]> code.delx.au - gnu-emacs/blob - src/alloc.c
(clone_per_buffer_values): Remove unused var tem.
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
29
30 /* Note that this declares bzero on OSF/1. How dumb. */
31
32 #include <signal.h>
33
34 #ifdef HAVE_GTK_AND_PTHREAD
35 #include <pthread.h>
36 #endif
37
38 /* This file is part of the core Lisp implementation, and thus must
39 deal with the real data structures. If the Lisp implementation is
40 replaced, this file likely will not be used. */
41
42 #undef HIDE_LISP_IMPLEMENTATION
43 #include "lisp.h"
44 #include "process.h"
45 #include "intervals.h"
46 #include "puresize.h"
47 #include "buffer.h"
48 #include "window.h"
49 #include "keyboard.h"
50 #include "frame.h"
51 #include "blockinput.h"
52 #include "charset.h"
53 #include "syssignal.h"
54 #include <setjmp.h>
55
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c. */
58
59 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
60 #undef GC_MALLOC_CHECK
61 #endif
62
63 #ifdef HAVE_UNISTD_H
64 #include <unistd.h>
65 #else
66 extern POINTER_TYPE *sbrk ();
67 #endif
68
69 #ifdef DOUG_LEA_MALLOC
70
71 #include <malloc.h>
72 /* malloc.h #defines this as size_t, at least in glibc2. */
73 #ifndef __malloc_size_t
74 #define __malloc_size_t int
75 #endif
76
77 /* Specify maximum number of areas to mmap. It would be nice to use a
78 value that explicitly means "no limit". */
79
80 #define MMAP_MAX_AREAS 100000000
81
82 #else /* not DOUG_LEA_MALLOC */
83
84 /* The following come from gmalloc.c. */
85
86 #define __malloc_size_t size_t
87 extern __malloc_size_t _bytes_used;
88 extern __malloc_size_t __malloc_extra_blocks;
89
90 #endif /* not DOUG_LEA_MALLOC */
91
92 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
93
94 /* When GTK uses the file chooser dialog, different backends can be loaded
95 dynamically. One such a backend is the Gnome VFS backend that gets loaded
96 if you run Gnome. That backend creates several threads and also allocates
97 memory with malloc.
98
99 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
100 functions below are called from malloc, there is a chance that one
101 of these threads preempts the Emacs main thread and the hook variables
102 end up in an inconsistent state. So we have a mutex to prevent that (note
103 that the backend handles concurrent access to malloc within its own threads
104 but Emacs code running in the main thread is not included in that control).
105
106 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
107 happens in one of the backend threads we will have two threads that tries
108 to run Emacs code at once, and the code is not prepared for that.
109 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
110
111 static pthread_mutex_t alloc_mutex;
112
113 #define BLOCK_INPUT_ALLOC \
114 do \
115 { \
116 pthread_mutex_lock (&alloc_mutex); \
117 if (pthread_self () == main_thread) \
118 BLOCK_INPUT; \
119 } \
120 while (0)
121 #define UNBLOCK_INPUT_ALLOC \
122 do \
123 { \
124 if (pthread_self () == main_thread) \
125 UNBLOCK_INPUT; \
126 pthread_mutex_unlock (&alloc_mutex); \
127 } \
128 while (0)
129
130 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
131
132 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
133 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
134
135 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
136
137 /* Value of _bytes_used, when spare_memory was freed. */
138
139 static __malloc_size_t bytes_used_when_full;
140
141 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
142 to a struct Lisp_String. */
143
144 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
145 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
146 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
147
148 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
149 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
150 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
151
152 /* Value is the number of bytes/chars of S, a pointer to a struct
153 Lisp_String. This must be used instead of STRING_BYTES (S) or
154 S->size during GC, because S->size contains the mark bit for
155 strings. */
156
157 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
158 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
159
160 /* Number of bytes of consing done since the last gc. */
161
162 int consing_since_gc;
163
164 /* Count the amount of consing of various sorts of space. */
165
166 EMACS_INT cons_cells_consed;
167 EMACS_INT floats_consed;
168 EMACS_INT vector_cells_consed;
169 EMACS_INT symbols_consed;
170 EMACS_INT string_chars_consed;
171 EMACS_INT misc_objects_consed;
172 EMACS_INT intervals_consed;
173 EMACS_INT strings_consed;
174
175 /* Minimum number of bytes of consing since GC before next GC. */
176
177 EMACS_INT gc_cons_threshold;
178
179 /* Similar minimum, computed from Vgc_cons_percentage. */
180
181 EMACS_INT gc_relative_threshold;
182
183 static Lisp_Object Vgc_cons_percentage;
184
185 /* Nonzero during GC. */
186
187 int gc_in_progress;
188
189 /* Nonzero means abort if try to GC.
190 This is for code which is written on the assumption that
191 no GC will happen, so as to verify that assumption. */
192
193 int abort_on_gc;
194
195 /* Nonzero means display messages at beginning and end of GC. */
196
197 int garbage_collection_messages;
198
199 #ifndef VIRT_ADDR_VARIES
200 extern
201 #endif /* VIRT_ADDR_VARIES */
202 int malloc_sbrk_used;
203
204 #ifndef VIRT_ADDR_VARIES
205 extern
206 #endif /* VIRT_ADDR_VARIES */
207 int malloc_sbrk_unused;
208
209 /* Number of live and free conses etc. */
210
211 static int total_conses, total_markers, total_symbols, total_vector_size;
212 static int total_free_conses, total_free_markers, total_free_symbols;
213 static int total_free_floats, total_floats;
214
215 /* Points to memory space allocated as "spare", to be freed if we run
216 out of memory. */
217
218 static char *spare_memory;
219
220 /* Amount of spare memory to keep in reserve. */
221
222 #define SPARE_MEMORY (1 << 14)
223
224 /* Number of extra blocks malloc should get when it needs more core. */
225
226 static int malloc_hysteresis;
227
228 /* Non-nil means defun should do purecopy on the function definition. */
229
230 Lisp_Object Vpurify_flag;
231
232 /* Non-nil means we are handling a memory-full error. */
233
234 Lisp_Object Vmemory_full;
235
236 #ifndef HAVE_SHM
237
238 /* Initialize it to a nonzero value to force it into data space
239 (rather than bss space). That way unexec will remap it into text
240 space (pure), on some systems. We have not implemented the
241 remapping on more recent systems because this is less important
242 nowadays than in the days of small memories and timesharing. */
243
244 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
245 #define PUREBEG (char *) pure
246
247 #else /* HAVE_SHM */
248
249 #define pure PURE_SEG_BITS /* Use shared memory segment */
250 #define PUREBEG (char *)PURE_SEG_BITS
251
252 #endif /* HAVE_SHM */
253
254 /* Pointer to the pure area, and its size. */
255
256 static char *purebeg;
257 static size_t pure_size;
258
259 /* Number of bytes of pure storage used before pure storage overflowed.
260 If this is non-zero, this implies that an overflow occurred. */
261
262 static size_t pure_bytes_used_before_overflow;
263
264 /* Value is non-zero if P points into pure space. */
265
266 #define PURE_POINTER_P(P) \
267 (((PNTR_COMPARISON_TYPE) (P) \
268 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
269 && ((PNTR_COMPARISON_TYPE) (P) \
270 >= (PNTR_COMPARISON_TYPE) purebeg))
271
272 /* Index in pure at which next pure object will be allocated.. */
273
274 EMACS_INT pure_bytes_used;
275
276 /* If nonzero, this is a warning delivered by malloc and not yet
277 displayed. */
278
279 char *pending_malloc_warning;
280
281 /* Pre-computed signal argument for use when memory is exhausted. */
282
283 Lisp_Object Vmemory_signal_data;
284
285 /* Maximum amount of C stack to save when a GC happens. */
286
287 #ifndef MAX_SAVE_STACK
288 #define MAX_SAVE_STACK 16000
289 #endif
290
291 /* Buffer in which we save a copy of the C stack at each GC. */
292
293 char *stack_copy;
294 int stack_copy_size;
295
296 /* Non-zero means ignore malloc warnings. Set during initialization.
