]> code.delx.au - gnu-emacs/blob - src/lisp.h
Simplify read_dirent's MSDOS hacks
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2015 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #define DECLARE_GDB_SYM(type, id) type const id EXTERNALLY_VISIBLE
48 #ifdef MAIN_PROGRAM
49 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) DECLARE_GDB_SYM (type, id)
50 # define DEFINE_GDB_SYMBOL_END(id) = id;
51 #else
52 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) extern DECLARE_GDB_SYM (type, id)
53 # define DEFINE_GDB_SYMBOL_END(val) ;
54 #endif
55
56 /* The ubiquitous max and min macros. */
57 #undef min
58 #undef max
59 #define max(a, b) ((a) > (b) ? (a) : (b))
60 #define min(a, b) ((a) < (b) ? (a) : (b))
61
62 /* Number of elements in an array. */
63 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
64
65 /* Number of bits in a Lisp_Object tag. */
66 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
67 #define GCTYPEBITS 3
68 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
69
70 /* The number of bits needed in an EMACS_INT over and above the number
71 of bits in a pointer. This is 0 on systems where:
72 1. We can specify multiple-of-8 alignment on static variables.
73 2. We know malloc returns a multiple of 8. */
74 #if (defined alignas \
75 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
76 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
77 || defined CYGWIN))
78 # define NONPOINTER_BITS 0
79 #else
80 # define NONPOINTER_BITS GCTYPEBITS
81 #endif
82
83 /* EMACS_INT - signed integer wide enough to hold an Emacs value
84 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
85 pI - printf length modifier for EMACS_INT
86 EMACS_UINT - unsigned variant of EMACS_INT */
87 #ifndef EMACS_INT_MAX
88 # if INTPTR_MAX <= 0
89 # error "INTPTR_MAX misconfigured"
90 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
91 typedef int EMACS_INT;
92 typedef unsigned int EMACS_UINT;
93 # define EMACS_INT_MAX INT_MAX
94 # define pI ""
95 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
96 typedef long int EMACS_INT;
97 typedef unsigned long EMACS_UINT;
98 # define EMACS_INT_MAX LONG_MAX
99 # define pI "l"
100 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
101 In theory this is not safe, but in practice it seems to be OK. */
102 # elif INTPTR_MAX <= LLONG_MAX
103 typedef long long int EMACS_INT;
104 typedef unsigned long long int EMACS_UINT;
105 # define EMACS_INT_MAX LLONG_MAX
106 # define pI "ll"
107 # else
108 # error "INTPTR_MAX too large"
109 # endif
110 #endif
111
112 /* Number of bits to put in each character in the internal representation
113 of bool vectors. This should not vary across implementations. */
114 enum { BOOL_VECTOR_BITS_PER_CHAR =
115 #define BOOL_VECTOR_BITS_PER_CHAR 8
116 BOOL_VECTOR_BITS_PER_CHAR
117 };
118
119 /* An unsigned integer type representing a fixed-length bit sequence,
120 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
121 for speed, but it is unsigned char on weird platforms. */
122 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
123 typedef size_t bits_word;
124 # define BITS_WORD_MAX SIZE_MAX
125 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
126 #else
127 typedef unsigned char bits_word;
128 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
129 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
130 #endif
131 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
132
133 /* Number of bits in some machine integer types. */
134 enum
135 {
136 BITS_PER_CHAR = CHAR_BIT,
137 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
138 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
139 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
140 };
141
142 /* printmax_t and uprintmax_t are types for printing large integers.
143 These are the widest integers that are supported for printing.
144 pMd etc. are conversions for printing them.
145 On C99 hosts, there's no problem, as even the widest integers work.
146 Fall back on EMACS_INT on pre-C99 hosts. */
147 #ifdef PRIdMAX
148 typedef intmax_t printmax_t;
149 typedef uintmax_t uprintmax_t;
150 # define pMd PRIdMAX
151 # define pMu PRIuMAX
152 #else
153 typedef EMACS_INT printmax_t;
154 typedef EMACS_UINT uprintmax_t;
155 # define pMd pI"d"
156 # define pMu pI"u"
157 #endif
158
159 /* Use pD to format ptrdiff_t values, which suffice for indexes into
160 buffers and strings. Emacs never allocates objects larger than
161 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
162 In C99, pD can always be "t"; configure it here for the sake of
163 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
164 #if PTRDIFF_MAX == INT_MAX
165 # define pD ""
166 #elif PTRDIFF_MAX == LONG_MAX
167 # define pD "l"
168 #elif PTRDIFF_MAX == LLONG_MAX
169 # define pD "ll"
170 #else
171 # define pD "t"
172 #endif
173
174 /* Extra internal type checking? */
175
176 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
177 'assume (COND)'. COND should be free of side effects, as it may or
178 may not be evaluated.
179
180 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
181 defined and suppress_checking is false, and does nothing otherwise.
182 Emacs dies if COND is checked and is false. The suppress_checking
183 variable is initialized to 0 in alloc.c. Set it to 1 using a
184 debugger to temporarily disable aborting on detected internal
185 inconsistencies or error conditions.
186
187 In some cases, a good compiler may be able to optimize away the
188 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
189 uses eassert to test STRINGP (x), but a particular use of XSTRING
190 is invoked only after testing that STRINGP (x) is true, making the
191 test redundant.
192
193 eassume is like eassert except that it also causes the compiler to
194 assume that COND is true afterwards, regardless of whether runtime
195 checking is enabled. This can improve performance in some cases,
196 though it can degrade performance in others. It's often suboptimal
197 for COND to call external functions or access volatile storage. */
198
199 #ifndef ENABLE_CHECKING
200 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
201 # define eassume(cond) assume (cond)
202 #else /* ENABLE_CHECKING */
203
204 extern _Noreturn void die (const char *, const char *, int);
205
206 extern bool suppress_checking EXTERNALLY_VISIBLE;
207
208 # define eassert(cond) \
209 (suppress_checking || (cond) \
210 ? (void) 0 \
211 : die (# cond, __FILE__, __LINE__))
212 # define eassume(cond) \
213 (suppress_checking \
214 ? assume (cond) \
215 : (cond) \
216 ? (void) 0 \
217 : die (# cond, __FILE__, __LINE__))
218 #endif /* ENABLE_CHECKING */
219
220 \f
221 /* Use the configure flag --enable-check-lisp-object-type to make
222 Lisp_Object use a struct type instead of the default int. The flag
223 causes CHECK_LISP_OBJECT_TYPE to be defined. */
224
225 /***** Select the tagging scheme. *****/
226 /* The following option controls the tagging scheme:
227 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
228 always 0, and we can thus use them to hold tag bits, without
229 restricting our addressing space.
230
231 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
232 restricting our possible address range.
233
234 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
235 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
236 on the few static Lisp_Objects used: lispsym, all the defsubr, and
237 the two special buffers buffer_defaults and buffer_local_symbols. */
238
239 enum Lisp_Bits
240 {
241 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
242 integer constant, for MSVC. */
243 #define GCALIGNMENT 8
244
245 /* Number of bits in a Lisp_Object value, not counting the tag. */
246 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
247
248 /* Number of bits in a Lisp fixnum tag. */
249 INTTYPEBITS = GCTYPEBITS - 1,
250
251 /* Number of bits in a Lisp fixnum value, not counting the tag. */
252 FIXNUM_BITS = VALBITS + 1
253 };
254
255 #if GCALIGNMENT != 1 << GCTYPEBITS
256 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
257 #endif
258
259 /* The maximum value that can be stored in a EMACS_INT, assuming all
260 bits other than the type bits contribute to a nonnegative signed value.
261 This can be used in #if, e.g., '#if USB_TAG' below expands to an
262 expression involving VAL_MAX. */
263 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
264
265 /* Whether the least-significant bits of an EMACS_INT contain the tag.
266 On hosts where pointers-as-ints do not exceed VAL_MAX / 2, USE_LSB_TAG is:
267 a. unnecessary, because the top bits of an EMACS_INT are unused, and
268 b. slower, because it typically requires extra masking.
269 So, USE_LSB_TAG is true only on hosts where it might be useful. */
270 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
271 #define USE_LSB_TAG (VAL_MAX / 2 < INTPTR_MAX)
272 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
273
274 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
275 # error "USE_LSB_TAG not supported on this platform; please report this." \
276 "Try 'configure --with-wide-int' to work around the problem."
277 error !;
278 #endif
279
280 #ifndef alignas
281 # define alignas(alignment) /* empty */
282 # if USE_LSB_TAG
283 # error "USE_LSB_TAG requires alignas"
284 # endif
285 #endif
286
287 #ifdef HAVE_STRUCT_ATTRIBUTE_ALIGNED
288 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
289 #else
290 # define GCALIGNED /* empty */
291 #endif
292
293 /* Some operations are so commonly executed that they are implemented
294 as macros, not functions, because otherwise runtime performance would
295 suffer too much when compiling with GCC without optimization.
296 There's no need to inline everything, just the operations that
297 would otherwise cause a serious performance problem.
298
299 For each such operation OP, define a macro lisp_h_OP that contains
300 the operation's implementation. That way, OP can be implemented
301 via a macro definition like this:
302
303 #define OP(x) lisp_h_OP (x)
304
305 and/or via a function definition like this:
306
307 LISP_MACRO_DEFUN (OP, Lisp_Object, (Lisp_Object x), (x))
308
309 which macro-expands to this:
310
311 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
312
313 without worrying about the implementations diverging, since
314 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
315 are intended to be private to this include file, and should not be
316 used elsewhere.
317
318 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
319 functions, once most developers have access to GCC 4.8 or later and
320 can use "gcc -Og" to debug. Maybe in the year 2016. See
321 Bug#11935.
322
323 Commentary for these macros can be found near their corresponding
324 functions, below. */
325
326 #if CHECK_LISP_OBJECT_TYPE
327 # define lisp_h_XLI(o) ((o).i)
328 # define lisp_h_XIL(i) ((Lisp_Object) { i })
329 #else
330 # define lisp_h_XLI(o) (o)
331 # define lisp_h_XIL(i) (i)
332 #endif
333 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
334 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
335 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
336 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
337 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
338 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
339 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
340 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
341 #define lisp_h_INTEGERP(x) ((XTYPE (x) & (Lisp_Int0 | ~Lisp_Int1)) == Lisp_Int0)
342 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
343 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
344 #define lisp_h_NILP(x) EQ (x, Qnil)
345 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
346 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
347 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
348 #define lisp_h_SYMBOL_VAL(sym) \
349 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
350 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
351 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
352 #define lisp_h_XCAR(c) XCONS (c)->car
353 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
354 #define lisp_h_XCONS(a) \
355 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
356 #define lisp_h_XHASH(a) XUINT (a)
357 #define lisp_h_XPNTR(a) \
358 (SYMBOLP (a) ? XSYMBOL (a) : (void *) ((intptr_t) (XLI (a) & VALMASK)))
359 #ifndef GC_CHECK_CONS_LIST
360 # define lisp_h_check_cons_list() ((void) 0)
361 #endif
362 #if USE_LSB_TAG
363 # define lisp_h_make_number(n) \
364 XIL ((EMACS_INT) (((EMACS_UINT) (n) << INTTYPEBITS) + Lisp_Int0))
365 # define lisp_h_XFASTINT(a) XINT (a)
366 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
367 # define lisp_h_XSYMBOL(a) \
368 (eassert (SYMBOLP (a)), \
369 (struct Lisp_Symbol *) ((uintptr_t) XLI (a) - Lisp_Symbol \
370 + (char *) lispsym))
371 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
372 # define lisp_h_XUNTAG(a, type) ((void *) (intptr_t) (XLI (a) - (type)))
373 #endif
374
375 /* When compiling via gcc -O0, define the key operations as macros, as
376 Emacs is too slow otherwise. To disable this optimization, compile
377 with -DINLINING=false. */
378 #if (defined __NO_INLINE__ \
379 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
380 && ! (defined INLINING && ! INLINING))
381 # define XLI(o) lisp_h_XLI (o)
382 # define XIL(i) lisp_h_XIL (i)
383 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
384 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
385 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
386 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
387 # define CONSP(x) lisp_h_CONSP (x)
388 # define EQ(x, y) lisp_h_EQ (x, y)
389 # define FLOATP(x) lisp_h_FLOATP (x)
390 # define INTEGERP(x) lisp_h_INTEGERP (x)
391 # define MARKERP(x) lisp_h_MARKERP (x)
392 # define MISCP(x) lisp_h_MISCP (x)
393 # define NILP(x) lisp_h_NILP (x)
394 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
395 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
396 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
397 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
398 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
399 # define XCAR(c) lisp_h_XCAR (c)
400 # define XCDR(c) lisp_h_XCDR (c)
401 # define XCONS(a) lisp_h_XCONS (a)
402 # define XHASH(a) lisp_h_XHASH (a)
403 # define XPNTR(a) lisp_h_XPNTR (a)
404 # ifndef GC_CHECK_CONS_LIST
405 # define check_cons_list() lisp_h_check_cons_list ()
406 # endif
407 # if USE_LSB_TAG
408 # define make_number(n) lisp_h_make_number (n)
409 # define XFASTINT(a) lisp_h_XFASTINT (a)
410 # define XINT(a) lisp_h_XINT (a)
411 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
412 # define XTYPE(a) lisp_h_XTYPE (a)
413 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
414 # endif
415 #endif
416
417 /* Define NAME as a lisp.h inline function that returns TYPE and has
418 arguments declared as ARGDECLS and passed as ARGS. ARGDECLS and
419 ARGS should be parenthesized. Implement the function by calling
420 lisp_h_NAME ARGS. */
421 #define LISP_MACRO_DEFUN(name, type, argdecls, args) \
422 INLINE type (name) argdecls { return lisp_h_##name args; }
423
424 /* like LISP_MACRO_DEFUN, except NAME returns void. */
425 #define LISP_MACRO_DEFUN_VOID(name, argdecls, args) \
426 INLINE void (name) argdecls { lisp_h_##name args; }
427
428
429 /* Define the fundamental Lisp data structures. */
430
431 /* This is the set of Lisp data types. If you want to define a new
432 data type, read the comments after Lisp_Fwd_Type definition
433 below. */
434
435 /* Lisp integers use 2 tags, to give them one extra bit, thus
436 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
437 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
438 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
439
440 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
441 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
442 vociferously about them. */
443 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
444 || (defined __SUNPRO_C && __STDC__))
445 #define ENUM_BF(TYPE) unsigned int
446 #else
447 #define ENUM_BF(TYPE) enum TYPE
448 #endif
449
450
451 enum Lisp_Type
452 {
453 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
454 Lisp_Symbol = 0,
455
456 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
457 whose first member indicates the subtype. */
458 Lisp_Misc = 1,
459
460 /* Integer. XINT (obj) is the integer value. */
461 Lisp_Int0 = 2,
462 Lisp_Int1 = USE_LSB_TAG ? 6 : 3,
463
464 /* String. XSTRING (object) points to a struct Lisp_String.
465 The length of the string, and its contents, are stored therein. */
466 Lisp_String = 4,
467
468 /* Vector of Lisp objects, or something resembling it.
469 XVECTOR (object) points to a struct Lisp_Vector, which contains
470 the size and contents. The size field also contains the type
471 information, if it's not a real vector object. */
472 Lisp_Vectorlike = 5,
473
474 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
475 Lisp_Cons = USE_LSB_TAG ? 3 : 6,
476
477 Lisp_Float = 7
478 };
479
480 /* This is the set of data types that share a common structure.
481 The first member of the structure is a type code from this set.
482 The enum values are arbitrary, but we'll use large numbers to make it
483 more likely that we'll spot the error if a random word in memory is
484 mistakenly interpreted as a Lisp_Misc. */
485 enum Lisp_Misc_Type
486 {
487 Lisp_Misc_Free = 0x5eab,
488 Lisp_Misc_Marker,
489 Lisp_Misc_Overlay,
490 Lisp_Misc_Save_Value,
491 /* Currently floats are not a misc type,
492 but let's define this in case we want to change that. */
493 Lisp_Misc_Float,
494 /* This is not a type code. It is for range checking. */
495 Lisp_Misc_Limit
496 };
497
498 /* These are the types of forwarding objects used in the value slot
499 of symbols for special built-in variables whose value is stored in
500 C variables. */
501 enum Lisp_Fwd_Type
502 {
503 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
504 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
505 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
506 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
507 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
508 };
509
510 /* If you want to define a new Lisp data type, here are some
511 instructions. See the thread at
512 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
513 for more info.
514
515 First, there are already a couple of Lisp types that can be used if
516 your new type does not need to be exposed to Lisp programs nor
517 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
518 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
519 is suitable for temporarily stashing away pointers and integers in
520 a Lisp object. The latter is useful for vector-like Lisp objects
521 that need to be used as part of other objects, but which are never
522 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
523 an example).
524
525 These two types don't look pretty when printed, so they are
526 unsuitable for Lisp objects that can be exposed to users.
527
528 To define a new data type, add one more Lisp_Misc subtype or one
529 more pseudovector subtype. Pseudovectors are more suitable for
530 objects with several slots that need to support fast random access,
531 while Lisp_Misc types are for everything else. A pseudovector object
532 provides one or more slots for Lisp objects, followed by struct
533 members that are accessible only from C. A Lisp_Misc object is a
534 wrapper for a C struct that can contain anything you like.
535
536 Explicit freeing is discouraged for Lisp objects in general. But if
537 you really need to exploit this, use Lisp_Misc (check free_misc in
538 alloc.c to see why). There is no way to free a vectorlike object.
539
540 To add a new pseudovector type, extend the pvec_type enumeration;
541 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
542
543 For a Lisp_Misc, you will also need to add your entry to union
544 Lisp_Misc (but make sure the first word has the same structure as
545 the others, starting with a 16-bit member of the Lisp_Misc_Type
546 enumeration and a 1-bit GC markbit) and make sure the overall size
547 of the union is not increased by your addition.
