]> code.delx.au - gnu-emacs/blob - src/alloc.c
(mark_fringe_data): Declare extern.
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
29
30 /* Note that this declares bzero on OSF/1. How dumb. */
31
32 #include <signal.h>
33
34 #ifdef HAVE_GTK_AND_PTHREAD
35 #include <pthread.h>
36 #endif
37
38 /* This file is part of the core Lisp implementation, and thus must
39 deal with the real data structures. If the Lisp implementation is
40 replaced, this file likely will not be used. */
41
42 #undef HIDE_LISP_IMPLEMENTATION
43 #include "lisp.h"
44 #include "process.h"
45 #include "intervals.h"
46 #include "puresize.h"
47 #include "buffer.h"
48 #include "window.h"
49 #include "keyboard.h"
50 #include "frame.h"
51 #include "blockinput.h"
52 #include "charset.h"
53 #include "syssignal.h"
54 #include <setjmp.h>
55
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c. */
58
59 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
60 #undef GC_MALLOC_CHECK
61 #endif
62
63 #ifdef HAVE_UNISTD_H
64 #include <unistd.h>
65 #else
66 extern POINTER_TYPE *sbrk ();
67 #endif
68
69 #ifdef DOUG_LEA_MALLOC
70
71 #include <malloc.h>
72 /* malloc.h #defines this as size_t, at least in glibc2. */
73 #ifndef __malloc_size_t
74 #define __malloc_size_t int
75 #endif
76
77 /* Specify maximum number of areas to mmap. It would be nice to use a
78 value that explicitly means "no limit". */
79
80 #define MMAP_MAX_AREAS 100000000
81
82 #else /* not DOUG_LEA_MALLOC */
83
84 /* The following come from gmalloc.c. */
85
86 #define __malloc_size_t size_t
87 extern __malloc_size_t _bytes_used;
88 extern __malloc_size_t __malloc_extra_blocks;
89
90 #endif /* not DOUG_LEA_MALLOC */
91
92 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
93
94 /* When GTK uses the file chooser dialog, different backends can be loaded
95 dynamically. One such a backend is the Gnome VFS backend that gets loaded
96 if you run Gnome. That backend creates several threads and also allocates
97 memory with malloc.
98
99 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
100 functions below are called from malloc, there is a chance that one
101 of these threads preempts the Emacs main thread and the hook variables
102 end up in an inconsistent state. So we have a mutex to prevent that (note
103 that the backend handles concurrent access to malloc within its own threads
104 but Emacs code running in the main thread is not included in that control).
105
106 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
107 happens in one of the backend threads we will have two threads that tries
108 to run Emacs code at once, and the code is not prepared for that.
109 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
110
111 static pthread_mutex_t alloc_mutex;
112
113 #define BLOCK_INPUT_ALLOC \
114 do \
115 { \
116 pthread_mutex_lock (&alloc_mutex); \
117 if (pthread_self () == main_thread) \
118 BLOCK_INPUT; \
119 } \
120 while (0)
121 #define UNBLOCK_INPUT_ALLOC \
122 do \
123 { \
124 if (pthread_self () == main_thread) \
125 UNBLOCK_INPUT; \
126 pthread_mutex_unlock (&alloc_mutex); \
127 } \
128 while (0)
129
130 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
131
132 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
133 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
134
135 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
136
137 /* Value of _bytes_used, when spare_memory was freed. */
138
139 static __malloc_size_t bytes_used_when_full;
140
141 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
142 to a struct Lisp_String. */
143
144 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
145 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
146 #define STRING_MARKED_P(S) ((S)->size & ARRAY_MARK_FLAG)
147
148 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
149 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
150 #define VECTOR_MARKED_P(V) ((V)->size & ARRAY_MARK_FLAG)
151
152 /* Value is the number of bytes/chars of S, a pointer to a struct
153 Lisp_String. This must be used instead of STRING_BYTES (S) or
154 S->size during GC, because S->size contains the mark bit for
155 strings. */
156
157 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
158 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
159
160 /* Number of bytes of consing done since the last gc. */
161
162 int consing_since_gc;
163
164 /* Count the amount of consing of various sorts of space. */
165
166 EMACS_INT cons_cells_consed;
167 EMACS_INT floats_consed;
168 EMACS_INT vector_cells_consed;
169 EMACS_INT symbols_consed;
170 EMACS_INT string_chars_consed;
171 EMACS_INT misc_objects_consed;
172 EMACS_INT intervals_consed;
173 EMACS_INT strings_consed;
174
175 /* Number of bytes of consing since GC before another GC should be done. */
176
177 EMACS_INT gc_cons_threshold;
178
179 /* Nonzero during GC. */
180
181 int gc_in_progress;
182
183 /* Nonzero means abort if try to GC.
184 This is for code which is written on the assumption that
185 no GC will happen, so as to verify that assumption. */
186
187 int abort_on_gc;
188
189 /* Nonzero means display messages at beginning and end of GC. */
190
191 int garbage_collection_messages;
192
193 #ifndef VIRT_ADDR_VARIES
194 extern
195 #endif /* VIRT_ADDR_VARIES */
196 int malloc_sbrk_used;
197
198 #ifndef VIRT_ADDR_VARIES
199 extern
200 #endif /* VIRT_ADDR_VARIES */
201 int malloc_sbrk_unused;
202
203 /* Number of live and free conses etc. */
204
205 static int total_conses, total_markers, total_symbols, total_vector_size;
206 static int total_free_conses, total_free_markers, total_free_symbols;
207 static int total_free_floats, total_floats;
208
209 /* Points to memory space allocated as "spare", to be freed if we run
210 out of memory. */
211
212 static char *spare_memory;
213
214 /* Amount of spare memory to keep in reserve. */
215
216 #define SPARE_MEMORY (1 << 14)
217
218 /* Number of extra blocks malloc should get when it needs more core. */
219
220 static int malloc_hysteresis;
221
222 /* Non-nil means defun should do purecopy on the function definition. */
223
224 Lisp_Object Vpurify_flag;
225
226 /* Non-nil means we are handling a memory-full error. */
227
228 Lisp_Object Vmemory_full;
229
230 #ifndef HAVE_SHM
231
232 /* Initialize it to a nonzero value to force it into data space
233 (rather than bss space). That way unexec will remap it into text
234 space (pure), on some systems. We have not implemented the
235 remapping on more recent systems because this is less important
236 nowadays than in the days of small memories and timesharing. */
237
238 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
239 #define PUREBEG (char *) pure
240
241 #else /* HAVE_SHM */
242
243 #define pure PURE_SEG_BITS /* Use shared memory segment */
244 #define PUREBEG (char *)PURE_SEG_BITS
245
246 #endif /* HAVE_SHM */
247
248 /* Pointer to the pure area, and its size. */
249
250 static char *purebeg;
251 static size_t pure_size;
252
253 /* Number of bytes of pure storage used before pure storage overflowed.
254 If this is non-zero, this implies that an overflow occurred. */
255
256 static size_t pure_bytes_used_before_overflow;
257
258 /* Value is non-zero if P points into pure space. */
259
260 #define PURE_POINTER_P(P) \
261 (((PNTR_COMPARISON_TYPE) (P) \
262 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
263 && ((PNTR_COMPARISON_TYPE) (P) \
264 >= (PNTR_COMPARISON_TYPE) purebeg))
265
266 /* Index in pure at which next pure object will be allocated.. */
267
268 EMACS_INT pure_bytes_used;
269
270 /* If nonzero, this is a warning delivered by malloc and not yet
271 displayed. */
272
273 char *pending_malloc_warning;
274
275 /* Pre-computed signal argument for use when memory is exhausted. */
276
277 Lisp_Object Vmemory_signal_data;
278
279 /* Maximum amount of C stack to save when a GC happens. */
280
281 #ifndef MAX_SAVE_STACK
282 #define MAX_SAVE_STACK 16000
283 #endif
284
285 /* Buffer in which we save a copy of the C stack at each GC. */
286
287 char *stack_copy;
288 int stack_copy_size;
289
290 /* Non-zero means ignore malloc warnings. Set during initialization.
291 Currently not used. */
292
293 int ignore_warnings;
294
295 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
296
297 /* Hook run after GC has finished. */
298
299 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
300
301 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
302 EMACS_INT gcs_done; /* accumulated GCs */
303
304 static void mark_buffer P_ ((Lisp_Object));
305 extern void mark_kboards P_ ((void));
306 extern void mark_backtrace P_ ((void));
307 static void gc_sweep P_ ((void));
308 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
309 static void mark_face_cache P_ ((struct face_cache *));
310
311 #ifdef HAVE_WINDOW_SYSTEM
312 extern void mark_fringe_data P_ ((void));
313 static void mark_image P_ ((struct image *));
314 static void mark_image_cache P_ ((struct frame *));
315 #endif /* HAVE_WINDOW_SYSTEM */
316
317 static struct Lisp_String *allocate_string P_ ((void));
318 static void compact_small_strings P_ ((void));
319 static void free_large_strings P_ ((void));
320 static void sweep_strings P_ ((void));
321
322 extern int message_enable_multibyte;
323
324 /* When scanning the C stack for live Lisp objects, Emacs keeps track
325 of what memory allocated via lisp_malloc is intended for what
326 purpose. This enumeration specifies the type of memory. */
327
328 enum mem_type
329 {
330 MEM_TYPE_NON_LISP,
331 MEM_TYPE_BUFFER,
332 MEM_TYPE_CONS,
333 MEM_TYPE_STRING,
334 MEM_TYPE_MISC,
335 MEM_TYPE_SYMBOL,
336 MEM_TYPE_FLOAT,
337 /* Keep the following vector-like types together, with
338 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
339 first. Or change the code of live_vector_p, for instance. */
340 MEM_TYPE_VECTOR,
341 MEM_TYPE_PROCESS,
342 MEM_TYPE_HASH_TABLE,
343 MEM_TYPE_FRAME,
344 MEM_TYPE_WINDOW
345 };
346
347 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
348
349 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
350 #include <stdio.h> /* For fprintf. */
351 #endif
352
353 /* A unique object in pure space used to make some Lisp objects
354 on free lists recognizable in O(1). */
355
356 Lisp_Object Vdead;
357
358 #ifdef GC_MALLOC_CHECK
359
360 enum mem_type allocated_mem_type;
361 int dont_register_blocks;
362
363 #endif /* GC_MALLOC_CHECK */
364
365 /* A node in the red-black tree describing allocated memory containing
366 Lisp data. Each such block is recorded with its start and end
367 address when it is allocated, and removed from the tree when it
368 is freed.
369
370 A red-black tree is a balanced binary tree with the following
371 properties:
372
373 1. Every node is either red or black.
374 2. Every leaf is black.
375 3. If a node is red, then both of its children are black.
376 4. Every simple path from a node to a descendant leaf contains
377 the same number of black nodes.
378 5. The root is always black.
379
380 When nodes are inserted into the tree, or deleted from the tree,
381 the tree is "fixed" so that these properties are always true.
382
383 A red-black tree with N internal nodes has height at most 2
384 log(N+1). Searches, insertions and deletions are done in O(log N).
385 Please see a text book about data structures for a detailed
386 description of red-black trees. Any book worth its salt should
387 describe them. */
388
389 struct mem_node
390 {
391 /* Children of this node. These pointers are never NULL. When there
392 is no child, the value is MEM_NIL, which points to a dummy node. */
393 struct mem_node *left, *right;
394
395 /* The parent of this node. In the root node, this is NULL. */
396 struct mem_node *parent;
397
398 /* Start and end of allocated region. */
399 void *start, *end;
400
401 /* Node color. */
402 enum {MEM_BLACK, MEM_RED} color;
403
404 /* Memory type. */
405 enum mem_type type;
406 };
407
408 /* Base address of stack. Set in main. */
409
410 Lisp_Object *stack_base;
411
412 /* Root of the tree describing allocated Lisp memory. */
413
414 static struct mem_node *mem_root;
415
416 /* Lowest and highest known address in the heap. */
417
418 static void *min_heap_address, *max_heap_address;
419
420 /* Sentinel node of the tree. */
421
422 static struct mem_node mem_z;
423 #define MEM_NIL &mem_z
424
425 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
426 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
427 static void lisp_free P_ ((POINTER_TYPE *));
428 static void mark_stack P_ ((void));
429 static int live_vector_p P_ ((struct mem_node *, void *));
430 static int live_buffer_p P_ ((struct mem_node *, void *));
431 static int live_string_p P_ ((struct mem_node *, void *));
432 static int live_cons_p P_ ((struct mem_node *, void *));
433 static int live_symbol_p P_ ((struct mem_node *, void *));
434 static int live_float_p P_ ((struct mem_node *, void *));
435 static int live_misc_p P_ ((struct mem_node *, void *));
436 static void mark_maybe_object P_ ((Lisp_Object));
437 static void mark_memory P_ ((void *, void *));
438 static void mem_init P_ ((void));
439 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
440 static void mem_insert_fixup P_ ((struct mem_node *));
441 static void mem_rotate_left P_ ((struct mem_node *));
442 static void mem_rotate_right P_ ((struct mem_node *));
443 static void mem_delete P_ ((struct mem_node *));
444 static void mem_delete_fixup P_ ((struct mem_node *));
445 static INLINE struct mem_node *mem_find P_ ((void *));
446
447 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
448 static void check_gcpros P_ ((void));
449 #endif
450
451 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
452
453 /* Recording what needs to be marked for gc. */
454
455 struct gcpro *gcprolist;
456
457 /* Addresses of staticpro'd variables. Initialize it to a nonzero
458 value; otherwise some compilers put it into BSS. */
459
460 #define NSTATICS 1280
461 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
462
463 /* Index of next unused slot in staticvec. */
464
465 int staticidx = 0;
466
467 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
468
469
470 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
471 ALIGNMENT must be a power of 2. */
472
473 #define ALIGN(ptr, ALIGNMENT) \
474 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
475 & ~((ALIGNMENT) - 1)))
476
477
478 \f
479 /************************************************************************
480 Malloc
481 ************************************************************************/
482
483 /* Function malloc calls this if it finds we are near exhausting storage. */
484
485 void
486 malloc_warning (str)
487 char *str;
488 {
489 pending_malloc_warning = str;
490 }
491
492
493 /* Display an already-pending malloc warning. */
494
495 void
496 display_malloc_warning ()
497 {
498 call3 (intern ("display-warning"),
499 intern ("alloc"),
500 build_string (pending_malloc_warning),
501 intern ("emergency"));
502 pending_malloc_warning = 0;
503 }
504
505
506 #ifdef DOUG_LEA_MALLOC
507 # define BYTES_USED (mallinfo ().arena)
508 #else
509 # define BYTES_USED _bytes_used
510 #endif
511
512
513 /* Called if malloc returns zero. */
514
515 void
516 memory_full ()
517 {
518 Vmemory_full = Qt;
519
520 #ifndef SYSTEM_MALLOC
521 bytes_used_when_full = BYTES_USED;
522 #endif
523
524 /* The first time we get here, free the spare memory. */
525 if (spare_memory)
526 {
527 free (spare_memory);
528 spare_memory = 0;
529 }
530
531 /* This used to call error, but if we've run out of memory, we could
532 get infinite recursion trying to build the string. */
533 while (1)
534 Fsignal (Qnil, Vmemory_signal_data);
535 }
536
537
538 /* Called if we can't allocate relocatable space for a buffer. */
539
540 void
541 buffer_memory_full ()
542 {
543 /* If buffers use the relocating allocator, no need to free
544 spare_memory, because we may have plenty of malloc space left
545 that we could get, and if we don't, the malloc that fails will
546 itself cause spare_memory to be freed. If buffers don't use the
547 relocating allocator, treat this like any other failing
548 malloc. */
549
550 #ifndef REL_ALLOC
551 memory_full ();
552 #endif
553
554 Vmemory_full = Qt;
555
556 /* This used to call error, but if we've run out of memory, we could
557 get infinite recursion trying to build the string. */
558 while (1)
559 Fsignal (Qnil, Vmemory_signal_data);
560 }
561
562
563 #ifdef XMALLOC_OVERRUN_CHECK
564
565 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
566 and a 16 byte trailer around each block.
567
568 The header consists of 12 fixed bytes + a 4 byte integer contaning the
569 original block size, while the trailer consists of 16 fixed bytes.
570
571 The header is used to detect whether this block has been allocated
572 through these functions -- as it seems that some low-level libc
573 functions may bypass the malloc hooks.
574 */
575
576
577 #define XMALLOC_OVERRUN_CHECK_SIZE 16
578
579 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
580 { 0x9a, 0x9b, 0xae, 0xaf,
581 0xbf, 0xbe, 0xce, 0xcf,
582 0xea, 0xeb, 0xec, 0xed };
583
584 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
585 { 0xaa, 0xab, 0xac, 0xad,
586 0xba, 0xbb, 0xbc, 0xbd,
587 0xca, 0xcb, 0xcc, 0xcd,
588 0xda, 0xdb, 0xdc, 0xdd };
589
590 /* Macros to insert and extract the block size in the header. */
591
592 #define XMALLOC_PUT_SIZE(ptr, size) \
593 (ptr[-1] = (size & 0xff), \
594 ptr[-2] = ((size >> 8) & 0xff), \
595 ptr[-3] = ((size >> 16) & 0xff), \
596 ptr[-4] = ((size >> 24) & 0xff))
597
598 #define XMALLOC_GET_SIZE(ptr) \
599 (size_t)((unsigned)(ptr[-1]) | \
600 ((unsigned)(ptr[-2]) << 8) | \
601 ((unsigned)(ptr[-3]) << 16) | \
602 ((unsigned)(ptr[-4]) << 24))
603
604
605 /* The call depth in overrun_check functions. For example, this might happen:
606 xmalloc()
607 overrun_check_malloc()
608 -> malloc -> (via hook)_-> emacs_blocked_malloc
609 -> overrun_check_malloc
610 call malloc (hooks are NULL, so real malloc is called).
611 malloc returns 10000.
612 add overhead, return 10016.
613 <- (back in overrun_check_malloc)
614 add overhead again, return 10032
615 xmalloc returns 10032.
616
617 (time passes).
618
619 xfree(10032)
620 overrun_check_free(10032)
621 decrease overhed
622 free(10016) <- crash, because 10000 is the original pointer. */
623
624 static int check_depth;
625
626 /* Like malloc, but wraps allocated block with header and trailer. */
627
628 POINTER_TYPE *
629 overrun_check_malloc (size)
630 size_t size;
631 {
632 register unsigned char *val;
633 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
634
635 val = (unsigned char *) malloc (size + overhead);
636 if (val && check_depth == 1)
637 {
638 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
639 val += XMALLOC_OVERRUN_CHECK_SIZE;
640 XMALLOC_PUT_SIZE(val, size);
641 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
642 }
643 --check_depth;
644 return (POINTER_TYPE *)val;
645 }
646
647
648 /* Like realloc, but checks old block for overrun, and wraps new block
649 with header and trailer. */
650
651 POINTER_TYPE *
652 overrun_check_realloc (block, size)
653 POINTER_TYPE *block;
654 size_t size;
655 {
656 register unsigned char *val = (unsigned char *)block;
657 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
658
659 if (val
660 && check_depth == 1
661 && bcmp (xmalloc_overrun_check_header,
662 val - XMALLOC_OVERRUN_CHECK_SIZE,
663 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
664 {
665 size_t osize = XMALLOC_GET_SIZE (val);
666 if (bcmp (xmalloc_overrun_check_trailer,
667 val + osize,
668 XMALLOC_OVERRUN_CHECK_SIZE))
669 abort ();
670 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
671 val -= XMALLOC_OVERRUN_CHECK_SIZE;
672 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
673 }
674
675 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
676
677 if (val && check_depth == 1)
678 {
679 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
680 val += XMALLOC_OVERRUN_CHECK_SIZE;
681 XMALLOC_PUT_SIZE(val, size);
682 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
683 }
684 --check_depth;
685 return (POINTER_TYPE *)val;
686 }
687
688 /* Like free, but checks block for overrun. */
689
690 void
691 overrun_check_free (block)
692 POINTER_TYPE *block;
693 {
694 unsigned char *val = (unsigned char *)block;
695
696 ++check_depth;
697 if (val
698 && check_depth == 1
699 && bcmp (xmalloc_overrun_check_header,
700 val - XMALLOC_OVERRUN_CHECK_SIZE,
701 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
702 {
703 size_t osize = XMALLOC_GET_SIZE (val);
704 if (bcmp (xmalloc_overrun_check_trailer,
705 val + osize,
706 XMALLOC_OVERRUN_CHECK_SIZE))
707 abort ();
708 #ifdef XMALLOC_CLEAR_FREE_MEMORY
709 val -= XMALLOC_OVERRUN_CHECK_SIZE;
710 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
711 #else
712 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
713 val -= XMALLOC_OVERRUN_CHECK_SIZE;
714 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
715 #endif
716 }
717
718 free (val);
719 --check_depth;
720 }
721
722 #undef malloc
723 #undef realloc
724 #undef free
725 #define malloc overrun_check_malloc
726 #define realloc overrun_check_realloc
727 #define free overrun_check_free
728 #endif
729
730
731 /* Like malloc but check for no memory and block interrupt input.. */
732
733 POINTER_TYPE *
734 xmalloc (size)
735 size_t size;
736 {
737 register POINTER_TYPE *val;
738
739 BLOCK_INPUT;
740 val = (POINTER_TYPE *) malloc (size);
741 UNBLOCK_INPUT;
742
743 if (!val && size)
744 memory_full ();
745 return val;
746 }
747
748
749 /* Like realloc but check for no memory and block interrupt input.. */
750
751 POINTER_TYPE *
752 xrealloc (block, size)
753 POINTER_TYPE *block;
754 size_t size;
755 {
756 register POINTER_TYPE *val;
757
758 BLOCK_INPUT;
759 /* We must call malloc explicitly when BLOCK is 0, since some
760 reallocs don't do this. */
761 if (! block)
762 val = (POINTER_TYPE *) malloc (size);
763 else
764 val = (POINTER_TYPE *) realloc (block, size);
765 UNBLOCK_INPUT;
766
767 if (!val && size) memory_full ();
768 return val;
769 }
770
771
772 /* Like free but block interrupt input. */
773
774 void
775 xfree (block)
776 POINTER_TYPE *block;
777 {
778 BLOCK_INPUT;
779 free (block);
780 UNBLOCK_INPUT;
781 }
782
783
784 /* Like strdup, but uses xmalloc. */
785
786 char *
787 xstrdup (s)
788 const char *s;
789 {
790 size_t len = strlen (s) + 1;
791 char *p = (char *) xmalloc (len);
792 bcopy (s, p, len);
793 return p;
794 }
795
796
797 /* Unwind for SAFE_ALLOCA */
798
799 Lisp_Object
800 safe_alloca_unwind (arg)
801 Lisp_Object arg;
802 {
803 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
804
805 p->dogc = 0;
806 xfree (p->pointer);
807 p->pointer = 0;
808 free_misc (arg);
809 return Qnil;
810 }
811
812
813 /* Like malloc but used for allocating Lisp data. NBYTES is the
814 number of bytes to allocate, TYPE describes the intended use of the
815 allcated memory block (for strings, for conses, ...). */
816
817 #ifndef USE_LSB_TAG
818 static void *lisp_malloc_loser;
819 #endif
820
821 static POINTER_TYPE *
822 lisp_malloc (nbytes, type)
823 size_t nbytes;
824 enum mem_type type;
825 {
826 register void *val;
827
828 BLOCK_INPUT;
829
830 #ifdef GC_MALLOC_CHECK
831 allocated_mem_type = type;
832 #endif
833
834 val = (void *) malloc (nbytes);
835
836 #ifndef USE_LSB_TAG
837 /* If the memory just allocated cannot be addressed thru a Lisp
838 object's pointer, and it needs to be,
839 that's equivalent to running out of memory. */
840 if (val && type != MEM_TYPE_NON_LISP)
841 {
842 Lisp_Object tem;
843 XSETCONS (tem, (char *) val + nbytes - 1);
844 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
845 {
846 lisp_malloc_loser = val;
847 free (val);
848 val = 0;
849 }
850 }
851 #endif
852
853 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
854 if (val && type != MEM_TYPE_NON_LISP)
855 mem_insert (val, (char *) val + nbytes, type);
856 #endif
857
858 UNBLOCK_INPUT;
859 if (!val && nbytes)
860 memory_full ();
861 return val;
862 }
863
864 /* Free BLOCK. This must be called to free memory allocated with a
865 call to lisp_malloc. */
866
867 static void
868 lisp_free (block)
869 POINTER_TYPE *block;
870 {
871 BLOCK_INPUT;
872 free (block);
873 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
874 mem_delete (mem_find (block));
875 #endif
876 UNBLOCK_INPUT;
877 }
878
879 /* Allocation of aligned blocks of memory to store Lisp data. */
880 /* The entry point is lisp_align_malloc which returns blocks of at most */
881 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
882
883
884 /* BLOCK_ALIGN has to be a power of 2. */
885 #define BLOCK_ALIGN (1 << 10)
886
887 /* Padding to leave at the end of a malloc'd block. This is to give
888 malloc a chance to minimize the amount of memory wasted to alignment.
