extensions.
3252 Use `provide' to declare that a feature is available. This function
3253 looks at the value of the variable `features'. The optional argument
3254 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
3255 (feature, subfeature)
3256 Lisp_Object feature, subfeature;
3257 {
3258 register Lisp_Object tem;
3259 CHECK_SYMBOL (feature);
3260 tem = Fmemq (feature, Vfeatures);
3261 if (!NILP (tem) && !NILP (subfeature))
3262 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
3263 return (NILP (tem)) ? Qnil : Qt;
3264 }
3265
3266 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
3267 doc: /* Announce that FEATURE is a feature of the current Emacs.
3268 The optional argument SUBFEATURES should be a list of symbols listing
3269 particular subfeatures supported in this version of FEATURE. */)
3270 (feature, subfeatures)
3271 Lisp_Object feature, subfeatures;
3272 {
3273 register Lisp_Object tem;
3274 CHECK_SYMBOL (feature);
3275 CHECK_LIST (subfeatures);
3276 if (!NILP (Vautoload_queue))
3277 Vautoload_queue = Fcons (Fcons (Vfeatures, Qnil), Vautoload_queue);
3278 tem = Fmemq (feature, Vfeatures);
3279 if (NILP (tem))
3280 Vfeatures = Fcons (feature, Vfeatures);
3281 if (!NILP (subfeatures))
3282 Fput (feature, Qsubfeatures, subfeatures);
3283 LOADHIST_ATTACH (Fcons (Qprovide, feature));
3284
3285 /* Run any load-hooks for this file. */
3286 tem = Fassq (feature, Vafter_load_alist);
3287 if (CONSP (tem))
3288 Fprogn (XCDR (tem));
3289
3290 return feature;
3291 }
3292 \f
3293 /* `require' and its subroutines. */
3294
3295 /* List of features currently being require'd, innermost first. */
3296
3297 Lisp_Object require_nesting_list;
3298
3299 Lisp_Object
3300 require_unwind (old_value)
3301 Lisp_Object old_value;
3302 {
3303 return require_nesting_list = old_value;
3304 }
3305
3306 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
3307 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
3308 If FEATURE is not a member of the list `features', then the feature
3309 is not loaded; so load the file FILENAME.
3310 If FILENAME is omitted, the printname of FEATURE is used as the file name,
3311 and `load' will try to load this name appended with the suffix `.elc',
3312 `.el' or the unmodified name, in that order.
3313 If the optional third argument NOERROR is non-nil,
3314 then return nil if the file is not found instead of signaling an error.
3315 Normally the return value is FEATURE.
3316 The normal messages at start and end of loading FILENAME are suppressed. */)
3317 (feature, filename, noerror)
3318 Lisp_Object feature, filename, noerror;
3319 {
3320 register Lisp_Object tem;
3321 struct gcpro gcpro1, gcpro2;
3322
3323 CHECK_SYMBOL (feature);
3324
3325 tem = Fmemq (feature, Vfeatures);
3326
3327 if (NILP (tem))
3328 {
3329 int count = SPECPDL_INDEX ();
3330 int nesting = 0;
3331
3332 LOADHIST_ATTACH (Fcons (Qrequire, feature));
3333
3334 /* This is to make sure that loadup.el gives a clear picture
3335 of what files are preloaded and when. */
3336 if (! NILP (Vpurify_flag))
3337 error ("(require %s) while preparing to dump",
3338 SDATA (SYMBOL_NAME (feature)));
3339
3340 /* A certain amount of recursive `require' is legitimate,
3341 but if we require the same feature recursively 3 times,
3342 signal an error. */
3343 tem = require_nesting_list;
3344 while (! NILP (tem))
3345 {
3346 if (! NILP (Fequal (feature, XCAR (tem))))
3347 nesting++;
3348 tem = XCDR (tem);
3349 }
3350 if (nesting > 3)
3351 error ("Recursive `require' for feature `%s'",
3352 SDATA (SYMBOL_NAME (feature)));
3353
3354 /* Update the list for any nested `require's that occur. */
3355 record_unwind_protect (require_unwind, require_nesting_list);
3356 require_nesting_list = Fcons (feature, require_nesting_list);
3357
3358 /* Value saved here is to be restored into Vautoload_queue */
3359 record_unwind_protect (un_autoload, Vautoload_queue);
3360 Vautoload_queue = Qt;
3361
3362 /* Load the file. */
3363 GCPRO2 (feature, filename);
3364 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
3365 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
3366 UNGCPRO;
3367
3368 /* If load failed entirely, return nil. */
3369 if (NILP (tem))
3370 return unbind_to (count, Qnil);
3371
3372 tem = Fmemq (feature, Vfeatures);
3373 if (NILP (tem))
3374 error ("Required feature `%s' was not provided",
3375 SDATA (SYMBOL_NAME (feature)));
3376
3377 /* Once loading finishes, don't undo it. */
3378 Vautoload_queue = Qt;
3379 feature = unbind_to (count, feature);
3380 }
3381
3382 return feature;
3383 }
3384 \f
3385 /* Primitives for work of the "widget" library.
3386 In an ideal world, this section would not have been necessary.
3387 However, lisp function calls being as slow as they are, it turns
3388 out that some functions in the widget library (wid-edit.el) are the
3389 bottleneck of Widget operation. Here is their translation to C,
3390 for the sole reason of efficiency. */
3391
3392 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
3393 doc: /* Return non-nil if PLIST has the property PROP.
3394 PLIST is a property list, which is a list of the form
3395 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
3396 Unlike `plist-get', this allows you to distinguish between a missing
3397 property and a property with the value nil.
3398 The value is actually the tail of PLIST whose car is PROP. */)
3399 (plist, prop)
3400 Lisp_Object plist, prop;
3401 {
3402 while (CONSP (plist) && !EQ (XCAR (plist), prop))
3403 {
3404 QUIT;
3405 plist = XCDR (plist);
3406 plist = CDR (plist);
3407 }
3408 return plist;
3409 }
3410
3411 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
3412 doc: /* In WIDGET, set PROPERTY to VALUE.
3413 The value can later be retrieved with `widget-get'. */)
3414 (widget, property, value)
3415 Lisp_Object widget, property, value;
3416 {
3417 CHECK_CONS (widget);
3418 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
3419 return value;
3420 }
3421
3422 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
3423 doc: /* In WIDGET, get the value of PROPERTY.
3424 The value could either be specified when the widget was created, or
3425 later with `widget-put'. */)
3426 (widget, property)
3427 Lisp_Object widget, property;
3428 {
3429 Lisp_Object tmp;
3430
3431 while (1)
3432 {
3433 if (NILP (widget))
3434 return Qnil;
3435 CHECK_CONS (widget);
3436 tmp = Fplist_member (XCDR (widget), property);
3437 if (CONSP (tmp))
3438 {
3439 tmp = XCDR (tmp);
3440 return CAR (tmp);
3441 }
3442 tmp = XCAR (widget);
3443 if (NILP (tmp))
3444 return Qnil;
3445 widget = Fget (tmp, Qwidget_type);
3446 }
3447 }
3448
3449 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
3450 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
3451 ARGS are passed as extra arguments to the function.
3452 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
3453 (nargs, args)
3454 int nargs;
3455 Lisp_Object *args;
3456 {
3457 /* This function can GC. */
3458 Lisp_Object newargs[3];
3459 struct gcpro gcpro1, gcpro2;
3460 Lisp_Object result;
3461
3462 newargs[0] = Fwidget_get (args[0], args[1]);
3463 newargs[1] = args[0];
3464 newargs[2] = Flist (nargs - 2, args + 2);
3465 GCPRO2 (newargs[0], newargs[2]);
3466 result = Fapply (3, newargs);
3467 UNGCPRO;
3468 return result;
3469 }
3470
3471 #ifdef HAVE_LANGINFO_CODESET
3472 #include <langinfo.h>
3473 #endif
3474
3475 DEFUN ("langinfo", Flanginfo, Slanginfo, 1, 1, 0,
3476 doc: /* Access locale data ITEM, if available.
3477
3478 ITEM may be one of the following:
3479 `codeset', returning the character set as a string (locale item CODESET);
3480 `days', returning a 7-element vector of day names (locale items DAY_n);
3481 `months', returning a 12-element vector of month names (locale items MON_n);
3482 `paper', returning a list (WIDTH, HEIGHT) for the default paper size,
3483 where the width and height are in mm (locale items PAPER_WIDTH,
3484 PAPER_HEIGHT).
3485
3486 If the system can't provide such information through a call to
3487 nl_langinfo(3), return nil.
3488
3489 See also Info node `(libc)Locales'.
3490
3491 The data read from the system are decoded using `locale-coding-system'. */)
3492 (item)
3493 Lisp_Object item;
3494 {
3495 char *str = NULL;
3496 #ifdef HAVE_LANGINFO_CODESET
3497 Lisp_Object val;
3498 if (EQ (item, Qcodeset))
3499 {
3500 str = nl_langinfo (CODESET);
3501 return build_string (str);
3502 }
3503 #ifdef DAY_1
3504 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
3505 {
3506 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
3507 int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
3508 int i;
3509 synchronize_system_time_locale ();
3510 for (i = 0; i < 7; i++)
3511 {
3512 str = nl_langinfo (days[i]);
3513 val = make_unibyte_string (str, strlen (str));
3514 /* Fixme: Is this coding system necessarily right, even if
3515 it is consistent with CODESET? If not, what to do? */
3516 Faset (v, make_number (i),
3517 code_convert_string_norecord (val, Vlocale_coding_system,
3518 0));
3519 }
3520 return v;
3521 }
3522 #endif /* DAY_1 */
3523 #ifdef MON_1
3524 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
3525 {
3526 struct Lisp_Vector *p = allocate_vector (12);
3527 int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
3528 MON_8, MON_9, MON_10, MON_11, MON_12};
3529 int i;
3530 synchronize_system_time_locale ();
3531 for (i = 0; i < 12; i++)
3532 {
3533 str = nl_langinfo (months[i]);
3534 val = make_unibyte_string (str, strlen (str));
3535 p->contents[i] =
3536 code_convert_string_norecord (val, Vlocale_coding_system, 0);
3537 }
3538 XSETVECTOR (val, p);
3539 return val;
3540 }
3541 #endif /* MON_1 */
3542 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
3543 but is in the locale files. This could be used by ps-print. */
3544 #ifdef PAPER_WIDTH
3545 else if (EQ (item, Qpaper))
3546 {
3547 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
3548 make_number (nl_langinfo (PAPER_HEIGHT)));
3549 }
3550 #endif /* PAPER_WIDTH */
3551 #endif /* HAVE_LANGINFO_CODESET*/
3552 return Qnil;
3553 }
3554 \f
3555 /* base64 encode/decode functions (RFC 2045).
