]> code.delx.au - gnu-emacs/blob - lisp/emacs-lisp/rx.el
Merge from emacs--rel--22
[gnu-emacs] / lisp / emacs-lisp / rx.el
1 ;;; rx.el --- sexp notation for regular expressions
2
3 ;; Copyright (C) 2001, 2002, 2003, 2004, 2005,
4 ;; 2006, 2007, 2008 Free Software Foundation, Inc.
5
6 ;; Author: Gerd Moellmann <gerd@gnu.org>
7 ;; Maintainer: FSF
8 ;; Keywords: strings, regexps, extensions
9
10 ;; This file is part of GNU Emacs.
11
12 ;; GNU Emacs is free software: you can redistribute it and/or modify
13 ;; it under the terms of the GNU General Public License as published by
14 ;; the Free Software Foundation, either version 3 of the License, or
15 ;; (at your option) any later version.
16
17 ;; GNU Emacs is distributed in the hope that it will be useful,
18 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
19 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 ;; GNU General Public License for more details.
21
22 ;; You should have received a copy of the GNU General Public License
23 ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
24
25 ;;; Commentary:
26
27 ;; This is another implementation of sexp-form regular expressions.
28 ;; It was unfortunately written without being aware of the Sregex
29 ;; package coming with Emacs, but as things stand, Rx completely
30 ;; covers all regexp features, which Sregex doesn't, doesn't suffer
31 ;; from the bugs mentioned in the commentary section of Sregex, and
32 ;; uses a nicer syntax (IMHO, of course :-).
33
34 ;; This significantly extended version of the original, is almost
35 ;; compatible with Sregex. The only incompatibility I (fx) know of is
36 ;; that the `repeat' form can't have multiple regexp args.
37
38 ;; Now alternative forms are provided for a degree of compatibility
39 ;; with Shivers' attempted definitive SRE notation
40 ;; <URL:http://www.ai.mit.edu/~/shivers/sre.txt>. SRE forms not
41 ;; catered for include: dsm, uncase, w/case, w/nocase, ,@<exp>,
42 ;; ,<exp>, (word ...), word+, posix-string, and character class forms.
43 ;; Some forms are inconsistent with SRE, either for historical reasons
44 ;; or because of the implementation -- simple translation into Emacs
45 ;; regexp strings. These include: any, word. Also, case-sensitivity
46 ;; and greediness are controlled by variables external to the regexp,
47 ;; and you need to feed the forms to the `posix-' functions to get
48 ;; SRE's POSIX semantics. There are probably more difficulties.
49
50 ;; Rx translates a sexp notation for regular expressions into the
51 ;; usual string notation. The translation can be done at compile-time
52 ;; by using the `rx' macro. It can be done at run-time by calling
53 ;; function `rx-to-string'. See the documentation of `rx' for a
54 ;; complete description of the sexp notation.
55 ;;
56 ;; Some examples of string regexps and their sexp counterparts:
57 ;;
58 ;; "^[a-z]*"
59 ;; (rx (and line-start (0+ (in "a-z"))))
60 ;;
61 ;; "\n[^ \t]"
62 ;; (rx (and "\n" (not blank))), or
63 ;; (rx (and "\n" (not (any " \t"))))
64 ;;
65 ;; "\\*\\*\\* EOOH \\*\\*\\*\n"
66 ;; (rx "*** EOOH ***\n")
67 ;;
68 ;; "\\<\\(catch\\|finally\\)\\>[^_]"
69 ;; (rx (and word-start (submatch (or "catch" "finally")) word-end
70 ;; (not (any ?_))))
71 ;;
72 ;; "[ \t\n]*:\\([^:]+\\|$\\)"
73 ;; (rx (and (zero-or-more (in " \t\n")) ":"
74 ;; (submatch (or line-end (one-or-more (not (any ?:)))))))
75 ;;
76 ;; "^content-transfer-encoding:\\(\n?[\t ]\\)*quoted-printable\\(\n?[\t ]\\)*"
77 ;; (rx (and line-start
78 ;; "content-transfer-encoding:"
79 ;; (+ (? ?\n)) blank
80 ;; "quoted-printable"
81 ;; (+ (? ?\n)) blank))
82 ;;
83 ;; (concat "^\\(?:" something-else "\\)")
84 ;; (rx (and line-start (eval something-else))), statically or
85 ;; (rx-to-string '(and line-start ,something-else)), dynamically.
86 ;;
87 ;; (regexp-opt '(STRING1 STRING2 ...))
88 ;; (rx (or STRING1 STRING2 ...)), or in other words, `or' automatically
89 ;; calls `regexp-opt' as needed.