889 It should be tuned to the particular malloc library used.
890 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
891 posix_memalign on the other hand would ideally prefer a value of 4
892 because otherwise, there's 1020 bytes wasted between each ablocks.
893 But testing shows that those 1020 will most of the time be efficiently
894 used by malloc to place other objects, so a value of 0 is still preferable
895 unless you have a lot of cons&floats and virtually nothing else. */
896 #define BLOCK_PADDING 0
897 #define BLOCK_BYTES \
898 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
899
900 /* Internal data structures and constants. */
901
902 #define ABLOCKS_SIZE 16
903
904 /* An aligned block of memory. */
905 struct ablock
906 {
907 union
908 {
909 char payload[BLOCK_BYTES];
910 struct ablock *next_free;
911 } x;
912 /* `abase' is the aligned base of the ablocks. */
913 /* It is overloaded to hold the virtual `busy' field that counts
914 the number of used ablock in the parent ablocks.
915 The first ablock has the `busy' field, the others have the `abase'
916 field. To tell the difference, we assume that pointers will have
917 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
918 is used to tell whether the real base of the parent ablocks is `abase'
919 (if not, the word before the first ablock holds a pointer to the
920 real base). */
921 struct ablocks *abase;
922 /* The padding of all but the last ablock is unused. The padding of
923 the last ablock in an ablocks is not allocated. */
924 #if BLOCK_PADDING
925 char padding[BLOCK_PADDING];
926 #endif
927 };
928
929 /* A bunch of consecutive aligned blocks. */
930 struct ablocks
931 {
932 struct ablock blocks[ABLOCKS_SIZE];
933 };
934
935 /* Size of the block requested from malloc or memalign. */
936 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
937
938 #define ABLOCK_ABASE(block) \
939 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
940 ? (struct ablocks *)(block) \
941 : (block)->abase)
942
943 /* Virtual `busy' field. */
944 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
945
946 /* Pointer to the (not necessarily aligned) malloc block. */
947 #ifdef HAVE_POSIX_MEMALIGN
948 #define ABLOCKS_BASE(abase) (abase)
949 #else
950 #define ABLOCKS_BASE(abase) \
951 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
952 #endif
953
954 /* The list of free ablock. */
955 static struct ablock *free_ablock;
956
957 /* Allocate an aligned block of nbytes.
958 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
959 smaller or equal to BLOCK_BYTES. */
960 static POINTER_TYPE *
961 lisp_align_malloc (nbytes, type)
962 size_t nbytes;
963 enum mem_type type;
964 {
965 void *base, *val;
966 struct ablocks *abase;
967
968 eassert (nbytes <= BLOCK_BYTES);
969
970 BLOCK_INPUT;
971
972 #ifdef GC_MALLOC_CHECK
973 allocated_mem_type = type;
974 #endif
975
976 if (!free_ablock)
977 {
978 int i;
979 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
980
981 #ifdef DOUG_LEA_MALLOC
982 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
983 because mapped region contents are not preserved in
984 a dumped Emacs. */
985 mallopt (M_MMAP_MAX, 0);
986 #endif
987
988 #ifdef HAVE_POSIX_MEMALIGN
989 {
990 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
991 if (err)
992 base = NULL;
993 abase = base;
994 }
995 #else
996 base = malloc (ABLOCKS_BYTES);
997 abase = ALIGN (base, BLOCK_ALIGN);
998 #endif
999
1000 if (base == 0)
1001 {
1002 UNBLOCK_INPUT;
1003 memory_full ();
1004 }
1005
1006 aligned = (base == abase);
1007 if (!aligned)
1008 ((void**)abase)[-1] = base;
1009
1010 #ifdef DOUG_LEA_MALLOC
1011 /* Back to a reasonable maximum of mmap'ed areas. */
1012 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1013 #endif
1014
1015 #ifndef USE_LSB_TAG
1016 /* If the memory just allocated cannot be addressed thru a Lisp
1017 object's pointer, and it needs to be, that's equivalent to
1018 running out of memory. */
1019 if (type != MEM_TYPE_NON_LISP)
1020 {
1021 Lisp_Object tem;
1022 char *end = (char *) base + ABLOCKS_BYTES - 1;
1023 XSETCONS (tem, end);
1024 if ((char *) XCONS (tem) != end)
1025 {
1026 lisp_malloc_loser = base;
1027 free (base);
1028 UNBLOCK_INPUT;
1029 memory_full ();
1030 }
1031 }
1032 #endif
1033
1034 /* Initialize the blocks and put them on the free list.
1035 Is `base' was not properly aligned, we can't use the last block. */
1036 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1037 {
1038 abase->blocks[i].abase = abase;
1039 abase->blocks[i].x.next_free = free_ablock;
1040 free_ablock = &abase->blocks[i];
1041 }
1042 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1043
1044 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1045 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1046 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1047 eassert (ABLOCKS_BASE (abase) == base);
1048 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1049 }
1050
1051 abase = ABLOCK_ABASE (free_ablock);
1052 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1053 val = free_ablock;
1054 free_ablock = free_ablock->x.next_free;
1055
1056 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1057 if (val && type != MEM_TYPE_NON_LISP)
1058 mem_insert (val, (char *) val + nbytes, type);
1059 #endif
1060
1061 UNBLOCK_INPUT;
1062 if (!val && nbytes)
1063 memory_full ();
1064
1065 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1066 return val;
1067 }
1068
1069 static void
1070 lisp_align_free (block)
1071 POINTER_TYPE *block;
1072 {
1073 struct ablock *ablock = block;
1074 struct ablocks *abase = ABLOCK_ABASE (ablock);
1075
1076 BLOCK_INPUT;
1077 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1078 mem_delete (mem_find (block));
1079 #endif
1080 /* Put on free list. */
1081 ablock->x.next_free = free_ablock;
1082 free_ablock = ablock;
1083 /* Update busy count. */
1084 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1085
1086 if (2 > (long) ABLOCKS_BUSY (abase))
1087 { /* All the blocks are free. */
1088 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1089 struct ablock **tem = &free_ablock;
1090 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1091
1092 while (*tem)
1093 {
1094 if (*tem >= (struct ablock *) abase && *tem < atop)
1095 {
1096 i++;
1097 *tem = (*tem)->x.next_free;
1098 }
1099 else
1100 tem = &(*tem)->x.next_free;
1101 }
1102 eassert ((aligned & 1) == aligned);
1103 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1104 free (ABLOCKS_BASE (abase));
1105 }
1106 UNBLOCK_INPUT;
1107 }
1108
1109 /* Return a new buffer structure allocated from the heap with
1110 a call to lisp_malloc. */
1111
1112 struct buffer *
1113 allocate_buffer ()
1114 {
1115 struct buffer *b
1116 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1117 MEM_TYPE_BUFFER);
1118 return b;
1119 }
1120
1121 \f
1122 #ifndef SYSTEM_MALLOC
1123
1124 /* If we released our reserve (due to running out of memory),
1125 and we have a fair amount free once again,
1126 try to set aside another reserve in case we run out once more.
1127
1128 This is called when a relocatable block is freed in ralloc.c. */
1129
1130 void
1131 refill_memory_reserve ()
1132 {
1133 if (spare_memory == 0)
1134 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
1135 }
1136
1137 \f
1138 /* Arranging to disable input signals while we're in malloc.
1139
1140 This only works with GNU malloc. To help out systems which can't
1141 use GNU malloc, all the calls to malloc, realloc, and free
1142 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1143 pair; unfortunately, we have no idea what C library functions
1144 might call malloc, so we can't really protect them unless you're
1145 using GNU malloc. Fortunately, most of the major operating systems
1146 can use GNU malloc. */
1147
1148 #ifndef SYNC_INPUT
1149
1150 #ifndef DOUG_LEA_MALLOC
1151 extern void * (*__malloc_hook) P_ ((size_t));
1152 extern void * (*__realloc_hook) P_ ((void *, size_t));
1153 extern void (*__free_hook) P_ ((void *));
1154 /* Else declared in malloc.h, perhaps with an extra arg. */
1155 #endif /* DOUG_LEA_MALLOC */
1156 static void * (*old_malloc_hook) ();
1157 static void * (*old_realloc_hook) ();
1158 static void (*old_free_hook) ();
1159
1160 /* This function is used as the hook for free to call. */
1161
1162 static void
1163 emacs_blocked_free (ptr)
1164 void *ptr;
1165 {
1166 BLOCK_INPUT_ALLOC;
1167
1168 #ifdef GC_MALLOC_CHECK
1169 if (ptr)
1170 {
1171 struct mem_node *m;
1172
1173 m = mem_find (ptr);
1174 if (m == MEM_NIL || m->start != ptr)
1175 {
1176 fprintf (stderr,
1177 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1178 abort ();
1179 }
1180 else
1181 {
1182 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1183 mem_delete (m);
1184 }
1185 }
1186 #endif /* GC_MALLOC_CHECK */
1187
1188 __free_hook = old_free_hook;
1189 free (ptr);
1190
1191 /* If we released our reserve (due to running out of memory),
1192 and we have a fair amount free once again,
1193 try to set aside another reserve in case we run out once more. */
1194 if (spare_memory == 0
1195 /* Verify there is enough space that even with the malloc
1196 hysteresis this call won't run out again.
1197 The code here is correct as long as SPARE_MEMORY
1198 is substantially larger than the block size malloc uses. */
1199 && (bytes_used_when_full
1200 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
1201 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
1202
1203 __free_hook = emacs_blocked_free;
1204 UNBLOCK_INPUT_ALLOC;
1205 }
1206
1207
1208 /* This function is the malloc hook that Emacs uses. */
1209
1210 static void *
1211 emacs_blocked_malloc (size)
1212 size_t size;
1213 {
1214 void *value;
1215
1216 BLOCK_INPUT_ALLOC;
1217 __malloc_hook = old_malloc_hook;
1218 #ifdef DOUG_LEA_MALLOC
1219 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1220 #else
1221 __malloc_extra_blocks = malloc_hysteresis;
1222 #endif
1223
1224 value = (void *) malloc (size);
1225
1226 #ifdef GC_MALLOC_CHECK
1227 {
1228 struct mem_node *m = mem_find (value);
1229 if (m != MEM_NIL)
1230 {
1231 fprintf (stderr, "Malloc returned %p which is already in use\n",
1232 value);
1233 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1234 m->start, m->end, (char *) m->end - (char *) m->start,
1235 m->type);
1236 abort ();
1237 }
1238
1239 if (!dont_register_blocks)
1240 {
1241 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1242 allocated_mem_type = MEM_TYPE_NON_LISP;
1243 }
1244 }
1245 #endif /* GC_MALLOC_CHECK */
1246
1247 __malloc_hook = emacs_blocked_malloc;
1248 UNBLOCK_INPUT_ALLOC;
1249
1250 /* fprintf (stderr, "%p malloc\n", value); */
1251 return value;
1252 }
1253
1254
1255 /* This function is the realloc hook that Emacs uses. */
1256
1257 static void *
1258 emacs_blocked_realloc (ptr, size)
1259 void *ptr;
1260 size_t size;
1261 {
1262 void *value;
1263
1264 BLOCK_INPUT_ALLOC;
1265 __realloc_hook = old_realloc_hook;
1266
1267 #ifdef GC_MALLOC_CHECK
1268 if (ptr)
1269 {
1270 struct mem_node *m = mem_find (ptr);
1271 if (m == MEM_NIL || m->start != ptr)
1272 {
1273 fprintf (stderr,
1274 "Realloc of %p which wasn't allocated with malloc\n",
1275 ptr);
1276 abort ();
1277 }
1278
1279 mem_delete (m);
1280 }
1281
1282 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1283
1284 /* Prevent malloc from registering blocks. */
1285 dont_register_blocks = 1;
1286 #endif /* GC_MALLOC_CHECK */
1287
1288 value = (void *) realloc (ptr, size);
1289
1290 #ifdef GC_MALLOC_CHECK
1291 dont_register_blocks = 0;
1292
1293 {
1294 struct mem_node *m = mem_find (value);
1295 if (m != MEM_NIL)
1296 {
1297 fprintf (stderr, "Realloc returns memory that is already in use\n");
1298 abort ();
1299 }
1300
1301 /* Can't handle zero size regions in the red-black tree. */
1302 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1303 }
1304
1305 /* fprintf (stderr, "%p <- realloc\n", value); */
1306 #endif /* GC_MALLOC_CHECK */
1307
1308 __realloc_hook = emacs_blocked_realloc;
1309 UNBLOCK_INPUT_ALLOC;
1310
1311 return value;
1312 }
1313
1314
1315 #ifdef HAVE_GTK_AND_PTHREAD
1316 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1317 normal malloc. Some thread implementations need this as they call
1318 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1319 calls malloc because it is the first call, and we have an endless loop. */
1320
1321 void
1322 reset_malloc_hooks ()
1323 {
1324 __free_hook = 0;
1325 __malloc_hook = 0;
1326 __realloc_hook = 0;
1327 }
1328 #endif /* HAVE_GTK_AND_PTHREAD */
1329
1330
1331 /* Called from main to set up malloc to use our hooks. */
1332
1333 void
1334 uninterrupt_malloc ()
1335 {
1336 #ifdef HAVE_GTK_AND_PTHREAD
1337 pthread_mutexattr_t attr;
1338
1339 /* GLIBC has a faster way to do this, but lets keep it portable.
1340 This is according to the Single UNIX Specification. */
1341 pthread_mutexattr_init (&attr);
1342 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1343 pthread_mutex_init (&alloc_mutex, &attr);
1344 #endif /* HAVE_GTK_AND_PTHREAD */
1345
1346 if (__free_hook != emacs_blocked_free)
1347 old_free_hook = __free_hook;
1348 __free_hook = emacs_blocked_free;
1349
1350 if (__malloc_hook != emacs_blocked_malloc)
1351 old_malloc_hook = __malloc_hook;
1352 __malloc_hook = emacs_blocked_malloc;
1353
1354 if (__realloc_hook != emacs_blocked_realloc)
1355 old_realloc_hook = __realloc_hook;
1356 __realloc_hook = emacs_blocked_realloc;
1357 }
1358
1359 #endif /* not SYNC_INPUT */
1360 #endif /* not SYSTEM_MALLOC */
1361
1362
1363 \f
1364 /***********************************************************************
1365 Interval Allocation
1366 ***********************************************************************/
1367
1368 /* Number of intervals allocated in an interval_block structure.
1369 The 1020 is 1024 minus malloc overhead. */
1370
1371 #define INTERVAL_BLOCK_SIZE \
1372 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1373
1374 /* Intervals are allocated in chunks in form of an interval_block
1375 structure. */
1376
1377 struct interval_block
1378 {
1379 /* Place `intervals' first, to preserve alignment. */
1380 struct interval intervals[INTERVAL_BLOCK_SIZE];
1381 struct interval_block *next;
1382 };
1383
1384 /* Current interval block. Its `next' pointer points to older
1385 blocks. */
1386
1387 struct interval_block *interval_block;
1388
1389 /* Index in interval_block above of the next unused interval
1390 structure. */
1391
1392 static int interval_block_index;
1393
1394 /* Number of free and live intervals. */
1395
1396 static int total_free_intervals, total_intervals;
1397
1398 /* List of free intervals. */
1399
1400 INTERVAL interval_free_list;
1401
1402 /* Total number of interval blocks now in use. */
1403
1404 int n_interval_blocks;
1405
1406
1407 /* Initialize interval allocation. */
1408
1409 static void
1410 init_intervals ()
1411 {
1412 interval_block = NULL;
1413 interval_block_index = INTERVAL_BLOCK_SIZE;
1414 interval_free_list = 0;
1415 n_interval_blocks = 0;
1416 }
1417
1418
1419 /* Return a new interval. */
1420
1421 INTERVAL
1422 make_interval ()
1423 {
1424 INTERVAL val;
1425
1426 if (interval_free_list)
1427 {
1428 val = interval_free_list;
1429 interval_free_list = INTERVAL_PARENT (interval_free_list);
1430 }
1431 else
1432 {
1433 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1434 {
1435 register struct interval_block *newi;
1436
1437 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1438 MEM_TYPE_NON_LISP);
1439
1440 newi->next = interval_block;
1441 interval_block = newi;
1442 interval_block_index = 0;
1443 n_interval_blocks++;
1444 }
1445 val = &interval_block->intervals[interval_block_index++];
1446 }
1447 consing_since_gc += sizeof (struct interval);
1448 intervals_consed++;
1449 RESET_INTERVAL (val);
1450 val->gcmarkbit = 0;
1451 return val;
1452 }
1453
1454
1455 /* Mark Lisp objects in interval I. */
1456
1457 static void
1458 mark_interval (i, dummy)
1459 register INTERVAL i;
1460 Lisp_Object dummy;
1461 {
1462 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1463 i->gcmarkbit = 1;
1464 mark_object (i->plist);
1465 }
1466
1467
1468 /* Mark the interval tree rooted in TREE. Don't call this directly;
1469 use the macro MARK_INTERVAL_TREE instead. */
1470
1471 static void
1472 mark_interval_tree (tree)
1473 register INTERVAL tree;
1474 {
1475 /* No need to test if this tree has been marked already; this
1476 function is always called through the MARK_INTERVAL_TREE macro,
1477 which takes care of that. */
1478
1479 traverse_intervals_noorder (tree, mark_interval, Qnil);
1480 }
1481
1482
1483 /* Mark the interval tree rooted in I. */
1484
1485 #define MARK_INTERVAL_TREE(i) \
1486 do { \
1487 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1488 mark_interval_tree (i); \
1489 } while (0)
1490
1491
1492 #define UNMARK_BALANCE_INTERVALS(i) \
1493 do { \
1494 if (! NULL_INTERVAL_P (i)) \
1495 (i) = balance_intervals (i); \
1496 } while (0)
1497
1498 \f
1499 /* Number support. If NO_UNION_TYPE isn't in effect, we
1500 can't create number objects in macros. */
1501 #ifndef make_number
1502 Lisp_Object
1503 make_number (n)
1504 int n;
1505 {
1506 Lisp_Object obj;
1507 obj.s.val = n;
1508 obj.s.type = Lisp_Int;
1509 return obj;
1510 }
1511 #endif
1512 \f
1513 /***********************************************************************
1514 String Allocation
1515 ***********************************************************************/
1516
1517 /* Lisp_Strings are allocated in string_block structures. When a new
1518 string_block is allocated, all the Lisp_Strings it contains are
1519 added to a free-list string_free_list. When a new Lisp_String is
1520 needed, it is taken from that list. During the sweep phase of GC,
1521 string_blocks that are entirely free are freed, except two which
1522 we keep.
