]> code.delx.au - gnu-emacs/blob - src/regex.c
(calendar-location-name): Doc fix.
[gnu-emacs] / src / regex.c
1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P10003.2/D11.2, except for
3 internationalization features.)
4
5 Copyright (C) 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
20 USA. */
21
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25 #endif
26
27 #undef _GNU_SOURCE
28 #define _GNU_SOURCE
29
30 /* Converts the pointer to the char to BEG-based offset from the start. */
31 #define PTR_TO_OFFSET(d) \
32 POS_AS_IN_BUFFER (MATCHING_IN_FIRST_STRING \
33 ? (d) - string1 : (d) - (string2 - size1))
34 #define POS_AS_IN_BUFFER(p) ((p) + 1)
35
36 #ifdef HAVE_CONFIG_H
37 #include <config.h>
38 #endif
39
40 /* We need this for `regex.h', and perhaps for the Emacs include files. */
41 #include <sys/types.h>
42
43 /* This is for other GNU distributions with internationalized messages. */
44 #if HAVE_LIBINTL_H || defined (_LIBC)
45 # include <libintl.h>
46 #else
47 # define gettext(msgid) (msgid)
48 #endif
49
50 #ifndef gettext_noop
51 /* This define is so xgettext can find the internationalizable
52 strings. */
53 #define gettext_noop(String) String
54 #endif
55
56 /* The `emacs' switch turns on certain matching commands
57 that make sense only in Emacs. */
58 #ifdef emacs
59
60 #include "lisp.h"
61 #include "buffer.h"
62
63 /* Make syntax table lookup grant data in gl_state. */
64 #define SYNTAX_ENTRY_VIA_PROPERTY
65
66 #include "syntax.h"
67 #include "charset.h"
68 #include "category.h"
69
70 #define malloc xmalloc
71 #define free xfree
72
73 #else /* not emacs */
74
75 /* If we are not linking with Emacs proper,
76 we can't use the relocating allocator
77 even if config.h says that we can. */
78 #undef REL_ALLOC
79
80 #if defined (STDC_HEADERS) || defined (_LIBC)
81 #include <stdlib.h>
82 #else
83 char *malloc ();
84 char *realloc ();
85 #endif
86
87 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
88 If nothing else has been done, use the method below. */
89 #ifdef INHIBIT_STRING_HEADER
90 #if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
91 #if !defined (bzero) && !defined (bcopy)
92 #undef INHIBIT_STRING_HEADER
93 #endif
94 #endif
95 #endif
96
97 /* This is the normal way of making sure we have a bcopy and a bzero.
98 This is used in most programs--a few other programs avoid this
99 by defining INHIBIT_STRING_HEADER. */
100 #ifndef INHIBIT_STRING_HEADER
101 #if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
102 #include <string.h>
103 #ifndef bcmp
104 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
105 #endif
106 #ifndef bcopy
107 #define bcopy(s, d, n) memcpy ((d), (s), (n))
108 #endif
109 #ifndef bzero
110 #define bzero(s, n) memset ((s), 0, (n))
111 #endif
112 #else
113 #include <strings.h>
114 #endif
115 #endif
116
117 /* Define the syntax stuff for \<, \>, etc. */
118
119 /* This must be nonzero for the wordchar and notwordchar pattern
120 commands in re_match_2. */
121 #ifndef Sword
122 #define Sword 1
123 #endif
124
125 #ifdef SWITCH_ENUM_BUG
126 #define SWITCH_ENUM_CAST(x) ((int)(x))
127 #else
128 #define SWITCH_ENUM_CAST(x) (x)
129 #endif
130
131 #ifdef SYNTAX_TABLE
132
133 extern char *re_syntax_table;
134
135 #else /* not SYNTAX_TABLE */
136
137 /* How many characters in the character set. */
138 #define CHAR_SET_SIZE 256
139
140 static char re_syntax_table[CHAR_SET_SIZE];
141
142 static void
143 init_syntax_once ()
144 {
145 register int c;
146 static int done = 0;
147
148 if (done)
149 return;
150
151 bzero (re_syntax_table, sizeof re_syntax_table);
152
153 for (c = 'a'; c <= 'z'; c++)
154 re_syntax_table[c] = Sword;
155
156 for (c = 'A'; c <= 'Z'; c++)
157 re_syntax_table[c] = Sword;
158
159 for (c = '0'; c <= '9'; c++)
160 re_syntax_table[c] = Sword;
161
162 re_syntax_table['_'] = Sword;
163
164 done = 1;
165 }
166
167 #endif /* not SYNTAX_TABLE */
168
169 #define SYNTAX(c) re_syntax_table[c]
170
171 /* Dummy macro for non emacs environments. */
172 #define BASE_LEADING_CODE_P(c) (0)
173 #define WORD_BOUNDARY_P(c1, c2) (0)
174 #define CHAR_HEAD_P(p) (1)
175 #define SINGLE_BYTE_CHAR_P(c) (1)
176 #define SAME_CHARSET_P(c1, c2) (1)
177 #define MULTIBYTE_FORM_LENGTH(p, s) (1)
178 #define STRING_CHAR(p, s) (*(p))
179 #define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
180 #define GET_CHAR_AFTER_2(c, p, str1, end1, str2, end2) \
181 (c = ((p) == (end1) ? *(str2) : *(p)))
182 #define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
183 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
184 #endif /* not emacs */
185 \f
186 /* Get the interface, including the syntax bits. */
187 #include "regex.h"
188
189 /* isalpha etc. are used for the character classes. */
190 #include <ctype.h>
191
192 /* Jim Meyering writes:
193
194 "... Some ctype macros are valid only for character codes that
195 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
196 using /bin/cc or gcc but without giving an ansi option). So, all
197 ctype uses should be through macros like ISPRINT... If
198 STDC_HEADERS is defined, then autoconf has verified that the ctype
199 macros don't need to be guarded with references to isascii. ...
200 Defining isascii to 1 should let any compiler worth its salt
201 eliminate the && through constant folding." */
202
203 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
204 #define ISASCII(c) 1
205 #else
206 #define ISASCII(c) isascii(c)
207 #endif
208
209 #ifdef isblank
210 #define ISBLANK(c) (ISASCII (c) && isblank (c))
211 #else
212 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
213 #endif
214 #ifdef isgraph
215 #define ISGRAPH(c) (ISASCII (c) && isgraph (c))
216 #else
217 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
218 #endif
219
220 #define ISPRINT(c) (ISASCII (c) && isprint (c))
221 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
222 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
223 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
224 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
225 #define ISLOWER(c) (ISASCII (c) && islower (c))
226 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
227 #define ISSPACE(c) (ISASCII (c) && isspace (c))
228 #define ISUPPER(c) (ISASCII (c) && isupper (c))
229 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
230
231 #ifndef NULL
232 #define NULL (void *)0
233 #endif
234
235 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
236 since ours (we hope) works properly with all combinations of
237 machines, compilers, `char' and `unsigned char' argument types.
238 (Per Bothner suggested the basic approach.) */
239 #undef SIGN_EXTEND_CHAR
240 #if __STDC__
241 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
242 #else /* not __STDC__ */
243 /* As in Harbison and Steele. */
244 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
245 #endif
246 \f
247 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
248 use `alloca' instead of `malloc'. This is because using malloc in
249 re_search* or re_match* could cause memory leaks when C-g is used in
250 Emacs; also, malloc is slower and causes storage fragmentation. On
251 the other hand, malloc is more portable, and easier to debug.
252
253 Because we sometimes use alloca, some routines have to be macros,
254 not functions -- `alloca'-allocated space disappears at the end of the
255 function it is called in. */
256
257 #ifdef REGEX_MALLOC
258
259 #define REGEX_ALLOCATE malloc
260 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
261 #define REGEX_FREE free
262
263 #else /* not REGEX_MALLOC */
264
265 /* Emacs already defines alloca, sometimes. */
266 #ifndef alloca
267
268 /* Make alloca work the best possible way. */
269 #ifdef __GNUC__
270 #define alloca __builtin_alloca
271 #else /* not __GNUC__ */
272 #if HAVE_ALLOCA_H
273 #include <alloca.h>
274 #else /* not __GNUC__ or HAVE_ALLOCA_H */
275 #if 0 /* It is a bad idea to declare alloca. We always cast the result. */
276 #ifndef _AIX /* Already did AIX, up at the top. */
277 char *alloca ();
278 #endif /* not _AIX */
279 #endif
280 #endif /* not HAVE_ALLOCA_H */
281 #endif /* not __GNUC__ */
282
283 #endif /* not alloca */
284
285 #define REGEX_ALLOCATE alloca
286
287 /* Assumes a `char *destination' variable. */
288 #define REGEX_REALLOCATE(source, osize, nsize) \
289 (destination = (char *) alloca (nsize), \
290 bcopy (source, destination, osize), \
291 destination)
292
293 /* No need to do anything to free, after alloca. */
294 #define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
295
296 #endif /* not REGEX_MALLOC */
297
298 /* Define how to allocate the failure stack. */
299
300 #if defined (REL_ALLOC) && defined (REGEX_MALLOC)
301
302 #define REGEX_ALLOCATE_STACK(size) \
303 r_alloc (&failure_stack_ptr, (size))
304 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
305 r_re_alloc (&failure_stack_ptr, (nsize))
306 #define REGEX_FREE_STACK(ptr) \
307 r_alloc_free (&failure_stack_ptr)
308
309 #else /* not using relocating allocator */
310
311 #ifdef REGEX_MALLOC
312
313 #define REGEX_ALLOCATE_STACK malloc
314 #define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
315 #define REGEX_FREE_STACK free
316
317 #else /* not REGEX_MALLOC */
318
319 #define REGEX_ALLOCATE_STACK alloca
320
321 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
322 REGEX_REALLOCATE (source, osize, nsize)
323 /* No need to explicitly free anything. */
324 #define REGEX_FREE_STACK(arg)
325
326 #endif /* not REGEX_MALLOC */
327 #endif /* not using relocating allocator */
328
329
330 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
331 `string1' or just past its end. This works if PTR is NULL, which is
332 a good thing. */
333 #define FIRST_STRING_P(ptr) \
334 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
335
336 /* (Re)Allocate N items of type T using malloc, or fail. */
337 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
338 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
339 #define RETALLOC_IF(addr, n, t) \
340 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
341 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
342
343 #define BYTEWIDTH 8 /* In bits. */
344
345 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
346
347 #undef MAX
348 #undef MIN
349 #define MAX(a, b) ((a) > (b) ? (a) : (b))
350 #define MIN(a, b) ((a) < (b) ? (a) : (b))
351
352 typedef char boolean;
353 #define false 0
354 #define true 1
355
356 static int re_match_2_internal ();
357 \f
358 /* These are the command codes that appear in compiled regular
359 expressions. Some opcodes are followed by argument bytes. A
360 command code can specify any interpretation whatsoever for its
361 arguments. Zero bytes may appear in the compiled regular expression. */
362
363 typedef enum
364 {
365 no_op = 0,
366
367 /* Succeed right away--no more backtracking. */
368 succeed,
369
370 /* Followed by one byte giving n, then by n literal bytes. */
371 exactn,
372
373 /* Matches any (more or less) character. */
374 anychar,
375
376 /* Matches any one char belonging to specified set. First
377 following byte is number of bitmap bytes. Then come bytes
378 for a bitmap saying which chars are in. Bits in each byte
379 are ordered low-bit-first. A character is in the set if its
380 bit is 1. A character too large to have a bit in the map is
381 automatically not in the set. */
382 charset,
383
384 /* Same parameters as charset, but match any character that is
385 not one of those specified. */
386 charset_not,
387
388 /* Start remembering the text that is matched, for storing in a
389 register. Followed by one byte with the register number, in
390 the range 0 to one less than the pattern buffer's re_nsub
391 field. Then followed by one byte with the number of groups
392 inner to this one. (This last has to be part of the
393 start_memory only because we need it in the on_failure_jump
394 of re_match_2.) */
395 start_memory,
396
397 /* Stop remembering the text that is matched and store it in a
398 memory register. Followed by one byte with the register
399 number, in the range 0 to one less than `re_nsub' in the
400 pattern buffer, and one byte with the number of inner groups,
401 just like `start_memory'. (We need the number of inner
402 groups here because we don't have any easy way of finding the
403 corresponding start_memory when we're at a stop_memory.) */
404 stop_memory,
405
406 /* Match a duplicate of something remembered. Followed by one
407 byte containing the register number. */
408 duplicate,
409
410 /* Fail unless at beginning of line. */
411 begline,
412
413 /* Fail unless at end of line. */
414 endline,
415
416 /* Succeeds if at beginning of buffer (if emacs) or at beginning
417 of string to be matched (if not). */
418 begbuf,
419
420 /* Analogously, for end of buffer/string. */
421 endbuf,
422
423 /* Followed by two byte relative address to which to jump. */
424 jump,
425
426 /* Same as jump, but marks the end of an alternative. */
427 jump_past_alt,
428
429 /* Followed by two-byte relative address of place to resume at
430 in case of failure. */
431 on_failure_jump,
432
433 /* Like on_failure_jump, but pushes a placeholder instead of the
434 current string position when executed. */
435 on_failure_keep_string_jump,
436
437 /* Throw away latest failure point and then jump to following
438 two-byte relative address. */
439 pop_failure_jump,
440
441 /* Change to pop_failure_jump if know won't have to backtrack to
442 match; otherwise change to jump. This is used to jump
443 back to the beginning of a repeat. If what follows this jump
444 clearly won't match what the repeat does, such that we can be
445 sure that there is no use backtracking out of repetitions
446 already matched, then we change it to a pop_failure_jump.
447 Followed by two-byte address. */
448 maybe_pop_jump,
449
450 /* Jump to following two-byte address, and push a dummy failure
451 point. This failure point will be thrown away if an attempt
452 is made to use it for a failure. A `+' construct makes this
453 before the first repeat. Also used as an intermediary kind
454 of jump when compiling an alternative. */
455 dummy_failure_jump,
456
457 /* Push a dummy failure point and continue. Used at the end of
458 alternatives. */
459 push_dummy_failure,
460
461 /* Followed by two-byte relative address and two-byte number n.
462 After matching N times, jump to the address upon failure. */
463 succeed_n,
464
465 /* Followed by two-byte relative address, and two-byte number n.
466 Jump to the address N times, then fail. */
467 jump_n,
468
469 /* Set the following two-byte relative address to the
470 subsequent two-byte number. The address *includes* the two
471 bytes of number. */
472 set_number_at,
473
474 wordchar, /* Matches any word-constituent character. */
475 notwordchar, /* Matches any char that is not a word-constituent. */
476
477 wordbeg, /* Succeeds if at word beginning. */
478 wordend, /* Succeeds if at word end. */
479
480 wordbound, /* Succeeds if at a word boundary. */
481 notwordbound /* Succeeds if not at a word boundary. */
482
483 #ifdef emacs
484 ,before_dot, /* Succeeds if before point. */
485 at_dot, /* Succeeds if at point. */
486 after_dot, /* Succeeds if after point. */
487
488 /* Matches any character whose syntax is specified. Followed by
489 a byte which contains a syntax code, e.g., Sword. */
490 syntaxspec,
491
492 /* Matches any character whose syntax is not that specified. */
493 notsyntaxspec,
494
495 /* Matches any character whose category-set contains the specified
496 category. The operator is followed by a byte which contains a
497 category code (mnemonic ASCII character). */
498 categoryspec,
499
500 /* Matches any character whose category-set does not contain the
501 specified category. The operator is followed by a byte which
502 contains the category code (mnemonic ASCII character). */
503 notcategoryspec
504 #endif /* emacs */
505 } re_opcode_t;
506 \f
507 /* Common operations on the compiled pattern. */
508
509 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
510
511 #define STORE_NUMBER(destination, number) \
512 do { \
513 (destination)[0] = (number) & 0377; \
514 (destination)[1] = (number) >> 8; \
515 } while (0)
516
517 /* Same as STORE_NUMBER, except increment DESTINATION to
518 the byte after where the number is stored. Therefore, DESTINATION
519 must be an lvalue. */
520
521 #define STORE_NUMBER_AND_INCR(destination, number) \
522 do { \
523 STORE_NUMBER (destination, number); \
524 (destination) += 2; \
525 } while (0)
526
527 /* Put into DESTINATION a number stored in two contiguous bytes starting
528 at SOURCE. */
529
530 #define EXTRACT_NUMBER(destination, source) \
531 do { \
532 (destination) = *(source) & 0377; \
533 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
534 } while (0)
535
536 #ifdef DEBUG
537 static void
538 extract_number (dest, source)
539 int *dest;
540 unsigned char *source;
541 {
542 int temp = SIGN_EXTEND_CHAR (*(source + 1));
543 *dest = *source & 0377;
544 *dest += temp << 8;
545 }
546
547 #ifndef EXTRACT_MACROS /* To debug the macros. */
548 #undef EXTRACT_NUMBER
549 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
550 #endif /* not EXTRACT_MACROS */
551
552 #endif /* DEBUG */
553
554 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
555 SOURCE must be an lvalue. */
556
557 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
558 do { \
559 EXTRACT_NUMBER (destination, source); \
560 (source) += 2; \
561 } while (0)
562
563 #ifdef DEBUG
564 static void
565 extract_number_and_incr (destination, source)
566 int *destination;
567 unsigned char **source;
568 {
569 extract_number (destination, *source);
570 *source += 2;
571 }
572
573 #ifndef EXTRACT_MACROS
574 #undef EXTRACT_NUMBER_AND_INCR
575 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
576 extract_number_and_incr (&dest, &src)
577 #endif /* not EXTRACT_MACROS */
578
579 #endif /* DEBUG */
580 \f
581 /* Store a multibyte character in three contiguous bytes starting
582 DESTINATION, and increment DESTINATION to the byte after where the
583 character is stored. Therefore, DESTINATION must be an lvalue. */
584
585 #define STORE_CHARACTER_AND_INCR(destination, character) \
586 do { \
587 (destination)[0] = (character) & 0377; \
588 (destination)[1] = ((character) >> 8) & 0377; \
589 (destination)[2] = (character) >> 16; \
590 (destination) += 3; \
591 } while (0)
592
593 /* Put into DESTINATION a character stored in three contiguous bytes
594 starting at SOURCE. */
595
596 #define EXTRACT_CHARACTER(destination, source) \
597 do { \
598 (destination) = ((source)[0] \
599 | ((source)[1] << 8) \
600 | ((source)[2] << 16)); \
601 } while (0)
602
603
604 /* Macros for charset. */
605
606 /* Size of bitmap of charset P in bytes. P is a start of charset,
607 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
608 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
609
610 /* Nonzero if charset P has range table. */
611 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
612
613 /* Return the address of range table of charset P. But not the start
614 of table itself, but the before where the number of ranges is
615 stored. `2 +' means to skip re_opcode_t and size of bitmap. */
616 #define CHARSET_RANGE_TABLE(p) (&(p)[2 + CHARSET_BITMAP_SIZE (p)])
617
618 /* Test if C is listed in the bitmap of charset P. */
619 #define CHARSET_LOOKUP_BITMAP(p, c) \
620 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
621 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
622
623 /* Return the address of end of RANGE_TABLE. COUNT is number of
624 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
625 is start of range and end of range. `* 3' is size of each start
626 and end. */
627 #define CHARSET_RANGE_TABLE_END(range_table, count) \
628 ((range_table) + (count) * 2 * 3)
629
630 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
631 COUNT is number of ranges in RANGE_TABLE. */
632 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
633 do \
634 { \
635 int range_start, range_end; \
636 unsigned char *p; \
637 unsigned char *range_table_end \
638 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
639 \
640 for (p = (range_table); p < range_table_end; p += 2 * 3) \
641 { \
642 EXTRACT_CHARACTER (range_start, p); \
643 EXTRACT_CHARACTER (range_end, p + 3); \
644 \
645 if (range_start <= (c) && (c) <= range_end) \
646 { \
647 (not) = !(not); \
648 break; \
649 } \
650 } \
651 } \
652 while (0)
653
654 /* Test if C is in range table of CHARSET. The flag NOT is negated if
655 C is listed in it. */
656 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
657 do \
658 { \
659 /* Number of ranges in range table. */ \
660 int count; \
661 unsigned char *range_table = CHARSET_RANGE_TABLE (charset); \
662 \
663 EXTRACT_NUMBER_AND_INCR (count, range_table); \
664 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
665 } \
666 while (0)
667 \f
668 /* If DEBUG is defined, Regex prints many voluminous messages about what
669 it is doing (if the variable `debug' is nonzero). If linked with the
670 main program in `iregex.c', you can enter patterns and strings
671 interactively. And if linked with the main program in `main.c' and
672 the other test files, you can run the already-written tests. */
673
674 #ifdef DEBUG
675
676 /* We use standard I/O for debugging. */
677 #include <stdio.h>
678
679 /* It is useful to test things that ``must'' be true when debugging. */
680 #include <assert.h>
681
682 static int debug = 0;
683
684 #define DEBUG_STATEMENT(e) e
685 #define DEBUG_PRINT1(x) if (debug) printf (x)
686 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
687 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
688 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
689 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
690 if (debug) print_partial_compiled_pattern (s, e)
691 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
692 if (debug) print_double_string (w, s1, sz1, s2, sz2)
693
694
695 /* Print the fastmap in human-readable form. */
696
697 void
698 print_fastmap (fastmap)
699 char *fastmap;
700 {
701 unsigned was_a_range = 0;
702 unsigned i = 0;
703
704 while (i < (1 << BYTEWIDTH))
705 {
706 if (fastmap[i++])
707 {
708 was_a_range = 0;
709 putchar (i - 1);
710 while (i < (1 << BYTEWIDTH) && fastmap[i])
711 {
712 was_a_range = 1;
713 i++;
714 }
715 if (was_a_range)
716 {
717 printf ("-");
718 putchar (i - 1);
719 }
720 }
721 }
722 putchar ('\n');
723 }
724
725
726 /* Print a compiled pattern string in human-readable form, starting at
727 the START pointer into it and ending just before the pointer END. */
728
729 void
730 print_partial_compiled_pattern (start, end)
731 unsigned char *start;
732 unsigned char *end;
733 {
734 int mcnt, mcnt2;
735 unsigned char *p = start;
736 unsigned char *pend = end;
737
738 if (start == NULL)
739 {
740 printf ("(null)\n");
741 return;
742 }
743
744 /* Loop over pattern commands. */
745 while (p < pend)
746 {
747 printf ("%d:\t", p - start);
748
749 switch ((re_opcode_t) *p++)
750 {
751 case no_op:
752 printf ("/no_op");
753 break;
754
755 case exactn:
756 mcnt = *p++;
757 printf ("/exactn/%d", mcnt);
758 do
759 {
760 putchar ('/');
761 putchar (*p++);
762 }
763 while (--mcnt);
764 break;
765
766 case start_memory:
767 mcnt = *p++;
768 printf ("/start_memory/%d/%d", mcnt, *p++);
769 break;
770
771 case stop_memory:
772 mcnt = *p++;
773 printf ("/stop_memory/%d/%d", mcnt, *p++);
774 break;
775
776 case duplicate:
777 printf ("/duplicate/%d", *p++);
778 break;
779
780 case anychar:
781 printf ("/anychar");
782 break;
783
784 case charset:
785 case charset_not:
786 {
787 register int c, last = -100;
788 register int in_range = 0;
789
790 printf ("/charset [%s",
791 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
792
793 assert (p + *p < pend);
794
795 for (c = 0; c < 256; c++)
796 if (c / 8 < *p
797 && (p[1 + (c/8)] & (1 << (c % 8))))
798 {
799 /* Are we starting a range? */
800 if (last + 1 == c && ! in_range)
801 {
802 putchar ('-');
803 in_range = 1;
804 }
805 /* Have we broken a range? */
806 else if (last + 1 != c && in_range)
807 {
808 putchar (last);
809 in_range = 0;
810 }
811
812 if (! in_range)
813 putchar (c);
814
815 last = c;
816 }
817
818 if (in_range)
819 putchar (last);
820
821 putchar (']');
822
823 p += 1 + *p;
824 }
825 break;
826
827 case begline:
828 printf ("/begline");
829 break;
830
831 case endline:
832 printf ("/endline");
833 break;
834
835 case on_failure_jump:
836 extract_number_and_incr (&mcnt, &p);
837 printf ("/on_failure_jump to %d", p + mcnt - start);
838 break;
839
840 case on_failure_keep_string_jump:
841 extract_number_and_incr (&mcnt, &p);
842 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
843 break;
844
845 case dummy_failure_jump:
846 extract_number_and_incr (&mcnt, &p);
847 printf ("/dummy_failure_jump to %d", p + mcnt - start);
848 break;
849
850 case push_dummy_failure:
851 printf ("/push_dummy_failure");
852 break;
853
854 case maybe_pop_jump:
855 extract_number_and_incr (&mcnt, &p);
856 printf ("/maybe_pop_jump to %d", p + mcnt - start);
857 break;
858
859 case pop_failure_jump:
860 extract_number_and_incr (&mcnt, &p);
861 printf ("/pop_failure_jump to %d", p + mcnt - start);
862 break;
863
864 case jump_past_alt:
865 extract_number_and_incr (&mcnt, &p);
866 printf ("/jump_past_alt to %d", p + mcnt - start);
867 break;
868
869 case jump:
870 extract_number_and_incr (&mcnt, &p);
871 printf ("/jump to %d", p + mcnt - start);
872 break;
873
874 case succeed_n:
875 extract_number_and_incr (&mcnt, &p);
876 extract_number_and_incr (&mcnt2, &p);
877 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
878 break;
879
880 case jump_n:
881 extract_number_and_incr (&mcnt, &p);
882 extract_number_and_incr (&mcnt2, &p);
883 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
884 break;
885
886 case set_number_at:
887 extract_number_and_incr (&mcnt, &p);
888 extract_number_and_incr (&mcnt2, &p);
889 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
890 break;
891
892 case wordbound:
893 printf ("/wordbound");
894 break;
895
896 case notwordbound:
897 printf ("/notwordbound");
898 break;
899
900 case wordbeg:
901 printf ("/wordbeg");
902 break;
903
904 case wordend:
905 printf ("/wordend");
906
907 #ifdef emacs
908 case before_dot:
909 printf ("/before_dot");
910 break;
911
912 case at_dot:
913 printf ("/at_dot");
914 break;
915
916 case after_dot:
917 printf ("/after_dot");
918 break;
919
920 case syntaxspec:
921 printf ("/syntaxspec");
922 mcnt = *p++;
923 printf ("/%d", mcnt);
924 break;
925
926 case notsyntaxspec:
927 printf ("/notsyntaxspec");
928 mcnt = *p++;
929 printf ("/%d", mcnt);
930 break;
931 #endif /* emacs */
932
933 case wordchar:
934 printf ("/wordchar");
935 break;
936
937 case notwordchar:
938 printf ("/notwordchar");
939 break;
940
941 case begbuf:
942 printf ("/begbuf");
943 break;
944
945 case endbuf:
946 printf ("/endbuf");
947 break;
948
949 default:
950 printf ("?%d", *(p-1));
951 }
952
953 putchar ('\n');
954 }
955
956 printf ("%d:\tend of pattern.\n", p - start);
957 }
958
959
960 void
961 print_compiled_pattern (bufp)
962 struct re_pattern_buffer *bufp;
963 {
964 unsigned char *buffer = bufp->buffer;
965
966 print_partial_compiled_pattern (buffer, buffer + bufp->used);
967 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
968
969 if (bufp->fastmap_accurate && bufp->fastmap)
970 {
971 printf ("fastmap: ");
972 print_fastmap (bufp->fastmap);
973 }
974
975 printf ("re_nsub: %d\t", bufp->re_nsub);
976 printf ("regs_alloc: %d\t", bufp->regs_allocated);
977 printf ("can_be_null: %d\t", bufp->can_be_null);
978 printf ("newline_anchor: %d\n", bufp->newline_anchor);
979 printf ("no_sub: %d\t", bufp->no_sub);
980 printf ("not_bol: %d\t", bufp->not_bol);
981 printf ("not_eol: %d\t", bufp->not_eol);
982 printf ("syntax: %d\n", bufp->syntax);
983 /* Perhaps we should print the translate table? */
984 }
985
986
987 void
988 print_double_string (where, string1, size1, string2, size2)
989 const char *where;
990 const char *string1;
991 const char *string2;
992 int size1;
993 int size2;
994 {
995 unsigned this_char;
996
997 if (where == NULL)
998 printf ("(null)");
999 else
1000 {
1001 if (FIRST_STRING_P (where))
1002 {
1003 for (this_char = where - string1; this_char < size1; this_char++)
1004 putchar (string1[this_char]);
1005
1006 where = string2;
1007 }
1008
1009 for (this_char = where - string2; this_char < size2; this_char++)
1010 putchar (string2[this_char]);
1011 }
1012 }
1013
1014 #else /* not DEBUG */
1015
1016 #undef assert
1017 #define assert(e)
1018
1019 #define DEBUG_STATEMENT(e)
1020 #define DEBUG_PRINT1(x)
1021 #define DEBUG_PRINT2(x1, x2)
1022 #define DEBUG_PRINT3(x1, x2, x3)
1023 #define DEBUG_PRINT4(x1, x2, x3, x4)
1024 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1025 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1026
1027 #endif /* not DEBUG */
1028 \f
1029 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1030 also be assigned to arbitrarily: each pattern buffer stores its own
1031 syntax, so it can be changed between regex compilations. */
1032 /* This has no initializer because initialized variables in Emacs
1033 become read-only after dumping. */
1034 reg_syntax_t re_syntax_options;
1035
1036
1037 /* Specify the precise syntax of regexps for compilation. This provides
1038 for compatibility for various utilities which historically have
1039 different, incompatible syntaxes.