90 ;;
91 ;; "^;;\\s-*\n\\|^\n"
92 ;; (rx (or (and line-start ";;" (0+ space) ?\n)
93 ;; (and line-start ?\n)))
94 ;;
95 ;; "\\$[I]d: [^ ]+ \\([^ ]+\\) "
96 ;; (rx (and "$Id: "
97 ;; (1+ (not (in " ")))
98 ;; " "
99 ;; (submatch (1+ (not (in " "))))
100 ;; " "))
101 ;;
102 ;; "\\\\\\\\\\[\\w+"
103 ;; (rx (and ?\\ ?\\ ?\[ (1+ word)))
104 ;;
105 ;; etc.
106
107 ;;; History:
108 ;;
109
110 ;;; Code:
111
112 (defconst rx-constituents
113 '((and . (rx-and 1 nil))
114 (seq . and) ; SRE
115 (: . and) ; SRE
116 (sequence . and) ; sregex
117 (or . (rx-or 1 nil))
118 (| . or) ; SRE
119 (not-newline . ".")
120 (nonl . not-newline) ; SRE
121 (anything . "\\(?:.\\|\n\\)")
122 (any . (rx-any 1 nil rx-check-any)) ; inconsistent with SRE
123 (in . any)
124 (char . any) ; sregex
125 (not-char . (rx-not-char 1 nil rx-check-any)) ; sregex
126 (not . (rx-not 1 1 rx-check-not))
127 ;; Partially consistent with sregex, whose `repeat' is like our
128 ;; `**'. (`repeat' with optional max arg and multiple sexp forms
129 ;; is ambiguous.)
130 (repeat . (rx-repeat 2 3))
131 (= . (rx-= 2 nil)) ; SRE
132 (>= . (rx->= 2 nil)) ; SRE
133 (** . (rx-** 2 nil)) ; SRE
134 (submatch . (rx-submatch 1 nil)) ; SRE
135 (group . submatch)
136 (zero-or-more . (rx-kleene 1 nil))
137 (one-or-more . (rx-kleene 1 nil))
138 (zero-or-one . (rx-kleene 1 nil))
139 (\? . zero-or-one) ; SRE
140 (\?? . zero-or-one)
141 (* . zero-or-more) ; SRE
142 (*? . zero-or-more)
143 (0+ . zero-or-more)
144 (+ . one-or-more) ; SRE
145 (+? . one-or-more)
146 (1+ . one-or-more)
147 (optional . zero-or-one)
148 (opt . zero-or-one) ; sregex
149 (minimal-match . (rx-greedy 1 1))
150 (maximal-match . (rx-greedy 1 1))
151 (backref . (rx-backref 1 1 rx-check-backref))
152 (line-start . "^")
153 (bol . line-start) ; SRE
154 (line-end . "$")
155 (eol . line-end) ; SRE
156 (string-start . "\\`")
157 (bos . string-start) ; SRE
158 (bot . string-start) ; sregex
159 (string-end . "\\'")
160 (eos . string-end) ; SRE
161 (eot . string-end) ; sregex
162 (buffer-start . "\\`")
163 (buffer-end . "\\'")
164 (point . "\\=")
165 (word-start . "\\<")
166 (bow . word-start) ; SRE
167 (word-end . "\\>")
168 (eow . word-end) ; SRE
169 (word-boundary . "\\b")
170 (not-word-boundary . "\\B") ; sregex
171 (symbol-start . "\\_<")
172 (symbol-end . "\\_>")
173 (syntax . (rx-syntax 1 1))
174 (not-syntax . (rx-not-syntax 1 1)) ; sregex
175 (category . (rx-category 1 1 rx-check-category))
176 (eval . (rx-eval 1 1))
177 (regexp . (rx-regexp 1 1 stringp))
178 (digit . "[[:digit:]]")
179 (numeric . digit) ; SRE
180 (num . digit) ; SRE
181 (control . "[[:cntrl:]]") ; SRE
182 (cntrl . control) ; SRE
183 (hex-digit . "[[:xdigit:]]") ; SRE
184 (hex . hex-digit) ; SRE
185 (xdigit . hex-digit) ; SRE
186 (blank . "[[:blank:]]") ; SRE
187 (graphic . "[[:graph:]]") ; SRE
188 (graph . graphic) ; SRE
189 (printing . "[[:print:]]") ; SRE
190 (print . printing) ; SRE
191 (alphanumeric . "[[:alnum:]]") ; SRE
192 (alnum . alphanumeric) ; SRE
193 (letter . "[[:alpha:]]")
194 (alphabetic . letter) ; SRE
195 (alpha . letter) ; SRE
196 (ascii . "[[:ascii:]]") ; SRE
197 (nonascii . "[[:nonascii:]]")
198 (lower . "[[:lower:]]") ; SRE
199 (lower-case . lower) ; SRE
200 (punctuation . "[[:punct:]]") ; SRE
201 (punct . punctuation) ; SRE
202 (space . "[[:space:]]") ; SRE
203 (whitespace . space) ; SRE
204 (white . space) ; SRE
205 (upper . "[[:upper:]]") ; SRE
206 (upper-case . upper) ; SRE
207 (word . "[[:word:]]") ; inconsistent with SRE
208 (wordchar . word) ; sregex
209 (not-wordchar . "[^[:word:]]") ; sregex (use \\W?)