3556 Based on code from GNU recode. */
3557
3558 #define MIME_LINE_LENGTH 76
3559
3560 #define IS_ASCII(Character) \
3561 ((Character) < 128)
3562 #define IS_BASE64(Character) \
3563 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
3564 #define IS_BASE64_IGNORABLE(Character) \
3565 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
3566 || (Character) == '\f' || (Character) == '\r')
3567
3568 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
3569 character or return retval if there are no characters left to
3570 process. */
3571 #define READ_QUADRUPLET_BYTE(retval) \
3572 do \
3573 { \
3574 if (i == length) \
3575 { \
3576 if (nchars_return) \
3577 *nchars_return = nchars; \
3578 return (retval); \
3579 } \
3580 c = from[i++]; \
3581 } \
3582 while (IS_BASE64_IGNORABLE (c))
3583
3584 /* Don't use alloca for regions larger than this, lest we overflow
3585 their stack. */
3586 #define MAX_ALLOCA 16*1024
3587
3588 /* Table of characters coding the 64 values. */
3589 static char base64_value_to_char[64] =
3590 {
3591 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
3592 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
3593 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
3594 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
3595 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
3596 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
3597 '8', '9', '+', '/' /* 60-63 */
3598 };
3599
3600 /* Table of base64 values for first 128 characters. */
3601 static short base64_char_to_value[128] =
3602 {
3603 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
3604 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
3605 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
3606 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
3607 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
3608 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
3609 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
3610 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
3611 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
3612 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
3613 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
3614 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
3615 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
3616 };
3617
3618 /* The following diagram shows the logical steps by which three octets
3619 get transformed into four base64 characters.
3620
3621 .--------. .--------. .--------.
3622 |aaaaaabb| |bbbbcccc| |ccdddddd|
3623 `--------' `--------' `--------'
3624 6 2 4 4 2 6
3625 .--------+--------+--------+--------.
3626 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
3627 `--------+--------+--------+--------'
3628
3629 .--------+--------+--------+--------.
3630 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
3631 `--------+--------+--------+--------'
3632
3633 The octets are divided into 6 bit chunks, which are then encoded into
3634 base64 characters. */
3635
3636
3637 static int base64_encode_1 P_ ((const char *, char *, int, int, int));
3638 static int base64_decode_1 P_ ((const char *, char *, int, int, int *));
3639
3640 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
3641 2, 3, "r",
3642 doc: /* Base64-encode the region between BEG and END.
3643 Return the length of the encoded text.
3644 Optional third argument NO-LINE-BREAK means do not break long lines
3645 into shorter lines. */)
3646 (beg, end, no_line_break)
3647 Lisp_Object beg, end, no_line_break;
3648 {
3649 char *encoded;
3650 int allength, length;
3651 int ibeg, iend, encoded_length;
3652 int old_pos = PT;
3653
3654 validate_region (&beg, &end);
3655
3656 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3657 iend = CHAR_TO_BYTE (XFASTINT (end));
3658 move_gap_both (XFASTINT (beg), ibeg);
3659
3660 /* We need to allocate enough room for encoding the text.
3661 We need 33 1/3% more space, plus a newline every 76
3662 characters, and then we round up. */
3663 length = iend - ibeg;
3664 allength = length + length/3 + 1;
3665 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3666
3667 if (allength <= MAX_ALLOCA)
3668 encoded = (char *) alloca (allength);
3669 else
3670 encoded = (char *) xmalloc (allength);
3671 encoded_length = base64_encode_1 (BYTE_POS_ADDR (ibeg), encoded, length,
3672 NILP (no_line_break),
3673 !NILP (current_buffer->enable_multibyte_characters));
3674 if (encoded_length > allength)
3675 abort ();
3676
3677 if (encoded_length < 0)
3678 {
3679 /* The encoding wasn't possible. */
3680 if (length > MAX_ALLOCA)
3681 xfree (encoded);
3682 error ("Multibyte character in data for base64 encoding");
3683 }
3684
3685 /* Now we have encoded the region, so we insert the new contents
3686 and delete the old. (Insert first in order to preserve markers.) */
3687 SET_PT_BOTH (XFASTINT (beg), ibeg);
3688 insert (encoded, encoded_length);
3689 if (allength > MAX_ALLOCA)
3690 xfree (encoded);
3691 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3692
3693 /* If point was outside of the region, restore it exactly; else just
3694 move to the beginning of the region. */
3695 if (old_pos >= XFASTINT (end))
3696 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3697 else if (old_pos > XFASTINT (beg))
3698 old_pos = XFASTINT (beg);
3699 SET_PT (old_pos);
3700
3701 /* We return the length of the encoded text. */
3702 return make_number (encoded_length);
3703 }
3704
3705 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3706 1, 2, 0,
3707 doc: /* Base64-encode STRING and return the result.
3708 Optional second argument NO-LINE-BREAK means do not break long lines
3709 into shorter lines. */)
3710 (string, no_line_break)
3711 Lisp_Object string, no_line_break;
3712 {
3713 int allength, length, encoded_length;
3714 char *encoded;
3715 Lisp_Object encoded_string;
3716
3717 CHECK_STRING (string);
3718
3719 /* We need to allocate enough room for encoding the text.
3720 We need 33 1/3% more space, plus a newline every 76
3721 characters, and then we round up. */
3722 length = SBYTES (string);
3723 allength = length + length/3 + 1;
3724 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3725
3726 /* We need to allocate enough room for decoding the text. */
3727 if (allength <= MAX_ALLOCA)
3728 encoded = (char *) alloca (allength);
3729 else
3730 encoded = (char *) xmalloc (allength);
3731
3732 encoded_length = base64_encode_1 (SDATA (string),
3733 encoded, length, NILP (no_line_break),
3734 STRING_MULTIBYTE (string));
3735 if (encoded_length > allength)
3736 abort ();
3737
3738 if (encoded_length < 0)
3739 {
3740 /* The encoding wasn't possible. */
3741 if (length > MAX_ALLOCA)
3742 xfree (encoded);
3743 error ("Multibyte character in data for base64 encoding");
3744 }
3745
3746 encoded_string = make_unibyte_string (encoded, encoded_length);
3747 if (allength > MAX_ALLOCA)
3748 xfree (encoded);
3749
3750 return encoded_string;
3751 }
3752
3753 static int
3754 base64_encode_1 (from, to, length, line_break, multibyte)
3755 const char *from;
3756 char *to;
3757 int length;
3758 int line_break;
3759 int multibyte;
3760 {
3761 int counter = 0, i = 0;
3762 char *e = to;
3763 int c;
3764 unsigned int value;
3765 int bytes;
3766
3767 while (i < length)
3768 {
3769 if (multibyte)
3770 {
3771 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3772 if (c >= 256)
3773 return -1;
3774 i += bytes;
3775 }
3776 else
3777 c = from[i++];
3778
3779 /* Wrap line every 76 characters. */
3780
3781 if (line_break)
3782 {
3783 if (counter < MIME_LINE_LENGTH / 4)
3784 counter++;
3785 else
3786 {
3787 *e++ = '\n';
3788 counter = 1;
3789 }
3790 }
3791
3792 /* Process first byte of a triplet. */
3793
3794 *e++ = base64_value_to_char[0x3f & c >> 2];
3795 value = (0x03 & c) << 4;
3796
3797 /* Process second byte of a triplet. */
3798
3799 if (i == length)
3800 {
3801 *e++ = base64_value_to_char[value];
3802 *e++ = '=';
3803 *e++ = '=';
3804 break;
3805 }
3806
3807 if (multibyte)
3808 {
3809 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3810 if (c >= 256)
3811 return -1;
3812 i += bytes;
3813 }
3814 else
3815 c = from[i++];
3816
3817 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3818 value = (0x0f & c) << 2;
3819
3820 /* Process third byte of a triplet. */
3821
3822 if (i == length)
3823 {
3824 *e++ = base64_value_to_char[value];
3825 *e++ = '=';
3826 break;
3827 }
3828
3829 if (multibyte)
3830 {
3831 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3832 if (c >= 256)
3833 return -1;
3834 i += bytes;
3835 }
3836 else
3837 c = from[i++];
3838
3839 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3840 *e++ = base64_value_to_char[0x3f & c];
3841 }
3842
3843 return e - to;
3844 }
3845
3846
3847 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3848 2, 2, "r",
3849 doc: /* Base64-decode the region between BEG and END.