548
549 For a new pseudovector, it's highly desirable to limit the size
550 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
551 Otherwise you will need to change sweep_vectors (also in alloc.c).
552
553 Then you will need to add switch branches in print.c (in
554 print_object, to print your object, and possibly also in
555 print_preprocess) and to alloc.c, to mark your object (in
556 mark_object) and to free it (in gc_sweep). The latter is also the
557 right place to call any code specific to your data type that needs
558 to run when the object is recycled -- e.g., free any additional
559 resources allocated for it that are not Lisp objects. You can even
560 make a pointer to the function that frees the resources a slot in
561 your object -- this way, the same object could be used to represent
562 several disparate C structures. */
563
564 #ifdef CHECK_LISP_OBJECT_TYPE
565
566 typedef struct { EMACS_INT i; } Lisp_Object;
567
568 #define LISP_INITIALLY(i) {i}
569
570 #undef CHECK_LISP_OBJECT_TYPE
571 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
572 #else /* CHECK_LISP_OBJECT_TYPE */
573
574 /* If a struct type is not wanted, define Lisp_Object as just a number. */
575
576 typedef EMACS_INT Lisp_Object;
577 #define LISP_INITIALLY(i) (i)
578 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
579 #endif /* CHECK_LISP_OBJECT_TYPE */
580
581 #define LISP_INITIALLY_ZERO LISP_INITIALLY (0)
582 \f
583 /* Forward declarations. */
584
585 /* Defined in this file. */
586 union Lisp_Fwd;
587 INLINE bool BOOL_VECTOR_P (Lisp_Object);
588 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
589 INLINE bool BUFFERP (Lisp_Object);
590 INLINE bool CHAR_TABLE_P (Lisp_Object);
591 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
592 INLINE bool (CONSP) (Lisp_Object);
593 INLINE bool (FLOATP) (Lisp_Object);
594 INLINE bool functionp (Lisp_Object);
595 INLINE bool (INTEGERP) (Lisp_Object);
596 INLINE bool (MARKERP) (Lisp_Object);
597 INLINE bool (MISCP) (Lisp_Object);
598 INLINE bool (NILP) (Lisp_Object);
599 INLINE bool OVERLAYP (Lisp_Object);
600 INLINE bool PROCESSP (Lisp_Object);
601 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
602 INLINE bool SAVE_VALUEP (Lisp_Object);
603 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
604 Lisp_Object);
605 INLINE bool STRINGP (Lisp_Object);
606 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
607 INLINE bool SUBRP (Lisp_Object);
608 INLINE bool (SYMBOLP) (Lisp_Object);
609 INLINE bool (VECTORLIKEP) (Lisp_Object);
610 INLINE bool WINDOWP (Lisp_Object);
611 INLINE bool TERMINALP (Lisp_Object);
612 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
613 INLINE struct Lisp_Symbol *(XSYMBOL) (Lisp_Object);
614 INLINE void *(XUNTAG) (Lisp_Object, int);
615
616 /* Defined in chartab.c. */
617 extern Lisp_Object char_table_ref (Lisp_Object, int);
618 extern void char_table_set (Lisp_Object, int, Lisp_Object);
619
620 /* Defined in data.c. */
621 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
622 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
623
624 /* Defined in emacs.c. */
625 extern bool might_dump;
626 /* True means Emacs has already been initialized.
627 Used during startup to detect startup of dumped Emacs. */
628 extern bool initialized;
629
630 /* Defined in floatfns.c. */
631 extern double extract_float (Lisp_Object);
632
633 \f
634 /* Interned state of a symbol. */
635
636 enum symbol_interned
637 {
638 SYMBOL_UNINTERNED = 0,
639 SYMBOL_INTERNED = 1,
640 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
641 };
642
643 enum symbol_redirect
644 {
645 SYMBOL_PLAINVAL = 4,
646 SYMBOL_VARALIAS = 1,
647 SYMBOL_LOCALIZED = 2,
648 SYMBOL_FORWARDED = 3
649 };
650
651 struct Lisp_Symbol
652 {
653 bool_bf gcmarkbit : 1;
654
655 /* Indicates where the value can be found:
656 0 : it's a plain var, the value is in the `value' field.
657 1 : it's a varalias, the value is really in the `alias' symbol.
658 2 : it's a localized var, the value is in the `blv' object.
659 3 : it's a forwarding variable, the value is in `forward'. */
660 ENUM_BF (symbol_redirect) redirect : 3;
661
662 /* Non-zero means symbol is constant, i.e. changing its value
663 should signal an error. If the value is 3, then the var
664 can be changed, but only by `defconst'. */
665 unsigned constant : 2;
666
667 /* Interned state of the symbol. This is an enumerator from
668 enum symbol_interned. */
669 unsigned interned : 2;
670
671 /* True means that this variable has been explicitly declared
672 special (with `defvar' etc), and shouldn't be lexically bound. */
673 bool_bf declared_special : 1;
674
675 /* True if pointed to from purespace and hence can't be GC'd. */
676 bool_bf pinned : 1;
677
678 /* The symbol's name, as a Lisp string. */
679 Lisp_Object name;
680
681 /* Value of the symbol or Qunbound if unbound. Which alternative of the
682 union is used depends on the `redirect' field above. */
683 union {
684 Lisp_Object value;
685 struct Lisp_Symbol *alias;
686 struct Lisp_Buffer_Local_Value *blv;
687 union Lisp_Fwd *fwd;
688 } val;
689
690 /* Function value of the symbol or Qnil if not fboundp. */
691 Lisp_Object function;
692
693 /* The symbol's property list. */
694 Lisp_Object plist;
695
696 /* Next symbol in obarray bucket, if the symbol is interned. */
697 struct Lisp_Symbol *next;
698 };
699
700 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
701 meaning as in the DEFUN macro, and is used to construct a prototype. */
702 /* We can use the same trick as in the DEFUN macro to generate the
703 appropriate prototype. */
704 #define EXFUN(fnname, maxargs) \
705 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
706
707 /* Note that the weird token-substitution semantics of ANSI C makes
708 this work for MANY and UNEVALLED. */
709 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
710 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
711 #define DEFUN_ARGS_0 (void)
712 #define DEFUN_ARGS_1 (Lisp_Object)
713 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
714 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
715 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
716 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
717 Lisp_Object)
718 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
719 Lisp_Object, Lisp_Object)
720 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
721 Lisp_Object, Lisp_Object, Lisp_Object)
722 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
723 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
724
725 /* Yield an integer that contains TAG along with PTR. */
726 #define TAG_PTR(tag, ptr) \
727 ((USE_LSB_TAG ? (tag) : (EMACS_UINT) (tag) << VALBITS) + (uintptr_t) (ptr))
728
729 /* Yield an integer that contains a symbol tag along with OFFSET.
730 OFFSET should be the offset in bytes from 'lispsym' to the symbol. */
731 #define TAG_SYMOFFSET(offset) \
732 TAG_PTR (Lisp_Symbol, \
733 ((uintptr_t) (offset) >> (USE_LSB_TAG ? 0 : GCTYPEBITS)))
734
735 /* XLI_BUILTIN_LISPSYM (iQwhatever) is equivalent to
736 XLI (builtin_lisp_symbol (Qwhatever)),
737 except the former expands to an integer constant expression. */
738 #define XLI_BUILTIN_LISPSYM(iname) TAG_SYMOFFSET ((iname) * sizeof *lispsym)
739
740 /* Declare extern constants for Lisp symbols. These can be helpful
741 when using a debugger like GDB, on older platforms where the debug
742 format does not represent C macros. */
743 #define DEFINE_LISP_SYMBOL_BEGIN(name) \
744 DEFINE_GDB_SYMBOL_BEGIN (Lisp_Object, name)
745 #define DEFINE_LISP_SYMBOL_END(name) \
746 DEFINE_GDB_SYMBOL_END (LISP_INITIALLY (XLI_BUILTIN_LISPSYM (i##name)))
747
748 #include "globals.h"
749
750 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
751 At the machine level, these operations are no-ops. */
752 LISP_MACRO_DEFUN (XLI, EMACS_INT, (Lisp_Object o), (o))
753 LISP_MACRO_DEFUN (XIL, Lisp_Object, (EMACS_INT i), (i))
754
755 /* In the size word of a vector, this bit means the vector has been marked. */
756
757 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
758 # define ARRAY_MARK_FLAG PTRDIFF_MIN
759 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
760
761 /* In the size word of a struct Lisp_Vector, this bit means it's really
762 some other vector-like object. */
763 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
764 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
765 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
766
767 /* In a pseudovector, the size field actually contains a word with one
768 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
769 with PVEC_TYPE_MASK to indicate the actual type. */
770 enum pvec_type
771 {
772 PVEC_NORMAL_VECTOR,
773 PVEC_FREE,
774 PVEC_PROCESS,
775 PVEC_FRAME,
776 PVEC_WINDOW,
777 PVEC_BOOL_VECTOR,
778 PVEC_BUFFER,
779 PVEC_HASH_TABLE,
780 PVEC_TERMINAL,
781 PVEC_WINDOW_CONFIGURATION,
782 PVEC_SUBR,
783 PVEC_OTHER,
784 /* These should be last, check internal_equal to see why. */
785 PVEC_COMPILED,
786 PVEC_CHAR_TABLE,
787 PVEC_SUB_CHAR_TABLE,
788 PVEC_FONT /* Should be last because it's used for range checking. */
789 };
790
791 enum More_Lisp_Bits
792 {
793 /* For convenience, we also store the number of elements in these bits.
794 Note that this size is not necessarily the memory-footprint size, but
795 only the number of Lisp_Object fields (that need to be traced by GC).
796 The distinction is used, e.g., by Lisp_Process, which places extra
797 non-Lisp_Object fields at the end of the structure. */
798 PSEUDOVECTOR_SIZE_BITS = 12,
799 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
800
801 /* To calculate the memory footprint of the pseudovector, it's useful
802 to store the size of non-Lisp area in word_size units here. */
803 PSEUDOVECTOR_REST_BITS = 12,
804 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
805 << PSEUDOVECTOR_SIZE_BITS),
806
807 /* Used to extract pseudovector subtype information. */
808 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
809 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
810 };
811 \f
812 /* These functions extract various sorts of values from a Lisp_Object.
813 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
814 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
815 that cons. */
816
817 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
818 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
819 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
820 DEFINE_GDB_SYMBOL_END (VALMASK)
821
822 /* Largest and smallest representable fixnum values. These are the C
823 values. They are macros for use in static initializers. */
824 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
825 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
826
827 #if USE_LSB_TAG
828
829 LISP_MACRO_DEFUN (make_number, Lisp_Object, (EMACS_INT n), (n))
830 LISP_MACRO_DEFUN (XINT, EMACS_INT, (Lisp_Object a), (a))
831 LISP_MACRO_DEFUN (XFASTINT, EMACS_INT, (Lisp_Object a), (a))
832 LISP_MACRO_DEFUN (XSYMBOL, struct Lisp_Symbol *, (Lisp_Object a), (a))
833 LISP_MACRO_DEFUN (XTYPE, enum Lisp_Type, (Lisp_Object a), (a))
834 LISP_MACRO_DEFUN (XUNTAG, void *, (Lisp_Object a, int type), (a, type))
835
836 #else /* ! USE_LSB_TAG */
837
838 /* Although compiled only if ! USE_LSB_TAG, the following functions
839 also work when USE_LSB_TAG; this is to aid future maintenance when
840 the lisp_h_* macros are eventually removed. */
841
842 /* Make a Lisp integer representing the value of the low order
843 bits of N. */
844 INLINE Lisp_Object
845 make_number (EMACS_INT n)
846 {
847 EMACS_INT int0 = Lisp_Int0;
848 if (USE_LSB_TAG)
849 {
850 EMACS_UINT u = n;
851 n = u << INTTYPEBITS;
852 n += int0;
853 }
854 else
855 {
856 n &= INTMASK;
857 n += (int0 << VALBITS);
858 }
859 return XIL (n);
860 }
861
862 /* Extract A's value as a signed integer. */
863 INLINE EMACS_INT
864 XINT (Lisp_Object a)
865 {
866 EMACS_INT i = XLI (a);
867 if (! USE_LSB_TAG)
868 {
869 EMACS_UINT u = i;
870 i = u << INTTYPEBITS;
871 }
872 return i >> INTTYPEBITS;
873 }
874
875 /* Like XINT (A), but may be faster. A must be nonnegative.
876 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
877 integers have zero-bits in their tags. */
878 INLINE EMACS_INT
879 XFASTINT (Lisp_Object a)
880 {
881 EMACS_INT int0 = Lisp_Int0;
882 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a) - (int0 << VALBITS);
883 eassert (0 <= n);
884 return n;
885 }
886
887 /* Extract A's value as a symbol. */
888 INLINE struct Lisp_Symbol *
889 XSYMBOL (Lisp_Object a)
890 {
891 uintptr_t i = (uintptr_t) XUNTAG (a, Lisp_Symbol);
892 if (! USE_LSB_TAG)
893 i <<= GCTYPEBITS;
894 void *p = (char *) lispsym + i;
895 return p;
896 }
897
898 /* Extract A's type. */
899 INLINE enum Lisp_Type
900 XTYPE (Lisp_Object a)
901 {
902 EMACS_UINT i = XLI (a);
903 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
904 }
905
906 /* Extract A's pointer value, assuming A's type is TYPE. */
907 INLINE void *
908 XUNTAG (Lisp_Object a, int type)
909 {
910 intptr_t i = USE_LSB_TAG ? XLI (a) - type : XLI (a) & VALMASK;
911 return (void *) i;
912 }
913
914 #endif /* ! USE_LSB_TAG */
915
916 /* Extract the pointer hidden within A. */
917 LISP_MACRO_DEFUN (XPNTR, void *, (Lisp_Object a), (a))
918
919 /* Extract A's value as an unsigned integer. */
920 INLINE EMACS_UINT
921 XUINT (Lisp_Object a)
922 {
923 EMACS_UINT i = XLI (a);
924 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
925 }
926
927 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
928 right now, but XUINT should only be applied to objects we know are
929 integers. */
930 LISP_MACRO_DEFUN (XHASH, EMACS_INT, (Lisp_Object a), (a))
931
932 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
933 INLINE Lisp_Object
934 make_natnum (EMACS_INT n)
935 {
936 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
937 EMACS_INT int0 = Lisp_Int0;
938 return USE_LSB_TAG ? make_number (n) : XIL (n + (int0 << VALBITS));
939 }
940
941 /* Return true if X and Y are the same object. */
942 LISP_MACRO_DEFUN (EQ, bool, (Lisp_Object x, Lisp_Object y), (x, y))
943
944 /* Value is true if I doesn't fit into a Lisp fixnum. It is
945 written this way so that it also works if I is of unsigned
946 type or if I is a NaN. */
947
948 #define FIXNUM_OVERFLOW_P(i) \
949 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
950
951 INLINE ptrdiff_t
952 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
953 {
954 return num < lower ? lower : num <= upper ? num : upper;
955 }
956 \f
957
958 /* Extract a value or address from a Lisp_Object. */
959
960 LISP_MACRO_DEFUN (XCONS, struct Lisp_Cons *, (Lisp_Object a), (a))
961
962 INLINE struct Lisp_Vector *
963 XVECTOR (Lisp_Object a)
964 {
965 eassert (VECTORLIKEP (a));
966 return XUNTAG (a, Lisp_Vectorlike);
967 }
968
969 INLINE struct Lisp_String *
970 XSTRING (Lisp_Object a)
971 {
972 eassert (STRINGP (a));
973 return XUNTAG (a, Lisp_String);
974 }
975
976 /* The index of the C-defined Lisp symbol SYM.
977 This can be used in a static initializer. */
978 #define SYMBOL_INDEX(sym) i##sym
979
980 INLINE struct Lisp_Float *
981 XFLOAT (Lisp_Object a)
982 {
983 eassert (FLOATP (a));
984 return XUNTAG (a, Lisp_Float);
985 }
986
987 /* Pseudovector types. */
988
989 INLINE struct Lisp_Process *
990 XPROCESS (Lisp_Object a)
991 {
992 eassert (PROCESSP (a));
993 return XUNTAG (a, Lisp_Vectorlike);
994 }
995
996 INLINE struct window *
997 XWINDOW (Lisp_Object a)
998 {
999 eassert (WINDOWP (a));
1000 return XUNTAG (a, Lisp_Vectorlike);
1001 }
1002
1003 INLINE struct terminal *
1004 XTERMINAL (Lisp_Object a)
1005 {
1006 eassert (TERMINALP (a));
1007 return XUNTAG (a, Lisp_Vectorlike);
1008 }
1009
1010 INLINE struct Lisp_Subr *
1011 XSUBR (Lisp_Object a)
1012 {
1013 eassert (SUBRP (a));
1014 return XUNTAG (a, Lisp_Vectorlike);
1015 }
1016
1017 INLINE struct buffer *
1018 XBUFFER (Lisp_Object a)
1019 {
1020 eassert (BUFFERP (a));
1021 return XUNTAG (a, Lisp_Vectorlike);
1022 }
1023
1024 INLINE struct Lisp_Char_Table *
1025 XCHAR_TABLE (Lisp_Object a)
1026 {
1027 eassert (CHAR_TABLE_P (a));
1028 return XUNTAG (a, Lisp_Vectorlike);
1029 }
1030
1031 INLINE struct Lisp_Sub_Char_Table *
1032 XSUB_CHAR_TABLE (Lisp_Object a)
1033 {
1034 eassert (SUB_CHAR_TABLE_P (a));
1035 return XUNTAG (a, Lisp_Vectorlike);
1036 }
1037
1038 INLINE struct Lisp_Bool_Vector *
1039 XBOOL_VECTOR (Lisp_Object a)
1040 {
1041 eassert (BOOL_VECTOR_P (a));
1042 return XUNTAG (a, Lisp_Vectorlike);
1043 }
1044
1045 /* Construct a Lisp_Object from a value or address. */
1046
1047 INLINE Lisp_Object
1048 make_lisp_ptr (void *ptr, enum Lisp_Type type)
1049 {
1050 Lisp_Object a = XIL (TAG_PTR (type, ptr));
1051 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
1052 return a;
1053 }
1054
1055 INLINE Lisp_Object
1056 make_lisp_symbol (struct Lisp_Symbol *sym)
1057 {
1058 Lisp_Object a = XIL (TAG_SYMOFFSET ((char *) sym - (char *) lispsym));
1059 eassert (XSYMBOL (a) == sym);
1060 return a;
1061 }
1062
1063 INLINE Lisp_Object
1064 builtin_lisp_symbol (int index)
1065 {
1066 return make_lisp_symbol (lispsym + index);
1067 }
1068
1069 #define XSETINT(a, b) ((a) = make_number (b))
1070 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
1071 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
1072 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
1073 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
1074 #define XSETSYMBOL(a, b) ((a) = make_lisp_symbol (b))
1075 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
1076 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
1077
1078 /* Pseudovector types. */
1079
1080 #define XSETPVECTYPE(v, code) \
1081 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
1082 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
1083 ((v)->header.size = (PSEUDOVECTOR_FLAG \
1084 | ((code) << PSEUDOVECTOR_AREA_BITS) \
1085 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
1086 | (lispsize)))
1087
1088 /* The cast to struct vectorlike_header * avoids aliasing issues. */
1089 #define XSETPSEUDOVECTOR(a, b, code) \
1090 XSETTYPED_PSEUDOVECTOR (a, b, \
1091 (((struct vectorlike_header *) \
1092 XUNTAG (a, Lisp_Vectorlike)) \
1093 ->size), \
1094 code)
1095 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
1096 (XSETVECTOR (a, b), \
1097 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
1098 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
1099
1100 #define XSETWINDOW_CONFIGURATION(a, b) \
1101 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
1102 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
1103 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
1104 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
1105 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
1106 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
1107 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
1108 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1109 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1110 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1111
1112 /* Efficiently convert a pointer to a Lisp object and back. The
1113 pointer is represented as a Lisp integer, so the garbage collector
1114 does not know about it. The pointer should not have both Lisp_Int1
1115 bits set, which makes this conversion inherently unportable. */
1116
1117 INLINE void *
1118 XINTPTR (Lisp_Object a)
1119 {
1120 return XUNTAG (a, Lisp_Int0);
1121 }
1122
1123 INLINE Lisp_Object
1124 make_pointer_integer (void *p)
1125 {
1126 Lisp_Object a = XIL (TAG_PTR (Lisp_Int0, p));
1127 eassert (INTEGERP (a) && XINTPTR (a) == p);
1128 return a;
1129 }
1130
1131 /* Type checking. */
1132
1133 LISP_MACRO_DEFUN_VOID (CHECK_TYPE,
1134 (int ok, Lisp_Object predicate, Lisp_Object x),
1135 (ok, predicate, x))
1136
1137 /* Deprecated and will be removed soon. */
1138
1139 #define INTERNAL_FIELD(field) field ## _
1140
1141 /* See the macros in intervals.h. */
1142
1143 typedef struct interval *INTERVAL;
1144
1145 struct GCALIGNED Lisp_Cons
1146 {
1147 /* Car of this cons cell. */
1148 Lisp_Object car;
1149
1150 union
1151 {
1152 /* Cdr of this cons cell. */
1153 Lisp_Object cdr;
1154
1155 /* Used to chain conses on a free list. */
1156 struct Lisp_Cons *chain;
1157 } u;
1158 };
1159
1160 /* Take the car or cdr of something known to be a cons cell. */
1161 /* The _addr functions shouldn't be used outside of the minimal set
1162 of code that has to know what a cons cell looks like. Other code not
1163 part of the basic lisp implementation should assume that the car and cdr
1164 fields are not accessible. (What if we want to switch to
1165 a copying collector someday? Cached cons cell field addresses may be
1166 invalidated at arbitrary points.) */
1167 INLINE Lisp_Object *
1168 xcar_addr (Lisp_Object c)
1169 {
1170 return &XCONS (c)->car;
1171 }
1172 INLINE Lisp_Object *
1173 xcdr_addr (Lisp_Object c)
1174 {
1175 return &XCONS (c)->u.cdr;
1176 }
1177
1178 /* Use these from normal code. */
1179 LISP_MACRO_DEFUN (XCAR, Lisp_Object, (Lisp_Object c), (c))
1180 LISP_MACRO_DEFUN (XCDR, Lisp_Object, (Lisp_Object c), (c))
1181
1182 /* Use these to set the fields of a cons cell.