1523
1524 String data is allocated from sblock structures. Strings larger
1525 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1526 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1527
1528 Sblocks consist internally of sdata structures, one for each
1529 Lisp_String. The sdata structure points to the Lisp_String it
1530 belongs to. The Lisp_String points back to the `u.data' member of
1531 its sdata structure.
1532
1533 When a Lisp_String is freed during GC, it is put back on
1534 string_free_list, and its `data' member and its sdata's `string'
1535 pointer is set to null. The size of the string is recorded in the
1536 `u.nbytes' member of the sdata. So, sdata structures that are no
1537 longer used, can be easily recognized, and it's easy to compact the
1538 sblocks of small strings which we do in compact_small_strings. */
1539
1540 /* Size in bytes of an sblock structure used for small strings. This
1541 is 8192 minus malloc overhead. */
1542
1543 #define SBLOCK_SIZE 8188
1544
1545 /* Strings larger than this are considered large strings. String data
1546 for large strings is allocated from individual sblocks. */
1547
1548 #define LARGE_STRING_BYTES 1024
1549
1550 /* Structure describing string memory sub-allocated from an sblock.
1551 This is where the contents of Lisp strings are stored. */
1552
1553 struct sdata
1554 {
1555 /* Back-pointer to the string this sdata belongs to. If null, this
1556 structure is free, and the NBYTES member of the union below
1557 contains the string's byte size (the same value that STRING_BYTES
1558 would return if STRING were non-null). If non-null, STRING_BYTES
1559 (STRING) is the size of the data, and DATA contains the string's
1560 contents. */
1561 struct Lisp_String *string;
1562
1563 #ifdef GC_CHECK_STRING_BYTES
1564
1565 EMACS_INT nbytes;
1566 unsigned char data[1];
1567
1568 #define SDATA_NBYTES(S) (S)->nbytes
1569 #define SDATA_DATA(S) (S)->data
1570
1571 #else /* not GC_CHECK_STRING_BYTES */
1572
1573 union
1574 {
1575 /* When STRING in non-null. */
1576 unsigned char data[1];
1577
1578 /* When STRING is null. */
1579 EMACS_INT nbytes;
1580 } u;
1581
1582
1583 #define SDATA_NBYTES(S) (S)->u.nbytes
1584 #define SDATA_DATA(S) (S)->u.data
1585
1586 #endif /* not GC_CHECK_STRING_BYTES */
1587 };
1588
1589
1590 /* Structure describing a block of memory which is sub-allocated to
1591 obtain string data memory for strings. Blocks for small strings
1592 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1593 as large as needed. */
1594
1595 struct sblock
1596 {
1597 /* Next in list. */
1598 struct sblock *next;
1599
1600 /* Pointer to the next free sdata block. This points past the end
1601 of the sblock if there isn't any space left in this block. */
1602 struct sdata *next_free;
1603
1604 /* Start of data. */
1605 struct sdata first_data;
1606 };
1607
1608 /* Number of Lisp strings in a string_block structure. The 1020 is
1609 1024 minus malloc overhead. */
1610
1611 #define STRING_BLOCK_SIZE \
1612 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1613
1614 /* Structure describing a block from which Lisp_String structures
1615 are allocated. */
1616
1617 struct string_block
1618 {
1619 /* Place `strings' first, to preserve alignment. */
1620 struct Lisp_String strings[STRING_BLOCK_SIZE];
1621 struct string_block *next;
1622 };
1623
1624 /* Head and tail of the list of sblock structures holding Lisp string
1625 data. We always allocate from current_sblock. The NEXT pointers
1626 in the sblock structures go from oldest_sblock to current_sblock. */
1627
1628 static struct sblock *oldest_sblock, *current_sblock;
1629
1630 /* List of sblocks for large strings. */
1631
1632 static struct sblock *large_sblocks;
1633
1634 /* List of string_block structures, and how many there are. */
1635
1636 static struct string_block *string_blocks;
1637 static int n_string_blocks;
1638
1639 /* Free-list of Lisp_Strings. */
1640
1641 static struct Lisp_String *string_free_list;
1642
1643 /* Number of live and free Lisp_Strings. */
1644
1645 static int total_strings, total_free_strings;
1646
1647 /* Number of bytes used by live strings. */
1648
1649 static int total_string_size;
1650
1651 /* Given a pointer to a Lisp_String S which is on the free-list
1652 string_free_list, return a pointer to its successor in the
1653 free-list. */
1654
1655 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1656
1657 /* Return a pointer to the sdata structure belonging to Lisp string S.
1658 S must be live, i.e. S->data must not be null. S->data is actually
1659 a pointer to the `u.data' member of its sdata structure; the
1660 structure starts at a constant offset in front of that. */
1661
1662 #ifdef GC_CHECK_STRING_BYTES
1663
1664 #define SDATA_OF_STRING(S) \
1665 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1666 - sizeof (EMACS_INT)))
1667
1668 #else /* not GC_CHECK_STRING_BYTES */
1669
1670 #define SDATA_OF_STRING(S) \
1671 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1672
1673 #endif /* not GC_CHECK_STRING_BYTES */
1674
1675
1676 #ifdef GC_CHECK_STRING_OVERRUN
1677
1678 /* We check for overrun in string data blocks by appending a small
1679 "cookie" after each allocated string data block, and check for the
1680 presense of this cookie during GC. */
1681
1682 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1683 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1684 { 0xde, 0xad, 0xbe, 0xef };
1685
1686 #else
1687 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1688 #endif
1689
1690 /* Value is the size of an sdata structure large enough to hold NBYTES
1691 bytes of string data. The value returned includes a terminating
1692 NUL byte, the size of the sdata structure, and padding. */
1693
1694 #ifdef GC_CHECK_STRING_BYTES
1695
1696 #define SDATA_SIZE(NBYTES) \
1697 ((sizeof (struct Lisp_String *) \
1698 + (NBYTES) + 1 \
1699 + sizeof (EMACS_INT) \
1700 + sizeof (EMACS_INT) - 1) \
1701 & ~(sizeof (EMACS_INT) - 1))
1702
1703 #else /* not GC_CHECK_STRING_BYTES */
1704
1705 #define SDATA_SIZE(NBYTES) \
1706 ((sizeof (struct Lisp_String *) \
1707 + (NBYTES) + 1 \
1708 + sizeof (EMACS_INT) - 1) \
1709 & ~(sizeof (EMACS_INT) - 1))
1710
1711 #endif /* not GC_CHECK_STRING_BYTES */
1712
1713 /* Extra bytes to allocate for each string. */
1714
1715 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1716
1717 /* Initialize string allocation. Called from init_alloc_once. */
1718
1719 void
1720 init_strings ()
1721 {
1722 total_strings = total_free_strings = total_string_size = 0;
1723 oldest_sblock = current_sblock = large_sblocks = NULL;
1724 string_blocks = NULL;
1725 n_string_blocks = 0;
1726 string_free_list = NULL;
1727 }
1728
1729
1730 #ifdef GC_CHECK_STRING_BYTES
1731
1732 static int check_string_bytes_count;
1733
1734 void check_string_bytes P_ ((int));
1735 void check_sblock P_ ((struct sblock *));
1736
1737 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1738
1739
1740 /* Like GC_STRING_BYTES, but with debugging check. */
1741
1742 int
1743 string_bytes (s)
1744 struct Lisp_String *s;
1745 {
1746 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1747 if (!PURE_POINTER_P (s)
1748 && s->data
1749 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1750 abort ();
1751 return nbytes;
1752 }
1753
1754 /* Check validity of Lisp strings' string_bytes member in B. */
1755
1756 void
1757 check_sblock (b)
1758 struct sblock *b;
1759 {
1760 struct sdata *from, *end, *from_end;
1761
1762 end = b->next_free;
1763
1764 for (from = &b->first_data; from < end; from = from_end)
1765 {
1766 /* Compute the next FROM here because copying below may
1767 overwrite data we need to compute it. */
1768 int nbytes;
1769
1770 /* Check that the string size recorded in the string is the
1771 same as the one recorded in the sdata structure. */
1772 if (from->string)
1773 CHECK_STRING_BYTES (from->string);
1774
1775 if (from->string)
1776 nbytes = GC_STRING_BYTES (from->string);
1777 else
1778 nbytes = SDATA_NBYTES (from);
1779
1780 nbytes = SDATA_SIZE (nbytes);
1781 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1782 }
1783 }
1784
1785
1786 /* Check validity of Lisp strings' string_bytes member. ALL_P
1787 non-zero means check all strings, otherwise check only most
1788 recently allocated strings. Used for hunting a bug. */
1789
1790 void
1791 check_string_bytes (all_p)
1792 int all_p;
1793 {
1794 if (all_p)
1795 {
1796 struct sblock *b;
1797
1798 for (b = large_sblocks; b; b = b->next)
1799 {
1800 struct Lisp_String *s = b->first_data.string;
1801 if (s)
1802 CHECK_STRING_BYTES (s);
1803 }
1804
1805 for (b = oldest_sblock; b; b = b->next)
1806 check_sblock (b);
1807 }
1808 else
1809 check_sblock (current_sblock);
1810 }
1811
1812 #endif /* GC_CHECK_STRING_BYTES */
1813
1814 #ifdef GC_CHECK_STRING_FREE_LIST
1815
1816 /* Walk through the string free list looking for bogus next pointers.
1817 This may catch buffer overrun from a previous string. */
1818
1819 static void
1820 check_string_free_list ()
1821 {
1822 struct Lisp_String *s;
1823
1824 /* Pop a Lisp_String off the free-list. */
1825 s = string_free_list;
1826 while (s != NULL)
1827 {
1828 if ((unsigned)s < 1024)
1829 abort();
1830 s = NEXT_FREE_LISP_STRING (s);
1831 }
1832 }
1833 #else
1834 #define check_string_free_list()
1835 #endif
1836
1837 /* Return a new Lisp_String. */
1838
1839 static struct Lisp_String *
1840 allocate_string ()
1841 {
1842 struct Lisp_String *s;
1843
1844 /* If the free-list is empty, allocate a new string_block, and
1845 add all the Lisp_Strings in it to the free-list. */
1846 if (string_free_list == NULL)
1847 {
1848 struct string_block *b;
1849 int i;
1850
1851 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1852 bzero (b, sizeof *b);
1853 b->next = string_blocks;
1854 string_blocks = b;
1855 ++n_string_blocks;
1856
1857 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1858 {
1859 s = b->strings + i;
1860 NEXT_FREE_LISP_STRING (s) = string_free_list;
1861 string_free_list = s;
1862 }
1863
1864 total_free_strings += STRING_BLOCK_SIZE;
1865 }
1866
1867 check_string_free_list ();
1868
1869 /* Pop a Lisp_String off the free-list. */
1870 s = string_free_list;
1871 string_free_list = NEXT_FREE_LISP_STRING (s);
1872
1873 /* Probably not strictly necessary, but play it safe. */
1874 bzero (s, sizeof *s);
1875
1876 --total_free_strings;
1877 ++total_strings;
1878 ++strings_consed;
1879 consing_since_gc += sizeof *s;
1880
1881 #ifdef GC_CHECK_STRING_BYTES
1882 if (!noninteractive
1883 #ifdef MAC_OS8
1884 && current_sblock
1885 #endif
1886 )
1887 {
1888 if (++check_string_bytes_count == 200)
1889 {
1890 check_string_bytes_count = 0;
1891 check_string_bytes (1);
1892 }
1893 else
1894 check_string_bytes (0);
1895 }
1896 #endif /* GC_CHECK_STRING_BYTES */
1897
1898 return s;
1899 }
1900
1901
1902 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1903 plus a NUL byte at the end. Allocate an sdata structure for S, and
1904 set S->data to its `u.data' member. Store a NUL byte at the end of
1905 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1906 S->data if it was initially non-null. */
1907
1908 void
1909 allocate_string_data (s, nchars, nbytes)
1910 struct Lisp_String *s;
1911 int nchars, nbytes;
1912 {
1913 struct sdata *data, *old_data;
1914 struct sblock *b;
1915 int needed, old_nbytes;
1916
1917 /* Determine the number of bytes needed to store NBYTES bytes
1918 of string data. */
1919 needed = SDATA_SIZE (nbytes);
1920
1921 if (nbytes > LARGE_STRING_BYTES)
1922 {
1923 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1924
1925 #ifdef DOUG_LEA_MALLOC
1926 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1927 because mapped region contents are not preserved in
1928 a dumped Emacs.
1929
1930 In case you think of allowing it in a dumped Emacs at the
1931 cost of not being able to re-dump, there's another reason:
1932 mmap'ed data typically have an address towards the top of the
1933 address space, which won't fit into an EMACS_INT (at least on
1934 32-bit systems with the current tagging scheme). --fx */
1935 mallopt (M_MMAP_MAX, 0);
1936 #endif
1937
1938 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1939
1940 #ifdef DOUG_LEA_MALLOC
1941 /* Back to a reasonable maximum of mmap'ed areas. */
1942 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1943 #endif
1944
1945 b->next_free = &b->first_data;
1946 b->first_data.string = NULL;
1947 b->next = large_sblocks;
1948 large_sblocks = b;
1949 }
1950 else if (current_sblock == NULL
1951 || (((char *) current_sblock + SBLOCK_SIZE
1952 - (char *) current_sblock->next_free)
1953 < (needed + GC_STRING_EXTRA)))
1954 {
1955 /* Not enough room in the current sblock. */
1956 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1957 b->next_free = &b->first_data;
1958 b->first_data.string = NULL;
1959 b->next = NULL;
1960
1961 if (current_sblock)
1962 current_sblock->next = b;
1963 else
1964 oldest_sblock = b;
1965 current_sblock = b;
1966 }
1967 else
1968 b = current_sblock;
1969
1970 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1971 old_nbytes = GC_STRING_BYTES (s);
1972
1973 data = b->next_free;
1974 data->string = s;
1975 s->data = SDATA_DATA (data);
1976 #ifdef GC_CHECK_STRING_BYTES
1977 SDATA_NBYTES (data) = nbytes;
1978 #endif
1979 s->size = nchars;
1980 s->size_byte = nbytes;
1981 s->data[nbytes] = '\0';
1982 #ifdef GC_CHECK_STRING_OVERRUN
1983 bcopy (string_overrun_cookie, (char *) data + needed,
1984 GC_STRING_OVERRUN_COOKIE_SIZE);
1985 #endif
1986 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1987
1988 /* If S had already data assigned, mark that as free by setting its
1989 string back-pointer to null, and recording the size of the data
1990 in it. */
1991 if (old_data)
1992 {
1993 SDATA_NBYTES (old_data) = old_nbytes;
1994 old_data->string = NULL;
1995 }
1996
1997 consing_since_gc += needed;
1998 }
1999
2000
2001 /* Sweep and compact strings. */
2002
2003 static void
2004 sweep_strings ()
2005 {
2006 struct string_block *b, *next;
2007 struct string_block *live_blocks = NULL;
2008
2009 string_free_list = NULL;
2010 total_strings = total_free_strings = 0;
2011 total_string_size = 0;
2012
2013 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2014 for (b = string_blocks; b; b = next)
2015 {
2016 int i, nfree = 0;
2017 struct Lisp_String *free_list_before = string_free_list;
2018
2019 next = b->next;
2020
2021 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2022 {
2023 struct Lisp_String *s = b->strings + i;
2024
2025 if (s->data)
2026 {
2027 /* String was not on free-list before. */
2028 if (STRING_MARKED_P (s))
2029 {
2030 /* String is live; unmark it and its intervals. */
2031 UNMARK_STRING (s);
2032
2033 if (!NULL_INTERVAL_P (s->intervals))
2034 UNMARK_BALANCE_INTERVALS (s->intervals);
2035
2036 ++total_strings;
2037 total_string_size += STRING_BYTES (s);
2038 }
2039 else
2040 {
2041 /* String is dead. Put it on the free-list. */
2042 struct sdata *data = SDATA_OF_STRING (s);
2043
2044 /* Save the size of S in its sdata so that we know
2045 how large that is. Reset the sdata's string
2046 back-pointer so that we know it's free. */
2047 #ifdef GC_CHECK_STRING_BYTES
2048 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2049 abort ();
2050 #else
2051 data->u.nbytes = GC_STRING_BYTES (s);
2052 #endif
2053 data->string = NULL;
2054
2055 /* Reset the strings's `data' member so that we
2056 know it's free. */
2057 s->data = NULL;
2058
2059 /* Put the string on the free-list. */
2060 NEXT_FREE_LISP_STRING (s) = string_free_list;
2061 string_free_list = s;
2062 ++nfree;
2063 }
2064 }
2065 else
2066 {
2067 /* S was on the free-list before. Put it there again. */
2068 NEXT_FREE_LISP_STRING (s) = string_free_list;
2069 string_free_list = s;
2070 ++nfree;
2071 }
2072 }
2073
2074 /* Free blocks that contain free Lisp_Strings only, except
2075 the first two of them. */
2076 if (nfree == STRING_BLOCK_SIZE
2077 && total_free_strings > STRING_BLOCK_SIZE)
2078 {
2079 lisp_free (b);
2080 --n_string_blocks;
2081 string_free_list = free_list_before;
2082 }
2083 else
2084 {
2085 total_free_strings += nfree;
2086 b->next = live_blocks;
2087 live_blocks = b;
2088 }
2089 }
2090
2091 check_string_free_list ();
2092
2093 string_blocks = live_blocks;
2094 free_large_strings ();
2095 compact_small_strings ();
2096
2097 check_string_free_list ();
2098 }
2099
2100
2101 /* Free dead large strings. */
2102
2103 static void
2104 free_large_strings ()
2105 {
2106 struct sblock *b, *next;
2107 struct sblock *live_blocks = NULL;
2108
2109 for (b = large_sblocks; b; b = next)
2110 {
2111 next = b->next;
2112
2113 if (b->first_data.string == NULL)
2114 lisp_free (b);
2115 else
2116 {
2117 b->next = live_blocks;
2118 live_blocks = b;
2119 }
2120 }
2121
2122 large_sblocks = live_blocks;
2123 }
2124
2125
2126 /* Compact data of small strings. Free sblocks that don't contain
2127 data of live strings after compaction. */
2128
2129 static void
2130 compact_small_strings ()
2131 {
2132 struct sblock *b, *tb, *next;
2133 struct sdata *from, *to, *end, *tb_end;
2134 struct sdata *to_end, *from_end;
2135
2136 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2137 to, and TB_END is the end of TB. */
2138 tb = oldest_sblock;
2139 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2140 to = &tb->first_data;
2141
2142 /* Step through the blocks from the oldest to the youngest. We
2143 expect that old blocks will stabilize over time, so that less
2144 copying will happen this way. */
2145 for (b = oldest_sblock; b; b = b->next)
2146 {
2147 end = b->next_free;
2148 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2149
2150 for (from = &b->first_data; from < end; from = from_end)
2151 {
2152 /* Compute the next FROM here because copying below may
2153 overwrite data we need to compute it. */
2154 int nbytes;
2155
2156 #ifdef GC_CHECK_STRING_BYTES
2157 /* Check that the string size recorded in the string is the
2158 same as the one recorded in the sdata structure. */
2159 if (from->string
2160 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2161 abort ();
2162 #endif /* GC_CHECK_STRING_BYTES */
2163
2164 if (from->string)
2165 nbytes = GC_STRING_BYTES (from->string);
2166 else
2167 nbytes = SDATA_NBYTES (from);
2168
2169 if (nbytes > LARGE_STRING_BYTES)
2170 abort ();
2171
2172 nbytes = SDATA_SIZE (nbytes);
2173 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2174
2175 #ifdef GC_CHECK_STRING_OVERRUN
2176 if (bcmp (string_overrun_cookie,
2177 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2178 GC_STRING_OVERRUN_COOKIE_SIZE))
2179 abort ();
2180 #endif
2181
2182 /* FROM->string non-null means it's alive. Copy its data. */
2183 if (from->string)
2184 {
2185 /* If TB is full, proceed with the next sblock. */
2186 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2187 if (to_end > tb_end)
2188 {
2189 tb->next_free = to;
2190 tb = tb->next;
2191 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2192 to = &tb->first_data;
2193 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2194 }
2195
2196 /* Copy, and update the string's `data' pointer. */
2197 if (from != to)
2198 {
2199 xassert (tb != b || to <= from);
2200 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2201 to->string->data = SDATA_DATA (to);
2202 }
2203
2204 /* Advance past the sdata we copied to. */
2205 to = to_end;
2206 }
2207 }
2208 }
2209
2210 /* The rest of the sblocks following TB don't contain live data, so
2211 we can free them. */
2212 for (b = tb->next; b; b = next)
2213 {
2214 next = b->next;
2215 lisp_free (b);
2216 }
2217
2218 tb->next_free = to;
2219 tb->next = NULL;
2220 current_sblock = tb;
2221 }
2222
2223
2224 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2225 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2226 LENGTH must be an integer.