3850 Return the length of the decoded text.
3851 If the region can't be decoded, signal an error and don't modify the buffer. */)
3852 (beg, end)
3853 Lisp_Object beg, end;
3854 {
3855 int ibeg, iend, length, allength;
3856 char *decoded;
3857 int old_pos = PT;
3858 int decoded_length;
3859 int inserted_chars;
3860 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
3861
3862 validate_region (&beg, &end);
3863
3864 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3865 iend = CHAR_TO_BYTE (XFASTINT (end));
3866
3867 length = iend - ibeg;
3868
3869 /* We need to allocate enough room for decoding the text. If we are
3870 working on a multibyte buffer, each decoded code may occupy at
3871 most two bytes. */
3872 allength = multibyte ? length * 2 : length;
3873 if (allength <= MAX_ALLOCA)
3874 decoded = (char *) alloca (allength);
3875 else
3876 decoded = (char *) xmalloc (allength);
3877
3878 move_gap_both (XFASTINT (beg), ibeg);
3879 decoded_length = base64_decode_1 (BYTE_POS_ADDR (ibeg), decoded, length,
3880 multibyte, &inserted_chars);
3881 if (decoded_length > allength)
3882 abort ();
3883
3884 if (decoded_length < 0)
3885 {
3886 /* The decoding wasn't possible. */
3887 if (allength > MAX_ALLOCA)
3888 xfree (decoded);
3889 error ("Invalid base64 data");
3890 }
3891
3892 /* Now we have decoded the region, so we insert the new contents
3893 and delete the old. (Insert first in order to preserve markers.) */
3894 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3895 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3896 if (allength > MAX_ALLOCA)
3897 xfree (decoded);
3898 /* Delete the original text. */
3899 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3900 iend + decoded_length, 1);
3901
3902 /* If point was outside of the region, restore it exactly; else just
3903 move to the beginning of the region. */
3904 if (old_pos >= XFASTINT (end))
3905 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3906 else if (old_pos > XFASTINT (beg))
3907 old_pos = XFASTINT (beg);
3908 SET_PT (old_pos > ZV ? ZV : old_pos);
3909
3910 return make_number (inserted_chars);
3911 }
3912
3913 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3914 1, 1, 0,
3915 doc: /* Base64-decode STRING and return the result. */)
3916 (string)
3917 Lisp_Object string;
3918 {
3919 char *decoded;
3920 int length, decoded_length;
3921 Lisp_Object decoded_string;
3922
3923 CHECK_STRING (string);
3924
3925 length = SBYTES (string);
3926 /* We need to allocate enough room for decoding the text. */
3927 if (length <= MAX_ALLOCA)
3928 decoded = (char *) alloca (length);
3929 else
3930 decoded = (char *) xmalloc (length);
3931
3932 /* The decoded result should be unibyte. */
3933 decoded_length = base64_decode_1 (SDATA (string), decoded, length,
3934 0, NULL);
3935 if (decoded_length > length)
3936 abort ();
3937 else if (decoded_length >= 0)
3938 decoded_string = make_unibyte_string (decoded, decoded_length);
3939 else
3940 decoded_string = Qnil;
3941
3942 if (length > MAX_ALLOCA)
3943 xfree (decoded);
3944 if (!STRINGP (decoded_string))
3945 error ("Invalid base64 data");
3946
3947 return decoded_string;
3948 }
3949
3950 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
3951 MULTIBYTE is nonzero, the decoded result should be in multibyte
3952 form. If NCHARS_RETRUN is not NULL, store the number of produced
3953 characters in *NCHARS_RETURN. */
3954
3955 static int
3956 base64_decode_1 (from, to, length, multibyte, nchars_return)
3957 const char *from;
3958 char *to;
3959 int length;
3960 int multibyte;
3961 int *nchars_return;
3962 {
3963 int i = 0;
3964 char *e = to;
3965 unsigned char c;
3966 unsigned long value;
3967 int nchars = 0;
3968
3969 while (1)
3970 {
3971 /* Process first byte of a quadruplet. */
3972
3973 READ_QUADRUPLET_BYTE (e-to);
3974
3975 if (!IS_BASE64 (c))
3976 return -1;
3977 value = base64_char_to_value[c] << 18;
3978
3979 /* Process second byte of a quadruplet. */
3980
3981 READ_QUADRUPLET_BYTE (-1);
3982
3983 if (!IS_BASE64 (c))
3984 return -1;
3985 value |= base64_char_to_value[c] << 12;
3986
3987 c = (unsigned char) (value >> 16);
3988 if (multibyte)
3989 e += CHAR_STRING (c, e);
3990 else
3991 *e++ = c;
3992 nchars++;
3993
3994 /* Process third byte of a quadruplet. */
3995
3996 READ_QUADRUPLET_BYTE (-1);
3997
3998 if (c == '=')
3999 {
4000 READ_QUADRUPLET_BYTE (-1);
4001
4002 if (c != '=')
4003 return -1;
4004 continue;
4005 }
4006
4007 if (!IS_BASE64 (c))
4008 return -1;
4009 value |= base64_char_to_value[c] << 6;
4010
4011 c = (unsigned char) (0xff & value >> 8);
4012 if (multibyte)
4013 e += CHAR_STRING (c, e);
4014 else
4015 *e++ = c;
4016 nchars++;
4017
4018 /* Process fourth byte of a quadruplet. */
4019
4020 READ_QUADRUPLET_BYTE (-1);
4021
4022 if (c == '=')
4023 continue;
4024
4025 if (!IS_BASE64 (c))
4026 return -1;
4027 value |= base64_char_to_value[c];
4028
4029 c = (unsigned char) (0xff & value);
4030 if (multibyte)
4031 e += CHAR_STRING (c, e);
4032 else
4033 *e++ = c;
4034 nchars++;
4035 }
4036 }
4037
4038
4039 \f
4040 /***********************************************************************
4041 ***** *****
4042 ***** Hash Tables *****
4043 ***** *****
4044 ***********************************************************************/
4045
4046 /* Implemented by gerd@gnu.org. This hash table implementation was
4047 inspired by CMUCL hash tables. */
4048
4049 /* Ideas:
4050
4051 1. For small tables, association lists are probably faster than
4052 hash tables because they have lower overhead.
4053
4054 For uses of hash tables where the O(1) behavior of table
4055 operations is not a requirement, it might therefore be a good idea
4056 not to hash. Instead, we could just do a linear search in the
4057 key_and_value vector of the hash table. This could be done
4058 if a `:linear-search t' argument is given to make-hash-table. */
4059
4060
4061 /* The list of all weak hash tables. Don't staticpro this one. */
4062
4063 Lisp_Object Vweak_hash_tables;
4064
4065 /* Various symbols. */
4066
4067 Lisp_Object Qhash_table_p, Qeq, Qeql, Qequal, Qkey, Qvalue;
4068 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
4069 Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
4070
4071 /* Function prototypes. */
4072
4073 static struct Lisp_Hash_Table *check_hash_table P_ ((Lisp_Object));
4074 static int get_key_arg P_ ((Lisp_Object, int, Lisp_Object *, char *));
4075 static void maybe_resize_hash_table P_ ((struct Lisp_Hash_Table *));
4076 static int cmpfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
4077 Lisp_Object, unsigned));
4078 static int cmpfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
4079 Lisp_Object, unsigned));
4080 static int cmpfn_user_defined P_ ((struct Lisp_Hash_Table *, Lisp_Object,
4081 unsigned, Lisp_Object, unsigned));
4082 static unsigned hashfn_eq P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4083 static unsigned hashfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4084 static unsigned hashfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4085 static unsigned hashfn_user_defined P_ ((struct Lisp_Hash_Table *,
4086 Lisp_Object));
4087 static unsigned sxhash_string P_ ((unsigned char *, int));
4088 static unsigned sxhash_list P_ ((Lisp_Object, int));
4089 static unsigned sxhash_vector P_ ((Lisp_Object, int));
4090 static unsigned sxhash_bool_vector P_ ((Lisp_Object));
4091 static int sweep_weak_table P_ ((struct Lisp_Hash_Table *, int));
4092
4093
4094 \f
4095 /***********************************************************************
4096 Utilities
4097 ***********************************************************************/
4098
4099 /* If OBJ is a Lisp hash table, return a pointer to its struct
4100 Lisp_Hash_Table. Otherwise, signal an error. */
4101
4102 static struct Lisp_Hash_Table *
4103 check_hash_table (obj)
4104 Lisp_Object obj;
4105 {
4106 CHECK_HASH_TABLE (obj);
4107 return XHASH_TABLE (obj);
4108 }
4109
4110
4111 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
4112 number. */
4113
4114 int
4115 next_almost_prime (n)
4116 int n;
4117 {
4118 if (n % 2 == 0)
4119 n += 1;
4120 if (n % 3 == 0)
4121 n += 2;
4122 if (n % 7 == 0)
4123 n += 4;
4124 return n;
4125 }
4126
4127
4128 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
4129 which USED[I] is non-zero. If found at index I in ARGS, set
4130 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
4131 -1. This function is used to extract a keyword/argument pair from
4132 a DEFUN parameter list. */
4133
4134 static int
4135 get_key_arg (key, nargs, args, used)
4136 Lisp_Object key;
4137 int nargs;
4138 Lisp_Object *args;
4139 char *used;
4140 {
4141 int i;
4142
4143 for (i = 0; i < nargs - 1; ++i)
4144 if (!used[i] && EQ (args[i], key))
4145 break;
4146
4147 if (i >= nargs - 1)
4148 i = -1;
4149 else
4150 {
4151 used[i++] = 1;
4152 used[i] = 1;
4153 }
4154
4155 return i;
4156 }
4157
4158
4159 /* Return a Lisp vector which has the same contents as VEC but has
4160 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
4161 vector that are not copied from VEC are set to INIT. */
4162
4163 Lisp_Object
4164 larger_vector (vec, new_size, init)
4165 Lisp_Object vec;
4166 int new_size;
4167 Lisp_Object init;
4168 {
4169 struct Lisp_Vector *v;
4170 int i, old_size;
4171
4172 xassert (VECTORP (vec));
4173 old_size = XVECTOR (vec)->size;
4174 xassert (new_size >= old_size);
4175
4176 v = allocate_vector (new_size);
4177 bcopy (XVECTOR (vec)->contents, v->contents,
4178 old_size * sizeof *v->contents);
4179 for (i = old_size; i < new_size; ++i)
4180 v->contents[i] = init;
4181 XSETVECTOR (vec, v);
4182 return vec;
4183 }
4184
4185
4186 /***********************************************************************
4187 Low-level Functions
4188 ***********************************************************************/
4189
4190 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
4191 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
4192 KEY2 are the same. */
4193
4194 static int
4195 cmpfn_eql (h, key1, hash1, key2, hash2)
4196 struct Lisp_Hash_Table *h;
4197 Lisp_Object key1, key2;
4198 unsigned hash1, hash2;
4199 {
4200 return (FLOATP (key1)