1040
1041 The argument SYNTAX is a bit mask comprised of the various bits
1042 defined in regex.h. We return the old syntax. */
1043
1044 reg_syntax_t
1045 re_set_syntax (syntax)
1046 reg_syntax_t syntax;
1047 {
1048 reg_syntax_t ret = re_syntax_options;
1049
1050 re_syntax_options = syntax;
1051 return ret;
1052 }
1053 \f
1054 /* This table gives an error message for each of the error codes listed
1055 in regex.h. Obviously the order here has to be same as there.
1056 POSIX doesn't require that we do anything for REG_NOERROR,
1057 but why not be nice? */
1058
1059 static const char *re_error_msgid[] =
1060 {
1061 gettext_noop ("Success"), /* REG_NOERROR */
1062 gettext_noop ("No match"), /* REG_NOMATCH */
1063 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1064 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1065 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1066 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1067 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1068 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1069 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1070 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1071 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1072 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1073 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1074 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1075 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1076 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1077 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1078 };
1079 \f
1080 /* Avoiding alloca during matching, to placate r_alloc. */
1081
1082 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1083 searching and matching functions should not call alloca. On some
1084 systems, alloca is implemented in terms of malloc, and if we're
1085 using the relocating allocator routines, then malloc could cause a
1086 relocation, which might (if the strings being searched are in the
1087 ralloc heap) shift the data out from underneath the regexp
1088 routines.
1089
1090 Here's another reason to avoid allocation: Emacs
1091 processes input from X in a signal handler; processing X input may
1092 call malloc; if input arrives while a matching routine is calling
1093 malloc, then we're scrod. But Emacs can't just block input while
1094 calling matching routines; then we don't notice interrupts when
1095 they come in. So, Emacs blocks input around all regexp calls
1096 except the matching calls, which it leaves unprotected, in the
1097 faith that they will not malloc. */
1098
1099 /* Normally, this is fine. */
1100 #define MATCH_MAY_ALLOCATE
1101
1102 /* When using GNU C, we are not REALLY using the C alloca, no matter
1103 what config.h may say. So don't take precautions for it. */
1104 #ifdef __GNUC__
1105 #undef C_ALLOCA
1106 #endif
1107
1108 /* The match routines may not allocate if (1) they would do it with malloc
1109 and (2) it's not safe for them to use malloc.
1110 Note that if REL_ALLOC is defined, matching would not use malloc for the
1111 failure stack, but we would still use it for the register vectors;
1112 so REL_ALLOC should not affect this. */
1113 #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
1114 #undef MATCH_MAY_ALLOCATE
1115 #endif
1116
1117 \f
1118 /* Failure stack declarations and macros; both re_compile_fastmap and
1119 re_match_2 use a failure stack. These have to be macros because of
1120 REGEX_ALLOCATE_STACK. */
1121
1122
1123 /* Number of failure points for which to initially allocate space
1124 when matching. If this number is exceeded, we allocate more
1125 space, so it is not a hard limit. */
1126 #ifndef INIT_FAILURE_ALLOC
1127 #define INIT_FAILURE_ALLOC 5
1128 #endif
1129
1130 /* Roughly the maximum number of failure points on the stack. Would be
1131 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1132 This is a variable only so users of regex can assign to it; we never
1133 change it ourselves. */
1134 #if defined (MATCH_MAY_ALLOCATE)
1135 /* 4400 was enough to cause a crash on Alpha OSF/1,
1136 whose default stack limit is 2mb. */
1137 int re_max_failures = 20000;
1138 #else
1139 int re_max_failures = 2000;
1140 #endif
1141
1142 union fail_stack_elt
1143 {
1144 unsigned char *pointer;
1145 int integer;
1146 };
1147
1148 typedef union fail_stack_elt fail_stack_elt_t;
1149
1150 typedef struct
1151 {
1152 fail_stack_elt_t *stack;
1153 unsigned size;
1154 unsigned avail; /* Offset of next open position. */
1155 } fail_stack_type;
1156
1157 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1158 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1159 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1160
1161
1162 /* Define macros to initialize and free the failure stack.
1163 Do `return -2' if the alloc fails. */
1164
1165 #ifdef MATCH_MAY_ALLOCATE
1166 #define INIT_FAIL_STACK() \
1167 do { \
1168 fail_stack.stack = (fail_stack_elt_t *) \
1169 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1170 \
1171 if (fail_stack.stack == NULL) \
1172 return -2; \
1173 \
1174 fail_stack.size = INIT_FAILURE_ALLOC; \
1175 fail_stack.avail = 0; \
1176 } while (0)
1177
1178 #define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1179 #else
1180 #define INIT_FAIL_STACK() \
1181 do { \
1182 fail_stack.avail = 0; \
1183 } while (0)
1184
1185 #define RESET_FAIL_STACK()
1186 #endif
1187
1188
1189 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1190
1191 Return 1 if succeeds, and 0 if either ran out of memory
1192 allocating space for it or it was already too large.
1193
1194 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1195
1196 #define DOUBLE_FAIL_STACK(fail_stack) \
1197 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
1198 ? 0 \
1199 : ((fail_stack).stack = (fail_stack_elt_t *) \
1200 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1201 (fail_stack).size * sizeof (fail_stack_elt_t), \
1202 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1203 \
1204 (fail_stack).stack == NULL \
1205 ? 0 \
1206 : ((fail_stack).size <<= 1, \
1207 1)))
1208
1209
1210 /* Push pointer POINTER on FAIL_STACK.
1211 Return 1 if was able to do so and 0 if ran out of memory allocating
1212 space to do so. */
1213 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1214 ((FAIL_STACK_FULL () \
1215 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1216 ? 0 \
1217 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1218 1))
1219
1220 /* Push a pointer value onto the failure stack.
1221 Assumes the variable `fail_stack'. Probably should only
1222 be called from within `PUSH_FAILURE_POINT'. */
1223 #define PUSH_FAILURE_POINTER(item) \
1224 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1225
1226 /* This pushes an integer-valued item onto the failure stack.
1227 Assumes the variable `fail_stack'. Probably should only
1228 be called from within `PUSH_FAILURE_POINT'. */
1229 #define PUSH_FAILURE_INT(item) \
1230 fail_stack.stack[fail_stack.avail++].integer = (item)
1231
1232 /* Push a fail_stack_elt_t value onto the failure stack.
1233 Assumes the variable `fail_stack'. Probably should only
1234 be called from within `PUSH_FAILURE_POINT'. */
1235 #define PUSH_FAILURE_ELT(item) \
1236 fail_stack.stack[fail_stack.avail++] = (item)
1237
1238 /* These three POP... operations complement the three PUSH... operations.
1239 All assume that `fail_stack' is nonempty. */
1240 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1241 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1242 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1243
1244 /* Used to omit pushing failure point id's when we're not debugging. */
1245 #ifdef DEBUG
1246 #define DEBUG_PUSH PUSH_FAILURE_INT
1247 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1248 #else
1249 #define DEBUG_PUSH(item)
1250 #define DEBUG_POP(item_addr)
1251 #endif
1252
1253
1254 /* Push the information about the state we will need
1255 if we ever fail back to it.
1256
1257 Requires variables fail_stack, regstart, regend, reg_info, and
1258 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1259 declared.
1260
1261 Does `return FAILURE_CODE' if runs out of memory. */
1262
1263 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1264 do { \
1265 char *destination; \
1266 /* Must be int, so when we don't save any registers, the arithmetic \
1267 of 0 + -1 isn't done as unsigned. */ \
1268 int this_reg; \
1269 \
1270 DEBUG_STATEMENT (failure_id++); \
1271 DEBUG_STATEMENT (nfailure_points_pushed++); \
1272 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1273 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1274 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1275 \
1276 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1277 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1278 \
1279 /* Ensure we have enough space allocated for what we will push. */ \
1280 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1281 { \
1282 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1283 return failure_code; \
1284 \
1285 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1286 (fail_stack).size); \
1287 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1288 } \
1289 \
1290 /* Push the info, starting with the registers. */ \
1291 DEBUG_PRINT1 ("\n"); \
1292 \
1293 if (1) \
1294 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1295 this_reg++) \
1296 { \
1297 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1298 DEBUG_STATEMENT (num_regs_pushed++); \
1299 \
1300 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1301 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1302 \
1303 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1304 PUSH_FAILURE_POINTER (regend[this_reg]); \
1305 \
1306 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1307 DEBUG_PRINT2 (" match_null=%d", \
1308 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1309 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1310 DEBUG_PRINT2 (" matched_something=%d", \
1311 MATCHED_SOMETHING (reg_info[this_reg])); \
1312 DEBUG_PRINT2 (" ever_matched=%d", \
1313 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1314 DEBUG_PRINT1 ("\n"); \
1315 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1316 } \
1317 \
1318 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1319 PUSH_FAILURE_INT (lowest_active_reg); \
1320 \
1321 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1322 PUSH_FAILURE_INT (highest_active_reg); \
1323 \
1324 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1325 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1326 PUSH_FAILURE_POINTER (pattern_place); \
1327 \
1328 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1329 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1330 size2); \
1331 DEBUG_PRINT1 ("'\n"); \
1332 PUSH_FAILURE_POINTER (string_place); \
1333 \
1334 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1335 DEBUG_PUSH (failure_id); \
1336 } while (0)
1337
1338 /* This is the number of items that are pushed and popped on the stack
1339 for each register. */
1340 #define NUM_REG_ITEMS 3
1341
1342 /* Individual items aside from the registers. */
1343 #ifdef DEBUG
1344 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1345 #else
1346 #define NUM_NONREG_ITEMS 4
1347 #endif
1348
1349 /* We push at most this many items on the stack. */
1350 /* We used to use (num_regs - 1), which is the number of registers
1351 this regexp will save; but that was changed to 5
1352 to avoid stack overflow for a regexp with lots of parens. */
1353 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1354
1355 /* We actually push this many items. */
1356 #define NUM_FAILURE_ITEMS \
1357 (((0 \
1358 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1359 * NUM_REG_ITEMS) \
1360 + NUM_NONREG_ITEMS)
1361
1362 /* How many items can still be added to the stack without overflowing it. */
1363 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1364
1365
1366 /* Pops what PUSH_FAIL_STACK pushes.
1367
1368 We restore into the parameters, all of which should be lvalues:
1369 STR -- the saved data position.
1370 PAT -- the saved pattern position.
1371 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1372 REGSTART, REGEND -- arrays of string positions.
1373 REG_INFO -- array of information about each subexpression.
1374
1375 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1376 `pend', `string1', `size1', `string2', and `size2'. */
1377
1378 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1379 { \
1380 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1381 int this_reg; \
1382 const unsigned char *string_temp; \
1383 \
1384 assert (!FAIL_STACK_EMPTY ()); \
1385 \
1386 /* Remove failure points and point to how many regs pushed. */ \
1387 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1388 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1389 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1390 \
1391 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1392 \
1393 DEBUG_POP (&failure_id); \
1394 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1395 \
1396 /* If the saved string location is NULL, it came from an \
1397 on_failure_keep_string_jump opcode, and we want to throw away the \
1398 saved NULL, thus retaining our current position in the string. */ \
1399 string_temp = POP_FAILURE_POINTER (); \
1400 if (string_temp != NULL) \
1401 str = (const char *) string_temp; \
1402 \
1403 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1404 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1405 DEBUG_PRINT1 ("'\n"); \
1406 \
1407 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1408 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1409 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1410 \
1411 /* Restore register info. */ \
1412 high_reg = (unsigned) POP_FAILURE_INT (); \
1413 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1414 \
1415 low_reg = (unsigned) POP_FAILURE_INT (); \
1416 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1417 \
1418 if (1) \
1419 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1420 { \
1421 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
1422 \
1423 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1424 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
1425 \
1426 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1427 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1428 \
1429 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1430 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1431 } \
1432 else \
1433 { \
1434 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1435 { \
1436 reg_info[this_reg].word.integer = 0; \
1437 regend[this_reg] = 0; \
1438 regstart[this_reg] = 0; \
1439 } \
1440 highest_active_reg = high_reg; \
1441 } \
1442 \
1443 set_regs_matched_done = 0; \
1444 DEBUG_STATEMENT (nfailure_points_popped++); \
1445 } /* POP_FAILURE_POINT */
1446
1447
1448 \f
1449 /* Structure for per-register (a.k.a. per-group) information.
1450 Other register information, such as the
1451 starting and ending positions (which are addresses), and the list of
1452 inner groups (which is a bits list) are maintained in separate
1453 variables.
1454
1455 We are making a (strictly speaking) nonportable assumption here: that
1456 the compiler will pack our bit fields into something that fits into
1457 the type of `word', i.e., is something that fits into one item on the
1458 failure stack. */
1459
1460 typedef union
1461 {
1462 fail_stack_elt_t word;
1463 struct
1464 {
1465 /* This field is one if this group can match the empty string,
1466 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1467 #define MATCH_NULL_UNSET_VALUE 3
1468 unsigned match_null_string_p : 2;
1469 unsigned is_active : 1;
1470 unsigned matched_something : 1;
1471 unsigned ever_matched_something : 1;
1472 } bits;
1473 } register_info_type;
1474
1475 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1476 #define IS_ACTIVE(R) ((R).bits.is_active)
1477 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1478 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1479
1480
1481 /* Call this when have matched a real character; it sets `matched' flags
1482 for the subexpressions which we are currently inside. Also records
1483 that those subexprs have matched. */
1484 #define SET_REGS_MATCHED() \
1485 do \
1486 { \
1487 if (!set_regs_matched_done) \
1488 { \
1489 unsigned r; \
1490 set_regs_matched_done = 1; \
1491 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1492 { \
1493 MATCHED_SOMETHING (reg_info[r]) \
1494 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1495 = 1; \
1496 } \
1497 } \
1498 } \
1499 while (0)
1500
1501 /* Registers are set to a sentinel when they haven't yet matched. */
1502 static char reg_unset_dummy;
1503 #define REG_UNSET_VALUE (&reg_unset_dummy)
1504 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1505 \f
1506 /* Subroutine declarations and macros for regex_compile. */
1507
1508 static void store_op1 (), store_op2 ();
1509 static void insert_op1 (), insert_op2 ();
1510 static boolean at_begline_loc_p (), at_endline_loc_p ();
1511 static boolean group_in_compile_stack ();
1512 static reg_errcode_t compile_range ();
1513
1514 /* Fetch the next character in the uncompiled pattern---translating it
1515 if necessary. Also cast from a signed character in the constant
1516 string passed to us by the user to an unsigned char that we can use
1517 as an array index (in, e.g., `translate'). */
1518 #ifndef PATFETCH
1519 #define PATFETCH(c) \
1520 do {if (p == pend) return REG_EEND; \
1521 c = (unsigned char) *p++; \
1522 if (translate) c = (unsigned char) translate[c]; \
1523 } while (0)
1524 #endif
1525
1526 /* Fetch the next character in the uncompiled pattern, with no
1527 translation. */
1528 #define PATFETCH_RAW(c) \
1529 do {if (p == pend) return REG_EEND; \
1530 c = (unsigned char) *p++; \
1531 } while (0)
1532
1533 /* Go backwards one character in the pattern. */
1534 #define PATUNFETCH p--
1535
1536
1537 /* If `translate' is non-null, return translate[D], else just D. We
1538 cast the subscript to translate because some data is declared as
1539 `char *', to avoid warnings when a string constant is passed. But
1540 when we use a character as a subscript we must make it unsigned. */
1541 #ifndef TRANSLATE
1542 #define TRANSLATE(d) \
1543 (translate ? (unsigned char) RE_TRANSLATE (translate, (unsigned char) (d)) : (d))
1544 #endif
1545
1546
1547 /* Macros for outputting the compiled pattern into `buffer'. */
1548
1549 /* If the buffer isn't allocated when it comes in, use this. */
1550 #define INIT_BUF_SIZE 32
1551
1552 /* Make sure we have at least N more bytes of space in buffer. */
1553 #define GET_BUFFER_SPACE(n) \
1554 while (b - bufp->buffer + (n) > bufp->allocated) \
1555 EXTEND_BUFFER ()
1556
1557 /* Make sure we have one more byte of buffer space and then add C to it. */
1558 #define BUF_PUSH(c) \
1559 do { \
1560 GET_BUFFER_SPACE (1); \
1561 *b++ = (unsigned char) (c); \
1562 } while (0)
1563
1564
1565 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1566 #define BUF_PUSH_2(c1, c2) \
1567 do { \
1568 GET_BUFFER_SPACE (2); \
1569 *b++ = (unsigned char) (c1); \
1570 *b++ = (unsigned char) (c2); \
1571 } while (0)
1572
1573
1574 /* As with BUF_PUSH_2, except for three bytes. */
1575 #define BUF_PUSH_3(c1, c2, c3) \
1576 do { \
1577 GET_BUFFER_SPACE (3); \
1578 *b++ = (unsigned char) (c1); \
1579 *b++ = (unsigned char) (c2); \
1580 *b++ = (unsigned char) (c3); \
1581 } while (0)
1582
1583
1584 /* Store a jump with opcode OP at LOC to location TO. We store a
1585 relative address offset by the three bytes the jump itself occupies. */
1586 #define STORE_JUMP(op, loc, to) \
1587 store_op1 (op, loc, (to) - (loc) - 3)
1588
1589 /* Likewise, for a two-argument jump. */
1590 #define STORE_JUMP2(op, loc, to, arg) \
1591 store_op2 (op, loc, (to) - (loc) - 3, arg)
1592
1593 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1594 #define INSERT_JUMP(op, loc, to) \
1595 insert_op1 (op, loc, (to) - (loc) - 3, b)
1596
1597 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1598 #define INSERT_JUMP2(op, loc, to, arg) \
1599 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1600
1601
1602 /* This is not an arbitrary limit: the arguments which represent offsets
1603 into the pattern are two bytes long. So if 2^16 bytes turns out to
1604 be too small, many things would have to change. */
1605 #define MAX_BUF_SIZE (1L << 16)
1606
1607
1608 /* Extend the buffer by twice its current size via realloc and
1609 reset the pointers that pointed into the old block to point to the
1610 correct places in the new one. If extending the buffer results in it
1611 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1612 #define EXTEND_BUFFER() \
1613 do { \
1614 unsigned char *old_buffer = bufp->buffer; \
1615 if (bufp->allocated == MAX_BUF_SIZE) \
1616 return REG_ESIZE; \
1617 bufp->allocated <<= 1; \
1618 if (bufp->allocated > MAX_BUF_SIZE) \
1619 bufp->allocated = MAX_BUF_SIZE; \
1620 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1621 if (bufp->buffer == NULL) \
1622 return REG_ESPACE; \
1623 /* If the buffer moved, move all the pointers into it. */ \
1624 if (old_buffer != bufp->buffer) \
1625 { \
1626 b = (b - old_buffer) + bufp->buffer; \
1627 begalt = (begalt - old_buffer) + bufp->buffer; \
1628 if (fixup_alt_jump) \
1629 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1630 if (laststart) \
1631 laststart = (laststart - old_buffer) + bufp->buffer; \
1632 if (pending_exact) \
1633 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1634 } \
1635 } while (0)
1636
1637
1638 /* Since we have one byte reserved for the register number argument to
1639 {start,stop}_memory, the maximum number of groups we can report
1640 things about is what fits in that byte. */
1641 #define MAX_REGNUM 255
1642
1643 /* But patterns can have more than `MAX_REGNUM' registers. We just
1644 ignore the excess. */
1645 typedef unsigned regnum_t;
1646
1647
1648 /* Macros for the compile stack. */
1649
1650 /* Since offsets can go either forwards or backwards, this type needs to
1651 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1652 typedef int pattern_offset_t;
1653
1654 typedef struct
1655 {
1656 pattern_offset_t begalt_offset;
1657 pattern_offset_t fixup_alt_jump;
1658 pattern_offset_t inner_group_offset;
1659 pattern_offset_t laststart_offset;
1660 regnum_t regnum;
1661 } compile_stack_elt_t;
1662
1663
1664 typedef struct
1665 {
1666 compile_stack_elt_t *stack;
1667 unsigned size;
1668 unsigned avail; /* Offset of next open position. */
1669 } compile_stack_type;
1670
1671
1672 #define INIT_COMPILE_STACK_SIZE 32
1673
1674 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1675 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1676
1677 /* The next available element. */
1678 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1679
1680
1681 /* Structure to manage work area for range table. */
1682 struct range_table_work_area
1683 {
1684 int *table; /* actual work area. */
1685 int allocated; /* allocated size for work area in bytes. */
1686 int used; /* actually used size in words. */
1687 };
1688
1689 /* Make sure that WORK_AREA can hold more N multibyte characters. */
1690 #define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n) \
1691 do { \
1692 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1693 { \
1694 (work_area).allocated += 16 * sizeof (int); \
1695 if ((work_area).table) \
1696 (work_area).table \
1697 = (int *) realloc ((work_area).table, (work_area).allocated); \
1698 else \
1699 (work_area).table \
1700 = (int *) malloc ((work_area).allocated); \
1701 if ((work_area).table == 0) \
1702 FREE_STACK_RETURN (REG_ESPACE); \
1703 } \
1704 } while (0)
1705
1706 /* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1707 #define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1708 do { \
1709 EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2); \
1710 (work_area).table[(work_area).used++] = (range_start); \
1711 (work_area).table[(work_area).used++] = (range_end); \
1712 } while (0)
1713
1714 /* Free allocated memory for WORK_AREA. */
1715 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1716 do { \
1717 if ((work_area).table) \
1718 free ((work_area).table); \
1719 } while (0)
1720
1721 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0)
1722 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1723 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1724
1725
1726 /* Set the bit for character C in a list. */
1727 #define SET_LIST_BIT(c) \
1728 (b[((unsigned char) (c)) / BYTEWIDTH] \
1729 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1730
1731
1732 /* Get the next unsigned number in the uncompiled pattern. */
1733 #define GET_UNSIGNED_NUMBER(num) \
1734 { if (p != pend) \
1735 { \
1736 PATFETCH (c); \
1737 while (ISDIGIT (c)) \
1738 { \
1739 if (num < 0) \
1740 num = 0; \
1741 num = num * 10 + c - '0'; \
1742 if (p == pend) \
1743 break; \
1744 PATFETCH (c); \
1745 } \
1746 } \
1747 }
1748
1749 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1750
1751 #define IS_CHAR_CLASS(string) \
1752 (STREQ (string, "alpha") || STREQ (string, "upper") \
1753 || STREQ (string, "lower") || STREQ (string, "digit") \
1754 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1755 || STREQ (string, "space") || STREQ (string, "print") \
1756 || STREQ (string, "punct") || STREQ (string, "graph") \
1757 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1758 \f
1759 #ifndef MATCH_MAY_ALLOCATE
1760
1761 /* If we cannot allocate large objects within re_match_2_internal,
1762 we make the fail stack and register vectors global.