2227 INIT must be an integer that represents a character. */)
2228 (length, init)
2229 Lisp_Object length, init;
2230 {
2231 register Lisp_Object val;
2232 register unsigned char *p, *end;
2233 int c, nbytes;
2234
2235 CHECK_NATNUM (length);
2236 CHECK_NUMBER (init);
2237
2238 c = XINT (init);
2239 if (SINGLE_BYTE_CHAR_P (c))
2240 {
2241 nbytes = XINT (length);
2242 val = make_uninit_string (nbytes);
2243 p = SDATA (val);
2244 end = p + SCHARS (val);
2245 while (p != end)
2246 *p++ = c;
2247 }
2248 else
2249 {
2250 unsigned char str[MAX_MULTIBYTE_LENGTH];
2251 int len = CHAR_STRING (c, str);
2252
2253 nbytes = len * XINT (length);
2254 val = make_uninit_multibyte_string (XINT (length), nbytes);
2255 p = SDATA (val);
2256 end = p + nbytes;
2257 while (p != end)
2258 {
2259 bcopy (str, p, len);
2260 p += len;
2261 }
2262 }
2263
2264 *p = 0;
2265 return val;
2266 }
2267
2268
2269 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2270 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
2271 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2272 (length, init)
2273 Lisp_Object length, init;
2274 {
2275 register Lisp_Object val;
2276 struct Lisp_Bool_Vector *p;
2277 int real_init, i;
2278 int length_in_chars, length_in_elts, bits_per_value;
2279
2280 CHECK_NATNUM (length);
2281
2282 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2283
2284 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2285 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2286 / BOOL_VECTOR_BITS_PER_CHAR);
2287
2288 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2289 slot `size' of the struct Lisp_Bool_Vector. */
2290 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2291 p = XBOOL_VECTOR (val);
2292
2293 /* Get rid of any bits that would cause confusion. */
2294 p->vector_size = 0;
2295 XSETBOOL_VECTOR (val, p);
2296 p->size = XFASTINT (length);
2297
2298 real_init = (NILP (init) ? 0 : -1);
2299 for (i = 0; i < length_in_chars ; i++)
2300 p->data[i] = real_init;
2301
2302 /* Clear the extraneous bits in the last byte. */
2303 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2304 XBOOL_VECTOR (val)->data[length_in_chars - 1]
2305 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2306
2307 return val;
2308 }
2309
2310
2311 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2312 of characters from the contents. This string may be unibyte or
2313 multibyte, depending on the contents. */
2314
2315 Lisp_Object
2316 make_string (contents, nbytes)
2317 const char *contents;
2318 int nbytes;
2319 {
2320 register Lisp_Object val;
2321 int nchars, multibyte_nbytes;
2322
2323 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2324 if (nbytes == nchars || nbytes != multibyte_nbytes)
2325 /* CONTENTS contains no multibyte sequences or contains an invalid
2326 multibyte sequence. We must make unibyte string. */
2327 val = make_unibyte_string (contents, nbytes);
2328 else
2329 val = make_multibyte_string (contents, nchars, nbytes);
2330 return val;
2331 }
2332
2333
2334 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2335
2336 Lisp_Object
2337 make_unibyte_string (contents, length)
2338 const char *contents;
2339 int length;
2340 {
2341 register Lisp_Object val;
2342 val = make_uninit_string (length);
2343 bcopy (contents, SDATA (val), length);
2344 STRING_SET_UNIBYTE (val);
2345 return val;
2346 }
2347
2348
2349 /* Make a multibyte string from NCHARS characters occupying NBYTES
2350 bytes at CONTENTS. */
2351
2352 Lisp_Object
2353 make_multibyte_string (contents, nchars, nbytes)
2354 const char *contents;
2355 int nchars, nbytes;
2356 {
2357 register Lisp_Object val;
2358 val = make_uninit_multibyte_string (nchars, nbytes);
2359 bcopy (contents, SDATA (val), nbytes);
2360 return val;
2361 }
2362
2363
2364 /* Make a string from NCHARS characters occupying NBYTES bytes at
2365 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2366
2367 Lisp_Object
2368 make_string_from_bytes (contents, nchars, nbytes)
2369 const char *contents;
2370 int nchars, nbytes;
2371 {
2372 register Lisp_Object val;
2373 val = make_uninit_multibyte_string (nchars, nbytes);
2374 bcopy (contents, SDATA (val), nbytes);
2375 if (SBYTES (val) == SCHARS (val))
2376 STRING_SET_UNIBYTE (val);
2377 return val;
2378 }
2379
2380
2381 /* Make a string from NCHARS characters occupying NBYTES bytes at
2382 CONTENTS. The argument MULTIBYTE controls whether to label the
2383 string as multibyte. If NCHARS is negative, it counts the number of
2384 characters by itself. */
2385
2386 Lisp_Object
2387 make_specified_string (contents, nchars, nbytes, multibyte)
2388 const char *contents;
2389 int nchars, nbytes;
2390 int multibyte;
2391 {
2392 register Lisp_Object val;
2393
2394 if (nchars < 0)
2395 {
2396 if (multibyte)
2397 nchars = multibyte_chars_in_text (contents, nbytes);
2398 else
2399 nchars = nbytes;
2400 }
2401 val = make_uninit_multibyte_string (nchars, nbytes);
2402 bcopy (contents, SDATA (val), nbytes);
2403 if (!multibyte)
2404 STRING_SET_UNIBYTE (val);
2405 return val;
2406 }
2407
2408
2409 /* Make a string from the data at STR, treating it as multibyte if the
2410 data warrants. */
2411
2412 Lisp_Object
2413 build_string (str)
2414 const char *str;
2415 {
2416 return make_string (str, strlen (str));
2417 }
2418
2419
2420 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2421 occupying LENGTH bytes. */
2422
2423 Lisp_Object
2424 make_uninit_string (length)
2425 int length;
2426 {
2427 Lisp_Object val;
2428 val = make_uninit_multibyte_string (length, length);
2429 STRING_SET_UNIBYTE (val);
2430 return val;
2431 }
2432
2433
2434 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2435 which occupy NBYTES bytes. */
2436
2437 Lisp_Object
2438 make_uninit_multibyte_string (nchars, nbytes)
2439 int nchars, nbytes;
2440 {
2441 Lisp_Object string;
2442 struct Lisp_String *s;
2443
2444 if (nchars < 0)
2445 abort ();
2446
2447 s = allocate_string ();
2448 allocate_string_data (s, nchars, nbytes);
2449 XSETSTRING (string, s);
2450 string_chars_consed += nbytes;
2451 return string;
2452 }
2453
2454
2455 \f
2456 /***********************************************************************
2457 Float Allocation
2458 ***********************************************************************/
2459
2460 /* We store float cells inside of float_blocks, allocating a new
2461 float_block with malloc whenever necessary. Float cells reclaimed
2462 by GC are put on a free list to be reallocated before allocating
2463 any new float cells from the latest float_block. */
2464
2465 #define FLOAT_BLOCK_SIZE \
2466 (((BLOCK_BYTES - sizeof (struct float_block *) \
2467 /* The compiler might add padding at the end. */ \
2468 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2469 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2470
2471 #define GETMARKBIT(block,n) \
2472 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2473 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2474 & 1)
2475
2476 #define SETMARKBIT(block,n) \
2477 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2478 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2479
2480 #define UNSETMARKBIT(block,n) \
2481 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2482 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2483
2484 #define FLOAT_BLOCK(fptr) \
2485 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2486
2487 #define FLOAT_INDEX(fptr) \
2488 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2489
2490 struct float_block
2491 {
2492 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2493 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2494 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2495 struct float_block *next;
2496 };
2497
2498 #define FLOAT_MARKED_P(fptr) \
2499 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2500
2501 #define FLOAT_MARK(fptr) \
2502 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2503
2504 #define FLOAT_UNMARK(fptr) \
2505 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2506
2507 /* Current float_block. */
2508
2509 struct float_block *float_block;
2510
2511 /* Index of first unused Lisp_Float in the current float_block. */
2512
2513 int float_block_index;
2514
2515 /* Total number of float blocks now in use. */
2516
2517 int n_float_blocks;
2518
2519 /* Free-list of Lisp_Floats. */
2520
2521 struct Lisp_Float *float_free_list;
2522
2523
2524 /* Initialize float allocation. */
2525
2526 void
2527 init_float ()
2528 {
2529 float_block = NULL;
2530 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2531 float_free_list = 0;
2532 n_float_blocks = 0;
2533 }
2534
2535
2536 /* Explicitly free a float cell by putting it on the free-list. */
2537
2538 void
2539 free_float (ptr)
2540 struct Lisp_Float *ptr;
2541 {
2542 *(struct Lisp_Float **)&ptr->data = float_free_list;
2543 float_free_list = ptr;
2544 }
2545
2546
2547 /* Return a new float object with value FLOAT_VALUE. */
2548
2549 Lisp_Object
2550 make_float (float_value)
2551 double float_value;
2552 {
2553 register Lisp_Object val;
2554
2555 if (float_free_list)
2556 {
2557 /* We use the data field for chaining the free list
2558 so that we won't use the same field that has the mark bit. */
2559 XSETFLOAT (val, float_free_list);
2560 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2561 }
2562 else
2563 {
2564 if (float_block_index == FLOAT_BLOCK_SIZE)
2565 {
2566 register struct float_block *new;
2567
2568 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2569 MEM_TYPE_FLOAT);
2570 new->next = float_block;
2571 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2572 float_block = new;
2573 float_block_index = 0;
2574 n_float_blocks++;
2575 }
2576 XSETFLOAT (val, &float_block->floats[float_block_index]);
2577 float_block_index++;
2578 }
2579
2580 XFLOAT_DATA (val) = float_value;
2581 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2582 consing_since_gc += sizeof (struct Lisp_Float);
2583 floats_consed++;
2584 return val;
2585 }
2586
2587
2588 \f
2589 /***********************************************************************
2590 Cons Allocation
2591 ***********************************************************************/
2592
2593 /* We store cons cells inside of cons_blocks, allocating a new
2594 cons_block with malloc whenever necessary. Cons cells reclaimed by
2595 GC are put on a free list to be reallocated before allocating
2596 any new cons cells from the latest cons_block. */
2597
2598 #define CONS_BLOCK_SIZE \
2599 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2600 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2601
2602 #define CONS_BLOCK(fptr) \
2603 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2604
2605 #define CONS_INDEX(fptr) \
2606 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2607
2608 struct cons_block
2609 {
2610 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2611 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2612 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2613 struct cons_block *next;
2614 };
2615
2616 #define CONS_MARKED_P(fptr) \
2617 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2618
2619 #define CONS_MARK(fptr) \
2620 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2621
2622 #define CONS_UNMARK(fptr) \
2623 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2624
2625 /* Current cons_block. */
2626
2627 struct cons_block *cons_block;
2628
2629 /* Index of first unused Lisp_Cons in the current block. */
2630
2631 int cons_block_index;
2632
2633 /* Free-list of Lisp_Cons structures. */
2634
2635 struct Lisp_Cons *cons_free_list;
2636
2637 /* Total number of cons blocks now in use. */
2638
2639 int n_cons_blocks;
2640
2641
2642 /* Initialize cons allocation. */
2643
2644 void
2645 init_cons ()
2646 {
2647 cons_block = NULL;
2648 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2649 cons_free_list = 0;
2650 n_cons_blocks = 0;
2651 }
2652
2653
2654 /* Explicitly free a cons cell by putting it on the free-list. */
2655
2656 void
2657 free_cons (ptr)
2658 struct Lisp_Cons *ptr;
2659 {
2660 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2661 #if GC_MARK_STACK
2662 ptr->car = Vdead;
2663 #endif
2664 cons_free_list = ptr;
2665 }
2666
2667 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2668 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2669 (car, cdr)
2670 Lisp_Object car, cdr;
2671 {
2672 register Lisp_Object val;
2673
2674 if (cons_free_list)
2675 {
2676 /* We use the cdr for chaining the free list
2677 so that we won't use the same field that has the mark bit. */
2678 XSETCONS (val, cons_free_list);
2679 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2680 }
2681 else
2682 {
2683 if (cons_block_index == CONS_BLOCK_SIZE)
2684 {
2685 register struct cons_block *new;
2686 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2687 MEM_TYPE_CONS);
2688 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2689 new->next = cons_block;
2690 cons_block = new;
2691 cons_block_index = 0;
2692 n_cons_blocks++;
2693 }
2694 XSETCONS (val, &cons_block->conses[cons_block_index]);
2695 cons_block_index++;
2696 }
2697
2698 XSETCAR (val, car);
2699 XSETCDR (val, cdr);
2700 eassert (!CONS_MARKED_P (XCONS (val)));
2701 consing_since_gc += sizeof (struct Lisp_Cons);
2702 cons_cells_consed++;
2703 return val;
2704 }
2705
2706 /* Get an error now if there's any junk in the cons free list. */
2707 void
2708 check_cons_list ()
2709 {
2710 #ifdef GC_CHECK_CONS_LIST
2711 struct Lisp_Cons *tail = cons_free_list;
2712
2713 while (tail)
2714 tail = *(struct Lisp_Cons **)&tail->cdr;
2715 #endif
2716 }
2717
2718 /* Make a list of 2, 3, 4 or 5 specified objects. */
2719
2720 Lisp_Object
2721 list2 (arg1, arg2)
2722 Lisp_Object arg1, arg2;
2723 {
2724 return Fcons (arg1, Fcons (arg2, Qnil));
2725 }
2726
2727
2728 Lisp_Object
2729 list3 (arg1, arg2, arg3)
2730 Lisp_Object arg1, arg2, arg3;
2731 {
2732 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2733 }
2734
2735
2736 Lisp_Object
2737 list4 (arg1, arg2, arg3, arg4)
2738 Lisp_Object arg1, arg2, arg3, arg4;
2739 {
2740 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2741 }
2742
2743
2744 Lisp_Object
2745 list5 (arg1, arg2, arg3, arg4, arg5)
2746 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2747 {
2748 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2749 Fcons (arg5, Qnil)))));
2750 }
2751
2752
2753 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2754 doc: /* Return a newly created list with specified arguments as elements.
2755 Any number of arguments, even zero arguments, are allowed.
2756 usage: (list &rest OBJECTS) */)
2757 (nargs, args)
2758 int nargs;
2759 register Lisp_Object *args;
2760 {
2761 register Lisp_Object val;
2762 val = Qnil;
2763
2764 while (nargs > 0)
2765 {
2766 nargs--;
2767 val = Fcons (args[nargs], val);
2768 }
2769 return val;
2770 }
2771
2772
2773 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2774 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2775 (length, init)
2776 register Lisp_Object length, init;
2777 {
2778 register Lisp_Object val;
2779 register int size;
2780
2781 CHECK_NATNUM (length);
2782 size = XFASTINT (length);
2783
2784 val = Qnil;
2785 while (size > 0)
2786 {
2787 val = Fcons (init, val);
2788 --size;
2789
2790 if (size > 0)
2791 {
2792 val = Fcons (init, val);
2793 --size;
2794
2795 if (size > 0)
2796 {
2797 val = Fcons (init, val);
2798 --size;
2799
2800 if (size > 0)
2801 {
2802 val = Fcons (init, val);
2803 --size;
2804
2805 if (size > 0)
2806 {
2807 val = Fcons (init, val);
2808 --size;
2809 }
2810 }
2811 }
2812 }
2813
2814 QUIT;
2815 }
2816
2817 return val;
2818 }
2819
2820
2821 \f
2822 /***********************************************************************
2823 Vector Allocation
2824 ***********************************************************************/
2825
2826 /* Singly-linked list of all vectors. */
2827
2828 struct Lisp_Vector *all_vectors;
2829
2830 /* Total number of vector-like objects now in use. */
2831
2832 int n_vectors;
2833
2834
2835 /* Value is a pointer to a newly allocated Lisp_Vector structure
2836 with room for LEN Lisp_Objects. */
2837
2838 static struct Lisp_Vector *
2839 allocate_vectorlike (len, type)
2840 EMACS_INT len;
2841 enum mem_type type;
2842 {
2843 struct Lisp_Vector *p;
2844 size_t nbytes;
2845
2846 #ifdef DOUG_LEA_MALLOC
2847 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2848 because mapped region contents are not preserved in
2849 a dumped Emacs. */
2850 BLOCK_INPUT;
2851 mallopt (M_MMAP_MAX, 0);
2852 UNBLOCK_INPUT;
2853 #endif
2854
2855 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2856 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2857
2858 #ifdef DOUG_LEA_MALLOC
2859 /* Back to a reasonable maximum of mmap'ed areas. */
2860 BLOCK_INPUT;
2861 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2862 UNBLOCK_INPUT;
2863 #endif
2864
2865 consing_since_gc += nbytes;
2866 vector_cells_consed += len;
2867
2868 p->next = all_vectors;
2869 all_vectors = p;
2870 ++n_vectors;
2871 return p;
2872 }
2873
2874
2875 /* Allocate a vector with NSLOTS slots. */
2876
2877 struct Lisp_Vector *
2878 allocate_vector (nslots)
2879 EMACS_INT nslots;
2880 {
2881 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2882 v->size = nslots;
2883 return v;
2884 }
2885
2886
2887 /* Allocate other vector-like structures. */
2888
2889 struct Lisp_Hash_Table *
2890 allocate_hash_table ()
2891 {
2892 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2893 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2894 EMACS_INT i;
2895
2896 v->size = len;
2897 for (i = 0; i < len; ++i)
2898 v->contents[i] = Qnil;
2899
2900 return (struct Lisp_Hash_Table *) v;
2901 }
2902
2903
2904 struct window *
2905 allocate_window ()
2906 {
2907 EMACS_INT len = VECSIZE (struct window);
2908 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2909 EMACS_INT i;
2910
2911 for (i = 0; i < len; ++i)
2912 v->contents[i] = Qnil;
2913 v->size = len;
2914
2915 return (struct window *) v;
2916 }
2917
2918
2919 struct frame *
2920 allocate_frame ()
2921 {
2922 EMACS_INT len = VECSIZE (struct frame);
2923 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2924 EMACS_INT i;
2925
2926 for (i = 0; i < len; ++i)
2927 v->contents[i] = make_number (0);
2928 v->size = len;
2929 return (struct frame *) v;
2930 }
2931
2932
2933 struct Lisp_Process *
2934 allocate_process ()
2935 {
2936 EMACS_INT len = VECSIZE (struct Lisp_Process);
2937 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2938 EMACS_INT i;
2939
2940 for (i = 0; i < len; ++i)
2941 v->contents[i] = Qnil;
2942 v->size = len;
2943
2944 return (struct Lisp_Process *) v;
2945 }
2946
2947
2948 struct Lisp_Vector *
2949 allocate_other_vector (len)
2950 EMACS_INT len;
2951 {
2952 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2953 EMACS_INT i;
2954
2955 for (i = 0; i < len; ++i)
2956 v->contents[i] = Qnil;
2957 v->size = len;
2958
2959 return v;
2960 }
2961
2962
2963 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2964 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2965 See also the function `vector'. */)
2966 (length, init)
2967 register Lisp_Object length, init;
2968 {
2969 Lisp_Object vector;
2970 register EMACS_INT sizei;
2971 register int index;
2972 register struct Lisp_Vector *p;
2973
2974 CHECK_NATNUM (length);
2975 sizei = XFASTINT (length);
2976
2977 p = allocate_vector (sizei);
2978 for (index = 0; index < sizei; index++)
2979 p->contents[index] = init;
2980
2981 XSETVECTOR (vector, p);
2982 return vector;
2983 }
2984
2985
2986 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
2987 doc: /* Return a newly created char-table, with purpose PURPOSE.
2988 Each element is initialized to INIT, which defaults to nil.
2989 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
2990 The property's value should be an integer between 0 and 10. */)
2991 (purpose, init)
2992 register Lisp_Object purpose, init;
2993 {
2994 Lisp_Object vector;
2995 Lisp_Object n;
2996 CHECK_SYMBOL (purpose);
2997 n = Fget (purpose, Qchar_table_extra_slots);
2998 CHECK_NUMBER (n);
2999 if (XINT (n) < 0 || XINT (n) > 10)
3000 args_out_of_range (n, Qnil);
3001 /* Add 2 to the size for the defalt and parent slots. */
3002 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
3003 init);
3004 XCHAR_TABLE (vector)->top = Qt;
3005 XCHAR_TABLE (vector)->parent = Qnil;
3006 XCHAR_TABLE (vector)->purpose = purpose;
3007 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3008 return vector;
3009 }
3010
3011
3012 /* Return a newly created sub char table with default value DEFALT.
3013 Since a sub char table does not appear as a top level Emacs Lisp
3014 object, we don't need a Lisp interface to make it. */
3015
3016 Lisp_Object
3017 make_sub_char_table (defalt)
3018 Lisp_Object defalt;
3019 {
3020 Lisp_Object vector
3021 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
3022 XCHAR_TABLE (vector)->top = Qnil;
3023 XCHAR_TABLE (vector)->defalt = defalt;
3024 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3025 return vector;
3026 }
3027
3028
3029 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3030 doc: /* Return a newly created vector with specified arguments as elements.
3031 Any number of arguments, even zero arguments, are allowed.
3032 usage: (vector &rest OBJECTS) */)
3033 (nargs, args)
3034 register int nargs;
3035 Lisp_Object *args;
3036 {
3037 register Lisp_Object len, val;
3038 register int index;
3039 register struct Lisp_Vector *p;
3040
3041 XSETFASTINT (len, nargs);
3042 val = Fmake_vector (len, Qnil);
3043 p = XVECTOR (val);
3044 for (index = 0; index < nargs; index++)
3045 p->contents[index] = args[index];
3046 return val;
3047 }
3048
3049
3050 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3051 doc: /* Create a byte-code object with specified arguments as elements.
3052 The arguments should be the arglist, bytecode-string, constant vector,
3053 stack size, (optional) doc string, and (optional) interactive spec.
3054 The first four arguments are required; at most six have any
3055 significance.
