]> code.delx.au - gnu-emacs/blob - src/alloc.c
Revision: miles@gnu.org--gnu-2005/emacs--unicode--0--patch-37
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
29
30 /* Note that this declares bzero on OSF/1. How dumb. */
31
32 #include <signal.h>
33
34 #ifdef HAVE_GTK_AND_PTHREAD
35 #include <pthread.h>
36 #endif
37
38 /* This file is part of the core Lisp implementation, and thus must
39 deal with the real data structures. If the Lisp implementation is
40 replaced, this file likely will not be used. */
41
42 #undef HIDE_LISP_IMPLEMENTATION
43 #include "lisp.h"
44 #include "process.h"
45 #include "intervals.h"
46 #include "puresize.h"
47 #include "buffer.h"
48 #include "window.h"
49 #include "keyboard.h"
50 #include "frame.h"
51 #include "blockinput.h"
52 #include "character.h"
53 #include "syssignal.h"
54 #include <setjmp.h>
55
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c. */
58
59 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
60 #undef GC_MALLOC_CHECK
61 #endif
62
63 #ifdef HAVE_UNISTD_H
64 #include <unistd.h>
65 #else
66 extern POINTER_TYPE *sbrk ();
67 #endif
68
69 #ifdef DOUG_LEA_MALLOC
70
71 #include <malloc.h>
72 /* malloc.h #defines this as size_t, at least in glibc2. */
73 #ifndef __malloc_size_t
74 #define __malloc_size_t int
75 #endif
76
77 /* Specify maximum number of areas to mmap. It would be nice to use a
78 value that explicitly means "no limit". */
79
80 #define MMAP_MAX_AREAS 100000000
81
82 #else /* not DOUG_LEA_MALLOC */
83
84 /* The following come from gmalloc.c. */
85
86 #define __malloc_size_t size_t
87 extern __malloc_size_t _bytes_used;
88 extern __malloc_size_t __malloc_extra_blocks;
89
90 #endif /* not DOUG_LEA_MALLOC */
91
92 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
93
94 /* When GTK uses the file chooser dialog, different backends can be loaded
95 dynamically. One such a backend is the Gnome VFS backend that gets loaded
96 if you run Gnome. That backend creates several threads and also allocates
97 memory with malloc.
98
99 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
100 functions below are called from malloc, there is a chance that one
101 of these threads preempts the Emacs main thread and the hook variables
102 end up in an inconsistent state. So we have a mutex to prevent that (note
103 that the backend handles concurrent access to malloc within its own threads
104 but Emacs code running in the main thread is not included in that control).
105
106 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
107 happens in one of the backend threads we will have two threads that tries
108 to run Emacs code at once, and the code is not prepared for that.
109 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
110
111 static pthread_mutex_t alloc_mutex;
112
113 #define BLOCK_INPUT_ALLOC \
114 do \
115 { \
116 pthread_mutex_lock (&alloc_mutex); \
117 if (pthread_self () == main_thread) \
118 BLOCK_INPUT; \
119 } \
120 while (0)
121 #define UNBLOCK_INPUT_ALLOC \
122 do \
123 { \
124 if (pthread_self () == main_thread) \
125 UNBLOCK_INPUT; \
126 pthread_mutex_unlock (&alloc_mutex); \
127 } \
128 while (0)
129
130 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
131
132 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
133 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
134
135 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
136
137 /* Value of _bytes_used, when spare_memory was freed. */
138
139 static __malloc_size_t bytes_used_when_full;
140
141 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
142 to a struct Lisp_String. */
143
144 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
145 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
146 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
147
148 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
149 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
150 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
151
152 /* Value is the number of bytes/chars of S, a pointer to a struct
153 Lisp_String. This must be used instead of STRING_BYTES (S) or
154 S->size during GC, because S->size contains the mark bit for
155 strings. */
156
157 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
158 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
159
160 /* Number of bytes of consing done since the last gc. */
161
162 int consing_since_gc;
163
164 /* Count the amount of consing of various sorts of space. */
165
166 EMACS_INT cons_cells_consed;
167 EMACS_INT floats_consed;
168 EMACS_INT vector_cells_consed;
169 EMACS_INT symbols_consed;
170 EMACS_INT string_chars_consed;
171 EMACS_INT misc_objects_consed;
172 EMACS_INT intervals_consed;
173 EMACS_INT strings_consed;
174
175 /* Number of bytes of consing since GC before another GC should be done. */
176
177 EMACS_INT gc_cons_threshold;
178
179 /* Nonzero during GC. */
180
181 int gc_in_progress;
182
183 /* Nonzero means abort if try to GC.
184 This is for code which is written on the assumption that
185 no GC will happen, so as to verify that assumption. */
186
187 int abort_on_gc;
188
189 /* Nonzero means display messages at beginning and end of GC. */
190
191 int garbage_collection_messages;
192
193 #ifndef VIRT_ADDR_VARIES
194 extern
195 #endif /* VIRT_ADDR_VARIES */
196 int malloc_sbrk_used;
197
198 #ifndef VIRT_ADDR_VARIES
199 extern
200 #endif /* VIRT_ADDR_VARIES */
201 int malloc_sbrk_unused;
202
203 /* Number of live and free conses etc. */
204
205 static int total_conses, total_markers, total_symbols, total_vector_size;
206 static int total_free_conses, total_free_markers, total_free_symbols;
207 static int total_free_floats, total_floats;
208
209 /* Points to memory space allocated as "spare", to be freed if we run
210 out of memory. */
211
212 static char *spare_memory;
213
214 /* Amount of spare memory to keep in reserve. */
215
216 #define SPARE_MEMORY (1 << 14)
217
218 /* Number of extra blocks malloc should get when it needs more core. */
219
220 static int malloc_hysteresis;
221
222 /* Non-nil means defun should do purecopy on the function definition. */
223
224 Lisp_Object Vpurify_flag;
225
226 /* Non-nil means we are handling a memory-full error. */
227
228 Lisp_Object Vmemory_full;
229
230 #ifndef HAVE_SHM
231
232 /* Initialize it to a nonzero value to force it into data space
233 (rather than bss space). That way unexec will remap it into text
234 space (pure), on some systems. We have not implemented the
235 remapping on more recent systems because this is less important
236 nowadays than in the days of small memories and timesharing. */
237
238 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
239 #define PUREBEG (char *) pure
240
241 #else /* HAVE_SHM */
242
243 #define pure PURE_SEG_BITS /* Use shared memory segment */
244 #define PUREBEG (char *)PURE_SEG_BITS
245
246 #endif /* HAVE_SHM */
247
248 /* Pointer to the pure area, and its size. */
249
250 static char *purebeg;
251 static size_t pure_size;
252
253 /* Number of bytes of pure storage used before pure storage overflowed.
254 If this is non-zero, this implies that an overflow occurred. */
255
256 static size_t pure_bytes_used_before_overflow;
257
258 /* Value is non-zero if P points into pure space. */
259
260 #define PURE_POINTER_P(P) \
261 (((PNTR_COMPARISON_TYPE) (P) \
262 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
263 && ((PNTR_COMPARISON_TYPE) (P) \
264 >= (PNTR_COMPARISON_TYPE) purebeg))
265
266 /* Index in pure at which next pure object will be allocated.. */
267
268 EMACS_INT pure_bytes_used;
269
270 /* If nonzero, this is a warning delivered by malloc and not yet
271 displayed. */
272
273 char *pending_malloc_warning;
274
275 /* Pre-computed signal argument for use when memory is exhausted. */
276
277 Lisp_Object Vmemory_signal_data;
278
279 /* Maximum amount of C stack to save when a GC happens. */
280
281 #ifndef MAX_SAVE_STACK
282 #define MAX_SAVE_STACK 16000
283 #endif
284
285 /* Buffer in which we save a copy of the C stack at each GC. */
286
287 char *stack_copy;
288 int stack_copy_size;
289
290 /* Non-zero means ignore malloc warnings. Set during initialization.
291 Currently not used. */
292
293 int ignore_warnings;
294
295 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
296
297 /* Hook run after GC has finished. */
298
299 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
300
301 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
302 EMACS_INT gcs_done; /* accumulated GCs */
303
304 static void mark_buffer P_ ((Lisp_Object));
305 extern void mark_kboards P_ ((void));
306 extern void mark_backtrace P_ ((void));
307 static void gc_sweep P_ ((void));
308 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
309 static void mark_face_cache P_ ((struct face_cache *));
310
311 #ifdef HAVE_WINDOW_SYSTEM
312 extern void mark_fringe_data P_ ((void));
313 static void mark_image P_ ((struct image *));
314 static void mark_image_cache P_ ((struct frame *));
315 #endif /* HAVE_WINDOW_SYSTEM */
316
317 static struct Lisp_String *allocate_string P_ ((void));
318 static void compact_small_strings P_ ((void));
319 static void free_large_strings P_ ((void));
320 static void sweep_strings P_ ((void));
321
322 extern int message_enable_multibyte;
323
324 /* When scanning the C stack for live Lisp objects, Emacs keeps track
325 of what memory allocated via lisp_malloc is intended for what
326 purpose. This enumeration specifies the type of memory. */
327
328 enum mem_type
329 {
330 MEM_TYPE_NON_LISP,
331 MEM_TYPE_BUFFER,
332 MEM_TYPE_CONS,
333 MEM_TYPE_STRING,
334 MEM_TYPE_MISC,
335 MEM_TYPE_SYMBOL,
336 MEM_TYPE_FLOAT,
337 /* Keep the following vector-like types together, with
338 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
339 first. Or change the code of live_vector_p, for instance. */
340 MEM_TYPE_VECTOR,
341 MEM_TYPE_PROCESS,
342 MEM_TYPE_HASH_TABLE,
343 MEM_TYPE_FRAME,
344 MEM_TYPE_WINDOW
345 };
346
347 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
348
349 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
350 #include <stdio.h> /* For fprintf. */
351 #endif
352
353 /* A unique object in pure space used to make some Lisp objects
354 on free lists recognizable in O(1). */
355
356 Lisp_Object Vdead;
357
358 #ifdef GC_MALLOC_CHECK
359
360 enum mem_type allocated_mem_type;
361 int dont_register_blocks;
362
363 #endif /* GC_MALLOC_CHECK */
364
365 /* A node in the red-black tree describing allocated memory containing
366 Lisp data. Each such block is recorded with its start and end
367 address when it is allocated, and removed from the tree when it
368 is freed.
369
370 A red-black tree is a balanced binary tree with the following
371 properties:
372
373 1. Every node is either red or black.
374 2. Every leaf is black.
375 3. If a node is red, then both of its children are black.
376 4. Every simple path from a node to a descendant leaf contains
377 the same number of black nodes.
378 5. The root is always black.
379
380 When nodes are inserted into the tree, or deleted from the tree,
381 the tree is "fixed" so that these properties are always true.
382
383 A red-black tree with N internal nodes has height at most 2
384 log(N+1). Searches, insertions and deletions are done in O(log N).
385 Please see a text book about data structures for a detailed
386 description of red-black trees. Any book worth its salt should
387 describe them. */
388
389 struct mem_node
390 {
391 /* Children of this node. These pointers are never NULL. When there
392 is no child, the value is MEM_NIL, which points to a dummy node. */
393 struct mem_node *left, *right;
394
395 /* The parent of this node. In the root node, this is NULL. */
396 struct mem_node *parent;
397
398 /* Start and end of allocated region. */
399 void *start, *end;
400
401 /* Node color. */
402 enum {MEM_BLACK, MEM_RED} color;
403
404 /* Memory type. */
405 enum mem_type type;
406 };
407
408 /* Base address of stack. Set in main. */
409
410 Lisp_Object *stack_base;
411
412 /* Root of the tree describing allocated Lisp memory. */
413
414 static struct mem_node *mem_root;
415
416 /* Lowest and highest known address in the heap. */
417
418 static void *min_heap_address, *max_heap_address;
419
420 /* Sentinel node of the tree. */
421
422 static struct mem_node mem_z;
423 #define MEM_NIL &mem_z
424
425 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
426 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
427 static void lisp_free P_ ((POINTER_TYPE *));
428 static void mark_stack P_ ((void));
429 static int live_vector_p P_ ((struct mem_node *, void *));
430 static int live_buffer_p P_ ((struct mem_node *, void *));
431 static int live_string_p P_ ((struct mem_node *, void *));
432 static int live_cons_p P_ ((struct mem_node *, void *));
433 static int live_symbol_p P_ ((struct mem_node *, void *));
434 static int live_float_p P_ ((struct mem_node *, void *));
435 static int live_misc_p P_ ((struct mem_node *, void *));
436 static void mark_maybe_object P_ ((Lisp_Object));
437 static void mark_memory P_ ((void *, void *));
438 static void mem_init P_ ((void));
439 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
440 static void mem_insert_fixup P_ ((struct mem_node *));
441 static void mem_rotate_left P_ ((struct mem_node *));
442 static void mem_rotate_right P_ ((struct mem_node *));
443 static void mem_delete P_ ((struct mem_node *));
444 static void mem_delete_fixup P_ ((struct mem_node *));
445 static INLINE struct mem_node *mem_find P_ ((void *));
446
447 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
448 static void check_gcpros P_ ((void));
449 #endif
450
451 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
452
453 /* Recording what needs to be marked for gc. */
454
455 struct gcpro *gcprolist;
456
457 /* Addresses of staticpro'd variables. Initialize it to a nonzero
458 value; otherwise some compilers put it into BSS. */
459
460 #define NSTATICS 1280
461 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
462
463 /* Index of next unused slot in staticvec. */
464
465 int staticidx = 0;
466
467 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
468
469
470 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
471 ALIGNMENT must be a power of 2. */
472
473 #define ALIGN(ptr, ALIGNMENT) \
474 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
475 & ~((ALIGNMENT) - 1)))
476
477
478 \f
479 /************************************************************************
480 Malloc
481 ************************************************************************/
482
483 /* Function malloc calls this if it finds we are near exhausting storage. */
484
485 void
486 malloc_warning (str)
487 char *str;
488 {
489 pending_malloc_warning = str;
490 }
491
492
493 /* Display an already-pending malloc warning. */
494
495 void
496 display_malloc_warning ()
497 {
498 call3 (intern ("display-warning"),
499 intern ("alloc"),
500 build_string (pending_malloc_warning),
501 intern ("emergency"));
502 pending_malloc_warning = 0;
503 }
504
505
506 #ifdef DOUG_LEA_MALLOC
507 # define BYTES_USED (mallinfo ().arena)
508 #else
509 # define BYTES_USED _bytes_used
510 #endif
511
512
513 /* Called if malloc returns zero. */
514
515 void
516 memory_full ()
517 {
518 Vmemory_full = Qt;
519
520 #ifndef SYSTEM_MALLOC
521 bytes_used_when_full = BYTES_USED;
522 #endif
523
524 /* The first time we get here, free the spare memory. */
525 if (spare_memory)
526 {
527 free (spare_memory);
528 spare_memory = 0;
529 }
530
531 /* This used to call error, but if we've run out of memory, we could
532 get infinite recursion trying to build the string. */
533 while (1)
534 Fsignal (Qnil, Vmemory_signal_data);
535 }
536
537
538 /* Called if we can't allocate relocatable space for a buffer. */
539
540 void
541 buffer_memory_full ()
542 {
543 /* If buffers use the relocating allocator, no need to free
544 spare_memory, because we may have plenty of malloc space left
545 that we could get, and if we don't, the malloc that fails will
546 itself cause spare_memory to be freed. If buffers don't use the
547 relocating allocator, treat this like any other failing
548 malloc. */
549
550 #ifndef REL_ALLOC
551 memory_full ();
552 #endif
553
554 Vmemory_full = Qt;
555
556 /* This used to call error, but if we've run out of memory, we could
557 get infinite recursion trying to build the string. */
558 while (1)
559 Fsignal (Qnil, Vmemory_signal_data);
560 }
561
562
563 #ifdef XMALLOC_OVERRUN_CHECK
564
565 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
566 and a 16 byte trailer around each block.
567
568 The header consists of 12 fixed bytes + a 4 byte integer contaning the
569 original block size, while the trailer consists of 16 fixed bytes.
570
571 The header is used to detect whether this block has been allocated
572 through these functions -- as it seems that some low-level libc
573 functions may bypass the malloc hooks.
574 */
575
576
577 #define XMALLOC_OVERRUN_CHECK_SIZE 16
578
579 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
580 { 0x9a, 0x9b, 0xae, 0xaf,
581 0xbf, 0xbe, 0xce, 0xcf,
582 0xea, 0xeb, 0xec, 0xed };
583
584 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
585 { 0xaa, 0xab, 0xac, 0xad,
586 0xba, 0xbb, 0xbc, 0xbd,
587 0xca, 0xcb, 0xcc, 0xcd,
588 0xda, 0xdb, 0xdc, 0xdd };
589
590 /* Macros to insert and extract the block size in the header. */
591
592 #define XMALLOC_PUT_SIZE(ptr, size) \
593 (ptr[-1] = (size & 0xff), \
594 ptr[-2] = ((size >> 8) & 0xff), \
595 ptr[-3] = ((size >> 16) & 0xff), \
596 ptr[-4] = ((size >> 24) & 0xff))
597
598 #define XMALLOC_GET_SIZE(ptr) \
599 (size_t)((unsigned)(ptr[-1]) | \
600 ((unsigned)(ptr[-2]) << 8) | \
601 ((unsigned)(ptr[-3]) << 16) | \
602 ((unsigned)(ptr[-4]) << 24))
603
604
605 /* The call depth in overrun_check functions. For example, this might happen:
606 xmalloc()
607 overrun_check_malloc()
608 -> malloc -> (via hook)_-> emacs_blocked_malloc
609 -> overrun_check_malloc
610 call malloc (hooks are NULL, so real malloc is called).
611 malloc returns 10000.
612 add overhead, return 10016.
613 <- (back in overrun_check_malloc)
614 add overhead again, return 10032
615 xmalloc returns 10032.
616
617 (time passes).
618
619 xfree(10032)
620 overrun_check_free(10032)
621 decrease overhed
622 free(10016) <- crash, because 10000 is the original pointer. */
623
624 static int check_depth;
625
626 /* Like malloc, but wraps allocated block with header and trailer. */
627
628 POINTER_TYPE *
629 overrun_check_malloc (size)
630 size_t size;
631 {
632 register unsigned char *val;
633 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
634
635 val = (unsigned char *) malloc (size + overhead);
636 if (val && check_depth == 1)
637 {
638 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
639 val += XMALLOC_OVERRUN_CHECK_SIZE;
640 XMALLOC_PUT_SIZE(val, size);
641 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
642 }
643 --check_depth;
644 return (POINTER_TYPE *)val;
645 }
646
647
648 /* Like realloc, but checks old block for overrun, and wraps new block
649 with header and trailer. */
650
651 POINTER_TYPE *
652 overrun_check_realloc (block, size)
653 POINTER_TYPE *block;
654 size_t size;
655 {
656 register unsigned char *val = (unsigned char *)block;
657 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
658
659 if (val
660 && check_depth == 1
661 && bcmp (xmalloc_overrun_check_header,
662 val - XMALLOC_OVERRUN_CHECK_SIZE,
663 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
664 {
665 size_t osize = XMALLOC_GET_SIZE (val);
666 if (bcmp (xmalloc_overrun_check_trailer,
667 val + osize,
668 XMALLOC_OVERRUN_CHECK_SIZE))
669 abort ();
670 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
671 val -= XMALLOC_OVERRUN_CHECK_SIZE;
672 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
673 }
674
675 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
676
677 if (val && check_depth == 1)
678 {
679 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
680 val += XMALLOC_OVERRUN_CHECK_SIZE;
681 XMALLOC_PUT_SIZE(val, size);
682 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
683 }
684 --check_depth;
685 return (POINTER_TYPE *)val;
686 }
687
688 /* Like free, but checks block for overrun. */
689
690 void
691 overrun_check_free (block)
692 POINTER_TYPE *block;
693 {
694 unsigned char *val = (unsigned char *)block;
695
696 ++check_depth;
697 if (val
698 && check_depth == 1
699 && bcmp (xmalloc_overrun_check_header,
700 val - XMALLOC_OVERRUN_CHECK_SIZE,
701 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
702 {
703 size_t osize = XMALLOC_GET_SIZE (val);
704 if (bcmp (xmalloc_overrun_check_trailer,
705 val + osize,
706 XMALLOC_OVERRUN_CHECK_SIZE))
707 abort ();
708 #ifdef XMALLOC_CLEAR_FREE_MEMORY
709 val -= XMALLOC_OVERRUN_CHECK_SIZE;
710 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
711 #else
712 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
713 val -= XMALLOC_OVERRUN_CHECK_SIZE;
714 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
715 #endif
716 }
717
718 free (val);
719 --check_depth;
720 }
721
722 #undef malloc
723 #undef realloc
724 #undef free
725 #define malloc overrun_check_malloc
726 #define realloc overrun_check_realloc
727 #define free overrun_check_free
728 #endif
729
730
731 /* Like malloc but check for no memory and block interrupt input.. */
732
733 POINTER_TYPE *
734 xmalloc (size)
735 size_t size;
736 {
737 register POINTER_TYPE *val;
738
739 BLOCK_INPUT;
740 val = (POINTER_TYPE *) malloc (size);
741 UNBLOCK_INPUT;
742
743 if (!val && size)
744 memory_full ();
745 return val;
746 }
747
748
749 /* Like realloc but check for no memory and block interrupt input.. */
750
751 POINTER_TYPE *
752 xrealloc (block, size)
753 POINTER_TYPE *block;
754 size_t size;
755 {
756 register POINTER_TYPE *val;
757
758 BLOCK_INPUT;
759 /* We must call malloc explicitly when BLOCK is 0, since some
760 reallocs don't do this. */
761 if (! block)
762 val = (POINTER_TYPE *) malloc (size);
763 else
764 val = (POINTER_TYPE *) realloc (block, size);
765 UNBLOCK_INPUT;
766
767 if (!val && size) memory_full ();
768 return val;
769 }
770
771
772 /* Like free but block interrupt input. */
773
774 void
775 xfree (block)
776 POINTER_TYPE *block;
777 {
778 BLOCK_INPUT;
779 free (block);
780 UNBLOCK_INPUT;
781 }
782
783
784 /* Like strdup, but uses xmalloc. */
785
786 char *
787 xstrdup (s)
788 const char *s;
789 {
790 size_t len = strlen (s) + 1;
791 char *p = (char *) xmalloc (len);
792 bcopy (s, p, len);
793 return p;
794 }
795
796
797 /* Unwind for SAFE_ALLOCA */
798
799 Lisp_Object
800 safe_alloca_unwind (arg)
801 Lisp_Object arg;
802 {
803 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
804
805 p->dogc = 0;
806 xfree (p->pointer);
807 p->pointer = 0;
808 free_misc (arg);
809 return Qnil;
810 }
811
812
813 /* Like malloc but used for allocating Lisp data. NBYTES is the
814 number of bytes to allocate, TYPE describes the intended use of the
815 allcated memory block (for strings, for conses, ...). */
816
817 #ifndef USE_LSB_TAG
818 static void *lisp_malloc_loser;
819 #endif
820
821 static POINTER_TYPE *
822 lisp_malloc (nbytes, type)
823 size_t nbytes;
824 enum mem_type type;
825 {
826 register void *val;
827
828 BLOCK_INPUT;
829
830 #ifdef GC_MALLOC_CHECK
831 allocated_mem_type = type;
832 #endif
833
834 val = (void *) malloc (nbytes);
835
836 #ifndef USE_LSB_TAG
837 /* If the memory just allocated cannot be addressed thru a Lisp
838 object's pointer, and it needs to be,
839 that's equivalent to running out of memory. */
840 if (val && type != MEM_TYPE_NON_LISP)
841 {
842 Lisp_Object tem;
843 XSETCONS (tem, (char *) val + nbytes - 1);
844 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
845 {
846 lisp_malloc_loser = val;
847 free (val);
848 val = 0;
849 }
850 }
851 #endif
852
853 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
854 if (val && type != MEM_TYPE_NON_LISP)
855 mem_insert (val, (char *) val + nbytes, type);
856 #endif
857
858 UNBLOCK_INPUT;
859 if (!val && nbytes)
860 memory_full ();
861 return val;
862 }
863
864 /* Free BLOCK. This must be called to free memory allocated with a
865 call to lisp_malloc. */
866
867 static void
868 lisp_free (block)
869 POINTER_TYPE *block;
870 {
871 BLOCK_INPUT;
872 free (block);
873 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
874 mem_delete (mem_find (block));
875 #endif
876 UNBLOCK_INPUT;
877 }
878
879 /* Allocation of aligned blocks of memory to store Lisp data. */
880 /* The entry point is lisp_align_malloc which returns blocks of at most */
881 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
882
883
884 /* BLOCK_ALIGN has to be a power of 2. */
885 #define BLOCK_ALIGN (1 << 10)
886
887 /* Padding to leave at the end of a malloc'd block. This is to give
888 malloc a chance to minimize the amount of memory wasted to alignment.