1183
1184 Note that both arguments may refer to the same object, so 'n'
1185 should not be read after 'c' is first modified. */
1186 INLINE void
1187 XSETCAR (Lisp_Object c, Lisp_Object n)
1188 {
1189 *xcar_addr (c) = n;
1190 }
1191 INLINE void
1192 XSETCDR (Lisp_Object c, Lisp_Object n)
1193 {
1194 *xcdr_addr (c) = n;
1195 }
1196
1197 /* Take the car or cdr of something whose type is not known. */
1198 INLINE Lisp_Object
1199 CAR (Lisp_Object c)
1200 {
1201 return (CONSP (c) ? XCAR (c)
1202 : NILP (c) ? Qnil
1203 : wrong_type_argument (Qlistp, c));
1204 }
1205 INLINE Lisp_Object
1206 CDR (Lisp_Object c)
1207 {
1208 return (CONSP (c) ? XCDR (c)
1209 : NILP (c) ? Qnil
1210 : wrong_type_argument (Qlistp, c));
1211 }
1212
1213 /* Take the car or cdr of something whose type is not known. */
1214 INLINE Lisp_Object
1215 CAR_SAFE (Lisp_Object c)
1216 {
1217 return CONSP (c) ? XCAR (c) : Qnil;
1218 }
1219 INLINE Lisp_Object
1220 CDR_SAFE (Lisp_Object c)
1221 {
1222 return CONSP (c) ? XCDR (c) : Qnil;
1223 }
1224
1225 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1226
1227 struct GCALIGNED Lisp_String
1228 {
1229 ptrdiff_t size;
1230 ptrdiff_t size_byte;
1231 INTERVAL intervals; /* Text properties in this string. */
1232 unsigned char *data;
1233 };
1234
1235 /* True if STR is a multibyte string. */
1236 INLINE bool
1237 STRING_MULTIBYTE (Lisp_Object str)
1238 {
1239 return 0 <= XSTRING (str)->size_byte;
1240 }
1241
1242 /* An upper bound on the number of bytes in a Lisp string, not
1243 counting the terminating null. This a tight enough bound to
1244 prevent integer overflow errors that would otherwise occur during
1245 string size calculations. A string cannot contain more bytes than
1246 a fixnum can represent, nor can it be so long that C pointer
1247 arithmetic stops working on the string plus its terminating null.
1248 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1249 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1250 would expose alloc.c internal details that we'd rather keep
1251 private.
1252
1253 This is a macro for use in static initializers. The cast to
1254 ptrdiff_t ensures that the macro is signed. */
1255 #define STRING_BYTES_BOUND \
1256 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1257
1258 /* Mark STR as a unibyte string. */
1259 #define STRING_SET_UNIBYTE(STR) \
1260 do { \
1261 if (EQ (STR, empty_multibyte_string)) \
1262 (STR) = empty_unibyte_string; \
1263 else \
1264 XSTRING (STR)->size_byte = -1; \
1265 } while (false)
1266
1267 /* Mark STR as a multibyte string. Assure that STR contains only
1268 ASCII characters in advance. */
1269 #define STRING_SET_MULTIBYTE(STR) \
1270 do { \
1271 if (EQ (STR, empty_unibyte_string)) \
1272 (STR) = empty_multibyte_string; \
1273 else \
1274 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1275 } while (false)
1276
1277 /* Convenience functions for dealing with Lisp strings. */
1278
1279 INLINE unsigned char *
1280 SDATA (Lisp_Object string)
1281 {
1282 return XSTRING (string)->data;
1283 }
1284 INLINE char *
1285 SSDATA (Lisp_Object string)
1286 {
1287 /* Avoid "differ in sign" warnings. */
1288 return (char *) SDATA (string);
1289 }
1290 INLINE unsigned char
1291 SREF (Lisp_Object string, ptrdiff_t index)
1292 {
1293 return SDATA (string)[index];
1294 }
1295 INLINE void
1296 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1297 {
1298 SDATA (string)[index] = new;
1299 }
1300 INLINE ptrdiff_t
1301 SCHARS (Lisp_Object string)
1302 {
1303 return XSTRING (string)->size;
1304 }
1305
1306 #ifdef GC_CHECK_STRING_BYTES
1307 extern ptrdiff_t string_bytes (struct Lisp_String *);
1308 #endif
1309 INLINE ptrdiff_t
1310 STRING_BYTES (struct Lisp_String *s)
1311 {
1312 #ifdef GC_CHECK_STRING_BYTES
1313 return string_bytes (s);
1314 #else
1315 return s->size_byte < 0 ? s->size : s->size_byte;
1316 #endif
1317 }
1318
1319 INLINE ptrdiff_t
1320 SBYTES (Lisp_Object string)
1321 {
1322 return STRING_BYTES (XSTRING (string));
1323 }
1324 INLINE void
1325 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1326 {
1327 XSTRING (string)->size = newsize;
1328 }
1329
1330 /* Header of vector-like objects. This documents the layout constraints on
1331 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1332 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1333 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1334 because when two such pointers potentially alias, a compiler won't
1335 incorrectly reorder loads and stores to their size fields. See
1336 Bug#8546. */
1337 struct vectorlike_header
1338 {
1339 /* The only field contains various pieces of information:
1340 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1341 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1342 vector (0) or a pseudovector (1).
1343 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1344 of slots) of the vector.
1345 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1346 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1347 - b) number of Lisp_Objects slots at the beginning of the object
1348 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1349 traced by the GC;
1350 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1351 measured in word_size units. Rest fields may also include
1352 Lisp_Objects, but these objects usually needs some special treatment
1353 during GC.
1354 There are some exceptions. For PVEC_FREE, b) is always zero. For
1355 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1356 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1357 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1358 ptrdiff_t size;
1359 };
1360
1361 /* A regular vector is just a header plus an array of Lisp_Objects. */
1362
1363 struct Lisp_Vector
1364 {
1365 struct vectorlike_header header;
1366 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1367 };
1368
1369 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1370 enum
1371 {
1372 ALIGNOF_STRUCT_LISP_VECTOR
1373 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1374 };
1375
1376 /* A boolvector is a kind of vectorlike, with contents like a string. */
1377
1378 struct Lisp_Bool_Vector
1379 {
1380 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1381 just the subtype information. */
1382 struct vectorlike_header header;
1383 /* This is the size in bits. */
1384 EMACS_INT size;
1385 /* The actual bits, packed into bytes.
1386 Zeros fill out the last word if needed.
1387 The bits are in little-endian order in the bytes, and
1388 the bytes are in little-endian order in the words. */
1389 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1390 };
1391
1392 INLINE EMACS_INT
1393 bool_vector_size (Lisp_Object a)
1394 {
1395 EMACS_INT size = XBOOL_VECTOR (a)->size;
1396 eassume (0 <= size);
1397 return size;
1398 }
1399
1400 INLINE bits_word *
1401 bool_vector_data (Lisp_Object a)
1402 {
1403 return XBOOL_VECTOR (a)->data;
1404 }
1405
1406 INLINE unsigned char *
1407 bool_vector_uchar_data (Lisp_Object a)
1408 {
1409 return (unsigned char *) bool_vector_data (a);
1410 }
1411
1412 /* The number of data words and bytes in a bool vector with SIZE bits. */
1413
1414 INLINE EMACS_INT
1415 bool_vector_words (EMACS_INT size)
1416 {
1417 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1418 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1419 }
1420
1421 INLINE EMACS_INT
1422 bool_vector_bytes (EMACS_INT size)
1423 {
1424 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1425 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1426 }
1427
1428 /* True if A's Ith bit is set. */
1429
1430 INLINE bool
1431 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1432 {
1433 eassume (0 <= i && i < bool_vector_size (a));
1434 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1435 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1436 }
1437
1438 INLINE Lisp_Object
1439 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1440 {
1441 return bool_vector_bitref (a, i) ? Qt : Qnil;
1442 }
1443
1444 /* Set A's Ith bit to B. */
1445
1446 INLINE void
1447 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1448 {
1449 unsigned char *addr;
1450
1451 eassume (0 <= i && i < bool_vector_size (a));
1452 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1453
1454 if (b)
1455 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1456 else
1457 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1458 }
1459
1460 /* Some handy constants for calculating sizes
1461 and offsets, mostly of vectorlike objects. */
1462
1463 enum
1464 {
1465 header_size = offsetof (struct Lisp_Vector, contents),
1466 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1467 word_size = sizeof (Lisp_Object)
1468 };
1469
1470 /* Conveniences for dealing with Lisp arrays. */
1471
1472 INLINE Lisp_Object
1473 AREF (Lisp_Object array, ptrdiff_t idx)
1474 {
1475 return XVECTOR (array)->contents[idx];
1476 }
1477
1478 INLINE Lisp_Object *
1479 aref_addr (Lisp_Object array, ptrdiff_t idx)
1480 {
1481 return & XVECTOR (array)->contents[idx];
1482 }
1483
1484 INLINE ptrdiff_t
1485 ASIZE (Lisp_Object array)
1486 {
1487 return XVECTOR (array)->header.size;
1488 }
1489
1490 INLINE void
1491 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1492 {
1493 eassert (0 <= idx && idx < ASIZE (array));
1494 XVECTOR (array)->contents[idx] = val;
1495 }
1496
1497 INLINE void
1498 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1499 {
1500 /* Like ASET, but also can be used in the garbage collector:
1501 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1502 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1503 XVECTOR (array)->contents[idx] = val;
1504 }
1505
1506 /* True, since Qnil's representation is zero. Every place in the code
1507 that assumes Qnil is zero should verify (NIL_IS_ZERO), to make it easy
1508 to find such assumptions later if we change Qnil to be nonzero. */
1509 enum { NIL_IS_ZERO = XLI_BUILTIN_LISPSYM (iQnil) == 0 };
1510
1511 /* Clear the object addressed by P, with size NBYTES, so that all its
1512 bytes are zero and all its Lisp values are nil. */
1513 INLINE void
1514 memclear (void *p, ptrdiff_t nbytes)
1515 {
1516 eassert (0 <= nbytes);
1517 verify (NIL_IS_ZERO);
1518 /* Since Qnil is zero, memset suffices. */
1519 memset (p, 0, nbytes);
1520 }
1521
1522 /* If a struct is made to look like a vector, this macro returns the length
1523 of the shortest vector that would hold that struct. */
1524
1525 #define VECSIZE(type) \
1526 ((sizeof (type) - header_size + word_size - 1) / word_size)
1527
1528 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1529 at the end and we need to compute the number of Lisp_Object fields (the
1530 ones that the GC needs to trace). */
1531
1532 #define PSEUDOVECSIZE(type, nonlispfield) \
1533 ((offsetof (type, nonlispfield) - header_size) / word_size)
1534
1535 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1536 should be integer expressions. This is not the same as
1537 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1538 returns true. For efficiency, prefer plain unsigned comparison if A
1539 and B's sizes both fit (after integer promotion). */
1540 #define UNSIGNED_CMP(a, op, b) \
1541 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1542 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1543 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1544
1545 /* True iff C is an ASCII character. */
1546 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1547
1548 /* A char-table is a kind of vectorlike, with contents are like a
1549 vector but with a few other slots. For some purposes, it makes
1550 sense to handle a char-table with type struct Lisp_Vector. An
1551 element of a char table can be any Lisp objects, but if it is a sub
1552 char-table, we treat it a table that contains information of a
1553 specific range of characters. A sub char-table is like a vector but
1554 with two integer fields between the header and Lisp data, which means
1555 that it has to be marked with some precautions (see mark_char_table
1556 in alloc.c). A sub char-table appears only in an element of a char-table,
1557 and there's no way to access it directly from Emacs Lisp program. */
1558
1559 enum CHARTAB_SIZE_BITS
1560 {
1561 CHARTAB_SIZE_BITS_0 = 6,
1562 CHARTAB_SIZE_BITS_1 = 4,
1563 CHARTAB_SIZE_BITS_2 = 5,
1564 CHARTAB_SIZE_BITS_3 = 7
1565 };
1566
1567 extern const int chartab_size[4];
1568
1569 struct Lisp_Char_Table
1570 {
1571 /* HEADER.SIZE is the vector's size field, which also holds the
1572 pseudovector type information. It holds the size, too.
1573 The size counts the defalt, parent, purpose, ascii,
1574 contents, and extras slots. */
1575 struct vectorlike_header header;
1576
1577 /* This holds a default value,
1578 which is used whenever the value for a specific character is nil. */
1579 Lisp_Object defalt;
1580
1581 /* This points to another char table, which we inherit from when the
1582 value for a specific character is nil. The `defalt' slot takes
1583 precedence over this. */
1584 Lisp_Object parent;
1585
1586 /* This is a symbol which says what kind of use this char-table is
1587 meant for. */
1588 Lisp_Object purpose;
1589
1590 /* The bottom sub char-table for characters of the range 0..127. It
1591 is nil if none of ASCII character has a specific value. */
1592 Lisp_Object ascii;
1593
1594 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1595
1596 /* These hold additional data. It is a vector. */
1597 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1598 };
1599
1600 struct Lisp_Sub_Char_Table
1601 {
1602 /* HEADER.SIZE is the vector's size field, which also holds the
1603 pseudovector type information. It holds the size, too. */
1604 struct vectorlike_header header;
1605
1606 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1607 char-table of depth 1 contains 16 elements, and each element
1608 covers 4096 (128*32) characters. A sub char-table of depth 2
1609 contains 32 elements, and each element covers 128 characters. A
1610 sub char-table of depth 3 contains 128 elements, and each element
1611 is for one character. */
1612 int depth;
1613
1614 /* Minimum character covered by the sub char-table. */
1615 int min_char;
1616
1617 /* Use set_sub_char_table_contents to set this. */
1618 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1619 };
1620
1621 INLINE Lisp_Object
1622 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1623 {
1624 struct Lisp_Char_Table *tbl = NULL;
1625 Lisp_Object val;
1626 do
1627 {
1628 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1629 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1630 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1631 if (NILP (val))
1632 val = tbl->defalt;
1633 }
1634 while (NILP (val) && ! NILP (tbl->parent));
1635
1636 return val;
1637 }
1638
1639 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1640 characters. Do not check validity of CT. */
1641 INLINE Lisp_Object
1642 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1643 {
1644 return (ASCII_CHAR_P (idx)
1645 ? CHAR_TABLE_REF_ASCII (ct, idx)
1646 : char_table_ref (ct, idx));
1647 }
1648
1649 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1650 8-bit European characters. Do not check validity of CT. */
1651 INLINE void
1652 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1653 {
1654 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1655 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1656 else
1657 char_table_set (ct, idx, val);
1658 }
1659
1660 /* This structure describes a built-in function.
1661 It is generated by the DEFUN macro only.
1662 defsubr makes it into a Lisp object. */
1663
1664 struct Lisp_Subr
1665 {
1666 struct vectorlike_header header;
1667 union {
1668 Lisp_Object (*a0) (void);
1669 Lisp_Object (*a1) (Lisp_Object);
1670 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1671 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1672 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1673 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1674 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1675 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1676 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1677 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1678 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1679 } function;
1680 short min_args, max_args;
1681 const char *symbol_name;
1682 const char *intspec;
1683 const char *doc;
1684 };
1685
1686 enum char_table_specials
1687 {
1688 /* This is the number of slots that every char table must have. This
1689 counts the ordinary slots and the top, defalt, parent, and purpose
1690 slots. */
1691 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1692
1693 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1694 when the latter is treated as an ordinary Lisp_Vector. */
1695 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1696 };
1697
1698 /* Return the number of "extra" slots in the char table CT. */
1699
1700 INLINE int
1701 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1702 {
1703 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1704 - CHAR_TABLE_STANDARD_SLOTS);
1705 }
1706
1707 /* Make sure that sub char-table contents slot is where we think it is. */
1708 verify (offsetof (struct Lisp_Sub_Char_Table, contents)
1709 == offsetof (struct Lisp_Vector, contents[SUB_CHAR_TABLE_OFFSET]));
1710
1711 /***********************************************************************
1712 Symbols
1713 ***********************************************************************/
1714
1715 /* Value is name of symbol. */
1716
1717 LISP_MACRO_DEFUN (SYMBOL_VAL, Lisp_Object, (struct Lisp_Symbol *sym), (sym))
1718
1719 INLINE struct Lisp_Symbol *
1720 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1721 {
1722 eassert (sym->redirect == SYMBOL_VARALIAS);
1723 return sym->val.alias;
1724 }
1725 INLINE struct Lisp_Buffer_Local_Value *
1726 SYMBOL_BLV (struct Lisp_Symbol *sym)
1727 {
1728 eassert (sym->redirect == SYMBOL_LOCALIZED);
1729 return sym->val.blv;
1730 }
1731 INLINE union Lisp_Fwd *
1732 SYMBOL_FWD (struct Lisp_Symbol *sym)
1733 {
1734 eassert (sym->redirect == SYMBOL_FORWARDED);
1735 return sym->val.fwd;
1736 }
1737
1738 LISP_MACRO_DEFUN_VOID (SET_SYMBOL_VAL,
1739 (struct Lisp_Symbol *sym, Lisp_Object v), (sym, v))
1740
1741 INLINE void
1742 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1743 {
1744 eassert (sym->redirect == SYMBOL_VARALIAS);
1745 sym->val.alias = v;
1746 }
1747 INLINE void
1748 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1749 {
1750 eassert (sym->redirect == SYMBOL_LOCALIZED);
1751 sym->val.blv = v;
1752 }
1753 INLINE void
1754 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1755 {
1756 eassert (sym->redirect == SYMBOL_FORWARDED);
1757 sym->val.fwd = v;
1758 }
1759
1760 INLINE Lisp_Object
1761 SYMBOL_NAME (Lisp_Object sym)
1762 {
1763 return XSYMBOL (sym)->name;
1764 }
1765
1766 /* Value is true if SYM is an interned symbol. */
1767
1768 INLINE bool
1769 SYMBOL_INTERNED_P (Lisp_Object sym)
1770 {
1771 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1772 }
1773
1774 /* Value is true if SYM is interned in initial_obarray. */
1775
1776 INLINE bool
1777 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1778 {
1779 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1780 }
1781
1782 /* Value is non-zero if symbol is considered a constant, i.e. its
1783 value cannot be changed (there is an exception for keyword symbols,
1784 whose value can be set to the keyword symbol itself). */
1785
1786 LISP_MACRO_DEFUN (SYMBOL_CONSTANT_P, int, (Lisp_Object sym), (sym))
1787
1788 /* Placeholder for make-docfile to process. The actual symbol
1789 definition is done by lread.c's defsym. */
1790 #define DEFSYM(sym, name) /* empty */
1791
1792 \f
1793 /***********************************************************************
1794 Hash Tables
1795 ***********************************************************************/
1796
1797 /* The structure of a Lisp hash table. */
1798
1799 struct hash_table_test
1800 {
1801 /* Name of the function used to compare keys. */
1802 Lisp_Object name;
1803
1804 /* User-supplied hash function, or nil. */
1805 Lisp_Object user_hash_function;
1806
1807 /* User-supplied key comparison function, or nil. */
1808 Lisp_Object user_cmp_function;
1809
1810 /* C function to compare two keys. */
1811 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1812
1813 /* C function to compute hash code. */
1814 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1815 };
1816
1817 struct Lisp_Hash_Table
1818 {
1819 /* This is for Lisp; the hash table code does not refer to it. */
1820 struct vectorlike_header header;
1821
1822 /* Nil if table is non-weak. Otherwise a symbol describing the
1823 weakness of the table. */
1824 Lisp_Object weak;
1825
1826 /* When the table is resized, and this is an integer, compute the
1827 new size by adding this to the old size. If a float, compute the
1828 new size by multiplying the old size with this factor. */
1829 Lisp_Object rehash_size;
1830
1831 /* Resize hash table when number of entries/ table size is >= this
1832 ratio, a float. */
1833 Lisp_Object rehash_threshold;
1834
1835 /* Vector of hash codes. If hash[I] is nil, this means that the
1836 I-th entry is unused. */
1837 Lisp_Object hash;
1838
1839 /* Vector used to chain entries. If entry I is free, next[I] is the
1840 entry number of the next free item. If entry I is non-free,
1841 next[I] is the index of the next entry in the collision chain. */
1842 Lisp_Object next;
1843
1844 /* Index of first free entry in free list. */
1845 Lisp_Object next_free;
1846
1847 /* Bucket vector. A non-nil entry is the index of the first item in
1848 a collision chain. This vector's size can be larger than the
1849 hash table size to reduce collisions. */
1850 Lisp_Object index;
1851
1852 /* Only the fields above are traced normally by the GC. The ones below
1853 `count' are special and are either ignored by the GC or traced in
1854 a special way (e.g. because of weakness). */
1855
1856 /* Number of key/value entries in the table. */
1857 ptrdiff_t count;
1858
1859 /* Vector of keys and values. The key of item I is found at index
1860 2 * I, the value is found at index 2 * I + 1.