3056 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3057 (nargs, args)
3058 register int nargs;
3059 Lisp_Object *args;
3060 {
3061 register Lisp_Object len, val;
3062 register int index;
3063 register struct Lisp_Vector *p;
3064
3065 XSETFASTINT (len, nargs);
3066 if (!NILP (Vpurify_flag))
3067 val = make_pure_vector ((EMACS_INT) nargs);
3068 else
3069 val = Fmake_vector (len, Qnil);
3070
3071 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3072 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3073 earlier because they produced a raw 8-bit string for byte-code
3074 and now such a byte-code string is loaded as multibyte while
3075 raw 8-bit characters converted to multibyte form. Thus, now we
3076 must convert them back to the original unibyte form. */
3077 args[1] = Fstring_as_unibyte (args[1]);
3078
3079 p = XVECTOR (val);
3080 for (index = 0; index < nargs; index++)
3081 {
3082 if (!NILP (Vpurify_flag))
3083 args[index] = Fpurecopy (args[index]);
3084 p->contents[index] = args[index];
3085 }
3086 XSETCOMPILED (val, p);
3087 return val;
3088 }
3089
3090
3091 \f
3092 /***********************************************************************
3093 Symbol Allocation
3094 ***********************************************************************/
3095
3096 /* Each symbol_block is just under 1020 bytes long, since malloc
3097 really allocates in units of powers of two and uses 4 bytes for its
3098 own overhead. */
3099
3100 #define SYMBOL_BLOCK_SIZE \
3101 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3102
3103 struct symbol_block
3104 {
3105 /* Place `symbols' first, to preserve alignment. */
3106 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3107 struct symbol_block *next;
3108 };
3109
3110 /* Current symbol block and index of first unused Lisp_Symbol
3111 structure in it. */
3112
3113 struct symbol_block *symbol_block;
3114 int symbol_block_index;
3115
3116 /* List of free symbols. */
3117
3118 struct Lisp_Symbol *symbol_free_list;
3119
3120 /* Total number of symbol blocks now in use. */
3121
3122 int n_symbol_blocks;
3123
3124
3125 /* Initialize symbol allocation. */
3126
3127 void
3128 init_symbol ()
3129 {
3130 symbol_block = NULL;
3131 symbol_block_index = SYMBOL_BLOCK_SIZE;
3132 symbol_free_list = 0;
3133 n_symbol_blocks = 0;
3134 }
3135
3136
3137 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3138 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3139 Its value and function definition are void, and its property list is nil. */)
3140 (name)
3141 Lisp_Object name;
3142 {
3143 register Lisp_Object val;
3144 register struct Lisp_Symbol *p;
3145
3146 CHECK_STRING (name);
3147
3148 if (symbol_free_list)
3149 {
3150 XSETSYMBOL (val, symbol_free_list);
3151 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
3152 }
3153 else
3154 {
3155 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3156 {
3157 struct symbol_block *new;
3158 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3159 MEM_TYPE_SYMBOL);
3160 new->next = symbol_block;
3161 symbol_block = new;
3162 symbol_block_index = 0;
3163 n_symbol_blocks++;
3164 }
3165 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3166 symbol_block_index++;
3167 }
3168
3169 p = XSYMBOL (val);
3170 p->xname = name;
3171 p->plist = Qnil;
3172 p->value = Qunbound;
3173 p->function = Qunbound;
3174 p->next = NULL;
3175 p->gcmarkbit = 0;
3176 p->interned = SYMBOL_UNINTERNED;
3177 p->constant = 0;
3178 p->indirect_variable = 0;
3179 consing_since_gc += sizeof (struct Lisp_Symbol);
3180 symbols_consed++;
3181 return val;
3182 }
3183
3184
3185 \f
3186 /***********************************************************************
3187 Marker (Misc) Allocation
3188 ***********************************************************************/
3189
3190 /* Allocation of markers and other objects that share that structure.
3191 Works like allocation of conses. */
3192
3193 #define MARKER_BLOCK_SIZE \
3194 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3195
3196 struct marker_block
3197 {
3198 /* Place `markers' first, to preserve alignment. */
3199 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3200 struct marker_block *next;
3201 };
3202
3203 struct marker_block *marker_block;
3204 int marker_block_index;
3205
3206 union Lisp_Misc *marker_free_list;
3207
3208 /* Total number of marker blocks now in use. */
3209
3210 int n_marker_blocks;
3211
3212 void
3213 init_marker ()
3214 {
3215 marker_block = NULL;
3216 marker_block_index = MARKER_BLOCK_SIZE;
3217 marker_free_list = 0;
3218 n_marker_blocks = 0;
3219 }
3220
3221 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3222
3223 Lisp_Object
3224 allocate_misc ()
3225 {
3226 Lisp_Object val;
3227
3228 if (marker_free_list)
3229 {
3230 XSETMISC (val, marker_free_list);
3231 marker_free_list = marker_free_list->u_free.chain;
3232 }
3233 else
3234 {
3235 if (marker_block_index == MARKER_BLOCK_SIZE)
3236 {
3237 struct marker_block *new;
3238 new = (struct marker_block *) lisp_malloc (sizeof *new,
3239 MEM_TYPE_MISC);
3240 new->next = marker_block;
3241 marker_block = new;
3242 marker_block_index = 0;
3243 n_marker_blocks++;
3244 total_free_markers += MARKER_BLOCK_SIZE;
3245 }
3246 XSETMISC (val, &marker_block->markers[marker_block_index]);
3247 marker_block_index++;
3248 }
3249
3250 --total_free_markers;
3251 consing_since_gc += sizeof (union Lisp_Misc);
3252 misc_objects_consed++;
3253 XMARKER (val)->gcmarkbit = 0;
3254 return val;
3255 }
3256
3257 /* Free a Lisp_Misc object */
3258
3259 void
3260 free_misc (misc)
3261 Lisp_Object misc;
3262 {
3263 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
3264 XMISC (misc)->u_free.chain = marker_free_list;
3265 marker_free_list = XMISC (misc);
3266
3267 total_free_markers++;
3268 }
3269
3270 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3271 INTEGER. This is used to package C values to call record_unwind_protect.
3272 The unwind function can get the C values back using XSAVE_VALUE. */
3273
3274 Lisp_Object
3275 make_save_value (pointer, integer)
3276 void *pointer;
3277 int integer;
3278 {
3279 register Lisp_Object val;
3280 register struct Lisp_Save_Value *p;
3281
3282 val = allocate_misc ();
3283 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3284 p = XSAVE_VALUE (val);
3285 p->pointer = pointer;
3286 p->integer = integer;
3287 p->dogc = 0;
3288 return val;
3289 }
3290
3291 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3292 doc: /* Return a newly allocated marker which does not point at any place. */)
3293 ()
3294 {
3295 register Lisp_Object val;
3296 register struct Lisp_Marker *p;
3297
3298 val = allocate_misc ();
3299 XMISCTYPE (val) = Lisp_Misc_Marker;
3300 p = XMARKER (val);
3301 p->buffer = 0;
3302 p->bytepos = 0;
3303 p->charpos = 0;
3304 p->next = NULL;
3305 p->insertion_type = 0;
3306 return val;
3307 }
3308
3309 /* Put MARKER back on the free list after using it temporarily. */
3310
3311 void
3312 free_marker (marker)
3313 Lisp_Object marker;
3314 {
3315 unchain_marker (XMARKER (marker));
3316 free_misc (marker);
3317 }
3318
3319 \f
3320 /* Return a newly created vector or string with specified arguments as
3321 elements. If all the arguments are characters that can fit
3322 in a string of events, make a string; otherwise, make a vector.
3323
3324 Any number of arguments, even zero arguments, are allowed. */
3325
3326 Lisp_Object
3327 make_event_array (nargs, args)
3328 register int nargs;
3329 Lisp_Object *args;
3330 {
3331 int i;
3332
3333 for (i = 0; i < nargs; i++)
3334 /* The things that fit in a string
3335 are characters that are in 0...127,
3336 after discarding the meta bit and all the bits above it. */
3337 if (!INTEGERP (args[i])
3338 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3339 return Fvector (nargs, args);
3340
3341 /* Since the loop exited, we know that all the things in it are
3342 characters, so we can make a string. */
3343 {
3344 Lisp_Object result;
3345
3346 result = Fmake_string (make_number (nargs), make_number (0));
3347 for (i = 0; i < nargs; i++)
3348 {
3349 SSET (result, i, XINT (args[i]));
3350 /* Move the meta bit to the right place for a string char. */
3351 if (XINT (args[i]) & CHAR_META)
3352 SSET (result, i, SREF (result, i) | 0x80);
3353 }
3354
3355 return result;
3356 }
3357 }
3358
3359
3360 \f
3361 /************************************************************************
3362 C Stack Marking
3363 ************************************************************************/
3364
3365 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3366
3367 /* Conservative C stack marking requires a method to identify possibly
3368 live Lisp objects given a pointer value. We do this by keeping
3369 track of blocks of Lisp data that are allocated in a red-black tree
3370 (see also the comment of mem_node which is the type of nodes in
3371 that tree). Function lisp_malloc adds information for an allocated
3372 block to the red-black tree with calls to mem_insert, and function
3373 lisp_free removes it with mem_delete. Functions live_string_p etc
3374 call mem_find to lookup information about a given pointer in the
3375 tree, and use that to determine if the pointer points to a Lisp
3376 object or not. */
3377
3378 /* Initialize this part of alloc.c. */
3379
3380 static void
3381 mem_init ()
3382 {
3383 mem_z.left = mem_z.right = MEM_NIL;
3384 mem_z.parent = NULL;
3385 mem_z.color = MEM_BLACK;
3386 mem_z.start = mem_z.end = NULL;
3387 mem_root = MEM_NIL;
3388 }
3389
3390
3391 /* Value is a pointer to the mem_node containing START. Value is
3392 MEM_NIL if there is no node in the tree containing START. */
3393
3394 static INLINE struct mem_node *
3395 mem_find (start)
3396 void *start;
3397 {
3398 struct mem_node *p;
3399
3400 if (start < min_heap_address || start > max_heap_address)
3401 return MEM_NIL;
3402
3403 /* Make the search always successful to speed up the loop below. */
3404 mem_z.start = start;
3405 mem_z.end = (char *) start + 1;
3406
3407 p = mem_root;
3408 while (start < p->start || start >= p->end)
3409 p = start < p->start ? p->left : p->right;
3410 return p;
3411 }
3412
3413
3414 /* Insert a new node into the tree for a block of memory with start
3415 address START, end address END, and type TYPE. Value is a
3416 pointer to the node that was inserted. */
3417
3418 static struct mem_node *
3419 mem_insert (start, end, type)
3420 void *start, *end;
3421 enum mem_type type;
3422 {
3423 struct mem_node *c, *parent, *x;
3424
3425 if (start < min_heap_address)
3426 min_heap_address = start;
3427 if (end > max_heap_address)
3428 max_heap_address = end;
3429
3430 /* See where in the tree a node for START belongs. In this
3431 particular application, it shouldn't happen that a node is already
3432 present. For debugging purposes, let's check that. */
3433 c = mem_root;
3434 parent = NULL;
3435
3436 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3437
3438 while (c != MEM_NIL)
3439 {
3440 if (start >= c->start && start < c->end)
3441 abort ();
3442 parent = c;
3443 c = start < c->start ? c->left : c->right;
3444 }
3445
3446 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3447
3448 while (c != MEM_NIL)
3449 {
3450 parent = c;
3451 c = start < c->start ? c->left : c->right;
3452 }
3453
3454 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3455
3456 /* Create a new node. */
3457 #ifdef GC_MALLOC_CHECK
3458 x = (struct mem_node *) _malloc_internal (sizeof *x);
3459 if (x == NULL)
3460 abort ();
3461 #else
3462 x = (struct mem_node *) xmalloc (sizeof *x);
3463 #endif
3464 x->start = start;
3465 x->end = end;
3466 x->type = type;
3467 x->parent = parent;
3468 x->left = x->right = MEM_NIL;
3469 x->color = MEM_RED;
3470
3471 /* Insert it as child of PARENT or install it as root. */
3472 if (parent)
3473 {
3474 if (start < parent->start)
3475 parent->left = x;
3476 else
3477 parent->right = x;
3478 }
3479 else
3480 mem_root = x;
3481
3482 /* Re-establish red-black tree properties. */
3483 mem_insert_fixup (x);
3484
3485 return x;
3486 }
3487
3488
3489 /* Re-establish the red-black properties of the tree, and thereby
3490 balance the tree, after node X has been inserted; X is always red. */
3491
3492 static void
3493 mem_insert_fixup (x)
3494 struct mem_node *x;
3495 {
3496 while (x != mem_root && x->parent->color == MEM_RED)
3497 {
3498 /* X is red and its parent is red. This is a violation of
3499 red-black tree property #3. */
3500
3501 if (x->parent == x->parent->parent->left)
3502 {
3503 /* We're on the left side of our grandparent, and Y is our
3504 "uncle". */
3505 struct mem_node *y = x->parent->parent->right;
3506
3507 if (y->color == MEM_RED)
3508 {
3509 /* Uncle and parent are red but should be black because
3510 X is red. Change the colors accordingly and proceed
3511 with the grandparent. */
3512 x->parent->color = MEM_BLACK;
3513 y->color = MEM_BLACK;
3514 x->parent->parent->color = MEM_RED;
3515 x = x->parent->parent;
3516 }
3517 else
3518 {
3519 /* Parent and uncle have different colors; parent is
3520 red, uncle is black. */
3521 if (x == x->parent->right)
3522 {
3523 x = x->parent;
3524 mem_rotate_left (x);
3525 }
3526
3527 x->parent->color = MEM_BLACK;
3528 x->parent->parent->color = MEM_RED;
3529 mem_rotate_right (x->parent->parent);
3530 }
3531 }
3532 else
3533 {
3534 /* This is the symmetrical case of above. */
3535 struct mem_node *y = x->parent->parent->left;
3536
3537 if (y->color == MEM_RED)
3538 {
3539 x->parent->color = MEM_BLACK;
3540 y->color = MEM_BLACK;
3541 x->parent->parent->color = MEM_RED;
3542 x = x->parent->parent;
3543 }
3544 else
3545 {
3546 if (x == x->parent->left)
3547 {
3548 x = x->parent;
3549 mem_rotate_right (x);
3550 }
3551
3552 x->parent->color = MEM_BLACK;
3553 x->parent->parent->color = MEM_RED;
3554 mem_rotate_left (x->parent->parent);
3555 }
3556 }
3557 }
3558
3559 /* The root may have been changed to red due to the algorithm. Set
3560 it to black so that property #5 is satisfied. */
3561 mem_root->color = MEM_BLACK;
3562 }
3563
3564
3565 /* (x) (y)
3566 / \ / \
3567 a (y) ===> (x) c
3568 / \ / \
3569 b c a b */
3570
3571 static void
3572 mem_rotate_left (x)
3573 struct mem_node *x;
3574 {
3575 struct mem_node *y;
3576
3577 /* Turn y's left sub-tree into x's right sub-tree. */
3578 y = x->right;
3579 x->right = y->left;
3580 if (y->left != MEM_NIL)
3581 y->left->parent = x;
3582
3583 /* Y's parent was x's parent. */
3584 if (y != MEM_NIL)
3585 y->parent = x->parent;
3586
3587 /* Get the parent to point to y instead of x. */
3588 if (x->parent)
3589 {
3590 if (x == x->parent->left)
3591 x->parent->left = y;
3592 else
3593 x->parent->right = y;
3594 }
3595 else
3596 mem_root = y;
3597
3598 /* Put x on y's left. */
3599 y->left = x;
3600 if (x != MEM_NIL)
3601 x->parent = y;
3602 }
3603
3604
3605 /* (x) (Y)
3606 / \ / \
3607 (y) c ===> a (x)
3608 / \ / \
3609 a b b c */
3610
3611 static void
3612 mem_rotate_right (x)
3613 struct mem_node *x;
3614 {
3615 struct mem_node *y = x->left;
3616
3617 x->left = y->right;
3618 if (y->right != MEM_NIL)
3619 y->right->parent = x;
3620
3621 if (y != MEM_NIL)
3622 y->parent = x->parent;
3623 if (x->parent)
3624 {
3625 if (x == x->parent->right)
3626 x->parent->right = y;
3627 else
3628 x->parent->left = y;
3629 }
3630 else
3631 mem_root = y;
3632
3633 y->right = x;
3634 if (x != MEM_NIL)
3635 x->parent = y;
3636 }
3637
3638
3639 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3640
3641 static void
3642 mem_delete (z)
3643 struct mem_node *z;
3644 {
3645 struct mem_node *x, *y;
3646
3647 if (!z || z == MEM_NIL)
3648 return;
3649
3650 if (z->left == MEM_NIL || z->right == MEM_NIL)
3651 y = z;
3652 else
3653 {
3654 y = z->right;
3655 while (y->left != MEM_NIL)
3656 y = y->left;
3657 }
3658
3659 if (y->left != MEM_NIL)
3660 x = y->left;
3661 else
3662 x = y->right;
3663
3664 x->parent = y->parent;
3665 if (y->parent)
3666 {
3667 if (y == y->parent->left)
3668 y->parent->left = x;
3669 else
3670 y->parent->right = x;
3671 }
3672 else
3673 mem_root = x;
3674
3675 if (y != z)
3676 {
3677 z->start = y->start;
3678 z->end = y->end;
3679 z->type = y->type;
3680 }
3681
3682 if (y->color == MEM_BLACK)
3683 mem_delete_fixup (x);
3684
3685 #ifdef GC_MALLOC_CHECK
3686 _free_internal (y);
3687 #else
3688 xfree (y);
3689 #endif
3690 }
3691
3692
3693 /* Re-establish the red-black properties of the tree, after a
3694 deletion. */
3695
3696 static void
3697 mem_delete_fixup (x)
3698 struct mem_node *x;
3699 {
3700 while (x != mem_root && x->color == MEM_BLACK)
3701 {
3702 if (x == x->parent->left)
3703 {
3704 struct mem_node *w = x->parent->right;
3705
3706 if (w->color == MEM_RED)
3707 {
3708 w->color = MEM_BLACK;
3709 x->parent->color = MEM_RED;
3710 mem_rotate_left (x->parent);
3711 w = x->parent->right;
3712 }
3713
3714 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3715 {
3716 w->color = MEM_RED;
3717 x = x->parent;
3718 }
3719 else
3720 {
3721 if (w->right->color == MEM_BLACK)
3722 {
3723 w->left->color = MEM_BLACK;
3724 w->color = MEM_RED;
3725 mem_rotate_right (w);
3726 w = x->parent->right;
3727 }
3728 w->color = x->parent->color;
3729 x->parent->color = MEM_BLACK;
3730 w->right->color = MEM_BLACK;
3731 mem_rotate_left (x->parent);
3732 x = mem_root;
3733 }
3734 }
3735 else
3736 {
3737 struct mem_node *w = x->parent->left;
3738
3739 if (w->color == MEM_RED)
3740 {
3741 w->color = MEM_BLACK;
3742 x->parent->color = MEM_RED;
3743 mem_rotate_right (x->parent);
3744 w = x->parent->left;
3745 }
3746
3747 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3748 {
3749 w->color = MEM_RED;
3750 x = x->parent;
3751 }
3752 else
3753 {
3754 if (w->left->color == MEM_BLACK)
3755 {
3756 w->right->color = MEM_BLACK;
3757 w->color = MEM_RED;
3758 mem_rotate_left (w);
3759 w = x->parent->left;
3760 }
3761
3762 w->color = x->parent->color;
3763 x->parent->color = MEM_BLACK;
3764 w->left->color = MEM_BLACK;
3765 mem_rotate_right (x->parent);
3766 x = mem_root;
3767 }
3768 }
3769 }
3770
3771 x->color = MEM_BLACK;
3772 }
3773
3774
3775 /* Value is non-zero if P is a pointer to a live Lisp string on
3776 the heap. M is a pointer to the mem_block for P. */
3777
3778 static INLINE int
3779 live_string_p (m, p)
3780 struct mem_node *m;
3781 void *p;
3782 {
3783 if (m->type == MEM_TYPE_STRING)
3784 {
3785 struct string_block *b = (struct string_block *) m->start;
3786 int offset = (char *) p - (char *) &b->strings[0];
3787
3788 /* P must point to the start of a Lisp_String structure, and it
3789 must not be on the free-list. */
3790 return (offset >= 0
3791 && offset % sizeof b->strings[0] == 0
3792 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3793 && ((struct Lisp_String *) p)->data != NULL);
3794 }
3795 else
3796 return 0;
3797 }
3798
3799
3800 /* Value is non-zero if P is a pointer to a live Lisp cons on
3801 the heap. M is a pointer to the mem_block for P. */
3802
3803 static INLINE int
3804 live_cons_p (m, p)
3805 struct mem_node *m;
3806 void *p;
3807 {
3808 if (m->type == MEM_TYPE_CONS)
3809 {
3810 struct cons_block *b = (struct cons_block *) m->start;
3811 int offset = (char *) p - (char *) &b->conses[0];
3812
3813 /* P must point to the start of a Lisp_Cons, not be
3814 one of the unused cells in the current cons block,
3815 and not be on the free-list. */
3816 return (offset >= 0
3817 && offset % sizeof b->conses[0] == 0
3818 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3819 && (b != cons_block
3820 || offset / sizeof b->conses[0] < cons_block_index)
3821 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3822 }
3823 else
3824 return 0;
3825 }
3826
3827
3828 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3829 the heap. M is a pointer to the mem_block for P. */
3830
3831 static INLINE int
3832 live_symbol_p (m, p)
3833 struct mem_node *m;
3834 void *p;
3835 {
3836 if (m->type == MEM_TYPE_SYMBOL)
3837 {
3838 struct symbol_block *b = (struct symbol_block *) m->start;
3839 int offset = (char *) p - (char *) &b->symbols[0];
3840
3841 /* P must point to the start of a Lisp_Symbol, not be
3842 one of the unused cells in the current symbol block,
3843 and not be on the free-list. */
3844 return (offset >= 0
3845 && offset % sizeof b->symbols[0] == 0
3846 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3847 && (b != symbol_block
3848 || offset / sizeof b->symbols[0] < symbol_block_index)
3849 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3850 }
3851 else
3852 return 0;
3853 }
3854
3855
3856 /* Value is non-zero if P is a pointer to a live Lisp float on
3857 the heap. M is a pointer to the mem_block for P. */
3858
3859 static INLINE int
3860 live_float_p (m, p)
3861 struct mem_node *m;
3862 void *p;
3863 {
3864 if (m->type == MEM_TYPE_FLOAT)
3865 {
3866 struct float_block *b = (struct float_block *) m->start;
3867 int offset = (char *) p - (char *) &b->floats[0];
3868
3869 /* P must point to the start of a Lisp_Float and not be
3870 one of the unused cells in the current float block. */
3871 return (offset >= 0
3872 && offset % sizeof b->floats[0] == 0
3873 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3874 && (b != float_block
3875 || offset / sizeof b->floats[0] < float_block_index));
3876 }
3877 else
3878 return 0;
3879 }
3880
3881
3882 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3883 the heap. M is a pointer to the mem_block for P. */
3884
3885 static INLINE int
3886 live_misc_p (m, p)
3887 struct mem_node *m;
3888 void *p;
3889 {
3890 if (m->type == MEM_TYPE_MISC)
3891 {
3892 struct marker_block *b = (struct marker_block *) m->start;
3893 int offset = (char *) p - (char *) &b->markers[0];
3894
3895 /* P must point to the start of a Lisp_Misc, not be
3896 one of the unused cells in the current misc block,
3897 and not be on the free-list. */
3898 return (offset >= 0
3899 && offset % sizeof b->markers[0] == 0
3900 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3901 && (b != marker_block
3902 || offset / sizeof b->markers[0] < marker_block_index)
3903 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3904 }
3905 else
3906 return 0;
3907 }
3908
3909
3910 /* Value is non-zero if P is a pointer to a live vector-like object.