297 Currently not used. */
298
299 int ignore_warnings;
300
301 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
302
303 /* Hook run after GC has finished. */
304
305 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
306
307 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
308 EMACS_INT gcs_done; /* accumulated GCs */
309
310 static void mark_buffer P_ ((Lisp_Object));
311 extern void mark_kboards P_ ((void));
312 extern void mark_backtrace P_ ((void));
313 static void gc_sweep P_ ((void));
314 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
315 static void mark_face_cache P_ ((struct face_cache *));
316
317 #ifdef HAVE_WINDOW_SYSTEM
318 extern void mark_fringe_data P_ ((void));
319 static void mark_image P_ ((struct image *));
320 static void mark_image_cache P_ ((struct frame *));
321 #endif /* HAVE_WINDOW_SYSTEM */
322
323 static struct Lisp_String *allocate_string P_ ((void));
324 static void compact_small_strings P_ ((void));
325 static void free_large_strings P_ ((void));
326 static void sweep_strings P_ ((void));
327
328 extern int message_enable_multibyte;
329
330 /* When scanning the C stack for live Lisp objects, Emacs keeps track
331 of what memory allocated via lisp_malloc is intended for what
332 purpose. This enumeration specifies the type of memory. */
333
334 enum mem_type
335 {
336 MEM_TYPE_NON_LISP,
337 MEM_TYPE_BUFFER,
338 MEM_TYPE_CONS,
339 MEM_TYPE_STRING,
340 MEM_TYPE_MISC,
341 MEM_TYPE_SYMBOL,
342 MEM_TYPE_FLOAT,
343 /* Keep the following vector-like types together, with
344 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
345 first. Or change the code of live_vector_p, for instance. */
346 MEM_TYPE_VECTOR,
347 MEM_TYPE_PROCESS,
348 MEM_TYPE_HASH_TABLE,
349 MEM_TYPE_FRAME,
350 MEM_TYPE_WINDOW
351 };
352
353 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
354
355 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
356 #include <stdio.h> /* For fprintf. */
357 #endif
358
359 /* A unique object in pure space used to make some Lisp objects
360 on free lists recognizable in O(1). */
361
362 Lisp_Object Vdead;
363
364 #ifdef GC_MALLOC_CHECK
365
366 enum mem_type allocated_mem_type;
367 int dont_register_blocks;
368
369 #endif /* GC_MALLOC_CHECK */
370
371 /* A node in the red-black tree describing allocated memory containing
372 Lisp data. Each such block is recorded with its start and end
373 address when it is allocated, and removed from the tree when it
374 is freed.
375
376 A red-black tree is a balanced binary tree with the following
377 properties:
378
379 1. Every node is either red or black.
380 2. Every leaf is black.
381 3. If a node is red, then both of its children are black.
382 4. Every simple path from a node to a descendant leaf contains
383 the same number of black nodes.
384 5. The root is always black.
385
386 When nodes are inserted into the tree, or deleted from the tree,
387 the tree is "fixed" so that these properties are always true.
388
389 A red-black tree with N internal nodes has height at most 2
390 log(N+1). Searches, insertions and deletions are done in O(log N).
391 Please see a text book about data structures for a detailed
392 description of red-black trees. Any book worth its salt should
393 describe them. */
394
395 struct mem_node
396 {
397 /* Children of this node. These pointers are never NULL. When there
398 is no child, the value is MEM_NIL, which points to a dummy node. */
399 struct mem_node *left, *right;
400
401 /* The parent of this node. In the root node, this is NULL. */
402 struct mem_node *parent;
403
404 /* Start and end of allocated region. */
405 void *start, *end;
406
407 /* Node color. */
408 enum {MEM_BLACK, MEM_RED} color;
409
410 /* Memory type. */
411 enum mem_type type;
412 };
413
414 /* Base address of stack. Set in main. */
415
416 Lisp_Object *stack_base;
417
418 /* Root of the tree describing allocated Lisp memory. */
419
420 static struct mem_node *mem_root;
421
422 /* Lowest and highest known address in the heap. */
423
424 static void *min_heap_address, *max_heap_address;
425
426 /* Sentinel node of the tree. */
427
428 static struct mem_node mem_z;
429 #define MEM_NIL &mem_z
430
431 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
432 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
433 static void lisp_free P_ ((POINTER_TYPE *));
434 static void mark_stack P_ ((void));
435 static int live_vector_p P_ ((struct mem_node *, void *));
436 static int live_buffer_p P_ ((struct mem_node *, void *));
437 static int live_string_p P_ ((struct mem_node *, void *));
438 static int live_cons_p P_ ((struct mem_node *, void *));
439 static int live_symbol_p P_ ((struct mem_node *, void *));
440 static int live_float_p P_ ((struct mem_node *, void *));
441 static int live_misc_p P_ ((struct mem_node *, void *));
442 static void mark_maybe_object P_ ((Lisp_Object));
443 static void mark_memory P_ ((void *, void *));
444 static void mem_init P_ ((void));
445 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
446 static void mem_insert_fixup P_ ((struct mem_node *));
447 static void mem_rotate_left P_ ((struct mem_node *));
448 static void mem_rotate_right P_ ((struct mem_node *));
449 static void mem_delete P_ ((struct mem_node *));
450 static void mem_delete_fixup P_ ((struct mem_node *));
451 static INLINE struct mem_node *mem_find P_ ((void *));
452
453 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
454 static void check_gcpros P_ ((void));
455 #endif
456
457 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
458
459 /* Recording what needs to be marked for gc. */
460
461 struct gcpro *gcprolist;
462
463 /* Addresses of staticpro'd variables. Initialize it to a nonzero
464 value; otherwise some compilers put it into BSS. */
465
466 #define NSTATICS 1280
467 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
468
469 /* Index of next unused slot in staticvec. */
470
471 int staticidx = 0;
472
473 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
474
475
476 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
477 ALIGNMENT must be a power of 2. */
478
479 #define ALIGN(ptr, ALIGNMENT) \
480 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
481 & ~((ALIGNMENT) - 1)))
482
483
484 \f
485 /************************************************************************
486 Malloc
487 ************************************************************************/
488
489 /* Function malloc calls this if it finds we are near exhausting storage. */
490
491 void
492 malloc_warning (str)
493 char *str;
494 {
495 pending_malloc_warning = str;
496 }
497
498
499 /* Display an already-pending malloc warning. */
500
501 void
502 display_malloc_warning ()
503 {
504 call3 (intern ("display-warning"),
505 intern ("alloc"),
506 build_string (pending_malloc_warning),
507 intern ("emergency"));
508 pending_malloc_warning = 0;
509 }
510
511
512 #ifdef DOUG_LEA_MALLOC
513 # define BYTES_USED (mallinfo ().arena)
514 #else
515 # define BYTES_USED _bytes_used
516 #endif
517
518
519 /* Called if malloc returns zero. */
520
521 void
522 memory_full ()
523 {
524 Vmemory_full = Qt;
525
526 #ifndef SYSTEM_MALLOC
527 bytes_used_when_full = BYTES_USED;
528 #endif
529
530 /* The first time we get here, free the spare memory. */
531 if (spare_memory)
532 {
533 free (spare_memory);
534 spare_memory = 0;
535 }
536
537 /* This used to call error, but if we've run out of memory, we could
538 get infinite recursion trying to build the string. */
539 while (1)
540 Fsignal (Qnil, Vmemory_signal_data);
541 }
542
543 DEFUN ("memory-full-p", Fmemory_full_p, Smemory_full_p, 0, 0, 0,
544 doc: /* t if memory is nearly full, nil otherwise. */)
545 ()
546 {
547 return (spare_memory ? Qnil : Qt);
548 }
549
550 /* If we released our reserve (due to running out of memory),
551 and we have a fair amount free once again,
552 try to set aside another reserve in case we run out once more.
553
554 This is called when a relocatable block is freed in ralloc.c. */
555
556 void
557 refill_memory_reserve ()
558 {
559 #ifndef SYSTEM_MALLOC
560 if (spare_memory == 0)
561 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
562 #endif
563 }
564 \f
565 /* Called if we can't allocate relocatable space for a buffer. */
566
567 void
568 buffer_memory_full ()
569 {
570 /* If buffers use the relocating allocator, no need to free
571 spare_memory, because we may have plenty of malloc space left
572 that we could get, and if we don't, the malloc that fails will
573 itself cause spare_memory to be freed. If buffers don't use the
574 relocating allocator, treat this like any other failing
575 malloc. */
576
577 #ifndef REL_ALLOC
578 memory_full ();
579 #endif
580
581 Vmemory_full = Qt;
582
583 /* This used to call error, but if we've run out of memory, we could
584 get infinite recursion trying to build the string. */
585 while (1)
586 Fsignal (Qnil, Vmemory_signal_data);
587 }
588
589
590 #ifdef XMALLOC_OVERRUN_CHECK
591
592 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
593 and a 16 byte trailer around each block.
594
595 The header consists of 12 fixed bytes + a 4 byte integer contaning the
596 original block size, while the trailer consists of 16 fixed bytes.
597
598 The header is used to detect whether this block has been allocated
599 through these functions -- as it seems that some low-level libc
600 functions may bypass the malloc hooks.
601 */
602
603
604 #define XMALLOC_OVERRUN_CHECK_SIZE 16
605
606 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
607 { 0x9a, 0x9b, 0xae, 0xaf,
608 0xbf, 0xbe, 0xce, 0xcf,
609 0xea, 0xeb, 0xec, 0xed };
610
611 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
612 { 0xaa, 0xab, 0xac, 0xad,
613 0xba, 0xbb, 0xbc, 0xbd,
614 0xca, 0xcb, 0xcc, 0xcd,
615 0xda, 0xdb, 0xdc, 0xdd };
616
617 /* Macros to insert and extract the block size in the header. */
618
619 #define XMALLOC_PUT_SIZE(ptr, size) \
620 (ptr[-1] = (size & 0xff), \
621 ptr[-2] = ((size >> 8) & 0xff), \
622 ptr[-3] = ((size >> 16) & 0xff), \
623 ptr[-4] = ((size >> 24) & 0xff))
624
625 #define XMALLOC_GET_SIZE(ptr) \
626 (size_t)((unsigned)(ptr[-1]) | \
627 ((unsigned)(ptr[-2]) << 8) | \
628 ((unsigned)(ptr[-3]) << 16) | \
629 ((unsigned)(ptr[-4]) << 24))
630
631
632 /* The call depth in overrun_check functions. For example, this might happen:
633 xmalloc()
634 overrun_check_malloc()
635 -> malloc -> (via hook)_-> emacs_blocked_malloc
636 -> overrun_check_malloc
637 call malloc (hooks are NULL, so real malloc is called).