1861 This is gc_marked specially if the table is weak. */
1862 Lisp_Object key_and_value;
1863
1864 /* The comparison and hash functions. */
1865 struct hash_table_test test;
1866
1867 /* Next weak hash table if this is a weak hash table. The head
1868 of the list is in weak_hash_tables. */
1869 struct Lisp_Hash_Table *next_weak;
1870 };
1871
1872
1873 INLINE struct Lisp_Hash_Table *
1874 XHASH_TABLE (Lisp_Object a)
1875 {
1876 return XUNTAG (a, Lisp_Vectorlike);
1877 }
1878
1879 #define XSET_HASH_TABLE(VAR, PTR) \
1880 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1881
1882 INLINE bool
1883 HASH_TABLE_P (Lisp_Object a)
1884 {
1885 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1886 }
1887
1888 /* Value is the key part of entry IDX in hash table H. */
1889 INLINE Lisp_Object
1890 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1891 {
1892 return AREF (h->key_and_value, 2 * idx);
1893 }
1894
1895 /* Value is the value part of entry IDX in hash table H. */
1896 INLINE Lisp_Object
1897 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1898 {
1899 return AREF (h->key_and_value, 2 * idx + 1);
1900 }
1901
1902 /* Value is the index of the next entry following the one at IDX
1903 in hash table H. */
1904 INLINE Lisp_Object
1905 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1906 {
1907 return AREF (h->next, idx);
1908 }
1909
1910 /* Value is the hash code computed for entry IDX in hash table H. */
1911 INLINE Lisp_Object
1912 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1913 {
1914 return AREF (h->hash, idx);
1915 }
1916
1917 /* Value is the index of the element in hash table H that is the
1918 start of the collision list at index IDX in the index vector of H. */
1919 INLINE Lisp_Object
1920 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1921 {
1922 return AREF (h->index, idx);
1923 }
1924
1925 /* Value is the size of hash table H. */
1926 INLINE ptrdiff_t
1927 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1928 {
1929 return ASIZE (h->next);
1930 }
1931
1932 /* Default size for hash tables if not specified. */
1933
1934 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1935
1936 /* Default threshold specifying when to resize a hash table. The
1937 value gives the ratio of current entries in the hash table and the
1938 size of the hash table. */
1939
1940 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
1941
1942 /* Default factor by which to increase the size of a hash table. */
1943
1944 static double const DEFAULT_REHASH_SIZE = 1.5;
1945
1946 /* Combine two integers X and Y for hashing. The result might not fit
1947 into a Lisp integer. */
1948
1949 INLINE EMACS_UINT
1950 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
1951 {
1952 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
1953 }
1954
1955 /* Hash X, returning a value that fits into a fixnum. */
1956
1957 INLINE EMACS_UINT
1958 SXHASH_REDUCE (EMACS_UINT x)
1959 {
1960 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
1961 }
1962
1963 /* These structures are used for various misc types. */
1964
1965 struct Lisp_Misc_Any /* Supertype of all Misc types. */
1966 {
1967 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
1968 bool_bf gcmarkbit : 1;
1969 unsigned spacer : 15;
1970 };
1971
1972 struct Lisp_Marker
1973 {
1974 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
1975 bool_bf gcmarkbit : 1;
1976 unsigned spacer : 13;
1977 /* This flag is temporarily used in the functions
1978 decode/encode_coding_object to record that the marker position
1979 must be adjusted after the conversion. */
1980 bool_bf need_adjustment : 1;
1981 /* True means normal insertion at the marker's position
1982 leaves the marker after the inserted text. */
1983 bool_bf insertion_type : 1;
1984 /* This is the buffer that the marker points into, or 0 if it points nowhere.
1985 Note: a chain of markers can contain markers pointing into different
1986 buffers (the chain is per buffer_text rather than per buffer, so it's
1987 shared between indirect buffers). */
1988 /* This is used for (other than NULL-checking):
1989 - Fmarker_buffer
1990 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
1991 - unchain_marker: to find the list from which to unchain.
1992 - Fkill_buffer: to only unchain the markers of current indirect buffer.
1993 */
1994 struct buffer *buffer;
1995
1996 /* The remaining fields are meaningless in a marker that
1997 does not point anywhere. */
1998
1999 /* For markers that point somewhere,
2000 this is used to chain of all the markers in a given buffer. */
2001 /* We could remove it and use an array in buffer_text instead.
2002 That would also allow to preserve it ordered. */
2003 struct Lisp_Marker *next;
2004 /* This is the char position where the marker points. */
2005 ptrdiff_t charpos;
2006 /* This is the byte position.
2007 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
2008 used to implement the functionality of markers, but rather to (ab)use
2009 markers as a cache for char<->byte mappings). */
2010 ptrdiff_t bytepos;
2011 };
2012
2013 /* START and END are markers in the overlay's buffer, and
2014 PLIST is the overlay's property list. */
2015 struct Lisp_Overlay
2016 /* An overlay's real data content is:
2017 - plist
2018 - buffer (really there are two buffer pointers, one per marker,
2019 and both points to the same buffer)
2020 - insertion type of both ends (per-marker fields)
2021 - start & start byte (of start marker)
2022 - end & end byte (of end marker)
2023 - next (singly linked list of overlays)
2024 - next fields of start and end markers (singly linked list of markers).
2025 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
2026 */
2027 {
2028 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
2029 bool_bf gcmarkbit : 1;
2030 unsigned spacer : 15;
2031 struct Lisp_Overlay *next;
2032 Lisp_Object start;
2033 Lisp_Object end;
2034 Lisp_Object plist;
2035 };
2036
2037 /* Types of data which may be saved in a Lisp_Save_Value. */
2038
2039 enum
2040 {
2041 SAVE_UNUSED,
2042 SAVE_INTEGER,
2043 SAVE_FUNCPOINTER,
2044 SAVE_POINTER,
2045 SAVE_OBJECT
2046 };
2047
2048 /* Number of bits needed to store one of the above values. */
2049 enum { SAVE_SLOT_BITS = 3 };
2050
2051 /* Number of slots in a save value where save_type is nonzero. */
2052 enum { SAVE_VALUE_SLOTS = 4 };
2053
2054 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
2055
2056 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
2057
2058 enum Lisp_Save_Type
2059 {
2060 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2061 SAVE_TYPE_INT_INT_INT
2062 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
2063 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
2064 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
2065 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
2066 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
2067 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2068 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
2069 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
2070 SAVE_TYPE_FUNCPTR_PTR_OBJ
2071 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
2072
2073 /* This has an extra bit indicating it's raw memory. */
2074 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
2075 };
2076
2077 /* Special object used to hold a different values for later use.
2078
2079 This is mostly used to package C integers and pointers to call
2080 record_unwind_protect when two or more values need to be saved.
2081 For example:
2082
2083 ...
2084 struct my_data *md = get_my_data ();
2085 ptrdiff_t mi = get_my_integer ();
2086 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2087 ...
2088
2089 Lisp_Object my_unwind (Lisp_Object arg)
2090 {
2091 struct my_data *md = XSAVE_POINTER (arg, 0);
2092 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2093 ...
2094 }
2095
2096 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2097 saved objects and raise eassert if type of the saved object doesn't match
2098 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2099 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2100 slot 0 is a pointer. */
2101
2102 typedef void (*voidfuncptr) (void);
2103
2104 struct Lisp_Save_Value
2105 {
2106 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2107 bool_bf gcmarkbit : 1;
2108 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2109
2110 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2111 V's data entries are determined by V->save_type. E.g., if
2112 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2113 V->data[1] is an integer, and V's other data entries are unused.
2114
2115 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2116 a memory area containing V->data[1].integer potential Lisp_Objects. */
2117 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2118 union {
2119 void *pointer;
2120 voidfuncptr funcpointer;
2121 ptrdiff_t integer;
2122 Lisp_Object object;
2123 } data[SAVE_VALUE_SLOTS];
2124 };
2125
2126 /* Return the type of V's Nth saved value. */
2127 INLINE int
2128 save_type (struct Lisp_Save_Value *v, int n)
2129 {
2130 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2131 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2132 }
2133
2134 /* Get and set the Nth saved pointer. */
2135
2136 INLINE void *
2137 XSAVE_POINTER (Lisp_Object obj, int n)
2138 {
2139 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2140 return XSAVE_VALUE (obj)->data[n].pointer;
2141 }
2142 INLINE void
2143 set_save_pointer (Lisp_Object obj, int n, void *val)
2144 {
2145 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2146 XSAVE_VALUE (obj)->data[n].pointer = val;
2147 }
2148 INLINE voidfuncptr
2149 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2150 {
2151 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2152 return XSAVE_VALUE (obj)->data[n].funcpointer;
2153 }
2154
2155 /* Likewise for the saved integer. */
2156
2157 INLINE ptrdiff_t
2158 XSAVE_INTEGER (Lisp_Object obj, int n)
2159 {
2160 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2161 return XSAVE_VALUE (obj)->data[n].integer;
2162 }
2163 INLINE void
2164 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2165 {
2166 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2167 XSAVE_VALUE (obj)->data[n].integer = val;
2168 }
2169
2170 /* Extract Nth saved object. */
2171
2172 INLINE Lisp_Object
2173 XSAVE_OBJECT (Lisp_Object obj, int n)
2174 {
2175 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2176 return XSAVE_VALUE (obj)->data[n].object;
2177 }
2178
2179 /* A miscellaneous object, when it's on the free list. */
2180 struct Lisp_Free
2181 {
2182 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2183 bool_bf gcmarkbit : 1;
2184 unsigned spacer : 15;
2185 union Lisp_Misc *chain;
2186 };
2187
2188 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2189 It uses one of these struct subtypes to get the type field. */
2190
2191 union Lisp_Misc
2192 {
2193 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2194 struct Lisp_Free u_free;
2195 struct Lisp_Marker u_marker;
2196 struct Lisp_Overlay u_overlay;
2197 struct Lisp_Save_Value u_save_value;
2198 };
2199
2200 INLINE union Lisp_Misc *
2201 XMISC (Lisp_Object a)
2202 {
2203 return XUNTAG (a, Lisp_Misc);
2204 }
2205
2206 INLINE struct Lisp_Misc_Any *
2207 XMISCANY (Lisp_Object a)
2208 {
2209 eassert (MISCP (a));
2210 return & XMISC (a)->u_any;
2211 }
2212
2213 INLINE enum Lisp_Misc_Type
2214 XMISCTYPE (Lisp_Object a)
2215 {
2216 return XMISCANY (a)->type;
2217 }
2218
2219 INLINE struct Lisp_Marker *
2220 XMARKER (Lisp_Object a)
2221 {
2222 eassert (MARKERP (a));
2223 return & XMISC (a)->u_marker;
2224 }
2225
2226 INLINE struct Lisp_Overlay *
2227 XOVERLAY (Lisp_Object a)
2228 {
2229 eassert (OVERLAYP (a));
2230 return & XMISC (a)->u_overlay;
2231 }
2232
2233 INLINE struct Lisp_Save_Value *
2234 XSAVE_VALUE (Lisp_Object a)
2235 {
2236 eassert (SAVE_VALUEP (a));
2237 return & XMISC (a)->u_save_value;
2238 }
2239 \f
2240 /* Forwarding pointer to an int variable.
2241 This is allowed only in the value cell of a symbol,
2242 and it means that the symbol's value really lives in the
2243 specified int variable. */
2244 struct Lisp_Intfwd
2245 {
2246 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2247 EMACS_INT *intvar;
2248 };
2249
2250 /* Boolean forwarding pointer to an int variable.
2251 This is like Lisp_Intfwd except that the ostensible
2252 "value" of the symbol is t if the bool variable is true,
2253 nil if it is false. */
2254 struct Lisp_Boolfwd
2255 {
2256 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2257 bool *boolvar;
2258 };
2259
2260 /* Forwarding pointer to a Lisp_Object variable.
2261 This is allowed only in the value cell of a symbol,
2262 and it means that the symbol's value really lives in the
2263 specified variable. */
2264 struct Lisp_Objfwd
2265 {
2266 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2267 Lisp_Object *objvar;
2268 };
2269
2270 /* Like Lisp_Objfwd except that value lives in a slot in the
2271 current buffer. Value is byte index of slot within buffer. */
2272 struct Lisp_Buffer_Objfwd
2273 {
2274 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2275 int offset;
2276 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2277 Lisp_Object predicate;
2278 };
2279
2280 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2281 the symbol has buffer-local or frame-local bindings. (Exception:
2282 some buffer-local variables are built-in, with their values stored
2283 in the buffer structure itself. They are handled differently,
2284 using struct Lisp_Buffer_Objfwd.)
2285
2286 The `realvalue' slot holds the variable's current value, or a
2287 forwarding pointer to where that value is kept. This value is the
2288 one that corresponds to the loaded binding. To read or set the
2289 variable, you must first make sure the right binding is loaded;
2290 then you can access the value in (or through) `realvalue'.
2291
2292 `buffer' and `frame' are the buffer and frame for which the loaded
2293 binding was found. If those have changed, to make sure the right
2294 binding is loaded it is necessary to find which binding goes with
2295 the current buffer and selected frame, then load it. To load it,
2296 first unload the previous binding, then copy the value of the new
2297 binding into `realvalue' (or through it). Also update
2298 LOADED-BINDING to point to the newly loaded binding.
2299
2300 `local_if_set' indicates that merely setting the variable creates a
2301 local binding for the current buffer. Otherwise the latter, setting
2302 the variable does not do that; only make-local-variable does that. */
2303
2304 struct Lisp_Buffer_Local_Value
2305 {
2306 /* True means that merely setting the variable creates a local
2307 binding for the current buffer. */
2308 bool_bf local_if_set : 1;
2309 /* True means this variable can have frame-local bindings, otherwise, it is
2310 can have buffer-local bindings. The two cannot be combined. */
2311 bool_bf frame_local : 1;
2312 /* True means that the binding now loaded was found.
2313 Presumably equivalent to (defcell!=valcell). */
2314 bool_bf found : 1;
2315 /* If non-NULL, a forwarding to the C var where it should also be set. */
2316 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2317 /* The buffer or frame for which the loaded binding was found. */
2318 Lisp_Object where;
2319 /* A cons cell that holds the default value. It has the form
2320 (SYMBOL . DEFAULT-VALUE). */
2321 Lisp_Object defcell;
2322 /* The cons cell from `where's parameter alist.
2323 It always has the form (SYMBOL . VALUE)
2324 Note that if `forward' is non-nil, VALUE may be out of date.
2325 Also if the currently loaded binding is the default binding, then
2326 this is `eq'ual to defcell. */
2327 Lisp_Object valcell;
2328 };
2329
2330 /* Like Lisp_Objfwd except that value lives in a slot in the
2331 current kboard. */
2332 struct Lisp_Kboard_Objfwd
2333 {
2334 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2335 int offset;
2336 };
2337
2338 union Lisp_Fwd
2339 {
2340 struct Lisp_Intfwd u_intfwd;
2341 struct Lisp_Boolfwd u_boolfwd;
2342 struct Lisp_Objfwd u_objfwd;
2343 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2344 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2345 };
2346
2347 INLINE enum Lisp_Fwd_Type
2348 XFWDTYPE (union Lisp_Fwd *a)
2349 {
2350 return a->u_intfwd.type;
2351 }
2352
2353 INLINE struct Lisp_Buffer_Objfwd *
2354 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2355 {
2356 eassert (BUFFER_OBJFWDP (a));
2357 return &a->u_buffer_objfwd;
2358 }
2359 \f
2360 /* Lisp floating point type. */
2361 struct Lisp_Float
2362 {
2363 union
2364 {
2365 double data;
2366 struct Lisp_Float *chain;
2367 } u;
2368 };
2369
2370 INLINE double
2371 XFLOAT_DATA (Lisp_Object f)
2372 {
2373 return XFLOAT (f)->u.data;
2374 }
2375
2376 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2377 representations, have infinities and NaNs, and do not trap on
2378 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2379 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2380 wanted here, but is not quite right because Emacs does not require
2381 all the features of C11 Annex F (and does not require C11 at all,
2382 for that matter). */
2383 enum
2384 {
2385 IEEE_FLOATING_POINT
2386 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2387 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2388 };
2389
2390 /* A character, declared with the following typedef, is a member
2391 of some character set associated with the current buffer. */
2392 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2393 #define _UCHAR_T
2394 typedef unsigned char UCHAR;
2395 #endif
2396
2397 /* Meanings of slots in a Lisp_Compiled: */
2398
2399 enum Lisp_Compiled
2400 {
2401 COMPILED_ARGLIST = 0,
2402 COMPILED_BYTECODE = 1,
2403 COMPILED_CONSTANTS = 2,
2404 COMPILED_STACK_DEPTH = 3,
2405 COMPILED_DOC_STRING = 4,
2406 COMPILED_INTERACTIVE = 5
2407 };
2408
2409 /* Flag bits in a character. These also get used in termhooks.h.