3911 M is a pointer to the mem_block for P. */
3912
3913 static INLINE int
3914 live_vector_p (m, p)
3915 struct mem_node *m;
3916 void *p;
3917 {
3918 return (p == m->start
3919 && m->type >= MEM_TYPE_VECTOR
3920 && m->type <= MEM_TYPE_WINDOW);
3921 }
3922
3923
3924 /* Value is non-zero if P is a pointer to a live buffer. M is a
3925 pointer to the mem_block for P. */
3926
3927 static INLINE int
3928 live_buffer_p (m, p)
3929 struct mem_node *m;
3930 void *p;
3931 {
3932 /* P must point to the start of the block, and the buffer
3933 must not have been killed. */
3934 return (m->type == MEM_TYPE_BUFFER
3935 && p == m->start
3936 && !NILP (((struct buffer *) p)->name));
3937 }
3938
3939 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3940
3941 #if GC_MARK_STACK
3942
3943 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3944
3945 /* Array of objects that are kept alive because the C stack contains
3946 a pattern that looks like a reference to them . */
3947
3948 #define MAX_ZOMBIES 10
3949 static Lisp_Object zombies[MAX_ZOMBIES];
3950
3951 /* Number of zombie objects. */
3952
3953 static int nzombies;
3954
3955 /* Number of garbage collections. */
3956
3957 static int ngcs;
3958
3959 /* Average percentage of zombies per collection. */
3960
3961 static double avg_zombies;
3962
3963 /* Max. number of live and zombie objects. */
3964
3965 static int max_live, max_zombies;
3966
3967 /* Average number of live objects per GC. */
3968
3969 static double avg_live;
3970
3971 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3972 doc: /* Show information about live and zombie objects. */)
3973 ()
3974 {
3975 Lisp_Object args[8], zombie_list = Qnil;
3976 int i;
3977 for (i = 0; i < nzombies; i++)
3978 zombie_list = Fcons (zombies[i], zombie_list);
3979 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3980 args[1] = make_number (ngcs);
3981 args[2] = make_float (avg_live);
3982 args[3] = make_float (avg_zombies);
3983 args[4] = make_float (avg_zombies / avg_live / 100);
3984 args[5] = make_number (max_live);
3985 args[6] = make_number (max_zombies);
3986 args[7] = zombie_list;
3987 return Fmessage (8, args);
3988 }
3989
3990 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3991
3992
3993 /* Mark OBJ if we can prove it's a Lisp_Object. */
3994
3995 static INLINE void
3996 mark_maybe_object (obj)
3997 Lisp_Object obj;
3998 {
3999 void *po = (void *) XPNTR (obj);
4000 struct mem_node *m = mem_find (po);
4001
4002 if (m != MEM_NIL)
4003 {
4004 int mark_p = 0;
4005
4006 switch (XGCTYPE (obj))
4007 {
4008 case Lisp_String:
4009 mark_p = (live_string_p (m, po)
4010 && !STRING_MARKED_P ((struct Lisp_String *) po));
4011 break;
4012
4013 case Lisp_Cons:
4014 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4015 break;
4016
4017 case Lisp_Symbol:
4018 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4019 break;
4020
4021 case Lisp_Float:
4022 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4023 break;
4024
4025 case Lisp_Vectorlike:
4026 /* Note: can't check GC_BUFFERP before we know it's a
4027 buffer because checking that dereferences the pointer
4028 PO which might point anywhere. */
4029 if (live_vector_p (m, po))
4030 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4031 else if (live_buffer_p (m, po))
4032 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4033 break;
4034
4035 case Lisp_Misc:
4036 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
4037 break;
4038
4039 case Lisp_Int:
4040 case Lisp_Type_Limit:
4041 break;
4042 }
4043
4044 if (mark_p)
4045 {
4046 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4047 if (nzombies < MAX_ZOMBIES)
4048 zombies[nzombies] = obj;
4049 ++nzombies;
4050 #endif
4051 mark_object (obj);
4052 }
4053 }
4054 }
4055
4056
4057 /* If P points to Lisp data, mark that as live if it isn't already
4058 marked. */
4059
4060 static INLINE void
4061 mark_maybe_pointer (p)
4062 void *p;
4063 {
4064 struct mem_node *m;
4065
4066 /* Quickly rule out some values which can't point to Lisp data. We
4067 assume that Lisp data is aligned on even addresses. */
4068 if ((EMACS_INT) p & 1)
4069 return;
4070
4071 m = mem_find (p);
4072 if (m != MEM_NIL)
4073 {
4074 Lisp_Object obj = Qnil;
4075
4076 switch (m->type)
4077 {
4078 case MEM_TYPE_NON_LISP:
4079 /* Nothing to do; not a pointer to Lisp memory. */
4080 break;
4081
4082 case MEM_TYPE_BUFFER:
4083 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4084 XSETVECTOR (obj, p);
4085 break;
4086
4087 case MEM_TYPE_CONS:
4088 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4089 XSETCONS (obj, p);
4090 break;
4091
4092 case MEM_TYPE_STRING:
4093 if (live_string_p (m, p)
4094 && !STRING_MARKED_P ((struct Lisp_String *) p))
4095 XSETSTRING (obj, p);
4096 break;
4097
4098 case MEM_TYPE_MISC:
4099 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4100 XSETMISC (obj, p);
4101 break;
4102
4103 case MEM_TYPE_SYMBOL:
4104 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4105 XSETSYMBOL (obj, p);
4106 break;
4107
4108 case MEM_TYPE_FLOAT:
4109 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4110 XSETFLOAT (obj, p);
4111 break;
4112
4113 case MEM_TYPE_VECTOR:
4114 case MEM_TYPE_PROCESS:
4115 case MEM_TYPE_HASH_TABLE:
4116 case MEM_TYPE_FRAME:
4117 case MEM_TYPE_WINDOW:
4118 if (live_vector_p (m, p))
4119 {
4120 Lisp_Object tem;
4121 XSETVECTOR (tem, p);
4122 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4123 obj = tem;
4124 }
4125 break;
4126
4127 default:
4128 abort ();
4129 }
4130
4131 if (!GC_NILP (obj))
4132 mark_object (obj);
4133 }
4134 }
4135
4136
4137 /* Mark Lisp objects referenced from the address range START..END. */
4138
4139 static void
4140 mark_memory (start, end)
4141 void *start, *end;
4142 {
4143 Lisp_Object *p;
4144 void **pp;
4145
4146 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4147 nzombies = 0;
4148 #endif
4149
4150 /* Make START the pointer to the start of the memory region,
4151 if it isn't already. */
4152 if (end < start)
4153 {
4154 void *tem = start;
4155 start = end;
4156 end = tem;
4157 }
4158
4159 /* Mark Lisp_Objects. */
4160 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
4161 mark_maybe_object (*p);
4162
4163 /* Mark Lisp data pointed to. This is necessary because, in some
4164 situations, the C compiler optimizes Lisp objects away, so that
4165 only a pointer to them remains. Example:
4166
4167 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4168 ()
4169 {
4170 Lisp_Object obj = build_string ("test");
4171 struct Lisp_String *s = XSTRING (obj);
4172 Fgarbage_collect ();
4173 fprintf (stderr, "test `%s'\n", s->data);
4174 return Qnil;
4175 }
4176
4177 Here, `obj' isn't really used, and the compiler optimizes it
4178 away. The only reference to the life string is through the
4179 pointer `s'. */
4180
4181 for (pp = (void **) start; (void *) pp < end; ++pp)
4182 mark_maybe_pointer (*pp);
4183 }
4184
4185 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4186 the GCC system configuration. In gcc 3.2, the only systems for
4187 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4188 by others?) and ns32k-pc532-min. */
4189
4190 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4191
4192 static int setjmp_tested_p, longjmps_done;
4193
4194 #define SETJMP_WILL_LIKELY_WORK "\
4195 \n\
4196 Emacs garbage collector has been changed to use conservative stack\n\
4197 marking. Emacs has determined that the method it uses to do the\n\
4198 marking will likely work on your system, but this isn't sure.\n\
4199 \n\
4200 If you are a system-programmer, or can get the help of a local wizard\n\
4201 who is, please take a look at the function mark_stack in alloc.c, and\n\
4202 verify that the methods used are appropriate for your system.\n\
4203 \n\
4204 Please mail the result to <emacs-devel@gnu.org>.\n\
4205 "
4206
4207 #define SETJMP_WILL_NOT_WORK "\
4208 \n\
4209 Emacs garbage collector has been changed to use conservative stack\n\
4210 marking. Emacs has determined that the default method it uses to do the\n\
4211 marking will not work on your system. We will need a system-dependent\n\
4212 solution for your system.\n\
4213 \n\
4214 Please take a look at the function mark_stack in alloc.c, and\n\
4215 try to find a way to make it work on your system.\n\
4216 \n\
4217 Note that you may get false negatives, depending on the compiler.\n\
4218 In particular, you need to use -O with GCC for this test.\n\
4219 \n\
4220 Please mail the result to <emacs-devel@gnu.org>.\n\
4221 "
4222
4223
4224 /* Perform a quick check if it looks like setjmp saves registers in a
4225 jmp_buf. Print a message to stderr saying so. When this test
4226 succeeds, this is _not_ a proof that setjmp is sufficient for
4227 conservative stack marking. Only the sources or a disassembly
4228 can prove that. */
4229
4230 static void
4231 test_setjmp ()
4232 {
4233 char buf[10];
4234 register int x;
4235 jmp_buf jbuf;
4236 int result = 0;
4237
4238 /* Arrange for X to be put in a register. */
4239 sprintf (buf, "1");
4240 x = strlen (buf);
4241 x = 2 * x - 1;
4242
4243 setjmp (jbuf);
4244 if (longjmps_done == 1)
4245 {
4246 /* Came here after the longjmp at the end of the function.
4247
4248 If x == 1, the longjmp has restored the register to its
4249 value before the setjmp, and we can hope that setjmp
4250 saves all such registers in the jmp_buf, although that
4251 isn't sure.
4252
4253 For other values of X, either something really strange is
4254 taking place, or the setjmp just didn't save the register. */
4255
4256 if (x == 1)
4257 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4258 else
4259 {
4260 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4261 exit (1);
4262 }
4263 }
4264
4265 ++longjmps_done;
4266 x = 2;
4267 if (longjmps_done == 1)
4268 longjmp (jbuf, 1);
4269 }
4270
4271 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4272
4273
4274 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4275
4276 /* Abort if anything GCPRO'd doesn't survive the GC. */
4277
4278 static void
4279 check_gcpros ()
4280 {
4281 struct gcpro *p;
4282 int i;
4283
4284 for (p = gcprolist; p; p = p->next)
4285 for (i = 0; i < p->nvars; ++i)
4286 if (!survives_gc_p (p->var[i]))
4287 /* FIXME: It's not necessarily a bug. It might just be that the
4288 GCPRO is unnecessary or should release the object sooner. */
4289 abort ();
4290 }
4291
4292 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4293
4294 static void
4295 dump_zombies ()
4296 {
4297 int i;
4298
4299 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4300 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4301 {
4302 fprintf (stderr, " %d = ", i);
4303 debug_print (zombies[i]);
4304 }
4305 }
4306
4307 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4308
4309
4310 /* Mark live Lisp objects on the C stack.
4311
4312 There are several system-dependent problems to consider when
4313 porting this to new architectures:
4314
4315 Processor Registers
4316
4317 We have to mark Lisp objects in CPU registers that can hold local
4318 variables or are used to pass parameters.
4319
4320 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4321 something that either saves relevant registers on the stack, or
4322 calls mark_maybe_object passing it each register's contents.
4323
4324 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4325 implementation assumes that calling setjmp saves registers we need
4326 to see in a jmp_buf which itself lies on the stack. This doesn't
4327 have to be true! It must be verified for each system, possibly
4328 by taking a look at the source code of setjmp.
4329
4330 Stack Layout
4331
4332 Architectures differ in the way their processor stack is organized.
4333 For example, the stack might look like this
4334
4335 +----------------+
4336 | Lisp_Object | size = 4
4337 +----------------+
4338 | something else | size = 2
4339 +----------------+
4340 | Lisp_Object | size = 4
4341 +----------------+
4342 | ... |
4343
4344 In such a case, not every Lisp_Object will be aligned equally. To
4345 find all Lisp_Object on the stack it won't be sufficient to walk
4346 the stack in steps of 4 bytes. Instead, two passes will be
4347 necessary, one starting at the start of the stack, and a second
4348 pass starting at the start of the stack + 2. Likewise, if the
4349 minimal alignment of Lisp_Objects on the stack is 1, four passes
4350 would be necessary, each one starting with one byte more offset
4351 from the stack start.
4352
4353 The current code assumes by default that Lisp_Objects are aligned
4354 equally on the stack. */
4355
4356 static void
4357 mark_stack ()
4358 {
4359 int i;
4360 jmp_buf j;
4361 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4362 void *end;
4363
4364 /* This trick flushes the register windows so that all the state of
4365 the process is contained in the stack. */
4366 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4367 needed on ia64 too. See mach_dep.c, where it also says inline
4368 assembler doesn't work with relevant proprietary compilers. */
4369 #ifdef sparc
4370 asm ("ta 3");
4371 #endif
4372
4373 /* Save registers that we need to see on the stack. We need to see
4374 registers used to hold register variables and registers used to
4375 pass parameters. */
4376 #ifdef GC_SAVE_REGISTERS_ON_STACK
4377 GC_SAVE_REGISTERS_ON_STACK (end);
4378 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4379
4380 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4381 setjmp will definitely work, test it
4382 and print a message with the result
4383 of the test. */
4384 if (!setjmp_tested_p)
4385 {
4386 setjmp_tested_p = 1;
4387 test_setjmp ();
4388 }
4389 #endif /* GC_SETJMP_WORKS */
4390
4391 setjmp (j);
4392 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4393 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4394
4395 /* This assumes that the stack is a contiguous region in memory. If
4396 that's not the case, something has to be done here to iterate
4397 over the stack segments. */
4398 #ifndef GC_LISP_OBJECT_ALIGNMENT
4399 #ifdef __GNUC__
4400 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4401 #else
4402 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4403 #endif
4404 #endif
4405 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4406 mark_memory ((char *) stack_base + i, end);
4407 /* Allow for marking a secondary stack, like the register stack on the
4408 ia64. */
4409 #ifdef GC_MARK_SECONDARY_STACK
4410 GC_MARK_SECONDARY_STACK ();
4411 #endif
4412
4413 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4414 check_gcpros ();
4415 #endif
4416 }
4417
4418
4419 #endif /* GC_MARK_STACK != 0 */
4420
4421
4422 \f
4423 /***********************************************************************
4424 Pure Storage Management
4425 ***********************************************************************/
4426
4427 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4428 pointer to it. TYPE is the Lisp type for which the memory is
4429 allocated. TYPE < 0 means it's not used for a Lisp object.
4430
4431 If store_pure_type_info is set and TYPE is >= 0, the type of
4432 the allocated object is recorded in pure_types. */
4433
4434 static POINTER_TYPE *
4435 pure_alloc (size, type)
4436 size_t size;
4437 int type;
4438 {
4439 POINTER_TYPE *result;
4440 #ifdef USE_LSB_TAG
4441 size_t alignment = (1 << GCTYPEBITS);
4442 #else
4443 size_t alignment = sizeof (EMACS_INT);
4444
4445 /* Give Lisp_Floats an extra alignment. */
4446 if (type == Lisp_Float)
4447 {
4448 #if defined __GNUC__ && __GNUC__ >= 2
4449 alignment = __alignof (struct Lisp_Float);
4450 #else
4451 alignment = sizeof (struct Lisp_Float);
4452 #endif
4453 }
4454 #endif
4455
4456 again:
4457 result = ALIGN (purebeg + pure_bytes_used, alignment);
4458 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4459
4460 if (pure_bytes_used <= pure_size)
4461 return result;
4462
4463 /* Don't allocate a large amount here,
4464 because it might get mmap'd and then its address
4465 might not be usable. */
4466 purebeg = (char *) xmalloc (10000);
4467 pure_size = 10000;
4468 pure_bytes_used_before_overflow += pure_bytes_used - size;
4469 pure_bytes_used = 0;
4470 goto again;
4471 }
4472
4473
4474 /* Print a warning if PURESIZE is too small. */
4475
4476 void
4477 check_pure_size ()
4478 {
4479 if (pure_bytes_used_before_overflow)
4480 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4481 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4482 }
4483
4484
4485 /* Return a string allocated in pure space. DATA is a buffer holding
4486 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4487 non-zero means make the result string multibyte.
4488
4489 Must get an error if pure storage is full, since if it cannot hold
4490 a large string it may be able to hold conses that point to that
4491 string; then the string is not protected from gc. */
4492
4493 Lisp_Object
4494 make_pure_string (data, nchars, nbytes, multibyte)
4495 char *data;
4496 int nchars, nbytes;
4497 int multibyte;
4498 {
4499 Lisp_Object string;
4500 struct Lisp_String *s;
4501
4502 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4503 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4504 s->size = nchars;
4505 s->size_byte = multibyte ? nbytes : -1;
4506 bcopy (data, s->data, nbytes);
4507 s->data[nbytes] = '\0';
4508 s->intervals = NULL_INTERVAL;
4509 XSETSTRING (string, s);
4510 return string;
4511 }
4512
4513
4514 /* Return a cons allocated from pure space. Give it pure copies
4515 of CAR as car and CDR as cdr. */
4516
4517 Lisp_Object
4518 pure_cons (car, cdr)
4519 Lisp_Object car, cdr;
4520 {
4521 register Lisp_Object new;
4522 struct Lisp_Cons *p;
4523
4524 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4525 XSETCONS (new, p);
4526 XSETCAR (new, Fpurecopy (car));
4527 XSETCDR (new, Fpurecopy (cdr));
4528 return new;
4529 }
4530
4531
4532 /* Value is a float object with value NUM allocated from pure space. */
4533
4534 Lisp_Object
4535 make_pure_float (num)
4536 double num;
4537 {
4538 register Lisp_Object new;
4539 struct Lisp_Float *p;
4540
4541 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4542 XSETFLOAT (new, p);
4543 XFLOAT_DATA (new) = num;
4544 return new;
4545 }
4546
4547
4548 /* Return a vector with room for LEN Lisp_Objects allocated from
4549 pure space. */
4550
4551 Lisp_Object
4552 make_pure_vector (len)
4553 EMACS_INT len;
4554 {
4555 Lisp_Object new;
4556 struct Lisp_Vector *p;
4557 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4558
4559 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4560 XSETVECTOR (new, p);
4561 XVECTOR (new)->size = len;
4562 return new;
4563 }
4564
4565
4566 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4567 doc: /* Make a copy of OBJECT in pure storage.
4568 Recursively copies contents of vectors and cons cells.
4569 Does not copy symbols. Copies strings without text properties. */)
4570 (obj)
4571 register Lisp_Object obj;
4572 {
4573 if (NILP (Vpurify_flag))
4574 return obj;
4575
4576 if (PURE_POINTER_P (XPNTR (obj)))
4577 return obj;
4578
4579 if (CONSP (obj))
4580 return pure_cons (XCAR (obj), XCDR (obj));
4581 else if (FLOATP (obj))
4582 return make_pure_float (XFLOAT_DATA (obj));
4583 else if (STRINGP (obj))
4584 return make_pure_string (SDATA (obj), SCHARS (obj),
4585 SBYTES (obj),
4586 STRING_MULTIBYTE (obj));
4587 else if (COMPILEDP (obj) || VECTORP (obj))
4588 {
4589 register struct Lisp_Vector *vec;
4590 register int i;
4591 EMACS_INT size;
4592
4593 size = XVECTOR (obj)->size;
4594 if (size & PSEUDOVECTOR_FLAG)
4595 size &= PSEUDOVECTOR_SIZE_MASK;
4596 vec = XVECTOR (make_pure_vector (size));
4597 for (i = 0; i < size; i++)
4598 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4599 if (COMPILEDP (obj))
4600 XSETCOMPILED (obj, vec);
4601 else
4602 XSETVECTOR (obj, vec);
4603 return obj;
4604 }
4605 else if (MARKERP (obj))
4606 error ("Attempt to copy a marker to pure storage");
4607
4608 return obj;
4609 }
4610
4611
4612 \f
4613 /***********************************************************************
4614 Protection from GC
4615 ***********************************************************************/
4616
4617 /* Put an entry in staticvec, pointing at the variable with address
4618 VARADDRESS. */
4619
4620 void
4621 staticpro (varaddress)
4622 Lisp_Object *varaddress;
4623 {
4624 staticvec[staticidx++] = varaddress;
4625 if (staticidx >= NSTATICS)
4626 abort ();
4627 }
4628
4629 struct catchtag
4630 {
4631 Lisp_Object tag;
4632 Lisp_Object val;
4633 struct catchtag *next;
4634 };
4635
4636 \f
4637 /***********************************************************************
4638 Protection from GC
4639 ***********************************************************************/
4640
4641 /* Temporarily prevent garbage collection. */
4642
4643 int
4644 inhibit_garbage_collection ()
4645 {
4646 int count = SPECPDL_INDEX ();
4647 int nbits = min (VALBITS, BITS_PER_INT);
4648
4649 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4650 return count;
4651 }
4652
4653
4654 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4655 doc: /* Reclaim storage for Lisp objects no longer needed.