638 malloc returns 10000.
639 add overhead, return 10016.
640 <- (back in overrun_check_malloc)
641 add overhead again, return 10032
642 xmalloc returns 10032.
643
644 (time passes).
645
646 xfree(10032)
647 overrun_check_free(10032)
648 decrease overhed
649 free(10016) <- crash, because 10000 is the original pointer. */
650
651 static int check_depth;
652
653 /* Like malloc, but wraps allocated block with header and trailer. */
654
655 POINTER_TYPE *
656 overrun_check_malloc (size)
657 size_t size;
658 {
659 register unsigned char *val;
660 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
661
662 val = (unsigned char *) malloc (size + overhead);
663 if (val && check_depth == 1)
664 {
665 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
666 val += XMALLOC_OVERRUN_CHECK_SIZE;
667 XMALLOC_PUT_SIZE(val, size);
668 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
669 }
670 --check_depth;
671 return (POINTER_TYPE *)val;
672 }
673
674
675 /* Like realloc, but checks old block for overrun, and wraps new block
676 with header and trailer. */
677
678 POINTER_TYPE *
679 overrun_check_realloc (block, size)
680 POINTER_TYPE *block;
681 size_t size;
682 {
683 register unsigned char *val = (unsigned char *)block;
684 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
685
686 if (val
687 && check_depth == 1
688 && bcmp (xmalloc_overrun_check_header,
689 val - XMALLOC_OVERRUN_CHECK_SIZE,
690 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
691 {
692 size_t osize = XMALLOC_GET_SIZE (val);
693 if (bcmp (xmalloc_overrun_check_trailer,
694 val + osize,
695 XMALLOC_OVERRUN_CHECK_SIZE))
696 abort ();
697 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
698 val -= XMALLOC_OVERRUN_CHECK_SIZE;
699 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
700 }
701
702 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
703
704 if (val && check_depth == 1)
705 {
706 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
707 val += XMALLOC_OVERRUN_CHECK_SIZE;
708 XMALLOC_PUT_SIZE(val, size);
709 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
710 }
711 --check_depth;
712 return (POINTER_TYPE *)val;
713 }
714
715 /* Like free, but checks block for overrun. */
716
717 void
718 overrun_check_free (block)
719 POINTER_TYPE *block;
720 {
721 unsigned char *val = (unsigned char *)block;
722
723 ++check_depth;
724 if (val
725 && check_depth == 1
726 && bcmp (xmalloc_overrun_check_header,
727 val - XMALLOC_OVERRUN_CHECK_SIZE,
728 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
729 {
730 size_t osize = XMALLOC_GET_SIZE (val);
731 if (bcmp (xmalloc_overrun_check_trailer,
732 val + osize,
733 XMALLOC_OVERRUN_CHECK_SIZE))
734 abort ();
735 #ifdef XMALLOC_CLEAR_FREE_MEMORY
736 val -= XMALLOC_OVERRUN_CHECK_SIZE;
737 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
738 #else
739 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
740 val -= XMALLOC_OVERRUN_CHECK_SIZE;
741 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
742 #endif
743 }
744
745 free (val);
746 --check_depth;
747 }
748
749 #undef malloc
750 #undef realloc
751 #undef free
752 #define malloc overrun_check_malloc
753 #define realloc overrun_check_realloc
754 #define free overrun_check_free
755 #endif
756
757
758 /* Like malloc but check for no memory and block interrupt input.. */
759
760 POINTER_TYPE *
761 xmalloc (size)
762 size_t size;
763 {
764 register POINTER_TYPE *val;
765
766 BLOCK_INPUT;
767 val = (POINTER_TYPE *) malloc (size);
768 UNBLOCK_INPUT;
769
770 if (!val && size)
771 memory_full ();
772 return val;
773 }
774
775
776 /* Like realloc but check for no memory and block interrupt input.. */
777
778 POINTER_TYPE *
779 xrealloc (block, size)
780 POINTER_TYPE *block;
781 size_t size;
782 {
783 register POINTER_TYPE *val;
784
785 BLOCK_INPUT;
786 /* We must call malloc explicitly when BLOCK is 0, since some
787 reallocs don't do this. */
788 if (! block)
789 val = (POINTER_TYPE *) malloc (size);
790 else
791 val = (POINTER_TYPE *) realloc (block, size);
792 UNBLOCK_INPUT;
793
794 if (!val && size) memory_full ();
795 return val;
796 }
797
798
799 /* Like free but block interrupt input. */
800
801 void
802 xfree (block)
803 POINTER_TYPE *block;
804 {
805 BLOCK_INPUT;
806 free (block);
807 UNBLOCK_INPUT;
808 }
809
810
811 /* Like strdup, but uses xmalloc. */
812
813 char *
814 xstrdup (s)
815 const char *s;
816 {
817 size_t len = strlen (s) + 1;
818 char *p = (char *) xmalloc (len);
819 bcopy (s, p, len);
820 return p;
821 }
822
823
824 /* Unwind for SAFE_ALLOCA */
825
826 Lisp_Object
827 safe_alloca_unwind (arg)
828 Lisp_Object arg;
829 {
830 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
831
832 p->dogc = 0;
833 xfree (p->pointer);
834 p->pointer = 0;
835 free_misc (arg);
836 return Qnil;
837 }
838
839
840 /* Like malloc but used for allocating Lisp data. NBYTES is the
841 number of bytes to allocate, TYPE describes the intended use of the
842 allcated memory block (for strings, for conses, ...). */
843
844 #ifndef USE_LSB_TAG
845 static void *lisp_malloc_loser;
846 #endif
847
848 static POINTER_TYPE *
849 lisp_malloc (nbytes, type)
850 size_t nbytes;
851 enum mem_type type;
852 {
853 register void *val;
854
855 BLOCK_INPUT;
856
857 #ifdef GC_MALLOC_CHECK
858 allocated_mem_type = type;
859 #endif
860
861 val = (void *) malloc (nbytes);
862
863 #ifndef USE_LSB_TAG
864 /* If the memory just allocated cannot be addressed thru a Lisp
865 object's pointer, and it needs to be,
866 that's equivalent to running out of memory. */
867 if (val && type != MEM_TYPE_NON_LISP)
868 {
869 Lisp_Object tem;
870 XSETCONS (tem, (char *) val + nbytes - 1);
871 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
872 {
873 lisp_malloc_loser = val;
874 free (val);
875 val = 0;
876 }
877 }
878 #endif
879
880 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
881 if (val && type != MEM_TYPE_NON_LISP)
882 mem_insert (val, (char *) val + nbytes, type);
883 #endif
884
885 UNBLOCK_INPUT;
886 if (!val && nbytes)
887 memory_full ();
888 return val;
889 }
890
891 /* Free BLOCK. This must be called to free memory allocated with a
892 call to lisp_malloc. */
893
894 static void
895 lisp_free (block)
896 POINTER_TYPE *block;
897 {
898 BLOCK_INPUT;
899 free (block);
900 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
901 mem_delete (mem_find (block));
902 #endif
903 UNBLOCK_INPUT;
904 }
905
906 /* Allocation of aligned blocks of memory to store Lisp data. */
907 /* The entry point is lisp_align_malloc which returns blocks of at most */
908 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
909
910
911 /* BLOCK_ALIGN has to be a power of 2. */
912 #define BLOCK_ALIGN (1 << 10)
913
914 /* Padding to leave at the end of a malloc'd block. This is to give
915 malloc a chance to minimize the amount of memory wasted to alignment.
916 It should be tuned to the particular malloc library used.
917 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
918 posix_memalign on the other hand would ideally prefer a value of 4
919 because otherwise, there's 1020 bytes wasted between each ablocks.
920 In Emacs, testing shows that those 1020 can most of the time be
921 efficiently used by malloc to place other objects, so a value of 0 can
922 still preferable unless you have a lot of aligned blocks and virtually
923 nothing else. */
924 #define BLOCK_PADDING 0
925 #define BLOCK_BYTES \
926 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
927
928 /* Internal data structures and constants. */
929
930 #define ABLOCKS_SIZE 16
931
932 /* An aligned block of memory. */
933 struct ablock
934 {
935 union
936 {
937 char payload[BLOCK_BYTES];
938 struct ablock *next_free;
939 } x;
940 /* `abase' is the aligned base of the ablocks. */
941 /* It is overloaded to hold the virtual `busy' field that counts
942 the number of used ablock in the parent ablocks.