210 )
211 "Alist of sexp form regexp constituents.
212 Each element of the alist has the form (SYMBOL . DEFN).
213 SYMBOL is a valid constituent of sexp regular expressions.
214 If DEFN is a string, SYMBOL is translated into DEFN.
215 If DEFN is a symbol, use the definition of DEFN, recursively.
216 Otherwise, DEFN must be a list (FUNCTION MIN-ARGS MAX-ARGS PREDICATE).
217 FUNCTION is used to produce code for SYMBOL. MIN-ARGS and MAX-ARGS
218 are the minimum and maximum number of arguments the function-form
219 sexp constituent SYMBOL may have in sexp regular expressions.
220 MAX-ARGS nil means no limit. PREDICATE, if specified, means that
221 all arguments must satisfy PREDICATE.")
222
223
224 (defconst rx-syntax
225 '((whitespace . ?-)
226 (punctuation . ?.)
227 (word . ?w)
228 (symbol . ?_)
229 (open-parenthesis . ?\()
230 (close-parenthesis . ?\))
231 (expression-prefix . ?\')
232 (string-quote . ?\")
233 (paired-delimiter . ?$)
234 (escape . ?\\)
235 (character-quote . ?/)
236 (comment-start . ?<)
237 (comment-end . ?>)
238 (string-delimiter . ?|)
239 (comment-delimiter . ?!))
240 "Alist mapping Rx syntax symbols to syntax characters.
241 Each entry has the form (SYMBOL . CHAR), where SYMBOL is a valid
242 symbol in `(syntax SYMBOL)', and CHAR is the syntax character
243 corresponding to SYMBOL, as it would be used with \\s or \\S in
244 regular expressions.")
245
246
247 (defconst rx-categories
248 '((consonant . ?0)
249 (base-vowel . ?1)
250 (upper-diacritical-mark . ?2)
251 (lower-diacritical-mark . ?3)
252 (tone-mark . ?4)
253 (symbol . ?5)
254 (digit . ?6)
255 (vowel-modifying-diacritical-mark . ?7)
256 (vowel-sign . ?8)
257 (semivowel-lower . ?9)
258 (not-at-end-of-line . ?<)
259 (not-at-beginning-of-line . ?>)
260 (alpha-numeric-two-byte . ?A)
261 (chinse-two-byte . ?C)
262 (greek-two-byte . ?G)
263 (japanese-hiragana-two-byte . ?H)
264 (indian-two-byte . ?I)
265 (japanese-katakana-two-byte . ?K)
266 (korean-hangul-two-byte . ?N)
267 (cyrillic-two-byte . ?Y)
268 (combining-diacritic . ?^)
269 (ascii . ?a)
270 (arabic . ?b)
271 (chinese . ?c)
272 (ethiopic . ?e)
273 (greek . ?g)
274 (korean . ?h)
275 (indian . ?i)
276 (japanese . ?j)
277 (japanese-katakana . ?k)
278 (latin . ?l)
279 (lao . ?o)
280 (tibetan . ?q)
281 (japanese-roman . ?r)
282 (thai . ?t)
283 (vietnamese . ?v)
284 (hebrew . ?w)
285 (cyrillic . ?y)
286 (can-break . ?|))
287 "Alist mapping symbols to category characters.
288 Each entry has the form (SYMBOL . CHAR), where SYMBOL is a valid
289 symbol in `(category SYMBOL)', and CHAR is the category character
290 corresponding to SYMBOL, as it would be used with `\\c' or `\\C' in
291 regular expression strings.")
292
293
294 (defvar rx-greedy-flag t
295 "Non-nil means produce greedy regular expressions for `zero-or-one',
296 `zero-or-more', and `one-or-more'. Dynamically bound.")
297
298
299 (defun rx-info (op)
300 "Return parsing/code generation info for OP.
301 If OP is the space character ASCII 32, return info for the symbol `?'.
302 If OP is the character `?', return info for the symbol `??'.
303 See also `rx-constituents'."
304 (cond ((eq op ? ) (setq op '\?))
305 ((eq op ??) (setq op '\??)))
306 (while (and (not (null op)) (symbolp op))
307 (setq op (cdr (assq op rx-constituents))))
308 op)
309
310
311 (defun rx-check (form)
312 "Check FORM according to its car's parsing info."
313 (unless (listp form)
314 (error "rx `%s' needs argument(s)" form))
315 (let* ((rx (rx-info (car form)))
316 (nargs (1- (length form)))
317 (min-args (nth 1 rx))
318 (max-args (nth 2 rx))
319 (type-pred (nth 3 rx)))
320 (when (and (not (null min-args))
321 (< nargs min-args))
322 (error "rx form `%s' requires at least %d args"
323 (car form) min-args))
324 (when (and (not (null max-args))
325 (> nargs max-args))
326 (error "rx form `%s' accepts at most %d args"
327 (car form) max-args))
328 (when (not (null type-pred))
329 (dolist (sub-form (cdr form))
330 (unless (funcall type-pred sub-form)
331 (error "rx form `%s' requires args satisfying `%s'"
332 (car form) type-pred))))))
333
334
335 (defun rx-and (form)
336 "Parse and produce code from FORM.