889 It should be tuned to the particular malloc library used.
890 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
891 posix_memalign on the other hand would ideally prefer a value of 4
892 because otherwise, there's 1020 bytes wasted between each ablocks.
893 In Emacs, testing shows that those 1020 can most of the time be
894 efficiently used by malloc to place other objects, so a value of 0 can
895 still preferable unless you have a lot of aligned blocks and virtually
896 nothing else. */
897 #define BLOCK_PADDING 0
898 #define BLOCK_BYTES \
899 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
900
901 /* Internal data structures and constants. */
902
903 #define ABLOCKS_SIZE 16
904
905 /* An aligned block of memory. */
906 struct ablock
907 {
908 union
909 {
910 char payload[BLOCK_BYTES];
911 struct ablock *next_free;
912 } x;
913 /* `abase' is the aligned base of the ablocks. */
914 /* It is overloaded to hold the virtual `busy' field that counts
915 the number of used ablock in the parent ablocks.
916 The first ablock has the `busy' field, the others have the `abase'
917 field. To tell the difference, we assume that pointers will have
918 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
919 is used to tell whether the real base of the parent ablocks is `abase'
920 (if not, the word before the first ablock holds a pointer to the
921 real base). */
922 struct ablocks *abase;
923 /* The padding of all but the last ablock is unused. The padding of
924 the last ablock in an ablocks is not allocated. */
925 #if BLOCK_PADDING
926 char padding[BLOCK_PADDING];
927 #endif
928 };
929
930 /* A bunch of consecutive aligned blocks. */
931 struct ablocks
932 {
933 struct ablock blocks[ABLOCKS_SIZE];
934 };
935
936 /* Size of the block requested from malloc or memalign. */
937 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
938
939 #define ABLOCK_ABASE(block) \
940 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
941 ? (struct ablocks *)(block) \
942 : (block)->abase)
943
944 /* Virtual `busy' field. */
945 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
946
947 /* Pointer to the (not necessarily aligned) malloc block. */
948 #ifdef HAVE_POSIX_MEMALIGN
949 #define ABLOCKS_BASE(abase) (abase)
950 #else
951 #define ABLOCKS_BASE(abase) \
952 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
953 #endif
954
955 /* The list of free ablock. */
956 static struct ablock *free_ablock;
957
958 /* Allocate an aligned block of nbytes.
959 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
960 smaller or equal to BLOCK_BYTES. */
961 static POINTER_TYPE *
962 lisp_align_malloc (nbytes, type)
963 size_t nbytes;
964 enum mem_type type;
965 {
966 void *base, *val;
967 struct ablocks *abase;
968
969 eassert (nbytes <= BLOCK_BYTES);
970
971 BLOCK_INPUT;
972
973 #ifdef GC_MALLOC_CHECK
974 allocated_mem_type = type;
975 #endif
976
977 if (!free_ablock)
978 {
979 int i;
980 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
981
982 #ifdef DOUG_LEA_MALLOC
983 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
984 because mapped region contents are not preserved in
985 a dumped Emacs. */
986 mallopt (M_MMAP_MAX, 0);
987 #endif
988
989 #ifdef HAVE_POSIX_MEMALIGN
990 {
991 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
992 if (err)
993 base = NULL;
994 abase = base;
995 }
996 #else
997 base = malloc (ABLOCKS_BYTES);
998 abase = ALIGN (base, BLOCK_ALIGN);
999 #endif
1000
1001 if (base == 0)
1002 {
1003 UNBLOCK_INPUT;
1004 memory_full ();
1005 }
1006
1007 aligned = (base == abase);
1008 if (!aligned)
1009 ((void**)abase)[-1] = base;
1010
1011 #ifdef DOUG_LEA_MALLOC
1012 /* Back to a reasonable maximum of mmap'ed areas. */
1013 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1014 #endif
1015
1016 #ifndef USE_LSB_TAG
1017 /* If the memory just allocated cannot be addressed thru a Lisp
1018 object's pointer, and it needs to be, that's equivalent to
1019 running out of memory. */
1020 if (type != MEM_TYPE_NON_LISP)
1021 {
1022 Lisp_Object tem;
1023 char *end = (char *) base + ABLOCKS_BYTES - 1;
1024 XSETCONS (tem, end);
1025 if ((char *) XCONS (tem) != end)
1026 {
1027 lisp_malloc_loser = base;
1028 free (base);
1029 UNBLOCK_INPUT;
1030 memory_full ();
1031 }
1032 }
1033 #endif
1034
1035 /* Initialize the blocks and put them on the free list.
1036 Is `base' was not properly aligned, we can't use the last block. */
1037 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1038 {
1039 abase->blocks[i].abase = abase;
1040 abase->blocks[i].x.next_free = free_ablock;
1041 free_ablock = &abase->blocks[i];
1042 }
1043 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1044
1045 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1046 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1047 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1048 eassert (ABLOCKS_BASE (abase) == base);
1049 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1050 }
1051
1052 abase = ABLOCK_ABASE (free_ablock);
1053 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1054 val = free_ablock;
1055 free_ablock = free_ablock->x.next_free;
1056
1057 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1058 if (val && type != MEM_TYPE_NON_LISP)
1059 mem_insert (val, (char *) val + nbytes, type);
1060 #endif
1061
1062 UNBLOCK_INPUT;
1063 if (!val && nbytes)
1064 memory_full ();
1065
1066 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1067 return val;
1068 }
1069
1070 static void
1071 lisp_align_free (block)
1072 POINTER_TYPE *block;
1073 {
1074 struct ablock *ablock = block;
1075 struct ablocks *abase = ABLOCK_ABASE (ablock);
1076
1077 BLOCK_INPUT;
1078 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1079 mem_delete (mem_find (block));
1080 #endif
1081 /* Put on free list. */
1082 ablock->x.next_free = free_ablock;
1083 free_ablock = ablock;
1084 /* Update busy count. */
1085 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1086
1087 if (2 > (long) ABLOCKS_BUSY (abase))
1088 { /* All the blocks are free. */
1089 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1090 struct ablock **tem = &free_ablock;
1091 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1092
1093 while (*tem)
1094 {
1095 if (*tem >= (struct ablock *) abase && *tem < atop)
1096 {
1097 i++;
1098 *tem = (*tem)->x.next_free;
1099 }
1100 else
1101 tem = &(*tem)->x.next_free;
1102 }
1103 eassert ((aligned & 1) == aligned);
1104 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1105 free (ABLOCKS_BASE (abase));
1106 }
1107 UNBLOCK_INPUT;
1108 }
1109
1110 /* Return a new buffer structure allocated from the heap with
1111 a call to lisp_malloc. */
1112
1113 struct buffer *
1114 allocate_buffer ()
1115 {
1116 struct buffer *b
1117 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1118 MEM_TYPE_BUFFER);
1119 return b;
1120 }
1121
1122 \f
1123 #ifndef SYSTEM_MALLOC
1124
1125 /* If we released our reserve (due to running out of memory),
1126 and we have a fair amount free once again,
1127 try to set aside another reserve in case we run out once more.
1128
1129 This is called when a relocatable block is freed in ralloc.c. */
1130
1131 void
1132 refill_memory_reserve ()
1133 {
1134 if (spare_memory == 0)
1135 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
1136 }
1137
1138 \f
1139 /* Arranging to disable input signals while we're in malloc.
1140
1141 This only works with GNU malloc. To help out systems which can't
1142 use GNU malloc, all the calls to malloc, realloc, and free
1143 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1144 pair; unfortunately, we have no idea what C library functions
1145 might call malloc, so we can't really protect them unless you're
1146 using GNU malloc. Fortunately, most of the major operating systems
1147 can use GNU malloc. */
1148
1149 #ifndef SYNC_INPUT
1150
1151 #ifndef DOUG_LEA_MALLOC
1152 extern void * (*__malloc_hook) P_ ((size_t));
1153 extern void * (*__realloc_hook) P_ ((void *, size_t));
1154 extern void (*__free_hook) P_ ((void *));
1155 /* Else declared in malloc.h, perhaps with an extra arg. */
1156 #endif /* DOUG_LEA_MALLOC */
1157 static void * (*old_malloc_hook) ();
1158 static void * (*old_realloc_hook) ();
1159 static void (*old_free_hook) ();
1160
1161 /* This function is used as the hook for free to call. */
1162
1163 static void
1164 emacs_blocked_free (ptr)
1165 void *ptr;
1166 {
1167 BLOCK_INPUT_ALLOC;
1168
1169 #ifdef GC_MALLOC_CHECK
1170 if (ptr)
1171 {
1172 struct mem_node *m;
1173
1174 m = mem_find (ptr);
1175 if (m == MEM_NIL || m->start != ptr)
1176 {
1177 fprintf (stderr,
1178 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1179 abort ();
1180 }
1181 else
1182 {
1183 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1184 mem_delete (m);
1185 }
1186 }
1187 #endif /* GC_MALLOC_CHECK */
1188
1189 __free_hook = old_free_hook;
1190 free (ptr);
1191
1192 /* If we released our reserve (due to running out of memory),
1193 and we have a fair amount free once again,
1194 try to set aside another reserve in case we run out once more. */
1195 if (spare_memory == 0
1196 /* Verify there is enough space that even with the malloc
1197 hysteresis this call won't run out again.
1198 The code here is correct as long as SPARE_MEMORY
1199 is substantially larger than the block size malloc uses. */
1200 && (bytes_used_when_full
1201 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
1202 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
1203
1204 __free_hook = emacs_blocked_free;
1205 UNBLOCK_INPUT_ALLOC;
1206 }
1207
1208
1209 /* This function is the malloc hook that Emacs uses. */
1210
1211 static void *
1212 emacs_blocked_malloc (size)
1213 size_t size;
1214 {
1215 void *value;
1216
1217 BLOCK_INPUT_ALLOC;
1218 __malloc_hook = old_malloc_hook;
1219 #ifdef DOUG_LEA_MALLOC
1220 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1221 #else
1222 __malloc_extra_blocks = malloc_hysteresis;
1223 #endif
1224
1225 value = (void *) malloc (size);
1226
1227 #ifdef GC_MALLOC_CHECK
1228 {
1229 struct mem_node *m = mem_find (value);
1230 if (m != MEM_NIL)
1231 {
1232 fprintf (stderr, "Malloc returned %p which is already in use\n",
1233 value);
1234 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1235 m->start, m->end, (char *) m->end - (char *) m->start,
1236 m->type);
1237 abort ();
1238 }
1239
1240 if (!dont_register_blocks)
1241 {
1242 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1243 allocated_mem_type = MEM_TYPE_NON_LISP;
1244 }
1245 }
1246 #endif /* GC_MALLOC_CHECK */
1247
1248 __malloc_hook = emacs_blocked_malloc;
1249 UNBLOCK_INPUT_ALLOC;
1250
1251 /* fprintf (stderr, "%p malloc\n", value); */
1252 return value;
1253 }
1254
1255
1256 /* This function is the realloc hook that Emacs uses. */
1257
1258 static void *
1259 emacs_blocked_realloc (ptr, size)
1260 void *ptr;
1261 size_t size;
1262 {
1263 void *value;
1264
1265 BLOCK_INPUT_ALLOC;
1266 __realloc_hook = old_realloc_hook;
1267
1268 #ifdef GC_MALLOC_CHECK
1269 if (ptr)
1270 {
1271 struct mem_node *m = mem_find (ptr);
1272 if (m == MEM_NIL || m->start != ptr)
1273 {
1274 fprintf (stderr,
1275 "Realloc of %p which wasn't allocated with malloc\n",
1276 ptr);
1277 abort ();
1278 }
1279
1280 mem_delete (m);
1281 }
1282
1283 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1284
1285 /* Prevent malloc from registering blocks. */
1286 dont_register_blocks = 1;
1287 #endif /* GC_MALLOC_CHECK */
1288
1289 value = (void *) realloc (ptr, size);
1290
1291 #ifdef GC_MALLOC_CHECK
1292 dont_register_blocks = 0;
1293
1294 {
1295 struct mem_node *m = mem_find (value);
1296 if (m != MEM_NIL)
1297 {
1298 fprintf (stderr, "Realloc returns memory that is already in use\n");
1299 abort ();
1300 }
1301
1302 /* Can't handle zero size regions in the red-black tree. */
1303 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1304 }
1305
1306 /* fprintf (stderr, "%p <- realloc\n", value); */
1307 #endif /* GC_MALLOC_CHECK */
1308
1309 __realloc_hook = emacs_blocked_realloc;
1310 UNBLOCK_INPUT_ALLOC;
1311
1312 return value;
1313 }
1314
1315
1316 #ifdef HAVE_GTK_AND_PTHREAD
1317 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1318 normal malloc. Some thread implementations need this as they call
1319 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1320 calls malloc because it is the first call, and we have an endless loop. */
1321
1322 void
1323 reset_malloc_hooks ()
1324 {
1325 __free_hook = 0;
1326 __malloc_hook = 0;
1327 __realloc_hook = 0;
1328 }
1329 #endif /* HAVE_GTK_AND_PTHREAD */
1330
1331
1332 /* Called from main to set up malloc to use our hooks. */
1333
1334 void
1335 uninterrupt_malloc ()
1336 {
1337 #ifdef HAVE_GTK_AND_PTHREAD
1338 pthread_mutexattr_t attr;
1339
1340 /* GLIBC has a faster way to do this, but lets keep it portable.
1341 This is according to the Single UNIX Specification. */
1342 pthread_mutexattr_init (&attr);
1343 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1344 pthread_mutex_init (&alloc_mutex, &attr);
1345 #endif /* HAVE_GTK_AND_PTHREAD */
1346
1347 if (__free_hook != emacs_blocked_free)
1348 old_free_hook = __free_hook;
1349 __free_hook = emacs_blocked_free;
1350
1351 if (__malloc_hook != emacs_blocked_malloc)
1352 old_malloc_hook = __malloc_hook;
1353 __malloc_hook = emacs_blocked_malloc;
1354
1355 if (__realloc_hook != emacs_blocked_realloc)
1356 old_realloc_hook = __realloc_hook;
1357 __realloc_hook = emacs_blocked_realloc;
1358 }
1359
1360 #endif /* not SYNC_INPUT */
1361 #endif /* not SYSTEM_MALLOC */
1362
1363
1364 \f
1365 /***********************************************************************
1366 Interval Allocation
1367 ***********************************************************************/
1368
1369 /* Number of intervals allocated in an interval_block structure.
1370 The 1020 is 1024 minus malloc overhead. */
1371
1372 #define INTERVAL_BLOCK_SIZE \
1373 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1374
1375 /* Intervals are allocated in chunks in form of an interval_block
1376 structure. */
1377
1378 struct interval_block
1379 {
1380 /* Place `intervals' first, to preserve alignment. */
1381 struct interval intervals[INTERVAL_BLOCK_SIZE];
1382 struct interval_block *next;
1383 };
1384
1385 /* Current interval block. Its `next' pointer points to older
1386 blocks. */
1387
1388 struct interval_block *interval_block;
1389
1390 /* Index in interval_block above of the next unused interval
1391 structure. */
1392
1393 static int interval_block_index;
1394
1395 /* Number of free and live intervals. */
1396
1397 static int total_free_intervals, total_intervals;
1398
1399 /* List of free intervals. */
1400
1401 INTERVAL interval_free_list;
1402
1403 /* Total number of interval blocks now in use. */
1404
1405 int n_interval_blocks;
1406
1407
1408 /* Initialize interval allocation. */
1409
1410 static void
1411 init_intervals ()
1412 {
1413 interval_block = NULL;
1414 interval_block_index = INTERVAL_BLOCK_SIZE;
1415 interval_free_list = 0;
1416 n_interval_blocks = 0;
1417 }
1418
1419
1420 /* Return a new interval. */
1421
1422 INTERVAL
1423 make_interval ()
1424 {
1425 INTERVAL val;
1426
1427 if (interval_free_list)
1428 {
1429 val = interval_free_list;
1430 interval_free_list = INTERVAL_PARENT (interval_free_list);
1431 }
1432 else
1433 {
1434 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1435 {
1436 register struct interval_block *newi;
1437
1438 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1439 MEM_TYPE_NON_LISP);
1440
1441 newi->next = interval_block;
1442 interval_block = newi;
1443 interval_block_index = 0;
1444 n_interval_blocks++;
1445 }
1446 val = &interval_block->intervals[interval_block_index++];
1447 }
1448 consing_since_gc += sizeof (struct interval);
1449 intervals_consed++;
1450 RESET_INTERVAL (val);
1451 val->gcmarkbit = 0;
1452 return val;
1453 }
1454
1455
1456 /* Mark Lisp objects in interval I. */
1457
1458 static void
1459 mark_interval (i, dummy)
1460 register INTERVAL i;
1461 Lisp_Object dummy;
1462 {
1463 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1464 i->gcmarkbit = 1;
1465 mark_object (i->plist);
1466 }
1467
1468
1469 /* Mark the interval tree rooted in TREE. Don't call this directly;
1470 use the macro MARK_INTERVAL_TREE instead. */
1471
1472 static void
1473 mark_interval_tree (tree)
1474 register INTERVAL tree;
1475 {
1476 /* No need to test if this tree has been marked already; this
1477 function is always called through the MARK_INTERVAL_TREE macro,
1478 which takes care of that. */
1479
1480 traverse_intervals_noorder (tree, mark_interval, Qnil);
1481 }
1482
1483
1484 /* Mark the interval tree rooted in I. */
1485
1486 #define MARK_INTERVAL_TREE(i) \
1487 do { \
1488 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1489 mark_interval_tree (i); \
1490 } while (0)
1491
1492
1493 #define UNMARK_BALANCE_INTERVALS(i) \
1494 do { \
1495 if (! NULL_INTERVAL_P (i)) \
1496 (i) = balance_intervals (i); \
1497 } while (0)
1498
1499 \f
1500 /* Number support. If NO_UNION_TYPE isn't in effect, we
1501 can't create number objects in macros. */
1502 #ifndef make_number
1503 Lisp_Object
1504 make_number (n)
1505 EMACS_INT n;
1506 {
1507 Lisp_Object obj;
1508 obj.s.val = n;
1509 obj.s.type = Lisp_Int;
1510 return obj;
1511 }
1512 #endif
1513 \f
1514 /***********************************************************************
1515 String Allocation
1516 ***********************************************************************/
1517
1518 /* Lisp_Strings are allocated in string_block structures. When a new
1519 string_block is allocated, all the Lisp_Strings it contains are
1520 added to a free-list string_free_list. When a new Lisp_String is
1521 needed, it is taken from that list. During the sweep phase of GC,
1522 string_blocks that are entirely free are freed, except two which
1523 we keep.