1763 The fail stack, we grow to the maximum size when a regexp
1764 is compiled.
1765 The register vectors, we adjust in size each time we
1766 compile a regexp, according to the number of registers it needs. */
1767
1768 static fail_stack_type fail_stack;
1769
1770 /* Size with which the following vectors are currently allocated.
1771 That is so we can make them bigger as needed,
1772 but never make them smaller. */
1773 static int regs_allocated_size;
1774
1775 static const char ** regstart, ** regend;
1776 static const char ** old_regstart, ** old_regend;
1777 static const char **best_regstart, **best_regend;
1778 static register_info_type *reg_info;
1779 static const char **reg_dummy;
1780 static register_info_type *reg_info_dummy;
1781
1782 /* Make the register vectors big enough for NUM_REGS registers,
1783 but don't make them smaller. */
1784
1785 static
1786 regex_grow_registers (num_regs)
1787 int num_regs;
1788 {
1789 if (num_regs > regs_allocated_size)
1790 {
1791 RETALLOC_IF (regstart, num_regs, const char *);
1792 RETALLOC_IF (regend, num_regs, const char *);
1793 RETALLOC_IF (old_regstart, num_regs, const char *);
1794 RETALLOC_IF (old_regend, num_regs, const char *);
1795 RETALLOC_IF (best_regstart, num_regs, const char *);
1796 RETALLOC_IF (best_regend, num_regs, const char *);
1797 RETALLOC_IF (reg_info, num_regs, register_info_type);
1798 RETALLOC_IF (reg_dummy, num_regs, const char *);
1799 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1800
1801 regs_allocated_size = num_regs;
1802 }
1803 }
1804
1805 #endif /* not MATCH_MAY_ALLOCATE */
1806 \f
1807 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1808 Returns one of error codes defined in `regex.h', or zero for success.
1809
1810 Assumes the `allocated' (and perhaps `buffer') and `translate'
1811 fields are set in BUFP on entry.
1812
1813 If it succeeds, results are put in BUFP (if it returns an error, the
1814 contents of BUFP are undefined):
1815 `buffer' is the compiled pattern;
1816 `syntax' is set to SYNTAX;
1817 `used' is set to the length of the compiled pattern;
1818 `fastmap_accurate' is zero;
1819 `re_nsub' is the number of subexpressions in PATTERN;
1820 `not_bol' and `not_eol' are zero;
1821
1822 The `fastmap' and `newline_anchor' fields are neither
1823 examined nor set. */
1824
1825 /* Return, freeing storage we allocated. */
1826 #define FREE_STACK_RETURN(value) \
1827 do { \
1828 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
1829 free (compile_stack.stack); \
1830 return value; \
1831 } while (0)
1832
1833 static reg_errcode_t
1834 regex_compile (pattern, size, syntax, bufp)
1835 const char *pattern;
1836 int size;
1837 reg_syntax_t syntax;
1838 struct re_pattern_buffer *bufp;
1839 {
1840 /* We fetch characters from PATTERN here. Even though PATTERN is
1841 `char *' (i.e., signed), we declare these variables as unsigned, so
1842 they can be reliably used as array indices. */
1843 register unsigned int c, c1;
1844
1845 /* A random temporary spot in PATTERN. */
1846 const char *p1;
1847
1848 /* Points to the end of the buffer, where we should append. */
1849 register unsigned char *b;
1850
1851 /* Keeps track of unclosed groups. */
1852 compile_stack_type compile_stack;
1853
1854 /* Points to the current (ending) position in the pattern. */
1855 const char *p = pattern;
1856 const char *pend = pattern + size;
1857
1858 /* How to translate the characters in the pattern. */
1859 RE_TRANSLATE_TYPE translate = bufp->translate;
1860
1861 /* Address of the count-byte of the most recently inserted `exactn'
1862 command. This makes it possible to tell if a new exact-match
1863 character can be added to that command or if the character requires
1864 a new `exactn' command. */
1865 unsigned char *pending_exact = 0;
1866
1867 /* Address of start of the most recently finished expression.
1868 This tells, e.g., postfix * where to find the start of its
1869 operand. Reset at the beginning of groups and alternatives. */
1870 unsigned char *laststart = 0;
1871
1872 /* Address of beginning of regexp, or inside of last group. */
1873 unsigned char *begalt;
1874
1875 /* Place in the uncompiled pattern (i.e., the {) to
1876 which to go back if the interval is invalid. */
1877 const char *beg_interval;
1878
1879 /* Address of the place where a forward jump should go to the end of
1880 the containing expression. Each alternative of an `or' -- except the
1881 last -- ends with a forward jump of this sort. */
1882 unsigned char *fixup_alt_jump = 0;
1883
1884 /* Counts open-groups as they are encountered. Remembered for the
1885 matching close-group on the compile stack, so the same register
1886 number is put in the stop_memory as the start_memory. */
1887 regnum_t regnum = 0;
1888
1889 /* Work area for range table of charset. */
1890 struct range_table_work_area range_table_work;
1891
1892 #ifdef DEBUG
1893 DEBUG_PRINT1 ("\nCompiling pattern: ");
1894 if (debug)
1895 {
1896 unsigned debug_count;
1897
1898 for (debug_count = 0; debug_count < size; debug_count++)
1899 putchar (pattern[debug_count]);
1900 putchar ('\n');
1901 }
1902 #endif /* DEBUG */
1903
1904 /* Initialize the compile stack. */
1905 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1906 if (compile_stack.stack == NULL)
1907 return REG_ESPACE;
1908
1909 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1910 compile_stack.avail = 0;
1911
1912 range_table_work.table = 0;
1913 range_table_work.allocated = 0;
1914
1915 /* Initialize the pattern buffer. */
1916 bufp->syntax = syntax;
1917 bufp->fastmap_accurate = 0;
1918 bufp->not_bol = bufp->not_eol = 0;
1919
1920 /* Set `used' to zero, so that if we return an error, the pattern
1921 printer (for debugging) will think there's no pattern. We reset it
1922 at the end. */
1923 bufp->used = 0;
1924
1925 /* Always count groups, whether or not bufp->no_sub is set. */
1926 bufp->re_nsub = 0;
1927
1928 #ifdef emacs
1929 /* bufp->multibyte is set before regex_compile is called, so don't alter
1930 it. */
1931 #else /* not emacs */
1932 /* Nothing is recognized as a multibyte character. */
1933 bufp->multibyte = 0;
1934 #endif
1935
1936 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1937 /* Initialize the syntax table. */
1938 init_syntax_once ();
1939 #endif
1940
1941 if (bufp->allocated == 0)
1942 {
1943 if (bufp->buffer)
1944 { /* If zero allocated, but buffer is non-null, try to realloc
1945 enough space. This loses if buffer's address is bogus, but
1946 that is the user's responsibility. */
1947 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1948 }
1949 else
1950 { /* Caller did not allocate a buffer. Do it for them. */
1951 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1952 }
1953 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1954
1955 bufp->allocated = INIT_BUF_SIZE;
1956 }
1957
1958 begalt = b = bufp->buffer;
1959
1960 /* Loop through the uncompiled pattern until we're at the end. */
1961 while (p != pend)
1962 {
1963 PATFETCH (c);
1964
1965 switch (c)
1966 {
1967 case '^':
1968 {
1969 if ( /* If at start of pattern, it's an operator. */
1970 p == pattern + 1
1971 /* If context independent, it's an operator. */
1972 || syntax & RE_CONTEXT_INDEP_ANCHORS
1973 /* Otherwise, depends on what's come before. */
1974 || at_begline_loc_p (pattern, p, syntax))
1975 BUF_PUSH (begline);
1976 else
1977 goto normal_char;
1978 }
1979 break;
1980
1981
1982 case '$':
1983 {
1984 if ( /* If at end of pattern, it's an operator. */
1985 p == pend
1986 /* If context independent, it's an operator. */
1987 || syntax & RE_CONTEXT_INDEP_ANCHORS
1988 /* Otherwise, depends on what's next. */
1989 || at_endline_loc_p (p, pend, syntax))
1990 BUF_PUSH (endline);
1991 else
1992 goto normal_char;
1993 }
1994 break;
1995
1996
1997 case '+':
1998 case '?':
1999 if ((syntax & RE_BK_PLUS_QM)
2000 || (syntax & RE_LIMITED_OPS))
2001 goto normal_char;
2002 handle_plus:
2003 case '*':
2004 /* If there is no previous pattern... */
2005 if (!laststart)
2006 {
2007 if (syntax & RE_CONTEXT_INVALID_OPS)
2008 FREE_STACK_RETURN (REG_BADRPT);
2009 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2010 goto normal_char;
2011 }
2012
2013 {
2014 /* Are we optimizing this jump? */
2015 boolean keep_string_p = false;
2016
2017 /* 1 means zero (many) matches is allowed. */
2018 char zero_times_ok = 0, many_times_ok = 0;
2019
2020 /* If there is a sequence of repetition chars, collapse it
2021 down to just one (the right one). We can't combine
2022 interval operators with these because of, e.g., `a{2}*',
2023 which should only match an even number of `a's. */
2024
2025 for (;;)
2026 {
2027 zero_times_ok |= c != '+';
2028 many_times_ok |= c != '?';
2029
2030 if (p == pend)
2031 break;
2032
2033 PATFETCH (c);
2034
2035 if (c == '*'
2036 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2037 ;
2038
2039 else if (syntax & RE_BK_PLUS_QM && c == '\\')
2040 {
2041 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2042
2043 PATFETCH (c1);
2044 if (!(c1 == '+' || c1 == '?'))
2045 {
2046 PATUNFETCH;
2047 PATUNFETCH;
2048 break;
2049 }
2050
2051 c = c1;
2052 }
2053 else
2054 {
2055 PATUNFETCH;
2056 break;
2057 }
2058
2059 /* If we get here, we found another repeat character. */
2060 }
2061
2062 /* Star, etc. applied to an empty pattern is equivalent
2063 to an empty pattern. */
2064 if (!laststart)
2065 break;
2066
2067 /* Now we know whether or not zero matches is allowed
2068 and also whether or not two or more matches is allowed. */
2069 if (many_times_ok)
2070 { /* More than one repetition is allowed, so put in at the
2071 end a backward relative jump from `b' to before the next
2072 jump we're going to put in below (which jumps from
2073 laststart to after this jump).
2074
2075 But if we are at the `*' in the exact sequence `.*\n',
2076 insert an unconditional jump backwards to the .,
2077 instead of the beginning of the loop. This way we only
2078 push a failure point once, instead of every time
2079 through the loop. */
2080 assert (p - 1 > pattern);
2081
2082 /* Allocate the space for the jump. */
2083 GET_BUFFER_SPACE (3);
2084
2085 /* We know we are not at the first character of the pattern,
2086 because laststart was nonzero. And we've already
2087 incremented `p', by the way, to be the character after
2088 the `*'. Do we have to do something analogous here
2089 for null bytes, because of RE_DOT_NOT_NULL? */
2090 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2091 && zero_times_ok
2092 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2093 && !(syntax & RE_DOT_NEWLINE))
2094 { /* We have .*\n. */
2095 STORE_JUMP (jump, b, laststart);
2096 keep_string_p = true;
2097 }
2098 else
2099 /* Anything else. */
2100 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2101
2102 /* We've added more stuff to the buffer. */
2103 b += 3;
2104 }
2105
2106 /* On failure, jump from laststart to b + 3, which will be the
2107 end of the buffer after this jump is inserted. */
2108 GET_BUFFER_SPACE (3);
2109 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2110 : on_failure_jump,
2111 laststart, b + 3);
2112 pending_exact = 0;
2113 b += 3;
2114
2115 if (!zero_times_ok)
2116 {
2117 /* At least one repetition is required, so insert a
2118 `dummy_failure_jump' before the initial
2119 `on_failure_jump' instruction of the loop. This
2120 effects a skip over that instruction the first time
2121 we hit that loop. */
2122 GET_BUFFER_SPACE (3);
2123 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2124 b += 3;
2125 }
2126 }
2127 break;
2128
2129
2130 case '.':
2131 laststart = b;
2132 BUF_PUSH (anychar);
2133 break;
2134
2135
2136 case '[':
2137 {
2138 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
2139
2140 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2141
2142 /* Ensure that we have enough space to push a charset: the
2143 opcode, the length count, and the bitset; 34 bytes in all. */
2144 GET_BUFFER_SPACE (34);
2145
2146 laststart = b;
2147
2148 /* We test `*p == '^' twice, instead of using an if
2149 statement, so we only need one BUF_PUSH. */
2150 BUF_PUSH (*p == '^' ? charset_not : charset);
2151 if (*p == '^')
2152 p++;
2153
2154 /* Remember the first position in the bracket expression. */
2155 p1 = p;
2156
2157 /* Push the number of bytes in the bitmap. */
2158 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2159
2160 /* Clear the whole map. */
2161 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2162
2163 /* charset_not matches newline according to a syntax bit. */
2164 if ((re_opcode_t) b[-2] == charset_not
2165 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2166 SET_LIST_BIT ('\n');
2167
2168 /* Read in characters and ranges, setting map bits. */
2169 for (;;)
2170 {
2171 int len;
2172 boolean escaped_char = false;
2173
2174 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2175
2176 PATFETCH (c);
2177
2178 /* \ might escape characters inside [...] and [^...]. */
2179 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2180 {
2181 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2182
2183 PATFETCH (c);
2184 escaped_char = true;
2185 }
2186 else
2187 {
2188 /* Could be the end of the bracket expression. If it's
2189 not (i.e., when the bracket expression is `[]' so
2190 far), the ']' character bit gets set way below. */
2191 if (c == ']' && p != p1 + 1)
2192 break;
2193 }
2194
2195 /* If C indicates start of multibyte char, get the
2196 actual character code in C, and set the pattern
2197 pointer P to the next character boundary. */
2198 if (bufp->multibyte && BASE_LEADING_CODE_P (c))
2199 {
2200 PATUNFETCH;
2201 c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
2202 p += len;
2203 }
2204 /* What should we do for the character which is
2205 greater than 0x7F, but not BASE_LEADING_CODE_P?
2206 XXX */
2207
2208 /* See if we're at the beginning of a possible character
2209 class. */
2210
2211 else if (!escaped_char &&
2212 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2213 {
2214 /* Leave room for the null. */
2215 char str[CHAR_CLASS_MAX_LENGTH + 1];
2216
2217 PATFETCH (c);
2218 c1 = 0;
2219
2220 /* If pattern is `[[:'. */
2221 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2222
2223 for (;;)
2224 {
2225 PATFETCH (c);
2226 if (c == ':' || c == ']' || p == pend
2227 || c1 == CHAR_CLASS_MAX_LENGTH)
2228 break;
2229 str[c1++] = c;
2230 }
2231 str[c1] = '\0';
2232
2233 /* If isn't a word bracketed by `[:' and `:]':
2234 undo the ending character, the letters, and
2235 leave the leading `:' and `[' (but set bits for
2236 them). */
2237 if (c == ':' && *p == ']')
2238 {
2239 int ch;
2240 boolean is_alnum = STREQ (str, "alnum");
2241 boolean is_alpha = STREQ (str, "alpha");
2242 boolean is_blank = STREQ (str, "blank");
2243 boolean is_cntrl = STREQ (str, "cntrl");
2244 boolean is_digit = STREQ (str, "digit");
2245 boolean is_graph = STREQ (str, "graph");
2246 boolean is_lower = STREQ (str, "lower");
2247 boolean is_print = STREQ (str, "print");
2248 boolean is_punct = STREQ (str, "punct");
2249 boolean is_space = STREQ (str, "space");
2250 boolean is_upper = STREQ (str, "upper");
2251 boolean is_xdigit = STREQ (str, "xdigit");
2252
2253 if (!IS_CHAR_CLASS (str))
2254 FREE_STACK_RETURN (REG_ECTYPE);
2255
2256 /* Throw away the ] at the end of the character
2257 class. */
2258 PATFETCH (c);
2259
2260 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2261
2262 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2263 {
2264 int translated = TRANSLATE (ch);
2265 /* This was split into 3 if's to
2266 avoid an arbitrary limit in some compiler. */
2267 if ( (is_alnum && ISALNUM (ch))
2268 || (is_alpha && ISALPHA (ch))
2269 || (is_blank && ISBLANK (ch))
2270 || (is_cntrl && ISCNTRL (ch)))
2271 SET_LIST_BIT (translated);
2272 if ( (is_digit && ISDIGIT (ch))
2273 || (is_graph && ISGRAPH (ch))
2274 || (is_lower && ISLOWER (ch))
2275 || (is_print && ISPRINT (ch)))
2276 SET_LIST_BIT (translated);
2277 if ( (is_punct && ISPUNCT (ch))
2278 || (is_space && ISSPACE (ch))
2279 || (is_upper && ISUPPER (ch))
2280 || (is_xdigit && ISXDIGIT (ch)))
2281 SET_LIST_BIT (translated);
2282 }
2283
2284 /* Repeat the loop. */
2285 continue;
2286 }
2287 else
2288 {
2289 c1++;
2290 while (c1--)
2291 PATUNFETCH;
2292 SET_LIST_BIT ('[');
2293
2294 /* Because the `:' may starts the range, we
2295 can't simply set bit and repeat the loop.