943 The first ablock has the `busy' field, the others have the `abase'
944 field. To tell the difference, we assume that pointers will have
945 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
946 is used to tell whether the real base of the parent ablocks is `abase'
947 (if not, the word before the first ablock holds a pointer to the
948 real base). */
949 struct ablocks *abase;
950 /* The padding of all but the last ablock is unused. The padding of
951 the last ablock in an ablocks is not allocated. */
952 #if BLOCK_PADDING
953 char padding[BLOCK_PADDING];
954 #endif
955 };
956
957 /* A bunch of consecutive aligned blocks. */
958 struct ablocks
959 {
960 struct ablock blocks[ABLOCKS_SIZE];
961 };
962
963 /* Size of the block requested from malloc or memalign. */
964 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
965
966 #define ABLOCK_ABASE(block) \
967 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
968 ? (struct ablocks *)(block) \
969 : (block)->abase)
970
971 /* Virtual `busy' field. */
972 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
973
974 /* Pointer to the (not necessarily aligned) malloc block. */
975 #ifdef HAVE_POSIX_MEMALIGN
976 #define ABLOCKS_BASE(abase) (abase)
977 #else
978 #define ABLOCKS_BASE(abase) \
979 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
980 #endif
981
982 /* The list of free ablock. */
983 static struct ablock *free_ablock;
984
985 /* Allocate an aligned block of nbytes.
986 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
987 smaller or equal to BLOCK_BYTES. */
988 static POINTER_TYPE *
989 lisp_align_malloc (nbytes, type)
990 size_t nbytes;
991 enum mem_type type;
992 {
993 void *base, *val;
994 struct ablocks *abase;
995
996 eassert (nbytes <= BLOCK_BYTES);
997
998 BLOCK_INPUT;
999
1000 #ifdef GC_MALLOC_CHECK
1001 allocated_mem_type = type;
1002 #endif
1003
1004 if (!free_ablock)
1005 {
1006 int i;
1007 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
1008
1009 #ifdef DOUG_LEA_MALLOC
1010 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1011 because mapped region contents are not preserved in
1012 a dumped Emacs. */
1013 mallopt (M_MMAP_MAX, 0);
1014 #endif
1015
1016 #ifdef HAVE_POSIX_MEMALIGN
1017 {
1018 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1019 if (err)
1020 base = NULL;
1021 abase = base;
1022 }
1023 #else
1024 base = malloc (ABLOCKS_BYTES);
1025 abase = ALIGN (base, BLOCK_ALIGN);
1026 #endif
1027
1028 if (base == 0)
1029 {
1030 UNBLOCK_INPUT;
1031 memory_full ();
1032 }
1033
1034 aligned = (base == abase);
1035 if (!aligned)
1036 ((void**)abase)[-1] = base;
1037
1038 #ifdef DOUG_LEA_MALLOC
1039 /* Back to a reasonable maximum of mmap'ed areas. */
1040 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1041 #endif
1042
1043 #ifndef USE_LSB_TAG
1044 /* If the memory just allocated cannot be addressed thru a Lisp
1045 object's pointer, and it needs to be, that's equivalent to
1046 running out of memory. */
1047 if (type != MEM_TYPE_NON_LISP)
1048 {
1049 Lisp_Object tem;
1050 char *end = (char *) base + ABLOCKS_BYTES - 1;
1051 XSETCONS (tem, end);
1052 if ((char *) XCONS (tem) != end)
1053 {
1054 lisp_malloc_loser = base;
1055 free (base);
1056 UNBLOCK_INPUT;
1057 memory_full ();
1058 }
1059 }
1060 #endif
1061
1062 /* Initialize the blocks and put them on the free list.
1063 Is `base' was not properly aligned, we can't use the last block. */
1064 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1065 {
1066 abase->blocks[i].abase = abase;
1067 abase->blocks[i].x.next_free = free_ablock;
1068 free_ablock = &abase->blocks[i];
1069 }
1070 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1071
1072 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1073 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1074 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1075 eassert (ABLOCKS_BASE (abase) == base);
1076 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1077 }
1078
1079 abase = ABLOCK_ABASE (free_ablock);
1080 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1081 val = free_ablock;
1082 free_ablock = free_ablock->x.next_free;
1083
1084 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1085 if (val && type != MEM_TYPE_NON_LISP)
1086 mem_insert (val, (char *) val + nbytes, type);
1087 #endif
1088
1089 UNBLOCK_INPUT;
1090 if (!val && nbytes)
1091 memory_full ();
1092
1093 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1094 return val;
1095 }
1096
1097 static void
1098 lisp_align_free (block)
1099 POINTER_TYPE *block;
1100 {
1101 struct ablock *ablock = block;
1102 struct ablocks *abase = ABLOCK_ABASE (ablock);
1103
1104 BLOCK_INPUT;
1105 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1106 mem_delete (mem_find (block));
1107 #endif
1108 /* Put on free list. */
1109 ablock->x.next_free = free_ablock;
1110 free_ablock = ablock;
1111 /* Update busy count. */
1112 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1113
1114 if (2 > (long) ABLOCKS_BUSY (abase))
1115 { /* All the blocks are free. */
1116 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1117 struct ablock **tem = &free_ablock;
1118 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1119
1120 while (*tem)
1121 {
1122 if (*tem >= (struct ablock *) abase && *tem < atop)
1123 {
1124 i++;
1125 *tem = (*tem)->x.next_free;
1126 }
1127 else
1128 tem = &(*tem)->x.next_free;
1129 }
1130 eassert ((aligned & 1) == aligned);
1131 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1132 free (ABLOCKS_BASE (abase));
1133 }
1134 UNBLOCK_INPUT;
1135 }
1136
1137 /* Return a new buffer structure allocated from the heap with
1138 a call to lisp_malloc. */
1139
1140 struct buffer *
1141 allocate_buffer ()
1142 {
1143 struct buffer *b
1144 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1145 MEM_TYPE_BUFFER);
1146 return b;
1147 }
1148
1149 \f
1150 #ifndef SYSTEM_MALLOC
1151
1152 /* Arranging to disable input signals while we're in malloc.
1153
1154 This only works with GNU malloc. To help out systems which can't
1155 use GNU malloc, all the calls to malloc, realloc, and free
1156 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1157 pair; unfortunately, we have no idea what C library functions
1158 might call malloc, so we can't really protect them unless you're
1159 using GNU malloc. Fortunately, most of the major operating systems
1160 can use GNU malloc. */
1161
1162 #ifndef SYNC_INPUT
1163
1164 #ifndef DOUG_LEA_MALLOC
1165 extern void * (*__malloc_hook) P_ ((size_t, const void *));
1166 extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1167 extern void (*__free_hook) P_ ((void *, const void *));
1168 /* Else declared in malloc.h, perhaps with an extra arg. */
1169 #endif /* DOUG_LEA_MALLOC */
1170 static void * (*old_malloc_hook) P_ ((size_t, const void *));
1171 static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1172 static void (*old_free_hook) P_ ((void*, const void*));
1173
1174 /* This function is used as the hook for free to call. */
1175
1176 static void
1177 emacs_blocked_free (ptr, ptr2)
1178 void *ptr;
1179 const void *ptr2;
1180 {
1181 BLOCK_INPUT_ALLOC;
1182
1183 #ifdef GC_MALLOC_CHECK
1184 if (ptr)
1185 {
1186 struct mem_node *m;
1187
1188 m = mem_find (ptr);
1189 if (m == MEM_NIL || m->start != ptr)
1190 {
1191 fprintf (stderr,
1192 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1193 abort ();
1194 }
1195 else
1196 {
1197 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1198 mem_delete (m);
1199 }
1200 }
1201 #endif /* GC_MALLOC_CHECK */
1202
1203 __free_hook = old_free_hook;
1204 free (ptr);
1205
1206 /* If we released our reserve (due to running out of memory),
1207 and we have a fair amount free once again,
1208 try to set aside another reserve in case we run out once more. */
1209 if (spare_memory == 0
1210 /* Verify there is enough space that even with the malloc
1211 hysteresis this call won't run out again.