2410 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2411 (MUlti-Lingual Emacs) might need 22 bits for the character value
2412 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2413 enum char_bits
2414 {
2415 CHAR_ALT = 0x0400000,
2416 CHAR_SUPER = 0x0800000,
2417 CHAR_HYPER = 0x1000000,
2418 CHAR_SHIFT = 0x2000000,
2419 CHAR_CTL = 0x4000000,
2420 CHAR_META = 0x8000000,
2421
2422 CHAR_MODIFIER_MASK =
2423 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2424
2425 /* Actually, the current Emacs uses 22 bits for the character value
2426 itself. */
2427 CHARACTERBITS = 22
2428 };
2429 \f
2430 /* Data type checking. */
2431
2432 LISP_MACRO_DEFUN (NILP, bool, (Lisp_Object x), (x))
2433
2434 INLINE bool
2435 NUMBERP (Lisp_Object x)
2436 {
2437 return INTEGERP (x) || FLOATP (x);
2438 }
2439 INLINE bool
2440 NATNUMP (Lisp_Object x)
2441 {
2442 return INTEGERP (x) && 0 <= XINT (x);
2443 }
2444
2445 INLINE bool
2446 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2447 {
2448 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2449 }
2450
2451 #define TYPE_RANGED_INTEGERP(type, x) \
2452 (INTEGERP (x) \
2453 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2454 && XINT (x) <= TYPE_MAXIMUM (type))
2455
2456 LISP_MACRO_DEFUN (CONSP, bool, (Lisp_Object x), (x))
2457 LISP_MACRO_DEFUN (FLOATP, bool, (Lisp_Object x), (x))
2458 LISP_MACRO_DEFUN (MISCP, bool, (Lisp_Object x), (x))
2459 LISP_MACRO_DEFUN (SYMBOLP, bool, (Lisp_Object x), (x))
2460 LISP_MACRO_DEFUN (INTEGERP, bool, (Lisp_Object x), (x))
2461 LISP_MACRO_DEFUN (VECTORLIKEP, bool, (Lisp_Object x), (x))
2462 LISP_MACRO_DEFUN (MARKERP, bool, (Lisp_Object x), (x))
2463
2464 INLINE bool
2465 STRINGP (Lisp_Object x)
2466 {
2467 return XTYPE (x) == Lisp_String;
2468 }
2469 INLINE bool
2470 VECTORP (Lisp_Object x)
2471 {
2472 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2473 }
2474 INLINE bool
2475 OVERLAYP (Lisp_Object x)
2476 {
2477 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2478 }
2479 INLINE bool
2480 SAVE_VALUEP (Lisp_Object x)
2481 {
2482 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2483 }
2484
2485 INLINE bool
2486 AUTOLOADP (Lisp_Object x)
2487 {
2488 return CONSP (x) && EQ (Qautoload, XCAR (x));
2489 }
2490
2491 INLINE bool
2492 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2493 {
2494 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2495 }
2496
2497 INLINE bool
2498 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2499 {
2500 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2501 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2502 }
2503
2504 /* True if A is a pseudovector whose code is CODE. */
2505 INLINE bool
2506 PSEUDOVECTORP (Lisp_Object a, int code)
2507 {
2508 if (! VECTORLIKEP (a))
2509 return false;
2510 else
2511 {
2512 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2513 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2514 return PSEUDOVECTOR_TYPEP (h, code);
2515 }
2516 }
2517
2518
2519 /* Test for specific pseudovector types. */
2520
2521 INLINE bool
2522 WINDOW_CONFIGURATIONP (Lisp_Object a)
2523 {
2524 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2525 }
2526
2527 INLINE bool
2528 PROCESSP (Lisp_Object a)
2529 {
2530 return PSEUDOVECTORP (a, PVEC_PROCESS);
2531 }
2532
2533 INLINE bool
2534 WINDOWP (Lisp_Object a)
2535 {
2536 return PSEUDOVECTORP (a, PVEC_WINDOW);
2537 }
2538
2539 INLINE bool
2540 TERMINALP (Lisp_Object a)
2541 {
2542 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2543 }
2544
2545 INLINE bool
2546 SUBRP (Lisp_Object a)
2547 {
2548 return PSEUDOVECTORP (a, PVEC_SUBR);
2549 }
2550
2551 INLINE bool
2552 COMPILEDP (Lisp_Object a)
2553 {
2554 return PSEUDOVECTORP (a, PVEC_COMPILED);
2555 }
2556
2557 INLINE bool
2558 BUFFERP (Lisp_Object a)
2559 {
2560 return PSEUDOVECTORP (a, PVEC_BUFFER);
2561 }
2562
2563 INLINE bool
2564 CHAR_TABLE_P (Lisp_Object a)
2565 {
2566 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2567 }
2568
2569 INLINE bool
2570 SUB_CHAR_TABLE_P (Lisp_Object a)
2571 {
2572 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2573 }
2574
2575 INLINE bool
2576 BOOL_VECTOR_P (Lisp_Object a)
2577 {
2578 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2579 }
2580
2581 INLINE bool
2582 FRAMEP (Lisp_Object a)
2583 {
2584 return PSEUDOVECTORP (a, PVEC_FRAME);
2585 }
2586
2587 /* Test for image (image . spec) */
2588 INLINE bool
2589 IMAGEP (Lisp_Object x)
2590 {
2591 return CONSP (x) && EQ (XCAR (x), Qimage);
2592 }
2593
2594 /* Array types. */
2595 INLINE bool
2596 ARRAYP (Lisp_Object x)
2597 {
2598 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2599 }
2600 \f
2601 INLINE void
2602 CHECK_LIST (Lisp_Object x)
2603 {
2604 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2605 }
2606
2607 LISP_MACRO_DEFUN_VOID (CHECK_LIST_CONS, (Lisp_Object x, Lisp_Object y), (x, y))
2608 LISP_MACRO_DEFUN_VOID (CHECK_SYMBOL, (Lisp_Object x), (x))
2609 LISP_MACRO_DEFUN_VOID (CHECK_NUMBER, (Lisp_Object x), (x))
2610
2611 INLINE void
2612 CHECK_STRING (Lisp_Object x)
2613 {
2614 CHECK_TYPE (STRINGP (x), Qstringp, x);
2615 }
2616 INLINE void
2617 CHECK_STRING_CAR (Lisp_Object x)
2618 {
2619 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2620 }
2621 INLINE void
2622 CHECK_CONS (Lisp_Object x)
2623 {
2624 CHECK_TYPE (CONSP (x), Qconsp, x);
2625 }
2626 INLINE void
2627 CHECK_VECTOR (Lisp_Object x)
2628 {
2629 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2630 }
2631 INLINE void
2632 CHECK_BOOL_VECTOR (Lisp_Object x)
2633 {
2634 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2635 }
2636 /* This is a bit special because we always need size afterwards. */
2637 INLINE ptrdiff_t
2638 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2639 {
2640 if (VECTORP (x))
2641 return ASIZE (x);
2642 if (STRINGP (x))
2643 return SCHARS (x);
2644 wrong_type_argument (Qarrayp, x);
2645 }
2646 INLINE void
2647 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2648 {
2649 CHECK_TYPE (ARRAYP (x), predicate, x);
2650 }
2651 INLINE void
2652 CHECK_BUFFER (Lisp_Object x)
2653 {
2654 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2655 }
2656 INLINE void
2657 CHECK_WINDOW (Lisp_Object x)
2658 {
2659 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2660 }
2661 #ifdef subprocesses
2662 INLINE void
2663 CHECK_PROCESS (Lisp_Object x)
2664 {
2665 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2666 }
2667 #endif
2668 INLINE void
2669 CHECK_NATNUM (Lisp_Object x)
2670 {
2671 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2672 }
2673
2674 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2675 do { \
2676 CHECK_NUMBER (x); \
2677 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2678 args_out_of_range_3 \
2679 (x, \
2680 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2681 ? MOST_NEGATIVE_FIXNUM \
2682 : (lo)), \
2683 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2684 } while (false)
2685 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2686 do { \
2687 if (TYPE_SIGNED (type)) \
2688 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2689 else \
2690 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2691 } while (false)
2692
2693 #define CHECK_NUMBER_COERCE_MARKER(x) \
2694 do { \
2695 if (MARKERP ((x))) \
2696 XSETFASTINT (x, marker_position (x)); \
2697 else \
2698 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2699 } while (false)
2700
2701 INLINE double
2702 XFLOATINT (Lisp_Object n)
2703 {
2704 return extract_float (n);
2705 }
2706
2707 INLINE void
2708 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2709 {
2710 CHECK_TYPE (FLOATP (x) || INTEGERP (x), Qnumberp, x);
2711 }
2712
2713 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2714 do { \
2715 if (MARKERP (x)) \
2716 XSETFASTINT (x, marker_position (x)); \
2717 else \
2718 CHECK_TYPE (INTEGERP (x) || FLOATP (x), Qnumber_or_marker_p, x); \
2719 } while (false)
2720
2721 /* Since we can't assign directly to the CAR or CDR fields of a cons
2722 cell, use these when checking that those fields contain numbers. */
2723 INLINE void
2724 CHECK_NUMBER_CAR (Lisp_Object x)
2725 {
2726 Lisp_Object tmp = XCAR (x);
2727 CHECK_NUMBER (tmp);
2728 XSETCAR (x, tmp);
2729 }
2730
2731 INLINE void
2732 CHECK_NUMBER_CDR (Lisp_Object x)
2733 {
2734 Lisp_Object tmp = XCDR (x);
2735 CHECK_NUMBER (tmp);
2736 XSETCDR (x, tmp);
2737 }
2738 \f
2739 /* Define a built-in function for calling from Lisp.
2740 `lname' should be the name to give the function in Lisp,
2741 as a null-terminated C string.
2742 `fnname' should be the name of the function in C.
2743 By convention, it starts with F.
2744 `sname' should be the name for the C constant structure
2745 that records information on this function for internal use.
2746 By convention, it should be the same as `fnname' but with S instead of F.
2747 It's too bad that C macros can't compute this from `fnname'.
2748 `minargs' should be a number, the minimum number of arguments allowed.
2749 `maxargs' should be a number, the maximum number of arguments allowed,
2750 or else MANY or UNEVALLED.
2751 MANY means pass a vector of evaluated arguments,
2752 in the form of an integer number-of-arguments
2753 followed by the address of a vector of Lisp_Objects
2754 which contains the argument values.
2755 UNEVALLED means pass the list of unevaluated arguments
2756 `intspec' says how interactive arguments are to be fetched.
2757 If the string starts with a `(', `intspec' is evaluated and the resulting
2758 list is the list of arguments.
2759 If it's a string that doesn't start with `(', the value should follow
2760 the one of the doc string for `interactive'.
2761 A null string means call interactively with no arguments.
2762 `doc' is documentation for the user. */
2763
2764 /* This version of DEFUN declares a function prototype with the right
2765 arguments, so we can catch errors with maxargs at compile-time. */
2766 #ifdef _MSC_VER
2767 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2768 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2769 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2770 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2771 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2772 { (Lisp_Object (__cdecl *)(void))fnname }, \
2773 minargs, maxargs, lname, intspec, 0}; \
2774 Lisp_Object fnname
2775 #else /* not _MSC_VER */
2776 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2777 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2778 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2779 { .a ## maxargs = fnname }, \
2780 minargs, maxargs, lname, intspec, 0}; \
2781 Lisp_Object fnname
2782 #endif
2783
2784 /* True if OBJ is a Lisp function. */
2785 INLINE bool
2786 FUNCTIONP (Lisp_Object obj)
2787 {
2788 return functionp (obj);
2789 }
2790
2791 /* defsubr (Sname);
2792 is how we define the symbol for function `name' at start-up time. */
2793 extern void defsubr (struct Lisp_Subr *);
2794
2795 enum maxargs
2796 {
2797 MANY = -2,
2798 UNEVALLED = -1
2799 };
2800
2801 /* Call a function F that accepts many args, passing it ARRAY's elements. */
2802 #define CALLMANY(f, array) (f) (ARRAYELTS (array), array)
2803
2804 /* Call a function F that accepts many args, passing it the remaining args,
2805 E.g., 'return CALLN (Fformat, fmt, text);' is less error-prone than
2806 '{ Lisp_Object a[2]; a[0] = fmt; a[1] = text; return Fformat (2, a); }'.
2807 CALLN is overkill for simple usages like 'Finsert (1, &text);'. */
2808 #define CALLN(f, ...) CALLMANY (f, ((Lisp_Object []) {__VA_ARGS__}))
2809
2810 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2811 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2812 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2813 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2814 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2815
2816 /* Macros we use to define forwarded Lisp variables.
2817 These are used in the syms_of_FILENAME functions.
2818
2819 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2820 lisp variable is actually a field in `struct emacs_globals'. The
2821 field's name begins with "f_", which is a convention enforced by
2822 these macros. Each such global has a corresponding #define in
2823 globals.h; the plain name should be used in the code.
2824
2825 E.g., the global "cons_cells_consed" is declared as "int
2826 f_cons_cells_consed" in globals.h, but there is a define:
2827
2828 #define cons_cells_consed globals.f_cons_cells_consed
2829
2830 All C code uses the `cons_cells_consed' name. This is all done
2831 this way to support indirection for multi-threaded Emacs. */
2832
2833 #define DEFVAR_LISP(lname, vname, doc) \
2834 do { \
2835 static struct Lisp_Objfwd o_fwd; \
2836 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
2837 } while (false)
2838 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
2839 do { \
2840 static struct Lisp_Objfwd o_fwd; \
2841 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
2842 } while (false)
2843 #define DEFVAR_BOOL(lname, vname, doc) \
2844 do { \
2845 static struct Lisp_Boolfwd b_fwd; \
2846 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
2847 } while (false)
2848 #define DEFVAR_INT(lname, vname, doc) \
2849 do { \
2850 static struct Lisp_Intfwd i_fwd; \
2851 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
2852 } while (false)
2853
2854 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
2855 do { \
2856 static struct Lisp_Objfwd o_fwd; \
2857 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
2858 } while (false)
2859
2860 #define DEFVAR_KBOARD(lname, vname, doc) \
2861 do { \
2862 static struct Lisp_Kboard_Objfwd ko_fwd; \
2863 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
2864 } while (false)
2865 \f
2866 /* Save and restore the instruction and environment pointers,
2867 without affecting the signal mask. */
2868
2869 #ifdef HAVE__SETJMP
2870 typedef jmp_buf sys_jmp_buf;
2871 # define sys_setjmp(j) _setjmp (j)
2872 # define sys_longjmp(j, v) _longjmp (j, v)
2873 #elif defined HAVE_SIGSETJMP
2874 typedef sigjmp_buf sys_jmp_buf;
2875 # define sys_setjmp(j) sigsetjmp (j, 0)
2876 # define sys_longjmp(j, v) siglongjmp (j, v)
2877 #else
2878 /* A platform that uses neither _longjmp nor siglongjmp; assume
2879 longjmp does not affect the sigmask. */
2880 typedef jmp_buf sys_jmp_buf;
2881 # define sys_setjmp(j) setjmp (j)
2882 # define sys_longjmp(j, v) longjmp (j, v)
2883 #endif
2884
2885 \f
2886 /* Elisp uses several stacks:
2887 - the C stack.
2888 - the bytecode stack: used internally by the bytecode interpreter.
2889 Allocated from the C stack.
2890 - The specpdl stack: keeps track of active unwind-protect and
2891 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
2892 managed stack.
2893 - The handler stack: keeps track of active catch tags and condition-case
2894 handlers. Allocated in a manually managed stack implemented by a
2895 doubly-linked list allocated via xmalloc and never freed. */
2896
2897 /* Structure for recording Lisp call stack for backtrace purposes. */
2898
2899 /* The special binding stack holds the outer values of variables while
2900 they are bound by a function application or a let form, stores the
2901 code to be executed for unwind-protect forms.
2902
2903 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
2904 used all over the place, needs to be fast, and needs to know the size of
2905 union specbinding. But only eval.c should access it. */
2906
2907 enum specbind_tag {
2908 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
2909 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
2910 SPECPDL_UNWIND_INT, /* Likewise, on int. */
2911 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
2912 SPECPDL_BACKTRACE, /* An element of the backtrace. */
2913 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
2914 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
2915 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
2916 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
2917 };
2918
2919 union specbinding
2920 {
2921 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2922 struct {
2923 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2924 void (*func) (Lisp_Object);
2925 Lisp_Object arg;
2926 } unwind;
2927 struct {
2928 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2929 void (*func) (void *);
2930 void *arg;
2931 } unwind_ptr;
2932 struct {
2933 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2934 void (*func) (int);
2935 int arg;
2936 } unwind_int;
2937 struct {
2938 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2939 void (*func) (void);
2940 } unwind_void;
2941 struct {
2942 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2943 /* `where' is not used in the case of SPECPDL_LET. */
2944 Lisp_Object symbol, old_value, where;
2945 } let;
2946 struct {
2947 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2948 bool_bf debug_on_exit : 1;
2949 Lisp_Object function;
2950 Lisp_Object *args;
2951 ptrdiff_t nargs;
2952 } bt;
2953 };
2954
2955 extern union specbinding *specpdl;
2956 extern union specbinding *specpdl_ptr;
2957 extern ptrdiff_t specpdl_size;
2958
2959 INLINE ptrdiff_t
2960 SPECPDL_INDEX (void)
2961 {
2962 return specpdl_ptr - specpdl;
2963 }
2964
2965 /* This structure helps implement the `catch/throw' and `condition-case/signal'
2966 control structures. A struct handler contains all the information needed to
2967 restore the state of the interpreter after a non-local jump.
2968
2969 handler structures are chained together in a doubly linked list; the `next'
2970 member points to the next outer catchtag and the `nextfree' member points in
2971 the other direction to the next inner element (which is typically the next
2972 free element since we mostly use it on the deepest handler).
2973
2974 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
2975 member is TAG, and then unbinds to it. The `val' member is used to
2976 hold VAL while the stack is unwound; `val' is returned as the value
2977 of the catch form.
2978
2979 All the other members are concerned with restoring the interpreter
2980 state.