2296 Instead, just set it to C and handle below. */
2297 c = ':';
2298 }
2299 }
2300
2301 if (p < pend && p[0] == '-' && p[1] != ']')
2302 {
2303
2304 /* Discard the `-'. */
2305 PATFETCH (c1);
2306
2307 /* Fetch the character which ends the range. */
2308 PATFETCH (c1);
2309 if (bufp->multibyte && BASE_LEADING_CODE_P (c1))
2310 {
2311 PATUNFETCH;
2312 c1 = STRING_CHAR_AND_LENGTH (p, pend - p, len);
2313 p += len;
2314 }
2315
2316 if (!SAME_CHARSET_P (c, c1))
2317 FREE_STACK_RETURN (REG_ERANGE);
2318 }
2319 else
2320 /* Range from C to C. */
2321 c1 = c;
2322
2323 /* Set the range ... */
2324 if (SINGLE_BYTE_CHAR_P (c))
2325 /* ... into bitmap. */
2326 {
2327 unsigned this_char;
2328 int range_start = c, range_end = c1;
2329
2330 /* If the start is after the end, the range is empty. */
2331 if (range_start > range_end)
2332 {
2333 if (syntax & RE_NO_EMPTY_RANGES)
2334 FREE_STACK_RETURN (REG_ERANGE);
2335 /* Else, repeat the loop. */
2336 }
2337 else
2338 {
2339 for (this_char = range_start; this_char <= range_end;
2340 this_char++)
2341 SET_LIST_BIT (TRANSLATE (this_char));
2342 }
2343 }
2344 else
2345 /* ... into range table. */
2346 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
2347 }
2348
2349 /* Discard any (non)matching list bytes that are all 0 at the
2350 end of the map. Decrease the map-length byte too. */
2351 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2352 b[-1]--;
2353 b += b[-1];
2354
2355 /* Build real range table from work area. */
2356 if (RANGE_TABLE_WORK_USED (range_table_work))
2357 {
2358 int i;
2359 int used = RANGE_TABLE_WORK_USED (range_table_work);
2360
2361 /* Allocate space for COUNT + RANGE_TABLE. Needs two
2362 bytes for COUNT and three bytes for each character. */
2363 GET_BUFFER_SPACE (2 + used * 3);
2364
2365 /* Indicate the existence of range table. */
2366 laststart[1] |= 0x80;
2367
2368 STORE_NUMBER_AND_INCR (b, used / 2);
2369 for (i = 0; i < used; i++)
2370 STORE_CHARACTER_AND_INCR
2371 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
2372 }
2373 }
2374 break;
2375
2376
2377 case '(':
2378 if (syntax & RE_NO_BK_PARENS)
2379 goto handle_open;
2380 else
2381 goto normal_char;
2382
2383
2384 case ')':
2385 if (syntax & RE_NO_BK_PARENS)
2386 goto handle_close;
2387 else
2388 goto normal_char;
2389
2390
2391 case '\n':
2392 if (syntax & RE_NEWLINE_ALT)
2393 goto handle_alt;
2394 else
2395 goto normal_char;
2396
2397
2398 case '|':
2399 if (syntax & RE_NO_BK_VBAR)
2400 goto handle_alt;
2401 else
2402 goto normal_char;
2403
2404
2405 case '{':
2406 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2407 goto handle_interval;
2408 else
2409 goto normal_char;
2410
2411
2412 case '\\':
2413 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2414
2415 /* Do not translate the character after the \, so that we can
2416 distinguish, e.g., \B from \b, even if we normally would
2417 translate, e.g., B to b. */
2418 PATFETCH_RAW (c);
2419
2420 switch (c)
2421 {
2422 case '(':
2423 if (syntax & RE_NO_BK_PARENS)
2424 goto normal_backslash;
2425
2426 handle_open:
2427 bufp->re_nsub++;
2428 regnum++;
2429
2430 if (COMPILE_STACK_FULL)
2431 {
2432 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2433 compile_stack_elt_t);
2434 if (compile_stack.stack == NULL) return REG_ESPACE;
2435
2436 compile_stack.size <<= 1;
2437 }
2438
2439 /* These are the values to restore when we hit end of this
2440 group. They are all relative offsets, so that if the
2441 whole pattern moves because of realloc, they will still
2442 be valid. */
2443 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2444 COMPILE_STACK_TOP.fixup_alt_jump
2445 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2446 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2447 COMPILE_STACK_TOP.regnum = regnum;
2448
2449 /* We will eventually replace the 0 with the number of
2450 groups inner to this one. But do not push a
2451 start_memory for groups beyond the last one we can
2452 represent in the compiled pattern. */
2453 if (regnum <= MAX_REGNUM)
2454 {
2455 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2456 BUF_PUSH_3 (start_memory, regnum, 0);
2457 }
2458
2459 compile_stack.avail++;
2460
2461 fixup_alt_jump = 0;
2462 laststart = 0;
2463 begalt = b;
2464 /* If we've reached MAX_REGNUM groups, then this open
2465 won't actually generate any code, so we'll have to
2466 clear pending_exact explicitly. */
2467 pending_exact = 0;
2468 break;
2469
2470
2471 case ')':
2472 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2473
2474 if (COMPILE_STACK_EMPTY)
2475 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2476 goto normal_backslash;
2477 else
2478 FREE_STACK_RETURN (REG_ERPAREN);
2479
2480 handle_close:
2481 if (fixup_alt_jump)
2482 { /* Push a dummy failure point at the end of the
2483 alternative for a possible future
2484 `pop_failure_jump' to pop. See comments at
2485 `push_dummy_failure' in `re_match_2'. */
2486 BUF_PUSH (push_dummy_failure);
2487
2488 /* We allocated space for this jump when we assigned
2489 to `fixup_alt_jump', in the `handle_alt' case below. */
2490 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2491 }
2492
2493 /* See similar code for backslashed left paren above. */
2494 if (COMPILE_STACK_EMPTY)
2495 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2496 goto normal_char;
2497 else
2498 FREE_STACK_RETURN (REG_ERPAREN);
2499
2500 /* Since we just checked for an empty stack above, this
2501 ``can't happen''. */
2502 assert (compile_stack.avail != 0);
2503 {
2504 /* We don't just want to restore into `regnum', because
2505 later groups should continue to be numbered higher,
2506 as in `(ab)c(de)' -- the second group is #2. */
2507 regnum_t this_group_regnum;
2508
2509 compile_stack.avail--;
2510 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2511 fixup_alt_jump
2512 = COMPILE_STACK_TOP.fixup_alt_jump
2513 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2514 : 0;
2515 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2516 this_group_regnum = COMPILE_STACK_TOP.regnum;
2517 /* If we've reached MAX_REGNUM groups, then this open
2518 won't actually generate any code, so we'll have to
2519 clear pending_exact explicitly. */
2520 pending_exact = 0;
2521
2522 /* We're at the end of the group, so now we know how many
2523 groups were inside this one. */
2524 if (this_group_regnum <= MAX_REGNUM)
2525 {
2526 unsigned char *inner_group_loc
2527 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2528
2529 *inner_group_loc = regnum - this_group_regnum;
2530 BUF_PUSH_3 (stop_memory, this_group_regnum,
2531 regnum - this_group_regnum);
2532 }
2533 }
2534 break;
2535
2536
2537 case '|': /* `\|'. */
2538 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2539 goto normal_backslash;
2540 handle_alt:
2541 if (syntax & RE_LIMITED_OPS)
2542 goto normal_char;
2543
2544 /* Insert before the previous alternative a jump which
2545 jumps to this alternative if the former fails. */
2546 GET_BUFFER_SPACE (3);
2547 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2548 pending_exact = 0;
2549 b += 3;
2550
2551 /* The alternative before this one has a jump after it
2552 which gets executed if it gets matched. Adjust that
2553 jump so it will jump to this alternative's analogous
2554 jump (put in below, which in turn will jump to the next
2555 (if any) alternative's such jump, etc.). The last such
2556 jump jumps to the correct final destination. A picture:
2557 _____ _____
2558 | | | |
2559 | v | v
2560 a | b | c
2561
2562 If we are at `b', then fixup_alt_jump right now points to a
2563 three-byte space after `a'. We'll put in the jump, set
2564 fixup_alt_jump to right after `b', and leave behind three
2565 bytes which we'll fill in when we get to after `c'. */
2566
2567 if (fixup_alt_jump)
2568 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2569
2570 /* Mark and leave space for a jump after this alternative,
2571 to be filled in later either by next alternative or
2572 when know we're at the end of a series of alternatives. */
2573 fixup_alt_jump = b;
2574 GET_BUFFER_SPACE (3);
2575 b += 3;
2576
2577 laststart = 0;
2578 begalt = b;
2579 break;
2580
2581
2582 case '{':
2583 /* If \{ is a literal. */
2584 if (!(syntax & RE_INTERVALS)
2585 /* If we're at `\{' and it's not the open-interval
2586 operator. */
2587 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2588 || (p - 2 == pattern && p == pend))
2589 goto normal_backslash;
2590
2591 handle_interval:
2592 {
2593 /* If got here, then the syntax allows intervals. */
2594
2595 /* At least (most) this many matches must be made. */
2596 int lower_bound = -1, upper_bound = -1;
2597
2598 beg_interval = p - 1;
2599
2600 if (p == pend)
2601 {
2602 if (syntax & RE_NO_BK_BRACES)
2603 goto unfetch_interval;
2604 else
2605 FREE_STACK_RETURN (REG_EBRACE);
2606 }
2607
2608 GET_UNSIGNED_NUMBER (lower_bound);
2609
2610 if (c == ',')
2611 {
2612 GET_UNSIGNED_NUMBER (upper_bound);
2613 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2614 }
2615 else
2616 /* Interval such as `{1}' => match exactly once. */
2617 upper_bound = lower_bound;
2618
2619 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2620 || lower_bound > upper_bound)
2621 {
2622 if (syntax & RE_NO_BK_BRACES)
2623 goto unfetch_interval;
2624 else
2625 FREE_STACK_RETURN (REG_BADBR);
2626 }
2627
2628 if (!(syntax & RE_NO_BK_BRACES))
2629 {
2630 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2631
2632 PATFETCH (c);
2633 }
2634
2635 if (c != '}')
2636 {
2637 if (syntax & RE_NO_BK_BRACES)
2638 goto unfetch_interval;
2639 else
2640 FREE_STACK_RETURN (REG_BADBR);
2641 }
2642
2643 /* We just parsed a valid interval. */
2644
2645 /* If it's invalid to have no preceding re. */
2646 if (!laststart)
2647 {
2648 if (syntax & RE_CONTEXT_INVALID_OPS)
2649 FREE_STACK_RETURN (REG_BADRPT);
2650 else if (syntax & RE_CONTEXT_INDEP_OPS)
2651 laststart = b;
2652 else
2653 goto unfetch_interval;
2654 }
2655
2656 /* If the upper bound is zero, don't want to succeed at
2657 all; jump from `laststart' to `b + 3', which will be
2658 the end of the buffer after we insert the jump. */
2659 if (upper_bound == 0)
2660 {
2661 GET_BUFFER_SPACE (3);
2662 INSERT_JUMP (jump, laststart, b + 3);
2663 b += 3;
2664 }
2665
2666 /* Otherwise, we have a nontrivial interval. When
2667 we're all done, the pattern will look like:
2668 set_number_at <jump count> <upper bound>
2669 set_number_at <succeed_n count> <lower bound>
2670 succeed_n <after jump addr> <succeed_n count>
2671 <body of loop>
2672 jump_n <succeed_n addr> <jump count>
2673 (The upper bound and `jump_n' are omitted if
2674 `upper_bound' is 1, though.) */
2675 else
2676 { /* If the upper bound is > 1, we need to insert
2677 more at the end of the loop. */
2678 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2679
2680 GET_BUFFER_SPACE (nbytes);
2681
2682 /* Initialize lower bound of the `succeed_n', even
2683 though it will be set during matching by its
2684 attendant `set_number_at' (inserted next),
2685 because `re_compile_fastmap' needs to know.
2686 Jump to the `jump_n' we might insert below. */
2687 INSERT_JUMP2 (succeed_n, laststart,
2688 b + 5 + (upper_bound > 1) * 5,
2689 lower_bound);
2690 b += 5;
2691
2692 /* Code to initialize the lower bound. Insert
2693 before the `succeed_n'. The `5' is the last two
2694 bytes of this `set_number_at', plus 3 bytes of
2695 the following `succeed_n'. */
2696 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2697 b += 5;
2698
2699 if (upper_bound > 1)
2700 { /* More than one repetition is allowed, so
2701 append a backward jump to the `succeed_n'
2702 that starts this interval.
2703
2704 When we've reached this during matching,
2705 we'll have matched the interval once, so
2706 jump back only `upper_bound - 1' times. */
2707 STORE_JUMP2 (jump_n, b, laststart + 5,
2708 upper_bound - 1);
2709 b += 5;
2710
2711 /* The location we want to set is the second
2712 parameter of the `jump_n'; that is `b-2' as
2713 an absolute address. `laststart' will be
2714 the `set_number_at' we're about to insert;
2715 `laststart+3' the number to set, the source
2716 for the relative address. But we are
2717 inserting into the middle of the pattern --
2718 so everything is getting moved up by 5.
2719 Conclusion: (b - 2) - (laststart + 3) + 5,
2720 i.e., b - laststart.
2721
2722 We insert this at the beginning of the loop
2723 so that if we fail during matching, we'll
2724 reinitialize the bounds. */
2725 insert_op2 (set_number_at, laststart, b - laststart,
2726 upper_bound - 1, b);
2727 b += 5;
2728 }
2729 }
2730 pending_exact = 0;
2731 beg_interval = NULL;
2732 }
2733 break;
2734
2735 unfetch_interval:
2736 /* If an invalid interval, match the characters as literals. */
2737 assert (beg_interval);
2738 p = beg_interval;
2739 beg_interval = NULL;
2740
2741 /* normal_char and normal_backslash need `c'. */
2742 PATFETCH (c);
2743
2744 if (!(syntax & RE_NO_BK_BRACES))
2745 {
2746 if (p > pattern && p[-1] == '\\')
2747 goto normal_backslash;
2748 }
2749 goto normal_char;
2750
2751 #ifdef emacs
2752 /* There is no way to specify the before_dot and after_dot
2753 operators. rms says this is ok. --karl */
2754 case '=':
2755 BUF_PUSH (at_dot);
2756 break;
2757
2758 case 's':
2759 laststart = b;
2760 PATFETCH (c);
2761 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2762 break;
2763
2764 case 'S':
2765 laststart = b;
2766 PATFETCH (c);
2767 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2768 break;
2769
2770 case 'c':
2771 laststart = b;
2772 PATFETCH_RAW (c);
2773 BUF_PUSH_2 (categoryspec, c);
2774 break;
2775
2776 case 'C':
2777 laststart = b;
2778 PATFETCH_RAW (c);
2779 BUF_PUSH_2 (notcategoryspec, c);
2780 break;
2781 #endif /* emacs */
2782
2783
2784 case 'w':
2785 laststart = b;
2786 BUF_PUSH (wordchar);
2787 break;
2788
2789
2790 case 'W':
2791 laststart = b;
2792 BUF_PUSH (notwordchar);
2793 break;
2794
2795
2796 case '<':
2797 BUF_PUSH (wordbeg);
2798 break;
2799
2800 case '>':
2801 BUF_PUSH (wordend);
2802 break;
2803
2804 case 'b':
2805 BUF_PUSH (wordbound);
2806 break;
2807
2808 case 'B':
2809 BUF_PUSH (notwordbound);
2810 break;
2811
2812 case '`':
2813 BUF_PUSH (begbuf);
2814 break;
2815
2816 case '\'':
2817 BUF_PUSH (endbuf);
2818 break;
2819
2820 case '1': case '2': case '3': case '4': case '5':
2821 case '6': case '7': case '8': case '9':
2822 if (syntax & RE_NO_BK_REFS)
2823 goto normal_char;
2824
2825 c1 = c - '0';
2826
2827 if (c1 > regnum)
2828 FREE_STACK_RETURN (REG_ESUBREG);
2829
2830 /* Can't back reference to a subexpression if inside of it. */
2831 if (group_in_compile_stack (compile_stack, c1))
2832 goto normal_char;
2833
2834 laststart = b;
2835 BUF_PUSH_2 (duplicate, c1);
2836 break;
2837
2838
2839 case '+':
2840 case '?':
2841 if (syntax & RE_BK_PLUS_QM)
2842 goto handle_plus;
2843 else
2844 goto normal_backslash;
2845
2846 default:
2847 normal_backslash:
2848 /* You might think it would be useful for \ to mean
2849 not to translate; but if we don't translate it
2850 it will never match anything. */
2851 c = TRANSLATE (c);
2852 goto normal_char;
2853 }
2854 break;
2855
2856
2857 default:
2858 /* Expects the character in `c'. */
2859 normal_char:
2860 p1 = p - 1; /* P1 points the head of C. */
2861 #ifdef emacs
2862 if (bufp->multibyte)
2863 /* Set P to the next character boundary. */
2864 p += MULTIBYTE_FORM_LENGTH (p1, pend - p1) - 1;
2865 #endif
2866 /* If no exactn currently being built. */
2867 if (!pending_exact
2868
2869 /* If last exactn not at current position. */
2870 || pending_exact + *pending_exact + 1 != b
2871
2872 /* We have only one byte following the exactn for the count. */
2873 || *pending_exact >= (1 << BYTEWIDTH) - (p - p1)
2874
2875 /* If followed by a repetition operator. */
2876 || *p == '*' || *p == '^'
2877 || ((syntax & RE_BK_PLUS_QM)
2878 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2879 : (*p == '+' || *p == '?'))
2880 || ((syntax & RE_INTERVALS)
2881 && ((syntax & RE_NO_BK_BRACES)
2882 ? *p == '{'
2883 : (p[0] == '\\' && p[1] == '{'))))
2884 {
2885 /* Start building a new exactn. */
2886
2887 laststart = b;
2888
2889 BUF_PUSH_2 (exactn, 0);
2890 pending_exact = b - 1;
2891 }
2892
2893 /* Here, C may translated, therefore C may not equal to *P1. */
2894 while (1)
2895 {
2896 BUF_PUSH (c);
2897 (*pending_exact)++;
2898 if (++p1 == p)
2899 break;
2900
2901 /* Rest of multibyte form should be copied literally. */
2902 c = *(unsigned char *)p1;
2903 }
2904 break;
2905 } /* switch (c) */
2906 } /* while p != pend */
2907
2908
2909 /* Through the pattern now. */
2910
2911 if (fixup_alt_jump)
2912 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2913
2914 if (!COMPILE_STACK_EMPTY)
2915 FREE_STACK_RETURN (REG_EPAREN);
2916
2917 /* If we don't want backtracking, force success
2918 the first time we reach the end of the compiled pattern. */
2919 if (syntax & RE_NO_POSIX_BACKTRACKING)
2920 BUF_PUSH (succeed);
2921
2922 free (compile_stack.stack);
2923
2924 /* We have succeeded; set the length of the buffer. */
2925 bufp->used = b - bufp->buffer;
2926
2927 #ifdef DEBUG
2928 if (debug)
2929 {
2930 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2931 print_compiled_pattern (bufp);
2932 }
2933 #endif /* DEBUG */
2934
2935 #ifndef MATCH_MAY_ALLOCATE
2936 /* Initialize the failure stack to the largest possible stack. This
2937 isn't necessary unless we're trying to avoid calling alloca in
2938 the search and match routines. */
2939 {
2940 int num_regs = bufp->re_nsub + 1;
2941
2942 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2943 is strictly greater than re_max_failures, the largest possible stack
2944 is 2 * re_max_failures failure points. */
2945 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2946 {
2947 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2948
2949 #ifdef emacs
2950 if (! fail_stack.stack)
2951 fail_stack.stack
2952 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2953 * sizeof (fail_stack_elt_t));
2954 else
2955 fail_stack.stack
2956 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2957 (fail_stack.size
2958 * sizeof (fail_stack_elt_t)));
2959 #else /* not emacs */
2960 if (! fail_stack.stack)
2961 fail_stack.stack
2962 = (fail_stack_elt_t *) malloc (fail_stack.size
2963 * sizeof (fail_stack_elt_t));
2964 else
2965 fail_stack.stack
2966 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2967 (fail_stack.size
2968 * sizeof (fail_stack_elt_t)));
2969 #endif /* not emacs */
2970 }
2971
2972 regex_grow_registers (num_regs);
2973 }
2974 #endif /* not MATCH_MAY_ALLOCATE */
2975
2976 return REG_NOERROR;
2977 } /* regex_compile */
2978 \f
2979 /* Subroutines for `regex_compile'. */
2980
2981 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2982
2983 static void
2984 store_op1 (op, loc, arg)
2985 re_opcode_t op;
2986 unsigned char *loc;
2987 int arg;
2988 {
2989 *loc = (unsigned char) op;
2990 STORE_NUMBER (loc + 1, arg);
2991 }
2992
2993
2994 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2995
2996 static void
2997 store_op2 (op, loc, arg1, arg2)
2998 re_opcode_t op;
2999 unsigned char *loc;
3000 int arg1, arg2;
3001 {
3002 *loc = (unsigned char) op;
3003 STORE_NUMBER (loc + 1, arg1);
3004 STORE_NUMBER (loc + 3, arg2);
3005 }
3006
3007
3008 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3009 for OP followed by two-byte integer parameter ARG. */
3010
3011 static void
3012 insert_op1 (op, loc, arg, end)
3013 re_opcode_t op;
3014 unsigned char *loc;
3015 int arg;
3016 unsigned char *end;
3017 {
3018 register unsigned char *pfrom = end;
3019 register unsigned char *pto = end + 3;
3020
3021 while (pfrom != loc)
3022 *--pto = *--pfrom;
3023
3024 store_op1 (op, loc, arg);
3025 }
3026
3027
3028 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3029
3030 static void
3031 insert_op2 (op, loc, arg1, arg2, end)
3032 re_opcode_t op;
3033 unsigned char *loc;
3034 int arg1, arg2;
3035 unsigned char *end;
3036 {
3037 register unsigned char *pfrom = end;
3038 register unsigned char *pto = end + 5;
3039
3040 while (pfrom != loc)
3041 *--pto = *--pfrom;
3042
3043 store_op2 (op, loc, arg1, arg2);
3044 }
3045
3046
3047 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3048 after an alternative or a begin-subexpression. We assume there is at
3049 least one character before the ^. */
3050
3051 static boolean
3052 at_begline_loc_p (pattern, p, syntax)
3053 const char *pattern, *p;
3054 reg_syntax_t syntax;
3055 {
3056 const char *prev = p - 2;
3057 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3058
3059 return
3060 /* After a subexpression? */
3061 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3062 /* After an alternative? */
3063 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
3064 }
3065
3066
3067 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3068 at least one character after the $, i.e., `P < PEND'. */
3069
3070 static boolean
3071 at_endline_loc_p (p, pend, syntax)
3072 const char *p, *pend;
3073 int syntax;
3074 {
3075 const char *next = p;
3076 boolean next_backslash = *next == '\\';
3077 const char *next_next = p + 1 < pend ? p + 1 : 0;
3078
3079 return
3080 /* Before a subexpression? */
3081 (syntax & RE_NO_BK_PARENS ? *next == ')'
3082 : next_backslash && next_next && *next_next == ')')
3083 /* Before an alternative? */
3084 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3085 : next_backslash && next_next && *next_next == '|');
3086 }
3087
3088
3089 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3090 false if it's not. */
3091
3092 static boolean
3093 group_in_compile_stack (compile_stack, regnum)
3094 compile_stack_type compile_stack;
3095 regnum_t regnum;
3096 {
3097 int this_element;
3098
3099 for (this_element = compile_stack.avail - 1;
3100 this_element >= 0;
3101 this_element--)
3102 if (compile_stack.stack[this_element].regnum == regnum)
3103 return true;
3104
3105 return false;
3106 }
3107
3108
3109 /* Read the ending character of a range (in a bracket expression) from the
3110 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3111 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3112 Then we set the translation of all bits between the starting and
3113 ending characters (inclusive) in the compiled pattern B.
3114
3115 Return an error code.
3116
3117 We use these short variable names so we can use the same macros as
3118 `regex_compile' itself. */
3119
3120 static reg_errcode_t
3121 compile_range (p_ptr, pend, translate, syntax, b)
3122 const char **p_ptr, *pend;
3123 RE_TRANSLATE_TYPE translate;
3124 reg_syntax_t syntax;
3125 unsigned char *b;
3126 {
3127 unsigned this_char;
3128
3129 const char *p = *p_ptr;
3130 int range_start, range_end;
3131
3132 if (p == pend)
3133 return REG_ERANGE;
3134
3135 /* Even though the pattern is a signed `char *', we need to fetch
3136 with unsigned char *'s; if the high bit of the pattern character
3137 is set, the range endpoints will be negative if we fetch using a
3138 signed char *.