337 FORM is of the form `(and FORM1 ...)'."
338 (rx-check form)
339 (concat "\\(?:"
340 (mapconcat
341 (function (lambda (x) (rx-to-string x 'no-group)))
342 (cdr form) nil)
343 "\\)"))
344
345
346 (defun rx-or (form)
347 "Parse and produce code from FORM, which is `(or FORM1 ...)'."
348 (rx-check form)
349 (let ((all-args-strings t))
350 (dolist (arg (cdr form))
351 (unless (stringp arg)
352 (setq all-args-strings nil)))
353 (concat "\\(?:"
354 (if all-args-strings
355 (regexp-opt (cdr form))
356 (mapconcat #'rx-to-string (cdr form) "\\|"))
357 "\\)")))
358
359
360 (defvar rx-bracket) ; dynamically bound in `rx-any'
361
362 (defun rx-check-any (arg)
363 "Check arg ARG for Rx `any'."
364 (if (integerp arg)
365 (setq arg (string arg)))
366 (when (stringp arg)
367 (if (zerop (length arg))
368 (error "String arg for Rx `any' must not be empty"))
369 ;; Quote ^ at start; don't bother to check whether this is first arg.
370 (if (eq ?^ (aref arg 0))
371 (setq arg (concat "\\" arg)))
372 ;; Remove ] and set flag for adding it to start of overall result.
373 (when (string-match "\\]" arg)
374 (setq arg (replace-regexp-in-string "\\]" "" arg)
375 rx-bracket "]")))
376 (when (symbolp arg)
377 (let ((translation (condition-case nil
378 (rx-to-string arg 'no-group)
379 (error nil))))
380 (unless translation (error "Invalid char class `%s' in Rx `any'" arg))
381 (setq arg (substring translation 1 -1)))) ; strip outer brackets
382 ;; sregex compatibility
383 (when (and (integerp (car-safe arg))
384 (integerp (cdr-safe arg)))
385 (setq arg (string (car arg) ?- (cdr arg))))
386 (unless (stringp arg)
387 (error "rx `any' requires string, character, char pair or char class args"))
388 arg)
389
390 (defun rx-any (form)
391 "Parse and produce code from FORM, which is `(any ARG ...)'.
392 ARG is optional."
393 (rx-check form)
394 (let* ((rx-bracket nil)
395 (args (mapcar #'rx-check-any (cdr form)))) ; side-effects `rx-bracket'
396 ;; If there was a ?- in the form, move it to the front to avoid
397 ;; accidental range.
398 (if (member "-" args)
399 (setq args (cons "-" (delete "-" args))))
400 (apply #'concat "[" rx-bracket (append args '("]")))))
401
402
403 (defun rx-check-not (arg)
404 "Check arg ARG for Rx `not'."
405 (unless (or (and (symbolp arg)
406 (string-match "\\`\\[\\[:[-a-z]:\\]\\]\\'"
407 (condition-case nil
408 (rx-to-string arg 'no-group)
409 (error ""))))
410 (eq arg 'word-boundary)
411 (and (consp arg)
412 (memq (car arg) '(not any in syntax category))))
413 (error "rx `not' syntax error: %s" arg))
414 t)
415
416
417 (defun rx-not (form)
418 "Parse and produce code from FORM. FORM is `(not ...)'."
419 (rx-check form)
420 (let ((result (rx-to-string (cadr form) 'no-group))
421 case-fold-search)
422 (cond ((string-match "\\`\\[^" result)
423 (if (= (length result) 4)
424 (substring result 2 3)
425 (concat "[" (substring result 2))))
426 ((eq ?\[ (aref result 0))
427 (concat "[^" (substring result 1)))
428 ((string-match "\\`\\\\[scb]" result)
429 (concat (capitalize (substring result 0 2)) (substring result 2)))
430 (t
431 (concat "[^" result "]")))))
432
433
434 (defun rx-not-char (form)
435 "Parse and produce code from FORM. FORM is `(not-char ...)'."
436 (rx-check form)
437 (rx-not `(not (in ,@(cdr form)))))
438
439
440 (defun rx-not-syntax (form)
441 "Parse and produce code from FORM. FORM is `(not-syntax SYNTAX)'."
442 (rx-check form)
443 (rx-not `(not (syntax ,@(cdr form)))))
444
445
446 (defun rx-trans-forms (form &optional skip)
447 "If FORM's length is greater than two, transform it to length two.