4201 && FLOATP (key2)
4202 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
4203 }
4204
4205
4206 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
4207 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
4208 KEY2 are the same. */
4209
4210 static int
4211 cmpfn_equal (h, key1, hash1, key2, hash2)
4212 struct Lisp_Hash_Table *h;
4213 Lisp_Object key1, key2;
4214 unsigned hash1, hash2;
4215 {
4216 return hash1 == hash2 && !NILP (Fequal (key1, key2));
4217 }
4218
4219
4220 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
4221 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
4222 if KEY1 and KEY2 are the same. */
4223
4224 static int
4225 cmpfn_user_defined (h, key1, hash1, key2, hash2)
4226 struct Lisp_Hash_Table *h;
4227 Lisp_Object key1, key2;
4228 unsigned hash1, hash2;
4229 {
4230 if (hash1 == hash2)
4231 {
4232 Lisp_Object args[3];
4233
4234 args[0] = h->user_cmp_function;
4235 args[1] = key1;
4236 args[2] = key2;
4237 return !NILP (Ffuncall (3, args));
4238 }
4239 else
4240 return 0;
4241 }
4242
4243
4244 /* Value is a hash code for KEY for use in hash table H which uses
4245 `eq' to compare keys. The hash code returned is guaranteed to fit
4246 in a Lisp integer. */
4247
4248 static unsigned
4249 hashfn_eq (h, key)
4250 struct Lisp_Hash_Table *h;
4251 Lisp_Object key;
4252 {
4253 unsigned hash = XUINT (key) ^ XGCTYPE (key);
4254 xassert ((hash & ~VALMASK) == 0);
4255 return hash;
4256 }
4257
4258
4259 /* Value is a hash code for KEY for use in hash table H which uses
4260 `eql' to compare keys. The hash code returned is guaranteed to fit
4261 in a Lisp integer. */
4262
4263 static unsigned
4264 hashfn_eql (h, key)
4265 struct Lisp_Hash_Table *h;
4266 Lisp_Object key;
4267 {
4268 unsigned hash;
4269 if (FLOATP (key))
4270 hash = sxhash (key, 0);
4271 else
4272 hash = XUINT (key) ^ XGCTYPE (key);
4273 xassert ((hash & ~VALMASK) == 0);
4274 return hash;
4275 }
4276
4277
4278 /* Value is a hash code for KEY for use in hash table H which uses
4279 `equal' to compare keys. The hash code returned is guaranteed to fit
4280 in a Lisp integer. */
4281
4282 static unsigned
4283 hashfn_equal (h, key)
4284 struct Lisp_Hash_Table *h;
4285 Lisp_Object key;
4286 {
4287 unsigned hash = sxhash (key, 0);
4288 xassert ((hash & ~VALMASK) == 0);
4289 return hash;
4290 }
4291
4292
4293 /* Value is a hash code for KEY for use in hash table H which uses as
4294 user-defined function to compare keys. The hash code returned is
4295 guaranteed to fit in a Lisp integer. */
4296
4297 static unsigned
4298 hashfn_user_defined (h, key)
4299 struct Lisp_Hash_Table *h;
4300 Lisp_Object key;
4301 {
4302 Lisp_Object args[2], hash;
4303
4304 args[0] = h->user_hash_function;
4305 args[1] = key;
4306 hash = Ffuncall (2, args);
4307 if (!INTEGERP (hash))
4308 Fsignal (Qerror,
4309 list2 (build_string ("Invalid hash code returned from \
4310 user-supplied hash function"),
4311 hash));
4312 return XUINT (hash);
4313 }
4314
4315
4316 /* Create and initialize a new hash table.
4317
4318 TEST specifies the test the hash table will use to compare keys.
4319 It must be either one of the predefined tests `eq', `eql' or
4320 `equal' or a symbol denoting a user-defined test named TEST with
4321 test and hash functions USER_TEST and USER_HASH.
4322
4323 Give the table initial capacity SIZE, SIZE >= 0, an integer.
4324
4325 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
4326 new size when it becomes full is computed by adding REHASH_SIZE to
4327 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
4328 table's new size is computed by multiplying its old size with
4329 REHASH_SIZE.
4330
4331 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
4332 be resized when the ratio of (number of entries in the table) /
4333 (table size) is >= REHASH_THRESHOLD.
4334
4335 WEAK specifies the weakness of the table. If non-nil, it must be
4336 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
4337
4338 Lisp_Object
4339 make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4340 user_test, user_hash)
4341 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4342 Lisp_Object user_test, user_hash;
4343 {
4344 struct Lisp_Hash_Table *h;
4345 Lisp_Object table;
4346 int index_size, i, sz;
4347
4348 /* Preconditions. */
4349 xassert (SYMBOLP (test));
4350 xassert (INTEGERP (size) && XINT (size) >= 0);
4351 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
4352 || (FLOATP (rehash_size) && XFLOATINT (rehash_size) > 1.0));
4353 xassert (FLOATP (rehash_threshold)
4354 && XFLOATINT (rehash_threshold) > 0
4355 && XFLOATINT (rehash_threshold) <= 1.0);
4356
4357 if (XFASTINT (size) == 0)
4358 size = make_number (1);
4359
4360 /* Allocate a table and initialize it. */
4361 h = allocate_hash_table ();
4362
4363 /* Initialize hash table slots. */
4364 sz = XFASTINT (size);
4365
4366 h->test = test;
4367 if (EQ (test, Qeql))
4368 {
4369 h->cmpfn = cmpfn_eql;
4370 h->hashfn = hashfn_eql;
4371 }
4372 else if (EQ (test, Qeq))
4373 {
4374 h->cmpfn = NULL;
4375 h->hashfn = hashfn_eq;
4376 }
4377 else if (EQ (test, Qequal))
4378 {
4379 h->cmpfn = cmpfn_equal;
4380 h->hashfn = hashfn_equal;
4381 }
4382 else
4383 {
4384 h->user_cmp_function = user_test;
4385 h->user_hash_function = user_hash;
4386 h->cmpfn = cmpfn_user_defined;
4387 h->hashfn = hashfn_user_defined;
4388 }
4389
4390 h->weak = weak;
4391 h->rehash_threshold = rehash_threshold;
4392 h->rehash_size = rehash_size;
4393 h->count = make_number (0);
4394 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
4395 h->hash = Fmake_vector (size, Qnil);
4396 h->next = Fmake_vector (size, Qnil);
4397 /* Cast to int here avoids losing with gcc 2.95 on Tru64/Alpha... */
4398 index_size = next_almost_prime ((int) (sz / XFLOATINT (rehash_threshold)));
4399 h->index = Fmake_vector (make_number (index_size), Qnil);
4400
4401 /* Set up the free list. */
4402 for (i = 0; i < sz - 1; ++i)
4403 HASH_NEXT (h, i) = make_number (i + 1);
4404 h->next_free = make_number (0);
4405
4406 XSET_HASH_TABLE (table, h);
4407 xassert (HASH_TABLE_P (table));
4408 xassert (XHASH_TABLE (table) == h);
4409
4410 /* Maybe add this hash table to the list of all weak hash tables. */
4411 if (NILP (h->weak))
4412 h->next_weak = Qnil;
4413 else
4414 {
4415 h->next_weak = Vweak_hash_tables;
4416 Vweak_hash_tables = table;
4417 }
4418
4419 return table;
4420 }
4421
4422
4423 /* Return a copy of hash table H1. Keys and values are not copied,
4424 only the table itself is. */
4425
4426 Lisp_Object
4427 copy_hash_table (h1)
4428 struct Lisp_Hash_Table *h1;
4429 {
4430 Lisp_Object table;
4431 struct Lisp_Hash_Table *h2;
4432 struct Lisp_Vector *next;
4433
4434 h2 = allocate_hash_table ();
4435 next = h2->vec_next;
4436 bcopy (h1, h2, sizeof *h2);
4437 h2->vec_next = next;
4438 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
4439 h2->hash = Fcopy_sequence (h1->hash);
4440 h2->next = Fcopy_sequence (h1->next);
4441 h2->index = Fcopy_sequence (h1->index);
4442 XSET_HASH_TABLE (table, h2);
4443
4444 /* Maybe add this hash table to the list of all weak hash tables. */
4445 if (!NILP (h2->weak))
4446 {
4447 h2->next_weak = Vweak_hash_tables;
4448 Vweak_hash_tables = table;
4449 }
4450
4451 return table;
4452 }
4453
4454
4455 /* Resize hash table H if it's too full. If H cannot be resized
4456 because it's already too large, throw an error. */
4457
4458 static INLINE void
4459 maybe_resize_hash_table (h)
4460 struct Lisp_Hash_Table *h;
4461 {
4462 if (NILP (h->next_free))
4463 {
4464 int old_size = HASH_TABLE_SIZE (h);
4465 int i, new_size, index_size;
4466
4467 if (INTEGERP (h->rehash_size))
4468 new_size = old_size + XFASTINT (h->rehash_size);
4469 else
4470 new_size = old_size * XFLOATINT (h->rehash_size);
4471 new_size = max (old_size + 1, new_size);
4472 index_size = next_almost_prime ((int)
4473 (new_size
4474 / XFLOATINT (h->rehash_threshold)));
4475 if (max (index_size, 2 * new_size) & ~VALMASK)
4476 error ("Hash table too large to resize");
4477
4478 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
4479 h->next = larger_vector (h->next, new_size, Qnil);
4480 h->hash = larger_vector (h->hash, new_size, Qnil);
4481 h->index = Fmake_vector (make_number (index_size), Qnil);
4482
4483 /* Update the free list. Do it so that new entries are added at
4484 the end of the free list. This makes some operations like
4485 maphash faster. */
4486 for (i = old_size; i < new_size - 1; ++i)
4487 HASH_NEXT (h, i) = make_number (i + 1);
4488
4489 if (!NILP (h->next_free))
4490 {
4491 Lisp_Object last, next;
4492
4493 last = h->next_free;
4494 while (next = HASH_NEXT (h, XFASTINT (last)),
4495 !NILP (next))
4496 last = next;
4497
4498 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
4499 }
4500 else
4501 XSETFASTINT (h->next_free, old_size);
4502
4503 /* Rehash. */
4504 for (i = 0; i < old_size; ++i)
4505 if (!NILP (HASH_HASH (h, i)))
4506 {
4507 unsigned hash_code = XUINT (HASH_HASH (h, i));
4508 int start_of_bucket = hash_code % XVECTOR (h->index)->size;
4509 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4510 HASH_INDEX (h, start_of_bucket) = make_number (i);
4511 }
4512 }
4513 }
4514
4515
4516 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
4517 the hash code of KEY. Value is the index of the entry in H
4518 matching KEY, or -1 if not found. */
4519
4520 int
4521 hash_lookup (h, key, hash)
4522 struct Lisp_Hash_Table *h;
4523 Lisp_Object key;
4524 unsigned *hash;
4525 {
4526 unsigned hash_code;
4527 int start_of_bucket;
4528 Lisp_Object idx;
4529
4530 hash_code = h->hashfn (h, key);
4531 if (hash)
4532 *hash = hash_code;
4533
4534 start_of_bucket = hash_code % XVECTOR (h->index)->size;
4535 idx = HASH_INDEX (h, start_of_bucket);
4536
4537 /* We need not gcpro idx since it's either an integer or nil. */
4538 while (!NILP (idx))
4539 {
4540 int i = XFASTINT (idx);
4541 if (EQ (key, HASH_KEY (h, i))
4542 || (h->cmpfn
4543 && h->cmpfn (h, key, hash_code,
4544 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4545 break;
4546 idx = HASH_NEXT (h, i);
4547 }
4548
4549 return NILP (idx) ? -1 : XFASTINT (idx);
4550 }
4551
4552
4553 /* Put an entry into hash table H that associates KEY with VALUE.