1524
1525 String data is allocated from sblock structures. Strings larger
1526 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1527 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1528
1529 Sblocks consist internally of sdata structures, one for each
1530 Lisp_String. The sdata structure points to the Lisp_String it
1531 belongs to. The Lisp_String points back to the `u.data' member of
1532 its sdata structure.
1533
1534 When a Lisp_String is freed during GC, it is put back on
1535 string_free_list, and its `data' member and its sdata's `string'
1536 pointer is set to null. The size of the string is recorded in the
1537 `u.nbytes' member of the sdata. So, sdata structures that are no
1538 longer used, can be easily recognized, and it's easy to compact the
1539 sblocks of small strings which we do in compact_small_strings. */
1540
1541 /* Size in bytes of an sblock structure used for small strings. This
1542 is 8192 minus malloc overhead. */
1543
1544 #define SBLOCK_SIZE 8188
1545
1546 /* Strings larger than this are considered large strings. String data
1547 for large strings is allocated from individual sblocks. */
1548
1549 #define LARGE_STRING_BYTES 1024
1550
1551 /* Structure describing string memory sub-allocated from an sblock.
1552 This is where the contents of Lisp strings are stored. */
1553
1554 struct sdata
1555 {
1556 /* Back-pointer to the string this sdata belongs to. If null, this
1557 structure is free, and the NBYTES member of the union below
1558 contains the string's byte size (the same value that STRING_BYTES
1559 would return if STRING were non-null). If non-null, STRING_BYTES
1560 (STRING) is the size of the data, and DATA contains the string's
1561 contents. */
1562 struct Lisp_String *string;
1563
1564 #ifdef GC_CHECK_STRING_BYTES
1565
1566 EMACS_INT nbytes;
1567 unsigned char data[1];
1568
1569 #define SDATA_NBYTES(S) (S)->nbytes
1570 #define SDATA_DATA(S) (S)->data
1571
1572 #else /* not GC_CHECK_STRING_BYTES */
1573
1574 union
1575 {
1576 /* When STRING in non-null. */
1577 unsigned char data[1];
1578
1579 /* When STRING is null. */
1580 EMACS_INT nbytes;
1581 } u;
1582
1583
1584 #define SDATA_NBYTES(S) (S)->u.nbytes
1585 #define SDATA_DATA(S) (S)->u.data
1586
1587 #endif /* not GC_CHECK_STRING_BYTES */
1588 };
1589
1590
1591 /* Structure describing a block of memory which is sub-allocated to
1592 obtain string data memory for strings. Blocks for small strings
1593 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1594 as large as needed. */
1595
1596 struct sblock
1597 {
1598 /* Next in list. */
1599 struct sblock *next;
1600
1601 /* Pointer to the next free sdata block. This points past the end
1602 of the sblock if there isn't any space left in this block. */
1603 struct sdata *next_free;
1604
1605 /* Start of data. */
1606 struct sdata first_data;
1607 };
1608
1609 /* Number of Lisp strings in a string_block structure. The 1020 is
1610 1024 minus malloc overhead. */
1611
1612 #define STRING_BLOCK_SIZE \
1613 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1614
1615 /* Structure describing a block from which Lisp_String structures
1616 are allocated. */
1617
1618 struct string_block
1619 {
1620 /* Place `strings' first, to preserve alignment. */
1621 struct Lisp_String strings[STRING_BLOCK_SIZE];
1622 struct string_block *next;
1623 };
1624
1625 /* Head and tail of the list of sblock structures holding Lisp string
1626 data. We always allocate from current_sblock. The NEXT pointers
1627 in the sblock structures go from oldest_sblock to current_sblock. */
1628
1629 static struct sblock *oldest_sblock, *current_sblock;
1630
1631 /* List of sblocks for large strings. */
1632
1633 static struct sblock *large_sblocks;
1634
1635 /* List of string_block structures, and how many there are. */
1636
1637 static struct string_block *string_blocks;
1638 static int n_string_blocks;
1639
1640 /* Free-list of Lisp_Strings. */
1641
1642 static struct Lisp_String *string_free_list;
1643
1644 /* Number of live and free Lisp_Strings. */
1645
1646 static int total_strings, total_free_strings;
1647
1648 /* Number of bytes used by live strings. */
1649
1650 static int total_string_size;
1651
1652 /* Given a pointer to a Lisp_String S which is on the free-list
1653 string_free_list, return a pointer to its successor in the
1654 free-list. */
1655
1656 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1657
1658 /* Return a pointer to the sdata structure belonging to Lisp string S.
1659 S must be live, i.e. S->data must not be null. S->data is actually
1660 a pointer to the `u.data' member of its sdata structure; the
1661 structure starts at a constant offset in front of that. */
1662
1663 #ifdef GC_CHECK_STRING_BYTES
1664
1665 #define SDATA_OF_STRING(S) \
1666 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1667 - sizeof (EMACS_INT)))
1668
1669 #else /* not GC_CHECK_STRING_BYTES */
1670
1671 #define SDATA_OF_STRING(S) \
1672 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1673
1674 #endif /* not GC_CHECK_STRING_BYTES */
1675
1676
1677 #ifdef GC_CHECK_STRING_OVERRUN
1678
1679 /* We check for overrun in string data blocks by appending a small
1680 "cookie" after each allocated string data block, and check for the
1681 presense of this cookie during GC. */
1682
1683 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1684 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1685 { 0xde, 0xad, 0xbe, 0xef };
1686
1687 #else
1688 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1689 #endif
1690
1691 /* Value is the size of an sdata structure large enough to hold NBYTES
1692 bytes of string data. The value returned includes a terminating
1693 NUL byte, the size of the sdata structure, and padding. */
1694
1695 #ifdef GC_CHECK_STRING_BYTES
1696
1697 #define SDATA_SIZE(NBYTES) \
1698 ((sizeof (struct Lisp_String *) \
1699 + (NBYTES) + 1 \
1700 + sizeof (EMACS_INT) \
1701 + sizeof (EMACS_INT) - 1) \
1702 & ~(sizeof (EMACS_INT) - 1))
1703
1704 #else /* not GC_CHECK_STRING_BYTES */
1705
1706 #define SDATA_SIZE(NBYTES) \
1707 ((sizeof (struct Lisp_String *) \
1708 + (NBYTES) + 1 \
1709 + sizeof (EMACS_INT) - 1) \
1710 & ~(sizeof (EMACS_INT) - 1))
1711
1712 #endif /* not GC_CHECK_STRING_BYTES */
1713
1714 /* Extra bytes to allocate for each string. */
1715
1716 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1717
1718 /* Initialize string allocation. Called from init_alloc_once. */
1719
1720 void
1721 init_strings ()
1722 {
1723 total_strings = total_free_strings = total_string_size = 0;
1724 oldest_sblock = current_sblock = large_sblocks = NULL;
1725 string_blocks = NULL;
1726 n_string_blocks = 0;
1727 string_free_list = NULL;
1728 }
1729
1730
1731 #ifdef GC_CHECK_STRING_BYTES
1732
1733 static int check_string_bytes_count;
1734
1735 void check_string_bytes P_ ((int));
1736 void check_sblock P_ ((struct sblock *));
1737
1738 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1739
1740
1741 /* Like GC_STRING_BYTES, but with debugging check. */
1742
1743 int
1744 string_bytes (s)
1745 struct Lisp_String *s;
1746 {
1747 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1748 if (!PURE_POINTER_P (s)
1749 && s->data
1750 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1751 abort ();
1752 return nbytes;
1753 }
1754
1755 /* Check validity of Lisp strings' string_bytes member in B. */
1756
1757 void
1758 check_sblock (b)
1759 struct sblock *b;
1760 {
1761 struct sdata *from, *end, *from_end;
1762
1763 end = b->next_free;
1764
1765 for (from = &b->first_data; from < end; from = from_end)
1766 {
1767 /* Compute the next FROM here because copying below may
1768 overwrite data we need to compute it. */
1769 int nbytes;
1770
1771 /* Check that the string size recorded in the string is the
1772 same as the one recorded in the sdata structure. */
1773 if (from->string)
1774 CHECK_STRING_BYTES (from->string);
1775
1776 if (from->string)
1777 nbytes = GC_STRING_BYTES (from->string);
1778 else
1779 nbytes = SDATA_NBYTES (from);
1780
1781 nbytes = SDATA_SIZE (nbytes);
1782 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1783 }
1784 }
1785
1786
1787 /* Check validity of Lisp strings' string_bytes member. ALL_P
1788 non-zero means check all strings, otherwise check only most
1789 recently allocated strings. Used for hunting a bug. */
1790
1791 void
1792 check_string_bytes (all_p)
1793 int all_p;
1794 {
1795 if (all_p)
1796 {
1797 struct sblock *b;
1798
1799 for (b = large_sblocks; b; b = b->next)
1800 {
1801 struct Lisp_String *s = b->first_data.string;
1802 if (s)
1803 CHECK_STRING_BYTES (s);
1804 }
1805
1806 for (b = oldest_sblock; b; b = b->next)
1807 check_sblock (b);
1808 }
1809 else
1810 check_sblock (current_sblock);
1811 }
1812
1813 #endif /* GC_CHECK_STRING_BYTES */
1814
1815 #ifdef GC_CHECK_STRING_FREE_LIST
1816
1817 /* Walk through the string free list looking for bogus next pointers.
1818 This may catch buffer overrun from a previous string. */
1819
1820 static void
1821 check_string_free_list ()
1822 {
1823 struct Lisp_String *s;
1824
1825 /* Pop a Lisp_String off the free-list. */
1826 s = string_free_list;
1827 while (s != NULL)
1828 {
1829 if ((unsigned)s < 1024)
1830 abort();
1831 s = NEXT_FREE_LISP_STRING (s);
1832 }
1833 }
1834 #else
1835 #define check_string_free_list()
1836 #endif
1837
1838 /* Return a new Lisp_String. */
1839
1840 static struct Lisp_String *
1841 allocate_string ()
1842 {
1843 struct Lisp_String *s;
1844
1845 /* If the free-list is empty, allocate a new string_block, and
1846 add all the Lisp_Strings in it to the free-list. */
1847 if (string_free_list == NULL)
1848 {
1849 struct string_block *b;
1850 int i;
1851
1852 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1853 bzero (b, sizeof *b);
1854 b->next = string_blocks;
1855 string_blocks = b;
1856 ++n_string_blocks;
1857
1858 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1859 {
1860 s = b->strings + i;
1861 NEXT_FREE_LISP_STRING (s) = string_free_list;
1862 string_free_list = s;
1863 }
1864
1865 total_free_strings += STRING_BLOCK_SIZE;
1866 }
1867
1868 check_string_free_list ();
1869
1870 /* Pop a Lisp_String off the free-list. */
1871 s = string_free_list;
1872 string_free_list = NEXT_FREE_LISP_STRING (s);
1873
1874 /* Probably not strictly necessary, but play it safe. */
1875 bzero (s, sizeof *s);
1876
1877 --total_free_strings;
1878 ++total_strings;
1879 ++strings_consed;
1880 consing_since_gc += sizeof *s;
1881
1882 #ifdef GC_CHECK_STRING_BYTES
1883 if (!noninteractive
1884 #ifdef MAC_OS8
1885 && current_sblock
1886 #endif
1887 )
1888 {
1889 if (++check_string_bytes_count == 200)
1890 {
1891 check_string_bytes_count = 0;
1892 check_string_bytes (1);
1893 }
1894 else
1895 check_string_bytes (0);
1896 }
1897 #endif /* GC_CHECK_STRING_BYTES */
1898
1899 return s;
1900 }
1901
1902
1903 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1904 plus a NUL byte at the end. Allocate an sdata structure for S, and
1905 set S->data to its `u.data' member. Store a NUL byte at the end of
1906 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1907 S->data if it was initially non-null. */
1908
1909 void
1910 allocate_string_data (s, nchars, nbytes)
1911 struct Lisp_String *s;
1912 int nchars, nbytes;
1913 {
1914 struct sdata *data, *old_data;
1915 struct sblock *b;
1916 int needed, old_nbytes;
1917
1918 /* Determine the number of bytes needed to store NBYTES bytes
1919 of string data. */
1920 needed = SDATA_SIZE (nbytes);
1921
1922 if (nbytes > LARGE_STRING_BYTES)
1923 {
1924 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1925
1926 #ifdef DOUG_LEA_MALLOC
1927 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1928 because mapped region contents are not preserved in
1929 a dumped Emacs.
1930
1931 In case you think of allowing it in a dumped Emacs at the
1932 cost of not being able to re-dump, there's another reason:
1933 mmap'ed data typically have an address towards the top of the
1934 address space, which won't fit into an EMACS_INT (at least on
1935 32-bit systems with the current tagging scheme). --fx */
1936 BLOCK_INPUT;
1937 mallopt (M_MMAP_MAX, 0);
1938 UNBLOCK_INPUT;
1939 #endif
1940
1941 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1942
1943 #ifdef DOUG_LEA_MALLOC
1944 /* Back to a reasonable maximum of mmap'ed areas. */
1945 BLOCK_INPUT;
1946 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1947 UNBLOCK_INPUT;
1948 #endif
1949
1950 b->next_free = &b->first_data;
1951 b->first_data.string = NULL;
1952 b->next = large_sblocks;
1953 large_sblocks = b;
1954 }
1955 else if (current_sblock == NULL
1956 || (((char *) current_sblock + SBLOCK_SIZE
1957 - (char *) current_sblock->next_free)
1958 < (needed + GC_STRING_EXTRA)))
1959 {
1960 /* Not enough room in the current sblock. */
1961 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1962 b->next_free = &b->first_data;
1963 b->first_data.string = NULL;
1964 b->next = NULL;
1965
1966 if (current_sblock)
1967 current_sblock->next = b;
1968 else
1969 oldest_sblock = b;
1970 current_sblock = b;
1971 }
1972 else
1973 b = current_sblock;
1974
1975 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1976 old_nbytes = GC_STRING_BYTES (s);
1977
1978 data = b->next_free;
1979 data->string = s;
1980 s->data = SDATA_DATA (data);
1981 #ifdef GC_CHECK_STRING_BYTES
1982 SDATA_NBYTES (data) = nbytes;
1983 #endif
1984 s->size = nchars;
1985 s->size_byte = nbytes;
1986 s->data[nbytes] = '\0';
1987 #ifdef GC_CHECK_STRING_OVERRUN
1988 bcopy (string_overrun_cookie, (char *) data + needed,
1989 GC_STRING_OVERRUN_COOKIE_SIZE);
1990 #endif
1991 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1992
1993 /* If S had already data assigned, mark that as free by setting its
1994 string back-pointer to null, and recording the size of the data
1995 in it. */
1996 if (old_data)
1997 {
1998 SDATA_NBYTES (old_data) = old_nbytes;
1999 old_data->string = NULL;
2000 }
2001
2002 consing_since_gc += needed;
2003 }
2004
2005
2006 /* Sweep and compact strings. */
2007
2008 static void
2009 sweep_strings ()
2010 {
2011 struct string_block *b, *next;
2012 struct string_block *live_blocks = NULL;
2013
2014 string_free_list = NULL;
2015 total_strings = total_free_strings = 0;
2016 total_string_size = 0;
2017
2018 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2019 for (b = string_blocks; b; b = next)
2020 {
2021 int i, nfree = 0;
2022 struct Lisp_String *free_list_before = string_free_list;
2023
2024 next = b->next;
2025
2026 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2027 {
2028 struct Lisp_String *s = b->strings + i;
2029
2030 if (s->data)
2031 {
2032 /* String was not on free-list before. */
2033 if (STRING_MARKED_P (s))
2034 {
2035 /* String is live; unmark it and its intervals. */
2036 UNMARK_STRING (s);
2037
2038 if (!NULL_INTERVAL_P (s->intervals))
2039 UNMARK_BALANCE_INTERVALS (s->intervals);
2040
2041 ++total_strings;
2042 total_string_size += STRING_BYTES (s);
2043 }
2044 else
2045 {
2046 /* String is dead. Put it on the free-list. */
2047 struct sdata *data = SDATA_OF_STRING (s);
2048
2049 /* Save the size of S in its sdata so that we know
2050 how large that is. Reset the sdata's string
2051 back-pointer so that we know it's free. */
2052 #ifdef GC_CHECK_STRING_BYTES
2053 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2054 abort ();
2055 #else
2056 data->u.nbytes = GC_STRING_BYTES (s);
2057 #endif
2058 data->string = NULL;
2059
2060 /* Reset the strings's `data' member so that we
2061 know it's free. */
2062 s->data = NULL;
2063
2064 /* Put the string on the free-list. */
2065 NEXT_FREE_LISP_STRING (s) = string_free_list;
2066 string_free_list = s;
2067 ++nfree;
2068 }
2069 }
2070 else
2071 {
2072 /* S was on the free-list before. Put it there again. */
2073 NEXT_FREE_LISP_STRING (s) = string_free_list;
2074 string_free_list = s;
2075 ++nfree;
2076 }
2077 }
2078
2079 /* Free blocks that contain free Lisp_Strings only, except
2080 the first two of them. */
2081 if (nfree == STRING_BLOCK_SIZE
2082 && total_free_strings > STRING_BLOCK_SIZE)
2083 {
2084 lisp_free (b);
2085 --n_string_blocks;
2086 string_free_list = free_list_before;
2087 }
2088 else
2089 {
2090 total_free_strings += nfree;
2091 b->next = live_blocks;
2092 live_blocks = b;
2093 }
2094 }
2095
2096 check_string_free_list ();
2097
2098 string_blocks = live_blocks;
2099 free_large_strings ();
2100 compact_small_strings ();
2101
2102 check_string_free_list ();
2103 }
2104
2105
2106 /* Free dead large strings. */
2107
2108 static void
2109 free_large_strings ()
2110 {
2111 struct sblock *b, *next;
2112 struct sblock *live_blocks = NULL;
2113
2114 for (b = large_sblocks; b; b = next)
2115 {
2116 next = b->next;
2117
2118 if (b->first_data.string == NULL)
2119 lisp_free (b);
2120 else
2121 {
2122 b->next = live_blocks;
2123 live_blocks = b;
2124 }
2125 }
2126
2127 large_sblocks = live_blocks;
2128 }
2129
2130
2131 /* Compact data of small strings. Free sblocks that don't contain
2132 data of live strings after compaction. */
2133
2134 static void
2135 compact_small_strings ()
2136 {
2137 struct sblock *b, *tb, *next;
2138 struct sdata *from, *to, *end, *tb_end;
2139 struct sdata *to_end, *from_end;
2140
2141 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2142 to, and TB_END is the end of TB. */
2143 tb = oldest_sblock;
2144 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2145 to = &tb->first_data;
2146
2147 /* Step through the blocks from the oldest to the youngest. We
2148 expect that old blocks will stabilize over time, so that less
2149 copying will happen this way. */
2150 for (b = oldest_sblock; b; b = b->next)
2151 {
2152 end = b->next_free;
2153 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2154
2155 for (from = &b->first_data; from < end; from = from_end)
2156 {
2157 /* Compute the next FROM here because copying below may
2158 overwrite data we need to compute it. */
2159 int nbytes;
2160
2161 #ifdef GC_CHECK_STRING_BYTES
2162 /* Check that the string size recorded in the string is the
2163 same as the one recorded in the sdata structure. */
2164 if (from->string
2165 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2166 abort ();
2167 #endif /* GC_CHECK_STRING_BYTES */
2168
2169 if (from->string)
2170 nbytes = GC_STRING_BYTES (from->string);
2171 else
2172 nbytes = SDATA_NBYTES (from);
2173
2174 if (nbytes > LARGE_STRING_BYTES)
2175 abort ();
2176
2177 nbytes = SDATA_SIZE (nbytes);
2178 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2179
2180 #ifdef GC_CHECK_STRING_OVERRUN
2181 if (bcmp (string_overrun_cookie,
2182 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2183 GC_STRING_OVERRUN_COOKIE_SIZE))
2184 abort ();
2185 #endif
2186
2187 /* FROM->string non-null means it's alive. Copy its data. */
2188 if (from->string)
2189 {
2190 /* If TB is full, proceed with the next sblock. */
2191 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2192 if (to_end > tb_end)
2193 {
2194 tb->next_free = to;
2195 tb = tb->next;
2196 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2197 to = &tb->first_data;
2198 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2199 }
2200
2201 /* Copy, and update the string's `data' pointer. */
2202 if (from != to)
2203 {
2204 xassert (tb != b || to <= from);
2205 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2206 to->string->data = SDATA_DATA (to);
2207 }
2208
2209 /* Advance past the sdata we copied to. */
2210 to = to_end;
2211 }
2212 }
2213 }
2214
2215 /* The rest of the sblocks following TB don't contain live data, so
2216 we can free them. */
2217 for (b = tb->next; b; b = next)
2218 {
2219 next = b->next;
2220 lisp_free (b);
2221 }
2222
2223 tb->next_free = to;
2224 tb->next = NULL;
2225 current_sblock = tb;
2226 }
2227
2228
2229 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2230 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2231 LENGTH must be an integer.