448 A form (HEAD REST ...) becomes (HEAD (and REST ...)).
449 If SKIP is non-nil, allow that number of items after the head, i.e.
450 `(= N REST ...)' becomes `(= N (and REST ...))' if SKIP is 1."
451 (unless skip (setq skip 0))
452 (let ((tail (nthcdr (1+ skip) form)))
453 (if (= (length tail) 1)
454 form
455 (let ((form (copy-sequence form)))
456 (setcdr (nthcdr skip form) (list (cons 'and tail)))
457 form))))
458
459
460 (defun rx-= (form)
461 "Parse and produce code from FORM `(= N ...)'."
462 (rx-check form)
463 (setq form (rx-trans-forms form 1))
464 (unless (and (integerp (nth 1 form))
465 (> (nth 1 form) 0))
466 (error "rx `=' requires positive integer first arg"))
467 (format "%s\\{%d\\}" (rx-to-string (nth 2 form)) (nth 1 form)))
468
469
470 (defun rx->= (form)
471 "Parse and produce code from FORM `(>= N ...)'."
472 (rx-check form)
473 (setq form (rx-trans-forms form 1))
474 (unless (and (integerp (nth 1 form))
475 (> (nth 1 form) 0))
476 (error "rx `>=' requires positive integer first arg"))
477 (format "%s\\{%d,\\}" (rx-to-string (nth 2 form)) (nth 1 form)))
478
479
480 (defun rx-** (form)
481 "Parse and produce code from FORM `(** N M ...)'."
482 (rx-check form)
483 (setq form (cons 'repeat (cdr (rx-trans-forms form 2))))
484 (rx-to-string form))
485
486
487 (defun rx-repeat (form)
488 "Parse and produce code from FORM.
489 FORM is either `(repeat N FORM1)' or `(repeat N M FORM1)'."
490 (rx-check form)
491 (cond ((= (length form) 3)
492 (unless (and (integerp (nth 1 form))
493 (> (nth 1 form) 0))
494 (error "rx `repeat' requires positive integer first arg"))
495 (format "%s\\{%d\\}" (rx-to-string (nth 2 form)) (nth 1 form)))
496 ((or (not (integerp (nth 2 form)))
497 (< (nth 2 form) 0)
498 (not (integerp (nth 1 form)))
499 (< (nth 1 form) 0)
500 (< (nth 2 form) (nth 1 form)))
501 (error "rx `repeat' range error"))
502 (t
503 (format "%s\\{%d,%d\\}" (rx-to-string (nth 3 form))
504 (nth 1 form) (nth 2 form)))))
505
506
507 (defun rx-submatch (form)
508 "Parse and produce code from FORM, which is `(submatch ...)'."
509 (concat "\\("
510 (mapconcat (function (lambda (x) (rx-to-string x 'no-group)))
511 (cdr form) nil)
512 "\\)"))
513
514 (defun rx-backref (form)
515 "Parse and produce code from FORM, which is `(backref N)'."
516 (rx-check form)
517 (format "\\%d" (nth 1 form)))
518
519 (defun rx-check-backref (arg)
520 "Check arg ARG for Rx `backref'."
521 (or (and (integerp arg) (>= arg 1) (<= arg 9))
522 (error "rx `backref' requires numeric 1<=arg<=9: %s" arg)))
523
524 (defun rx-kleene (form)
525 "Parse and produce code from FORM.
526 FORM is `(OP FORM1)', where OP is one of the `zero-or-one',
527 `zero-or-more' etc. operators.
528 If OP is one of `*', `+', `?', produce a greedy regexp.
529 If OP is one of `*?', `+?', `??', produce a non-greedy regexp.
530 If OP is anything else, produce a greedy regexp if `rx-greedy-flag'
531 is non-nil."
532 (rx-check form)
533 (setq form (rx-trans-forms form))
534 (let ((suffix (cond ((memq (car form) '(* + ? )) "")
535 ((memq (car form) '(*? +? ??)) "?")
536 (rx-greedy-flag "")
537 (t "?")))
538 (op (cond ((memq (car form) '(* *? 0+ zero-or-more)) "*")
539 ((memq (car form) '(+ +? 1+ one-or-more)) "+")
540 (t "?")))
541 (result (rx-to-string (cadr form) 'no-group)))
542 (if (not (rx-atomic-p result))
543 (setq result (concat "\\(?:" result "\\)")))
544 (concat result op suffix)))
545
546 (defun rx-atomic-p (r)
547 "Return non-nil if regexp string R is atomic.
548 An atomic regexp R is one such that a suffix operator
549 appended to R will apply to all of R. For example, \"a\"
550 \"[abc]\" and \"\\(ab\\|ab*c\\)\" are atomic and \"ab\",
551 \"[ab]c\", and \"ab\\|ab*c\" are not atomic.
552
553 This function may return false negatives, but it will not
554 return false positives. It is nevertheless useful in
555 situations where an efficiency shortcut can be taken only if a
556 regexp is atomic. The function can be improved to detect
557 more cases of atomic regexps. Presently, this function
558 detects the following categories of atomic regexp;
559
560 a group or shy group: \\(...\\)
561 a character class: [...]