4656 Garbage collection happens automatically if you cons more than
4657 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4658 `garbage-collect' normally returns a list with info on amount of space in use:
4659 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4660 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4661 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4662 (USED-STRINGS . FREE-STRINGS))
4663 However, if there was overflow in pure space, `garbage-collect'
4664 returns nil, because real GC can't be done. */)
4665 ()
4666 {
4667 register struct specbinding *bind;
4668 struct catchtag *catch;
4669 struct handler *handler;
4670 char stack_top_variable;
4671 register int i;
4672 int message_p;
4673 Lisp_Object total[8];
4674 int count = SPECPDL_INDEX ();
4675 EMACS_TIME t1, t2, t3;
4676
4677 if (abort_on_gc)
4678 abort ();
4679
4680 /* Can't GC if pure storage overflowed because we can't determine
4681 if something is a pure object or not. */
4682 if (pure_bytes_used_before_overflow)
4683 return Qnil;
4684
4685 /* Don't keep undo information around forever.
4686 Do this early on, so it is no problem if the user quits. */
4687 {
4688 register struct buffer *nextb = all_buffers;
4689
4690 while (nextb)
4691 {
4692 /* If a buffer's undo list is Qt, that means that undo is
4693 turned off in that buffer. Calling truncate_undo_list on
4694 Qt tends to return NULL, which effectively turns undo back on.
4695 So don't call truncate_undo_list if undo_list is Qt. */
4696 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
4697 truncate_undo_list (nextb);
4698
4699 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4700 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4701 {
4702 /* If a buffer's gap size is more than 10% of the buffer
4703 size, or larger than 2000 bytes, then shrink it
4704 accordingly. Keep a minimum size of 20 bytes. */
4705 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4706
4707 if (nextb->text->gap_size > size)
4708 {
4709 struct buffer *save_current = current_buffer;
4710 current_buffer = nextb;
4711 make_gap (-(nextb->text->gap_size - size));
4712 current_buffer = save_current;
4713 }
4714 }
4715
4716 nextb = nextb->next;
4717 }
4718 }
4719
4720 EMACS_GET_TIME (t1);
4721
4722 /* In case user calls debug_print during GC,
4723 don't let that cause a recursive GC. */
4724 consing_since_gc = 0;
4725
4726 /* Save what's currently displayed in the echo area. */
4727 message_p = push_message ();
4728 record_unwind_protect (pop_message_unwind, Qnil);
4729
4730 /* Save a copy of the contents of the stack, for debugging. */
4731 #if MAX_SAVE_STACK > 0
4732 if (NILP (Vpurify_flag))
4733 {
4734 i = &stack_top_variable - stack_bottom;
4735 if (i < 0) i = -i;
4736 if (i < MAX_SAVE_STACK)
4737 {
4738 if (stack_copy == 0)
4739 stack_copy = (char *) xmalloc (stack_copy_size = i);
4740 else if (stack_copy_size < i)
4741 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4742 if (stack_copy)
4743 {
4744 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4745 bcopy (stack_bottom, stack_copy, i);
4746 else
4747 bcopy (&stack_top_variable, stack_copy, i);
4748 }
4749 }
4750 }
4751 #endif /* MAX_SAVE_STACK > 0 */
4752
4753 if (garbage_collection_messages)
4754 message1_nolog ("Garbage collecting...");
4755
4756 BLOCK_INPUT;
4757
4758 shrink_regexp_cache ();
4759
4760 gc_in_progress = 1;
4761
4762 /* clear_marks (); */
4763
4764 /* Mark all the special slots that serve as the roots of accessibility. */
4765
4766 for (i = 0; i < staticidx; i++)
4767 mark_object (*staticvec[i]);
4768
4769 for (bind = specpdl; bind != specpdl_ptr; bind++)
4770 {
4771 mark_object (bind->symbol);
4772 mark_object (bind->old_value);
4773 }
4774 mark_kboards ();
4775
4776 #ifdef USE_GTK
4777 {
4778 extern void xg_mark_data ();
4779 xg_mark_data ();
4780 }
4781 #endif
4782
4783 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4784 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4785 mark_stack ();
4786 #else
4787 {
4788 register struct gcpro *tail;
4789 for (tail = gcprolist; tail; tail = tail->next)
4790 for (i = 0; i < tail->nvars; i++)
4791 mark_object (tail->var[i]);
4792 }
4793 #endif
4794
4795 mark_byte_stack ();
4796 for (catch = catchlist; catch; catch = catch->next)
4797 {
4798 mark_object (catch->tag);
4799 mark_object (catch->val);
4800 }
4801 for (handler = handlerlist; handler; handler = handler->next)
4802 {
4803 mark_object (handler->handler);
4804 mark_object (handler->var);
4805 }
4806 mark_backtrace ();
4807
4808 #ifdef HAVE_WINDOW_SYSTEM
4809 mark_fringe_data ();
4810 #endif
4811
4812 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4813 mark_stack ();
4814 #endif
4815
4816 /* Everything is now marked, except for the things that require special
4817 finalization, i.e. the undo_list.
4818 Look thru every buffer's undo list
4819 for elements that update markers that were not marked,
4820 and delete them. */
4821 {
4822 register struct buffer *nextb = all_buffers;
4823
4824 while (nextb)
4825 {
4826 /* If a buffer's undo list is Qt, that means that undo is
4827 turned off in that buffer. Calling truncate_undo_list on
4828 Qt tends to return NULL, which effectively turns undo back on.
4829 So don't call truncate_undo_list if undo_list is Qt. */
4830 if (! EQ (nextb->undo_list, Qt))
4831 {
4832 Lisp_Object tail, prev;
4833 tail = nextb->undo_list;
4834 prev = Qnil;
4835 while (CONSP (tail))
4836 {
4837 if (GC_CONSP (XCAR (tail))
4838 && GC_MARKERP (XCAR (XCAR (tail)))
4839 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4840 {
4841 if (NILP (prev))
4842 nextb->undo_list = tail = XCDR (tail);
4843 else
4844 {
4845 tail = XCDR (tail);
4846 XSETCDR (prev, tail);
4847 }
4848 }
4849 else
4850 {
4851 prev = tail;
4852 tail = XCDR (tail);
4853 }
4854 }
4855 }
4856 /* Now that we have stripped the elements that need not be in the
4857 undo_list any more, we can finally mark the list. */
4858 mark_object (nextb->undo_list);
4859
4860 nextb = nextb->next;
4861 }
4862 }
4863
4864 gc_sweep ();
4865
4866 /* Clear the mark bits that we set in certain root slots. */
4867
4868 unmark_byte_stack ();
4869 VECTOR_UNMARK (&buffer_defaults);
4870 VECTOR_UNMARK (&buffer_local_symbols);
4871
4872 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4873 dump_zombies ();
4874 #endif
4875
4876 UNBLOCK_INPUT;
4877
4878 /* clear_marks (); */
4879 gc_in_progress = 0;
4880
4881 consing_since_gc = 0;
4882 if (gc_cons_threshold < 10000)
4883 gc_cons_threshold = 10000;
4884
4885 if (garbage_collection_messages)
4886 {
4887 if (message_p || minibuf_level > 0)
4888 restore_message ();
4889 else
4890 message1_nolog ("Garbage collecting...done");
4891 }
4892
4893 unbind_to (count, Qnil);
4894
4895 total[0] = Fcons (make_number (total_conses),
4896 make_number (total_free_conses));
4897 total[1] = Fcons (make_number (total_symbols),
4898 make_number (total_free_symbols));
4899 total[2] = Fcons (make_number (total_markers),
4900 make_number (total_free_markers));
4901 total[3] = make_number (total_string_size);
4902 total[4] = make_number (total_vector_size);
4903 total[5] = Fcons (make_number (total_floats),
4904 make_number (total_free_floats));
4905 total[6] = Fcons (make_number (total_intervals),
4906 make_number (total_free_intervals));
4907 total[7] = Fcons (make_number (total_strings),
4908 make_number (total_free_strings));
4909
4910 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4911 {
4912 /* Compute average percentage of zombies. */
4913 double nlive = 0;
4914
4915 for (i = 0; i < 7; ++i)
4916 if (CONSP (total[i]))
4917 nlive += XFASTINT (XCAR (total[i]));
4918
4919 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4920 max_live = max (nlive, max_live);
4921 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4922 max_zombies = max (nzombies, max_zombies);
4923 ++ngcs;
4924 }
4925 #endif
4926
4927 if (!NILP (Vpost_gc_hook))
4928 {
4929 int count = inhibit_garbage_collection ();
4930 safe_run_hooks (Qpost_gc_hook);
4931 unbind_to (count, Qnil);
4932 }
4933
4934 /* Accumulate statistics. */
4935 EMACS_GET_TIME (t2);
4936 EMACS_SUB_TIME (t3, t2, t1);
4937 if (FLOATP (Vgc_elapsed))
4938 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4939 EMACS_SECS (t3) +
4940 EMACS_USECS (t3) * 1.0e-6);
4941 gcs_done++;
4942
4943 return Flist (sizeof total / sizeof *total, total);
4944 }
4945
4946
4947 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4948 only interesting objects referenced from glyphs are strings. */
4949
4950 static void
4951 mark_glyph_matrix (matrix)
4952 struct glyph_matrix *matrix;
4953 {
4954 struct glyph_row *row = matrix->rows;
4955 struct glyph_row *end = row + matrix->nrows;
4956
4957 for (; row < end; ++row)
4958 if (row->enabled_p)
4959 {
4960 int area;
4961 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4962 {
4963 struct glyph *glyph = row->glyphs[area];
4964 struct glyph *end_glyph = glyph + row->used[area];
4965
4966 for (; glyph < end_glyph; ++glyph)
4967 if (GC_STRINGP (glyph->object)
4968 && !STRING_MARKED_P (XSTRING (glyph->object)))
4969 mark_object (glyph->object);
4970 }
4971 }
4972 }
4973
4974
4975 /* Mark Lisp faces in the face cache C. */
4976
4977 static void
4978 mark_face_cache (c)
4979 struct face_cache *c;
4980 {
4981 if (c)
4982 {
4983 int i, j;
4984 for (i = 0; i < c->used; ++i)
4985 {
4986 struct face *face = FACE_FROM_ID (c->f, i);
4987
4988 if (face)
4989 {
4990 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4991 mark_object (face->lface[j]);
4992 }
4993 }
4994 }
4995 }
4996
4997
4998 #ifdef HAVE_WINDOW_SYSTEM
4999
5000 /* Mark Lisp objects in image IMG. */
5001
5002 static void
5003 mark_image (img)
5004 struct image *img;
5005 {
5006 mark_object (img->spec);
5007
5008 if (!NILP (img->data.lisp_val))
5009 mark_object (img->data.lisp_val);
5010 }
5011
5012
5013 /* Mark Lisp objects in image cache of frame F. It's done this way so
5014 that we don't have to include xterm.h here. */
5015
5016 static void
5017 mark_image_cache (f)
5018 struct frame *f;
5019 {
5020 forall_images_in_image_cache (f, mark_image);
5021 }
5022
5023 #endif /* HAVE_X_WINDOWS */
5024
5025
5026 \f
5027 /* Mark reference to a Lisp_Object.
5028 If the object referred to has not been seen yet, recursively mark
5029 all the references contained in it. */
5030
5031 #define LAST_MARKED_SIZE 500
5032 Lisp_Object last_marked[LAST_MARKED_SIZE];
5033 int last_marked_index;
5034
5035 /* For debugging--call abort when we cdr down this many
5036 links of a list, in mark_object. In debugging,
5037 the call to abort will hit a breakpoint.
5038 Normally this is zero and the check never goes off. */
5039 int mark_object_loop_halt;
5040
5041 void
5042 mark_object (arg)
5043 Lisp_Object arg;
5044 {
5045 register Lisp_Object obj = arg;
5046 #ifdef GC_CHECK_MARKED_OBJECTS
5047 void *po;
5048 struct mem_node *m;
5049 #endif
5050 int cdr_count = 0;
5051
5052 loop:
5053
5054 if (PURE_POINTER_P (XPNTR (obj)))
5055 return;
5056
5057 last_marked[last_marked_index++] = obj;
5058 if (last_marked_index == LAST_MARKED_SIZE)
5059 last_marked_index = 0;
5060
5061 /* Perform some sanity checks on the objects marked here. Abort if
5062 we encounter an object we know is bogus. This increases GC time
5063 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5064 #ifdef GC_CHECK_MARKED_OBJECTS
5065
5066 po = (void *) XPNTR (obj);
5067
5068 /* Check that the object pointed to by PO is known to be a Lisp
5069 structure allocated from the heap. */
5070 #define CHECK_ALLOCATED() \
5071 do { \
5072 m = mem_find (po); \
5073 if (m == MEM_NIL) \
5074 abort (); \
5075 } while (0)
5076
5077 /* Check that the object pointed to by PO is live, using predicate
5078 function LIVEP. */
5079 #define CHECK_LIVE(LIVEP) \
5080 do { \
5081 if (!LIVEP (m, po)) \
5082 abort (); \
5083 } while (0)
5084
5085 /* Check both of the above conditions. */
5086 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5087 do { \
5088 CHECK_ALLOCATED (); \
5089 CHECK_LIVE (LIVEP); \
5090 } while (0) \
5091
5092 #else /* not GC_CHECK_MARKED_OBJECTS */
5093
5094 #define CHECK_ALLOCATED() (void) 0
5095 #define CHECK_LIVE(LIVEP) (void) 0
5096 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5097
5098 #endif /* not GC_CHECK_MARKED_OBJECTS */
5099
5100 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
5101 {
5102 case Lisp_String:
5103 {
5104 register struct Lisp_String *ptr = XSTRING (obj);
5105 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5106 MARK_INTERVAL_TREE (ptr->intervals);
5107 MARK_STRING (ptr);
5108 #ifdef GC_CHECK_STRING_BYTES
5109 /* Check that the string size recorded in the string is the
5110 same as the one recorded in the sdata structure. */
5111 CHECK_STRING_BYTES (ptr);
5112 #endif /* GC_CHECK_STRING_BYTES */
5113 }
5114 break;
5115
5116 case Lisp_Vectorlike:
5117 #ifdef GC_CHECK_MARKED_OBJECTS
5118 m = mem_find (po);
5119 if (m == MEM_NIL && !GC_SUBRP (obj)
5120 && po != &buffer_defaults
5121 && po != &buffer_local_symbols)
5122 abort ();
5123 #endif /* GC_CHECK_MARKED_OBJECTS */
5124
5125 if (GC_BUFFERP (obj))
5126 {
5127 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5128 {
5129 #ifdef GC_CHECK_MARKED_OBJECTS
5130 if (po != &buffer_defaults && po != &buffer_local_symbols)
5131 {
5132 struct buffer *b;
5133 for (b = all_buffers; b && b != po; b = b->next)
5134 ;
5135 if (b == NULL)
5136 abort ();
5137 }
5138 #endif /* GC_CHECK_MARKED_OBJECTS */
5139 mark_buffer (obj);
5140 }
5141 }
5142 else if (GC_SUBRP (obj))
5143 break;
5144 else if (GC_COMPILEDP (obj))
5145 /* We could treat this just like a vector, but it is better to
5146 save the COMPILED_CONSTANTS element for last and avoid
5147 recursion there. */
5148 {
5149 register struct Lisp_Vector *ptr = XVECTOR (obj);
5150 register EMACS_INT size = ptr->size;
5151 register int i;
5152
5153 if (VECTOR_MARKED_P (ptr))
5154 break; /* Already marked */
5155
5156 CHECK_LIVE (live_vector_p);
5157 VECTOR_MARK (ptr); /* Else mark it */
5158 size &= PSEUDOVECTOR_SIZE_MASK;
5159 for (i = 0; i < size; i++) /* and then mark its elements */
5160 {
5161 if (i != COMPILED_CONSTANTS)
5162 mark_object (ptr->contents[i]);
5163 }
5164 obj = ptr->contents[COMPILED_CONSTANTS];
5165 goto loop;
5166 }
5167 else if (GC_FRAMEP (obj))
5168 {
5169 register struct frame *ptr = XFRAME (obj);
5170
5171 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5172 VECTOR_MARK (ptr); /* Else mark it */
5173
5174 CHECK_LIVE (live_vector_p);
5175 mark_object (ptr->name);
5176 mark_object (ptr->icon_name);
5177 mark_object (ptr->title);
5178 mark_object (ptr->focus_frame);
5179 mark_object (ptr->selected_window);
5180 mark_object (ptr->minibuffer_window);
5181 mark_object (ptr->param_alist);
5182 mark_object (ptr->scroll_bars);
5183 mark_object (ptr->condemned_scroll_bars);
5184 mark_object (ptr->menu_bar_items);
5185 mark_object (ptr->face_alist);
5186 mark_object (ptr->menu_bar_vector);
5187 mark_object (ptr->buffer_predicate);
5188 mark_object (ptr->buffer_list);
5189 mark_object (ptr->menu_bar_window);
5190 mark_object (ptr->tool_bar_window);
5191 mark_face_cache (ptr->face_cache);
5192 #ifdef HAVE_WINDOW_SYSTEM
5193 mark_image_cache (ptr);
5194 mark_object (ptr->tool_bar_items);
5195 mark_object (ptr->desired_tool_bar_string);
5196 mark_object (ptr->current_tool_bar_string);
5197 #endif /* HAVE_WINDOW_SYSTEM */
5198 }
5199 else if (GC_BOOL_VECTOR_P (obj))
5200 {
5201 register struct Lisp_Vector *ptr = XVECTOR (obj);
5202
5203 if (VECTOR_MARKED_P (ptr))
5204 break; /* Already marked */
5205 CHECK_LIVE (live_vector_p);
5206 VECTOR_MARK (ptr); /* Else mark it */
5207 }
5208 else if (GC_WINDOWP (obj))
5209 {
5210 register struct Lisp_Vector *ptr = XVECTOR (obj);
5211 struct window *w = XWINDOW (obj);
5212 register int i;
5213
5214 /* Stop if already marked. */
5215 if (VECTOR_MARKED_P (ptr))
5216 break;
5217
5218 /* Mark it. */
5219 CHECK_LIVE (live_vector_p);
5220 VECTOR_MARK (ptr);
5221
5222 /* There is no Lisp data above The member CURRENT_MATRIX in
5223 struct WINDOW. Stop marking when that slot is reached. */
5224 for (i = 0;
5225 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
5226 i++)
5227 mark_object (ptr->contents[i]);
5228
5229 /* Mark glyphs for leaf windows. Marking window matrices is
5230 sufficient because frame matrices use the same glyph
5231 memory. */
5232 if (NILP (w->hchild)
5233 && NILP (w->vchild)
5234 && w->current_matrix)
5235 {
5236 mark_glyph_matrix (w->current_matrix);
5237 mark_glyph_matrix (w->desired_matrix);
5238 }
5239 }
5240 else if (GC_HASH_TABLE_P (obj))
5241 {
5242 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5243
5244 /* Stop if already marked. */
5245 if (VECTOR_MARKED_P (h))
5246 break;
5247
5248 /* Mark it. */
5249 CHECK_LIVE (live_vector_p);
5250 VECTOR_MARK (h);
5251
5252 /* Mark contents. */
5253 /* Do not mark next_free or next_weak.
5254 Being in the next_weak chain
5255 should not keep the hash table alive.
5256 No need to mark `count' since it is an integer. */
5257 mark_object (h->test);
5258 mark_object (h->weak);
5259 mark_object (h->rehash_size);
5260 mark_object (h->rehash_threshold);
5261 mark_object (h->hash);
5262 mark_object (h->next);
5263 mark_object (h->index);
5264 mark_object (h->user_hash_function);
5265 mark_object (h->user_cmp_function);
5266
5267 /* If hash table is not weak, mark all keys and values.
5268 For weak tables, mark only the vector. */
5269 if (GC_NILP (h->weak))
5270 mark_object (h->key_and_value);
5271 else
5272 VECTOR_MARK (XVECTOR (h->key_and_value));
5273 }
5274 else
5275 {
5276 register struct Lisp_Vector *ptr = XVECTOR (obj);
5277 register EMACS_INT size = ptr->size;
5278 register int i;
5279
5280 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5281 CHECK_LIVE (live_vector_p);
5282 VECTOR_MARK (ptr); /* Else mark it */
5283 if (size & PSEUDOVECTOR_FLAG)
5284 size &= PSEUDOVECTOR_SIZE_MASK;
5285
5286 for (i = 0; i < size; i++) /* and then mark its elements */
5287 mark_object (ptr->contents[i]);
5288 }
5289 break;
5290
5291 case Lisp_Symbol:
5292 {
5293 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5294 struct Lisp_Symbol *ptrx;
5295
5296 if (ptr->gcmarkbit) break;
5297 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5298 ptr->gcmarkbit = 1;
5299 mark_object (ptr->value);
5300 mark_object (ptr->function);
5301 mark_object (ptr->plist);
5302
5303 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5304 MARK_STRING (XSTRING (ptr->xname));
5305 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5306
5307 /* Note that we do not mark the obarray of the symbol.