3139
3140 We also want to fetch the endpoints without translating them; the
3141 appropriate translation is done in the bit-setting loop below. */
3142 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3143 range_start = ((const unsigned char *) p)[-2];
3144 range_end = ((const unsigned char *) p)[0];
3145
3146 /* Have to increment the pointer into the pattern string, so the
3147 caller isn't still at the ending character. */
3148 (*p_ptr)++;
3149
3150 /* If the start is after the end, the range is empty. */
3151 if (range_start > range_end)
3152 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3153
3154 /* Here we see why `this_char' has to be larger than an `unsigned
3155 char' -- the range is inclusive, so if `range_end' == 0xff
3156 (assuming 8-bit characters), we would otherwise go into an infinite
3157 loop, since all characters <= 0xff. */
3158 for (this_char = range_start; this_char <= range_end; this_char++)
3159 {
3160 SET_LIST_BIT (TRANSLATE (this_char));
3161 }
3162
3163 return REG_NOERROR;
3164 }
3165 \f
3166 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3167 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3168 characters can start a string that matches the pattern. This fastmap
3169 is used by re_search to skip quickly over impossible starting points.
3170
3171 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3172 area as BUFP->fastmap.
3173
3174 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3175 the pattern buffer.
3176
3177 Returns 0 if we succeed, -2 if an internal error. */
3178
3179 int
3180 re_compile_fastmap (bufp)
3181 struct re_pattern_buffer *bufp;
3182 {
3183 int i, j, k;
3184 #ifdef MATCH_MAY_ALLOCATE
3185 fail_stack_type fail_stack;
3186 #endif
3187 #ifndef REGEX_MALLOC
3188 char *destination;
3189 #endif
3190 /* We don't push any register information onto the failure stack. */
3191 unsigned num_regs = 0;
3192
3193 register char *fastmap = bufp->fastmap;
3194 unsigned char *pattern = bufp->buffer;
3195 unsigned long size = bufp->used;
3196 unsigned char *p = pattern;
3197 register unsigned char *pend = pattern + size;
3198
3199 /* This holds the pointer to the failure stack, when
3200 it is allocated relocatably. */
3201 fail_stack_elt_t *failure_stack_ptr;
3202
3203 /* Assume that each path through the pattern can be null until
3204 proven otherwise. We set this false at the bottom of switch
3205 statement, to which we get only if a particular path doesn't
3206 match the empty string. */
3207 boolean path_can_be_null = true;
3208
3209 /* We aren't doing a `succeed_n' to begin with. */
3210 boolean succeed_n_p = false;
3211
3212 /* If all elements for base leading-codes in fastmap is set, this
3213 flag is set true. */
3214 boolean match_any_multibyte_characters = false;
3215
3216 /* Maximum code of simple (single byte) character. */
3217 int simple_char_max;
3218
3219 assert (fastmap != NULL && p != NULL);
3220
3221 INIT_FAIL_STACK ();
3222 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3223 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3224 bufp->can_be_null = 0;
3225
3226 while (1)
3227 {
3228 if (p == pend || *p == succeed)
3229 {
3230 /* We have reached the (effective) end of pattern. */
3231 if (!FAIL_STACK_EMPTY ())
3232 {
3233 bufp->can_be_null |= path_can_be_null;
3234
3235 /* Reset for next path. */
3236 path_can_be_null = true;
3237
3238 p = fail_stack.stack[--fail_stack.avail].pointer;
3239
3240 continue;
3241 }
3242 else
3243 break;
3244 }
3245
3246 /* We should never be about to go beyond the end of the pattern. */
3247 assert (p < pend);
3248
3249 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3250 {
3251
3252 /* I guess the idea here is to simply not bother with a fastmap
3253 if a backreference is used, since it's too hard to figure out
3254 the fastmap for the corresponding group. Setting
3255 `can_be_null' stops `re_search_2' from using the fastmap, so
3256 that is all we do. */
3257 case duplicate:
3258 bufp->can_be_null = 1;
3259 goto done;
3260
3261
3262 /* Following are the cases which match a character. These end
3263 with `break'. */
3264
3265 case exactn:
3266 fastmap[p[1]] = 1;
3267 break;
3268
3269
3270 #ifndef emacs
3271 case charset:
3272 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3273 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3274 fastmap[j] = 1;
3275 break;
3276
3277
3278 case charset_not:
3279 /* Chars beyond end of map must be allowed. */
3280 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3281 fastmap[j] = 1;
3282
3283 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3284 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3285 fastmap[j] = 1;
3286 break;
3287
3288
3289 case wordchar:
3290 for (j = 0; j < (1 << BYTEWIDTH); j++)
3291 if (SYNTAX (j) == Sword)
3292 fastmap[j] = 1;
3293 break;
3294
3295
3296 case notwordchar:
3297 for (j = 0; j < (1 << BYTEWIDTH); j++)
3298 if (SYNTAX (j) != Sword)
3299 fastmap[j] = 1;
3300 break;
3301 #else /* emacs */
3302 case charset:
3303 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3304 j >= 0; j--)
3305 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3306 fastmap[j] = 1;
3307
3308 if (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3309 && match_any_multibyte_characters == false)
3310 {
3311 /* Set fastmap[I] 1 where I is a base leading code of each
3312 multibyte character in the range table. */
3313 int c, count;
3314
3315 /* Make P points the range table. */
3316 p += CHARSET_BITMAP_SIZE (&p[-2]);
3317
3318 /* Extract the number of ranges in range table into
3319 COUNT. */
3320 EXTRACT_NUMBER_AND_INCR (count, p);
3321 for (; count > 0; count--, p += 2 * 3) /* XXX */
3322 {
3323 /* Extract the start of each range. */
3324 EXTRACT_CHARACTER (c, p);
3325 j = CHAR_CHARSET (c);
3326 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3327 }
3328 }
3329 break;
3330
3331
3332 case charset_not:
3333 /* Chars beyond end of map must be allowed. End of map is
3334 `127' if bufp->multibyte is nonzero. */
3335 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3336 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3337 j < simple_char_max; j++)
3338 fastmap[j] = 1;
3339
3340 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3341 j >= 0; j--)
3342 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3343 fastmap[j] = 1;
3344
3345 if (bufp->multibyte)
3346 /* Any character set can possibly contain a character
3347 which doesn't match the specified set of characters. */
3348 {
3349 set_fastmap_for_multibyte_characters:
3350 if (match_any_multibyte_characters == false)
3351 {
3352 for (j = 0x80; j < 0xA0; j++) /* XXX */
3353 if (BASE_LEADING_CODE_P (j))
3354 fastmap[j] = 1;
3355 match_any_multibyte_characters = true;
3356 }
3357 }
3358 break;
3359
3360
3361 case wordchar:
3362 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3363 for (j = 0; j < simple_char_max; j++)
3364 if (SYNTAX (j) == Sword)
3365 fastmap[j] = 1;
3366
3367 if (bufp->multibyte)
3368 /* Any character set can possibly contain a character
3369 whose syntax is `Sword'. */
3370 goto set_fastmap_for_multibyte_characters;
3371 break;
3372
3373
3374 case notwordchar:
3375 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3376 for (j = 0; j < simple_char_max; j++)
3377 if (SYNTAX (j) != Sword)
3378 fastmap[j] = 1;
3379
3380 if (bufp->multibyte)
3381 /* Any character set can possibly contain a character
3382 whose syntax is not `Sword'. */
3383 goto set_fastmap_for_multibyte_characters;
3384 break;
3385 #endif
3386
3387 case anychar:
3388 {
3389 int fastmap_newline = fastmap['\n'];
3390
3391 /* `.' matches anything (but if bufp->multibyte is
3392 nonzero, matches `\000' .. `\127' and possible multibyte
3393 character) ... */
3394 if (bufp->multibyte)
3395 {
3396 simple_char_max = 0x80;
3397
3398 for (j = 0x80; j < 0xA0; j++)
3399 if (BASE_LEADING_CODE_P (j))
3400 fastmap[j] = 1;
3401 match_any_multibyte_characters = true;
3402 }
3403 else
3404 simple_char_max = (1 << BYTEWIDTH);
3405
3406 for (j = 0; j < simple_char_max; j++)
3407 fastmap[j] = 1;
3408
3409 /* ... except perhaps newline. */
3410 if (!(bufp->syntax & RE_DOT_NEWLINE))
3411 fastmap['\n'] = fastmap_newline;
3412
3413 /* Return if we have already set `can_be_null'; if we have,
3414 then the fastmap is irrelevant. Something's wrong here. */
3415 else if (bufp->can_be_null)
3416 goto done;
3417
3418 /* Otherwise, have to check alternative paths. */
3419 break;
3420 }
3421
3422 #ifdef emacs
3423 case wordbound:
3424 case notwordbound:
3425 case wordbeg:
3426 case wordend:
3427 case notsyntaxspec:
3428 case syntaxspec:
3429 /* This match depends on text properties. These end with
3430 aborting optimizations. */
3431 bufp->can_be_null = 1;
3432 goto done;
3433 #if 0
3434 k = *p++;
3435 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3436 for (j = 0; j < simple_char_max; j++)
3437 if (SYNTAX (j) == (enum syntaxcode) k)
3438 fastmap[j] = 1;
3439
3440 if (bufp->multibyte)
3441 /* Any character set can possibly contain a character
3442 whose syntax is K. */
3443 goto set_fastmap_for_multibyte_characters;
3444 break;
3445
3446 case notsyntaxspec:
3447 k = *p++;
3448 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3449 for (j = 0; j < simple_char_max; j++)
3450 if (SYNTAX (j) != (enum syntaxcode) k)
3451 fastmap[j] = 1;
3452
3453 if (bufp->multibyte)
3454 /* Any character set can possibly contain a character
3455 whose syntax is not K. */
3456 goto set_fastmap_for_multibyte_characters;
3457 break;
3458 #endif
3459
3460
3461 case categoryspec:
3462 k = *p++;
3463 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3464 for (j = 0; j < simple_char_max; j++)
3465 if (CHAR_HAS_CATEGORY (j, k))
3466 fastmap[j] = 1;
3467
3468 if (bufp->multibyte)
3469 /* Any character set can possibly contain a character
3470 whose category is K. */
3471 goto set_fastmap_for_multibyte_characters;
3472 break;
3473
3474
3475 case notcategoryspec:
3476 k = *p++;
3477 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3478 for (j = 0; j < simple_char_max; j++)
3479 if (!CHAR_HAS_CATEGORY (j, k))
3480 fastmap[j] = 1;
3481
3482 if (bufp->multibyte)
3483 /* Any character set can possibly contain a character
3484 whose category is not K. */
3485 goto set_fastmap_for_multibyte_characters;
3486 break;
3487
3488 /* All cases after this match the empty string. These end with
3489 `continue'. */
3490
3491
3492 case before_dot:
3493 case at_dot:
3494 case after_dot:
3495 continue;
3496 #endif /* emacs */
3497
3498
3499 case no_op:
3500 case begline:
3501 case endline:
3502 case begbuf:
3503 case endbuf:
3504 #ifndef emacs
3505 case wordbound:
3506 case notwordbound:
3507 case wordbeg:
3508 case wordend:
3509 #endif
3510 case push_dummy_failure:
3511 continue;
3512
3513
3514 case jump_n:
3515 case pop_failure_jump:
3516 case maybe_pop_jump:
3517 case jump:
3518 case jump_past_alt:
3519 case dummy_failure_jump:
3520 EXTRACT_NUMBER_AND_INCR (j, p);
3521 p += j;
3522 if (j > 0)
3523 continue;
3524
3525 /* Jump backward implies we just went through the body of a
3526 loop and matched nothing. Opcode jumped to should be
3527 `on_failure_jump' or `succeed_n'. Just treat it like an
3528 ordinary jump. For a * loop, it has pushed its failure
3529 point already; if so, discard that as redundant. */
3530 if ((re_opcode_t) *p != on_failure_jump
3531 && (re_opcode_t) *p != succeed_n)
3532 continue;
3533
3534 p++;
3535 EXTRACT_NUMBER_AND_INCR (j, p);
3536 p += j;
3537
3538 /* If what's on the stack is where we are now, pop it. */
3539 if (!FAIL_STACK_EMPTY ()
3540 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3541 fail_stack.avail--;
3542
3543 continue;
3544
3545
3546 case on_failure_jump:
3547 case on_failure_keep_string_jump:
3548 handle_on_failure_jump:
3549 EXTRACT_NUMBER_AND_INCR (j, p);
3550
3551 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3552 end of the pattern. We don't want to push such a point,
3553 since when we restore it above, entering the switch will
3554 increment `p' past the end of the pattern. We don't need
3555 to push such a point since we obviously won't find any more
3556 fastmap entries beyond `pend'. Such a pattern can match
3557 the null string, though. */
3558 if (p + j < pend)
3559 {
3560 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3561 {
3562 RESET_FAIL_STACK ();
3563 return -2;
3564 }
3565 }
3566 else
3567 bufp->can_be_null = 1;
3568
3569 if (succeed_n_p)
3570 {
3571 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3572 succeed_n_p = false;
3573 }
3574
3575 continue;
3576
3577
3578 case succeed_n:
3579 /* Get to the number of times to succeed. */
3580 p += 2;
3581
3582 /* Increment p past the n for when k != 0. */
3583 EXTRACT_NUMBER_AND_INCR (k, p);
3584 if (k == 0)
3585 {
3586 p -= 4;
3587 succeed_n_p = true; /* Spaghetti code alert. */
3588 goto handle_on_failure_jump;
3589 }
3590 continue;
3591
3592
3593 case set_number_at:
3594 p += 4;
3595 continue;
3596
3597
3598 case start_memory:
3599 case stop_memory:
3600 p += 2;
3601 continue;
3602
3603
3604 default:
3605 abort (); /* We have listed all the cases. */
3606 } /* switch *p++ */
3607
3608 /* Getting here means we have found the possible starting
3609 characters for one path of the pattern -- and that the empty
3610 string does not match. We need not follow this path further.
3611 Instead, look at the next alternative (remembered on the
3612 stack), or quit if no more. The test at the top of the loop
3613 does these things. */
3614 path_can_be_null = false;
3615 p = pend;
3616 } /* while p */
3617
3618 /* Set `can_be_null' for the last path (also the first path, if the
3619 pattern is empty). */
3620 bufp->can_be_null |= path_can_be_null;
3621
3622 done:
3623 RESET_FAIL_STACK ();
3624 return 0;
3625 } /* re_compile_fastmap */
3626 \f
3627 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3628 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3629 this memory for recording register information. STARTS and ENDS
3630 must be allocated using the malloc library routine, and must each
3631 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3632
3633 If NUM_REGS == 0, then subsequent matches should allocate their own
3634 register data.
3635
3636 Unless this function is called, the first search or match using
3637 PATTERN_BUFFER will allocate its own register data, without
3638 freeing the old data. */
3639
3640 void
3641 re_set_registers (bufp, regs, num_regs, starts, ends)
3642 struct re_pattern_buffer *bufp;
3643 struct re_registers *regs;
3644 unsigned num_regs;
3645 regoff_t *starts, *ends;
3646 {
3647 if (num_regs)
3648 {
3649 bufp->regs_allocated = REGS_REALLOCATE;
3650 regs->num_regs = num_regs;
3651 regs->start = starts;
3652 regs->end = ends;
3653 }
3654 else
3655 {
3656 bufp->regs_allocated = REGS_UNALLOCATED;
3657 regs->num_regs = 0;
3658 regs->start = regs->end = (regoff_t *) 0;
3659 }
3660 }
3661 \f
3662 /* Searching routines. */
3663
3664 /* Like re_search_2, below, but only one string is specified, and
3665 doesn't let you say where to stop matching. */
3666
3667 int
3668 re_search (bufp, string, size, startpos, range, regs)
3669 struct re_pattern_buffer *bufp;
3670 const char *string;
3671 int size, startpos, range;
3672 struct re_registers *regs;
3673 {
3674 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3675 regs, size);
3676 }
3677
3678 /* End address of virtual concatenation of string. */
3679 #define STOP_ADDR_VSTRING(P) \
3680 (((P) >= size1 ? string2 + size2 : string1 + size1))
3681
3682 /* Address of POS in the concatenation of virtual string. */
3683 #define POS_ADDR_VSTRING(POS) \
3684 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
3685
3686 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3687 virtual concatenation of STRING1 and STRING2, starting first at index
3688 STARTPOS, then at STARTPOS + 1, and so on.
3689
3690 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3691
3692 RANGE is how far to scan while trying to match. RANGE = 0 means try
3693 only at STARTPOS; in general, the last start tried is STARTPOS +
3694 RANGE.
3695
3696 In REGS, return the indices of the virtual concatenation of STRING1
3697 and STRING2 that matched the entire BUFP->buffer and its contained
3698 subexpressions.
3699
3700 Do not consider matching one past the index STOP in the virtual
3701 concatenation of STRING1 and STRING2.
3702
3703 We return either the position in the strings at which the match was
3704 found, -1 if no match, or -2 if error (such as failure
3705 stack overflow). */
3706
3707 int
3708 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3709 struct re_pattern_buffer *bufp;
3710 const char *string1, *string2;
3711 int size1, size2;
3712 int startpos;
3713 int range;
3714 struct re_registers *regs;
3715 int stop;
3716 {
3717 int val;
3718 register char *fastmap = bufp->fastmap;
3719 register RE_TRANSLATE_TYPE translate = bufp->translate;
3720 int total_size = size1 + size2;
3721 int endpos = startpos + range;
3722 int anchored_start = 0;
3723
3724 /* Nonzero if we have to concern multibyte character. */
3725 int multibyte = bufp->multibyte;
3726
3727 /* Check for out-of-range STARTPOS. */
3728 if (startpos < 0 || startpos > total_size)
3729 return -1;
3730
3731 /* Fix up RANGE if it might eventually take us outside
3732 the virtual concatenation of STRING1 and STRING2.
3733 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3734 if (endpos < 0)
3735 range = 0 - startpos;
3736 else if (endpos > total_size)
3737 range = total_size - startpos;
3738
3739 /* If the search isn't to be a backwards one, don't waste time in a
3740 search for a pattern that must be anchored. */
3741 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3742 {
3743 if (startpos > 0)
3744 return -1;
3745 else
3746 range = 1;
3747 }
3748
3749 #ifdef emacs
3750 /* In a forward search for something that starts with \=.
3751 don't keep searching past point. */
3752 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3753 {
3754 range = PT - startpos;
3755 if (range <= 0)
3756 return -1;
3757 }
3758 #endif /* emacs */
3759
3760 /* Update the fastmap now if not correct already. */
3761 if (fastmap && !bufp->fastmap_accurate)
3762 if (re_compile_fastmap (bufp) == -2)
3763 return -2;
3764
3765 /* See whether the pattern is anchored. */
3766 if (bufp->buffer[0] == begline)
3767 anchored_start = 1;
3768
3769 #ifdef emacs
3770 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object,
3771 POS_AS_IN_BUFFER (startpos > 0
3772 ? startpos - 1 : startpos),
3773 1);
3774 #endif
3775
3776 /* Loop through the string, looking for a place to start matching. */
3777 for (;;)
3778 {
3779 /* If the pattern is anchored,
3780 skip quickly past places we cannot match.
3781 We don't bother to treat startpos == 0 specially
3782 because that case doesn't repeat. */
3783 if (anchored_start && startpos > 0)
3784 {
3785 if (! (bufp->newline_anchor
3786 && ((startpos <= size1 ? string1[startpos - 1]
3787 : string2[startpos - size1 - 1])
3788 == '\n')))
3789 goto advance;
3790 }
3791
3792 /* If a fastmap is supplied, skip quickly over characters that
3793 cannot be the start of a match. If the pattern can match the
3794 null string, however, we don't need to skip characters; we want
3795 the first null string. */
3796 if (fastmap && startpos < total_size && !bufp->can_be_null)
3797 {
3798 if (range > 0) /* Searching forwards. */
3799 {
3800 register const char *d;
3801 register int lim = 0;
3802 int irange = range;
3803
3804 if (startpos < size1 && startpos + range >= size1)
3805 lim = range - (size1 - startpos);
3806
3807 d = POS_ADDR_VSTRING (startpos);
3808
3809 /* Written out as an if-else to avoid testing `translate'
3810 inside the loop. */
3811 if (translate)
3812 while (range > lim
3813 && !fastmap[(unsigned char)
3814 RE_TRANSLATE (translate, (unsigned char) *d++)])
3815 range--;
3816 else
3817 while (range > lim && !fastmap[(unsigned char) *d++])
3818 range--;
3819
3820 startpos += irange - range;
3821 }
3822 else /* Searching backwards. */
3823 {
3824 register char c = (size1 == 0 || startpos >= size1
3825 ? string2[startpos - size1]
3826 : string1[startpos]);
3827
3828 if (!fastmap[(unsigned char) TRANSLATE (c)])
3829 goto advance;
3830 }
3831 }
3832
3833 /* If can't match the null string, and that's all we have left, fail. */
3834 if (range >= 0 && startpos == total_size && fastmap
3835 && !bufp->can_be_null)
3836 return -1;
3837
3838 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3839 startpos, regs, stop);
3840 #ifndef REGEX_MALLOC
3841 #ifdef C_ALLOCA
3842 alloca (0);
3843 #endif
3844 #endif
3845
3846 if (val >= 0)
3847 return startpos;
3848
3849 if (val == -2)
3850 return -2;
3851
3852 advance:
3853 if (!range)
3854 break;
3855 else if (range > 0)
3856 {
3857 /* Update STARTPOS to the next character boundary. */
3858 if (multibyte)
3859 {
3860 const unsigned char *p
3861 = (const unsigned char *) POS_ADDR_VSTRING (startpos);
3862 const unsigned char *pend
3863 = (const unsigned char *) STOP_ADDR_VSTRING (startpos);
3864 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
3865
3866 range -= len;
3867 if (range < 0)
3868 break;
3869 startpos += len;
3870 }
3871 else
3872 {
3873 range--;
3874 startpos++;
3875 }
3876 }
3877 else
3878 {
3879 range++;
3880 startpos--;
3881
3882 /* Update STARTPOS to the previous character boundary. */
3883 if (multibyte)
3884 {
3885 const unsigned char *p
3886 = (const unsigned char *) POS_ADDR_VSTRING (startpos);
3887 int len = 0;
3888
3889 /* Find the head of multibyte form. */
3890 while (!CHAR_HEAD_P (p))
3891 p--, len++;
3892
3893 /* Adjust it. */
3894 #if 0 /* XXX */
3895 if (MULTIBYTE_FORM_LENGTH (p, len + 1) != (len + 1))
3896 ;
3897 else
3898 #endif
3899 {
3900 range += len;
3901 if (range > 0)
3902 break;
3903
3904 startpos -= len;
3905 }
3906 }
3907 }
3908 }
3909 return -1;
3910 } /* re_search_2 */
3911 \f
3912 /* Declarations and macros for re_match_2. */
3913
3914 static int bcmp_translate ();
3915 static boolean alt_match_null_string_p (),
3916 common_op_match_null_string_p (),
3917 group_match_null_string_p ();
3918
3919 /* This converts PTR, a pointer into one of the search strings `string1'
3920 and `string2' into an offset from the beginning of that string. */
3921 #define POINTER_TO_OFFSET(ptr) \
3922 (FIRST_STRING_P (ptr) \
3923 ? ((regoff_t) ((ptr) - string1)) \
3924 : ((regoff_t) ((ptr) - string2 + size1)))
3925
3926 /* Macros for dealing with the split strings in re_match_2. */
3927
3928 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3929
3930 /* Call before fetching a character with *d. This switches over to
3931 string2 if necessary. */
3932 #define PREFETCH() \
3933 while (d == dend) \
3934 { \
3935 /* End of string2 => fail. */ \
3936 if (dend == end_match_2) \
3937 goto fail; \
3938 /* End of string1 => advance to string2. */ \
3939 d = string2; \
3940 dend = end_match_2; \
3941 }
3942
3943
3944 /* Test if at very beginning or at very end of the virtual concatenation
3945 of `string1' and `string2'. If only one string, it's `string2'. */
3946 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3947 #define AT_STRINGS_END(d) ((d) == end2)
3948
3949
3950 /* Test if D points to a character which is word-constituent. We have
3951 two special cases to check for: if past the end of string1, look at
3952 the first character in string2; and if before the beginning of
3953 string2, look at the last character in string1. */
3954 #define WORDCHAR_P(d) \
3955 (SYNTAX ((d) == end1 ? *string2 \
3956 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3957 == Sword)
3958
3959 /* Disabled due to a compiler bug -- see comment at case wordbound */
3960
3961 /* The comment at case wordbound is following one, but we don't use
3962 AT_WORD_BOUNDARY anymore to support multibyte form.
3963
3964 The DEC Alpha C compiler 3.x generates incorrect code for the
3965 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
3966 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
3967 macro and introducing temporary variables works around the bug. */
3968
3969 #if 0
3970 /* Test if the character before D and the one at D differ with respect
3971 to being word-constituent. */
3972 #define AT_WORD_BOUNDARY(d) \
3973 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3974 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3975 #endif
3976
3977 /* Free everything we malloc. */
3978 #ifdef MATCH_MAY_ALLOCATE
3979 #define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
3980 #define FREE_VARIABLES() \
3981 do { \
3982 REGEX_FREE_STACK (fail_stack.stack); \
3983 FREE_VAR (regstart); \
3984 FREE_VAR (regend); \
3985 FREE_VAR (old_regstart); \
3986 FREE_VAR (old_regend); \
3987 FREE_VAR (best_regstart); \
3988 FREE_VAR (best_regend); \
3989 FREE_VAR (reg_info); \
3990 FREE_VAR (reg_dummy); \
3991 FREE_VAR (reg_info_dummy); \
3992 } while (0)
3993 #else
3994 #define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3995 #endif /* not MATCH_MAY_ALLOCATE */
3996
3997 /* These values must meet several constraints. They must not be valid
3998 register values; since we have a limit of 255 registers (because
3999 we use only one byte in the pattern for the register number), we can
4000 use numbers larger than 255. They must differ by 1, because of
4001 NUM_FAILURE_ITEMS above. And the value for the lowest register must
4002 be larger than the value for the highest register, so we do not try
4003 to actually save any registers when none are active. */
4004 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
4005 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
4006 \f
4007 /* Matching routines. */
4008
4009 #ifndef emacs /* Emacs never uses this. */
4010 /* re_match is like re_match_2 except it takes only a single string. */
4011
4012 int
4013 re_match (bufp, string, size, pos, regs)
4014 struct re_pattern_buffer *bufp;
4015 const char *string;
4016 int size, pos;
4017 struct re_registers *regs;
4018 {
4019 int result = re_match_2_internal (bufp, NULL, 0, string, size,
4020 pos, regs, size);
4021 alloca (0);
4022 return result;
4023 }
4024 #endif /* not emacs */
4025
4026 #ifdef emacs
4027 /* In Emacs, this is the string or buffer in which we
4028 are matching. It is used for looking up syntax properties. */
4029 Lisp_Object re_match_object;
4030 #endif
4031
4032 /* re_match_2 matches the compiled pattern in BUFP against the
4033 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4034 and SIZE2, respectively). We start matching at POS, and stop
4035 matching at STOP.