562 a single character: a
563
564 On the other hand, false negatives will be returned for
565 regexps that are atomic but end in operators, such as
566 \"a+\". I think these are rare. Probably such cases could
567 be detected without much effort. A guarantee of no false
568 negatives would require a theoretic specification of the set
569 of all atomic regexps."
570 (let ((l (length r)))
571 (or (equal l 1)
572 (and (>= l 6)
573 (equal (substring r 0 2) "\\(")
574 (equal (substring r -2) "\\)"))
575 (and (>= l 2)
576 (equal (substring r 0 1) "[")
577 (equal (substring r -1) "]")))))
578
579
580 (defun rx-syntax (form)
581 "Parse and produce code from FORM, which is `(syntax SYMBOL)'."
582 (rx-check form)
583 (let* ((sym (cadr form))
584 (syntax (assq sym rx-syntax)))
585 (unless syntax
586 ;; Try sregex compatibility.
587 (let ((name (symbol-name sym)))
588 (if (= 1 (length name))
589 (setq syntax (rassq (aref name 0) rx-syntax))))
590 (unless syntax
591 (error "Unknown rx syntax `%s'" (cadr form))))
592 (format "\\s%c" (cdr syntax))))
593
594
595 (defun rx-check-category (form)
596 "Check the argument FORM of a `(category FORM)'."
597 (unless (or (integerp form)
598 (cdr (assq form rx-categories)))
599 (error "Unknown category `%s'" form))
600 t)
601
602
603 (defun rx-category (form)
604 "Parse and produce code from FORM, which is `(category SYMBOL)'."
605 (rx-check form)
606 (let ((char (if (integerp (cadr form))
607 (cadr form)
608 (cdr (assq (cadr form) rx-categories)))))
609 (format "\\c%c" char)))
610
611
612 (defun rx-eval (form)
613 "Parse and produce code from FORM, which is `(eval FORM)'."
614 (rx-check form)
615 (rx-to-string (eval (cadr form))))
616
617
618 (defun rx-greedy (form)
619 "Parse and produce code from FORM.
620 If FORM is '(minimal-match FORM1)', non-greedy versions of `*',
621 `+', and `?' operators will be used in FORM1. If FORM is
622 '(maximal-match FORM1)', greedy operators will be used."
623 (rx-check form)
624 (let ((rx-greedy-flag (eq (car form) 'maximal-match)))
625 (rx-to-string (cadr form))))
626
627
628 (defun rx-regexp (form)
629 "Parse and produce code from FORM, which is `(regexp STRING)'."
630 (rx-check form)
631 (concat "\\(?:" (cadr form) "\\)"))
632
633
634 ;;;###autoload
635 (defun rx-to-string (form &optional no-group)
636 "Parse and produce code for regular expression FORM.
637 FORM is a regular expression in sexp form.
638 NO-GROUP non-nil means don't put shy groups around the result."
639 (cond ((stringp form)
640 (regexp-quote form))
641 ((integerp form)
642 (regexp-quote (char-to-string form)))
643 ((symbolp form)
644 (let ((info (rx-info form)))
645 (cond ((stringp info)
646 info)
647 ((null info)
648 (error "Unknown rx form `%s'" form))
649 (t
650 (funcall (nth 0 info) form)))))
651 ((consp form)
652 (let ((info (rx-info (car form))))
653 (unless (consp info)
654 (error "Unknown rx form `%s'" (car form)))
655 (let ((result (funcall (nth 0 info) form)))
656 (if (or no-group (string-match "\\`\\\\[(]" result))
657 result
658 (concat "\\(?:" result "\\)")))))
659 (t
660 (error "rx syntax error at `%s'" form))))
661
662
663 ;;;###autoload
664 (defmacro rx (&rest regexps)
665 "Translate regular expressions REGEXPS in sexp form to a regexp string.
666 REGEXPS is a non-empty sequence of forms of the sort listed below.
667 See also `rx-to-string' for how to do such a translation at run-time.
668
669 The following are valid subforms of regular expressions in sexp
670 notation.
671
672 STRING
673 matches string STRING literally.
674
675 CHAR
676 matches character CHAR literally.
677
678 `not-newline', `nonl'
679 matches any character except a newline.
680
681 `anything'
682 matches any character
683
684 `(any SET ...)'
685 `(in SET ...)'
686 `(char SET ...)'
687 matches any character in SET .... SET may be a character or string.
688 Ranges of characters can be specified as `A-Z' in strings.
689 Ranges may also be specified as conses like `(?A . ?Z)'.
690
691 SET may also be the name of a character class: `digit',
692 `control', `hex-digit', `blank', `graph', `print', `alnum',
693 `alpha', `ascii', `nonascii', `lower', `punct', `space', `upper',
694 `word', or one of their synonyms.