2232 INIT must be an integer that represents a character. */)
2233 (length, init)
2234 Lisp_Object length, init;
2235 {
2236 register Lisp_Object val;
2237 register unsigned char *p, *end;
2238 int c, nbytes;
2239
2240 CHECK_NATNUM (length);
2241 CHECK_NUMBER (init);
2242
2243 c = XINT (init);
2244 if (ASCII_CHAR_P (c))
2245 {
2246 nbytes = XINT (length);
2247 val = make_uninit_string (nbytes);
2248 p = SDATA (val);
2249 end = p + SCHARS (val);
2250 while (p != end)
2251 *p++ = c;
2252 }
2253 else
2254 {
2255 unsigned char str[MAX_MULTIBYTE_LENGTH];
2256 int len = CHAR_STRING (c, str);
2257
2258 nbytes = len * XINT (length);
2259 val = make_uninit_multibyte_string (XINT (length), nbytes);
2260 p = SDATA (val);
2261 end = p + nbytes;
2262 while (p != end)
2263 {
2264 bcopy (str, p, len);
2265 p += len;
2266 }
2267 }
2268
2269 *p = 0;
2270 return val;
2271 }
2272
2273
2274 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2275 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
2276 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2277 (length, init)
2278 Lisp_Object length, init;
2279 {
2280 register Lisp_Object val;
2281 struct Lisp_Bool_Vector *p;
2282 int real_init, i;
2283 int length_in_chars, length_in_elts, bits_per_value;
2284
2285 CHECK_NATNUM (length);
2286
2287 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2288
2289 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2290 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2291 / BOOL_VECTOR_BITS_PER_CHAR);
2292
2293 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2294 slot `size' of the struct Lisp_Bool_Vector. */
2295 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2296 p = XBOOL_VECTOR (val);
2297
2298 /* Get rid of any bits that would cause confusion. */
2299 p->vector_size = 0;
2300 XSETBOOL_VECTOR (val, p);
2301 p->size = XFASTINT (length);
2302
2303 real_init = (NILP (init) ? 0 : -1);
2304 for (i = 0; i < length_in_chars ; i++)
2305 p->data[i] = real_init;
2306
2307 /* Clear the extraneous bits in the last byte. */
2308 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2309 XBOOL_VECTOR (val)->data[length_in_chars - 1]
2310 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2311
2312 return val;
2313 }
2314
2315
2316 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2317 of characters from the contents. This string may be unibyte or
2318 multibyte, depending on the contents. */
2319
2320 Lisp_Object
2321 make_string (contents, nbytes)
2322 const char *contents;
2323 int nbytes;
2324 {
2325 register Lisp_Object val;
2326 int nchars, multibyte_nbytes;
2327
2328 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2329 if (nbytes == nchars || nbytes != multibyte_nbytes)
2330 /* CONTENTS contains no multibyte sequences or contains an invalid
2331 multibyte sequence. We must make unibyte string. */
2332 val = make_unibyte_string (contents, nbytes);
2333 else
2334 val = make_multibyte_string (contents, nchars, nbytes);
2335 return val;
2336 }
2337
2338
2339 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2340
2341 Lisp_Object
2342 make_unibyte_string (contents, length)
2343 const char *contents;
2344 int length;
2345 {
2346 register Lisp_Object val;
2347 val = make_uninit_string (length);
2348 bcopy (contents, SDATA (val), length);
2349 STRING_SET_UNIBYTE (val);
2350 return val;
2351 }
2352
2353
2354 /* Make a multibyte string from NCHARS characters occupying NBYTES
2355 bytes at CONTENTS. */
2356
2357 Lisp_Object
2358 make_multibyte_string (contents, nchars, nbytes)
2359 const char *contents;
2360 int nchars, nbytes;
2361 {
2362 register Lisp_Object val;
2363 val = make_uninit_multibyte_string (nchars, nbytes);
2364 bcopy (contents, SDATA (val), nbytes);
2365 return val;
2366 }
2367
2368
2369 /* Make a string from NCHARS characters occupying NBYTES bytes at
2370 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2371
2372 Lisp_Object
2373 make_string_from_bytes (contents, nchars, nbytes)
2374 const char *contents;
2375 int nchars, nbytes;
2376 {
2377 register Lisp_Object val;
2378 val = make_uninit_multibyte_string (nchars, nbytes);
2379 bcopy (contents, SDATA (val), nbytes);
2380 if (SBYTES (val) == SCHARS (val))
2381 STRING_SET_UNIBYTE (val);
2382 return val;
2383 }
2384
2385
2386 /* Make a string from NCHARS characters occupying NBYTES bytes at
2387 CONTENTS. The argument MULTIBYTE controls whether to label the
2388 string as multibyte. If NCHARS is negative, it counts the number of
2389 characters by itself. */
2390
2391 Lisp_Object
2392 make_specified_string (contents, nchars, nbytes, multibyte)
2393 const char *contents;
2394 int nchars, nbytes;
2395 int multibyte;
2396 {
2397 register Lisp_Object val;
2398
2399 if (nchars < 0)
2400 {
2401 if (multibyte)
2402 nchars = multibyte_chars_in_text (contents, nbytes);
2403 else
2404 nchars = nbytes;
2405 }
2406 val = make_uninit_multibyte_string (nchars, nbytes);
2407 bcopy (contents, SDATA (val), nbytes);
2408 if (!multibyte)
2409 STRING_SET_UNIBYTE (val);
2410 return val;
2411 }
2412
2413
2414 /* Make a string from the data at STR, treating it as multibyte if the
2415 data warrants. */
2416
2417 Lisp_Object
2418 build_string (str)
2419 const char *str;
2420 {
2421 return make_string (str, strlen (str));
2422 }
2423
2424
2425 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2426 occupying LENGTH bytes. */
2427
2428 Lisp_Object
2429 make_uninit_string (length)
2430 int length;
2431 {
2432 Lisp_Object val;
2433 val = make_uninit_multibyte_string (length, length);
2434 STRING_SET_UNIBYTE (val);
2435 return val;
2436 }
2437
2438
2439 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2440 which occupy NBYTES bytes. */
2441
2442 Lisp_Object
2443 make_uninit_multibyte_string (nchars, nbytes)
2444 int nchars, nbytes;
2445 {
2446 Lisp_Object string;
2447 struct Lisp_String *s;
2448
2449 if (nchars < 0)
2450 abort ();
2451
2452 s = allocate_string ();
2453 allocate_string_data (s, nchars, nbytes);
2454 XSETSTRING (string, s);
2455 string_chars_consed += nbytes;
2456 return string;
2457 }
2458
2459
2460 \f
2461 /***********************************************************************
2462 Float Allocation
2463 ***********************************************************************/
2464
2465 /* We store float cells inside of float_blocks, allocating a new
2466 float_block with malloc whenever necessary. Float cells reclaimed
2467 by GC are put on a free list to be reallocated before allocating
2468 any new float cells from the latest float_block. */
2469
2470 #define FLOAT_BLOCK_SIZE \
2471 (((BLOCK_BYTES - sizeof (struct float_block *) \
2472 /* The compiler might add padding at the end. */ \
2473 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2474 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2475
2476 #define GETMARKBIT(block,n) \
2477 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2478 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2479 & 1)
2480
2481 #define SETMARKBIT(block,n) \
2482 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2483 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2484
2485 #define UNSETMARKBIT(block,n) \
2486 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2487 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2488
2489 #define FLOAT_BLOCK(fptr) \
2490 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2491
2492 #define FLOAT_INDEX(fptr) \
2493 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2494
2495 struct float_block
2496 {
2497 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2498 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2499 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2500 struct float_block *next;
2501 };
2502
2503 #define FLOAT_MARKED_P(fptr) \
2504 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2505
2506 #define FLOAT_MARK(fptr) \
2507 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2508
2509 #define FLOAT_UNMARK(fptr) \
2510 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2511
2512 /* Current float_block. */
2513
2514 struct float_block *float_block;
2515
2516 /* Index of first unused Lisp_Float in the current float_block. */
2517
2518 int float_block_index;
2519
2520 /* Total number of float blocks now in use. */
2521
2522 int n_float_blocks;
2523
2524 /* Free-list of Lisp_Floats. */
2525
2526 struct Lisp_Float *float_free_list;
2527
2528
2529 /* Initialize float allocation. */
2530
2531 void
2532 init_float ()
2533 {
2534 float_block = NULL;
2535 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2536 float_free_list = 0;
2537 n_float_blocks = 0;
2538 }
2539
2540
2541 /* Explicitly free a float cell by putting it on the free-list. */
2542
2543 void
2544 free_float (ptr)
2545 struct Lisp_Float *ptr;
2546 {
2547 *(struct Lisp_Float **)&ptr->data = float_free_list;
2548 float_free_list = ptr;
2549 }
2550
2551
2552 /* Return a new float object with value FLOAT_VALUE. */
2553
2554 Lisp_Object
2555 make_float (float_value)
2556 double float_value;
2557 {
2558 register Lisp_Object val;
2559
2560 if (float_free_list)
2561 {
2562 /* We use the data field for chaining the free list
2563 so that we won't use the same field that has the mark bit. */
2564 XSETFLOAT (val, float_free_list);
2565 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2566 }
2567 else
2568 {
2569 if (float_block_index == FLOAT_BLOCK_SIZE)
2570 {
2571 register struct float_block *new;
2572
2573 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2574 MEM_TYPE_FLOAT);
2575 new->next = float_block;
2576 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2577 float_block = new;
2578 float_block_index = 0;
2579 n_float_blocks++;
2580 }
2581 XSETFLOAT (val, &float_block->floats[float_block_index]);
2582 float_block_index++;
2583 }
2584
2585 XFLOAT_DATA (val) = float_value;
2586 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2587 consing_since_gc += sizeof (struct Lisp_Float);
2588 floats_consed++;
2589 return val;
2590 }
2591
2592
2593 \f
2594 /***********************************************************************
2595 Cons Allocation
2596 ***********************************************************************/
2597
2598 /* We store cons cells inside of cons_blocks, allocating a new
2599 cons_block with malloc whenever necessary. Cons cells reclaimed by
2600 GC are put on a free list to be reallocated before allocating
2601 any new cons cells from the latest cons_block. */
2602
2603 #define CONS_BLOCK_SIZE \
2604 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2605 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2606
2607 #define CONS_BLOCK(fptr) \
2608 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2609
2610 #define CONS_INDEX(fptr) \
2611 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2612
2613 struct cons_block
2614 {
2615 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2616 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2617 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2618 struct cons_block *next;
2619 };
2620
2621 #define CONS_MARKED_P(fptr) \
2622 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2623
2624 #define CONS_MARK(fptr) \
2625 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2626
2627 #define CONS_UNMARK(fptr) \
2628 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2629
2630 /* Current cons_block. */
2631
2632 struct cons_block *cons_block;
2633
2634 /* Index of first unused Lisp_Cons in the current block. */
2635
2636 int cons_block_index;
2637
2638 /* Free-list of Lisp_Cons structures. */
2639
2640 struct Lisp_Cons *cons_free_list;
2641
2642 /* Total number of cons blocks now in use. */
2643
2644 int n_cons_blocks;
2645
2646
2647 /* Initialize cons allocation. */
2648
2649 void
2650 init_cons ()
2651 {
2652 cons_block = NULL;
2653 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2654 cons_free_list = 0;
2655 n_cons_blocks = 0;
2656 }
2657
2658
2659 /* Explicitly free a cons cell by putting it on the free-list. */
2660
2661 void
2662 free_cons (ptr)
2663 struct Lisp_Cons *ptr;
2664 {
2665 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2666 #if GC_MARK_STACK
2667 ptr->car = Vdead;
2668 #endif
2669 cons_free_list = ptr;
2670 }
2671
2672 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2673 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2674 (car, cdr)
2675 Lisp_Object car, cdr;
2676 {
2677 register Lisp_Object val;
2678
2679 if (cons_free_list)
2680 {
2681 /* We use the cdr for chaining the free list
2682 so that we won't use the same field that has the mark bit. */
2683 XSETCONS (val, cons_free_list);
2684 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2685 }
2686 else
2687 {
2688 if (cons_block_index == CONS_BLOCK_SIZE)
2689 {
2690 register struct cons_block *new;
2691 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2692 MEM_TYPE_CONS);
2693 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2694 new->next = cons_block;
2695 cons_block = new;
2696 cons_block_index = 0;
2697 n_cons_blocks++;
2698 }
2699 XSETCONS (val, &cons_block->conses[cons_block_index]);
2700 cons_block_index++;
2701 }
2702
2703 XSETCAR (val, car);
2704 XSETCDR (val, cdr);
2705 eassert (!CONS_MARKED_P (XCONS (val)));
2706 consing_since_gc += sizeof (struct Lisp_Cons);
2707 cons_cells_consed++;
2708 return val;
2709 }
2710
2711 /* Get an error now if there's any junk in the cons free list. */
2712 void
2713 check_cons_list ()
2714 {
2715 #ifdef GC_CHECK_CONS_LIST
2716 struct Lisp_Cons *tail = cons_free_list;
2717
2718 while (tail)
2719 tail = *(struct Lisp_Cons **)&tail->cdr;
2720 #endif
2721 }
2722
2723 /* Make a list of 2, 3, 4 or 5 specified objects. */
2724
2725 Lisp_Object
2726 list2 (arg1, arg2)
2727 Lisp_Object arg1, arg2;
2728 {
2729 return Fcons (arg1, Fcons (arg2, Qnil));
2730 }
2731
2732
2733 Lisp_Object
2734 list3 (arg1, arg2, arg3)
2735 Lisp_Object arg1, arg2, arg3;
2736 {
2737 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2738 }
2739
2740
2741 Lisp_Object
2742 list4 (arg1, arg2, arg3, arg4)
2743 Lisp_Object arg1, arg2, arg3, arg4;
2744 {
2745 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2746 }
2747
2748
2749 Lisp_Object
2750 list5 (arg1, arg2, arg3, arg4, arg5)
2751 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2752 {
2753 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2754 Fcons (arg5, Qnil)))));
2755 }
2756
2757
2758 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2759 doc: /* Return a newly created list with specified arguments as elements.
2760 Any number of arguments, even zero arguments, are allowed.
2761 usage: (list &rest OBJECTS) */)
2762 (nargs, args)
2763 int nargs;
2764 register Lisp_Object *args;
2765 {
2766 register Lisp_Object val;
2767 val = Qnil;
2768
2769 while (nargs > 0)
2770 {
2771 nargs--;
2772 val = Fcons (args[nargs], val);
2773 }
2774 return val;
2775 }
2776
2777
2778 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2779 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2780 (length, init)
2781 register Lisp_Object length, init;
2782 {
2783 register Lisp_Object val;
2784 register int size;
2785
2786 CHECK_NATNUM (length);
2787 size = XFASTINT (length);
2788
2789 val = Qnil;
2790 while (size > 0)
2791 {
2792 val = Fcons (init, val);
2793 --size;
2794
2795 if (size > 0)
2796 {
2797 val = Fcons (init, val);
2798 --size;
2799
2800 if (size > 0)
2801 {
2802 val = Fcons (init, val);
2803 --size;
2804
2805 if (size > 0)
2806 {
2807 val = Fcons (init, val);
2808 --size;
2809
2810 if (size > 0)
2811 {
2812 val = Fcons (init, val);
2813 --size;
2814 }
2815 }
2816 }
2817 }
2818
2819 QUIT;
2820 }
2821
2822 return val;
2823 }
2824
2825
2826 \f
2827 /***********************************************************************
2828 Vector Allocation
2829 ***********************************************************************/
2830
2831 /* Singly-linked list of all vectors. */
2832
2833 struct Lisp_Vector *all_vectors;
2834
2835 /* Total number of vector-like objects now in use. */
2836
2837 int n_vectors;
2838
2839
2840 /* Value is a pointer to a newly allocated Lisp_Vector structure
2841 with room for LEN Lisp_Objects. */
2842
2843 static struct Lisp_Vector *
2844 allocate_vectorlike (len, type)
2845 EMACS_INT len;
2846 enum mem_type type;
2847 {
2848 struct Lisp_Vector *p;
2849 size_t nbytes;
2850
2851 #ifdef DOUG_LEA_MALLOC
2852 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2853 because mapped region contents are not preserved in
2854 a dumped Emacs. */
2855 BLOCK_INPUT;
2856 mallopt (M_MMAP_MAX, 0);
2857 UNBLOCK_INPUT;
2858 #endif
2859
2860 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2861 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2862
2863 #ifdef DOUG_LEA_MALLOC
2864 /* Back to a reasonable maximum of mmap'ed areas. */
2865 BLOCK_INPUT;
2866 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2867 UNBLOCK_INPUT;
2868 #endif
2869
2870 consing_since_gc += nbytes;
2871 vector_cells_consed += len;
2872
2873 p->next = all_vectors;
2874 all_vectors = p;
2875 ++n_vectors;
2876 return p;
2877 }
2878
2879
2880 /* Allocate a vector with NSLOTS slots. */
2881
2882 struct Lisp_Vector *
2883 allocate_vector (nslots)
2884 EMACS_INT nslots;
2885 {
2886 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2887 v->size = nslots;
2888 return v;
2889 }
2890
2891
2892 /* Allocate other vector-like structures. */
2893
2894 struct Lisp_Hash_Table *
2895 allocate_hash_table ()
2896 {
2897 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2898 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2899 EMACS_INT i;
2900
2901 v->size = len;
2902 for (i = 0; i < len; ++i)
2903 v->contents[i] = Qnil;
2904
2905 return (struct Lisp_Hash_Table *) v;
2906 }
2907
2908
2909 struct window *
2910 allocate_window ()
2911 {
2912 EMACS_INT len = VECSIZE (struct window);
2913 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2914 EMACS_INT i;
2915
2916 for (i = 0; i < len; ++i)
2917 v->contents[i] = Qnil;
2918 v->size = len;
2919
2920 return (struct window *) v;
2921 }
2922
2923
2924 struct frame *
2925 allocate_frame ()
2926 {
2927 EMACS_INT len = VECSIZE (struct frame);
2928 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2929 EMACS_INT i;
2930
2931 for (i = 0; i < len; ++i)
2932 v->contents[i] = make_number (0);
2933 v->size = len;
2934 return (struct frame *) v;
2935 }
2936
2937
2938 struct Lisp_Process *
2939 allocate_process ()
2940 {
2941 EMACS_INT len = VECSIZE (struct Lisp_Process);
2942 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2943 EMACS_INT i;
2944
2945 for (i = 0; i < len; ++i)
2946 v->contents[i] = Qnil;
2947 v->size = len;
2948
2949 return (struct Lisp_Process *) v;
2950 }
2951
2952
2953 struct Lisp_Vector *
2954 allocate_other_vector (len)
2955 EMACS_INT len;
2956 {
2957 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2958 EMACS_INT i;
2959
2960 for (i = 0; i < len; ++i)
2961 v->contents[i] = Qnil;
2962 v->size = len;
2963
2964 return v;
2965 }
2966
2967
2968 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2969 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2970 See also the function `vector'. */)
2971 (length, init)
2972 register Lisp_Object length, init;
2973 {
2974 Lisp_Object vector;
2975 register EMACS_INT sizei;
2976 register int index;
2977 register struct Lisp_Vector *p;
2978
2979 CHECK_NATNUM (length);
2980 sizei = XFASTINT (length);
2981
2982 p = allocate_vector (sizei);
2983 for (index = 0; index < sizei; index++)
2984 p->contents[index] = init;
2985
2986 XSETVECTOR (vector, p);
2987 return vector;
2988 }
2989
2990
2991 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2992 doc: /* Return a newly created vector with specified arguments as elements.
2993 Any number of arguments, even zero arguments, are allowed.
2994 usage: (vector &rest OBJECTS) */)
2995 (nargs, args)
2996 register int nargs;
2997 Lisp_Object *args;
2998 {
2999 register Lisp_Object len, val;
3000 register int index;
3001 register struct Lisp_Vector *p;
3002
3003 XSETFASTINT (len, nargs);
3004 val = Fmake_vector (len, Qnil);
3005 p = XVECTOR (val);
3006 for (index = 0; index < nargs; index++)
3007 p->contents[index] = args[index];
3008 return val;
3009 }
3010
3011
3012 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3013 doc: /* Create a byte-code object with specified arguments as elements.
3014 The arguments should be the arglist, bytecode-string, constant vector,
3015 stack size, (optional) doc string, and (optional) interactive spec.
3016 The first four arguments are required; at most six have any
3017 significance.