2981
2982 Members are volatile if their values need to survive _longjmp when
2983 a 'struct handler' is a local variable. */
2984
2985 enum handlertype { CATCHER, CONDITION_CASE };
2986
2987 struct handler
2988 {
2989 enum handlertype type;
2990 Lisp_Object tag_or_ch;
2991 Lisp_Object val;
2992 struct handler *next;
2993 struct handler *nextfree;
2994
2995 /* The bytecode interpreter can have several handlers active at the same
2996 time, so when we longjmp to one of them, it needs to know which handler
2997 this was and what was the corresponding internal state. This is stored
2998 here, and when we longjmp we make sure that handlerlist points to the
2999 proper handler. */
3000 Lisp_Object *bytecode_top;
3001 int bytecode_dest;
3002
3003 /* Most global vars are reset to their value via the specpdl mechanism,
3004 but a few others are handled by storing their value here. */
3005 #if true /* GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS, but defined later. */
3006 struct gcpro *gcpro;
3007 #endif
3008 sys_jmp_buf jmp;
3009 EMACS_INT lisp_eval_depth;
3010 ptrdiff_t pdlcount;
3011 int poll_suppress_count;
3012 int interrupt_input_blocked;
3013 struct byte_stack *byte_stack;
3014 };
3015
3016 /* Fill in the components of c, and put it on the list. */
3017 #define PUSH_HANDLER(c, tag_ch_val, handlertype) \
3018 if (handlerlist->nextfree) \
3019 (c) = handlerlist->nextfree; \
3020 else \
3021 { \
3022 (c) = xmalloc (sizeof (struct handler)); \
3023 (c)->nextfree = NULL; \
3024 handlerlist->nextfree = (c); \
3025 } \
3026 (c)->type = (handlertype); \
3027 (c)->tag_or_ch = (tag_ch_val); \
3028 (c)->val = Qnil; \
3029 (c)->next = handlerlist; \
3030 (c)->lisp_eval_depth = lisp_eval_depth; \
3031 (c)->pdlcount = SPECPDL_INDEX (); \
3032 (c)->poll_suppress_count = poll_suppress_count; \
3033 (c)->interrupt_input_blocked = interrupt_input_blocked;\
3034 (c)->gcpro = gcprolist; \
3035 (c)->byte_stack = byte_stack_list; \
3036 handlerlist = (c);
3037
3038
3039 extern Lisp_Object memory_signal_data;
3040
3041 /* An address near the bottom of the stack.
3042 Tells GC how to save a copy of the stack. */
3043 extern char *stack_bottom;
3044
3045 /* Check quit-flag and quit if it is non-nil.
3046 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
3047 So the program needs to do QUIT at times when it is safe to quit.
3048 Every loop that might run for a long time or might not exit
3049 ought to do QUIT at least once, at a safe place.
3050 Unless that is impossible, of course.
3051 But it is very desirable to avoid creating loops where QUIT is impossible.
3052
3053 Exception: if you set immediate_quit to true,
3054 then the handler that responds to the C-g does the quit itself.
3055 This is a good thing to do around a loop that has no side effects
3056 and (in particular) cannot call arbitrary Lisp code.
3057
3058 If quit-flag is set to `kill-emacs' the SIGINT handler has received
3059 a request to exit Emacs when it is safe to do. */
3060
3061 extern void process_pending_signals (void);
3062 extern bool volatile pending_signals;
3063
3064 extern void process_quit_flag (void);
3065 #define QUIT \
3066 do { \
3067 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
3068 process_quit_flag (); \
3069 else if (pending_signals) \
3070 process_pending_signals (); \
3071 } while (false)
3072
3073
3074 /* True if ought to quit now. */
3075
3076 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3077 \f
3078 extern Lisp_Object Vascii_downcase_table;
3079 extern Lisp_Object Vascii_canon_table;
3080 \f
3081 /* Structure for recording stack slots that need marking. */
3082
3083 /* This is a chain of structures, each of which points at a Lisp_Object
3084 variable whose value should be marked in garbage collection.
3085 Normally every link of the chain is an automatic variable of a function,
3086 and its `val' points to some argument or local variable of the function.
3087 On exit to the function, the chain is set back to the value it had on entry.
3088 This way, no link remains in the chain when the stack frame containing the
3089 link disappears.
3090
3091 Every function that can call Feval must protect in this fashion all
3092 Lisp_Object variables whose contents will be used again. */
3093
3094 extern struct gcpro *gcprolist;
3095
3096 struct gcpro
3097 {
3098 struct gcpro *next;
3099
3100 /* Address of first protected variable. */
3101 volatile Lisp_Object *var;
3102
3103 /* Number of consecutive protected variables. */
3104 ptrdiff_t nvars;
3105
3106 #ifdef DEBUG_GCPRO
3107 /* File name where this record is used. */
3108 const char *name;
3109
3110 /* Line number in this file. */
3111 int lineno;
3112
3113 /* Index in the local chain of records. */
3114 int idx;
3115
3116 /* Nesting level. */
3117 int level;
3118 #endif
3119 };
3120
3121 /* Values of GC_MARK_STACK during compilation:
3122
3123 0 Use GCPRO as before
3124 1 Do the real thing, make GCPROs and UNGCPRO no-ops.
3125 2 Mark the stack, and check that everything GCPRO'd is
3126 marked.
3127 3 Mark using GCPRO's, mark stack last, and count how many
3128 dead objects are kept alive.
3129
3130 Formerly, method 0 was used. Currently, method 1 is used unless
3131 otherwise specified by hand when building, e.g.,
3132 "make CPPFLAGS='-DGC_MARK_STACK=GC_USE_GCPROS_AS_BEFORE'".
3133 Methods 2 and 3 are present mainly to debug the transition from 0 to 1. */
3134
3135 #define GC_USE_GCPROS_AS_BEFORE 0
3136 #define GC_MAKE_GCPROS_NOOPS 1
3137 #define GC_MARK_STACK_CHECK_GCPROS 2
3138 #define GC_USE_GCPROS_CHECK_ZOMBIES 3
3139
3140 #ifndef GC_MARK_STACK
3141 #define GC_MARK_STACK GC_MAKE_GCPROS_NOOPS
3142 #endif
3143
3144 /* Whether we do the stack marking manually. */
3145 #define BYTE_MARK_STACK !(GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
3146 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
3147
3148
3149 #if GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS
3150
3151 /* Do something silly with gcproN vars just so gcc shuts up. */
3152 /* You get warnings from MIPSPro... */
3153
3154 #define GCPRO1(varname) ((void) gcpro1)
3155 #define GCPRO2(varname1, varname2) ((void) gcpro2, (void) gcpro1)
3156 #define GCPRO3(varname1, varname2, varname3) \
3157 ((void) gcpro3, (void) gcpro2, (void) gcpro1)
3158 #define GCPRO4(varname1, varname2, varname3, varname4) \
3159 ((void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3160 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3161 ((void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3162 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3163 ((void) gcpro6, (void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, \
3164 (void) gcpro1)
3165 #define GCPRO7(a, b, c, d, e, f, g) (GCPRO6 (a, b, c, d, e, f), (void) gcpro7)
3166 #define UNGCPRO ((void) 0)
3167
3168 #else /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3169
3170 #ifndef DEBUG_GCPRO
3171
3172 #define GCPRO1(a) \
3173 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3174 gcprolist = &gcpro1; }
3175
3176 #define GCPRO2(a, b) \
3177 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3178 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3179 gcprolist = &gcpro2; }
3180
3181 #define GCPRO3(a, b, c) \
3182 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3183 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3184 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3185 gcprolist = &gcpro3; }
3186
3187 #define GCPRO4(a, b, c, d) \
3188 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3189 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3190 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3191 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3192 gcprolist = &gcpro4; }
3193
3194 #define GCPRO5(a, b, c, d, e) \
3195 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3196 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3197 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3198 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3199 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3200 gcprolist = &gcpro5; }
3201
3202 #define GCPRO6(a, b, c, d, e, f) \
3203 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3204 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3205 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3206 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3207 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3208 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3209 gcprolist = &gcpro6; }
3210
3211 #define GCPRO7(a, b, c, d, e, f, g) \
3212 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3213 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3214 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3215 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3216 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3217 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3218 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3219 gcprolist = &gcpro7; }
3220
3221 #define UNGCPRO (gcprolist = gcpro1.next)
3222
3223 #else /* !DEBUG_GCPRO */
3224
3225 extern int gcpro_level;
3226
3227 #define GCPRO1(a) \
3228 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3229 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3230 gcpro1.level = gcpro_level++; \
3231 gcprolist = &gcpro1; }
3232
3233 #define GCPRO2(a, b) \
3234 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3235 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3236 gcpro1.level = gcpro_level; \
3237 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3238 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3239 gcpro2.level = gcpro_level++; \
3240 gcprolist = &gcpro2; }
3241
3242 #define GCPRO3(a, b, c) \
3243 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3244 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3245 gcpro1.level = gcpro_level; \
3246 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3247 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3248 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3249 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3250 gcpro3.level = gcpro_level++; \
3251 gcprolist = &gcpro3; }
3252
3253 #define GCPRO4(a, b, c, d) \
3254 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3255 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3256 gcpro1.level = gcpro_level; \
3257 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3258 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3259 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3260 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3261 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3262 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3263 gcpro4.level = gcpro_level++; \
3264 gcprolist = &gcpro4; }
3265
3266 #define GCPRO5(a, b, c, d, e) \
3267 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3268 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3269 gcpro1.level = gcpro_level; \
3270 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3271 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3272 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3273 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3274 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3275 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3276 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3277 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3278 gcpro5.level = gcpro_level++; \
3279 gcprolist = &gcpro5; }
3280
3281 #define GCPRO6(a, b, c, d, e, f) \
3282 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3283 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3284 gcpro1.level = gcpro_level; \
3285 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3286 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3287 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3288 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3289 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3290 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3291 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3292 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3293 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3294 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3295 gcpro6.level = gcpro_level++; \
3296 gcprolist = &gcpro6; }
3297
3298 #define GCPRO7(a, b, c, d, e, f, g) \
3299 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3300 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3301 gcpro1.level = gcpro_level; \
3302 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3303 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3304 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3305 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3306 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3307 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3308 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3309 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3310 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3311 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3312 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3313 gcpro7.name = __FILE__; gcpro7.lineno = __LINE__; gcpro7.idx = 7; \
3314 gcpro7.level = gcpro_level++; \
3315 gcprolist = &gcpro7; }
3316
3317 #define UNGCPRO \
3318 (--gcpro_level != gcpro1.level \
3319 ? emacs_abort () \
3320 : (void) (gcprolist = gcpro1.next))
3321
3322 #endif /* DEBUG_GCPRO */
3323 #endif /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3324
3325
3326 /* Evaluate expr, UNGCPRO, and then return the value of expr. */
3327 #define RETURN_UNGCPRO(expr) \
3328 do \
3329 { \
3330 Lisp_Object ret_ungc_val; \
3331 ret_ungc_val = (expr); \
3332 UNGCPRO; \
3333 return ret_ungc_val; \
3334 } \
3335 while (false)
3336
3337 /* Call staticpro (&var) to protect static variable `var'. */
3338
3339 void staticpro (Lisp_Object *);
3340 \f
3341 /* Forward declarations for prototypes. */
3342 struct window;
3343 struct frame;
3344
3345 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3346
3347 INLINE void
3348 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3349 {
3350 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3351 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3352 }
3353
3354 /* Functions to modify hash tables. */
3355
3356 INLINE void
3357 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3358 {
3359 gc_aset (h->key_and_value, 2 * idx, val);
3360 }
3361
3362 INLINE void
3363 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3364 {
3365 gc_aset (h->key_and_value, 2 * idx + 1, val);
3366 }
3367
3368 /* Use these functions to set Lisp_Object
3369 or pointer slots of struct Lisp_Symbol. */
3370
3371 INLINE void
3372 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3373 {
3374 XSYMBOL (sym)->function = function;
3375 }
3376
3377 INLINE void
3378 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3379 {
3380 XSYMBOL (sym)->plist = plist;
3381 }
3382
3383 INLINE void
3384 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3385 {
3386 XSYMBOL (sym)->next = next;
3387 }
3388
3389 /* Buffer-local (also frame-local) variable access functions. */
3390
3391 INLINE int
3392 blv_found (struct Lisp_Buffer_Local_Value *blv)
3393 {
3394 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3395 return blv->found;
3396 }
3397
3398 /* Set overlay's property list. */
3399
3400 INLINE void
3401 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3402 {
3403 XOVERLAY (overlay)->plist = plist;
3404 }
3405
3406 /* Get text properties of S. */
3407
3408 INLINE INTERVAL
3409 string_intervals (Lisp_Object s)
3410 {
3411 return XSTRING (s)->intervals;
3412 }
3413
3414 /* Set text properties of S to I. */
3415
3416 INLINE void
3417 set_string_intervals (Lisp_Object s, INTERVAL i)
3418 {
3419 XSTRING (s)->intervals = i;
3420 }
3421
3422 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3423 of setting slots directly. */
3424
3425 INLINE void
3426 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3427 {
3428 XCHAR_TABLE (table)->defalt = val;
3429 }
3430 INLINE void
3431 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3432 {
3433 XCHAR_TABLE (table)->purpose = val;
3434 }
3435
3436 /* Set different slots in (sub)character tables. */
3437
3438 INLINE void
3439 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3440 {
3441 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3442 XCHAR_TABLE (table)->extras[idx] = val;
3443 }
3444
3445 INLINE void
3446 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3447 {
3448 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3449 XCHAR_TABLE (table)->contents[idx] = val;
3450 }
3451
3452 INLINE void
3453 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3454 {
3455 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3456 }
3457
3458 /* Defined in data.c. */
3459 extern Lisp_Object indirect_function (Lisp_Object);
3460 extern Lisp_Object find_symbol_value (Lisp_Object);
3461 enum Arith_Comparison {
3462 ARITH_EQUAL,
3463 ARITH_NOTEQUAL,
3464 ARITH_LESS,
3465 ARITH_GRTR,
3466 ARITH_LESS_OR_EQUAL,
3467 ARITH_GRTR_OR_EQUAL
3468 };
3469 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3470 enum Arith_Comparison comparison);
3471
3472 /* Convert the integer I to an Emacs representation, either the integer
3473 itself, or a cons of two or three integers, or if all else fails a float.
3474 I should not have side effects. */
3475 #define INTEGER_TO_CONS(i) \
3476 (! FIXNUM_OVERFLOW_P (i) \
3477 ? make_number (i) \
3478 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16) \
3479 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16)) \
3480 && FIXNUM_OVERFLOW_P ((i) >> 16)) \
3481 ? Fcons (make_number ((i) >> 16), make_number ((i) & 0xffff)) \
3482 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16 >> 24) \
3483 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16 >> 24)) \
3484 && FIXNUM_OVERFLOW_P ((i) >> 16 >> 24)) \
3485 ? Fcons (make_number ((i) >> 16 >> 24), \
3486 Fcons (make_number ((i) >> 16 & 0xffffff), \
3487 make_number ((i) & 0xffff))) \
3488 : make_float (i))
3489
3490 /* Convert the Emacs representation CONS back to an integer of type
3491 TYPE, storing the result the variable VAR. Signal an error if CONS
3492 is not a valid representation or is out of range for TYPE. */
3493 #define CONS_TO_INTEGER(cons, type, var) \
3494 (TYPE_SIGNED (type) \
3495 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3496 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3497 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3498 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3499
3500 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3501 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3502 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3503 Lisp_Object);
3504 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3505 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3506 extern void syms_of_data (void);
3507 extern void swap_in_global_binding (struct Lisp_Symbol *);
3508
3509 /* Defined in cmds.c */
3510 extern void syms_of_cmds (void);
3511 extern void keys_of_cmds (void);
3512
3513 /* Defined in coding.c. */
3514 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3515 ptrdiff_t, bool, bool, Lisp_Object);
3516 extern void init_coding (void);
3517 extern void init_coding_once (void);
3518 extern void syms_of_coding (void);
3519
3520 /* Defined in character.c. */
3521 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3522 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3523 extern void syms_of_character (void);
3524
3525 /* Defined in charset.c. */
3526 extern void init_charset (void);
3527 extern void init_charset_once (void);
3528 extern void syms_of_charset (void);
3529 /* Structure forward declarations. */
3530 struct charset;
3531
3532 /* Defined in syntax.c. */
3533 extern void init_syntax_once (void);
3534 extern void syms_of_syntax (void);
3535
3536 /* Defined in fns.c. */
3537 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3538 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3539 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3540 extern void sweep_weak_hash_tables (void);
3541 EMACS_UINT hash_string (char const *, ptrdiff_t);
3542 EMACS_UINT sxhash (Lisp_Object, int);
3543 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3544 Lisp_Object, Lisp_Object);
3545 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3546 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3547 EMACS_UINT);
3548 extern struct hash_table_test hashtest_eql, hashtest_equal;
3549 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3550 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3551 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3552 ptrdiff_t, ptrdiff_t);
3553 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3554 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3555 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3556 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3557 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3558 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3559 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3560 extern void clear_string_char_byte_cache (void);
3561 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3562 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3563 extern Lisp_Object string_to_multibyte (Lisp_Object);
3564 extern Lisp_Object string_make_unibyte (Lisp_Object);
3565 extern void syms_of_fns (void);
3566
3567 /* Defined in floatfns.c. */
3568 extern void syms_of_floatfns (void);
3569 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3570
3571 /* Defined in fringe.c. */
3572 extern void syms_of_fringe (void);
3573 extern void init_fringe (void);
3574 #ifdef HAVE_WINDOW_SYSTEM
3575 extern void mark_fringe_data (void);
3576 extern void init_fringe_once (void);
3577 #endif /* HAVE_WINDOW_SYSTEM */
3578
3579 /* Defined in image.c. */
3580 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3581 extern void reset_image_types (void);
3582 extern void syms_of_image (void);
3583
3584 /* Defined in insdel.c. */
3585 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3586 extern _Noreturn void buffer_overflow (void);
3587 extern void make_gap (ptrdiff_t);
3588 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3589 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3590 ptrdiff_t, bool, bool);
3591 extern int count_combining_before (const unsigned char *,
3592 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3593 extern int count_combining_after (const unsigned char *,
3594 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3595 extern void insert (const char *, ptrdiff_t);
3596 extern void insert_and_inherit (const char *, ptrdiff_t);
3597 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3598 bool, bool, bool);
3599 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3600 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3601 ptrdiff_t, ptrdiff_t, bool);
3602 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3603 extern void insert_char (int);
3604 extern void insert_string (const char *);
3605 extern void insert_before_markers (const char *, ptrdiff_t);
3606 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3607 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3608 ptrdiff_t, ptrdiff_t,
3609 ptrdiff_t, bool);
3610 extern void del_range (ptrdiff_t, ptrdiff_t);
3611 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3612 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3613 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3614 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3615 ptrdiff_t, ptrdiff_t, bool);
3616 extern void modify_text (ptrdiff_t, ptrdiff_t);
3617 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3618 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3619 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3620 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3621 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3622 ptrdiff_t, ptrdiff_t);
3623 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3624 ptrdiff_t, ptrdiff_t);
3625 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3626 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3627 const char *, ptrdiff_t, ptrdiff_t, bool);
3628 extern void syms_of_insdel (void);
3629
3630 /* Defined in dispnew.c. */
3631 #if (defined PROFILING \
3632 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3633 _Noreturn void __executable_start (void);
3634 #endif
3635 extern Lisp_Object Vwindow_system;
3636 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3637
3638 /* Defined in xdisp.c. */
3639 extern bool noninteractive_need_newline;
3640 extern Lisp_Object echo_area_buffer[2];
3641 extern void add_to_log (const char *, Lisp_Object, Lisp_Object);
3642 extern void check_message_stack (void);
3643 extern void setup_echo_area_for_printing (int);
3644 extern bool push_message (void);
3645 extern void pop_message_unwind (void);
3646 extern Lisp_Object restore_message_unwind (Lisp_Object);
3647 extern void restore_message (void);
3648 extern Lisp_Object current_message (void);
3649 extern void clear_message (bool, bool);
3650 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3651 extern void message1 (const char *);
3652 extern void message1_nolog (const char *);
3653 extern void message3 (Lisp_Object);
3654 extern void message3_nolog (Lisp_Object);
3655 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3656 extern void message_with_string (const char *, Lisp_Object, int);
3657 extern void message_log_maybe_newline (void);
3658 extern void update_echo_area (void);
3659 extern void truncate_echo_area (ptrdiff_t);
3660 extern void redisplay (void);
3661
3662 void set_frame_cursor_types (struct frame *, Lisp_Object);
3663 extern void syms_of_xdisp (void);
3664 extern void init_xdisp (void);
3665 extern Lisp_Object safe_eval (Lisp_Object);
3666 extern int pos_visible_p (struct window *, ptrdiff_t, int *,
3667 int *, int *, int *, int *, int *);
3668
3669 /* Defined in xsettings.c. */
3670 extern void syms_of_xsettings (void);
3671
3672 /* Defined in vm-limit.c. */
3673 extern void memory_warnings (void *, void (*warnfun) (const char *));
3674
3675 /* Defined in character.c. */
3676 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3677 ptrdiff_t *, ptrdiff_t *);
3678
3679 /* Defined in alloc.c. */
3680 extern void check_pure_size (void);
3681 extern void free_misc (Lisp_Object);
3682 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3683 extern void malloc_warning (const char *);
3684 extern _Noreturn void memory_full (size_t);