695
696 `(not (any SET ...))'
697 matches any character not in SET ...
698
699 `line-start', `bol'
700 matches the empty string, but only at the beginning of a line
701 in the text being matched
702
703 `line-end', `eol'
704 is similar to `line-start' but matches only at the end of a line
705
706 `string-start', `bos', `bot'
707 matches the empty string, but only at the beginning of the
708 string being matched against.
709
710 `string-end', `eos', `eot'
711 matches the empty string, but only at the end of the
712 string being matched against.
713
714 `buffer-start'
715 matches the empty string, but only at the beginning of the
716 buffer being matched against. Actually equivalent to `string-start'.
717
718 `buffer-end'
719 matches the empty string, but only at the end of the
720 buffer being matched against. Actually equivalent to `string-end'.
721
722 `point'
723 matches the empty string, but only at point.
724
725 `word-start', `bow'
726 matches the empty string, but only at the beginning of a word.
727
728 `word-end', `eow'
729 matches the empty string, but only at the end of a word.
730
731 `word-boundary'
732 matches the empty string, but only at the beginning or end of a
733 word.
734
735 `(not word-boundary)'
736 `not-word-boundary'
737 matches the empty string, but not at the beginning or end of a
738 word.
739
740 `symbol-start'
741 matches the empty string, but only at the beginning of a symbol.
742
743 `symbol-end'
744 matches the empty string, but only at the end of a symbol.
745
746 `digit', `numeric', `num'
747 matches 0 through 9.
748
749 `control', `cntrl'
750 matches ASCII control characters.
751
752 `hex-digit', `hex', `xdigit'
753 matches 0 through 9, a through f and A through F.
754
755 `blank'
756 matches space and tab only.
757
758 `graphic', `graph'
759 matches graphic characters--everything except ASCII control chars,
760 space, and DEL.
761
762 `printing', `print'
763 matches printing characters--everything except ASCII control chars
764 and DEL.
765
766 `alphanumeric', `alnum'
767 matches letters and digits. (But at present, for multibyte characters,
768 it matches anything that has word syntax.)
769
770 `letter', `alphabetic', `alpha'
771 matches letters. (But at present, for multibyte characters,
772 it matches anything that has word syntax.)
773
774 `ascii'
775 matches ASCII (unibyte) characters.
776
777 `nonascii'
778 matches non-ASCII (multibyte) characters.
779
780 `lower', `lower-case'
781 matches anything lower-case.
782
783 `upper', `upper-case'
784 matches anything upper-case.
785
786 `punctuation', `punct'
787 matches punctuation. (But at present, for multibyte characters,
788 it matches anything that has non-word syntax.)
789
790 `space', `whitespace', `white'
791 matches anything that has whitespace syntax.
792
793 `word', `wordchar'
794 matches anything that has word syntax.
795
796 `not-wordchar'
797 matches anything that has non-word syntax.
798
799 `(syntax SYNTAX)'
800 matches a character with syntax SYNTAX. SYNTAX must be one
801 of the following symbols, or a symbol corresponding to the syntax
802 character, e.g. `\\.' for `\\s.'.
803
804 `whitespace' (\\s- in string notation)
805 `punctuation' (\\s.)
806 `word' (\\sw)
807 `symbol' (\\s_)
808 `open-parenthesis' (\\s()
809 `close-parenthesis' (\\s))
810 `expression-prefix' (\\s')
811 `string-quote' (\\s\")
812 `paired-delimiter' (\\s$)
813 `escape' (\\s\\)
814 `character-quote' (\\s/)
815 `comment-start' (\\s<)
816 `comment-end' (\\s>)
817 `string-delimiter' (\\s|)
818 `comment-delimiter' (\\s!)
819
820 `(not (syntax SYNTAX))'
821 matches a character that doesn't have syntax SYNTAX.
822
823 `(category CATEGORY)'
824 matches a character with category CATEGORY. CATEGORY must be
825 either a character to use for C, or one of the following symbols.
826
827 `consonant' (\\c0 in string notation)
828 `base-vowel' (\\c1)
829 `upper-diacritical-mark' (\\c2)
830 `lower-diacritical-mark' (\\c3)
831 `tone-mark' (\\c4)
832 `symbol' (\\c5)
833 `digit' (\\c6)
834 `vowel-modifying-diacritical-mark' (\\c7)
835 `vowel-sign' (\\c8)
836 `semivowel-lower' (\\c9)
837 `not-at-end-of-line' (\\c<)
838 `not-at-beginning-of-line' (\\c>)
839 `alpha-numeric-two-byte' (\\cA)
840 `chinse-two-byte' (\\cC)
841 `greek-two-byte' (\\cG)
842 `japanese-hiragana-two-byte' (\\cH)
843 `indian-tow-byte' (\\cI)
844 `japanese-katakana-two-byte' (\\cK)
845 `korean-hangul-two-byte' (\\cN)
846 `cyrillic-two-byte' (\\cY)
847 `combining-diacritic' (\\c^)
848 `ascii' (\\ca)
849 `arabic' (\\cb)
850 `chinese' (\\cc)
851 `ethiopic' (\\ce)
852 `greek' (\\cg)
853 `korean' (\\ch)
854 `indian' (\\ci)
855 `japanese' (\\cj)
856 `japanese-katakana' (\\ck)
857 `latin' (\\cl)
858 `lao' (\\co)
859 `tibetan' (\\cq)
860 `japanese-roman' (\\cr)
861 `thai' (\\ct)
862 `vietnamese' (\\cv)
863 `hebrew' (\\cw)
864 `cyrillic' (\\cy)
865 `can-break' (\\c|)
866
867 `(not (category CATEGORY))'
868 matches a character that doesn't have category CATEGORY.