3018 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3019 (nargs, args)
3020 register int nargs;
3021 Lisp_Object *args;
3022 {
3023 register Lisp_Object len, val;
3024 register int index;
3025 register struct Lisp_Vector *p;
3026
3027 XSETFASTINT (len, nargs);
3028 if (!NILP (Vpurify_flag))
3029 val = make_pure_vector ((EMACS_INT) nargs);
3030 else
3031 val = Fmake_vector (len, Qnil);
3032
3033 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3034 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3035 earlier because they produced a raw 8-bit string for byte-code
3036 and now such a byte-code string is loaded as multibyte while
3037 raw 8-bit characters converted to multibyte form. Thus, now we
3038 must convert them back to the original unibyte form. */
3039 args[1] = Fstring_as_unibyte (args[1]);
3040
3041 p = XVECTOR (val);
3042 for (index = 0; index < nargs; index++)
3043 {
3044 if (!NILP (Vpurify_flag))
3045 args[index] = Fpurecopy (args[index]);
3046 p->contents[index] = args[index];
3047 }
3048 XSETCOMPILED (val, p);
3049 return val;
3050 }
3051
3052
3053 \f
3054 /***********************************************************************
3055 Symbol Allocation
3056 ***********************************************************************/
3057
3058 /* Each symbol_block is just under 1020 bytes long, since malloc
3059 really allocates in units of powers of two and uses 4 bytes for its
3060 own overhead. */
3061
3062 #define SYMBOL_BLOCK_SIZE \
3063 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3064
3065 struct symbol_block
3066 {
3067 /* Place `symbols' first, to preserve alignment. */
3068 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3069 struct symbol_block *next;
3070 };
3071
3072 /* Current symbol block and index of first unused Lisp_Symbol
3073 structure in it. */
3074
3075 struct symbol_block *symbol_block;
3076 int symbol_block_index;
3077
3078 /* List of free symbols. */
3079
3080 struct Lisp_Symbol *symbol_free_list;
3081
3082 /* Total number of symbol blocks now in use. */
3083
3084 int n_symbol_blocks;
3085
3086
3087 /* Initialize symbol allocation. */
3088
3089 void
3090 init_symbol ()
3091 {
3092 symbol_block = NULL;
3093 symbol_block_index = SYMBOL_BLOCK_SIZE;
3094 symbol_free_list = 0;
3095 n_symbol_blocks = 0;
3096 }
3097
3098
3099 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3100 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3101 Its value and function definition are void, and its property list is nil. */)
3102 (name)
3103 Lisp_Object name;
3104 {
3105 register Lisp_Object val;
3106 register struct Lisp_Symbol *p;
3107
3108 CHECK_STRING (name);
3109
3110 if (symbol_free_list)
3111 {
3112 XSETSYMBOL (val, symbol_free_list);
3113 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
3114 }
3115 else
3116 {
3117 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3118 {
3119 struct symbol_block *new;
3120 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3121 MEM_TYPE_SYMBOL);
3122 new->next = symbol_block;
3123 symbol_block = new;
3124 symbol_block_index = 0;
3125 n_symbol_blocks++;
3126 }
3127 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3128 symbol_block_index++;
3129 }
3130
3131 p = XSYMBOL (val);
3132 p->xname = name;
3133 p->plist = Qnil;
3134 p->value = Qunbound;
3135 p->function = Qunbound;
3136 p->next = NULL;
3137 p->gcmarkbit = 0;
3138 p->interned = SYMBOL_UNINTERNED;
3139 p->constant = 0;
3140 p->indirect_variable = 0;
3141 consing_since_gc += sizeof (struct Lisp_Symbol);
3142 symbols_consed++;
3143 return val;
3144 }
3145
3146
3147 \f
3148 /***********************************************************************
3149 Marker (Misc) Allocation
3150 ***********************************************************************/
3151
3152 /* Allocation of markers and other objects that share that structure.
3153 Works like allocation of conses. */
3154
3155 #define MARKER_BLOCK_SIZE \
3156 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3157
3158 struct marker_block
3159 {
3160 /* Place `markers' first, to preserve alignment. */
3161 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3162 struct marker_block *next;
3163 };
3164
3165 struct marker_block *marker_block;
3166 int marker_block_index;
3167
3168 union Lisp_Misc *marker_free_list;
3169
3170 /* Total number of marker blocks now in use. */
3171
3172 int n_marker_blocks;
3173
3174 void
3175 init_marker ()
3176 {
3177 marker_block = NULL;
3178 marker_block_index = MARKER_BLOCK_SIZE;
3179 marker_free_list = 0;
3180 n_marker_blocks = 0;
3181 }
3182
3183 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3184
3185 Lisp_Object
3186 allocate_misc ()
3187 {
3188 Lisp_Object val;
3189
3190 if (marker_free_list)
3191 {
3192 XSETMISC (val, marker_free_list);
3193 marker_free_list = marker_free_list->u_free.chain;
3194 }
3195 else
3196 {
3197 if (marker_block_index == MARKER_BLOCK_SIZE)
3198 {
3199 struct marker_block *new;
3200 new = (struct marker_block *) lisp_malloc (sizeof *new,
3201 MEM_TYPE_MISC);
3202 new->next = marker_block;
3203 marker_block = new;
3204 marker_block_index = 0;
3205 n_marker_blocks++;
3206 total_free_markers += MARKER_BLOCK_SIZE;
3207 }
3208 XSETMISC (val, &marker_block->markers[marker_block_index]);
3209 marker_block_index++;
3210 }
3211
3212 --total_free_markers;
3213 consing_since_gc += sizeof (union Lisp_Misc);
3214 misc_objects_consed++;
3215 XMARKER (val)->gcmarkbit = 0;
3216 return val;
3217 }
3218
3219 /* Free a Lisp_Misc object */
3220
3221 void
3222 free_misc (misc)
3223 Lisp_Object misc;
3224 {
3225 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
3226 XMISC (misc)->u_free.chain = marker_free_list;
3227 marker_free_list = XMISC (misc);
3228
3229 total_free_markers++;
3230 }
3231
3232 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3233 INTEGER. This is used to package C values to call record_unwind_protect.
3234 The unwind function can get the C values back using XSAVE_VALUE. */
3235
3236 Lisp_Object
3237 make_save_value (pointer, integer)
3238 void *pointer;
3239 int integer;
3240 {
3241 register Lisp_Object val;
3242 register struct Lisp_Save_Value *p;
3243
3244 val = allocate_misc ();
3245 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3246 p = XSAVE_VALUE (val);
3247 p->pointer = pointer;
3248 p->integer = integer;
3249 p->dogc = 0;
3250 return val;
3251 }
3252
3253 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3254 doc: /* Return a newly allocated marker which does not point at any place. */)
3255 ()
3256 {
3257 register Lisp_Object val;
3258 register struct Lisp_Marker *p;
3259
3260 val = allocate_misc ();
3261 XMISCTYPE (val) = Lisp_Misc_Marker;
3262 p = XMARKER (val);
3263 p->buffer = 0;
3264 p->bytepos = 0;
3265 p->charpos = 0;
3266 p->next = NULL;
3267 p->insertion_type = 0;
3268 return val;
3269 }
3270
3271 /* Put MARKER back on the free list after using it temporarily. */
3272
3273 void
3274 free_marker (marker)
3275 Lisp_Object marker;
3276 {
3277 unchain_marker (XMARKER (marker));
3278 free_misc (marker);
3279 }
3280
3281 \f
3282 /* Return a newly created vector or string with specified arguments as
3283 elements. If all the arguments are characters that can fit
3284 in a string of events, make a string; otherwise, make a vector.
3285
3286 Any number of arguments, even zero arguments, are allowed. */
3287
3288 Lisp_Object
3289 make_event_array (nargs, args)
3290 register int nargs;
3291 Lisp_Object *args;
3292 {
3293 int i;
3294
3295 for (i = 0; i < nargs; i++)
3296 /* The things that fit in a string
3297 are characters that are in 0...127,
3298 after discarding the meta bit and all the bits above it. */
3299 if (!INTEGERP (args[i])
3300 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3301 return Fvector (nargs, args);
3302
3303 /* Since the loop exited, we know that all the things in it are
3304 characters, so we can make a string. */
3305 {
3306 Lisp_Object result;
3307
3308 result = Fmake_string (make_number (nargs), make_number (0));
3309 for (i = 0; i < nargs; i++)
3310 {
3311 SSET (result, i, XINT (args[i]));
3312 /* Move the meta bit to the right place for a string char. */
3313 if (XINT (args[i]) & CHAR_META)
3314 SSET (result, i, SREF (result, i) | 0x80);
3315 }
3316
3317 return result;
3318 }
3319 }
3320
3321
3322 \f
3323 /************************************************************************
3324 C Stack Marking
3325 ************************************************************************/
3326
3327 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3328
3329 /* Conservative C stack marking requires a method to identify possibly
3330 live Lisp objects given a pointer value. We do this by keeping
3331 track of blocks of Lisp data that are allocated in a red-black tree
3332 (see also the comment of mem_node which is the type of nodes in
3333 that tree). Function lisp_malloc adds information for an allocated
3334 block to the red-black tree with calls to mem_insert, and function
3335 lisp_free removes it with mem_delete. Functions live_string_p etc
3336 call mem_find to lookup information about a given pointer in the
3337 tree, and use that to determine if the pointer points to a Lisp
3338 object or not. */
3339
3340 /* Initialize this part of alloc.c. */
3341
3342 static void
3343 mem_init ()
3344 {
3345 mem_z.left = mem_z.right = MEM_NIL;
3346 mem_z.parent = NULL;
3347 mem_z.color = MEM_BLACK;
3348 mem_z.start = mem_z.end = NULL;
3349 mem_root = MEM_NIL;
3350 }
3351
3352
3353 /* Value is a pointer to the mem_node containing START. Value is
3354 MEM_NIL if there is no node in the tree containing START. */
3355
3356 static INLINE struct mem_node *
3357 mem_find (start)
3358 void *start;
3359 {
3360 struct mem_node *p;
3361
3362 if (start < min_heap_address || start > max_heap_address)
3363 return MEM_NIL;
3364
3365 /* Make the search always successful to speed up the loop below. */
3366 mem_z.start = start;
3367 mem_z.end = (char *) start + 1;
3368
3369 p = mem_root;
3370 while (start < p->start || start >= p->end)
3371 p = start < p->start ? p->left : p->right;
3372 return p;
3373 }
3374
3375
3376 /* Insert a new node into the tree for a block of memory with start
3377 address START, end address END, and type TYPE. Value is a
3378 pointer to the node that was inserted. */
3379
3380 static struct mem_node *
3381 mem_insert (start, end, type)
3382 void *start, *end;
3383 enum mem_type type;
3384 {
3385 struct mem_node *c, *parent, *x;
3386
3387 if (start < min_heap_address)
3388 min_heap_address = start;
3389 if (end > max_heap_address)
3390 max_heap_address = end;
3391
3392 /* See where in the tree a node for START belongs. In this
3393 particular application, it shouldn't happen that a node is already
3394 present. For debugging purposes, let's check that. */
3395 c = mem_root;
3396 parent = NULL;
3397
3398 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3399
3400 while (c != MEM_NIL)
3401 {
3402 if (start >= c->start && start < c->end)
3403 abort ();
3404 parent = c;
3405 c = start < c->start ? c->left : c->right;
3406 }
3407
3408 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3409
3410 while (c != MEM_NIL)
3411 {
3412 parent = c;
3413 c = start < c->start ? c->left : c->right;
3414 }
3415
3416 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3417
3418 /* Create a new node. */
3419 #ifdef GC_MALLOC_CHECK
3420 x = (struct mem_node *) _malloc_internal (sizeof *x);
3421 if (x == NULL)
3422 abort ();
3423 #else
3424 x = (struct mem_node *) xmalloc (sizeof *x);
3425 #endif
3426 x->start = start;
3427 x->end = end;
3428 x->type = type;
3429 x->parent = parent;
3430 x->left = x->right = MEM_NIL;
3431 x->color = MEM_RED;
3432
3433 /* Insert it as child of PARENT or install it as root. */
3434 if (parent)
3435 {
3436 if (start < parent->start)
3437 parent->left = x;
3438 else
3439 parent->right = x;
3440 }
3441 else
3442 mem_root = x;
3443
3444 /* Re-establish red-black tree properties. */
3445 mem_insert_fixup (x);
3446
3447 return x;
3448 }
3449
3450
3451 /* Re-establish the red-black properties of the tree, and thereby
3452 balance the tree, after node X has been inserted; X is always red. */
3453
3454 static void
3455 mem_insert_fixup (x)
3456 struct mem_node *x;
3457 {
3458 while (x != mem_root && x->parent->color == MEM_RED)
3459 {
3460 /* X is red and its parent is red. This is a violation of
3461 red-black tree property #3. */
3462
3463 if (x->parent == x->parent->parent->left)
3464 {
3465 /* We're on the left side of our grandparent, and Y is our
3466 "uncle". */
3467 struct mem_node *y = x->parent->parent->right;
3468
3469 if (y->color == MEM_RED)
3470 {
3471 /* Uncle and parent are red but should be black because
3472 X is red. Change the colors accordingly and proceed
3473 with the grandparent. */
3474 x->parent->color = MEM_BLACK;
3475 y->color = MEM_BLACK;
3476 x->parent->parent->color = MEM_RED;
3477 x = x->parent->parent;
3478 }
3479 else
3480 {
3481 /* Parent and uncle have different colors; parent is
3482 red, uncle is black. */
3483 if (x == x->parent->right)
3484 {
3485 x = x->parent;
3486 mem_rotate_left (x);
3487 }
3488
3489 x->parent->color = MEM_BLACK;
3490 x->parent->parent->color = MEM_RED;
3491 mem_rotate_right (x->parent->parent);
3492 }
3493 }
3494 else
3495 {
3496 /* This is the symmetrical case of above. */
3497 struct mem_node *y = x->parent->parent->left;
3498
3499 if (y->color == MEM_RED)
3500 {
3501 x->parent->color = MEM_BLACK;
3502 y->color = MEM_BLACK;
3503 x->parent->parent->color = MEM_RED;
3504 x = x->parent->parent;
3505 }
3506 else
3507 {
3508 if (x == x->parent->left)
3509 {
3510 x = x->parent;
3511 mem_rotate_right (x);
3512 }
3513
3514 x->parent->color = MEM_BLACK;
3515 x->parent->parent->color = MEM_RED;
3516 mem_rotate_left (x->parent->parent);
3517 }
3518 }
3519 }
3520
3521 /* The root may have been changed to red due to the algorithm. Set
3522 it to black so that property #5 is satisfied. */
3523 mem_root->color = MEM_BLACK;
3524 }
3525
3526
3527 /* (x) (y)
3528 / \ / \
3529 a (y) ===> (x) c
3530 / \ / \
3531 b c a b */
3532
3533 static void
3534 mem_rotate_left (x)
3535 struct mem_node *x;
3536 {
3537 struct mem_node *y;
3538
3539 /* Turn y's left sub-tree into x's right sub-tree. */
3540 y = x->right;
3541 x->right = y->left;
3542 if (y->left != MEM_NIL)
3543 y->left->parent = x;
3544
3545 /* Y's parent was x's parent. */
3546 if (y != MEM_NIL)
3547 y->parent = x->parent;
3548
3549 /* Get the parent to point to y instead of x. */
3550 if (x->parent)
3551 {
3552 if (x == x->parent->left)
3553 x->parent->left = y;
3554 else
3555 x->parent->right = y;
3556 }
3557 else
3558 mem_root = y;
3559
3560 /* Put x on y's left. */
3561 y->left = x;
3562 if (x != MEM_NIL)
3563 x->parent = y;
3564 }
3565
3566
3567 /* (x) (Y)
3568 / \ / \
3569 (y) c ===> a (x)
3570 / \ / \
3571 a b b c */
3572
3573 static void
3574 mem_rotate_right (x)
3575 struct mem_node *x;
3576 {
3577 struct mem_node *y = x->left;
3578
3579 x->left = y->right;
3580 if (y->right != MEM_NIL)
3581 y->right->parent = x;
3582
3583 if (y != MEM_NIL)
3584 y->parent = x->parent;
3585 if (x->parent)
3586 {
3587 if (x == x->parent->right)
3588 x->parent->right = y;
3589 else
3590 x->parent->left = y;
3591 }
3592 else
3593 mem_root = y;
3594
3595 y->right = x;
3596 if (x != MEM_NIL)
3597 x->parent = y;
3598 }
3599
3600
3601 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3602
3603 static void
3604 mem_delete (z)
3605 struct mem_node *z;
3606 {
3607 struct mem_node *x, *y;
3608
3609 if (!z || z == MEM_NIL)
3610 return;
3611
3612 if (z->left == MEM_NIL || z->right == MEM_NIL)
3613 y = z;
3614 else
3615 {
3616 y = z->right;
3617 while (y->left != MEM_NIL)
3618 y = y->left;
3619 }
3620
3621 if (y->left != MEM_NIL)
3622 x = y->left;
3623 else
3624 x = y->right;
3625
3626 x->parent = y->parent;
3627 if (y->parent)
3628 {
3629 if (y == y->parent->left)
3630 y->parent->left = x;
3631 else
3632 y->parent->right = x;
3633 }
3634 else
3635 mem_root = x;
3636
3637 if (y != z)
3638 {
3639 z->start = y->start;
3640 z->end = y->end;
3641 z->type = y->type;
3642 }
3643
3644 if (y->color == MEM_BLACK)
3645 mem_delete_fixup (x);
3646
3647 #ifdef GC_MALLOC_CHECK
3648 _free_internal (y);
3649 #else
3650 xfree (y);
3651 #endif
3652 }
3653
3654
3655 /* Re-establish the red-black properties of the tree, after a
3656 deletion. */
3657
3658 static void
3659 mem_delete_fixup (x)
3660 struct mem_node *x;
3661 {
3662 while (x != mem_root && x->color == MEM_BLACK)
3663 {
3664 if (x == x->parent->left)
3665 {
3666 struct mem_node *w = x->parent->right;
3667
3668 if (w->color == MEM_RED)
3669 {
3670 w->color = MEM_BLACK;
3671 x->parent->color = MEM_RED;
3672 mem_rotate_left (x->parent);
3673 w = x->parent->right;
3674 }
3675
3676 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3677 {
3678 w->color = MEM_RED;
3679 x = x->parent;
3680 }
3681 else
3682 {
3683 if (w->right->color == MEM_BLACK)
3684 {
3685 w->left->color = MEM_BLACK;
3686 w->color = MEM_RED;
3687 mem_rotate_right (w);
3688 w = x->parent->right;
3689 }
3690 w->color = x->parent->color;
3691 x->parent->color = MEM_BLACK;
3692 w->right->color = MEM_BLACK;
3693 mem_rotate_left (x->parent);
3694 x = mem_root;
3695 }
3696 }
3697 else
3698 {
3699 struct mem_node *w = x->parent->left;
3700
3701 if (w->color == MEM_RED)
3702 {
3703 w->color = MEM_BLACK;
3704 x->parent->color = MEM_RED;
3705 mem_rotate_right (x->parent);
3706 w = x->parent->left;
3707 }
3708
3709 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3710 {
3711 w->color = MEM_RED;
3712 x = x->parent;
3713 }
3714 else
3715 {
3716 if (w->left->color == MEM_BLACK)
3717 {
3718 w->right->color = MEM_BLACK;
3719 w->color = MEM_RED;
3720 mem_rotate_left (w);
3721 w = x->parent->left;
3722 }
3723
3724 w->color = x->parent->color;
3725 x->parent->color = MEM_BLACK;
3726 w->left->color = MEM_BLACK;
3727 mem_rotate_right (x->parent);
3728 x = mem_root;
3729 }
3730 }
3731 }
3732
3733 x->color = MEM_BLACK;
3734 }
3735
3736
3737 /* Value is non-zero if P is a pointer to a live Lisp string on
3738 the heap. M is a pointer to the mem_block for P. */
3739
3740 static INLINE int
3741 live_string_p (m, p)
3742 struct mem_node *m;
3743 void *p;
3744 {
3745 if (m->type == MEM_TYPE_STRING)
3746 {
3747 struct string_block *b = (struct string_block *) m->start;
3748 int offset = (char *) p - (char *) &b->strings[0];
3749
3750 /* P must point to the start of a Lisp_String structure, and it
3751 must not be on the free-list. */
3752 return (offset >= 0
3753 && offset % sizeof b->strings[0] == 0
3754 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3755 && ((struct Lisp_String *) p)->data != NULL);
3756 }
3757 else
3758 return 0;
3759 }
3760
3761
3762 /* Value is non-zero if P is a pointer to a live Lisp cons on
3763 the heap. M is a pointer to the mem_block for P. */
3764
3765 static INLINE int
3766 live_cons_p (m, p)
3767 struct mem_node *m;
3768 void *p;
3769 {
3770 if (m->type == MEM_TYPE_CONS)
3771 {
3772 struct cons_block *b = (struct cons_block *) m->start;
3773 int offset = (char *) p - (char *) &b->conses[0];
3774
3775 /* P must point to the start of a Lisp_Cons, not be
3776 one of the unused cells in the current cons block,
3777 and not be on the free-list. */
3778 return (offset >= 0
3779 && offset % sizeof b->conses[0] == 0
3780 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3781 && (b != cons_block
3782 || offset / sizeof b->conses[0] < cons_block_index)
3783 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3784 }
3785 else
3786 return 0;
3787 }
3788
3789
3790 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3791 the heap. M is a pointer to the mem_block for P. */
3792
3793 static INLINE int
3794 live_symbol_p (m, p)
3795 struct mem_node *m;
3796 void *p;
3797 {
3798 if (m->type == MEM_TYPE_SYMBOL)
3799 {
3800 struct symbol_block *b = (struct symbol_block *) m->start;
3801 int offset = (char *) p - (char *) &b->symbols[0];
3802
3803 /* P must point to the start of a Lisp_Symbol, not be
3804 one of the unused cells in the current symbol block,
3805 and not be on the free-list. */
3806 return (offset >= 0
3807 && offset % sizeof b->symbols[0] == 0
3808 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3809 && (b != symbol_block
3810 || offset / sizeof b->symbols[0] < symbol_block_index)
3811 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3812 }
3813 else
3814 return 0;
3815 }
3816
3817
3818 /* Value is non-zero if P is a pointer to a live Lisp float on
3819 the heap. M is a pointer to the mem_block for P. */
3820
3821 static INLINE int
3822 live_float_p (m, p)
3823 struct mem_node *m;
3824 void *p;
3825 {
3826 if (m->type == MEM_TYPE_FLOAT)
3827 {
3828 struct float_block *b = (struct float_block *) m->start;
3829 int offset = (char *) p - (char *) &b->floats[0];
3830
3831 /* P must point to the start of a Lisp_Float and not be
3832 one of the unused cells in the current float block. */
3833 return (offset >= 0
3834 && offset % sizeof b->floats[0] == 0
3835 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3836 && (b != float_block
3837 || offset / sizeof b->floats[0] < float_block_index));
3838 }
3839 else
3840 return 0;
3841 }
3842
3843
3844 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3845 the heap. M is a pointer to the mem_block for P. */
3846
3847 static INLINE int
3848 live_misc_p (m, p)
3849 struct mem_node *m;
3850 void *p;
3851 {
3852 if (m->type == MEM_TYPE_MISC)
3853 {
3854 struct marker_block *b = (struct marker_block *) m->start;
3855 int offset = (char *) p - (char *) &b->markers[0];
3856
3857 /* P must point to the start of a Lisp_Misc, not be
3858 one of the unused cells in the current misc block,
3859 and not be on the free-list. */
3860 return (offset >= 0
3861 && offset % sizeof b->markers[0] == 0
3862 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3863 && (b != marker_block
3864 || offset / sizeof b->markers[0] < marker_block_index)
3865 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3866 }
3867 else
3868 return 0;
3869 }
3870
3871
3872 /* Value is non-zero if P is a pointer to a live vector-like object.