3685 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3686 extern bool survives_gc_p (Lisp_Object);
3687 extern void mark_object (Lisp_Object);
3688 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3689 extern void refill_memory_reserve (void);
3690 #endif
3691 extern const char *pending_malloc_warning;
3692 extern Lisp_Object zero_vector;
3693 extern Lisp_Object *stack_base;
3694 extern EMACS_INT consing_since_gc;
3695 extern EMACS_INT gc_relative_threshold;
3696 extern EMACS_INT memory_full_cons_threshold;
3697 extern Lisp_Object list1 (Lisp_Object);
3698 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3699 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3700 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3701 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3702 Lisp_Object);
3703 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3704 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3705
3706 /* Build a frequently used 2/3/4-integer lists. */
3707
3708 INLINE Lisp_Object
3709 list2i (EMACS_INT x, EMACS_INT y)
3710 {
3711 return list2 (make_number (x), make_number (y));
3712 }
3713
3714 INLINE Lisp_Object
3715 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3716 {
3717 return list3 (make_number (x), make_number (y), make_number (w));
3718 }
3719
3720 INLINE Lisp_Object
3721 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3722 {
3723 return list4 (make_number (x), make_number (y),
3724 make_number (w), make_number (h));
3725 }
3726
3727 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3728 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3729 extern _Noreturn void string_overflow (void);
3730 extern Lisp_Object make_string (const char *, ptrdiff_t);
3731 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3732 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3733 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3734
3735 /* Make unibyte string from C string when the length isn't known. */
3736
3737 INLINE Lisp_Object
3738 build_unibyte_string (const char *str)
3739 {
3740 return make_unibyte_string (str, strlen (str));
3741 }
3742
3743 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3744 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3745 extern Lisp_Object make_uninit_string (EMACS_INT);
3746 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3747 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3748 extern Lisp_Object make_specified_string (const char *,
3749 ptrdiff_t, ptrdiff_t, bool);
3750 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3751 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3752
3753 /* Make a string allocated in pure space, use STR as string data. */
3754
3755 INLINE Lisp_Object
3756 build_pure_c_string (const char *str)
3757 {
3758 return make_pure_c_string (str, strlen (str));
3759 }
3760
3761 /* Make a string from the data at STR, treating it as multibyte if the
3762 data warrants. */
3763
3764 INLINE Lisp_Object
3765 build_string (const char *str)
3766 {
3767 return make_string (str, strlen (str));
3768 }
3769
3770 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3771 extern void make_byte_code (struct Lisp_Vector *);
3772 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3773
3774 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3775 be sure that GC cannot happen until the vector is completely
3776 initialized. E.g. the following code is likely to crash:
3777
3778 v = make_uninit_vector (3);
3779 ASET (v, 0, obj0);
3780 ASET (v, 1, Ffunction_can_gc ());
3781 ASET (v, 2, obj1); */
3782
3783 INLINE Lisp_Object
3784 make_uninit_vector (ptrdiff_t size)
3785 {
3786 Lisp_Object v;
3787 struct Lisp_Vector *p;
3788
3789 p = allocate_vector (size);
3790 XSETVECTOR (v, p);
3791 return v;
3792 }
3793
3794 /* Like above, but special for sub char-tables. */
3795
3796 INLINE Lisp_Object
3797 make_uninit_sub_char_table (int depth, int min_char)
3798 {
3799 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3800 Lisp_Object v = make_uninit_vector (slots);
3801
3802 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3803 XSUB_CHAR_TABLE (v)->depth = depth;
3804 XSUB_CHAR_TABLE (v)->min_char = min_char;
3805 return v;
3806 }
3807
3808 extern struct Lisp_Vector *allocate_pseudovector (int, int, int,
3809 enum pvec_type);
3810
3811 /* Allocate partially initialized pseudovector where all Lisp_Object
3812 slots are set to Qnil but the rest (if any) is left uninitialized. */
3813
3814 #define ALLOCATE_PSEUDOVECTOR(type, field, tag) \
3815 ((type *) allocate_pseudovector (VECSIZE (type), \
3816 PSEUDOVECSIZE (type, field), \
3817 PSEUDOVECSIZE (type, field), tag))
3818
3819 /* Allocate fully initialized pseudovector where all Lisp_Object
3820 slots are set to Qnil and the rest (if any) is zeroed. */
3821
3822 #define ALLOCATE_ZEROED_PSEUDOVECTOR(type, field, tag) \
3823 ((type *) allocate_pseudovector (VECSIZE (type), \
3824 PSEUDOVECSIZE (type, field), \
3825 VECSIZE (type), tag))
3826
3827 extern bool gc_in_progress;
3828 extern bool abort_on_gc;
3829 extern Lisp_Object make_float (double);
3830 extern void display_malloc_warning (void);
3831 extern ptrdiff_t inhibit_garbage_collection (void);
3832 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3833 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3834 Lisp_Object, Lisp_Object);
3835 extern Lisp_Object make_save_ptr (void *);
3836 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3837 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3838 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3839 Lisp_Object);
3840 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3841 extern void free_save_value (Lisp_Object);
3842 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3843 extern void free_marker (Lisp_Object);
3844 extern void free_cons (struct Lisp_Cons *);
3845 extern void init_alloc_once (void);
3846 extern void init_alloc (void);
3847 extern void syms_of_alloc (void);
3848 extern struct buffer * allocate_buffer (void);
3849 extern int valid_lisp_object_p (Lisp_Object);
3850 extern int relocatable_string_data_p (const char *);
3851 #ifdef GC_CHECK_CONS_LIST
3852 extern void check_cons_list (void);
3853 #else
3854 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3855 #endif
3856
3857 #ifdef REL_ALLOC
3858 /* Defined in ralloc.c. */
3859 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3860 extern void r_alloc_free (void **);
3861 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3862 extern void r_alloc_reset_variable (void **, void **);
3863 extern void r_alloc_inhibit_buffer_relocation (int);
3864 #endif
3865
3866 /* Defined in chartab.c. */
3867 extern Lisp_Object copy_char_table (Lisp_Object);
3868 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3869 int *, int *);
3870 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3871 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3872 Lisp_Object),
3873 Lisp_Object, Lisp_Object, Lisp_Object);
3874 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3875 Lisp_Object, Lisp_Object,
3876 Lisp_Object, struct charset *,
3877 unsigned, unsigned);
3878 extern Lisp_Object uniprop_table (Lisp_Object);
3879 extern void syms_of_chartab (void);
3880
3881 /* Defined in print.c. */
3882 extern Lisp_Object Vprin1_to_string_buffer;
3883 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3884 extern void temp_output_buffer_setup (const char *);
3885 extern int print_level;
3886 extern void write_string (const char *, int);
3887 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3888 Lisp_Object);
3889 extern Lisp_Object internal_with_output_to_temp_buffer
3890 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3891 #define FLOAT_TO_STRING_BUFSIZE 350
3892 extern int float_to_string (char *, double);
3893 extern void init_print_once (void);
3894 extern void syms_of_print (void);
3895
3896 /* Defined in doprnt.c. */
3897 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3898 va_list);
3899 extern ptrdiff_t esprintf (char *, char const *, ...)
3900 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3901 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3902 char const *, ...)
3903 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3904 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3905 char const *, va_list)
3906 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3907
3908 /* Defined in lread.c. */
3909 extern Lisp_Object check_obarray (Lisp_Object);
3910 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3911 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3912 extern Lisp_Object intern_driver (Lisp_Object, Lisp_Object, Lisp_Object);
3913 extern void init_symbol (Lisp_Object, Lisp_Object);
3914 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3915 INLINE void
3916 LOADHIST_ATTACH (Lisp_Object x)
3917 {
3918 if (initialized)
3919 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3920 }
3921 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3922 Lisp_Object *, Lisp_Object, bool);
3923 extern Lisp_Object string_to_number (char const *, int, bool);
3924 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3925 Lisp_Object);
3926 extern void dir_warning (const char *, Lisp_Object);
3927 extern void init_obarray (void);
3928 extern void init_lread (void);
3929 extern void syms_of_lread (void);
3930
3931 INLINE Lisp_Object
3932 intern (const char *str)
3933 {
3934 return intern_1 (str, strlen (str));
3935 }
3936
3937 INLINE Lisp_Object
3938 intern_c_string (const char *str)
3939 {
3940 return intern_c_string_1 (str, strlen (str));
3941 }
3942
3943 /* Defined in eval.c. */
3944 extern EMACS_INT lisp_eval_depth;
3945 extern Lisp_Object Vautoload_queue;
3946 extern Lisp_Object Vrun_hooks;
3947 extern Lisp_Object Vsignaling_function;
3948 extern Lisp_Object inhibit_lisp_code;
3949 extern struct handler *handlerlist;
3950
3951 /* To run a normal hook, use the appropriate function from the list below.
3952 The calling convention:
3953
3954 if (!NILP (Vrun_hooks))
3955 call1 (Vrun_hooks, Qmy_funny_hook);
3956
3957 should no longer be used. */
3958 extern void run_hook (Lisp_Object);
3959 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3960 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3961 Lisp_Object (*funcall)
3962 (ptrdiff_t nargs, Lisp_Object *args));
3963 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3964 extern _Noreturn void xsignal0 (Lisp_Object);
3965 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3966 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3967 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3968 Lisp_Object);
3969 extern _Noreturn void signal_error (const char *, Lisp_Object);
3970 extern Lisp_Object eval_sub (Lisp_Object form);
3971 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3972 extern Lisp_Object call0 (Lisp_Object);
3973 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3974 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3975 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3976 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3977 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3978 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3979 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3980 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3981 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3982 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3983 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3984 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3985 extern Lisp_Object internal_condition_case_n
3986 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3987 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3988 extern void specbind (Lisp_Object, Lisp_Object);
3989 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3990 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3991 extern void record_unwind_protect_int (void (*) (int), int);
3992 extern void record_unwind_protect_void (void (*) (void));
3993 extern void record_unwind_protect_nothing (void);
3994 extern void clear_unwind_protect (ptrdiff_t);
3995 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3996 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3997 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3998 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3999 extern _Noreturn void verror (const char *, va_list)
4000 ATTRIBUTE_FORMAT_PRINTF (1, 0);
4001 extern void un_autoload (Lisp_Object);
4002 extern Lisp_Object call_debugger (Lisp_Object arg);
4003 extern void init_eval_once (void);
4004 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
4005 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
4006 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
4007 extern void init_eval (void);
4008 extern void syms_of_eval (void);
4009 extern void unwind_body (Lisp_Object);
4010 extern ptrdiff_t record_in_backtrace (Lisp_Object, Lisp_Object *, ptrdiff_t);
4011 extern void mark_specpdl (void);
4012 extern void get_backtrace (Lisp_Object array);
4013 Lisp_Object backtrace_top_function (void);
4014 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
4015 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
4016
4017
4018 /* Defined in editfns.c. */
4019 extern void insert1 (Lisp_Object);
4020 extern Lisp_Object format2 (const char *, Lisp_Object, Lisp_Object);
4021 extern Lisp_Object save_excursion_save (void);
4022 extern Lisp_Object save_restriction_save (void);
4023 extern void save_excursion_restore (Lisp_Object);
4024 extern void save_restriction_restore (Lisp_Object);
4025 extern _Noreturn void time_overflow (void);
4026 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
4027 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
4028 ptrdiff_t, bool);
4029 extern void init_editfns (void);
4030 extern void syms_of_editfns (void);
4031
4032 /* Defined in buffer.c. */
4033 extern bool mouse_face_overlay_overlaps (Lisp_Object);
4034 extern _Noreturn void nsberror (Lisp_Object);
4035 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
4036 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
4037 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
4038 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
4039 Lisp_Object, Lisp_Object, Lisp_Object);
4040 extern bool overlay_touches_p (ptrdiff_t);
4041 extern Lisp_Object other_buffer_safely (Lisp_Object);
4042 extern Lisp_Object get_truename_buffer (Lisp_Object);
4043 extern void init_buffer_once (void);
4044 extern void init_buffer (int);
4045 extern void syms_of_buffer (void);
4046 extern void keys_of_buffer (void);
4047
4048 /* Defined in marker.c. */
4049
4050 extern ptrdiff_t marker_position (Lisp_Object);
4051 extern ptrdiff_t marker_byte_position (Lisp_Object);
4052 extern void clear_charpos_cache (struct buffer *);
4053 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
4054 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
4055 extern void unchain_marker (struct Lisp_Marker *marker);
4056 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
4057 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
4058 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
4059 ptrdiff_t, ptrdiff_t);
4060 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
4061 extern void syms_of_marker (void);
4062
4063 /* Defined in fileio.c. */
4064
4065 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
4066 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
4067 Lisp_Object, Lisp_Object, Lisp_Object,
4068 Lisp_Object, int);
4069 extern void close_file_unwind (int);
4070 extern void fclose_unwind (void *);
4071 extern void restore_point_unwind (Lisp_Object);
4072 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
4073 extern _Noreturn void report_file_error (const char *, Lisp_Object);
4074 extern bool internal_delete_file (Lisp_Object);
4075 extern Lisp_Object emacs_readlinkat (int, const char *);
4076 extern bool file_directory_p (const char *);
4077 extern bool file_accessible_directory_p (Lisp_Object);
4078 extern void init_fileio (void);
4079 extern void syms_of_fileio (void);
4080 extern Lisp_Object make_temp_name (Lisp_Object, bool);
4081
4082 /* Defined in search.c. */
4083 extern void shrink_regexp_cache (void);
4084 extern void restore_search_regs (void);
4085 extern void record_unwind_save_match_data (void);
4086 struct re_registers;
4087 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4088 struct re_registers *,
4089 Lisp_Object, bool, bool);
4090 extern ptrdiff_t fast_string_match_internal (Lisp_Object, Lisp_Object,
4091 Lisp_Object);
4092
4093 INLINE ptrdiff_t
4094 fast_string_match (Lisp_Object regexp, Lisp_Object string)
4095 {
4096 return fast_string_match_internal (regexp, string, Qnil);
4097 }
4098
4099 INLINE ptrdiff_t
4100 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
4101 {
4102 return fast_string_match_internal (regexp, string, Vascii_canon_table);
4103 }
4104
4105 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4106 ptrdiff_t);
4107 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4108 ptrdiff_t, ptrdiff_t, Lisp_Object);
4109 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4110 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4111 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4112 ptrdiff_t, bool);
4113 extern ptrdiff_t scan_newline_from_point (ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
4114 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4115 ptrdiff_t, ptrdiff_t *);
4116 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4117 ptrdiff_t, ptrdiff_t *);
4118 extern void syms_of_search (void);
4119 extern void clear_regexp_cache (void);
4120
4121 /* Defined in minibuf.c. */
4122
4123 extern Lisp_Object Vminibuffer_list;
4124 extern Lisp_Object last_minibuf_string;
4125 extern Lisp_Object get_minibuffer (EMACS_INT);
4126 extern void init_minibuf_once (void);
4127 extern void syms_of_minibuf (void);
4128
4129 /* Defined in callint.c. */
4130
4131 extern void syms_of_callint (void);
4132
4133 /* Defined in casefiddle.c. */
4134
4135 extern void syms_of_casefiddle (void);
4136 extern void keys_of_casefiddle (void);
4137
4138 /* Defined in casetab.c. */
4139
4140 extern void init_casetab_once (void);
4141 extern void syms_of_casetab (void);
4142
4143 /* Defined in keyboard.c. */
4144
4145 extern Lisp_Object echo_message_buffer;
4146 extern struct kboard *echo_kboard;
4147 extern void cancel_echoing (void);
4148 extern Lisp_Object last_undo_boundary;
4149 extern bool input_pending;
4150 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4151 extern sigjmp_buf return_to_command_loop;
4152 #endif
4153 extern Lisp_Object menu_bar_items (Lisp_Object);
4154 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4155 extern void discard_mouse_events (void);
4156 #ifdef USABLE_SIGIO
4157 void handle_input_available_signal (int);
4158 #endif
4159 extern Lisp_Object pending_funcalls;
4160 extern bool detect_input_pending (void);
4161 extern bool detect_input_pending_ignore_squeezables (void);
4162 extern bool detect_input_pending_run_timers (bool);
4163 extern void safe_run_hooks (Lisp_Object);
4164 extern void cmd_error_internal (Lisp_Object, const char *);
4165 extern Lisp_Object command_loop_1 (void);
4166 extern Lisp_Object read_menu_command (void);
4167 extern Lisp_Object recursive_edit_1 (void);
4168 extern void record_auto_save (void);
4169 extern void force_auto_save_soon (void);
4170 extern void init_keyboard (void);
4171 extern void syms_of_keyboard (void);
4172 extern void keys_of_keyboard (void);
4173
4174 /* Defined in indent.c. */
4175 extern ptrdiff_t current_column (void);
4176 extern void invalidate_current_column (void);
4177 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4178 extern void syms_of_indent (void);
4179
4180 /* Defined in frame.c. */
4181 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4182 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4183 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4184 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4185 extern void frames_discard_buffer (Lisp_Object);
4186 extern void syms_of_frame (void);
4187
4188 /* Defined in emacs.c. */
4189 extern char **initial_argv;
4190 extern int initial_argc;
4191 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4192 extern bool display_arg;
4193 #endif
4194 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4195 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4196 extern _Noreturn void terminate_due_to_signal (int, int);
4197 #ifdef WINDOWSNT
4198 extern Lisp_Object Vlibrary_cache;
4199 #endif
4200 #if HAVE_SETLOCALE
4201 void fixup_locale (void);
4202 void synchronize_system_messages_locale (void);
4203 void synchronize_system_time_locale (void);
4204 #else
4205 INLINE void fixup_locale (void) {}
4206 INLINE void synchronize_system_messages_locale (void) {}
4207 INLINE void synchronize_system_time_locale (void) {}
4208 #endif
4209 extern void shut_down_emacs (int, Lisp_Object);
4210
4211 /* True means don't do interactive redisplay and don't change tty modes. */
4212 extern bool noninteractive;
4213
4214 /* True means remove site-lisp directories from load-path. */
4215 extern bool no_site_lisp;
4216
4217 /* Pipe used to send exit notification to the daemon parent at
4218 startup. */
4219 extern int daemon_pipe[2];
4220 #define IS_DAEMON (daemon_pipe[1] != 0)
4221
4222 /* True if handling a fatal error already. */
4223 extern bool fatal_error_in_progress;
4224
4225 /* True means don't do use window-system-specific display code. */
4226 extern bool inhibit_window_system;
4227 /* True means that a filter or a sentinel is running. */
4228 extern bool running_asynch_code;
4229
4230 /* Defined in process.c. */
4231 extern void kill_buffer_processes (Lisp_Object);
4232 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4233 struct Lisp_Process *, int);
4234 /* Max value for the first argument of wait_reading_process_output. */
4235 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4236 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4237 The bug merely causes a bogus warning, but the warning is annoying. */
4238 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4239 #else
4240 # define WAIT_READING_MAX INTMAX_MAX
4241 #endif
4242 #ifdef HAVE_TIMERFD
4243 extern void add_timer_wait_descriptor (int);
4244 #endif
4245 extern void add_keyboard_wait_descriptor (int);
4246 extern void delete_keyboard_wait_descriptor (int);
4247 #ifdef HAVE_GPM
4248 extern void add_gpm_wait_descriptor (int);
4249 extern void delete_gpm_wait_descriptor (int);
4250 #endif
4251 extern void init_process_emacs (void);
4252 extern void syms_of_process (void);
4253 extern void setup_process_coding_systems (Lisp_Object);
4254
4255 /* Defined in callproc.c. */
4256 #ifndef DOS_NT
4257 _Noreturn
4258 #endif
4259 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4260 extern void init_callproc_1 (void);
4261 extern void init_callproc (void);
4262 extern void set_initial_environment (void);
4263 extern void syms_of_callproc (void);
4264
4265 /* Defined in doc.c. */
4266 extern Lisp_Object read_doc_string (Lisp_Object);
4267 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4268 extern void syms_of_doc (void);
4269 extern int read_bytecode_char (bool);
4270
4271 /* Defined in bytecode.c. */
4272 extern void syms_of_bytecode (void);
4273 extern struct byte_stack *byte_stack_list;
4274 #if BYTE_MARK_STACK
4275 extern void mark_byte_stack (void);
4276 #endif
4277 extern void unmark_byte_stack (void);
4278 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4279 Lisp_Object, ptrdiff_t, Lisp_Object *);
4280
4281 /* Defined in macros.c. */
4282 extern void init_macros (void);
4283 extern void syms_of_macros (void);
4284
4285 /* Defined in undo.c. */
4286 extern void truncate_undo_list (struct buffer *);
4287 extern void record_insert (ptrdiff_t, ptrdiff_t);
4288 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4289 extern void record_first_change (void);
4290 extern void record_change (ptrdiff_t, ptrdiff_t);
4291 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4292 Lisp_Object, Lisp_Object,
4293 Lisp_Object);
4294 extern void syms_of_undo (void);
4295
4296 /* Defined in textprop.c. */
4297 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4298
4299 /* Defined in menu.c. */
4300 extern void syms_of_menu (void);
4301
4302 /* Defined in xmenu.c. */
4303 extern void syms_of_xmenu (void);
4304
4305 /* Defined in termchar.h. */
4306 struct tty_display_info;
4307
4308 /* Defined in termhooks.h. */
4309 struct terminal;
4310
4311 /* Defined in sysdep.c. */
4312 #ifndef HAVE_GET_CURRENT_DIR_NAME
4313 extern char *get_current_dir_name (void);
4314 #endif
4315 extern void stuff_char (char c);
4316 extern void init_foreground_group (void);
4317 extern void sys_subshell (void);
4318 extern void sys_suspend (void);
4319 extern void discard_tty_input (void);
4320 extern void init_sys_modes (struct tty_display_info *);
4321 extern void reset_sys_modes (struct tty_display_info *);
4322 extern void init_all_sys_modes (void);
4323 extern void reset_all_sys_modes (void);
4324 extern void child_setup_tty (int);
4325 extern void setup_pty (int);
4326 extern int set_window_size (int, int, int);
4327 extern EMACS_INT get_random (void);
4328 extern void seed_random (void *, ptrdiff_t);
4329 extern void init_random (void);
4330 extern void emacs_backtrace (int);
4331 extern _Noreturn void emacs_abort (void) NO_INLINE;
4332 extern int emacs_open (const char *, int, int);
4333 extern int emacs_pipe (int[2]);
4334 extern int emacs_close (int);
4335 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4336 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4337 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4338 extern void emacs_perror (char const *);
4339
4340 extern void unlock_all_files (void);
4341 extern void lock_file (Lisp_Object);
4342 extern void unlock_file (Lisp_Object);
4343 extern void unlock_buffer (struct buffer *);
4344 extern void syms_of_filelock (void);
4345 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4346
4347 /* Defined in sound.c. */
4348 extern void syms_of_sound (void);
4349
4350 /* Defined in category.c. */
4351 extern void init_category_once (void);
4352 extern Lisp_Object char_category_set (int);
4353 extern void syms_of_category (void);
4354
4355 /* Defined in ccl.c. */
4356 extern void syms_of_ccl (void);
4357
4358 /* Defined in dired.c. */
4359 extern void syms_of_dired (void);
4360 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4361 Lisp_Object, Lisp_Object,
4362 bool, Lisp_Object);
4363
4364 /* Defined in term.c. */
4365 extern int *char_ins_del_vector;
4366 extern void syms_of_term (void);
4367 extern _Noreturn void fatal (const char *msgid, ...)