5308 It is safe not to do so because nothing accesses that
5309 slot except to check whether it is nil. */
5310 ptr = ptr->next;
5311 if (ptr)
5312 {
5313 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5314 XSETSYMBOL (obj, ptrx);
5315 goto loop;
5316 }
5317 }
5318 break;
5319
5320 case Lisp_Misc:
5321 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5322 if (XMARKER (obj)->gcmarkbit)
5323 break;
5324 XMARKER (obj)->gcmarkbit = 1;
5325
5326 switch (XMISCTYPE (obj))
5327 {
5328 case Lisp_Misc_Buffer_Local_Value:
5329 case Lisp_Misc_Some_Buffer_Local_Value:
5330 {
5331 register struct Lisp_Buffer_Local_Value *ptr
5332 = XBUFFER_LOCAL_VALUE (obj);
5333 /* If the cdr is nil, avoid recursion for the car. */
5334 if (EQ (ptr->cdr, Qnil))
5335 {
5336 obj = ptr->realvalue;
5337 goto loop;
5338 }
5339 mark_object (ptr->realvalue);
5340 mark_object (ptr->buffer);
5341 mark_object (ptr->frame);
5342 obj = ptr->cdr;
5343 goto loop;
5344 }
5345
5346 case Lisp_Misc_Marker:
5347 /* DO NOT mark thru the marker's chain.
5348 The buffer's markers chain does not preserve markers from gc;
5349 instead, markers are removed from the chain when freed by gc. */
5350 break;
5351
5352 case Lisp_Misc_Intfwd:
5353 case Lisp_Misc_Boolfwd:
5354 case Lisp_Misc_Objfwd:
5355 case Lisp_Misc_Buffer_Objfwd:
5356 case Lisp_Misc_Kboard_Objfwd:
5357 /* Don't bother with Lisp_Buffer_Objfwd,
5358 since all markable slots in current buffer marked anyway. */
5359 /* Don't need to do Lisp_Objfwd, since the places they point
5360 are protected with staticpro. */
5361 break;
5362
5363 case Lisp_Misc_Save_Value:
5364 #if GC_MARK_STACK
5365 {
5366 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5367 /* If DOGC is set, POINTER is the address of a memory
5368 area containing INTEGER potential Lisp_Objects. */
5369 if (ptr->dogc)
5370 {
5371 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5372 int nelt;
5373 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5374 mark_maybe_object (*p);
5375 }
5376 }
5377 #endif
5378 break;
5379
5380 case Lisp_Misc_Overlay:
5381 {
5382 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5383 mark_object (ptr->start);
5384 mark_object (ptr->end);
5385 mark_object (ptr->plist);
5386 if (ptr->next)
5387 {
5388 XSETMISC (obj, ptr->next);
5389 goto loop;
5390 }
5391 }
5392 break;
5393
5394 default:
5395 abort ();
5396 }
5397 break;
5398
5399 case Lisp_Cons:
5400 {
5401 register struct Lisp_Cons *ptr = XCONS (obj);
5402 if (CONS_MARKED_P (ptr)) break;
5403 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5404 CONS_MARK (ptr);
5405 /* If the cdr is nil, avoid recursion for the car. */
5406 if (EQ (ptr->cdr, Qnil))
5407 {
5408 obj = ptr->car;
5409 cdr_count = 0;
5410 goto loop;
5411 }
5412 mark_object (ptr->car);
5413 obj = ptr->cdr;
5414 cdr_count++;
5415 if (cdr_count == mark_object_loop_halt)
5416 abort ();
5417 goto loop;
5418 }
5419
5420 case Lisp_Float:
5421 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5422 FLOAT_MARK (XFLOAT (obj));
5423 break;
5424
5425 case Lisp_Int:
5426 break;
5427
5428 default:
5429 abort ();
5430 }
5431
5432 #undef CHECK_LIVE
5433 #undef CHECK_ALLOCATED
5434 #undef CHECK_ALLOCATED_AND_LIVE
5435 }
5436
5437 /* Mark the pointers in a buffer structure. */
5438
5439 static void
5440 mark_buffer (buf)
5441 Lisp_Object buf;
5442 {
5443 register struct buffer *buffer = XBUFFER (buf);
5444 register Lisp_Object *ptr, tmp;
5445 Lisp_Object base_buffer;
5446
5447 VECTOR_MARK (buffer);
5448
5449 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5450
5451 /* For now, we just don't mark the undo_list. It's done later in
5452 a special way just before the sweep phase, and after stripping
5453 some of its elements that are not needed any more. */
5454
5455 if (buffer->overlays_before)
5456 {
5457 XSETMISC (tmp, buffer->overlays_before);
5458 mark_object (tmp);
5459 }
5460 if (buffer->overlays_after)
5461 {
5462 XSETMISC (tmp, buffer->overlays_after);
5463 mark_object (tmp);
5464 }
5465
5466 for (ptr = &buffer->name;
5467 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5468 ptr++)
5469 mark_object (*ptr);
5470
5471 /* If this is an indirect buffer, mark its base buffer. */
5472 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5473 {
5474 XSETBUFFER (base_buffer, buffer->base_buffer);
5475 mark_buffer (base_buffer);
5476 }
5477 }
5478
5479
5480 /* Value is non-zero if OBJ will survive the current GC because it's
5481 either marked or does not need to be marked to survive. */
5482
5483 int
5484 survives_gc_p (obj)
5485 Lisp_Object obj;
5486 {
5487 int survives_p;
5488
5489 switch (XGCTYPE (obj))
5490 {
5491 case Lisp_Int:
5492 survives_p = 1;
5493 break;
5494
5495 case Lisp_Symbol:
5496 survives_p = XSYMBOL (obj)->gcmarkbit;
5497 break;
5498
5499 case Lisp_Misc:
5500 survives_p = XMARKER (obj)->gcmarkbit;
5501 break;
5502
5503 case Lisp_String:
5504 survives_p = STRING_MARKED_P (XSTRING (obj));
5505 break;
5506
5507 case Lisp_Vectorlike:
5508 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5509 break;
5510
5511 case Lisp_Cons:
5512 survives_p = CONS_MARKED_P (XCONS (obj));
5513 break;
5514
5515 case Lisp_Float:
5516 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5517 break;
5518
5519 default:
5520 abort ();
5521 }
5522
5523 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5524 }
5525
5526
5527 \f
5528 /* Sweep: find all structures not marked, and free them. */
5529
5530 static void
5531 gc_sweep ()
5532 {
5533 /* Remove or mark entries in weak hash tables.
5534 This must be done before any object is unmarked. */
5535 sweep_weak_hash_tables ();
5536
5537 sweep_strings ();
5538 #ifdef GC_CHECK_STRING_BYTES
5539 if (!noninteractive)
5540 check_string_bytes (1);
5541 #endif
5542
5543 /* Put all unmarked conses on free list */
5544 {
5545 register struct cons_block *cblk;
5546 struct cons_block **cprev = &cons_block;
5547 register int lim = cons_block_index;
5548 register int num_free = 0, num_used = 0;
5549
5550 cons_free_list = 0;
5551
5552 for (cblk = cons_block; cblk; cblk = *cprev)
5553 {
5554 register int i;
5555 int this_free = 0;
5556 for (i = 0; i < lim; i++)
5557 if (!CONS_MARKED_P (&cblk->conses[i]))
5558 {
5559 this_free++;
5560 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5561 cons_free_list = &cblk->conses[i];
5562 #if GC_MARK_STACK
5563 cons_free_list->car = Vdead;
5564 #endif
5565 }
5566 else
5567 {
5568 num_used++;
5569 CONS_UNMARK (&cblk->conses[i]);
5570 }
5571 lim = CONS_BLOCK_SIZE;
5572 /* If this block contains only free conses and we have already
5573 seen more than two blocks worth of free conses then deallocate
5574 this block. */
5575 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5576 {
5577 *cprev = cblk->next;
5578 /* Unhook from the free list. */
5579 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5580 lisp_align_free (cblk);
5581 n_cons_blocks--;
5582 }
5583 else
5584 {
5585 num_free += this_free;
5586 cprev = &cblk->next;
5587 }
5588 }
5589 total_conses = num_used;
5590 total_free_conses = num_free;
5591 }
5592
5593 /* Put all unmarked floats on free list */
5594 {
5595 register struct float_block *fblk;
5596 struct float_block **fprev = &float_block;
5597 register int lim = float_block_index;
5598 register int num_free = 0, num_used = 0;
5599
5600 float_free_list = 0;
5601
5602 for (fblk = float_block; fblk; fblk = *fprev)
5603 {
5604 register int i;
5605 int this_free = 0;
5606 for (i = 0; i < lim; i++)
5607 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5608 {
5609 this_free++;
5610 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5611 float_free_list = &fblk->floats[i];
5612 }
5613 else
5614 {
5615 num_used++;
5616 FLOAT_UNMARK (&fblk->floats[i]);
5617 }
5618 lim = FLOAT_BLOCK_SIZE;
5619 /* If this block contains only free floats and we have already
5620 seen more than two blocks worth of free floats then deallocate
5621 this block. */
5622 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5623 {
5624 *fprev = fblk->next;
5625 /* Unhook from the free list. */
5626 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5627 lisp_align_free (fblk);
5628 n_float_blocks--;
5629 }
5630 else
5631 {
5632 num_free += this_free;
5633 fprev = &fblk->next;
5634 }
5635 }
5636 total_floats = num_used;
5637 total_free_floats = num_free;
5638 }
5639
5640 /* Put all unmarked intervals on free list */
5641 {
5642 register struct interval_block *iblk;
5643 struct interval_block **iprev = &interval_block;
5644 register int lim = interval_block_index;
5645 register int num_free = 0, num_used = 0;
5646
5647 interval_free_list = 0;
5648
5649 for (iblk = interval_block; iblk; iblk = *iprev)
5650 {
5651 register int i;
5652 int this_free = 0;
5653
5654 for (i = 0; i < lim; i++)
5655 {
5656 if (!iblk->intervals[i].gcmarkbit)
5657 {
5658 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5659 interval_free_list = &iblk->intervals[i];
5660 this_free++;
5661 }
5662 else
5663 {
5664 num_used++;
5665 iblk->intervals[i].gcmarkbit = 0;
5666 }
5667 }
5668 lim = INTERVAL_BLOCK_SIZE;
5669 /* If this block contains only free intervals and we have already
5670 seen more than two blocks worth of free intervals then
5671 deallocate this block. */
5672 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5673 {
5674 *iprev = iblk->next;
5675 /* Unhook from the free list. */
5676 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5677 lisp_free (iblk);
5678 n_interval_blocks--;
5679 }
5680 else
5681 {
5682 num_free += this_free;
5683 iprev = &iblk->next;
5684 }
5685 }
5686 total_intervals = num_used;
5687 total_free_intervals = num_free;
5688 }
5689
5690 /* Put all unmarked symbols on free list */
5691 {
5692 register struct symbol_block *sblk;
5693 struct symbol_block **sprev = &symbol_block;
5694 register int lim = symbol_block_index;
5695 register int num_free = 0, num_used = 0;
5696
5697 symbol_free_list = NULL;
5698
5699 for (sblk = symbol_block; sblk; sblk = *sprev)
5700 {
5701 int this_free = 0;
5702 struct Lisp_Symbol *sym = sblk->symbols;
5703 struct Lisp_Symbol *end = sym + lim;
5704
5705 for (; sym < end; ++sym)
5706 {
5707 /* Check if the symbol was created during loadup. In such a case
5708 it might be pointed to by pure bytecode which we don't trace,
5709 so we conservatively assume that it is live. */
5710 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5711
5712 if (!sym->gcmarkbit && !pure_p)
5713 {
5714 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5715 symbol_free_list = sym;
5716 #if GC_MARK_STACK
5717 symbol_free_list->function = Vdead;
5718 #endif
5719 ++this_free;
5720 }
5721 else
5722 {
5723 ++num_used;
5724 if (!pure_p)
5725 UNMARK_STRING (XSTRING (sym->xname));
5726 sym->gcmarkbit = 0;
5727 }
5728 }
5729
5730 lim = SYMBOL_BLOCK_SIZE;
5731 /* If this block contains only free symbols and we have already
5732 seen more than two blocks worth of free symbols then deallocate
5733 this block. */
5734 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5735 {
5736 *sprev = sblk->next;
5737 /* Unhook from the free list. */
5738 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5739 lisp_free (sblk);
5740 n_symbol_blocks--;
5741 }
5742 else
5743 {
5744 num_free += this_free;
5745 sprev = &sblk->next;
5746 }
5747 }
5748 total_symbols = num_used;
5749 total_free_symbols = num_free;
5750 }
5751
5752 /* Put all unmarked misc's on free list.
5753 For a marker, first unchain it from the buffer it points into. */
5754 {
5755 register struct marker_block *mblk;
5756 struct marker_block **mprev = &marker_block;
5757 register int lim = marker_block_index;
5758 register int num_free = 0, num_used = 0;
5759
5760 marker_free_list = 0;
5761
5762 for (mblk = marker_block; mblk; mblk = *mprev)
5763 {
5764 register int i;
5765 int this_free = 0;
5766
5767 for (i = 0; i < lim; i++)
5768 {
5769 if (!mblk->markers[i].u_marker.gcmarkbit)
5770 {
5771 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5772 unchain_marker (&mblk->markers[i].u_marker);
5773 /* Set the type of the freed object to Lisp_Misc_Free.
5774 We could leave the type alone, since nobody checks it,
5775 but this might catch bugs faster. */
5776 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5777 mblk->markers[i].u_free.chain = marker_free_list;
5778 marker_free_list = &mblk->markers[i];
5779 this_free++;
5780 }
5781 else
5782 {
5783 num_used++;
5784 mblk->markers[i].u_marker.gcmarkbit = 0;
5785 }
5786 }
5787 lim = MARKER_BLOCK_SIZE;
5788 /* If this block contains only free markers and we have already
5789 seen more than two blocks worth of free markers then deallocate
5790 this block. */
5791 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5792 {
5793 *mprev = mblk->next;
5794 /* Unhook from the free list. */
5795 marker_free_list = mblk->markers[0].u_free.chain;
5796 lisp_free (mblk);
5797 n_marker_blocks--;
5798 }
5799 else
5800 {
5801 num_free += this_free;
5802 mprev = &mblk->next;
5803 }
5804 }
5805
5806 total_markers = num_used;
5807 total_free_markers = num_free;
5808 }
5809
5810 /* Free all unmarked buffers */
5811 {
5812 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5813
5814 while (buffer)
5815 if (!VECTOR_MARKED_P (buffer))
5816 {
5817 if (prev)
5818 prev->next = buffer->next;
5819 else
5820 all_buffers = buffer->next;
5821 next = buffer->next;
5822 lisp_free (buffer);
5823 buffer = next;
5824 }
5825 else
5826 {
5827 VECTOR_UNMARK (buffer);
5828 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5829 prev = buffer, buffer = buffer->next;
5830 }
5831 }
5832
5833 /* Free all unmarked vectors */
5834 {
5835 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5836 total_vector_size = 0;
5837
5838 while (vector)
5839 if (!VECTOR_MARKED_P (vector))
5840 {
5841 if (prev)
5842 prev->next = vector->next;
5843 else
5844 all_vectors = vector->next;
5845 next = vector->next;
5846 lisp_free (vector);
5847 n_vectors--;
5848 vector = next;
5849
5850 }
5851 else
5852 {
5853 VECTOR_UNMARK (vector);
5854 if (vector->size & PSEUDOVECTOR_FLAG)
5855 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5856 else
5857 total_vector_size += vector->size;
5858 prev = vector, vector = vector->next;
5859 }
5860 }
5861
5862 #ifdef GC_CHECK_STRING_BYTES
5863 if (!noninteractive)
5864 check_string_bytes (1);
5865 #endif
5866 }
5867
5868
5869
5870 \f
5871 /* Debugging aids. */
5872
5873 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5874 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5875 This may be helpful in debugging Emacs's memory usage.
5876 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5877 ()
5878 {
5879 Lisp_Object end;
5880
5881 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5882
5883 return end;
5884 }
5885
5886 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5887 doc: /* Return a list of counters that measure how much consing there has been.
5888 Each of these counters increments for a certain kind of object.
5889 The counters wrap around from the largest positive integer to zero.
5890 Garbage collection does not decrease them.
5891 The elements of the value are as follows:
5892 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5893 All are in units of 1 = one object consed
5894 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5895 objects consed.
5896 MISCS include overlays, markers, and some internal types.
5897 Frames, windows, buffers, and subprocesses count as vectors
5898 (but the contents of a buffer's text do not count here). */)
5899 ()
5900 {
5901 Lisp_Object consed[8];
5902
5903 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5904 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5905 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5906 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5907 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5908 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5909 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5910 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5911
5912 return Flist (8, consed);
5913 }
5914
5915 int suppress_checking;
5916 void
5917 die (msg, file, line)
5918 const char *msg;
5919 const char *file;
5920 int line;
5921 {
5922 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5923 file, line, msg);
5924 abort ();
5925 }
5926 \f
5927 /* Initialization */
5928
5929 void
5930 init_alloc_once ()
5931 {
5932 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5933 purebeg = PUREBEG;
5934 pure_size = PURESIZE;
5935 pure_bytes_used = 0;
5936 pure_bytes_used_before_overflow = 0;
5937
5938 /* Initialize the list of free aligned blocks. */
5939 free_ablock = NULL;
5940
5941 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5942 mem_init ();
5943 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5944 #endif
5945
5946 all_vectors = 0;
5947 ignore_warnings = 1;
5948 #ifdef DOUG_LEA_MALLOC
5949 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5950 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5951 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5952 #endif
5953 init_strings ();
5954 init_cons ();
5955 init_symbol ();
5956 init_marker ();
5957 init_float ();
5958 init_intervals ();
5959
5960 #ifdef REL_ALLOC
5961 malloc_hysteresis = 32;
5962 #else
5963 malloc_hysteresis = 0;
5964 #endif
5965
5966 spare_memory = (char *) malloc (SPARE_MEMORY);
5967
5968 ignore_warnings = 0;
5969 gcprolist = 0;
5970 byte_stack_list = 0;
5971 staticidx = 0;
5972 consing_since_gc = 0;
5973 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5974 #ifdef VIRT_ADDR_VARIES
5975 malloc_sbrk_unused = 1<<22; /* A large number */
5976 malloc_sbrk_used = 100000; /* as reasonable as any number */
5977 #endif /* VIRT_ADDR_VARIES */
5978 }
5979
5980 void
5981 init_alloc ()
5982 {
5983 gcprolist = 0;
5984 byte_stack_list = 0;
5985 #if GC_MARK_STACK
5986 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5987 setjmp_tested_p = longjmps_done = 0;
5988 #endif
5989 #endif
5990 Vgc_elapsed = make_float (0.0);
5991 gcs_done = 0;
5992 }
5993
5994 void
5995 syms_of_alloc ()
5996 {
5997 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5998 doc: /* *Number of bytes of consing between garbage collections.
5999 Garbage collection can happen automatically once this many bytes have been
6000 allocated since the last garbage collection. All data types count.
6001
6002 Garbage collection happens automatically only when `eval' is called.
6003
6004 By binding this temporarily to a large number, you can effectively
6005 prevent garbage collection during a part of the program. */);
6006
6007 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6008 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6009
6010 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6011 doc: /* Number of cons cells that have been consed so far. */);
6012
6013 DEFVAR_INT ("floats-consed", &floats_consed,
6014 doc: /* Number of floats that have been consed so far. */);
6015
6016 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6017 doc: /* Number of vector cells that have been consed so far. */);
6018
6019 DEFVAR_INT ("symbols-consed", &symbols_consed,
6020 doc: /* Number of symbols that have been consed so far. */);
6021
6022 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6023 doc: /* Number of string characters that have been consed so far. */);
6024
6025 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6026 doc: /* Number of miscellaneous objects that have been consed so far. */);
6027
6028 DEFVAR_INT ("intervals-consed", &intervals_consed,
6029 doc: /* Number of intervals that have been consed so far. */);
6030
6031 DEFVAR_INT ("strings-consed", &strings_consed,
6032 doc: /* Number of strings that have been consed so far. */);
6033
6034 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6035 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6036 This means that certain objects should be allocated in shared (pure) space. */);
6037
6038 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6039 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6040 garbage_collection_messages = 0;
6041
6042 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6043 doc: /* Hook run after garbage collection has finished. */);
6044 Vpost_gc_hook = Qnil;
6045 Qpost_gc_hook = intern ("post-gc-hook");
6046 staticpro (&Qpost_gc_hook);
6047
6048 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6049 doc: /* Precomputed `signal' argument for memory-full error. */);
6050 /* We build this in advance because if we wait until we need it, we might
6051 not be able to allocate the memory to hold it. */
6052 Vmemory_signal_data
6053 = list2 (Qerror,
6054 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6055
6056 DEFVAR_LISP ("memory-full", &Vmemory_full,
6057 doc: /* Non-nil means we are handling a memory-full error. */);
6058 Vmemory_full = Qnil;
6059
6060 staticpro (&Qgc_cons_threshold);
6061 Qgc_cons_threshold = intern ("gc-cons-threshold");
6062
6063 staticpro (&Qchar_table_extra_slots);
6064 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6065
6066 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6067 doc: /* Accumulated time elapsed in garbage collections.
6068 The time is in seconds as a floating point value. */);
6069 DEFVAR_INT ("gcs-done", &gcs_done,
6070 doc: /* Accumulated number of garbage collections done. */);
6071
6072 defsubr (&Scons);
6073 defsubr (&Slist);
6074 defsubr (&Svector);
6075 defsubr (&Smake_byte_code);
6076 defsubr (&Smake_list);
6077 defsubr (&Smake_vector);
6078 defsubr (&Smake_char_table);
6079 defsubr (&Smake_string);
6080 defsubr (&Smake_bool_vector);
6081 defsubr (&Smake_symbol);
6082 defsubr (&Smake_marker);
6083 defsubr (&Spurecopy);
6084 defsubr (&Sgarbage_collect);
6085 defsubr (&Smemory_limit);
6086 defsubr (&Smemory_use_counts);
6087
6088 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6089 defsubr (&Sgc_status);
6090 #endif
6091 }
6092
6093 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6094 (do not change this comment) */