3873 M is a pointer to the mem_block for P. */
3874
3875 static INLINE int
3876 live_vector_p (m, p)
3877 struct mem_node *m;
3878 void *p;
3879 {
3880 return (p == m->start
3881 && m->type >= MEM_TYPE_VECTOR
3882 && m->type <= MEM_TYPE_WINDOW);
3883 }
3884
3885
3886 /* Value is non-zero if P is a pointer to a live buffer. M is a
3887 pointer to the mem_block for P. */
3888
3889 static INLINE int
3890 live_buffer_p (m, p)
3891 struct mem_node *m;
3892 void *p;
3893 {
3894 /* P must point to the start of the block, and the buffer
3895 must not have been killed. */
3896 return (m->type == MEM_TYPE_BUFFER
3897 && p == m->start
3898 && !NILP (((struct buffer *) p)->name));
3899 }
3900
3901 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3902
3903 #if GC_MARK_STACK
3904
3905 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3906
3907 /* Array of objects that are kept alive because the C stack contains
3908 a pattern that looks like a reference to them . */
3909
3910 #define MAX_ZOMBIES 10
3911 static Lisp_Object zombies[MAX_ZOMBIES];
3912
3913 /* Number of zombie objects. */
3914
3915 static int nzombies;
3916
3917 /* Number of garbage collections. */
3918
3919 static int ngcs;
3920
3921 /* Average percentage of zombies per collection. */
3922
3923 static double avg_zombies;
3924
3925 /* Max. number of live and zombie objects. */
3926
3927 static int max_live, max_zombies;
3928
3929 /* Average number of live objects per GC. */
3930
3931 static double avg_live;
3932
3933 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3934 doc: /* Show information about live and zombie objects. */)
3935 ()
3936 {
3937 Lisp_Object args[8], zombie_list = Qnil;
3938 int i;
3939 for (i = 0; i < nzombies; i++)
3940 zombie_list = Fcons (zombies[i], zombie_list);
3941 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3942 args[1] = make_number (ngcs);
3943 args[2] = make_float (avg_live);
3944 args[3] = make_float (avg_zombies);
3945 args[4] = make_float (avg_zombies / avg_live / 100);
3946 args[5] = make_number (max_live);
3947 args[6] = make_number (max_zombies);
3948 args[7] = zombie_list;
3949 return Fmessage (8, args);
3950 }
3951
3952 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3953
3954
3955 /* Mark OBJ if we can prove it's a Lisp_Object. */
3956
3957 static INLINE void
3958 mark_maybe_object (obj)
3959 Lisp_Object obj;
3960 {
3961 void *po = (void *) XPNTR (obj);
3962 struct mem_node *m = mem_find (po);
3963
3964 if (m != MEM_NIL)
3965 {
3966 int mark_p = 0;
3967
3968 switch (XGCTYPE (obj))
3969 {
3970 case Lisp_String:
3971 mark_p = (live_string_p (m, po)
3972 && !STRING_MARKED_P ((struct Lisp_String *) po));
3973 break;
3974
3975 case Lisp_Cons:
3976 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3977 break;
3978
3979 case Lisp_Symbol:
3980 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3981 break;
3982
3983 case Lisp_Float:
3984 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3985 break;
3986
3987 case Lisp_Vectorlike:
3988 /* Note: can't check GC_BUFFERP before we know it's a
3989 buffer because checking that dereferences the pointer
3990 PO which might point anywhere. */
3991 if (live_vector_p (m, po))
3992 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3993 else if (live_buffer_p (m, po))
3994 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3995 break;
3996
3997 case Lisp_Misc:
3998 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
3999 break;
4000
4001 case Lisp_Int:
4002 case Lisp_Type_Limit:
4003 break;
4004 }
4005
4006 if (mark_p)
4007 {
4008 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4009 if (nzombies < MAX_ZOMBIES)
4010 zombies[nzombies] = obj;
4011 ++nzombies;
4012 #endif
4013 mark_object (obj);
4014 }
4015 }
4016 }
4017
4018
4019 /* If P points to Lisp data, mark that as live if it isn't already
4020 marked. */
4021
4022 static INLINE void
4023 mark_maybe_pointer (p)
4024 void *p;
4025 {
4026 struct mem_node *m;
4027
4028 /* Quickly rule out some values which can't point to Lisp data. We
4029 assume that Lisp data is aligned on even addresses. */
4030 if ((EMACS_INT) p & 1)
4031 return;
4032
4033 m = mem_find (p);
4034 if (m != MEM_NIL)
4035 {
4036 Lisp_Object obj = Qnil;
4037
4038 switch (m->type)
4039 {
4040 case MEM_TYPE_NON_LISP:
4041 /* Nothing to do; not a pointer to Lisp memory. */
4042 break;
4043
4044 case MEM_TYPE_BUFFER:
4045 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4046 XSETVECTOR (obj, p);
4047 break;
4048
4049 case MEM_TYPE_CONS:
4050 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4051 XSETCONS (obj, p);
4052 break;
4053
4054 case MEM_TYPE_STRING:
4055 if (live_string_p (m, p)
4056 && !STRING_MARKED_P ((struct Lisp_String *) p))
4057 XSETSTRING (obj, p);
4058 break;
4059
4060 case MEM_TYPE_MISC:
4061 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4062 XSETMISC (obj, p);
4063 break;
4064
4065 case MEM_TYPE_SYMBOL:
4066 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4067 XSETSYMBOL (obj, p);
4068 break;
4069
4070 case MEM_TYPE_FLOAT:
4071 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4072 XSETFLOAT (obj, p);
4073 break;
4074
4075 case MEM_TYPE_VECTOR:
4076 case MEM_TYPE_PROCESS:
4077 case MEM_TYPE_HASH_TABLE:
4078 case MEM_TYPE_FRAME:
4079 case MEM_TYPE_WINDOW:
4080 if (live_vector_p (m, p))
4081 {
4082 Lisp_Object tem;
4083 XSETVECTOR (tem, p);
4084 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4085 obj = tem;
4086 }
4087 break;
4088
4089 default:
4090 abort ();
4091 }
4092
4093 if (!GC_NILP (obj))
4094 mark_object (obj);
4095 }
4096 }
4097
4098
4099 /* Mark Lisp objects referenced from the address range START..END. */
4100
4101 static void
4102 mark_memory (start, end)
4103 void *start, *end;
4104 {
4105 Lisp_Object *p;
4106 void **pp;
4107
4108 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4109 nzombies = 0;
4110 #endif
4111
4112 /* Make START the pointer to the start of the memory region,
4113 if it isn't already. */
4114 if (end < start)
4115 {
4116 void *tem = start;
4117 start = end;
4118 end = tem;
4119 }
4120
4121 /* Mark Lisp_Objects. */
4122 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
4123 mark_maybe_object (*p);
4124
4125 /* Mark Lisp data pointed to. This is necessary because, in some
4126 situations, the C compiler optimizes Lisp objects away, so that
4127 only a pointer to them remains. Example:
4128
4129 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4130 ()
4131 {
4132 Lisp_Object obj = build_string ("test");
4133 struct Lisp_String *s = XSTRING (obj);
4134 Fgarbage_collect ();
4135 fprintf (stderr, "test `%s'\n", s->data);
4136 return Qnil;
4137 }
4138
4139 Here, `obj' isn't really used, and the compiler optimizes it
4140 away. The only reference to the life string is through the
4141 pointer `s'. */
4142
4143 for (pp = (void **) start; (void *) pp < end; ++pp)
4144 mark_maybe_pointer (*pp);
4145 }
4146
4147 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4148 the GCC system configuration. In gcc 3.2, the only systems for
4149 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4150 by others?) and ns32k-pc532-min. */
4151
4152 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4153
4154 static int setjmp_tested_p, longjmps_done;
4155
4156 #define SETJMP_WILL_LIKELY_WORK "\
4157 \n\
4158 Emacs garbage collector has been changed to use conservative stack\n\
4159 marking. Emacs has determined that the method it uses to do the\n\
4160 marking will likely work on your system, but this isn't sure.\n\
4161 \n\
4162 If you are a system-programmer, or can get the help of a local wizard\n\
4163 who is, please take a look at the function mark_stack in alloc.c, and\n\
4164 verify that the methods used are appropriate for your system.\n\
4165 \n\
4166 Please mail the result to <emacs-devel@gnu.org>.\n\
4167 "
4168
4169 #define SETJMP_WILL_NOT_WORK "\
4170 \n\
4171 Emacs garbage collector has been changed to use conservative stack\n\
4172 marking. Emacs has determined that the default method it uses to do the\n\
4173 marking will not work on your system. We will need a system-dependent\n\
4174 solution for your system.\n\
4175 \n\
4176 Please take a look at the function mark_stack in alloc.c, and\n\
4177 try to find a way to make it work on your system.\n\
4178 \n\
4179 Note that you may get false negatives, depending on the compiler.\n\
4180 In particular, you need to use -O with GCC for this test.\n\
4181 \n\
4182 Please mail the result to <emacs-devel@gnu.org>.\n\
4183 "
4184
4185
4186 /* Perform a quick check if it looks like setjmp saves registers in a
4187 jmp_buf. Print a message to stderr saying so. When this test
4188 succeeds, this is _not_ a proof that setjmp is sufficient for
4189 conservative stack marking. Only the sources or a disassembly
4190 can prove that. */
4191
4192 static void
4193 test_setjmp ()
4194 {
4195 char buf[10];
4196 register int x;
4197 jmp_buf jbuf;
4198 int result = 0;
4199
4200 /* Arrange for X to be put in a register. */
4201 sprintf (buf, "1");
4202 x = strlen (buf);
4203 x = 2 * x - 1;
4204
4205 setjmp (jbuf);
4206 if (longjmps_done == 1)
4207 {
4208 /* Came here after the longjmp at the end of the function.
4209
4210 If x == 1, the longjmp has restored the register to its
4211 value before the setjmp, and we can hope that setjmp
4212 saves all such registers in the jmp_buf, although that
4213 isn't sure.
4214
4215 For other values of X, either something really strange is
4216 taking place, or the setjmp just didn't save the register. */
4217
4218 if (x == 1)
4219 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4220 else
4221 {
4222 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4223 exit (1);
4224 }
4225 }
4226
4227 ++longjmps_done;
4228 x = 2;
4229 if (longjmps_done == 1)
4230 longjmp (jbuf, 1);
4231 }
4232
4233 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4234
4235
4236 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4237
4238 /* Abort if anything GCPRO'd doesn't survive the GC. */
4239
4240 static void
4241 check_gcpros ()
4242 {
4243 struct gcpro *p;
4244 int i;
4245
4246 for (p = gcprolist; p; p = p->next)
4247 for (i = 0; i < p->nvars; ++i)
4248 if (!survives_gc_p (p->var[i]))
4249 /* FIXME: It's not necessarily a bug. It might just be that the
4250 GCPRO is unnecessary or should release the object sooner. */
4251 abort ();
4252 }
4253
4254 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4255
4256 static void
4257 dump_zombies ()
4258 {
4259 int i;
4260
4261 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4262 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4263 {
4264 fprintf (stderr, " %d = ", i);
4265 debug_print (zombies[i]);
4266 }
4267 }
4268
4269 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4270
4271
4272 /* Mark live Lisp objects on the C stack.
4273
4274 There are several system-dependent problems to consider when
4275 porting this to new architectures:
4276
4277 Processor Registers
4278
4279 We have to mark Lisp objects in CPU registers that can hold local
4280 variables or are used to pass parameters.
4281
4282 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4283 something that either saves relevant registers on the stack, or
4284 calls mark_maybe_object passing it each register's contents.
4285
4286 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4287 implementation assumes that calling setjmp saves registers we need
4288 to see in a jmp_buf which itself lies on the stack. This doesn't
4289 have to be true! It must be verified for each system, possibly
4290 by taking a look at the source code of setjmp.
4291
4292 Stack Layout
4293
4294 Architectures differ in the way their processor stack is organized.
4295 For example, the stack might look like this
4296
4297 +----------------+
4298 | Lisp_Object | size = 4
4299 +----------------+
4300 | something else | size = 2
4301 +----------------+
4302 | Lisp_Object | size = 4
4303 +----------------+
4304 | ... |
4305
4306 In such a case, not every Lisp_Object will be aligned equally. To
4307 find all Lisp_Object on the stack it won't be sufficient to walk
4308 the stack in steps of 4 bytes. Instead, two passes will be
4309 necessary, one starting at the start of the stack, and a second
4310 pass starting at the start of the stack + 2. Likewise, if the
4311 minimal alignment of Lisp_Objects on the stack is 1, four passes
4312 would be necessary, each one starting with one byte more offset
4313 from the stack start.
4314
4315 The current code assumes by default that Lisp_Objects are aligned
4316 equally on the stack. */
4317
4318 static void
4319 mark_stack ()
4320 {
4321 int i;
4322 jmp_buf j;
4323 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4324 void *end;
4325
4326 /* This trick flushes the register windows so that all the state of
4327 the process is contained in the stack. */
4328 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4329 needed on ia64 too. See mach_dep.c, where it also says inline
4330 assembler doesn't work with relevant proprietary compilers. */
4331 #ifdef sparc
4332 asm ("ta 3");
4333 #endif
4334
4335 /* Save registers that we need to see on the stack. We need to see
4336 registers used to hold register variables and registers used to
4337 pass parameters. */
4338 #ifdef GC_SAVE_REGISTERS_ON_STACK
4339 GC_SAVE_REGISTERS_ON_STACK (end);
4340 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4341
4342 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4343 setjmp will definitely work, test it
4344 and print a message with the result
4345 of the test. */
4346 if (!setjmp_tested_p)
4347 {
4348 setjmp_tested_p = 1;
4349 test_setjmp ();
4350 }
4351 #endif /* GC_SETJMP_WORKS */
4352
4353 setjmp (j);
4354 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4355 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4356
4357 /* This assumes that the stack is a contiguous region in memory. If
4358 that's not the case, something has to be done here to iterate
4359 over the stack segments. */
4360 #ifndef GC_LISP_OBJECT_ALIGNMENT
4361 #ifdef __GNUC__
4362 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4363 #else
4364 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4365 #endif
4366 #endif
4367 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4368 mark_memory ((char *) stack_base + i, end);
4369 /* Allow for marking a secondary stack, like the register stack on the
4370 ia64. */
4371 #ifdef GC_MARK_SECONDARY_STACK
4372 GC_MARK_SECONDARY_STACK ();
4373 #endif
4374
4375 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4376 check_gcpros ();
4377 #endif
4378 }
4379
4380
4381 #endif /* GC_MARK_STACK != 0 */
4382
4383
4384 \f
4385 /***********************************************************************
4386 Pure Storage Management
4387 ***********************************************************************/
4388
4389 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4390 pointer to it. TYPE is the Lisp type for which the memory is
4391 allocated. TYPE < 0 means it's not used for a Lisp object.
4392
4393 If store_pure_type_info is set and TYPE is >= 0, the type of
4394 the allocated object is recorded in pure_types. */
4395
4396 static POINTER_TYPE *
4397 pure_alloc (size, type)
4398 size_t size;
4399 int type;
4400 {
4401 POINTER_TYPE *result;
4402 #ifdef USE_LSB_TAG
4403 size_t alignment = (1 << GCTYPEBITS);
4404 #else
4405 size_t alignment = sizeof (EMACS_INT);
4406
4407 /* Give Lisp_Floats an extra alignment. */
4408 if (type == Lisp_Float)
4409 {
4410 #if defined __GNUC__ && __GNUC__ >= 2
4411 alignment = __alignof (struct Lisp_Float);
4412 #else
4413 alignment = sizeof (struct Lisp_Float);
4414 #endif
4415 }
4416 #endif
4417
4418 again:
4419 result = ALIGN (purebeg + pure_bytes_used, alignment);
4420 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4421
4422 if (pure_bytes_used <= pure_size)
4423 return result;
4424
4425 /* Don't allocate a large amount here,
4426 because it might get mmap'd and then its address
4427 might not be usable. */
4428 purebeg = (char *) xmalloc (10000);
4429 pure_size = 10000;
4430 pure_bytes_used_before_overflow += pure_bytes_used - size;
4431 pure_bytes_used = 0;
4432 goto again;
4433 }
4434
4435
4436 /* Print a warning if PURESIZE is too small. */
4437
4438 void
4439 check_pure_size ()
4440 {
4441 if (pure_bytes_used_before_overflow)
4442 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4443 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4444 }
4445
4446
4447 /* Return a string allocated in pure space. DATA is a buffer holding
4448 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4449 non-zero means make the result string multibyte.
4450
4451 Must get an error if pure storage is full, since if it cannot hold
4452 a large string it may be able to hold conses that point to that
4453 string; then the string is not protected from gc. */
4454
4455 Lisp_Object
4456 make_pure_string (data, nchars, nbytes, multibyte)
4457 char *data;
4458 int nchars, nbytes;
4459 int multibyte;
4460 {
4461 Lisp_Object string;
4462 struct Lisp_String *s;
4463
4464 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4465 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4466 s->size = nchars;
4467 s->size_byte = multibyte ? nbytes : -1;
4468 bcopy (data, s->data, nbytes);
4469 s->data[nbytes] = '\0';
4470 s->intervals = NULL_INTERVAL;
4471 XSETSTRING (string, s);
4472 return string;
4473 }
4474
4475
4476 /* Return a cons allocated from pure space. Give it pure copies
4477 of CAR as car and CDR as cdr. */
4478
4479 Lisp_Object
4480 pure_cons (car, cdr)
4481 Lisp_Object car, cdr;
4482 {
4483 register Lisp_Object new;
4484 struct Lisp_Cons *p;
4485
4486 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4487 XSETCONS (new, p);
4488 XSETCAR (new, Fpurecopy (car));
4489 XSETCDR (new, Fpurecopy (cdr));
4490 return new;
4491 }
4492
4493
4494 /* Value is a float object with value NUM allocated from pure space. */
4495
4496 Lisp_Object
4497 make_pure_float (num)
4498 double num;
4499 {
4500 register Lisp_Object new;
4501 struct Lisp_Float *p;
4502
4503 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4504 XSETFLOAT (new, p);
4505 XFLOAT_DATA (new) = num;
4506 return new;
4507 }
4508
4509
4510 /* Return a vector with room for LEN Lisp_Objects allocated from
4511 pure space. */
4512
4513 Lisp_Object
4514 make_pure_vector (len)
4515 EMACS_INT len;
4516 {
4517 Lisp_Object new;
4518 struct Lisp_Vector *p;
4519 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4520
4521 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4522 XSETVECTOR (new, p);
4523 XVECTOR (new)->size = len;
4524 return new;
4525 }
4526
4527
4528 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4529 doc: /* Make a copy of OBJECT in pure storage.
4530 Recursively copies contents of vectors and cons cells.
4531 Does not copy symbols. Copies strings without text properties. */)
4532 (obj)
4533 register Lisp_Object obj;
4534 {
4535 if (NILP (Vpurify_flag))
4536 return obj;
4537
4538 if (PURE_POINTER_P (XPNTR (obj)))
4539 return obj;
4540
4541 if (CONSP (obj))
4542 return pure_cons (XCAR (obj), XCDR (obj));
4543 else if (FLOATP (obj))
4544 return make_pure_float (XFLOAT_DATA (obj));
4545 else if (STRINGP (obj))
4546 return make_pure_string (SDATA (obj), SCHARS (obj),
4547 SBYTES (obj),
4548 STRING_MULTIBYTE (obj));
4549 else if (COMPILEDP (obj) || VECTORP (obj))
4550 {
4551 register struct Lisp_Vector *vec;
4552 register int i;
4553 EMACS_INT size;
4554
4555 size = XVECTOR (obj)->size;
4556 if (size & PSEUDOVECTOR_FLAG)
4557 size &= PSEUDOVECTOR_SIZE_MASK;
4558 vec = XVECTOR (make_pure_vector (size));
4559 for (i = 0; i < size; i++)
4560 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4561 if (COMPILEDP (obj))
4562 XSETCOMPILED (obj, vec);
4563 else
4564 XSETVECTOR (obj, vec);
4565 return obj;
4566 }
4567 else if (MARKERP (obj))
4568 error ("Attempt to copy a marker to pure storage");
4569
4570 return obj;
4571 }
4572
4573
4574 \f
4575 /***********************************************************************
4576 Protection from GC
4577 ***********************************************************************/
4578
4579 /* Put an entry in staticvec, pointing at the variable with address
4580 VARADDRESS. */
4581
4582 void
4583 staticpro (varaddress)
4584 Lisp_Object *varaddress;
4585 {
4586 staticvec[staticidx++] = varaddress;
4587 if (staticidx >= NSTATICS)
4588 abort ();
4589 }
4590
4591 struct catchtag
4592 {
4593 Lisp_Object tag;
4594 Lisp_Object val;
4595 struct catchtag *next;
4596 };
4597
4598 \f
4599 /***********************************************************************
4600 Protection from GC
4601 ***********************************************************************/
4602
4603 /* Temporarily prevent garbage collection. */
4604
4605 int
4606 inhibit_garbage_collection ()
4607 {
4608 int count = SPECPDL_INDEX ();
4609 int nbits = min (VALBITS, BITS_PER_INT);
4610
4611 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4612 return count;
4613 }
4614
4615
4616 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4617 doc: /* Reclaim storage for Lisp objects no longer needed.