1212 The code here is correct as long as SPARE_MEMORY
1213 is substantially larger than the block size malloc uses. */
1214 && (bytes_used_when_full
1215 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
1216 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
1217
1218 __free_hook = emacs_blocked_free;
1219 UNBLOCK_INPUT_ALLOC;
1220 }
1221
1222
1223 /* This function is the malloc hook that Emacs uses. */
1224
1225 static void *
1226 emacs_blocked_malloc (size, ptr)
1227 size_t size;
1228 const void *ptr;
1229 {
1230 void *value;
1231
1232 BLOCK_INPUT_ALLOC;
1233 __malloc_hook = old_malloc_hook;
1234 #ifdef DOUG_LEA_MALLOC
1235 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1236 #else
1237 __malloc_extra_blocks = malloc_hysteresis;
1238 #endif
1239
1240 value = (void *) malloc (size);
1241
1242 #ifdef GC_MALLOC_CHECK
1243 {
1244 struct mem_node *m = mem_find (value);
1245 if (m != MEM_NIL)
1246 {
1247 fprintf (stderr, "Malloc returned %p which is already in use\n",
1248 value);
1249 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1250 m->start, m->end, (char *) m->end - (char *) m->start,
1251 m->type);
1252 abort ();
1253 }
1254
1255 if (!dont_register_blocks)
1256 {
1257 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1258 allocated_mem_type = MEM_TYPE_NON_LISP;
1259 }
1260 }
1261 #endif /* GC_MALLOC_CHECK */
1262
1263 __malloc_hook = emacs_blocked_malloc;
1264 UNBLOCK_INPUT_ALLOC;
1265
1266 /* fprintf (stderr, "%p malloc\n", value); */
1267 return value;
1268 }
1269
1270
1271 /* This function is the realloc hook that Emacs uses. */
1272
1273 static void *
1274 emacs_blocked_realloc (ptr, size, ptr2)
1275 void *ptr;
1276 size_t size;
1277 const void *ptr2;
1278 {
1279 void *value;
1280
1281 BLOCK_INPUT_ALLOC;
1282 __realloc_hook = old_realloc_hook;
1283
1284 #ifdef GC_MALLOC_CHECK
1285 if (ptr)
1286 {
1287 struct mem_node *m = mem_find (ptr);
1288 if (m == MEM_NIL || m->start != ptr)
1289 {
1290 fprintf (stderr,
1291 "Realloc of %p which wasn't allocated with malloc\n",
1292 ptr);
1293 abort ();
1294 }
1295
1296 mem_delete (m);
1297 }
1298
1299 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1300
1301 /* Prevent malloc from registering blocks. */
1302 dont_register_blocks = 1;
1303 #endif /* GC_MALLOC_CHECK */
1304
1305 value = (void *) realloc (ptr, size);
1306
1307 #ifdef GC_MALLOC_CHECK
1308 dont_register_blocks = 0;
1309
1310 {
1311 struct mem_node *m = mem_find (value);
1312 if (m != MEM_NIL)
1313 {
1314 fprintf (stderr, "Realloc returns memory that is already in use\n");
1315 abort ();
1316 }
1317
1318 /* Can't handle zero size regions in the red-black tree. */
1319 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1320 }
1321
1322 /* fprintf (stderr, "%p <- realloc\n", value); */
1323 #endif /* GC_MALLOC_CHECK */
1324
1325 __realloc_hook = emacs_blocked_realloc;
1326 UNBLOCK_INPUT_ALLOC;
1327
1328 return value;
1329 }
1330
1331
1332 #ifdef HAVE_GTK_AND_PTHREAD
1333 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1334 normal malloc. Some thread implementations need this as they call
1335 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1336 calls malloc because it is the first call, and we have an endless loop. */
1337
1338 void
1339 reset_malloc_hooks ()
1340 {
1341 __free_hook = 0;
1342 __malloc_hook = 0;
1343 __realloc_hook = 0;
1344 }
1345 #endif /* HAVE_GTK_AND_PTHREAD */
1346
1347
1348 /* Called from main to set up malloc to use our hooks. */
1349
1350 void
1351 uninterrupt_malloc ()
1352 {
1353 #ifdef HAVE_GTK_AND_PTHREAD
1354 pthread_mutexattr_t attr;
1355
1356 /* GLIBC has a faster way to do this, but lets keep it portable.
1357 This is according to the Single UNIX Specification. */
1358 pthread_mutexattr_init (&attr);
1359 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1360 pthread_mutex_init (&alloc_mutex, &attr);
1361 #endif /* HAVE_GTK_AND_PTHREAD */
1362
1363 if (__free_hook != emacs_blocked_free)
1364 old_free_hook = __free_hook;
1365 __free_hook = emacs_blocked_free;
1366
1367 if (__malloc_hook != emacs_blocked_malloc)
1368 old_malloc_hook = __malloc_hook;
1369 __malloc_hook = emacs_blocked_malloc;
1370
1371 if (__realloc_hook != emacs_blocked_realloc)
1372 old_realloc_hook = __realloc_hook;
1373 __realloc_hook = emacs_blocked_realloc;
1374 }
1375
1376 #endif /* not SYNC_INPUT */
1377 #endif /* not SYSTEM_MALLOC */
1378
1379
1380 \f
1381 /***********************************************************************
1382 Interval Allocation
1383 ***********************************************************************/
1384
1385 /* Number of intervals allocated in an interval_block structure.
1386 The 1020 is 1024 minus malloc overhead. */
1387
1388 #define INTERVAL_BLOCK_SIZE \
1389 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1390
1391 /* Intervals are allocated in chunks in form of an interval_block
1392 structure. */
1393
1394 struct interval_block
1395 {
1396 /* Place `intervals' first, to preserve alignment. */
1397 struct interval intervals[INTERVAL_BLOCK_SIZE];
1398 struct interval_block *next;
1399 };
1400
1401 /* Current interval block. Its `next' pointer points to older
1402 blocks. */
1403
1404 struct interval_block *interval_block;
1405
1406 /* Index in interval_block above of the next unused interval
1407 structure. */
1408
1409 static int interval_block_index;
1410
1411 /* Number of free and live intervals. */
1412
1413 static int total_free_intervals, total_intervals;
1414
1415 /* List of free intervals. */
1416
1417 INTERVAL interval_free_list;
1418
1419 /* Total number of interval blocks now in use. */
1420
1421 int n_interval_blocks;
1422
1423
1424 /* Initialize interval allocation. */
1425
1426 static void
1427 init_intervals ()
1428 {
1429 interval_block = NULL;
1430 interval_block_index = INTERVAL_BLOCK_SIZE;
1431 interval_free_list = 0;
1432 n_interval_blocks = 0;
1433 }
1434
1435
1436 /* Return a new interval. */
1437
1438 INTERVAL
1439 make_interval ()
1440 {
1441 INTERVAL val;
1442
1443 if (interval_free_list)
1444 {
1445 val = interval_free_list;
1446 interval_free_list = INTERVAL_PARENT (interval_free_list);
1447 }
1448 else
1449 {
1450 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1451 {
1452 register struct interval_block *newi;
1453
1454 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1455 MEM_TYPE_NON_LISP);
1456
1457 newi->next = interval_block;
1458 interval_block = newi;
1459 interval_block_index = 0;
1460 n_interval_blocks++;
1461 }
1462 val = &interval_block->intervals[interval_block_index++];
1463 }
1464 consing_since_gc += sizeof (struct interval);
1465 intervals_consed++;
1466 RESET_INTERVAL (val);
1467 val->gcmarkbit = 0;
1468 return val;
1469 }
1470
1471
1472 /* Mark Lisp objects in interval I. */
1473
1474 static void
1475 mark_interval (i, dummy)
1476 register INTERVAL i;
1477 Lisp_Object dummy;
1478 {
1479 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1480 i->gcmarkbit = 1;
1481 mark_object (i->plist);
1482 }
1483
1484
1485 /* Mark the interval tree rooted in TREE. Don't call this directly;
1486 use the macro MARK_INTERVAL_TREE instead. */
1487
1488 static void
1489 mark_interval_tree (tree)
1490 register INTERVAL tree;
1491 {
1492 /* No need to test if this tree has been marked already; this
1493 function is always called through the MARK_INTERVAL_TREE macro,
1494 which takes care of that. */
1495
1496 traverse_intervals_noorder (tree, mark_interval, Qnil);
1497 }
1498
1499
1500 /* Mark the interval tree rooted in I. */
1501
1502 #define MARK_INTERVAL_TREE(i) \
1503 do { \
1504 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1505 mark_interval_tree (i); \
1506 } while (0)
1507
1508
1509 #define UNMARK_BALANCE_INTERVALS(i) \
1510 do { \
1511 if (! NULL_INTERVAL_P (i)) \
1512 (i) = balance_intervals (i); \
1513 } while (0)
1514
1515 \f
1516 /* Number support. If NO_UNION_TYPE isn't in effect, we
1517 can't create number objects in macros. */
1518 #ifndef make_number
1519 Lisp_Object
1520 make_number (n)
1521 EMACS_INT n;
1522 {
1523 Lisp_Object obj;
1524 obj.s.val = n;
1525 obj.s.type = Lisp_Int;
1526 return obj;
1527 }
1528 #endif
1529 \f
1530 /***********************************************************************
1531 String Allocation
1532 ***********************************************************************/
1533
1534 /* Lisp_Strings are allocated in string_block structures. When a new
1535 string_block is allocated, all the Lisp_Strings it contains are
1536 added to a free-list string_free_list. When a new Lisp_String is
1537 needed, it is taken from that list. During the sweep phase of GC,
1538 string_blocks that are entirely free are freed, except two which
1539 we keep.
1540
1541 String data is allocated from sblock structures. Strings larger
1542 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1543 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1544
1545 Sblocks consist internally of sdata structures, one for each
1546 Lisp_String. The sdata structure points to the Lisp_String it
1547 belongs to. The Lisp_String points back to the `u.data' member of
1548 its sdata structure.