4554 HASH is a previously computed hash code of KEY.
4555 Value is the index of the entry in H matching KEY. */
4556
4557 int
4558 hash_put (h, key, value, hash)
4559 struct Lisp_Hash_Table *h;
4560 Lisp_Object key, value;
4561 unsigned hash;
4562 {
4563 int start_of_bucket, i;
4564
4565 xassert ((hash & ~VALMASK) == 0);
4566
4567 /* Increment count after resizing because resizing may fail. */
4568 maybe_resize_hash_table (h);
4569 h->count = make_number (XFASTINT (h->count) + 1);
4570
4571 /* Store key/value in the key_and_value vector. */
4572 i = XFASTINT (h->next_free);
4573 h->next_free = HASH_NEXT (h, i);
4574 HASH_KEY (h, i) = key;
4575 HASH_VALUE (h, i) = value;
4576
4577 /* Remember its hash code. */
4578 HASH_HASH (h, i) = make_number (hash);
4579
4580 /* Add new entry to its collision chain. */
4581 start_of_bucket = hash % XVECTOR (h->index)->size;
4582 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4583 HASH_INDEX (h, start_of_bucket) = make_number (i);
4584 return i;
4585 }
4586
4587
4588 /* Remove the entry matching KEY from hash table H, if there is one. */
4589
4590 void
4591 hash_remove (h, key)
4592 struct Lisp_Hash_Table *h;
4593 Lisp_Object key;
4594 {
4595 unsigned hash_code;
4596 int start_of_bucket;
4597 Lisp_Object idx, prev;
4598
4599 hash_code = h->hashfn (h, key);
4600 start_of_bucket = hash_code % XVECTOR (h->index)->size;
4601 idx = HASH_INDEX (h, start_of_bucket);
4602 prev = Qnil;
4603
4604 /* We need not gcpro idx, prev since they're either integers or nil. */
4605 while (!NILP (idx))
4606 {
4607 int i = XFASTINT (idx);
4608
4609 if (EQ (key, HASH_KEY (h, i))
4610 || (h->cmpfn
4611 && h->cmpfn (h, key, hash_code,
4612 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4613 {
4614 /* Take entry out of collision chain. */
4615 if (NILP (prev))
4616 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
4617 else
4618 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
4619
4620 /* Clear slots in key_and_value and add the slots to
4621 the free list. */
4622 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
4623 HASH_NEXT (h, i) = h->next_free;
4624 h->next_free = make_number (i);
4625 h->count = make_number (XFASTINT (h->count) - 1);
4626 xassert (XINT (h->count) >= 0);
4627 break;
4628 }
4629 else
4630 {
4631 prev = idx;
4632 idx = HASH_NEXT (h, i);
4633 }
4634 }
4635 }
4636
4637
4638 /* Clear hash table H. */
4639
4640 void
4641 hash_clear (h)
4642 struct Lisp_Hash_Table *h;
4643 {
4644 if (XFASTINT (h->count) > 0)
4645 {
4646 int i, size = HASH_TABLE_SIZE (h);
4647
4648 for (i = 0; i < size; ++i)
4649 {
4650 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
4651 HASH_KEY (h, i) = Qnil;
4652 HASH_VALUE (h, i) = Qnil;
4653 HASH_HASH (h, i) = Qnil;
4654 }
4655
4656 for (i = 0; i < XVECTOR (h->index)->size; ++i)
4657 XVECTOR (h->index)->contents[i] = Qnil;
4658
4659 h->next_free = make_number (0);
4660 h->count = make_number (0);
4661 }
4662 }
4663
4664
4665 \f
4666 /************************************************************************
4667 Weak Hash Tables
4668 ************************************************************************/
4669
4670 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
4671 entries from the table that don't survive the current GC.
4672 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
4673 non-zero if anything was marked. */
4674
4675 static int
4676 sweep_weak_table (h, remove_entries_p)
4677 struct Lisp_Hash_Table *h;
4678 int remove_entries_p;
4679 {
4680 int bucket, n, marked;
4681
4682 n = XVECTOR (h->index)->size & ~ARRAY_MARK_FLAG;
4683 marked = 0;
4684
4685 for (bucket = 0; bucket < n; ++bucket)
4686 {
4687 Lisp_Object idx, next, prev;
4688
4689 /* Follow collision chain, removing entries that
4690 don't survive this garbage collection. */
4691 prev = Qnil;
4692 for (idx = HASH_INDEX (h, bucket); !GC_NILP (idx); idx = next)
4693 {
4694 int i = XFASTINT (idx);
4695 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
4696 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
4697 int remove_p;
4698
4699 if (EQ (h->weak, Qkey))
4700 remove_p = !key_known_to_survive_p;
4701 else if (EQ (h->weak, Qvalue))
4702 remove_p = !value_known_to_survive_p;
4703 else if (EQ (h->weak, Qkey_or_value))
4704 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
4705 else if (EQ (h->weak, Qkey_and_value))
4706 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
4707 else
4708 abort ();
4709
4710 next = HASH_NEXT (h, i);
4711
4712 if (remove_entries_p)
4713 {
4714 if (remove_p)
4715 {
4716 /* Take out of collision chain. */
4717 if (GC_NILP (prev))
4718 HASH_INDEX (h, bucket) = next;
4719 else
4720 HASH_NEXT (h, XFASTINT (prev)) = next;
4721
4722 /* Add to free list. */
4723 HASH_NEXT (h, i) = h->next_free;
4724 h->next_free = idx;
4725
4726 /* Clear key, value, and hash. */
4727 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
4728 HASH_HASH (h, i) = Qnil;
4729
4730 h->count = make_number (XFASTINT (h->count) - 1);
4731 }
4732 }
4733 else
4734 {
4735 if (!remove_p)
4736 {
4737 /* Make sure key and value survive. */
4738 if (!key_known_to_survive_p)
4739 {
4740 mark_object (&HASH_KEY (h, i));
4741 marked = 1;
4742 }
4743
4744 if (!value_known_to_survive_p)
4745 {
4746 mark_object (&HASH_VALUE (h, i));
4747 marked = 1;
4748 }
4749 }
4750 }
4751 }
4752 }
4753
4754 return marked;
4755 }
4756
4757 /* Remove elements from weak hash tables that don't survive the
4758 current garbage collection. Remove weak tables that don't survive
4759 from Vweak_hash_tables. Called from gc_sweep. */
4760
4761 void
4762 sweep_weak_hash_tables ()
4763 {
4764 Lisp_Object table, used, next;
4765 struct Lisp_Hash_Table *h;
4766 int marked;
4767
4768 /* Mark all keys and values that are in use. Keep on marking until
4769 there is no more change. This is necessary for cases like
4770 value-weak table A containing an entry X -> Y, where Y is used in a
4771 key-weak table B, Z -> Y. If B comes after A in the list of weak
4772 tables, X -> Y might be removed from A, although when looking at B
4773 one finds that it shouldn't. */
4774 do
4775 {
4776 marked = 0;
4777 for (table = Vweak_hash_tables; !GC_NILP (table); table = h->next_weak)
4778 {
4779 h = XHASH_TABLE (table);
4780 if (h->size & ARRAY_MARK_FLAG)
4781 marked |= sweep_weak_table (h, 0);
4782 }
4783 }
4784 while (marked);
4785
4786 /* Remove tables and entries that aren't used. */
4787 for (table = Vweak_hash_tables, used = Qnil; !GC_NILP (table); table = next)
4788 {
4789 h = XHASH_TABLE (table);
4790 next = h->next_weak;
4791
4792 if (h->size & ARRAY_MARK_FLAG)
4793 {
4794 /* TABLE is marked as used. Sweep its contents. */
4795 if (XFASTINT (h->count) > 0)
4796 sweep_weak_table (h, 1);
4797
4798 /* Add table to the list of used weak hash tables. */
4799 h->next_weak = used;
4800 used = table;
4801 }
4802 }
4803
4804 Vweak_hash_tables = used;
4805 }
4806
4807
4808 \f
4809 /***********************************************************************
4810 Hash Code Computation
4811 ***********************************************************************/
4812
4813 /* Maximum depth up to which to dive into Lisp structures. */
4814
4815 #define SXHASH_MAX_DEPTH 3
4816
4817 /* Maximum length up to which to take list and vector elements into
4818 account. */
4819
4820 #define SXHASH_MAX_LEN 7
4821
4822 /* Combine two integers X and Y for hashing. */
4823
4824 #define SXHASH_COMBINE(X, Y) \
4825 ((((unsigned)(X) << 4) + (((unsigned)(X) >> 24) & 0x0fffffff)) \
4826 + (unsigned)(Y))
4827
4828
4829 /* Return a hash for string PTR which has length LEN. The hash
4830 code returned is guaranteed to fit in a Lisp integer. */
4831
4832 static unsigned
4833 sxhash_string (ptr, len)
4834 unsigned char *ptr;
4835 int len;
4836 {
4837 unsigned char *p = ptr;
4838 unsigned char *end = p + len;
4839 unsigned char c;
4840 unsigned hash = 0;
4841
4842 while (p != end)
4843 {
4844 c = *p++;
4845 if (c >= 0140)
4846 c -= 40;
4847 hash = ((hash << 3) + (hash >> 28) + c);
4848 }
4849
4850 return hash & VALMASK;
4851 }
4852
4853
4854 /* Return a hash for list LIST. DEPTH is the current depth in the
4855 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4856
4857 static unsigned
4858 sxhash_list (list, depth)
4859 Lisp_Object list;
4860 int depth;
4861 {
4862 unsigned hash = 0;
4863 int i;
4864
4865 if (depth < SXHASH_MAX_DEPTH)
4866 for (i = 0;
4867 CONSP (list) && i < SXHASH_MAX_LEN;
4868 list = XCDR (list), ++i)
4869 {
4870 unsigned hash2 = sxhash (XCAR (list), depth + 1);