4618 Garbage collection happens automatically if you cons more than
4619 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4620 `garbage-collect' normally returns a list with info on amount of space in use:
4621 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4622 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4623 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4624 (USED-STRINGS . FREE-STRINGS))
4625 However, if there was overflow in pure space, `garbage-collect'
4626 returns nil, because real GC can't be done. */)
4627 ()
4628 {
4629 register struct specbinding *bind;
4630 struct catchtag *catch;
4631 struct handler *handler;
4632 char stack_top_variable;
4633 register int i;
4634 int message_p;
4635 Lisp_Object total[8];
4636 int count = SPECPDL_INDEX ();
4637 EMACS_TIME t1, t2, t3;
4638
4639 if (abort_on_gc)
4640 abort ();
4641
4642 /* Can't GC if pure storage overflowed because we can't determine
4643 if something is a pure object or not. */
4644 if (pure_bytes_used_before_overflow)
4645 return Qnil;
4646
4647 CHECK_CONS_LIST ();
4648
4649 /* Don't keep undo information around forever.
4650 Do this early on, so it is no problem if the user quits. */
4651 {
4652 register struct buffer *nextb = all_buffers;
4653
4654 while (nextb)
4655 {
4656 /* If a buffer's undo list is Qt, that means that undo is
4657 turned off in that buffer. Calling truncate_undo_list on
4658 Qt tends to return NULL, which effectively turns undo back on.
4659 So don't call truncate_undo_list if undo_list is Qt. */
4660 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
4661 truncate_undo_list (nextb);
4662
4663 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4664 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4665 {
4666 /* If a buffer's gap size is more than 10% of the buffer
4667 size, or larger than 2000 bytes, then shrink it
4668 accordingly. Keep a minimum size of 20 bytes. */
4669 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4670
4671 if (nextb->text->gap_size > size)
4672 {
4673 struct buffer *save_current = current_buffer;
4674 current_buffer = nextb;
4675 make_gap (-(nextb->text->gap_size - size));
4676 current_buffer = save_current;
4677 }
4678 }
4679
4680 nextb = nextb->next;
4681 }
4682 }
4683
4684 EMACS_GET_TIME (t1);
4685
4686 /* In case user calls debug_print during GC,
4687 don't let that cause a recursive GC. */
4688 consing_since_gc = 0;
4689
4690 /* Save what's currently displayed in the echo area. */
4691 message_p = push_message ();
4692 record_unwind_protect (pop_message_unwind, Qnil);
4693
4694 /* Save a copy of the contents of the stack, for debugging. */
4695 #if MAX_SAVE_STACK > 0
4696 if (NILP (Vpurify_flag))
4697 {
4698 i = &stack_top_variable - stack_bottom;
4699 if (i < 0) i = -i;
4700 if (i < MAX_SAVE_STACK)
4701 {
4702 if (stack_copy == 0)
4703 stack_copy = (char *) xmalloc (stack_copy_size = i);
4704 else if (stack_copy_size < i)
4705 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4706 if (stack_copy)
4707 {
4708 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4709 bcopy (stack_bottom, stack_copy, i);
4710 else
4711 bcopy (&stack_top_variable, stack_copy, i);
4712 }
4713 }
4714 }
4715 #endif /* MAX_SAVE_STACK > 0 */
4716
4717 if (garbage_collection_messages)
4718 message1_nolog ("Garbage collecting...");
4719
4720 BLOCK_INPUT;
4721
4722 shrink_regexp_cache ();
4723
4724 gc_in_progress = 1;
4725
4726 /* clear_marks (); */
4727
4728 /* Mark all the special slots that serve as the roots of accessibility. */
4729
4730 for (i = 0; i < staticidx; i++)
4731 mark_object (*staticvec[i]);
4732
4733 for (bind = specpdl; bind != specpdl_ptr; bind++)
4734 {
4735 mark_object (bind->symbol);
4736 mark_object (bind->old_value);
4737 }
4738 mark_kboards ();
4739
4740 #ifdef USE_GTK
4741 {
4742 extern void xg_mark_data ();
4743 xg_mark_data ();
4744 }
4745 #endif
4746
4747 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4748 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4749 mark_stack ();
4750 #else
4751 {
4752 register struct gcpro *tail;
4753 for (tail = gcprolist; tail; tail = tail->next)
4754 for (i = 0; i < tail->nvars; i++)
4755 mark_object (tail->var[i]);
4756 }
4757 #endif
4758
4759 mark_byte_stack ();
4760 for (catch = catchlist; catch; catch = catch->next)
4761 {
4762 mark_object (catch->tag);
4763 mark_object (catch->val);
4764 }
4765 for (handler = handlerlist; handler; handler = handler->next)
4766 {
4767 mark_object (handler->handler);
4768 mark_object (handler->var);
4769 }
4770 mark_backtrace ();
4771
4772 #ifdef HAVE_WINDOW_SYSTEM
4773 mark_fringe_data ();
4774 #endif
4775
4776 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4777 mark_stack ();
4778 #endif
4779
4780 /* Everything is now marked, except for the things that require special
4781 finalization, i.e. the undo_list.
4782 Look thru every buffer's undo list
4783 for elements that update markers that were not marked,
4784 and delete them. */
4785 {
4786 register struct buffer *nextb = all_buffers;
4787
4788 while (nextb)
4789 {
4790 /* If a buffer's undo list is Qt, that means that undo is
4791 turned off in that buffer. Calling truncate_undo_list on
4792 Qt tends to return NULL, which effectively turns undo back on.
4793 So don't call truncate_undo_list if undo_list is Qt. */
4794 if (! EQ (nextb->undo_list, Qt))
4795 {
4796 Lisp_Object tail, prev;
4797 tail = nextb->undo_list;
4798 prev = Qnil;
4799 while (CONSP (tail))
4800 {
4801 if (GC_CONSP (XCAR (tail))
4802 && GC_MARKERP (XCAR (XCAR (tail)))
4803 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4804 {
4805 if (NILP (prev))
4806 nextb->undo_list = tail = XCDR (tail);
4807 else
4808 {
4809 tail = XCDR (tail);
4810 XSETCDR (prev, tail);
4811 }
4812 }
4813 else
4814 {
4815 prev = tail;
4816 tail = XCDR (tail);
4817 }
4818 }
4819 }
4820 /* Now that we have stripped the elements that need not be in the
4821 undo_list any more, we can finally mark the list. */
4822 mark_object (nextb->undo_list);
4823
4824 nextb = nextb->next;
4825 }
4826 }
4827
4828 gc_sweep ();
4829
4830 /* Clear the mark bits that we set in certain root slots. */
4831
4832 unmark_byte_stack ();
4833 VECTOR_UNMARK (&buffer_defaults);
4834 VECTOR_UNMARK (&buffer_local_symbols);
4835
4836 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4837 dump_zombies ();
4838 #endif
4839
4840 UNBLOCK_INPUT;
4841
4842 CHECK_CONS_LIST ();
4843
4844 /* clear_marks (); */
4845 gc_in_progress = 0;
4846
4847 consing_since_gc = 0;
4848 if (gc_cons_threshold < 10000)
4849 gc_cons_threshold = 10000;
4850
4851 if (garbage_collection_messages)
4852 {
4853 if (message_p || minibuf_level > 0)
4854 restore_message ();
4855 else
4856 message1_nolog ("Garbage collecting...done");
4857 }
4858
4859 unbind_to (count, Qnil);
4860
4861 total[0] = Fcons (make_number (total_conses),
4862 make_number (total_free_conses));
4863 total[1] = Fcons (make_number (total_symbols),
4864 make_number (total_free_symbols));
4865 total[2] = Fcons (make_number (total_markers),
4866 make_number (total_free_markers));
4867 total[3] = make_number (total_string_size);
4868 total[4] = make_number (total_vector_size);
4869 total[5] = Fcons (make_number (total_floats),
4870 make_number (total_free_floats));
4871 total[6] = Fcons (make_number (total_intervals),
4872 make_number (total_free_intervals));
4873 total[7] = Fcons (make_number (total_strings),
4874 make_number (total_free_strings));
4875
4876 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4877 {
4878 /* Compute average percentage of zombies. */
4879 double nlive = 0;
4880
4881 for (i = 0; i < 7; ++i)
4882 if (CONSP (total[i]))
4883 nlive += XFASTINT (XCAR (total[i]));
4884
4885 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4886 max_live = max (nlive, max_live);
4887 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4888 max_zombies = max (nzombies, max_zombies);
4889 ++ngcs;
4890 }
4891 #endif
4892
4893 if (!NILP (Vpost_gc_hook))
4894 {
4895 int count = inhibit_garbage_collection ();
4896 safe_run_hooks (Qpost_gc_hook);
4897 unbind_to (count, Qnil);
4898 }
4899
4900 /* Accumulate statistics. */
4901 EMACS_GET_TIME (t2);
4902 EMACS_SUB_TIME (t3, t2, t1);
4903 if (FLOATP (Vgc_elapsed))
4904 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4905 EMACS_SECS (t3) +
4906 EMACS_USECS (t3) * 1.0e-6);
4907 gcs_done++;
4908
4909 return Flist (sizeof total / sizeof *total, total);
4910 }
4911
4912
4913 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4914 only interesting objects referenced from glyphs are strings. */
4915
4916 static void
4917 mark_glyph_matrix (matrix)
4918 struct glyph_matrix *matrix;
4919 {
4920 struct glyph_row *row = matrix->rows;
4921 struct glyph_row *end = row + matrix->nrows;
4922
4923 for (; row < end; ++row)
4924 if (row->enabled_p)
4925 {
4926 int area;
4927 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4928 {
4929 struct glyph *glyph = row->glyphs[area];
4930 struct glyph *end_glyph = glyph + row->used[area];
4931
4932 for (; glyph < end_glyph; ++glyph)
4933 if (GC_STRINGP (glyph->object)
4934 && !STRING_MARKED_P (XSTRING (glyph->object)))
4935 mark_object (glyph->object);
4936 }
4937 }
4938 }
4939
4940
4941 /* Mark Lisp faces in the face cache C. */
4942
4943 static void
4944 mark_face_cache (c)
4945 struct face_cache *c;
4946 {
4947 if (c)
4948 {
4949 int i, j;
4950 for (i = 0; i < c->used; ++i)
4951 {
4952 struct face *face = FACE_FROM_ID (c->f, i);
4953
4954 if (face)
4955 {
4956 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4957 mark_object (face->lface[j]);
4958 }
4959 }
4960 }
4961 }
4962
4963
4964 #ifdef HAVE_WINDOW_SYSTEM
4965
4966 /* Mark Lisp objects in image IMG. */
4967
4968 static void
4969 mark_image (img)
4970 struct image *img;
4971 {
4972 mark_object (img->spec);
4973
4974 if (!NILP (img->data.lisp_val))
4975 mark_object (img->data.lisp_val);
4976 }
4977
4978
4979 /* Mark Lisp objects in image cache of frame F. It's done this way so
4980 that we don't have to include xterm.h here. */
4981
4982 static void
4983 mark_image_cache (f)
4984 struct frame *f;
4985 {
4986 forall_images_in_image_cache (f, mark_image);
4987 }
4988
4989 #endif /* HAVE_X_WINDOWS */
4990
4991
4992 \f
4993 /* Mark reference to a Lisp_Object.
4994 If the object referred to has not been seen yet, recursively mark
4995 all the references contained in it. */
4996
4997 #define LAST_MARKED_SIZE 500
4998 Lisp_Object last_marked[LAST_MARKED_SIZE];
4999 int last_marked_index;
5000
5001 /* For debugging--call abort when we cdr down this many
5002 links of a list, in mark_object. In debugging,
5003 the call to abort will hit a breakpoint.
5004 Normally this is zero and the check never goes off. */
5005 int mark_object_loop_halt;
5006
5007 void
5008 mark_object (arg)
5009 Lisp_Object arg;
5010 {
5011 register Lisp_Object obj = arg;
5012 #ifdef GC_CHECK_MARKED_OBJECTS
5013 void *po;
5014 struct mem_node *m;
5015 #endif
5016 int cdr_count = 0;
5017
5018 loop:
5019
5020 if (PURE_POINTER_P (XPNTR (obj)))
5021 return;
5022
5023 last_marked[last_marked_index++] = obj;
5024 if (last_marked_index == LAST_MARKED_SIZE)
5025 last_marked_index = 0;
5026
5027 /* Perform some sanity checks on the objects marked here. Abort if
5028 we encounter an object we know is bogus. This increases GC time
5029 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5030 #ifdef GC_CHECK_MARKED_OBJECTS
5031
5032 po = (void *) XPNTR (obj);
5033
5034 /* Check that the object pointed to by PO is known to be a Lisp
5035 structure allocated from the heap. */
5036 #define CHECK_ALLOCATED() \
5037 do { \
5038 m = mem_find (po); \
5039 if (m == MEM_NIL) \
5040 abort (); \
5041 } while (0)
5042
5043 /* Check that the object pointed to by PO is live, using predicate
5044 function LIVEP. */
5045 #define CHECK_LIVE(LIVEP) \
5046 do { \
5047 if (!LIVEP (m, po)) \
5048 abort (); \
5049 } while (0)
5050
5051 /* Check both of the above conditions. */
5052 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5053 do { \
5054 CHECK_ALLOCATED (); \
5055 CHECK_LIVE (LIVEP); \
5056 } while (0) \
5057
5058 #else /* not GC_CHECK_MARKED_OBJECTS */
5059
5060 #define CHECK_ALLOCATED() (void) 0
5061 #define CHECK_LIVE(LIVEP) (void) 0
5062 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5063
5064 #endif /* not GC_CHECK_MARKED_OBJECTS */
5065
5066 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
5067 {
5068 case Lisp_String:
5069 {
5070 register struct Lisp_String *ptr = XSTRING (obj);
5071 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5072 MARK_INTERVAL_TREE (ptr->intervals);
5073 MARK_STRING (ptr);
5074 #ifdef GC_CHECK_STRING_BYTES
5075 /* Check that the string size recorded in the string is the
5076 same as the one recorded in the sdata structure. */
5077 CHECK_STRING_BYTES (ptr);
5078 #endif /* GC_CHECK_STRING_BYTES */
5079 }
5080 break;
5081
5082 case Lisp_Vectorlike:
5083 #ifdef GC_CHECK_MARKED_OBJECTS
5084 m = mem_find (po);
5085 if (m == MEM_NIL && !GC_SUBRP (obj)
5086 && po != &buffer_defaults
5087 && po != &buffer_local_symbols)
5088 abort ();
5089 #endif /* GC_CHECK_MARKED_OBJECTS */
5090
5091 if (GC_BUFFERP (obj))
5092 {
5093 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5094 {
5095 #ifdef GC_CHECK_MARKED_OBJECTS
5096 if (po != &buffer_defaults && po != &buffer_local_symbols)
5097 {
5098 struct buffer *b;
5099 for (b = all_buffers; b && b != po; b = b->next)
5100 ;
5101 if (b == NULL)
5102 abort ();
5103 }
5104 #endif /* GC_CHECK_MARKED_OBJECTS */
5105 mark_buffer (obj);
5106 }
5107 }
5108 else if (GC_SUBRP (obj))
5109 break;
5110 else if (GC_COMPILEDP (obj))
5111 /* We could treat this just like a vector, but it is better to
5112 save the COMPILED_CONSTANTS element for last and avoid
5113 recursion there. */
5114 {
5115 register struct Lisp_Vector *ptr = XVECTOR (obj);
5116 register EMACS_INT size = ptr->size;
5117 register int i;
5118
5119 if (VECTOR_MARKED_P (ptr))
5120 break; /* Already marked */
5121
5122 CHECK_LIVE (live_vector_p);
5123 VECTOR_MARK (ptr); /* Else mark it */
5124 size &= PSEUDOVECTOR_SIZE_MASK;
5125 for (i = 0; i < size; i++) /* and then mark its elements */
5126 {
5127 if (i != COMPILED_CONSTANTS)
5128 mark_object (ptr->contents[i]);
5129 }
5130 obj = ptr->contents[COMPILED_CONSTANTS];
5131 goto loop;
5132 }
5133 else if (GC_FRAMEP (obj))
5134 {
5135 register struct frame *ptr = XFRAME (obj);
5136
5137 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5138 VECTOR_MARK (ptr); /* Else mark it */
5139
5140 CHECK_LIVE (live_vector_p);
5141 mark_object (ptr->name);
5142 mark_object (ptr->icon_name);
5143 mark_object (ptr->title);
5144 mark_object (ptr->focus_frame);
5145 mark_object (ptr->selected_window);
5146 mark_object (ptr->minibuffer_window);
5147 mark_object (ptr->param_alist);
5148 mark_object (ptr->scroll_bars);
5149 mark_object (ptr->condemned_scroll_bars);
5150 mark_object (ptr->menu_bar_items);
5151 mark_object (ptr->face_alist);
5152 mark_object (ptr->menu_bar_vector);
5153 mark_object (ptr->buffer_predicate);
5154 mark_object (ptr->buffer_list);
5155 mark_object (ptr->menu_bar_window);
5156 mark_object (ptr->tool_bar_window);
5157 mark_face_cache (ptr->face_cache);
5158 #ifdef HAVE_WINDOW_SYSTEM
5159 mark_image_cache (ptr);
5160 mark_object (ptr->tool_bar_items);
5161 mark_object (ptr->desired_tool_bar_string);
5162 mark_object (ptr->current_tool_bar_string);
5163 #endif /* HAVE_WINDOW_SYSTEM */
5164 }
5165 else if (GC_BOOL_VECTOR_P (obj))
5166 {
5167 register struct Lisp_Vector *ptr = XVECTOR (obj);
5168
5169 if (VECTOR_MARKED_P (ptr))
5170 break; /* Already marked */
5171 CHECK_LIVE (live_vector_p);
5172 VECTOR_MARK (ptr); /* Else mark it */
5173 }
5174 else if (GC_WINDOWP (obj))
5175 {
5176 register struct Lisp_Vector *ptr = XVECTOR (obj);
5177 struct window *w = XWINDOW (obj);
5178 register int i;
5179
5180 /* Stop if already marked. */
5181 if (VECTOR_MARKED_P (ptr))
5182 break;
5183
5184 /* Mark it. */
5185 CHECK_LIVE (live_vector_p);
5186 VECTOR_MARK (ptr);
5187
5188 /* There is no Lisp data above The member CURRENT_MATRIX in
5189 struct WINDOW. Stop marking when that slot is reached. */
5190 for (i = 0;
5191 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
5192 i++)
5193 mark_object (ptr->contents[i]);
5194
5195 /* Mark glyphs for leaf windows. Marking window matrices is
5196 sufficient because frame matrices use the same glyph
5197 memory. */
5198 if (NILP (w->hchild)
5199 && NILP (w->vchild)
5200 && w->current_matrix)
5201 {
5202 mark_glyph_matrix (w->current_matrix);
5203 mark_glyph_matrix (w->desired_matrix);
5204 }
5205 }
5206 else if (GC_HASH_TABLE_P (obj))
5207 {
5208 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5209
5210 /* Stop if already marked. */
5211 if (VECTOR_MARKED_P (h))
5212 break;
5213
5214 /* Mark it. */
5215 CHECK_LIVE (live_vector_p);
5216 VECTOR_MARK (h);
5217
5218 /* Mark contents. */
5219 /* Do not mark next_free or next_weak.
5220 Being in the next_weak chain
5221 should not keep the hash table alive.
5222 No need to mark `count' since it is an integer. */
5223 mark_object (h->test);
5224 mark_object (h->weak);
5225 mark_object (h->rehash_size);
5226 mark_object (h->rehash_threshold);
5227 mark_object (h->hash);
5228 mark_object (h->next);
5229 mark_object (h->index);
5230 mark_object (h->user_hash_function);
5231 mark_object (h->user_cmp_function);
5232
5233 /* If hash table is not weak, mark all keys and values.
5234 For weak tables, mark only the vector. */
5235 if (GC_NILP (h->weak))
5236 mark_object (h->key_and_value);
5237 else
5238 VECTOR_MARK (XVECTOR (h->key_and_value));
5239 }
5240 else
5241 {
5242 register struct Lisp_Vector *ptr = XVECTOR (obj);
5243 register EMACS_INT size = ptr->size;
5244 register int i;
5245
5246 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5247 CHECK_LIVE (live_vector_p);
5248 VECTOR_MARK (ptr); /* Else mark it */
5249 if (size & PSEUDOVECTOR_FLAG)
5250 size &= PSEUDOVECTOR_SIZE_MASK;
5251
5252 for (i = 0; i < size; i++) /* and then mark its elements */
5253 mark_object (ptr->contents[i]);
5254 }
5255 break;
5256
5257 case Lisp_Symbol:
5258 {
5259 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5260 struct Lisp_Symbol *ptrx;
5261
5262 if (ptr->gcmarkbit) break;
5263 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5264 ptr->gcmarkbit = 1;
5265 mark_object (ptr->value);
5266 mark_object (ptr->function);
5267 mark_object (ptr->plist);
5268
5269 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5270 MARK_STRING (XSTRING (ptr->xname));
5271 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5272
5273 /* Note that we do not mark the obarray of the symbol.