1549
1550 When a Lisp_String is freed during GC, it is put back on
1551 string_free_list, and its `data' member and its sdata's `string'
1552 pointer is set to null. The size of the string is recorded in the
1553 `u.nbytes' member of the sdata. So, sdata structures that are no
1554 longer used, can be easily recognized, and it's easy to compact the
1555 sblocks of small strings which we do in compact_small_strings. */
1556
1557 /* Size in bytes of an sblock structure used for small strings. This
1558 is 8192 minus malloc overhead. */
1559
1560 #define SBLOCK_SIZE 8188
1561
1562 /* Strings larger than this are considered large strings. String data
1563 for large strings is allocated from individual sblocks. */
1564
1565 #define LARGE_STRING_BYTES 1024
1566
1567 /* Structure describing string memory sub-allocated from an sblock.
1568 This is where the contents of Lisp strings are stored. */
1569
1570 struct sdata
1571 {
1572 /* Back-pointer to the string this sdata belongs to. If null, this
1573 structure is free, and the NBYTES member of the union below
1574 contains the string's byte size (the same value that STRING_BYTES
1575 would return if STRING were non-null). If non-null, STRING_BYTES
1576 (STRING) is the size of the data, and DATA contains the string's
1577 contents. */
1578 struct Lisp_String *string;
1579
1580 #ifdef GC_CHECK_STRING_BYTES
1581
1582 EMACS_INT nbytes;
1583 unsigned char data[1];
1584
1585 #define SDATA_NBYTES(S) (S)->nbytes
1586 #define SDATA_DATA(S) (S)->data
1587
1588 #else /* not GC_CHECK_STRING_BYTES */
1589
1590 union
1591 {
1592 /* When STRING in non-null. */
1593 unsigned char data[1];
1594
1595 /* When STRING is null. */
1596 EMACS_INT nbytes;
1597 } u;
1598
1599
1600 #define SDATA_NBYTES(S) (S)->u.nbytes
1601 #define SDATA_DATA(S) (S)->u.data
1602
1603 #endif /* not GC_CHECK_STRING_BYTES */
1604 };
1605
1606
1607 /* Structure describing a block of memory which is sub-allocated to
1608 obtain string data memory for strings. Blocks for small strings
1609 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1610 as large as needed. */
1611
1612 struct sblock
1613 {
1614 /* Next in list. */
1615 struct sblock *next;
1616
1617 /* Pointer to the next free sdata block. This points past the end
1618 of the sblock if there isn't any space left in this block. */
1619 struct sdata *next_free;
1620
1621 /* Start of data. */
1622 struct sdata first_data;
1623 };
1624
1625 /* Number of Lisp strings in a string_block structure. The 1020 is
1626 1024 minus malloc overhead. */
1627
1628 #define STRING_BLOCK_SIZE \
1629 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1630
1631 /* Structure describing a block from which Lisp_String structures
1632 are allocated. */
1633
1634 struct string_block
1635 {
1636 /* Place `strings' first, to preserve alignment. */
1637 struct Lisp_String strings[STRING_BLOCK_SIZE];
1638 struct string_block *next;
1639 };
1640
1641 /* Head and tail of the list of sblock structures holding Lisp string
1642 data. We always allocate from current_sblock. The NEXT pointers
1643 in the sblock structures go from oldest_sblock to current_sblock. */
1644
1645 static struct sblock *oldest_sblock, *current_sblock;
1646
1647 /* List of sblocks for large strings. */
1648
1649 static struct sblock *large_sblocks;
1650
1651 /* List of string_block structures, and how many there are. */
1652
1653 static struct string_block *string_blocks;
1654 static int n_string_blocks;
1655
1656 /* Free-list of Lisp_Strings. */
1657
1658 static struct Lisp_String *string_free_list;
1659
1660 /* Number of live and free Lisp_Strings. */
1661
1662 static int total_strings, total_free_strings;
1663
1664 /* Number of bytes used by live strings. */
1665
1666 static int total_string_size;
1667
1668 /* Given a pointer to a Lisp_String S which is on the free-list
1669 string_free_list, return a pointer to its successor in the
1670 free-list. */
1671
1672 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1673
1674 /* Return a pointer to the sdata structure belonging to Lisp string S.
1675 S must be live, i.e. S->data must not be null. S->data is actually
1676 a pointer to the `u.data' member of its sdata structure; the
1677 structure starts at a constant offset in front of that. */
1678
1679 #ifdef GC_CHECK_STRING_BYTES
1680
1681 #define SDATA_OF_STRING(S) \
1682 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1683 - sizeof (EMACS_INT)))
1684
1685 #else /* not GC_CHECK_STRING_BYTES */
1686
1687 #define SDATA_OF_STRING(S) \
1688 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1689
1690 #endif /* not GC_CHECK_STRING_BYTES */
1691
1692
1693 #ifdef GC_CHECK_STRING_OVERRUN
1694
1695 /* We check for overrun in string data blocks by appending a small
1696 "cookie" after each allocated string data block, and check for the
1697 presence of this cookie during GC. */
1698
1699 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1700 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1701 { 0xde, 0xad, 0xbe, 0xef };
1702
1703 #else
1704 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1705 #endif
1706
1707 /* Value is the size of an sdata structure large enough to hold NBYTES
1708 bytes of string data. The value returned includes a terminating
1709 NUL byte, the size of the sdata structure, and padding. */
1710
1711 #ifdef GC_CHECK_STRING_BYTES
1712
1713 #define SDATA_SIZE(NBYTES) \
1714 ((sizeof (struct Lisp_String *) \
1715 + (NBYTES) + 1 \
1716 + sizeof (EMACS_INT) \
1717 + sizeof (EMACS_INT) - 1) \
1718 & ~(sizeof (EMACS_INT) - 1))
1719
1720 #else /* not GC_CHECK_STRING_BYTES */
1721
1722 #define SDATA_SIZE(NBYTES) \
1723 ((sizeof (struct Lisp_String *) \
1724 + (NBYTES) + 1 \
1725 + sizeof (EMACS_INT) - 1) \
1726 & ~(sizeof (EMACS_INT) - 1))
1727
1728 #endif /* not GC_CHECK_STRING_BYTES */
1729
1730 /* Extra bytes to allocate for each string. */
1731
1732 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1733
1734 /* Initialize string allocation. Called from init_alloc_once. */
1735
1736 void
1737 init_strings ()
1738 {
1739 total_strings = total_free_strings = total_string_size = 0;
1740 oldest_sblock = current_sblock = large_sblocks = NULL;
1741 string_blocks = NULL;
1742 n_string_blocks = 0;
1743 string_free_list = NULL;
1744 }
1745
1746
1747 #ifdef GC_CHECK_STRING_BYTES
1748
1749 static int check_string_bytes_count;
1750
1751 void check_string_bytes P_ ((int));
1752 void check_sblock P_ ((struct sblock *));
1753
1754 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1755
1756
1757 /* Like GC_STRING_BYTES, but with debugging check. */
1758
1759 int
1760 string_bytes (s)
1761 struct Lisp_String *s;
1762 {
1763 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1764 if (!PURE_POINTER_P (s)
1765 && s->data
1766 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1767 abort ();
1768 return nbytes;
1769 }
1770
1771 /* Check validity of Lisp strings' string_bytes member in B. */
1772
1773 void
1774 check_sblock (b)
1775 struct sblock *b;
1776 {
1777 struct sdata *from, *end, *from_end;
1778
1779 end = b->next_free;
1780
1781 for (from = &b->first_data; from < end; from = from_end)
1782 {
1783 /* Compute the next FROM here because copying below may
1784 overwrite data we need to compute it. */
1785 int nbytes;
1786
1787 /* Check that the string size recorded in the string is the
1788 same as the one recorded in the sdata structure. */
1789 if (from->string)
1790 CHECK_STRING_BYTES (from->string);
1791
1792 if (from->string)
1793 nbytes = GC_STRING_BYTES (from->string);
1794 else
1795 nbytes = SDATA_NBYTES (from);
1796
1797 nbytes = SDATA_SIZE (nbytes);
1798 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1799 }
1800 }
1801
1802
1803 /* Check validity of Lisp strings' string_bytes member. ALL_P
1804 non-zero means check all strings, otherwise check only most
1805 recently allocated strings. Used for hunting a bug. */
1806
1807 void
1808 check_string_bytes (all_p)
1809 int all_p;
1810 {
1811 if (all_p)
1812 {
1813 struct sblock *b;
1814
1815 for (b = large_sblocks; b; b = b->next)
1816 {
1817 struct Lisp_String *s = b->first_data.string;
1818 if (s)
1819 CHECK_STRING_BYTES (s);
1820 }
1821
1822 for (b = oldest_sblock; b; b = b->next)
1823 check_sblock (b);
1824 }
1825 else
1826 check_sblock (current_sblock);
1827 }
1828
1829 #endif /* GC_CHECK_STRING_BYTES */
1830
1831 #ifdef GC_CHECK_STRING_FREE_LIST
1832
1833 /* Walk through the string free list looking for bogus next pointers.