869
870 `(and SEXP1 SEXP2 ...)'
871 `(: SEXP1 SEXP2 ...)'
872 `(seq SEXP1 SEXP2 ...)'
873 `(sequence SEXP1 SEXP2 ...)'
874 matches what SEXP1 matches, followed by what SEXP2 matches, etc.
875
876 `(submatch SEXP1 SEXP2 ...)'
877 `(group SEXP1 SEXP2 ...)'
878 like `and', but makes the match accessible with `match-end',
879 `match-beginning', and `match-string'.
880
881 `(group SEXP1 SEXP2 ...)'
882 another name for `submatch'.
883
884 `(or SEXP1 SEXP2 ...)'
885 `(| SEXP1 SEXP2 ...)'
886 matches anything that matches SEXP1 or SEXP2, etc. If all
887 args are strings, use `regexp-opt' to optimize the resulting
888 regular expression.
889
890 `(minimal-match SEXP)'
891 produce a non-greedy regexp for SEXP. Normally, regexps matching
892 zero or more occurrences of something are \"greedy\" in that they
893 match as much as they can, as long as the overall regexp can
894 still match. A non-greedy regexp matches as little as possible.
895
896 `(maximal-match SEXP)'
897 produce a greedy regexp for SEXP. This is the default.
898
899 Below, `SEXP ...' represents a sequence of regexp forms, treated as if
900 enclosed in `(and ...)'.
901
902 `(zero-or-more SEXP ...)'
903 `(0+ SEXP ...)'
904 matches zero or more occurrences of what SEXP ... matches.
905
906 `(* SEXP ...)'
907 like `zero-or-more', but always produces a greedy regexp, independent
908 of `rx-greedy-flag'.
909
910 `(*? SEXP ...)'
911 like `zero-or-more', but always produces a non-greedy regexp,
912 independent of `rx-greedy-flag'.
913
914 `(one-or-more SEXP ...)'
915 `(1+ SEXP ...)'
916 matches one or more occurrences of SEXP ...
917
918 `(+ SEXP ...)'
919 like `one-or-more', but always produces a greedy regexp.
920
921 `(+? SEXP ...)'
922 like `one-or-more', but always produces a non-greedy regexp.
923
924 `(zero-or-one SEXP ...)'
925 `(optional SEXP ...)'
926 `(opt SEXP ...)'
927 matches zero or one occurrences of A.
928
929 `(? SEXP ...)'
930 like `zero-or-one', but always produces a greedy regexp.
931
932 `(?? SEXP ...)'
933 like `zero-or-one', but always produces a non-greedy regexp.
934
935 `(repeat N SEXP)'
936 `(= N SEXP ...)'
937 matches N occurrences.
938
939 `(>= N SEXP ...)'
940 matches N or more occurrences.
941
942 `(repeat N M SEXP)'
943 `(** N M SEXP ...)'
944 matches N to M occurrences.
945
946 `(backref N)'
947 matches what was matched previously by submatch N.
948
949 `(backref N)'
950 matches what was matched previously by submatch N.
951
952 `(backref N)'
953 matches what was matched previously by submatch N.
954
955 `(eval FORM)'
956 evaluate FORM and insert result. If result is a string,
957 `regexp-quote' it.
958
959 `(regexp REGEXP)'
960 include REGEXP in string notation in the result."
961 (cond ((null regexps)
962 (error "No regexp"))
963 ((cdr regexps)
964 (rx-to-string `(and ,@regexps) t))
965 (t
966 (rx-to-string (car regexps) t))))
967 \f
968 ;; ;; sregex.el replacement
969
970 ;; ;;;###autoload (provide 'sregex)
971 ;; ;;;###autoload (autoload 'sregex "rx")
972 ;; (defalias 'sregex 'rx-to-string)
973 ;; ;;;###autoload (autoload 'sregexq "rx" nil nil 'macro)
974 ;; (defalias 'sregexq 'rx)
975 \f
976 (provide 'rx)
977
978 ;; arch-tag: 12d01a63-0008-42bb-ab8c-1c7d63be370b
979 ;;; rx.el ends here