4871 hash = SXHASH_COMBINE (hash, hash2);
4872 }
4873
4874 return hash;
4875 }
4876
4877
4878 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4879 the Lisp structure. */
4880
4881 static unsigned
4882 sxhash_vector (vec, depth)
4883 Lisp_Object vec;
4884 int depth;
4885 {
4886 unsigned hash = XVECTOR (vec)->size;
4887 int i, n;
4888
4889 n = min (SXHASH_MAX_LEN, XVECTOR (vec)->size);
4890 for (i = 0; i < n; ++i)
4891 {
4892 unsigned hash2 = sxhash (XVECTOR (vec)->contents[i], depth + 1);
4893 hash = SXHASH_COMBINE (hash, hash2);
4894 }
4895
4896 return hash;
4897 }
4898
4899
4900 /* Return a hash for bool-vector VECTOR. */
4901
4902 static unsigned
4903 sxhash_bool_vector (vec)
4904 Lisp_Object vec;
4905 {
4906 unsigned hash = XBOOL_VECTOR (vec)->size;
4907 int i, n;
4908
4909 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->vector_size);
4910 for (i = 0; i < n; ++i)
4911 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4912
4913 return hash;
4914 }
4915
4916
4917 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4918 structure. Value is an unsigned integer clipped to VALMASK. */
4919
4920 unsigned
4921 sxhash (obj, depth)
4922 Lisp_Object obj;
4923 int depth;
4924 {
4925 unsigned hash;
4926
4927 if (depth > SXHASH_MAX_DEPTH)
4928 return 0;
4929
4930 switch (XTYPE (obj))
4931 {
4932 case Lisp_Int:
4933 hash = XUINT (obj);
4934 break;
4935
4936 case Lisp_Symbol:
4937 hash = sxhash_string (SDATA (SYMBOL_NAME (obj)),
4938 SCHARS (SYMBOL_NAME (obj)));
4939 break;
4940
4941 case Lisp_Misc:
4942 hash = XUINT (obj);
4943 break;
4944
4945 case Lisp_String:
4946 hash = sxhash_string (SDATA (obj), SCHARS (obj));
4947 break;
4948
4949 /* This can be everything from a vector to an overlay. */
4950 case Lisp_Vectorlike:
4951 if (VECTORP (obj))
4952 /* According to the CL HyperSpec, two arrays are equal only if
4953 they are `eq', except for strings and bit-vectors. In
4954 Emacs, this works differently. We have to compare element
4955 by element. */
4956 hash = sxhash_vector (obj, depth);
4957 else if (BOOL_VECTOR_P (obj))
4958 hash = sxhash_bool_vector (obj);
4959 else
4960 /* Others are `equal' if they are `eq', so let's take their
4961 address as hash. */
4962 hash = XUINT (obj);
4963 break;
4964
4965 case Lisp_Cons:
4966 hash = sxhash_list (obj, depth);
4967 break;
4968
4969 case Lisp_Float:
4970 {
4971 unsigned char *p = (unsigned char *) &XFLOAT_DATA (obj);
4972 unsigned char *e = p + sizeof XFLOAT_DATA (obj);
4973 for (hash = 0; p < e; ++p)
4974 hash = SXHASH_COMBINE (hash, *p);
4975 break;
4976 }
4977
4978 default:
4979 abort ();
4980 }
4981
4982 return hash & VALMASK;
4983 }
4984
4985
4986 \f
4987 /***********************************************************************
4988 Lisp Interface
4989 ***********************************************************************/
4990
4991
4992 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4993 doc: /* Compute a hash code for OBJ and return it as integer. */)
4994 (obj)
4995 Lisp_Object obj;
4996 {
4997 unsigned hash = sxhash (obj, 0);;
4998 return make_number (hash);
4999 }
5000
5001
5002 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
5003 doc: /* Create and return a new hash table.
5004
5005 Arguments are specified as keyword/argument pairs. The following
5006 arguments are defined:
5007
5008 :test TEST -- TEST must be a symbol that specifies how to compare
5009 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
5010 `equal'. User-supplied test and hash functions can be specified via
5011 `define-hash-table-test'.
5012
5013 :size SIZE -- A hint as to how many elements will be put in the table.
5014 Default is 65.
5015
5016 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
5017 fills up. If REHASH-SIZE is an integer, add that many space. If it
5018 is a float, it must be > 1.0, and the new size is computed by
5019 multiplying the old size with that factor. Default is 1.5.
5020
5021 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
5022 Resize the hash table when ratio of the number of entries in the
5023 table. Default is 0.8.
5024
5025 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
5026 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
5027 returned is a weak table. Key/value pairs are removed from a weak
5028 hash table when there are no non-weak references pointing to their
5029 key, value, one of key or value, or both key and value, depending on
5030 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
5031 is nil.
5032
5033 usage: (make-hash-table &rest KEYWORD-ARGS) */)
5034 (nargs, args)
5035 int nargs;
5036 Lisp_Object *args;
5037 {
5038 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
5039 Lisp_Object user_test, user_hash;
5040 char *used;
5041 int i;
5042
5043 /* The vector `used' is used to keep track of arguments that
5044 have been consumed. */
5045 used = (char *) alloca (nargs * sizeof *used);
5046 bzero (used, nargs * sizeof *used);
5047
5048 /* See if there's a `:test TEST' among the arguments. */
5049 i = get_key_arg (QCtest, nargs, args, used);
5050 test = i < 0 ? Qeql : args[i];
5051 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
5052 {
5053 /* See if it is a user-defined test. */
5054 Lisp_Object prop;
5055
5056 prop = Fget (test, Qhash_table_test);
5057 if (!CONSP (prop) || !CONSP (XCDR (prop)))
5058 Fsignal (Qerror, list2 (build_string ("Invalid hash table test"),
5059 test));
5060 user_test = XCAR (prop);
5061 user_hash = XCAR (XCDR (prop));
5062 }
5063 else
5064 user_test = user_hash = Qnil;
5065
5066 /* See if there's a `:size SIZE' argument. */
5067 i = get_key_arg (QCsize, nargs, args, used);
5068 size = i < 0 ? Qnil : args[i];
5069 if (NILP (size))
5070 size = make_number (DEFAULT_HASH_SIZE);
5071 else if (!INTEGERP (size) || XINT (size) < 0)
5072 Fsignal (Qerror,
5073 list2 (build_string ("Invalid hash table size"),
5074 size));
5075
5076 /* Look for `:rehash-size SIZE'. */
5077 i = get_key_arg (QCrehash_size, nargs, args, used);
5078 rehash_size = i < 0 ? make_float (DEFAULT_REHASH_SIZE) : args[i];
5079 if (!NUMBERP (rehash_size)
5080 || (INTEGERP (rehash_size) && XINT (rehash_size) <= 0)
5081 || XFLOATINT (rehash_size) <= 1.0)
5082 Fsignal (Qerror,
5083 list2 (build_string ("Invalid hash table rehash size"),
5084 rehash_size));
5085
5086 /* Look for `:rehash-threshold THRESHOLD'. */
5087 i = get_key_arg (QCrehash_threshold, nargs, args, used);
5088 rehash_threshold = i < 0 ? make_float (DEFAULT_REHASH_THRESHOLD) : args[i];
5089 if (!FLOATP (rehash_threshold)
5090 || XFLOATINT (rehash_threshold) <= 0.0
5091 || XFLOATINT (rehash_threshold) > 1.0)
5092 Fsignal (Qerror,
5093 list2 (build_string ("Invalid hash table rehash threshold"),
5094 rehash_threshold));
5095
5096 /* Look for `:weakness WEAK'. */
5097 i = get_key_arg (QCweakness, nargs, args, used);
5098 weak = i < 0 ? Qnil : args[i];
5099 if (EQ (weak, Qt))
5100 weak = Qkey_and_value;
5101 if (!NILP (weak)
5102 && !EQ (weak, Qkey)
5103 && !EQ (weak, Qvalue)
5104 && !EQ (weak, Qkey_or_value)
5105 && !EQ (weak, Qkey_and_value))
5106 Fsignal (Qerror, list2 (build_string ("Invalid hash table weakness"),
5107 weak));
5108
5109 /* Now, all args should have been used up, or there's a problem. */
5110 for (i = 0; i < nargs; ++i)
5111 if (!used[i])
5112 Fsignal (Qerror,
5113 list2 (build_string ("Invalid argument list"), args[i]));
5114
5115 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
5116 user_test, user_hash);
5117 }
5118
5119
5120 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
5121 doc: /* Return a copy of hash table TABLE. */)
5122 (table)
5123 Lisp_Object table;
5124 {
5125 return copy_hash_table (check_hash_table (table));
5126 }
5127
5128
5129 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
5130 doc: /* Return the number of elements in TABLE. */)
5131 (table)
5132 Lisp_Object table;
5133 {
5134 return check_hash_table (table)->count;
5135 }
5136
5137
5138 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
5139 Shash_table_rehash_size, 1, 1, 0,
5140 doc: /* Return the current rehash size of TABLE. */)
5141 (table)
5142 Lisp_Object table;
5143 {
5144 return check_hash_table (table)->rehash_size;
5145 }
5146
5147
5148 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
5149 Shash_table_rehash_threshold, 1, 1, 0,
5150 doc: /* Return the current rehash threshold of TABLE. */)
5151 (table)
5152 Lisp_Object table;
5153 {
5154 return check_hash_table (table)->rehash_threshold;
5155 }
5156
5157
5158 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
5159 doc: /* Return the size of TABLE.