1834 This may catch buffer overrun from a previous string. */
1835
1836 static void
1837 check_string_free_list ()
1838 {
1839 struct Lisp_String *s;
1840
1841 /* Pop a Lisp_String off the free-list. */
1842 s = string_free_list;
1843 while (s != NULL)
1844 {
1845 if ((unsigned)s < 1024)
1846 abort();
1847 s = NEXT_FREE_LISP_STRING (s);
1848 }
1849 }
1850 #else
1851 #define check_string_free_list()
1852 #endif
1853
1854 /* Return a new Lisp_String. */
1855
1856 static struct Lisp_String *
1857 allocate_string ()
1858 {
1859 struct Lisp_String *s;
1860
1861 /* If the free-list is empty, allocate a new string_block, and
1862 add all the Lisp_Strings in it to the free-list. */
1863 if (string_free_list == NULL)
1864 {
1865 struct string_block *b;
1866 int i;
1867
1868 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1869 bzero (b, sizeof *b);
1870 b->next = string_blocks;
1871 string_blocks = b;
1872 ++n_string_blocks;
1873
1874 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1875 {
1876 s = b->strings + i;
1877 NEXT_FREE_LISP_STRING (s) = string_free_list;
1878 string_free_list = s;
1879 }
1880
1881 total_free_strings += STRING_BLOCK_SIZE;
1882 }
1883
1884 check_string_free_list ();
1885
1886 /* Pop a Lisp_String off the free-list. */
1887 s = string_free_list;
1888 string_free_list = NEXT_FREE_LISP_STRING (s);
1889
1890 /* Probably not strictly necessary, but play it safe. */
1891 bzero (s, sizeof *s);
1892
1893 --total_free_strings;
1894 ++total_strings;
1895 ++strings_consed;
1896 consing_since_gc += sizeof *s;
1897
1898 #ifdef GC_CHECK_STRING_BYTES
1899 if (!noninteractive
1900 #ifdef MAC_OS8
1901 && current_sblock
1902 #endif
1903 )
1904 {
1905 if (++check_string_bytes_count == 200)
1906 {
1907 check_string_bytes_count = 0;
1908 check_string_bytes (1);
1909 }
1910 else
1911 check_string_bytes (0);
1912 }
1913 #endif /* GC_CHECK_STRING_BYTES */
1914
1915 return s;
1916 }
1917
1918
1919 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1920 plus a NUL byte at the end. Allocate an sdata structure for S, and
1921 set S->data to its `u.data' member. Store a NUL byte at the end of
1922 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1923 S->data if it was initially non-null. */
1924
1925 void
1926 allocate_string_data (s, nchars, nbytes)
1927 struct Lisp_String *s;
1928 int nchars, nbytes;
1929 {
1930 struct sdata *data, *old_data;
1931 struct sblock *b;
1932 int needed, old_nbytes;
1933
1934 /* Determine the number of bytes needed to store NBYTES bytes
1935 of string data. */
1936 needed = SDATA_SIZE (nbytes);
1937
1938 if (nbytes > LARGE_STRING_BYTES)
1939 {
1940 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1941
1942 #ifdef DOUG_LEA_MALLOC
1943 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1944 because mapped region contents are not preserved in
1945 a dumped Emacs.
1946
1947 In case you think of allowing it in a dumped Emacs at the
1948 cost of not being able to re-dump, there's another reason:
1949 mmap'ed data typically have an address towards the top of the
1950 address space, which won't fit into an EMACS_INT (at least on
1951 32-bit systems with the current tagging scheme). --fx */
1952 BLOCK_INPUT;
1953 mallopt (M_MMAP_MAX, 0);
1954 UNBLOCK_INPUT;
1955 #endif
1956
1957 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1958
1959 #ifdef DOUG_LEA_MALLOC
1960 /* Back to a reasonable maximum of mmap'ed areas. */
1961 BLOCK_INPUT;
1962 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1963 UNBLOCK_INPUT;
1964 #endif
1965
1966 b->next_free = &b->first_data;
1967 b->first_data.string = NULL;
1968 b->next = large_sblocks;
1969 large_sblocks = b;
1970 }
1971 else if (current_sblock == NULL
1972 || (((char *) current_sblock + SBLOCK_SIZE
1973 - (char *) current_sblock->next_free)
1974 < (needed + GC_STRING_EXTRA)))
1975 {
1976 /* Not enough room in the current sblock. */
1977 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1978 b->next_free = &b->first_data;
1979 b->first_data.string = NULL;
1980 b->next = NULL;
1981
1982 if (current_sblock)
1983 current_sblock->next = b;
1984 else
1985 oldest_sblock = b;
1986 current_sblock = b;
1987 }
1988 else
1989 b = current_sblock;
1990
1991 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1992 old_nbytes = GC_STRING_BYTES (s);
1993
1994 data = b->next_free;
1995 data->string = s;
1996 s->data = SDATA_DATA (data);
1997 #ifdef GC_CHECK_STRING_BYTES
1998 SDATA_NBYTES (data) = nbytes;
1999 #endif
2000 s->size = nchars;
2001 s->size_byte = nbytes;
2002 s->data[nbytes] = '\0';
2003 #ifdef GC_CHECK_STRING_OVERRUN
2004 bcopy (string_overrun_cookie, (char *) data + needed,
2005 GC_STRING_OVERRUN_COOKIE_SIZE);
2006 #endif
2007 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2008
2009 /* If S had already data assigned, mark that as free by setting its
2010 string back-pointer to null, and recording the size of the data
2011 in it. */
2012 if (old_data)
2013 {
2014 SDATA_NBYTES (old_data) = old_nbytes;
2015 old_data->string = NULL;
2016 }
2017
2018 consing_since_gc += needed;
2019 }
2020
2021
2022 /* Sweep and compact strings. */
2023
2024 static void
2025 sweep_strings ()
2026 {
2027 struct string_block *b, *next;
2028 struct string_block *live_blocks = NULL;
2029
2030 string_free_list = NULL;
2031 total_strings = total_free_strings = 0;
2032 total_string_size = 0;
2033
2034 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2035 for (b = string_blocks; b; b = next)
2036 {
2037 int i, nfree = 0;
2038 struct Lisp_String *free_list_before = string_free_list;
2039
2040 next = b->next;
2041
2042 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2043 {
2044 struct Lisp_String *s = b->strings + i;
2045
2046 if (s->data)
2047 {
2048 /* String was not on free-list before. */
2049 if (STRING_MARKED_P (s))
2050 {
2051 /* String is live; unmark it and its intervals. */
2052 UNMARK_STRING (s);
2053
2054 if (!NULL_INTERVAL_P (s->intervals))
2055 UNMARK_BALANCE_INTERVALS (s->intervals);
2056
2057 ++total_strings;
2058 total_string_size += STRING_BYTES (s);
2059 }
2060 else
2061 {
2062 /* String is dead. Put it on the free-list. */
2063 struct sdata *data = SDATA_OF_STRING (s);
2064
2065 /* Save the size of S in its sdata so that we know
2066 how large that is. Reset the sdata's string
2067 back-pointer so that we know it's free. */
2068 #ifdef GC_CHECK_STRING_BYTES
2069 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2070 abort ();
2071 #else
2072 data->u.nbytes = GC_STRING_BYTES (s);
2073 #endif
2074 data->string = NULL;
2075
2076 /* Reset the strings's `data' member so that we
2077 know it's free. */
2078 s->data = NULL;
2079
2080 /* Put the string on the free-list. */
2081 NEXT_FREE_LISP_STRING (s) = string_free_list;
2082 string_free_list = s;
2083 ++nfree;
2084 }
2085 }
2086 else
2087 {
2088 /* S was on the free-list before. Put it there again. */
2089 NEXT_FREE_LISP_STRING (s) = string_free_list;
2090 string_free_list = s;
2091 ++nfree;
2092 }
2093 }
2094
2095 /* Free blocks that contain free Lisp_Strings only, except
2096 the first two of them. */
2097 if (nfree == STRING_BLOCK_SIZE
2098 && total_free_strings > STRING_BLOCK_SIZE)
2099 {
2100 lisp_free (b);
2101 --n_string_blocks;
2102 string_free_list = free_list_before;
2103 }
2104 else
2105 {
2106 total_free_strings += nfree;
2107 b->next = live_blocks;
2108 live_blocks = b;
2109 }
2110 }
2111
2112 check_string_free_list ();
2113
2114 string_blocks = live_blocks;
2115 free_large_strings ();
2116 compact_small_strings ();
2117
2118 check_string_free_list ();
2119 }
2120
2121
2122 /* Free dead large strings. */
2123
2124 static void
2125 free_large_strings ()
2126 {
2127 struct sblock *b, *next;
2128 struct sblock *live_blocks = NULL;
2129
2130 for (b = large_sblocks; b; b = next)
2131 {
2132 next = b->next;
2133
2134 if (b->first_data.string == NULL)
2135 lisp_free (b);
2136 else
2137 {
2138 b->next = live_blocks;
2139 live_blocks = b;
2140 }
2141 }
2142
2143 large_sblocks = live_blocks;
2144 }
2145
2146
2147 /* Compact data of small strings. Free sblocks that don't contain
2148 data of live strings after compaction. */
2149
2150 static void
2151 compact_small_strings ()
2152 {
2153 struct sblock *b, *tb, *next;
2154 struct sdata *from, *to, *end, *tb_end;
2155 struct sdata *to_end, *from_end;