5274 It is safe not to do so because nothing accesses that
5275 slot except to check whether it is nil. */
5276 ptr = ptr->next;
5277 if (ptr)
5278 {
5279 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5280 XSETSYMBOL (obj, ptrx);
5281 goto loop;
5282 }
5283 }
5284 break;
5285
5286 case Lisp_Misc:
5287 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5288 if (XMARKER (obj)->gcmarkbit)
5289 break;
5290 XMARKER (obj)->gcmarkbit = 1;
5291
5292 switch (XMISCTYPE (obj))
5293 {
5294 case Lisp_Misc_Buffer_Local_Value:
5295 case Lisp_Misc_Some_Buffer_Local_Value:
5296 {
5297 register struct Lisp_Buffer_Local_Value *ptr
5298 = XBUFFER_LOCAL_VALUE (obj);
5299 /* If the cdr is nil, avoid recursion for the car. */
5300 if (EQ (ptr->cdr, Qnil))
5301 {
5302 obj = ptr->realvalue;
5303 goto loop;
5304 }
5305 mark_object (ptr->realvalue);
5306 mark_object (ptr->buffer);
5307 mark_object (ptr->frame);
5308 obj = ptr->cdr;
5309 goto loop;
5310 }
5311
5312 case Lisp_Misc_Marker:
5313 /* DO NOT mark thru the marker's chain.
5314 The buffer's markers chain does not preserve markers from gc;
5315 instead, markers are removed from the chain when freed by gc. */
5316 break;
5317
5318 case Lisp_Misc_Intfwd:
5319 case Lisp_Misc_Boolfwd:
5320 case Lisp_Misc_Objfwd:
5321 case Lisp_Misc_Buffer_Objfwd:
5322 case Lisp_Misc_Kboard_Objfwd:
5323 /* Don't bother with Lisp_Buffer_Objfwd,
5324 since all markable slots in current buffer marked anyway. */
5325 /* Don't need to do Lisp_Objfwd, since the places they point
5326 are protected with staticpro. */
5327 break;
5328
5329 case Lisp_Misc_Save_Value:
5330 #if GC_MARK_STACK
5331 {
5332 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5333 /* If DOGC is set, POINTER is the address of a memory
5334 area containing INTEGER potential Lisp_Objects. */
5335 if (ptr->dogc)
5336 {
5337 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5338 int nelt;
5339 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5340 mark_maybe_object (*p);
5341 }
5342 }
5343 #endif
5344 break;
5345
5346 case Lisp_Misc_Overlay:
5347 {
5348 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5349 mark_object (ptr->start);
5350 mark_object (ptr->end);
5351 mark_object (ptr->plist);
5352 if (ptr->next)
5353 {
5354 XSETMISC (obj, ptr->next);
5355 goto loop;
5356 }
5357 }
5358 break;
5359
5360 default:
5361 abort ();
5362 }
5363 break;
5364
5365 case Lisp_Cons:
5366 {
5367 register struct Lisp_Cons *ptr = XCONS (obj);
5368 if (CONS_MARKED_P (ptr)) break;
5369 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5370 CONS_MARK (ptr);
5371 /* If the cdr is nil, avoid recursion for the car. */
5372 if (EQ (ptr->cdr, Qnil))
5373 {
5374 obj = ptr->car;
5375 cdr_count = 0;
5376 goto loop;
5377 }
5378 mark_object (ptr->car);
5379 obj = ptr->cdr;
5380 cdr_count++;
5381 if (cdr_count == mark_object_loop_halt)
5382 abort ();
5383 goto loop;
5384 }
5385
5386 case Lisp_Float:
5387 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5388 FLOAT_MARK (XFLOAT (obj));
5389 break;
5390
5391 case Lisp_Int:
5392 break;
5393
5394 default:
5395 abort ();
5396 }
5397
5398 #undef CHECK_LIVE
5399 #undef CHECK_ALLOCATED
5400 #undef CHECK_ALLOCATED_AND_LIVE
5401 }
5402
5403 /* Mark the pointers in a buffer structure. */
5404
5405 static void
5406 mark_buffer (buf)
5407 Lisp_Object buf;
5408 {
5409 register struct buffer *buffer = XBUFFER (buf);
5410 register Lisp_Object *ptr, tmp;
5411 Lisp_Object base_buffer;
5412
5413 VECTOR_MARK (buffer);
5414
5415 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5416
5417 /* For now, we just don't mark the undo_list. It's done later in
5418 a special way just before the sweep phase, and after stripping
5419 some of its elements that are not needed any more. */
5420
5421 if (buffer->overlays_before)
5422 {
5423 XSETMISC (tmp, buffer->overlays_before);
5424 mark_object (tmp);
5425 }
5426 if (buffer->overlays_after)
5427 {
5428 XSETMISC (tmp, buffer->overlays_after);
5429 mark_object (tmp);
5430 }
5431
5432 for (ptr = &buffer->name;
5433 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5434 ptr++)
5435 mark_object (*ptr);
5436
5437 /* If this is an indirect buffer, mark its base buffer. */
5438 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5439 {
5440 XSETBUFFER (base_buffer, buffer->base_buffer);
5441 mark_buffer (base_buffer);
5442 }
5443 }
5444
5445
5446 /* Value is non-zero if OBJ will survive the current GC because it's
5447 either marked or does not need to be marked to survive. */
5448
5449 int
5450 survives_gc_p (obj)
5451 Lisp_Object obj;
5452 {
5453 int survives_p;
5454
5455 switch (XGCTYPE (obj))
5456 {
5457 case Lisp_Int:
5458 survives_p = 1;
5459 break;
5460
5461 case Lisp_Symbol:
5462 survives_p = XSYMBOL (obj)->gcmarkbit;
5463 break;
5464
5465 case Lisp_Misc:
5466 survives_p = XMARKER (obj)->gcmarkbit;
5467 break;
5468
5469 case Lisp_String:
5470 survives_p = STRING_MARKED_P (XSTRING (obj));
5471 break;
5472
5473 case Lisp_Vectorlike:
5474 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5475 break;
5476
5477 case Lisp_Cons:
5478 survives_p = CONS_MARKED_P (XCONS (obj));
5479 break;
5480
5481 case Lisp_Float:
5482 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5483 break;
5484
5485 default:
5486 abort ();
5487 }
5488
5489 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5490 }
5491
5492
5493 \f
5494 /* Sweep: find all structures not marked, and free them. */
5495
5496 static void
5497 gc_sweep ()
5498 {
5499 /* Remove or mark entries in weak hash tables.
5500 This must be done before any object is unmarked. */
5501 sweep_weak_hash_tables ();
5502
5503 sweep_strings ();
5504 #ifdef GC_CHECK_STRING_BYTES
5505 if (!noninteractive)
5506 check_string_bytes (1);
5507 #endif
5508
5509 /* Put all unmarked conses on free list */
5510 {
5511 register struct cons_block *cblk;
5512 struct cons_block **cprev = &cons_block;
5513 register int lim = cons_block_index;
5514 register int num_free = 0, num_used = 0;
5515
5516 cons_free_list = 0;
5517
5518 for (cblk = cons_block; cblk; cblk = *cprev)
5519 {
5520 register int i;
5521 int this_free = 0;
5522 for (i = 0; i < lim; i++)
5523 if (!CONS_MARKED_P (&cblk->conses[i]))
5524 {
5525 this_free++;
5526 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5527 cons_free_list = &cblk->conses[i];
5528 #if GC_MARK_STACK
5529 cons_free_list->car = Vdead;
5530 #endif
5531 }
5532 else
5533 {
5534 num_used++;
5535 CONS_UNMARK (&cblk->conses[i]);
5536 }
5537 lim = CONS_BLOCK_SIZE;
5538 /* If this block contains only free conses and we have already
5539 seen more than two blocks worth of free conses then deallocate
5540 this block. */
5541 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5542 {
5543 *cprev = cblk->next;
5544 /* Unhook from the free list. */
5545 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5546 lisp_align_free (cblk);
5547 n_cons_blocks--;
5548 }
5549 else
5550 {
5551 num_free += this_free;
5552 cprev = &cblk->next;
5553 }
5554 }
5555 total_conses = num_used;
5556 total_free_conses = num_free;
5557 }
5558
5559 /* Put all unmarked floats on free list */
5560 {
5561 register struct float_block *fblk;
5562 struct float_block **fprev = &float_block;
5563 register int lim = float_block_index;
5564 register int num_free = 0, num_used = 0;
5565
5566 float_free_list = 0;
5567
5568 for (fblk = float_block; fblk; fblk = *fprev)
5569 {
5570 register int i;
5571 int this_free = 0;
5572 for (i = 0; i < lim; i++)
5573 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5574 {
5575 this_free++;
5576 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5577 float_free_list = &fblk->floats[i];
5578 }
5579 else
5580 {
5581 num_used++;
5582 FLOAT_UNMARK (&fblk->floats[i]);
5583 }
5584 lim = FLOAT_BLOCK_SIZE;
5585 /* If this block contains only free floats and we have already
5586 seen more than two blocks worth of free floats then deallocate
5587 this block. */
5588 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5589 {
5590 *fprev = fblk->next;
5591 /* Unhook from the free list. */
5592 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5593 lisp_align_free (fblk);
5594 n_float_blocks--;
5595 }
5596 else
5597 {
5598 num_free += this_free;
5599 fprev = &fblk->next;
5600 }
5601 }
5602 total_floats = num_used;
5603 total_free_floats = num_free;
5604 }
5605
5606 /* Put all unmarked intervals on free list */
5607 {
5608 register struct interval_block *iblk;
5609 struct interval_block **iprev = &interval_block;
5610 register int lim = interval_block_index;
5611 register int num_free = 0, num_used = 0;
5612
5613 interval_free_list = 0;
5614
5615 for (iblk = interval_block; iblk; iblk = *iprev)
5616 {
5617 register int i;
5618 int this_free = 0;
5619
5620 for (i = 0; i < lim; i++)
5621 {
5622 if (!iblk->intervals[i].gcmarkbit)
5623 {
5624 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5625 interval_free_list = &iblk->intervals[i];
5626 this_free++;
5627 }
5628 else
5629 {
5630 num_used++;
5631 iblk->intervals[i].gcmarkbit = 0;
5632 }
5633 }
5634 lim = INTERVAL_BLOCK_SIZE;
5635 /* If this block contains only free intervals and we have already
5636 seen more than two blocks worth of free intervals then
5637 deallocate this block. */
5638 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5639 {
5640 *iprev = iblk->next;
5641 /* Unhook from the free list. */
5642 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5643 lisp_free (iblk);
5644 n_interval_blocks--;
5645 }
5646 else
5647 {
5648 num_free += this_free;
5649 iprev = &iblk->next;
5650 }
5651 }
5652 total_intervals = num_used;
5653 total_free_intervals = num_free;
5654 }
5655
5656 /* Put all unmarked symbols on free list */
5657 {
5658 register struct symbol_block *sblk;
5659 struct symbol_block **sprev = &symbol_block;
5660 register int lim = symbol_block_index;
5661 register int num_free = 0, num_used = 0;
5662
5663 symbol_free_list = NULL;
5664
5665 for (sblk = symbol_block; sblk; sblk = *sprev)
5666 {
5667 int this_free = 0;
5668 struct Lisp_Symbol *sym = sblk->symbols;
5669 struct Lisp_Symbol *end = sym + lim;
5670
5671 for (; sym < end; ++sym)
5672 {
5673 /* Check if the symbol was created during loadup. In such a case
5674 it might be pointed to by pure bytecode which we don't trace,
5675 so we conservatively assume that it is live. */
5676 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5677
5678 if (!sym->gcmarkbit && !pure_p)
5679 {
5680 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5681 symbol_free_list = sym;
5682 #if GC_MARK_STACK
5683 symbol_free_list->function = Vdead;
5684 #endif
5685 ++this_free;
5686 }
5687 else
5688 {
5689 ++num_used;
5690 if (!pure_p)
5691 UNMARK_STRING (XSTRING (sym->xname));
5692 sym->gcmarkbit = 0;
5693 }
5694 }
5695
5696 lim = SYMBOL_BLOCK_SIZE;
5697 /* If this block contains only free symbols and we have already
5698 seen more than two blocks worth of free symbols then deallocate
5699 this block. */
5700 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5701 {
5702 *sprev = sblk->next;
5703 /* Unhook from the free list. */
5704 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5705 lisp_free (sblk);
5706 n_symbol_blocks--;
5707 }
5708 else
5709 {
5710 num_free += this_free;
5711 sprev = &sblk->next;
5712 }
5713 }
5714 total_symbols = num_used;
5715 total_free_symbols = num_free;
5716 }
5717
5718 /* Put all unmarked misc's on free list.
5719 For a marker, first unchain it from the buffer it points into. */
5720 {
5721 register struct marker_block *mblk;
5722 struct marker_block **mprev = &marker_block;
5723 register int lim = marker_block_index;
5724 register int num_free = 0, num_used = 0;
5725
5726 marker_free_list = 0;
5727
5728 for (mblk = marker_block; mblk; mblk = *mprev)
5729 {
5730 register int i;
5731 int this_free = 0;
5732
5733 for (i = 0; i < lim; i++)
5734 {
5735 if (!mblk->markers[i].u_marker.gcmarkbit)
5736 {
5737 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5738 unchain_marker (&mblk->markers[i].u_marker);
5739 /* Set the type of the freed object to Lisp_Misc_Free.
5740 We could leave the type alone, since nobody checks it,
5741 but this might catch bugs faster. */
5742 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5743 mblk->markers[i].u_free.chain = marker_free_list;
5744 marker_free_list = &mblk->markers[i];
5745 this_free++;
5746 }
5747 else
5748 {
5749 num_used++;
5750 mblk->markers[i].u_marker.gcmarkbit = 0;
5751 }
5752 }
5753 lim = MARKER_BLOCK_SIZE;
5754 /* If this block contains only free markers and we have already
5755 seen more than two blocks worth of free markers then deallocate
5756 this block. */
5757 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5758 {
5759 *mprev = mblk->next;
5760 /* Unhook from the free list. */
5761 marker_free_list = mblk->markers[0].u_free.chain;
5762 lisp_free (mblk);
5763 n_marker_blocks--;
5764 }
5765 else
5766 {
5767 num_free += this_free;
5768 mprev = &mblk->next;
5769 }
5770 }
5771
5772 total_markers = num_used;
5773 total_free_markers = num_free;
5774 }
5775
5776 /* Free all unmarked buffers */
5777 {
5778 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5779
5780 while (buffer)
5781 if (!VECTOR_MARKED_P (buffer))
5782 {
5783 if (prev)
5784 prev->next = buffer->next;
5785 else
5786 all_buffers = buffer->next;
5787 next = buffer->next;
5788 lisp_free (buffer);
5789 buffer = next;
5790 }
5791 else
5792 {
5793 VECTOR_UNMARK (buffer);
5794 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5795 prev = buffer, buffer = buffer->next;
5796 }
5797 }
5798
5799 /* Free all unmarked vectors */
5800 {
5801 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5802 total_vector_size = 0;
5803
5804 while (vector)
5805 if (!VECTOR_MARKED_P (vector))
5806 {
5807 if (prev)
5808 prev->next = vector->next;
5809 else
5810 all_vectors = vector->next;
5811 next = vector->next;
5812 lisp_free (vector);
5813 n_vectors--;
5814 vector = next;
5815
5816 }
5817 else
5818 {
5819 VECTOR_UNMARK (vector);
5820 if (vector->size & PSEUDOVECTOR_FLAG)
5821 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5822 else
5823 total_vector_size += vector->size;
5824 prev = vector, vector = vector->next;
5825 }
5826 }
5827
5828 #ifdef GC_CHECK_STRING_BYTES
5829 if (!noninteractive)
5830 check_string_bytes (1);
5831 #endif
5832 }
5833
5834
5835
5836 \f
5837 /* Debugging aids. */
5838
5839 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5840 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5841 This may be helpful in debugging Emacs's memory usage.
5842 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5843 ()
5844 {
5845 Lisp_Object end;
5846
5847 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5848
5849 return end;
5850 }
5851
5852 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5853 doc: /* Return a list of counters that measure how much consing there has been.
5854 Each of these counters increments for a certain kind of object.
5855 The counters wrap around from the largest positive integer to zero.
5856 Garbage collection does not decrease them.
5857 The elements of the value are as follows:
5858 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5859 All are in units of 1 = one object consed
5860 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5861 objects consed.
5862 MISCS include overlays, markers, and some internal types.
5863 Frames, windows, buffers, and subprocesses count as vectors
5864 (but the contents of a buffer's text do not count here). */)
5865 ()
5866 {
5867 Lisp_Object consed[8];
5868
5869 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5870 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5871 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5872 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5873 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5874 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5875 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5876 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5877
5878 return Flist (8, consed);
5879 }
5880
5881 int suppress_checking;
5882 void
5883 die (msg, file, line)
5884 const char *msg;
5885 const char *file;
5886 int line;
5887 {
5888 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5889 file, line, msg);
5890 abort ();
5891 }
5892 \f
5893 /* Initialization */
5894
5895 void
5896 init_alloc_once ()
5897 {
5898 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5899 purebeg = PUREBEG;
5900 pure_size = PURESIZE;
5901 pure_bytes_used = 0;
5902 pure_bytes_used_before_overflow = 0;
5903
5904 /* Initialize the list of free aligned blocks. */
5905 free_ablock = NULL;
5906
5907 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5908 mem_init ();
5909 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5910 #endif
5911
5912 all_vectors = 0;
5913 ignore_warnings = 1;
5914 #ifdef DOUG_LEA_MALLOC
5915 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5916 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5917 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5918 #endif
5919 init_strings ();
5920 init_cons ();
5921 init_symbol ();
5922 init_marker ();
5923 init_float ();
5924 init_intervals ();
5925
5926 #ifdef REL_ALLOC
5927 malloc_hysteresis = 32;
5928 #else
5929 malloc_hysteresis = 0;
5930 #endif
5931
5932 spare_memory = (char *) malloc (SPARE_MEMORY);
5933
5934 ignore_warnings = 0;
5935 gcprolist = 0;
5936 byte_stack_list = 0;
5937 staticidx = 0;
5938 consing_since_gc = 0;
5939 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5940 #ifdef VIRT_ADDR_VARIES
5941 malloc_sbrk_unused = 1<<22; /* A large number */
5942 malloc_sbrk_used = 100000; /* as reasonable as any number */
5943 #endif /* VIRT_ADDR_VARIES */
5944 }
5945
5946 void
5947 init_alloc ()
5948 {
5949 gcprolist = 0;
5950 byte_stack_list = 0;
5951 #if GC_MARK_STACK
5952 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5953 setjmp_tested_p = longjmps_done = 0;
5954 #endif
5955 #endif
5956 Vgc_elapsed = make_float (0.0);
5957 gcs_done = 0;
5958 }
5959
5960 void
5961 syms_of_alloc ()
5962 {
5963 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5964 doc: /* *Number of bytes of consing between garbage collections.
5965 Garbage collection can happen automatically once this many bytes have been
5966 allocated since the last garbage collection. All data types count.
5967
5968 Garbage collection happens automatically only when `eval' is called.
5969
5970 By binding this temporarily to a large number, you can effectively
5971 prevent garbage collection during a part of the program. */);
5972
5973 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
5974 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
5975
5976 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
5977 doc: /* Number of cons cells that have been consed so far. */);
5978
5979 DEFVAR_INT ("floats-consed", &floats_consed,
5980 doc: /* Number of floats that have been consed so far. */);
5981
5982 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
5983 doc: /* Number of vector cells that have been consed so far. */);
5984
5985 DEFVAR_INT ("symbols-consed", &symbols_consed,
5986 doc: /* Number of symbols that have been consed so far. */);
5987
5988 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
5989 doc: /* Number of string characters that have been consed so far. */);
5990
5991 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
5992 doc: /* Number of miscellaneous objects that have been consed so far. */);
5993
5994 DEFVAR_INT ("intervals-consed", &intervals_consed,
5995 doc: /* Number of intervals that have been consed so far. */);
5996
5997 DEFVAR_INT ("strings-consed", &strings_consed,
5998 doc: /* Number of strings that have been consed so far. */);
5999
6000 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6001 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6002 This means that certain objects should be allocated in shared (pure) space. */);
6003
6004 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6005 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6006 garbage_collection_messages = 0;
6007
6008 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6009 doc: /* Hook run after garbage collection has finished. */);
6010 Vpost_gc_hook = Qnil;
6011 Qpost_gc_hook = intern ("post-gc-hook");
6012 staticpro (&Qpost_gc_hook);
6013
6014 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6015 doc: /* Precomputed `signal' argument for memory-full error. */);
6016 /* We build this in advance because if we wait until we need it, we might
6017 not be able to allocate the memory to hold it. */
6018 Vmemory_signal_data
6019 = list2 (Qerror,
6020 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6021
6022 DEFVAR_LISP ("memory-full", &Vmemory_full,
6023 doc: /* Non-nil means we are handling a memory-full error. */);
6024 Vmemory_full = Qnil;
6025
6026 staticpro (&Qgc_cons_threshold);
6027 Qgc_cons_threshold = intern ("gc-cons-threshold");
6028
6029 staticpro (&Qchar_table_extra_slots);
6030 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6031
6032 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6033 doc: /* Accumulated time elapsed in garbage collections.
6034 The time is in seconds as a floating point value. */);
6035 DEFVAR_INT ("gcs-done", &gcs_done,
6036 doc: /* Accumulated number of garbage collections done. */);
6037
6038 defsubr (&Scons);
6039 defsubr (&Slist);
6040 defsubr (&Svector);
6041 defsubr (&Smake_byte_code);
6042 defsubr (&Smake_list);
6043 defsubr (&Smake_vector);
6044 defsubr (&Smake_string);
6045 defsubr (&Smake_bool_vector);
6046 defsubr (&Smake_symbol);
6047 defsubr (&Smake_marker);
6048 defsubr (&Spurecopy);
6049 defsubr (&Sgarbage_collect);
6050 defsubr (&Smemory_limit);
6051 defsubr (&Smemory_use_counts);
6052
6053 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6054 defsubr (&Sgc_status);
6055 #endif
6056 }
6057
6058 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6059 (do not change this comment) */