5160 The size can be used as an argument to `make-hash-table' to create
5161 a hash table than can hold as many elements of TABLE holds
5162 without need for resizing. */)
5163 (table)
5164 Lisp_Object table;
5165 {
5166 struct Lisp_Hash_Table *h = check_hash_table (table);
5167 return make_number (HASH_TABLE_SIZE (h));
5168 }
5169
5170
5171 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
5172 doc: /* Return the test TABLE uses. */)
5173 (table)
5174 Lisp_Object table;
5175 {
5176 return check_hash_table (table)->test;
5177 }
5178
5179
5180 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
5181 1, 1, 0,
5182 doc: /* Return the weakness of TABLE. */)
5183 (table)
5184 Lisp_Object table;
5185 {
5186 return check_hash_table (table)->weak;
5187 }
5188
5189
5190 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
5191 doc: /* Return t if OBJ is a Lisp hash table object. */)
5192 (obj)
5193 Lisp_Object obj;
5194 {
5195 return HASH_TABLE_P (obj) ? Qt : Qnil;
5196 }
5197
5198
5199 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
5200 doc: /* Clear hash table TABLE. */)
5201 (table)
5202 Lisp_Object table;
5203 {
5204 hash_clear (check_hash_table (table));
5205 return Qnil;
5206 }
5207
5208
5209 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
5210 doc: /* Look up KEY in TABLE and return its associated value.
5211 If KEY is not found, return DFLT which defaults to nil. */)
5212 (key, table, dflt)
5213 Lisp_Object key, table, dflt;
5214 {
5215 struct Lisp_Hash_Table *h = check_hash_table (table);
5216 int i = hash_lookup (h, key, NULL);
5217 return i >= 0 ? HASH_VALUE (h, i) : dflt;
5218 }
5219
5220
5221 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
5222 doc: /* Associate KEY with VALUE in hash table TABLE.
5223 If KEY is already present in table, replace its current value with
5224 VALUE. */)
5225 (key, value, table)
5226 Lisp_Object key, value, table;
5227 {
5228 struct Lisp_Hash_Table *h = check_hash_table (table);
5229 int i;
5230 unsigned hash;
5231
5232 i = hash_lookup (h, key, &hash);
5233 if (i >= 0)
5234 HASH_VALUE (h, i) = value;
5235 else
5236 hash_put (h, key, value, hash);
5237
5238 return value;
5239 }
5240
5241
5242 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
5243 doc: /* Remove KEY from TABLE. */)
5244 (key, table)
5245 Lisp_Object key, table;
5246 {
5247 struct Lisp_Hash_Table *h = check_hash_table (table);
5248 hash_remove (h, key);
5249 return Qnil;
5250 }
5251
5252
5253 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
5254 doc: /* Call FUNCTION for all entries in hash table TABLE.
5255 FUNCTION is called with 2 arguments KEY and VALUE. */)
5256 (function, table)
5257 Lisp_Object function, table;
5258 {
5259 struct Lisp_Hash_Table *h = check_hash_table (table);
5260 Lisp_Object args[3];
5261 int i;
5262
5263 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
5264 if (!NILP (HASH_HASH (h, i)))
5265 {
5266 args[0] = function;
5267 args[1] = HASH_KEY (h, i);
5268 args[2] = HASH_VALUE (h, i);
5269 Ffuncall (3, args);
5270 }
5271
5272 return Qnil;
5273 }
5274
5275
5276 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
5277 Sdefine_hash_table_test, 3, 3, 0,
5278 doc: /* Define a new hash table test with name NAME, a symbol.
5279
5280 In hash tables created with NAME specified as test, use TEST to
5281 compare keys, and HASH for computing hash codes of keys.
5282
5283 TEST must be a function taking two arguments and returning non-nil if
5284 both arguments are the same. HASH must be a function taking one
5285 argument and return an integer that is the hash code of the argument.
5286 Hash code computation should use the whole value range of integers,
5287 including negative integers. */)
5288 (name, test, hash)
5289 Lisp_Object name, test, hash;
5290 {
5291 return Fput (name, Qhash_table_test, list2 (test, hash));
5292 }
5293
5294
5295 \f
5296 /************************************************************************
5297 MD5
5298 ************************************************************************/
5299
5300 #include "md5.h"
5301 #include "coding.h"
5302
5303 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
5304 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
5305
5306 A message digest is a cryptographic checksum of a document, and the
5307 algorithm to calculate it is defined in RFC 1321.
5308
5309 The two optional arguments START and END are character positions
5310 specifying for which part of OBJECT the message digest should be
5311 computed. If nil or omitted, the digest is computed for the whole
5312 OBJECT.
5313
5314 The MD5 message digest is computed from the result of encoding the
5315 text in a coding system, not directly from the internal Emacs form of
5316 the text. The optional fourth argument CODING-SYSTEM specifies which
5317 coding system to encode the text with. It should be the same coding
5318 system that you used or will use when actually writing the text into a
5319 file.
5320
5321 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
5322 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
5323 system would be chosen by default for writing this text into a file.
5324
5325 If OBJECT is a string, the most preferred coding system (see the
5326 command `prefer-coding-system') is used.
5327
5328 If NOERROR is non-nil, silently assume the `raw-text' coding if the
5329 guesswork fails. Normally, an error is signaled in such case. */)
5330 (object, start, end, coding_system, noerror)
5331 Lisp_Object object, start, end, coding_system, noerror;
5332 {
5333 unsigned char digest[16];
5334 unsigned char value[33];
5335 int i;
5336 int size;
5337 int size_byte = 0;
5338 int start_char = 0, end_char = 0;
5339 int start_byte = 0, end_byte = 0;
5340 register int b, e;
5341 register struct buffer *bp;
5342 int temp;
5343
5344 if (STRINGP (object))
5345 {
5346 if (NILP (coding_system))
5347 {
5348 /* Decide the coding-system to encode the data with. */
5349
5350 if (STRING_MULTIBYTE (object))
5351 /* use default, we can't guess correct value */
5352 coding_system = SYMBOL_VALUE (XCAR (Vcoding_category_list));
5353 else
5354 coding_system = Qraw_text;
5355 }
5356
5357 if (NILP (Fcoding_system_p (coding_system)))
5358 {
5359 /* Invalid coding system. */
5360
5361 if (!NILP (noerror))
5362 coding_system = Qraw_text;
5363 else
5364 while (1)
5365 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
5366 }
5367
5368 if (STRING_MULTIBYTE (object))
5369 object = code_convert_string1 (object, coding_system, Qnil, 1);
5370
5371 size = SCHARS (object);
5372 size_byte = SBYTES (object);
5373
5374 if (!NILP (start))
5375 {
5376 CHECK_NUMBER (start);
5377
5378 start_char = XINT (start);
5379
5380 if (start_char < 0)
5381 start_char += size;
5382
5383 start_byte = string_char_to_byte (object, start_char);
5384 }
5385
5386 if (NILP (end))
5387 {
5388 end_char = size;
5389 end_byte = size_byte;
5390 }
5391 else
5392 {
5393 CHECK_NUMBER (end);
5394
5395 end_char = XINT (end);
5396
5397 if (end_char < 0)
5398 end_char += size;
5399
5400 end_byte = string_char_to_byte (object, end_char);
5401 }
5402
5403 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
5404 args_out_of_range_3 (object, make_number (start_char),
5405 make_number (end_char));
5406 }
5407 else
5408 {
5409 CHECK_BUFFER (object);
5410
5411 bp = XBUFFER (object);
5412
5413 if (NILP (start))
5414 b = BUF_BEGV (bp);
5415 else
5416 {
5417 CHECK_NUMBER_COERCE_MARKER (start);
5418 b = XINT (start);
5419 }
5420
5421 if (NILP (end))
5422 e = BUF_ZV (bp);
5423 else
5424 {
5425 CHECK_NUMBER_COERCE_MARKER (end);
5426 e = XINT (end);
5427 }
5428
5429 if (b > e)
5430 temp = b, b = e, e = temp;
5431
5432 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
5433 args_out_of_range (start, end);
5434
5435 if (NILP (coding_system))
5436 {
5437 /* Decide the coding-system to encode the data with.