4036
4037 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4038 store offsets for the substring each group matched in REGS. See the
4039 documentation for exactly how many groups we fill.
4040
4041 We return -1 if no match, -2 if an internal error (such as the
4042 failure stack overflowing). Otherwise, we return the length of the
4043 matched substring. */
4044
4045 int
4046 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4047 struct re_pattern_buffer *bufp;
4048 const char *string1, *string2;
4049 int size1, size2;
4050 int pos;
4051 struct re_registers *regs;
4052 int stop;
4053 {
4054 int result;
4055
4056 #ifdef emacs
4057 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object,
4058 POS_AS_IN_BUFFER (pos > 0 ? pos - 1 : pos),
4059 1);
4060 #endif
4061
4062 result = re_match_2_internal (bufp, string1, size1, string2, size2,
4063 pos, regs, stop);
4064 alloca (0);
4065 return result;
4066 }
4067
4068 /* This is a separate function so that we can force an alloca cleanup
4069 afterwards. */
4070 static int
4071 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4072 struct re_pattern_buffer *bufp;
4073 const char *string1, *string2;
4074 int size1, size2;
4075 int pos;
4076 struct re_registers *regs;
4077 int stop;
4078 {
4079 /* General temporaries. */
4080 int mcnt;
4081 unsigned char *p1;
4082
4083 /* Just past the end of the corresponding string. */
4084 const char *end1, *end2;
4085
4086 /* Pointers into string1 and string2, just past the last characters in
4087 each to consider matching. */
4088 const char *end_match_1, *end_match_2;
4089
4090 /* Where we are in the data, and the end of the current string. */
4091 const char *d, *dend;
4092
4093 /* Where we are in the pattern, and the end of the pattern. */
4094 unsigned char *p = bufp->buffer;
4095 register unsigned char *pend = p + bufp->used;
4096
4097 /* Mark the opcode just after a start_memory, so we can test for an
4098 empty subpattern when we get to the stop_memory. */
4099 unsigned char *just_past_start_mem = 0;
4100
4101 /* We use this to map every character in the string. */
4102 RE_TRANSLATE_TYPE translate = bufp->translate;
4103
4104 /* Nonzero if we have to concern multibyte character. */
4105 int multibyte = bufp->multibyte;
4106
4107 /* Failure point stack. Each place that can handle a failure further
4108 down the line pushes a failure point on this stack. It consists of
4109 restart, regend, and reg_info for all registers corresponding to
4110 the subexpressions we're currently inside, plus the number of such
4111 registers, and, finally, two char *'s. The first char * is where
4112 to resume scanning the pattern; the second one is where to resume
4113 scanning the strings. If the latter is zero, the failure point is
4114 a ``dummy''; if a failure happens and the failure point is a dummy,
4115 it gets discarded and the next next one is tried. */
4116 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4117 fail_stack_type fail_stack;
4118 #endif
4119 #ifdef DEBUG
4120 static unsigned failure_id = 0;
4121 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4122 #endif
4123
4124 /* This holds the pointer to the failure stack, when
4125 it is allocated relocatably. */
4126 fail_stack_elt_t *failure_stack_ptr;
4127
4128 /* We fill all the registers internally, independent of what we
4129 return, for use in backreferences. The number here includes
4130 an element for register zero. */
4131 unsigned num_regs = bufp->re_nsub + 1;
4132
4133 /* The currently active registers. */
4134 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4135 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4136
4137 /* Information on the contents of registers. These are pointers into
4138 the input strings; they record just what was matched (on this
4139 attempt) by a subexpression part of the pattern, that is, the
4140 regnum-th regstart pointer points to where in the pattern we began
4141 matching and the regnum-th regend points to right after where we
4142 stopped matching the regnum-th subexpression. (The zeroth register
4143 keeps track of what the whole pattern matches.) */
4144 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4145 const char **regstart, **regend;
4146 #endif
4147
4148 /* If a group that's operated upon by a repetition operator fails to
4149 match anything, then the register for its start will need to be
4150 restored because it will have been set to wherever in the string we
4151 are when we last see its open-group operator. Similarly for a
4152 register's end. */
4153 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4154 const char **old_regstart, **old_regend;
4155 #endif
4156
4157 /* The is_active field of reg_info helps us keep track of which (possibly
4158 nested) subexpressions we are currently in. The matched_something
4159 field of reg_info[reg_num] helps us tell whether or not we have
4160 matched any of the pattern so far this time through the reg_num-th
4161 subexpression. These two fields get reset each time through any
4162 loop their register is in. */
4163 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4164 register_info_type *reg_info;
4165 #endif
4166
4167 /* The following record the register info as found in the above
4168 variables when we find a match better than any we've seen before.
4169 This happens as we backtrack through the failure points, which in
4170 turn happens only if we have not yet matched the entire string. */
4171 unsigned best_regs_set = false;
4172 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4173 const char **best_regstart, **best_regend;
4174 #endif
4175
4176 /* Logically, this is `best_regend[0]'. But we don't want to have to
4177 allocate space for that if we're not allocating space for anything
4178 else (see below). Also, we never need info about register 0 for
4179 any of the other register vectors, and it seems rather a kludge to
4180 treat `best_regend' differently than the rest. So we keep track of
4181 the end of the best match so far in a separate variable. We
4182 initialize this to NULL so that when we backtrack the first time
4183 and need to test it, it's not garbage. */
4184 const char *match_end = NULL;
4185
4186 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
4187 int set_regs_matched_done = 0;
4188
4189 /* Used when we pop values we don't care about. */
4190 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4191 const char **reg_dummy;
4192 register_info_type *reg_info_dummy;
4193 #endif
4194
4195 #ifdef DEBUG
4196 /* Counts the total number of registers pushed. */
4197 unsigned num_regs_pushed = 0;
4198 #endif
4199
4200 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
4201
4202 INIT_FAIL_STACK ();
4203
4204 #ifdef MATCH_MAY_ALLOCATE
4205 /* Do not bother to initialize all the register variables if there are
4206 no groups in the pattern, as it takes a fair amount of time. If
4207 there are groups, we include space for register 0 (the whole
4208 pattern), even though we never use it, since it simplifies the
4209 array indexing. We should fix this. */
4210 if (bufp->re_nsub)
4211 {
4212 regstart = REGEX_TALLOC (num_regs, const char *);
4213 regend = REGEX_TALLOC (num_regs, const char *);
4214 old_regstart = REGEX_TALLOC (num_regs, const char *);
4215 old_regend = REGEX_TALLOC (num_regs, const char *);
4216 best_regstart = REGEX_TALLOC (num_regs, const char *);
4217 best_regend = REGEX_TALLOC (num_regs, const char *);
4218 reg_info = REGEX_TALLOC (num_regs, register_info_type);
4219 reg_dummy = REGEX_TALLOC (num_regs, const char *);
4220 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
4221
4222 if (!(regstart && regend && old_regstart && old_regend && reg_info
4223 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
4224 {
4225 FREE_VARIABLES ();
4226 return -2;
4227 }
4228 }
4229 else
4230 {
4231 /* We must initialize all our variables to NULL, so that
4232 `FREE_VARIABLES' doesn't try to free them. */
4233 regstart = regend = old_regstart = old_regend = best_regstart
4234 = best_regend = reg_dummy = NULL;
4235 reg_info = reg_info_dummy = (register_info_type *) NULL;
4236 }
4237 #endif /* MATCH_MAY_ALLOCATE */
4238
4239 /* The starting position is bogus. */
4240 if (pos < 0 || pos > size1 + size2)
4241 {
4242 FREE_VARIABLES ();
4243 return -1;
4244 }
4245
4246 /* Initialize subexpression text positions to -1 to mark ones that no
4247 start_memory/stop_memory has been seen for. Also initialize the
4248 register information struct. */
4249 for (mcnt = 1; mcnt < num_regs; mcnt++)
4250 {
4251 regstart[mcnt] = regend[mcnt]
4252 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
4253
4254 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
4255 IS_ACTIVE (reg_info[mcnt]) = 0;
4256 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4257 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4258 }
4259
4260 /* We move `string1' into `string2' if the latter's empty -- but not if
4261 `string1' is null. */
4262 if (size2 == 0 && string1 != NULL)
4263 {
4264 string2 = string1;
4265 size2 = size1;
4266 string1 = 0;
4267 size1 = 0;
4268 }
4269 end1 = string1 + size1;
4270 end2 = string2 + size2;
4271
4272 /* Compute where to stop matching, within the two strings. */
4273 if (stop <= size1)
4274 {
4275 end_match_1 = string1 + stop;
4276 end_match_2 = string2;
4277 }
4278 else
4279 {
4280 end_match_1 = end1;
4281 end_match_2 = string2 + stop - size1;
4282 }
4283
4284 /* `p' scans through the pattern as `d' scans through the data.
4285 `dend' is the end of the input string that `d' points within. `d'
4286 is advanced into the following input string whenever necessary, but
4287 this happens before fetching; therefore, at the beginning of the
4288 loop, `d' can be pointing at the end of a string, but it cannot
4289 equal `string2'. */
4290 if (size1 > 0 && pos <= size1)
4291 {
4292 d = string1 + pos;
4293 dend = end_match_1;
4294 }
4295 else
4296 {
4297 d = string2 + pos - size1;
4298 dend = end_match_2;
4299 }
4300
4301 DEBUG_PRINT1 ("The compiled pattern is: ");
4302 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4303 DEBUG_PRINT1 ("The string to match is: `");
4304 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4305 DEBUG_PRINT1 ("'\n");
4306
4307 /* This loops over pattern commands. It exits by returning from the
4308 function if the match is complete, or it drops through if the match
4309 fails at this starting point in the input data. */
4310 for (;;)
4311 {
4312 DEBUG_PRINT2 ("\n0x%x: ", p);
4313
4314 if (p == pend)
4315 { /* End of pattern means we might have succeeded. */
4316 DEBUG_PRINT1 ("end of pattern ... ");
4317
4318 /* If we haven't matched the entire string, and we want the
4319 longest match, try backtracking. */
4320 if (d != end_match_2)
4321 {
4322 /* 1 if this match ends in the same string (string1 or string2)
4323 as the best previous match. */
4324 boolean same_str_p = (FIRST_STRING_P (match_end)
4325 == MATCHING_IN_FIRST_STRING);
4326 /* 1 if this match is the best seen so far. */
4327 boolean best_match_p;
4328
4329 /* AIX compiler got confused when this was combined
4330 with the previous declaration. */
4331 if (same_str_p)
4332 best_match_p = d > match_end;
4333 else
4334 best_match_p = !MATCHING_IN_FIRST_STRING;
4335
4336 DEBUG_PRINT1 ("backtracking.\n");
4337
4338 if (!FAIL_STACK_EMPTY ())
4339 { /* More failure points to try. */
4340
4341 /* If exceeds best match so far, save it. */
4342 if (!best_regs_set || best_match_p)
4343 {
4344 best_regs_set = true;
4345 match_end = d;
4346
4347 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4348
4349 for (mcnt = 1; mcnt < num_regs; mcnt++)
4350 {
4351 best_regstart[mcnt] = regstart[mcnt];
4352 best_regend[mcnt] = regend[mcnt];
4353 }
4354 }
4355 goto fail;
4356 }
4357
4358 /* If no failure points, don't restore garbage. And if
4359 last match is real best match, don't restore second
4360 best one. */
4361 else if (best_regs_set && !best_match_p)
4362 {
4363 restore_best_regs:
4364 /* Restore best match. It may happen that `dend ==
4365 end_match_1' while the restored d is in string2.
4366 For example, the pattern `x.*y.*z' against the
4367 strings `x-' and `y-z-', if the two strings are
4368 not consecutive in memory. */
4369 DEBUG_PRINT1 ("Restoring best registers.\n");
4370
4371 d = match_end;
4372 dend = ((d >= string1 && d <= end1)
4373 ? end_match_1 : end_match_2);
4374
4375 for (mcnt = 1; mcnt < num_regs; mcnt++)
4376 {
4377 regstart[mcnt] = best_regstart[mcnt];
4378 regend[mcnt] = best_regend[mcnt];
4379 }
4380 }
4381 } /* d != end_match_2 */
4382
4383 succeed_label:
4384 DEBUG_PRINT1 ("Accepting match.\n");
4385
4386 /* If caller wants register contents data back, do it. */
4387 if (regs && !bufp->no_sub)
4388 {
4389 /* Have the register data arrays been allocated? */
4390 if (bufp->regs_allocated == REGS_UNALLOCATED)
4391 { /* No. So allocate them with malloc. We need one
4392 extra element beyond `num_regs' for the `-1' marker
4393 GNU code uses. */
4394 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4395 regs->start = TALLOC (regs->num_regs, regoff_t);
4396 regs->end = TALLOC (regs->num_regs, regoff_t);
4397 if (regs->start == NULL || regs->end == NULL)
4398 {
4399 FREE_VARIABLES ();
4400 return -2;
4401 }
4402 bufp->regs_allocated = REGS_REALLOCATE;
4403 }
4404 else if (bufp->regs_allocated == REGS_REALLOCATE)
4405 { /* Yes. If we need more elements than were already
4406 allocated, reallocate them. If we need fewer, just
4407 leave it alone. */
4408 if (regs->num_regs < num_regs + 1)
4409 {
4410 regs->num_regs = num_regs + 1;
4411 RETALLOC (regs->start, regs->num_regs, regoff_t);
4412 RETALLOC (regs->end, regs->num_regs, regoff_t);
4413 if (regs->start == NULL || regs->end == NULL)
4414 {
4415 FREE_VARIABLES ();
4416 return -2;
4417 }
4418 }
4419 }
4420 else
4421 {
4422 /* These braces fend off a "empty body in an else-statement"
4423 warning under GCC when assert expands to nothing. */
4424 assert (bufp->regs_allocated == REGS_FIXED);
4425 }
4426
4427 /* Convert the pointer data in `regstart' and `regend' to
4428 indices. Register zero has to be set differently,
4429 since we haven't kept track of any info for it. */
4430 if (regs->num_regs > 0)
4431 {
4432 regs->start[0] = pos;
4433 regs->end[0] = (MATCHING_IN_FIRST_STRING
4434 ? ((regoff_t) (d - string1))
4435 : ((regoff_t) (d - string2 + size1)));
4436 }
4437
4438 /* Go through the first `min (num_regs, regs->num_regs)'
4439 registers, since that is all we initialized. */
4440 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
4441 {
4442 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4443 regs->start[mcnt] = regs->end[mcnt] = -1;
4444 else
4445 {
4446 regs->start[mcnt]
4447 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4448 regs->end[mcnt]
4449 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4450 }
4451 }
4452
4453 /* If the regs structure we return has more elements than
4454 were in the pattern, set the extra elements to -1. If
4455 we (re)allocated the registers, this is the case,
4456 because we always allocate enough to have at least one
4457 -1 at the end. */
4458 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
4459 regs->start[mcnt] = regs->end[mcnt] = -1;
4460 } /* regs && !bufp->no_sub */
4461
4462 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4463 nfailure_points_pushed, nfailure_points_popped,
4464 nfailure_points_pushed - nfailure_points_popped);
4465 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4466
4467 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
4468 ? string1
4469 : string2 - size1);
4470
4471 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4472
4473 FREE_VARIABLES ();
4474 return mcnt;
4475 }
4476
4477 /* Otherwise match next pattern command. */
4478 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4479 {
4480 /* Ignore these. Used to ignore the n of succeed_n's which
4481 currently have n == 0. */
4482 case no_op:
4483 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4484 break;
4485
4486 case succeed:
4487 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4488 goto succeed_label;
4489
4490 /* Match the next n pattern characters exactly. The following
4491 byte in the pattern defines n, and the n bytes after that
4492 are the characters to match. */
4493 case exactn:
4494 mcnt = *p++;
4495 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4496
4497 /* This is written out as an if-else so we don't waste time
4498 testing `translate' inside the loop. */
4499 if (translate)
4500 {
4501 do
4502 {
4503 PREFETCH ();
4504 if ((unsigned char) RE_TRANSLATE (translate, (unsigned char) *d++)
4505 != (unsigned char) *p++)
4506 goto fail;
4507 }
4508 while (--mcnt);
4509 }
4510 else
4511 {
4512 do
4513 {
4514 PREFETCH ();
4515 if (*d++ != (char) *p++) goto fail;
4516 }
4517 while (--mcnt);
4518 }
4519 SET_REGS_MATCHED ();
4520 break;
4521
4522
4523 /* Match any character except possibly a newline or a null. */
4524 case anychar:
4525 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4526
4527 PREFETCH ();
4528
4529 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4530 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4531 goto fail;
4532
4533 SET_REGS_MATCHED ();
4534 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4535 d += multibyte ? MULTIBYTE_FORM_LENGTH (d, dend - d) : 1;
4536 break;
4537
4538
4539 case charset:
4540 case charset_not:
4541 {
4542 register unsigned int c;
4543 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4544 int len;
4545
4546 /* Start of actual range_table, or end of bitmap if there is no
4547 range table. */
4548 unsigned char *range_table;
4549
4550 /* Nonzero if there is range table. */
4551 int range_table_exists;
4552
4553 /* Number of ranges of range table. Not in bytes. */
4554 int count;
4555
4556 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4557
4558 PREFETCH ();
4559 c = (unsigned char) *d;
4560
4561 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
4562 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
4563 if (range_table_exists)
4564 EXTRACT_NUMBER_AND_INCR (count, range_table);
4565 else
4566 count = 0;
4567
4568 if (multibyte && BASE_LEADING_CODE_P (c))
4569 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
4570
4571 if (SINGLE_BYTE_CHAR_P (c))
4572 { /* Lookup bitmap. */
4573 c = TRANSLATE (c); /* The character to match. */
4574 len = 1;
4575
4576 /* Cast to `unsigned' instead of `unsigned char' in
4577 case the bit list is a full 32 bytes long. */
4578 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
4579 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4580 not = !not;
4581 }
4582 else if (range_table_exists)
4583 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
4584
4585 p = CHARSET_RANGE_TABLE_END (range_table, count);
4586
4587 if (!not) goto fail;
4588
4589 SET_REGS_MATCHED ();
4590 d += len;
4591 break;
4592 }
4593
4594
4595 /* The beginning of a group is represented by start_memory.
4596 The arguments are the register number in the next byte, and the
4597 number of groups inner to this one in the next. The text
4598 matched within the group is recorded (in the internal
4599 registers data structure) under the register number. */
4600 case start_memory:
4601 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4602
4603 /* Find out if this group can match the empty string. */
4604 p1 = p; /* To send to group_match_null_string_p. */
4605
4606 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4607 REG_MATCH_NULL_STRING_P (reg_info[*p])
4608 = group_match_null_string_p (&p1, pend, reg_info);
4609
4610 /* Save the position in the string where we were the last time
4611 we were at this open-group operator in case the group is
4612 operated upon by a repetition operator, e.g., with `(a*)*b'
4613 against `ab'; then we want to ignore where we are now in
4614 the string in case this attempt to match fails. */
4615 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4616 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4617 : regstart[*p];
4618 DEBUG_PRINT2 (" old_regstart: %d\n",
4619 POINTER_TO_OFFSET (old_regstart[*p]));
4620
4621 regstart[*p] = d;
4622 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4623
4624 IS_ACTIVE (reg_info[*p]) = 1;
4625 MATCHED_SOMETHING (reg_info[*p]) = 0;
4626
4627 /* Clear this whenever we change the register activity status. */
4628 set_regs_matched_done = 0;
4629
4630 /* This is the new highest active register. */
4631 highest_active_reg = *p;
4632
4633 /* If nothing was active before, this is the new lowest active
4634 register. */
4635 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4636 lowest_active_reg = *p;
4637
4638 /* Move past the register number and inner group count. */
4639 p += 2;
4640 just_past_start_mem = p;
4641
4642 break;
4643
4644
4645 /* The stop_memory opcode represents the end of a group. Its
4646 arguments are the same as start_memory's: the register
4647 number, and the number of inner groups. */
4648 case stop_memory:
4649 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4650
4651 /* We need to save the string position the last time we were at
4652 this close-group operator in case the group is operated
4653 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4654 against `aba'; then we want to ignore where we are now in
4655 the string in case this attempt to match fails. */
4656 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4657 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4658 : regend[*p];
4659 DEBUG_PRINT2 (" old_regend: %d\n",
4660 POINTER_TO_OFFSET (old_regend[*p]));
4661
4662 regend[*p] = d;
4663 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4664
4665 /* This register isn't active anymore. */
4666 IS_ACTIVE (reg_info[*p]) = 0;
4667
4668 /* Clear this whenever we change the register activity status. */
4669 set_regs_matched_done = 0;
4670
4671 /* If this was the only register active, nothing is active
4672 anymore. */
4673 if (lowest_active_reg == highest_active_reg)
4674 {
4675 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4676 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4677 }
4678 else
4679 { /* We must scan for the new highest active register, since
4680 it isn't necessarily one less than now: consider
4681 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4682 new highest active register is 1. */
4683 unsigned char r = *p - 1;
4684 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4685 r--;
4686
4687 /* If we end up at register zero, that means that we saved
4688 the registers as the result of an `on_failure_jump', not
4689 a `start_memory', and we jumped to past the innermost
4690 `stop_memory'. For example, in ((.)*) we save
4691 registers 1 and 2 as a result of the *, but when we pop
4692 back to the second ), we are at the stop_memory 1.