4368 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4369
4370 /* Defined in terminal.c. */
4371 extern void syms_of_terminal (void);
4372
4373 /* Defined in font.c. */
4374 extern void syms_of_font (void);
4375 extern void init_font (void);
4376
4377 #ifdef HAVE_WINDOW_SYSTEM
4378 /* Defined in fontset.c. */
4379 extern void syms_of_fontset (void);
4380 #endif
4381
4382 /* Defined in gfilenotify.c */
4383 #ifdef HAVE_GFILENOTIFY
4384 extern void globals_of_gfilenotify (void);
4385 extern void syms_of_gfilenotify (void);
4386 #endif
4387
4388 /* Defined in inotify.c */
4389 #ifdef HAVE_INOTIFY
4390 extern void syms_of_inotify (void);
4391 #endif
4392
4393 #ifdef HAVE_W32NOTIFY
4394 /* Defined on w32notify.c. */
4395 extern void syms_of_w32notify (void);
4396 #endif
4397
4398 /* Defined in xfaces.c. */
4399 extern Lisp_Object Vface_alternative_font_family_alist;
4400 extern Lisp_Object Vface_alternative_font_registry_alist;
4401 extern void syms_of_xfaces (void);
4402
4403 #ifdef HAVE_X_WINDOWS
4404 /* Defined in xfns.c. */
4405 extern void syms_of_xfns (void);
4406
4407 /* Defined in xsmfns.c. */
4408 extern void syms_of_xsmfns (void);
4409
4410 /* Defined in xselect.c. */
4411 extern void syms_of_xselect (void);
4412
4413 /* Defined in xterm.c. */
4414 extern void init_xterm (void);
4415 extern void syms_of_xterm (void);
4416 #endif /* HAVE_X_WINDOWS */
4417
4418 #ifdef HAVE_WINDOW_SYSTEM
4419 /* Defined in xterm.c, nsterm.m, w32term.c. */
4420 extern char *x_get_keysym_name (int);
4421 #endif /* HAVE_WINDOW_SYSTEM */
4422
4423 #ifdef HAVE_LIBXML2
4424 /* Defined in xml.c. */
4425 extern void syms_of_xml (void);
4426 extern void xml_cleanup_parser (void);
4427 #endif
4428
4429 #ifdef HAVE_ZLIB
4430 /* Defined in decompress.c. */
4431 extern void syms_of_decompress (void);
4432 #endif
4433
4434 #ifdef HAVE_DBUS
4435 /* Defined in dbusbind.c. */
4436 void init_dbusbind (void);
4437 void syms_of_dbusbind (void);
4438 #endif
4439
4440
4441 /* Defined in profiler.c. */
4442 extern bool profiler_memory_running;
4443 extern void malloc_probe (size_t);
4444 extern void syms_of_profiler (void);
4445
4446
4447 #ifdef DOS_NT
4448 /* Defined in msdos.c, w32.c. */
4449 extern char *emacs_root_dir (void);
4450 #endif /* DOS_NT */
4451
4452 /* Defined in lastfile.c. */
4453 extern char my_edata[];
4454 extern char my_endbss[];
4455 extern char *my_endbss_static;
4456
4457 /* True means ^G can quit instantly. */
4458 extern bool immediate_quit;
4459
4460 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4461 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4462 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4463 extern void xfree (void *);
4464 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4465 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4466 ATTRIBUTE_ALLOC_SIZE ((2,3));
4467 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4468
4469 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4470 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4471 extern void dupstring (char **, char const *);
4472
4473 /* Make DEST a copy of STRING's data. Return a pointer to DEST's terminating
4474 null byte. This is like stpcpy, except the source is a Lisp string. */
4475
4476 INLINE char *
4477 lispstpcpy (char *dest, Lisp_Object string)
4478 {
4479 ptrdiff_t len = SBYTES (string);
4480 memcpy (dest, SDATA (string), len + 1);
4481 return dest + len;
4482 }
4483
4484 extern void xputenv (const char *);
4485
4486 extern char *egetenv_internal (const char *, ptrdiff_t);
4487
4488 INLINE char *
4489 egetenv (const char *var)
4490 {
4491 /* When VAR is a string literal, strlen can be optimized away. */
4492 return egetenv_internal (var, strlen (var));
4493 }
4494
4495 /* Set up the name of the machine we're running on. */
4496 extern void init_system_name (void);
4497
4498 /* Return the absolute value of X. X should be a signed integer
4499 expression without side effects, and X's absolute value should not
4500 exceed the maximum for its promoted type. This is called 'eabs'
4501 because 'abs' is reserved by the C standard. */
4502 #define eabs(x) ((x) < 0 ? -(x) : (x))
4503
4504 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4505 fixnum. */
4506
4507 #define make_fixnum_or_float(val) \
4508 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4509
4510 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4511 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4512
4513 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4514
4515 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4516
4517 #define USE_SAFE_ALLOCA \
4518 ptrdiff_t sa_avail = MAX_ALLOCA; \
4519 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4520
4521 #define AVAIL_ALLOCA(size) (sa_avail -= (size), alloca (size))
4522
4523 /* SAFE_ALLOCA allocates a simple buffer. */
4524
4525 #define SAFE_ALLOCA(size) ((size) <= sa_avail \
4526 ? AVAIL_ALLOCA (size) \
4527 : (sa_must_free = true, record_xmalloc (size)))
4528
4529 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4530 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4531 positive. The code is tuned for MULTIPLIER being a constant. */
4532
4533 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4534 do { \
4535 if ((nitems) <= sa_avail / sizeof *(buf) / (multiplier)) \
4536 (buf) = AVAIL_ALLOCA (sizeof *(buf) * (multiplier) * (nitems)); \
4537 else \
4538 { \
4539 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4540 sa_must_free = true; \
4541 record_unwind_protect_ptr (xfree, buf); \
4542 } \
4543 } while (false)
4544
4545 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4546
4547 #define SAFE_ALLOCA_STRING(ptr, string) \
4548 do { \
4549 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4550 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4551 } while (false)
4552
4553 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4554
4555 #define SAFE_FREE() \
4556 do { \
4557 if (sa_must_free) { \
4558 sa_must_free = false; \
4559 unbind_to (sa_count, Qnil); \
4560 } \
4561 } while (false)
4562
4563
4564 /* Return floor (NBYTES / WORD_SIZE). */
4565
4566 INLINE ptrdiff_t
4567 lisp_word_count (ptrdiff_t nbytes)
4568 {
4569 if (-1 >> 1 == -1)
4570 switch (word_size)
4571 {
4572 case 2: return nbytes >> 1;
4573 case 4: return nbytes >> 2;
4574 case 8: return nbytes >> 3;
4575 case 16: return nbytes >> 4;
4576 }
4577 return nbytes / word_size - (nbytes % word_size < 0);
4578 }
4579
4580 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4581
4582 #define SAFE_ALLOCA_LISP(buf, nelt) \
4583 do { \
4584 if ((nelt) <= lisp_word_count (sa_avail)) \
4585 (buf) = AVAIL_ALLOCA ((nelt) * word_size); \
4586 else if ((nelt) <= min (PTRDIFF_MAX, SIZE_MAX) / word_size) \
4587 { \
4588 Lisp_Object arg_; \
4589 (buf) = xmalloc ((nelt) * word_size); \
4590 arg_ = make_save_memory (buf, nelt); \
4591 sa_must_free = true; \
4592 record_unwind_protect (free_save_value, arg_); \
4593 } \
4594 else \
4595 memory_full (SIZE_MAX); \
4596 } while (false)
4597
4598
4599 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that allocate
4600 block-scoped conses and strings. These objects are not
4601 managed by the garbage collector, so they are dangerous: passing them
4602 out of their scope (e.g., to user code) results in undefined behavior.
4603 Conversely, they have better performance because GC is not involved.
4604
4605 This feature is experimental and requires careful debugging.
4606 Build with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS=0' to disable it. */
4607
4608 #ifndef USE_STACK_LISP_OBJECTS
4609 # define USE_STACK_LISP_OBJECTS true
4610 #endif
4611
4612 /* USE_STACK_LISP_OBJECTS requires GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS. */
4613
4614 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
4615 # undef USE_STACK_LISP_OBJECTS
4616 # define USE_STACK_LISP_OBJECTS false
4617 #endif
4618
4619 #ifdef GC_CHECK_STRING_BYTES
4620 enum { defined_GC_CHECK_STRING_BYTES = true };
4621 #else
4622 enum { defined_GC_CHECK_STRING_BYTES = false };
4623 #endif
4624
4625 /* Struct inside unions that are typically no larger and aligned enough. */
4626
4627 union Aligned_Cons
4628 {
4629 struct Lisp_Cons s;
4630 double d; intmax_t i; void *p;
4631 };
4632
4633 union Aligned_String
4634 {
4635 struct Lisp_String s;
4636 double d; intmax_t i; void *p;
4637 };
4638
4639 /* True for stack-based cons and string implementations, respectively.
4640 Use stack-based strings only if stack-based cons also works.
4641 Otherwise, STACK_CONS would create heap-based cons cells that
4642 could point to stack-based strings, which is a no-no. */
4643
4644 enum
4645 {
4646 USE_STACK_CONS = (USE_STACK_LISP_OBJECTS
4647 && alignof (union Aligned_Cons) % GCALIGNMENT == 0),
4648 USE_STACK_STRING = (USE_STACK_CONS
4649 && !defined_GC_CHECK_STRING_BYTES
4650 && alignof (union Aligned_String) % GCALIGNMENT == 0)
4651 };
4652
4653 /* Auxiliary macros used for auto allocation of Lisp objects. Please
4654 use these only in macros like AUTO_CONS that declare a local
4655 variable whose lifetime will be clear to the programmer. */
4656 #define STACK_CONS(a, b) \
4657 make_lisp_ptr (&(union Aligned_Cons) { { a, { b } } }.s, Lisp_Cons)
4658 #define AUTO_CONS_EXPR(a, b) \
4659 (USE_STACK_CONS ? STACK_CONS (a, b) : Fcons (a, b))
4660
4661 /* Declare NAME as an auto Lisp cons or short list if possible, a
4662 GC-based one otherwise. This is in the sense of the C keyword
4663 'auto'; i.e., the object has the lifetime of the containing block.
4664 The resulting object should not be made visible to user Lisp code. */
4665
4666 #define AUTO_CONS(name, a, b) Lisp_Object name = AUTO_CONS_EXPR (a, b)
4667 #define AUTO_LIST1(name, a) \
4668 Lisp_Object name = (USE_STACK_CONS ? STACK_CONS (a, Qnil) : list1 (a))
4669 #define AUTO_LIST2(name, a, b) \
4670 Lisp_Object name = (USE_STACK_CONS \
4671 ? STACK_CONS (a, STACK_CONS (b, Qnil)) \
4672 : list2 (a, b))
4673 #define AUTO_LIST3(name, a, b, c) \
4674 Lisp_Object name = (USE_STACK_CONS \
4675 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, Qnil))) \
4676 : list3 (a, b, c))
4677 #define AUTO_LIST4(name, a, b, c, d) \
4678 Lisp_Object name \
4679 = (USE_STACK_CONS \
4680 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, \
4681 STACK_CONS (d, Qnil)))) \
4682 : list4 (a, b, c, d))
4683
4684 /* Check whether stack-allocated strings are ASCII-only. */
4685
4686 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
4687 extern const char *verify_ascii (const char *);
4688 #else
4689 # define verify_ascii(str) (str)
4690 #endif
4691
4692 /* Declare NAME as an auto Lisp string if possible, a GC-based one if not.
4693 Take its value from STR. STR is not necessarily copied and should
4694 contain only ASCII characters. The resulting Lisp string should
4695 not be modified or made visible to user code. */
4696
4697 #define AUTO_STRING(name, str) \
4698 Lisp_Object name = \
4699 (USE_STACK_STRING \
4700 ? (make_lisp_ptr \
4701 ((&(union Aligned_String) \
4702 {{strlen (str), -1, 0, (unsigned char *) verify_ascii (str)}}.s), \
4703 Lisp_String)) \
4704 : build_string (verify_ascii (str)))
4705
4706 /* Loop over all tails of a list, checking for cycles.
4707 FIXME: Make tortoise and n internal declarations.
4708 FIXME: Unroll the loop body so we don't need `n'. */
4709 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4710 for ((tortoise) = (hare) = (list), (n) = true; \
4711 CONSP (hare); \
4712 (hare = XCDR (hare), (n) = !(n), \
4713 ((n) \
4714 ? (EQ (hare, tortoise) \
4715 ? xsignal1 (Qcircular_list, list) \
4716 : (void) 0) \
4717 /* Move tortoise before the next iteration, in case */ \
4718 /* the next iteration does an Fsetcdr. */ \
4719 : (void) ((tortoise) = XCDR (tortoise)))))
4720
4721 /* Do a `for' loop over alist values. */
4722
4723 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4724 for ((list_var) = (head_var); \
4725 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4726 (list_var) = XCDR (list_var))
4727
4728 /* Check whether it's time for GC, and run it if so. */
4729
4730 INLINE void
4731 maybe_gc (void)
4732 {
4733 if ((consing_since_gc > gc_cons_threshold
4734 && consing_since_gc > gc_relative_threshold)
4735 || (!NILP (Vmemory_full)
4736 && consing_since_gc > memory_full_cons_threshold))
4737 Fgarbage_collect ();
4738 }
4739
4740 INLINE bool
4741 functionp (Lisp_Object object)
4742 {
4743 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4744 {
4745 object = Findirect_function (object, Qt);
4746
4747 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4748 {
4749 /* Autoloaded symbols are functions, except if they load
4750 macros or keymaps. */
4751 int i;
4752 for (i = 0; i < 4 && CONSP (object); i++)
4753 object = XCDR (object);
4754
4755 return ! (CONSP (object) && !NILP (XCAR (object)));
4756 }
4757 }
4758
4759 if (SUBRP (object))
4760 return XSUBR (object)->max_args != UNEVALLED;
4761 else if (COMPILEDP (object))
4762 return true;
4763 else if (CONSP (object))
4764 {
4765 Lisp_Object car = XCAR (object);
4766 return EQ (car, Qlambda) || EQ (car, Qclosure);
4767 }
4768 else
4769 return false;
4770 }
4771
4772 INLINE_HEADER_END
4773
4774 #endif /* EMACS_LISP_H */