5438 See fileio.c:Fwrite-region */
5439
5440 if (!NILP (Vcoding_system_for_write))
5441 coding_system = Vcoding_system_for_write;
5442 else
5443 {
5444 int force_raw_text = 0;
5445
5446 coding_system = XBUFFER (object)->buffer_file_coding_system;
5447 if (NILP (coding_system)
5448 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
5449 {
5450 coding_system = Qnil;
5451 if (NILP (current_buffer->enable_multibyte_characters))
5452 force_raw_text = 1;
5453 }
5454
5455 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
5456 {
5457 /* Check file-coding-system-alist. */
5458 Lisp_Object args[4], val;
5459
5460 args[0] = Qwrite_region; args[1] = start; args[2] = end;
5461 args[3] = Fbuffer_file_name(object);
5462 val = Ffind_operation_coding_system (4, args);
5463 if (CONSP (val) && !NILP (XCDR (val)))
5464 coding_system = XCDR (val);
5465 }
5466
5467 if (NILP (coding_system)
5468 && !NILP (XBUFFER (object)->buffer_file_coding_system))
5469 {
5470 /* If we still have not decided a coding system, use the
5471 default value of buffer-file-coding-system. */
5472 coding_system = XBUFFER (object)->buffer_file_coding_system;
5473 }
5474
5475 if (!force_raw_text
5476 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
5477 /* Confirm that VAL can surely encode the current region. */
5478 coding_system = call4 (Vselect_safe_coding_system_function,
5479 make_number (b), make_number (e),
5480 coding_system, Qnil);
5481
5482 if (force_raw_text)
5483 coding_system = Qraw_text;
5484 }
5485
5486 if (NILP (Fcoding_system_p (coding_system)))
5487 {
5488 /* Invalid coding system. */
5489
5490 if (!NILP (noerror))
5491 coding_system = Qraw_text;
5492 else
5493 while (1)
5494 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
5495 }
5496 }
5497
5498 object = make_buffer_string (b, e, 0);
5499
5500 if (STRING_MULTIBYTE (object))
5501 object = code_convert_string1 (object, coding_system, Qnil, 1);
5502 }
5503
5504 md5_buffer (SDATA (object) + start_byte,
5505 SBYTES (object) - (size_byte - end_byte),
5506 digest);
5507
5508 for (i = 0; i < 16; i++)
5509 sprintf (&value[2 * i], "%02x", digest[i]);
5510 value[32] = '\0';
5511
5512 return make_string (value, 32);
5513 }
5514
5515 \f
5516 void
5517 syms_of_fns ()
5518 {
5519 /* Hash table stuff. */
5520 Qhash_table_p = intern ("hash-table-p");
5521 staticpro (&Qhash_table_p);
5522 Qeq = intern ("eq");
5523 staticpro (&Qeq);
5524 Qeql = intern ("eql");
5525 staticpro (&Qeql);
5526 Qequal = intern ("equal");
5527 staticpro (&Qequal);
5528 QCtest = intern (":test");
5529 staticpro (&QCtest);
5530 QCsize = intern (":size");
5531 staticpro (&QCsize);
5532 QCrehash_size = intern (":rehash-size");
5533 staticpro (&QCrehash_size);
5534 QCrehash_threshold = intern (":rehash-threshold");
5535 staticpro (&QCrehash_threshold);
5536 QCweakness = intern (":weakness");
5537 staticpro (&QCweakness);
5538 Qkey = intern ("key");
5539 staticpro (&Qkey);
5540 Qvalue = intern ("value");
5541 staticpro (&Qvalue);
5542 Qhash_table_test = intern ("hash-table-test");
5543 staticpro (&Qhash_table_test);
5544 Qkey_or_value = intern ("key-or-value");
5545 staticpro (&Qkey_or_value);
5546 Qkey_and_value = intern ("key-and-value");
5547 staticpro (&Qkey_and_value);
5548
5549 defsubr (&Ssxhash);
5550 defsubr (&Smake_hash_table);
5551 defsubr (&Scopy_hash_table);
5552 defsubr (&Shash_table_count);
5553 defsubr (&Shash_table_rehash_size);
5554 defsubr (&Shash_table_rehash_threshold);
5555 defsubr (&Shash_table_size);
5556 defsubr (&Shash_table_test);
5557 defsubr (&Shash_table_weakness);
5558 defsubr (&Shash_table_p);
5559 defsubr (&Sclrhash);
5560 defsubr (&Sgethash);
5561 defsubr (&Sputhash);
5562 defsubr (&Sremhash);
5563 defsubr (&Smaphash);
5564 defsubr (&Sdefine_hash_table_test);
5565
5566 Qstring_lessp = intern ("string-lessp");
5567 staticpro (&Qstring_lessp);
5568 Qprovide = intern ("provide");
5569 staticpro (&Qprovide);
5570 Qrequire = intern ("require");
5571 staticpro (&Qrequire);
5572 Qyes_or_no_p_history = intern ("yes-or-no-p-history");
5573 staticpro (&Qyes_or_no_p_history);
5574 Qcursor_in_echo_area = intern ("cursor-in-echo-area");
5575 staticpro (&Qcursor_in_echo_area);
5576 Qwidget_type = intern ("widget-type");
5577 staticpro (&Qwidget_type);
5578
5579 staticpro (&string_char_byte_cache_string);
5580 string_char_byte_cache_string = Qnil;
5581
5582 require_nesting_list = Qnil;
5583 staticpro (&require_nesting_list);
5584
5585 Fset (Qyes_or_no_p_history, Qnil);
5586
5587 DEFVAR_LISP ("features", &Vfeatures,
5588 doc: /* A list of symbols which are the features of the executing emacs.
5589 Used by `featurep' and `require', and altered by `provide'. */);
5590 Vfeatures = Qnil;
5591 Qsubfeatures = intern ("subfeatures");
5592 staticpro (&Qsubfeatures);
5593
5594 #ifdef HAVE_LANGINFO_CODESET
5595 Qcodeset = intern ("codeset");
5596 staticpro (&Qcodeset);
5597 Qdays = intern ("days");
5598 staticpro (&Qdays);
5599 Qmonths = intern ("months");
5600 staticpro (&Qmonths);
5601 Qpaper = intern ("paper");
5602 staticpro (&Qpaper);
5603 #endif /* HAVE_LANGINFO_CODESET */
5604
5605 DEFVAR_BOOL ("use-dialog-box", &use_dialog_box,
5606 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
5607 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
5608 invoked by mouse clicks and mouse menu items. */);
5609 use_dialog_box = 1;
5610
5611 defsubr (&Sidentity);
5612 defsubr (&Srandom);
5613 defsubr (&Slength);
5614 defsubr (&Ssafe_length);
5615 defsubr (&Sstring_bytes);
5616 defsubr (&Sstring_equal);
5617 defsubr (&Scompare_strings);
5618 defsubr (&Sstring_lessp);
5619 defsubr (&Sappend);
5620 defsubr (&Sconcat);
5621 defsubr (&Svconcat);
5622 defsubr (&Scopy_sequence);
5623 defsubr (&Sstring_make_multibyte);
5624 defsubr (&Sstring_make_unibyte);
5625 defsubr (&Sstring_as_multibyte);
5626 defsubr (&Sstring_as_unibyte);
5627 defsubr (&Sstring_to_multibyte);
5628 defsubr (&Scopy_alist);
5629 defsubr (&Ssubstring);
5630 defsubr (&Ssubstring_no_properties);
5631 defsubr (&Snthcdr);
5632 defsubr (&Snth);
5633 defsubr (&Selt);
5634 defsubr (&Smember);
5635 defsubr (&Smemq);
5636 defsubr (&Sassq);
5637 defsubr (&Sassoc);
5638 defsubr (&Srassq);
5639 defsubr (&Srassoc);
5640 defsubr (&Sdelq);
5641 defsubr (&Sdelete);
5642 defsubr (&Snreverse);
5643 defsubr (&Sreverse);
5644 defsubr (&Ssort);
5645 defsubr (&Splist_get);
5646 defsubr (&Sget);
5647 defsubr (&Splist_put);
5648 defsubr (&Sput);
5649 defsubr (&Slax_plist_get);
5650 defsubr (&Slax_plist_put);
5651 defsubr (&Sequal);
5652 defsubr (&Sfillarray);
5653 defsubr (&Schar_table_subtype);
5654 defsubr (&Schar_table_parent);
5655 defsubr (&Sset_char_table_parent);
5656 defsubr (&Schar_table_extra_slot);
5657 defsubr (&Sset_char_table_extra_slot);
5658 defsubr (&Schar_table_range);
5659 defsubr (&Sset_char_table_range);
5660 defsubr (&Sset_char_table_default);
5661 defsubr (&Soptimize_char_table);
5662 defsubr (&Smap_char_table);
5663 defsubr (&Snconc);
5664 defsubr (&Smapcar);
5665 defsubr (&Smapc);
5666 defsubr (&Smapconcat);
5667 defsubr (&Sy_or_n_p);
5668 defsubr (&Syes_or_no_p);
5669 defsubr (&Sload_average);
5670 defsubr (&Sfeaturep);
5671 defsubr (&Srequire);
5672 defsubr (&Sprovide);
5673 defsubr (&Splist_member);
5674 defsubr (&Swidget_put);
5675 defsubr (&Swidget_get);
5676 defsubr (&Swidget_apply);
5677 defsubr (&Sbase64_encode_region);
5678 defsubr (&Sbase64_decode_region);
5679 defsubr (&Sbase64_encode_string);
5680 defsubr (&Sbase64_decode_string);
5681 defsubr (&Smd5);
5682 defsubr (&Slanginfo);
5683 }
5684
5685
5686 void
5687 init_fns ()
5688 {
5689 Vweak_hash_tables = Qnil;
5690 }