4693 Thus, nothing is active. */
4694 if (r == 0)
4695 {
4696 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4697 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4698 }
4699 else
4700 highest_active_reg = r;
4701 }
4702
4703 /* If just failed to match something this time around with a
4704 group that's operated on by a repetition operator, try to
4705 force exit from the ``loop'', and restore the register
4706 information for this group that we had before trying this
4707 last match. */
4708 if ((!MATCHED_SOMETHING (reg_info[*p])
4709 || just_past_start_mem == p - 1)
4710 && (p + 2) < pend)
4711 {
4712 boolean is_a_jump_n = false;
4713
4714 p1 = p + 2;
4715 mcnt = 0;
4716 switch ((re_opcode_t) *p1++)
4717 {
4718 case jump_n:
4719 is_a_jump_n = true;
4720 case pop_failure_jump:
4721 case maybe_pop_jump:
4722 case jump:
4723 case dummy_failure_jump:
4724 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4725 if (is_a_jump_n)
4726 p1 += 2;
4727 break;
4728
4729 default:
4730 /* do nothing */ ;
4731 }
4732 p1 += mcnt;
4733
4734 /* If the next operation is a jump backwards in the pattern
4735 to an on_failure_jump right before the start_memory
4736 corresponding to this stop_memory, exit from the loop
4737 by forcing a failure after pushing on the stack the
4738 on_failure_jump's jump in the pattern, and d. */
4739 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4740 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4741 {
4742 /* If this group ever matched anything, then restore
4743 what its registers were before trying this last
4744 failed match, e.g., with `(a*)*b' against `ab' for
4745 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4746 against `aba' for regend[3].
4747
4748 Also restore the registers for inner groups for,
4749 e.g., `((a*)(b*))*' against `aba' (register 3 would
4750 otherwise get trashed). */
4751
4752 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4753 {
4754 unsigned r;
4755
4756 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4757
4758 /* Restore this and inner groups' (if any) registers. */
4759 for (r = *p; r < *p + *(p + 1); r++)
4760 {
4761 regstart[r] = old_regstart[r];
4762
4763 /* xx why this test? */
4764 if (old_regend[r] >= regstart[r])
4765 regend[r] = old_regend[r];
4766 }
4767 }
4768 p1++;
4769 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4770 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4771
4772 goto fail;
4773 }
4774 }
4775
4776 /* Move past the register number and the inner group count. */
4777 p += 2;
4778 break;
4779
4780
4781 /* \<digit> has been turned into a `duplicate' command which is
4782 followed by the numeric value of <digit> as the register number. */
4783 case duplicate:
4784 {
4785 register const char *d2, *dend2;
4786 int regno = *p++; /* Get which register to match against. */
4787 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4788
4789 /* Can't back reference a group which we've never matched. */
4790 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4791 goto fail;
4792
4793 /* Where in input to try to start matching. */
4794 d2 = regstart[regno];
4795
4796 /* Where to stop matching; if both the place to start and
4797 the place to stop matching are in the same string, then
4798 set to the place to stop, otherwise, for now have to use
4799 the end of the first string. */
4800
4801 dend2 = ((FIRST_STRING_P (regstart[regno])
4802 == FIRST_STRING_P (regend[regno]))
4803 ? regend[regno] : end_match_1);
4804 for (;;)
4805 {
4806 /* If necessary, advance to next segment in register
4807 contents. */
4808 while (d2 == dend2)
4809 {
4810 if (dend2 == end_match_2) break;
4811 if (dend2 == regend[regno]) break;
4812
4813 /* End of string1 => advance to string2. */
4814 d2 = string2;
4815 dend2 = regend[regno];
4816 }
4817 /* At end of register contents => success */
4818 if (d2 == dend2) break;
4819
4820 /* If necessary, advance to next segment in data. */
4821 PREFETCH ();
4822
4823 /* How many characters left in this segment to match. */
4824 mcnt = dend - d;
4825
4826 /* Want how many consecutive characters we can match in
4827 one shot, so, if necessary, adjust the count. */
4828 if (mcnt > dend2 - d2)
4829 mcnt = dend2 - d2;
4830
4831 /* Compare that many; failure if mismatch, else move
4832 past them. */
4833 if (translate
4834 ? bcmp_translate (d, d2, mcnt, translate)
4835 : bcmp (d, d2, mcnt))
4836 goto fail;
4837 d += mcnt, d2 += mcnt;
4838
4839 /* Do this because we've match some characters. */
4840 SET_REGS_MATCHED ();
4841 }
4842 }
4843 break;
4844
4845
4846 /* begline matches the empty string at the beginning of the string
4847 (unless `not_bol' is set in `bufp'), and, if
4848 `newline_anchor' is set, after newlines. */
4849 case begline:
4850 DEBUG_PRINT1 ("EXECUTING begline.\n");
4851
4852 if (AT_STRINGS_BEG (d))
4853 {
4854 if (!bufp->not_bol) break;
4855 }
4856 else if (d[-1] == '\n' && bufp->newline_anchor)
4857 {
4858 break;
4859 }
4860 /* In all other cases, we fail. */
4861 goto fail;
4862
4863
4864 /* endline is the dual of begline. */
4865 case endline:
4866 DEBUG_PRINT1 ("EXECUTING endline.\n");
4867
4868 if (AT_STRINGS_END (d))
4869 {
4870 if (!bufp->not_eol) break;
4871 }
4872
4873 /* We have to ``prefetch'' the next character. */
4874 else if ((d == end1 ? *string2 : *d) == '\n'
4875 && bufp->newline_anchor)
4876 {
4877 break;
4878 }
4879 goto fail;
4880
4881
4882 /* Match at the very beginning of the data. */
4883 case begbuf:
4884 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4885 if (AT_STRINGS_BEG (d))
4886 break;
4887 goto fail;
4888
4889
4890 /* Match at the very end of the data. */
4891 case endbuf:
4892 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4893 if (AT_STRINGS_END (d))
4894 break;
4895 goto fail;
4896
4897
4898 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4899 pushes NULL as the value for the string on the stack. Then
4900 `pop_failure_point' will keep the current value for the
4901 string, instead of restoring it. To see why, consider
4902 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4903 then the . fails against the \n. But the next thing we want
4904 to do is match the \n against the \n; if we restored the
4905 string value, we would be back at the foo.
4906
4907 Because this is used only in specific cases, we don't need to
4908 check all the things that `on_failure_jump' does, to make
4909 sure the right things get saved on the stack. Hence we don't
4910 share its code. The only reason to push anything on the
4911 stack at all is that otherwise we would have to change
4912 `anychar's code to do something besides goto fail in this
4913 case; that seems worse than this. */
4914 case on_failure_keep_string_jump:
4915 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4916
4917 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4918 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4919
4920 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4921 break;
4922
4923
4924 /* Uses of on_failure_jump:
4925
4926 Each alternative starts with an on_failure_jump that points
4927 to the beginning of the next alternative. Each alternative
4928 except the last ends with a jump that in effect jumps past
4929 the rest of the alternatives. (They really jump to the
4930 ending jump of the following alternative, because tensioning
4931 these jumps is a hassle.)
4932
4933 Repeats start with an on_failure_jump that points past both
4934 the repetition text and either the following jump or
4935 pop_failure_jump back to this on_failure_jump. */
4936 case on_failure_jump:
4937 on_failure:
4938 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4939
4940 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4941 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4942
4943 /* If this on_failure_jump comes right before a group (i.e.,
4944 the original * applied to a group), save the information
4945 for that group and all inner ones, so that if we fail back
4946 to this point, the group's information will be correct.
4947 For example, in \(a*\)*\1, we need the preceding group,
4948 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4949
4950 /* We can't use `p' to check ahead because we push
4951 a failure point to `p + mcnt' after we do this. */
4952 p1 = p;
4953
4954 /* We need to skip no_op's before we look for the
4955 start_memory in case this on_failure_jump is happening as
4956 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4957 against aba. */
4958 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4959 p1++;
4960
4961 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4962 {
4963 /* We have a new highest active register now. This will
4964 get reset at the start_memory we are about to get to,
4965 but we will have saved all the registers relevant to
4966 this repetition op, as described above. */
4967 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4968 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4969 lowest_active_reg = *(p1 + 1);
4970 }
4971
4972 DEBUG_PRINT1 (":\n");
4973 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4974 break;
4975
4976
4977 /* A smart repeat ends with `maybe_pop_jump'.
4978 We change it to either `pop_failure_jump' or `jump'. */
4979 case maybe_pop_jump:
4980 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4981 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4982 {
4983 register unsigned char *p2 = p;
4984
4985 /* Compare the beginning of the repeat with what in the
4986 pattern follows its end. If we can establish that there
4987 is nothing that they would both match, i.e., that we
4988 would have to backtrack because of (as in, e.g., `a*a')
4989 then we can change to pop_failure_jump, because we'll
4990 never have to backtrack.
4991
4992 This is not true in the case of alternatives: in
4993 `(a|ab)*' we do need to backtrack to the `ab' alternative
4994 (e.g., if the string was `ab'). But instead of trying to
4995 detect that here, the alternative has put on a dummy
4996 failure point which is what we will end up popping. */
4997
4998 /* Skip over open/close-group commands.
4999 If what follows this loop is a ...+ construct,
5000 look at what begins its body, since we will have to
5001 match at least one of that. */
5002 while (1)
5003 {
5004 if (p2 + 2 < pend
5005 && ((re_opcode_t) *p2 == stop_memory
5006 || (re_opcode_t) *p2 == start_memory))
5007 p2 += 3;
5008 else if (p2 + 6 < pend
5009 && (re_opcode_t) *p2 == dummy_failure_jump)
5010 p2 += 6;
5011 else
5012 break;
5013 }
5014
5015 p1 = p + mcnt;
5016 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
5017 to the `maybe_finalize_jump' of this case. Examine what
5018 follows. */
5019
5020 /* If we're at the end of the pattern, we can change. */
5021 if (p2 == pend)
5022 {
5023 /* Consider what happens when matching ":\(.*\)"
5024 against ":/". I don't really understand this code
5025 yet. */
5026 p[-3] = (unsigned char) pop_failure_jump;
5027 DEBUG_PRINT1
5028 (" End of pattern: change to `pop_failure_jump'.\n");
5029 }
5030
5031 else if ((re_opcode_t) *p2 == exactn
5032 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
5033 {
5034 register unsigned int c
5035 = *p2 == (unsigned char) endline ? '\n' : p2[2];
5036
5037 if ((re_opcode_t) p1[3] == exactn)
5038 {
5039 if (!(multibyte /* && (c != '\n') */
5040 && BASE_LEADING_CODE_P (c))
5041 ? c != p1[5]
5042 : (STRING_CHAR (&p2[2], pend - &p2[2])
5043 != STRING_CHAR (&p1[5], pend - &p1[5])))
5044 {
5045 p[-3] = (unsigned char) pop_failure_jump;
5046 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
5047 c, p1[5]);
5048 }
5049 }
5050
5051 else if ((re_opcode_t) p1[3] == charset
5052 || (re_opcode_t) p1[3] == charset_not)
5053 {
5054 int not = (re_opcode_t) p1[3] == charset_not;
5055
5056 if (multibyte /* && (c != '\n') */
5057 && BASE_LEADING_CODE_P (c))
5058 c = STRING_CHAR (&p2[2], pend - &p2[2]);
5059
5060 /* Test if C is listed in charset (or charset_not)
5061 at `&p1[3]'. */
5062 if (SINGLE_BYTE_CHAR_P (c))
5063 {
5064 if (c < CHARSET_BITMAP_SIZE (&p1[3]) * BYTEWIDTH
5065 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5066 not = !not;
5067 }
5068 else if (CHARSET_RANGE_TABLE_EXISTS_P (&p1[3]))
5069 CHARSET_LOOKUP_RANGE_TABLE (not, c, &p1[3]);
5070
5071 /* `not' is equal to 1 if c would match, which means
5072 that we can't change to pop_failure_jump. */
5073 if (!not)
5074 {
5075 p[-3] = (unsigned char) pop_failure_jump;
5076 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5077 }
5078 }
5079 }
5080 else if ((re_opcode_t) *p2 == charset)
5081 {
5082 if ((re_opcode_t) p1[3] == exactn)
5083 {
5084 register unsigned int c = p1[5];
5085 int not = 0;
5086
5087 if (multibyte && BASE_LEADING_CODE_P (c))
5088 c = STRING_CHAR (&p1[5], pend - &p1[5]);
5089
5090 /* Test if C is listed in charset at `p2'. */
5091 if (SINGLE_BYTE_CHAR_P (c))
5092 {
5093 if (c < CHARSET_BITMAP_SIZE (p2) * BYTEWIDTH
5094 && (p2[2 + c / BYTEWIDTH]
5095 & (1 << (c % BYTEWIDTH))))
5096 not = !not;
5097 }
5098 else if (CHARSET_RANGE_TABLE_EXISTS_P (p2))
5099 CHARSET_LOOKUP_RANGE_TABLE (not, c, p2);
5100
5101 if (!not)
5102 {
5103 p[-3] = (unsigned char) pop_failure_jump;
5104 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5105 }
5106 }
5107
5108 /* It is hard to list up all the character in charset
5109 P2 if it includes multibyte character. Give up in
5110 such case. */
5111 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
5112 {
5113 /* Now, we are sure that P2 has no range table.
5114 So, for the size of bitmap in P2, `p2[1]' is
5115 enough. But P1 may have range table, so the
5116 size of bitmap table of P1 is extracted by
5117 using macro `CHARSET_BITMAP_SIZE'.
5118
5119 Since we know that all the character listed in
5120 P2 is ASCII, it is enough to test only bitmap
5121 table of P1. */
5122
5123 if ((re_opcode_t) p1[3] == charset_not)
5124 {
5125 int idx;
5126 /* We win if the charset_not inside the loop lists
5127 every character listed in the charset after. */
5128 for (idx = 0; idx < (int) p2[1]; idx++)
5129 if (! (p2[2 + idx] == 0
5130 || (idx < CHARSET_BITMAP_SIZE (&p1[3])
5131 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
5132 break;
5133
5134 if (idx == p2[1])
5135 {
5136 p[-3] = (unsigned char) pop_failure_jump;
5137 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5138 }
5139 }
5140 else if ((re_opcode_t) p1[3] == charset)
5141 {
5142 int idx;
5143 /* We win if the charset inside the loop
5144 has no overlap with the one after the loop. */
5145 for (idx = 0;
5146 (idx < (int) p2[1]
5147 && idx < CHARSET_BITMAP_SIZE (&p1[3]));
5148 idx++)
5149 if ((p2[2 + idx] & p1[5 + idx]) != 0)
5150 break;
5151
5152 if (idx == p2[1]
5153 || idx == CHARSET_BITMAP_SIZE (&p1[3]))
5154 {
5155 p[-3] = (unsigned char) pop_failure_jump;
5156 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5157 }
5158 }
5159 }
5160 }
5161 }
5162 p -= 2; /* Point at relative address again. */
5163 if ((re_opcode_t) p[-1] != pop_failure_jump)
5164 {
5165 p[-1] = (unsigned char) jump;
5166 DEBUG_PRINT1 (" Match => jump.\n");
5167 goto unconditional_jump;
5168 }
5169 /* Note fall through. */
5170
5171
5172 /* The end of a simple repeat has a pop_failure_jump back to
5173 its matching on_failure_jump, where the latter will push a
5174 failure point. The pop_failure_jump takes off failure
5175 points put on by this pop_failure_jump's matching
5176 on_failure_jump; we got through the pattern to here from the
5177 matching on_failure_jump, so didn't fail. */
5178 case pop_failure_jump:
5179 {
5180 /* We need to pass separate storage for the lowest and
5181 highest registers, even though we don't care about the
5182 actual values. Otherwise, we will restore only one
5183 register from the stack, since lowest will == highest in
5184 `pop_failure_point'. */
5185 unsigned dummy_low_reg, dummy_high_reg;
5186 unsigned char *pdummy;
5187 const char *sdummy;
5188
5189 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
5190 POP_FAILURE_POINT (sdummy, pdummy,
5191 dummy_low_reg, dummy_high_reg,
5192 reg_dummy, reg_dummy, reg_info_dummy);
5193 }
5194 /* Note fall through. */
5195
5196
5197 /* Unconditionally jump (without popping any failure points). */
5198 case jump:
5199 unconditional_jump:
5200 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
5201 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5202 p += mcnt; /* Do the jump. */
5203 DEBUG_PRINT2 ("(to 0x%x).\n", p);
5204 break;
5205
5206
5207 /* We need this opcode so we can detect where alternatives end
5208 in `group_match_null_string_p' et al. */
5209 case jump_past_alt:
5210 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
5211 goto unconditional_jump;
5212
5213
5214 /* Normally, the on_failure_jump pushes a failure point, which
5215 then gets popped at pop_failure_jump. We will end up at
5216 pop_failure_jump, also, and with a pattern of, say, `a+', we
5217 are skipping over the on_failure_jump, so we have to push
5218 something meaningless for pop_failure_jump to pop. */
5219 case dummy_failure_jump:
5220 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
5221 /* It doesn't matter what we push for the string here. What
5222 the code at `fail' tests is the value for the pattern. */
5223 PUSH_FAILURE_POINT (0, 0, -2);
5224 goto unconditional_jump;
5225
5226
5227 /* At the end of an alternative, we need to push a dummy failure
5228 point in case we are followed by a `pop_failure_jump', because
5229 we don't want the failure point for the alternative to be
5230 popped. For example, matching `(a|ab)*' against `aab'
5231 requires that we match the `ab' alternative. */
5232 case push_dummy_failure:
5233 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
5234 /* See comments just above at `dummy_failure_jump' about the
5235 two zeroes. */
5236 PUSH_FAILURE_POINT (0, 0, -2);
5237 break;
5238
5239 /* Have to succeed matching what follows at least n times.
5240 After that, handle like `on_failure_jump'. */
5241 case succeed_n:
5242 EXTRACT_NUMBER (mcnt, p + 2);
5243 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5244
5245 assert (mcnt >= 0);
5246 /* Originally, this is how many times we HAVE to succeed. */
5247 if (mcnt > 0)
5248 {
5249 mcnt--;
5250 p += 2;
5251 STORE_NUMBER_AND_INCR (p, mcnt);
5252 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
5253 }
5254 else if (mcnt == 0)
5255 {
5256 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
5257 p[2] = (unsigned char) no_op;
5258 p[3] = (unsigned char) no_op;
5259 goto on_failure;
5260 }
5261 break;
5262
5263 case jump_n:
5264 EXTRACT_NUMBER (mcnt, p + 2);
5265 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5266
5267 /* Originally, this is how many times we CAN jump. */
5268 if (mcnt)
5269 {
5270 mcnt--;
5271 STORE_NUMBER (p + 2, mcnt);
5272 goto unconditional_jump;
5273 }
5274 /* If don't have to jump any more, skip over the rest of command. */
5275 else
5276 p += 4;
5277 break;
5278
5279 case set_number_at:
5280 {
5281 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5282
5283 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5284 p1 = p + mcnt;
5285 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5286 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
5287 STORE_NUMBER (p1, mcnt);
5288 break;
5289 }
5290
5291 case wordbound:
5292 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
5293
5294 /* We SUCCEED in one of the following cases: */
5295
5296 /* Case 1: D is at the beginning or the end of string. */
5297 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5298 break;
5299 else
5300 {
5301 /* C1 is the character before D, S1 is the syntax of C1, C2
5302 is the character at D, and S2 is the syntax of C2. */
5303 int c1, c2, s1, s2;
5304 int pos1 = PTR_TO_OFFSET (d - 1);
5305
5306 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5307 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5308 #ifdef emacs
5309 UPDATE_SYNTAX_TABLE (pos1 ? pos1 : 1);
5310 #endif
5311 s1 = SYNTAX (c1);
5312 #ifdef emacs
5313 UPDATE_SYNTAX_TABLE_FORWARD (pos1 + 1);
5314 #endif
5315 s2 = SYNTAX (c2);
5316
5317 if (/* Case 2: Only one of S1 and S2 is Sword. */
5318 ((s1 == Sword) != (s2 == Sword))
5319 /* Case 3: Both of S1 and S2 are Sword, and macro
5320 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5321 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5322 break;
5323 }
5324 goto fail;
5325
5326 case notwordbound:
5327 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5328
5329 /* We FAIL in one of the following cases: */
5330
5331 /* Case 1: D is at the beginning or the end of string. */
5332 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5333 goto fail;
5334 else
5335 {
5336 /* C1 is the character before D, S1 is the syntax of C1, C2
5337 is the character at D, and S2 is the syntax of C2. */
5338 int c1, c2, s1, s2;
5339 int pos1 = PTR_TO_OFFSET (d - 1);
5340
5341 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5342 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5343 #ifdef emacs
5344 UPDATE_SYNTAX_TABLE (pos1);
5345 #endif
5346 s1 = SYNTAX (c1);
5347 #ifdef emacs
5348 UPDATE_SYNTAX_TABLE_FORWARD (pos1 + 1);
5349 #endif
5350 s2 = SYNTAX (c2);
5351
5352 if (/* Case 2: Only one of S1 and S2 is Sword. */
5353 ((s1 == Sword) != (s2 == Sword))
5354 /* Case 3: Both of S1 and S2 are Sword, and macro
5355 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5356 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5357 goto fail;
5358 }
5359 break;
5360
5361 case wordbeg:
5362 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5363
5364 /* We FAIL in one of the following cases: */
5365
5366 /* Case 1: D is at the end of string. */
5367 if (AT_STRINGS_END (d))
5368 goto fail;
5369 else
5370 {
5371 /* C1 is the character before D, S1 is the syntax of C1, C2
5372 is the character at D, and S2 is the syntax of C2. */
5373 int c1, c2, s1, s2;
5374 int pos1 = PTR_TO_OFFSET (d);
5375
5376 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5377 #ifdef emacs
5378 UPDATE_SYNTAX_TABLE (pos1);
5379 #endif
5380 s2 = SYNTAX (c2);
5381
5382 /* Case 2: S2 is not Sword. */
5383 if (s2 != Sword)
5384 goto fail;
5385
5386 /* Case 3: D is not at the beginning of string ... */
5387 if (!AT_STRINGS_BEG (d))
5388 {
5389 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5390 #ifdef emacs
5391 UPDATE_SYNTAX_TABLE_BACKWARD (pos1 - 1);
5392 #endif
5393 s1 = SYNTAX (c1);
5394
5395 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5396 returns 0. */
5397 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5398 goto fail;
5399 }
5400 }
5401 break;
5402
5403 case wordend:
5404 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5405
5406 /* We FAIL in one of the following cases: */
5407
5408 /* Case 1: D is at the beginning of string. */
5409 if (AT_STRINGS_BEG (d))
5410 goto fail;
5411 else
5412 {
5413 /* C1 is the character before D, S1 is the syntax of C1, C2
5414 is the character at D, and S2 is the syntax of C2. */
5415 int c1, c2, s1, s2;
5416
5417 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5418 s1 = SYNTAX (c1);
5419
5420 /* Case 2: S1 is not Sword. */
5421 if (s1 != Sword)
5422 goto fail;
5423
5424 /* Case 3: D is not at the end of string ... */
5425 if (!AT_STRINGS_END (d))
5426 {
5427 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5428 s2 = SYNTAX (c2);
5429
5430 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5431 returns 0. */
5432 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5433 goto fail;
5434 }
5435 }
5436 break;
5437
5438 #ifdef emacs
5439 case before_dot:
5440 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5441 if (PTR_CHAR_POS ((unsigned char *) d) >= PT)
5442 goto fail;
5443 break;
5444
5445 case at_dot:
5446 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5447 if (PTR_CHAR_POS ((unsigned char *) d) != PT)
5448 goto fail;
5449 break;
5450
5451 case after_dot:
5452 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5453 if (PTR_CHAR_POS ((unsigned char *) d) <= PT)
5454 goto fail;
5455 break;
5456
5457 case syntaxspec:
5458 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
5459 mcnt = *p++;
5460 goto matchsyntax;
5461
5462 case wordchar:
5463 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5464 mcnt = (int) Sword;
5465 matchsyntax:
5466 PREFETCH ();
5467 #ifdef emacs
5468 {
5469 int pos1 = PTR_TO_OFFSET (d);
5470 UPDATE_SYNTAX_TABLE (pos1);
5471 }
5472 #endif
5473 {
5474 int c, len;
5475
5476 if (multibyte)
5477 /* we must concern about multibyte form, ... */
5478 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5479 else
5480 /* everything should be handled as ASCII, even though it
5481 looks like multibyte form. */
5482 c = *d, len = 1;
5483
5484 if (SYNTAX (c) != (enum syntaxcode) mcnt)
5485 goto fail;
5486 d += len;
5487 }
5488 SET_REGS_MATCHED ();
5489 break;
5490
5491 case notsyntaxspec:
5492 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
5493 mcnt = *p++;
5494 goto matchnotsyntax;
5495
5496 case notwordchar:
5497 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5498 mcnt = (int) Sword;
5499 matchnotsyntax:
5500 PREFETCH ();
5501 #ifdef emacs
5502 {
5503 int pos1 = PTR_TO_OFFSET (d);
5504 UPDATE_SYNTAX_TABLE (pos1);
5505 }
5506 #endif
5507 {
5508 int c, len;
5509
5510 if (multibyte)
5511 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5512 else
5513 c = *d, len = 1;
5514
5515 if (SYNTAX (c) == (enum syntaxcode) mcnt)
5516 goto fail;
5517 d += len;
5518 }
5519 SET_REGS_MATCHED ();
5520 break;
5521
5522 case categoryspec:
5523 DEBUG_PRINT2 ("EXECUTING categoryspec %d.\n", *p);
5524 mcnt = *p++;
5525 PREFETCH ();
5526 {
5527 int c, len;
5528
5529 if (multibyte)
5530 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5531 else
5532 c = *d, len = 1;
5533
5534 if (!CHAR_HAS_CATEGORY (c, mcnt))
5535 goto fail;
5536 d += len;
5537 }
5538 SET_REGS_MATCHED ();
5539 break;
5540
5541 case notcategoryspec:
5542 DEBUG_PRINT2 ("EXECUTING notcategoryspec %d.\n", *p);
5543 mcnt = *p++;
5544 PREFETCH ();
5545 {
5546 int c, len;
5547
5548 if (multibyte)
5549 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5550 else
5551 c = *d, len = 1;
5552
5553 if (CHAR_HAS_CATEGORY (c, mcnt))
5554 goto fail;
5555 d += len;
5556 }
5557 SET_REGS_MATCHED ();
5558 break;
5559
5560 #else /* not emacs */
5561 case wordchar:
5562 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5563 PREFETCH ();
5564 if (!WORDCHAR_P (d))
5565 goto fail;
5566 SET_REGS_MATCHED ();
5567 d++;
5568 break;
5569
5570 case notwordchar:
5571 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5572 PREFETCH ();
5573 if (WORDCHAR_P (d))
5574 goto fail;
5575 SET_REGS_MATCHED ();
5576 d++;
5577 break;
5578 #endif /* not emacs */
5579
5580 default:
5581 abort ();
5582 }
5583 continue; /* Successfully executed one pattern command; keep going. */
5584
5585
5586 /* We goto here if a matching operation fails. */
5587 fail:
5588 if (!FAIL_STACK_EMPTY ())
5589 { /* A restart point is known. Restore to that state. */
5590 DEBUG_PRINT1 ("\nFAIL:\n");
5591 POP_FAILURE_POINT (d, p,
5592 lowest_active_reg, highest_active_reg,
5593 regstart, regend, reg_info);
5594
5595 /* If this failure point is a dummy, try the next one. */
5596 if (!p)
5597 goto fail;
5598
5599 /* If we failed to the end of the pattern, don't examine *p. */
5600 assert (p <= pend);
5601 if (p < pend)
5602 {
5603 boolean is_a_jump_n = false;
5604
5605 /* If failed to a backwards jump that's part of a repetition
5606 loop, need to pop this failure point and use the next one. */
5607 switch ((re_opcode_t) *p)
5608 {
5609 case jump_n:
5610 is_a_jump_n = true;
5611 case maybe_pop_jump:
5612 case pop_failure_jump:
5613 case jump:
5614 p1 = p + 1;
5615 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5616 p1 += mcnt;
5617
5618 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5619 || (!is_a_jump_n
5620 && (re_opcode_t) *p1 == on_failure_jump))
5621 goto fail;
5622 break;
5623 default:
5624 /* do nothing */ ;
5625 }
5626 }
5627
5628 if (d >= string1 && d <= end1)
5629 dend = end_match_1;
5630 }
5631 else
5632 break; /* Matching at this starting point really fails. */
5633 } /* for (;;) */
5634
5635 if (best_regs_set)
5636 goto restore_best_regs;
5637
5638 FREE_VARIABLES ();
5639
5640 return -1; /* Failure to match. */
5641 } /* re_match_2 */
5642 \f
5643 /* Subroutine definitions for re_match_2. */
5644
5645
5646 /* We are passed P pointing to a register number after a start_memory.
5647
5648 Return true if the pattern up to the corresponding stop_memory can
5649 match the empty string, and false otherwise.
5650
5651 If we find the matching stop_memory, sets P to point to one past its number.
5652 Otherwise, sets P to an undefined byte less than or equal to END.
5653
5654 We don't handle duplicates properly (yet). */
5655
5656 static boolean
5657 group_match_null_string_p (p, end, reg_info)
5658 unsigned char **p, *end;
5659 register_info_type *reg_info;
5660 {
5661 int mcnt;
5662 /* Point to after the args to the start_memory. */
5663 unsigned char *p1 = *p + 2;
5664
5665 while (p1 < end)
5666 {
5667 /* Skip over opcodes that can match nothing, and return true or
5668 false, as appropriate, when we get to one that can't, or to the
5669 matching stop_memory. */
5670
5671 switch ((re_opcode_t) *p1)
5672 {
5673 /* Could be either a loop or a series of alternatives. */
5674 case on_failure_jump:
5675 p1++;
5676 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5677
5678 /* If the next operation is not a jump backwards in the
5679 pattern. */
5680
5681 if (mcnt >= 0)
5682 {
5683 /* Go through the on_failure_jumps of the alternatives,
5684 seeing if any of the alternatives cannot match nothing.
5685 The last alternative starts with only a jump,
5686 whereas the rest start with on_failure_jump and end
5687 with a jump, e.g., here is the pattern for `a|b|c':
5688
5689 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5690 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5691 /exactn/1/c
5692
5693 So, we have to first go through the first (n-1)
5694 alternatives and then deal with the last one separately. */
5695
5696
5697 /* Deal with the first (n-1) alternatives, which start
5698 with an on_failure_jump (see above) that jumps to right
5699 past a jump_past_alt. */
5700
5701 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5702 {
5703 /* `mcnt' holds how many bytes long the alternative
5704 is, including the ending `jump_past_alt' and
5705 its number. */
5706
5707 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5708 reg_info))
5709 return false;
5710
5711 /* Move to right after this alternative, including the
5712 jump_past_alt. */
5713 p1 += mcnt;
5714
5715 /* Break if it's the beginning of an n-th alternative
5716 that doesn't begin with an on_failure_jump. */
5717 if ((re_opcode_t) *p1 != on_failure_jump)
5718 break;
5719
5720 /* Still have to check that it's not an n-th
5721 alternative that starts with an on_failure_jump. */
5722 p1++;
5723 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5724 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5725 {
5726 /* Get to the beginning of the n-th alternative. */
5727 p1 -= 3;
5728 break;
5729 }
5730 }
5731
5732 /* Deal with the last alternative: go back and get number
5733 of the `jump_past_alt' just before it. `mcnt' contains
5734 the length of the alternative. */
5735 EXTRACT_NUMBER (mcnt, p1 - 2);
5736
5737 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5738 return false;
5739
5740 p1 += mcnt; /* Get past the n-th alternative. */
5741 } /* if mcnt > 0 */
5742 break;
5743
5744
5745 case stop_memory:
5746 assert (p1[1] == **p);
5747 *p = p1 + 2;
5748 return true;
5749
5750
5751 default:
5752 if (!common_op_match_null_string_p (&p1, end, reg_info))
5753 return false;
5754 }
5755 } /* while p1 < end */
5756
5757 return false;
5758 } /* group_match_null_string_p */
5759
5760
5761 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5762 It expects P to be the first byte of a single alternative and END one
5763 byte past the last. The alternative can contain groups. */
5764
5765 static boolean
5766 alt_match_null_string_p (p, end, reg_info)
5767 unsigned char *p, *end;
5768 register_info_type *reg_info;
5769 {
5770 int mcnt;
5771 unsigned char *p1 = p;
5772
5773 while (p1 < end)
5774 {
5775 /* Skip over opcodes that can match nothing, and break when we get
5776 to one that can't. */
5777
5778 switch ((re_opcode_t) *p1)
5779 {
5780 /* It's a loop. */
5781 case on_failure_jump:
5782 p1++;
5783 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5784 p1 += mcnt;
5785 break;
5786
5787 default:
5788 if (!common_op_match_null_string_p (&p1, end, reg_info))
5789 return false;
5790 }
5791 } /* while p1 < end */
5792
5793 return true;
5794 } /* alt_match_null_string_p */
5795
5796
5797 /* Deals with the ops common to group_match_null_string_p and
5798 alt_match_null_string_p.
5799
5800 Sets P to one after the op and its arguments, if any. */
5801
5802 static boolean
5803 common_op_match_null_string_p (p, end, reg_info)
5804 unsigned char **p, *end;
5805 register_info_type *reg_info;
5806 {
5807 int mcnt;
5808 boolean ret;
5809 int reg_no;
5810 unsigned char *p1 = *p;
5811
5812 switch ((re_opcode_t) *p1++)
5813 {
5814 case no_op:
5815 case begline:
5816 case endline:
5817 case begbuf:
5818 case endbuf:
5819 case wordbeg:
5820 case wordend:
5821 case wordbound:
5822 case notwordbound:
5823 #ifdef emacs
5824 case before_dot:
5825 case at_dot:
5826 case after_dot:
5827 #endif
5828 break;
5829
5830 case start_memory:
5831 reg_no = *p1;
5832 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5833 ret = group_match_null_string_p (&p1, end, reg_info);
5834
5835 /* Have to set this here in case we're checking a group which
5836 contains a group and a back reference to it. */
5837
5838 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5839 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5840
5841 if (!ret)
5842 return false;
5843 break;
5844
5845 /* If this is an optimized succeed_n for zero times, make the jump. */
5846 case jump:
5847 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5848 if (mcnt >= 0)
5849 p1 += mcnt;
5850 else
5851 return false;
5852 break;
5853
5854 case succeed_n:
5855 /* Get to the number of times to succeed. */
5856 p1 += 2;
5857 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5858
5859 if (mcnt == 0)
5860 {
5861 p1 -= 4;
5862 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5863 p1 += mcnt;
5864 }
5865 else
5866 return false;
5867 break;
5868
5869 case duplicate:
5870 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5871 return false;
5872 break;
5873
5874 case set_number_at:
5875 p1 += 4;
5876
5877 default:
5878 /* All other opcodes mean we cannot match the empty string. */
5879 return false;
5880 }
5881
5882 *p = p1;
5883 return true;
5884 } /* common_op_match_null_string_p */
5885
5886
5887 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5888 bytes; nonzero otherwise. */
5889
5890 static int
5891 bcmp_translate (s1, s2, len, translate)
5892 unsigned char *s1, *s2;
5893 register int len;
5894 RE_TRANSLATE_TYPE translate;
5895 {
5896 register unsigned char *p1 = s1, *p2 = s2;
5897 while (len)
5898 {
5899 if (RE_TRANSLATE (translate, *p1++) != RE_TRANSLATE (translate, *p2++))
5900 return 1;
5901 len--;
5902 }
5903 return 0;
5904 }
5905 \f
5906 /* Entry points for GNU code. */
5907
5908 /* re_compile_pattern is the GNU regular expression compiler: it
5909 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5910 Returns 0 if the pattern was valid, otherwise an error string.
5911
5912 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5913 are set in BUFP on entry.
5914
5915 We call regex_compile to do the actual compilation. */
5916
5917 const char *
5918 re_compile_pattern (pattern, length, bufp)
5919 const char *pattern;
5920 int length;
5921 struct re_pattern_buffer *bufp;
5922 {
5923 reg_errcode_t ret;
5924
5925 /* GNU code is written to assume at least RE_NREGS registers will be set
5926 (and at least one extra will be -1). */
5927 bufp->regs_allocated = REGS_UNALLOCATED;
5928
5929 /* And GNU code determines whether or not to get register information
5930 by passing null for the REGS argument to re_match, etc., not by
5931 setting no_sub. */
5932 bufp->no_sub = 0;
5933
5934 /* Match anchors at newline. */
5935 bufp->newline_anchor = 1;
5936
5937 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5938
5939 if (!ret)
5940 return NULL;
5941 return gettext (re_error_msgid[(int) ret]);
5942 }
5943 \f
5944 /* Entry points compatible with 4.2 BSD regex library. We don't define
5945 them unless specifically requested. */
5946
5947 #if defined (_REGEX_RE_COMP) || defined (_LIBC)
5948
5949 /* BSD has one and only one pattern buffer. */
5950 static struct re_pattern_buffer re_comp_buf;
5951
5952 char *
5953 #ifdef _LIBC
5954 /* Make these definitions weak in libc, so POSIX programs can redefine
5955 these names if they don't use our functions, and still use
5956 regcomp/regexec below without link errors. */
5957 weak_function
5958 #endif
5959 re_comp (s)
5960 const char *s;
5961 {
5962 reg_errcode_t ret;
5963
5964 if (!s)
5965 {
5966 if (!re_comp_buf.buffer)
5967 return gettext ("No previous regular expression");
5968 return 0;
5969 }
5970
5971 if (!re_comp_buf.buffer)
5972 {
5973 re_comp_buf.buffer = (unsigned char *) malloc (200);
5974 if (re_comp_buf.buffer == NULL)
5975 return gettext (re_error_msgid[(int) REG_ESPACE]);
5976 re_comp_buf.allocated = 200;
5977
5978 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5979 if (re_comp_buf.fastmap == NULL)
5980 return gettext (re_error_msgid[(int) REG_ESPACE]);
5981 }
5982
5983 /* Since `re_exec' always passes NULL for the `regs' argument, we
5984 don't need to initialize the pattern buffer fields which affect it. */
5985
5986 /* Match anchors at newlines. */
5987 re_comp_buf.newline_anchor = 1;
5988
5989 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5990
5991 if (!ret)
5992 return NULL;
5993
5994 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5995 return (char *) gettext (re_error_msgid[(int) ret]);
5996 }
5997
5998
5999 int
6000 #ifdef _LIBC
6001 weak_function
6002 #endif
6003 re_exec (s)
6004 const char *s;
6005 {
6006 const int len = strlen (s);
6007 return
6008 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6009 }
6010 #endif /* _REGEX_RE_COMP */
6011 \f
6012 /* POSIX.2 functions. Don't define these for Emacs. */
6013
6014 #ifndef emacs
6015
6016 /* regcomp takes a regular expression as a string and compiles it.
6017
6018 PREG is a regex_t *. We do not expect any fields to be initialized,
6019 since POSIX says we shouldn't. Thus, we set
6020
6021 `buffer' to the compiled pattern;
6022 `used' to the length of the compiled pattern;
6023 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6024 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6025 RE_SYNTAX_POSIX_BASIC;
6026 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
6027 `fastmap' and `fastmap_accurate' to zero;
6028 `re_nsub' to the number of subexpressions in PATTERN.
6029
6030 PATTERN is the address of the pattern string.
6031
6032 CFLAGS is a series of bits which affect compilation.
6033
6034 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6035 use POSIX basic syntax.
6036
6037 If REG_NEWLINE is set, then . and [^...] don't match newline.
6038 Also, regexec will try a match beginning after every newline.
6039
6040 If REG_ICASE is set, then we considers upper- and lowercase
6041 versions of letters to be equivalent when matching.
6042
6043 If REG_NOSUB is set, then when PREG is passed to regexec, that
6044 routine will report only success or failure, and nothing about the
6045 registers.
6046
6047 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6048 the return codes and their meanings.) */
6049
6050 int
6051 regcomp (preg, pattern, cflags)
6052 regex_t *preg;
6053 const char *pattern;
6054 int cflags;
6055 {
6056 reg_errcode_t ret;
6057 unsigned syntax
6058 = (cflags & REG_EXTENDED) ?
6059 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6060
6061 /* regex_compile will allocate the space for the compiled pattern. */
6062 preg->buffer = 0;
6063 preg->allocated = 0;
6064 preg->used = 0;
6065
6066 /* Don't bother to use a fastmap when searching. This simplifies the
6067 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
6068 characters after newlines into the fastmap. This way, we just try
6069 every character. */
6070 preg->fastmap = 0;
6071
6072 if (cflags & REG_ICASE)
6073 {
6074 unsigned i;
6075
6076 preg->translate
6077 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6078 * sizeof (*(RE_TRANSLATE_TYPE)0));
6079 if (preg->translate == NULL)
6080 return (int) REG_ESPACE;
6081
6082 /* Map uppercase characters to corresponding lowercase ones. */
6083 for (i = 0; i < CHAR_SET_SIZE; i++)
6084 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
6085 }
6086 else
6087 preg->translate = NULL;
6088
6089 /* If REG_NEWLINE is set, newlines are treated differently. */
6090 if (cflags & REG_NEWLINE)
6091 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6092 syntax &= ~RE_DOT_NEWLINE;
6093 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
6094 /* It also changes the matching behavior. */
6095 preg->newline_anchor = 1;
6096 }
6097 else
6098 preg->newline_anchor = 0;
6099
6100 preg->no_sub = !!(cflags & REG_NOSUB);
6101
6102 /* POSIX says a null character in the pattern terminates it, so we
6103 can use strlen here in compiling the pattern. */
6104 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
6105
6106 /* POSIX doesn't distinguish between an unmatched open-group and an
6107 unmatched close-group: both are REG_EPAREN. */
6108 if (ret == REG_ERPAREN) ret = REG_EPAREN;
6109
6110 return (int) ret;
6111 }
6112
6113
6114 /* regexec searches for a given pattern, specified by PREG, in the
6115 string STRING.
6116
6117 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6118 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6119 least NMATCH elements, and we set them to the offsets of the
6120 corresponding matched substrings.
6121
6122 EFLAGS specifies `execution flags' which affect matching: if
6123 REG_NOTBOL is set, then ^ does not match at the beginning of the
6124 string; if REG_NOTEOL is set, then $ does not match at the end.
6125
6126 We return 0 if we find a match and REG_NOMATCH if not. */
6127
6128 int
6129 regexec (preg, string, nmatch, pmatch, eflags)
6130 const regex_t *preg;
6131 const char *string;
6132 size_t nmatch;
6133 regmatch_t pmatch[];
6134 int eflags;
6135 {
6136 int ret;
6137 struct re_registers regs;
6138 regex_t private_preg;
6139 int len = strlen (string);
6140 boolean want_reg_info = !preg->no_sub && nmatch > 0;
6141
6142 private_preg = *preg;
6143
6144 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6145 private_preg.not_eol = !!(eflags & REG_NOTEOL);
6146
6147 /* The user has told us exactly how many registers to return
6148 information about, via `nmatch'. We have to pass that on to the
6149 matching routines. */
6150 private_preg.regs_allocated = REGS_FIXED;
6151
6152 if (want_reg_info)
6153 {
6154 regs.num_regs = nmatch;
6155 regs.start = TALLOC (nmatch, regoff_t);
6156 regs.end = TALLOC (nmatch, regoff_t);
6157 if (regs.start == NULL || regs.end == NULL)
6158 return (int) REG_NOMATCH;
6159 }
6160
6161 /* Perform the searching operation. */
6162 ret = re_search (&private_preg, string, len,
6163 /* start: */ 0, /* range: */ len,
6164 want_reg_info ? &regs : (struct re_registers *) 0);
6165
6166 /* Copy the register information to the POSIX structure. */
6167 if (want_reg_info)
6168 {
6169 if (ret >= 0)
6170 {
6171 unsigned r;
6172
6173 for (r = 0; r < nmatch; r++)
6174 {
6175 pmatch[r].rm_so = regs.start[r];
6176 pmatch[r].rm_eo = regs.end[r];
6177 }
6178 }
6179
6180 /* If we needed the temporary register info, free the space now. */
6181 free (regs.start);
6182 free (regs.end);
6183 }
6184
6185 /* We want zero return to mean success, unlike `re_search'. */
6186 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6187 }
6188
6189
6190 /* Returns a message corresponding to an error code, ERRCODE, returned
6191 from either regcomp or regexec. We don't use PREG here. */
6192
6193 size_t
6194 regerror (errcode, preg, errbuf, errbuf_size)
6195 int errcode;
6196 const regex_t *preg;
6197 char *errbuf;
6198 size_t errbuf_size;
6199 {
6200 const char *msg;
6201 size_t msg_size;
6202
6203 if (errcode < 0
6204 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
6205 /* Only error codes returned by the rest of the code should be passed
6206 to this routine. If we are given anything else, or if other regex
6207 code generates an invalid error code, then the program has a bug.
6208 Dump core so we can fix it. */
6209 abort ();
6210
6211 msg = gettext (re_error_msgid[errcode]);
6212
6213 msg_size = strlen (msg) + 1; /* Includes the null. */
6214
6215 if (errbuf_size != 0)
6216 {
6217 if (msg_size > errbuf_size)
6218 {
6219 strncpy (errbuf, msg, errbuf_size - 1);
6220 errbuf[errbuf_size - 1] = 0;
6221 }
6222 else
6223 strcpy (errbuf, msg);
6224 }
6225
6226 return msg_size;
6227 }
6228
6229
6230 /* Free dynamically allocated space used by PREG. */
6231
6232 void
6233 regfree (preg)
6234 regex_t *preg;
6235 {
6236 if (preg->buffer != NULL)
6237 free (preg->buffer);
6238 preg->buffer = NULL;
6239
6240 preg->allocated = 0;
6241 preg->used = 0;
6242
6243 if (preg->fastmap != NULL)
6244 free (preg->fastmap);
6245 preg->fastmap = NULL;
6246 preg->fastmap_accurate = 0;
6247
6248 if (preg->translate != NULL)
6249 free (preg->translate);
6250 preg->translate = NULL;
6251 }
6252
6253 #endif /* not emacs */