2156
2157 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2158 to, and TB_END is the end of TB. */
2159 tb = oldest_sblock;
2160 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2161 to = &tb->first_data;
2162
2163 /* Step through the blocks from the oldest to the youngest. We
2164 expect that old blocks will stabilize over time, so that less
2165 copying will happen this way. */
2166 for (b = oldest_sblock; b; b = b->next)
2167 {
2168 end = b->next_free;
2169 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2170
2171 for (from = &b->first_data; from < end; from = from_end)
2172 {
2173 /* Compute the next FROM here because copying below may
2174 overwrite data we need to compute it. */
2175 int nbytes;
2176
2177 #ifdef GC_CHECK_STRING_BYTES
2178 /* Check that the string size recorded in the string is the
2179 same as the one recorded in the sdata structure. */
2180 if (from->string
2181 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2182 abort ();
2183 #endif /* GC_CHECK_STRING_BYTES */
2184
2185 if (from->string)
2186 nbytes = GC_STRING_BYTES (from->string);
2187 else
2188 nbytes = SDATA_NBYTES (from);
2189
2190 if (nbytes > LARGE_STRING_BYTES)
2191 abort ();
2192
2193 nbytes = SDATA_SIZE (nbytes);
2194 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2195
2196 #ifdef GC_CHECK_STRING_OVERRUN
2197 if (bcmp (string_overrun_cookie,
2198 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2199 GC_STRING_OVERRUN_COOKIE_SIZE))
2200 abort ();
2201 #endif
2202
2203 /* FROM->string non-null means it's alive. Copy its data. */
2204 if (from->string)
2205 {
2206 /* If TB is full, proceed with the next sblock. */
2207 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2208 if (to_end > tb_end)
2209 {
2210 tb->next_free = to;
2211 tb = tb->next;
2212 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2213 to = &tb->first_data;
2214 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2215 }
2216
2217 /* Copy, and update the string's `data' pointer. */
2218 if (from != to)
2219 {
2220 xassert (tb != b || to <= from);
2221 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2222 to->string->data = SDATA_DATA (to);
2223 }
2224
2225 /* Advance past the sdata we copied to. */
2226 to = to_end;
2227 }
2228 }
2229 }
2230
2231 /* The rest of the sblocks following TB don't contain live data, so
2232 we can free them. */
2233 for (b = tb->next; b; b = next)
2234 {
2235 next = b->next;
2236 lisp_free (b);
2237 }
2238
2239 tb->next_free = to;
2240 tb->next = NULL;
2241 current_sblock = tb;
2242 }
2243
2244
2245 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2246 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2247 LENGTH must be an integer.
2248 INIT must be an integer that represents a character. */)
2249 (length, init)
2250 Lisp_Object length, init;
2251 {
2252 register Lisp_Object val;
2253 register unsigned char *p, *end;
2254 int c, nbytes;
2255
2256 CHECK_NATNUM (length);
2257 CHECK_NUMBER (init);
2258
2259 c = XINT (init);
2260 if (SINGLE_BYTE_CHAR_P (c))
2261 {
2262 nbytes = XINT (length);
2263 val = make_uninit_string (nbytes);
2264 p = SDATA (val);
2265 end = p + SCHARS (val);
2266 while (p != end)
2267 *p++ = c;
2268 }
2269 else
2270 {
2271 unsigned char str[MAX_MULTIBYTE_LENGTH];
2272 int len = CHAR_STRING (c, str);
2273
2274 nbytes = len * XINT (length);
2275 val = make_uninit_multibyte_string (XINT (length), nbytes);
2276 p = SDATA (val);
2277 end = p + nbytes;
2278 while (p != end)
2279 {
2280 bcopy (str, p, len);
2281 p += len;
2282 }
2283 }
2284
2285 *p = 0;
2286 return val;
2287 }
2288
2289
2290 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2291 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
2292 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2293 (length, init)
2294 Lisp_Object length, init;
2295 {
2296 register Lisp_Object val;
2297 struct Lisp_Bool_Vector *p;
2298 int real_init, i;
2299 int length_in_chars, length_in_elts, bits_per_value;
2300
2301 CHECK_NATNUM (length);
2302
2303 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2304
2305 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2306 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2307 / BOOL_VECTOR_BITS_PER_CHAR);
2308
2309 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2310 slot `size' of the struct Lisp_Bool_Vector. */
2311 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2312 p = XBOOL_VECTOR (val);
2313
2314 /* Get rid of any bits that would cause confusion. */
2315 p->vector_size = 0;
2316 XSETBOOL_VECTOR (val, p);
2317 p->size = XFASTINT (length);
2318
2319 real_init = (NILP (init) ? 0 : -1);
2320 for (i = 0; i < length_in_chars ; i++)
2321 p->data[i] = real_init;
2322
2323 /* Clear the extraneous bits in the last byte. */
2324 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2325 XBOOL_VECTOR (val)->data[length_in_chars - 1]
2326 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2327
2328 return val;
2329 }
2330
2331
2332 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2333 of characters from the contents. This string may be unibyte or
2334 multibyte, depending on the contents. */
2335
2336 Lisp_Object
2337 make_string (contents, nbytes)
2338 const char *contents;
2339 int nbytes;
2340 {
2341 register Lisp_Object val;
2342 int nchars, multibyte_nbytes;
2343
2344 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2345 if (nbytes == nchars || nbytes != multibyte_nbytes)
2346 /* CONTENTS contains no multibyte sequences or contains an invalid
2347 multibyte sequence. We must make unibyte string. */
2348 val = make_unibyte_string (contents, nbytes);
2349 else
2350 val = make_multibyte_string (contents, nchars, nbytes);
2351 return val;
2352 }
2353
2354
2355 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2356
2357 Lisp_Object
2358 make_unibyte_string (contents, length)
2359 const char *contents;
2360 int length;
2361 {
2362 register Lisp_Object val;
2363 val = make_uninit_string (length);
2364 bcopy (contents, SDATA (val), length);
2365 STRING_SET_UNIBYTE (val);
2366 return val;
2367 }
2368
2369
2370 /* Make a multibyte string from NCHARS characters occupying NBYTES
2371 bytes at CONTENTS. */
2372
2373 Lisp_Object
2374 make_multibyte_string (contents, nchars, nbytes)
2375 const char *contents;
2376 int nchars, nbytes;
2377 {
2378 register Lisp_Object val;
2379 val = make_uninit_multibyte_string (nchars, nbytes);
2380 bcopy (contents, SDATA (val), nbytes);
2381 return val;
2382 }
2383
2384
2385 /* Make a string from NCHARS characters occupying NBYTES bytes at
2386 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2387
2388 Lisp_Object
2389 make_string_from_bytes (contents, nchars, nbytes)
2390 const char *contents;
2391 int nchars, nbytes;
2392 {
2393 register Lisp_Object val;
2394 val = make_uninit_multibyte_string (nchars, nbytes);
2395 bcopy (contents, SDATA (val), nbytes);
2396 if (SBYTES (val) == SCHARS (val))
2397 STRING_SET_UNIBYTE (val);
2398 return val;
2399 }
2400
2401
2402 /* Make a string from NCHARS characters occupying NBYTES bytes at
2403 CONTENTS. The argument MULTIBYTE controls whether to label the
2404 string as multibyte. If NCHARS is negative, it counts the number of
2405 characters by itself. */
2406
2407 Lisp_Object
2408 make_specified_string (contents, nchars, nbytes, multibyte)
2409 const char *contents;
2410 int nchars, nbytes;
2411 int multibyte;
2412 {
2413 register Lisp_Object val;
2414
2415 if (nchars < 0)
2416 {
2417 if (multibyte)
2418 nchars = multibyte_chars_in_text (contents, nbytes);
2419 else
2420 nchars = nbytes;
2421 }
2422 val = make_uninit_multibyte_string (nchars, nbytes);
2423 bcopy (contents, SDATA (val), nbytes);
2424 if (!multibyte)
2425 STRING_SET_UNIBYTE (val);
2426 return val;
2427 }
2428
2429
2430 /* Make a string from the data at STR, treating it as multibyte if the
2431 data warrants. */
2432
2433 Lisp_Object
2434 build_string (str)
2435 const char *str;
2436 {
2437 return make_string (str, strlen (str));
2438 }
2439
2440
2441 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2442 occupying LENGTH bytes. */
2443
2444 Lisp_Object
2445 make_uninit_string (length)
2446 int length;
2447 {
2448 Lisp_Object val;
2449 val = make_uninit_multibyte_string (length, length);
2450 STRING_SET_UNIBYTE (val);
2451 return val;
2452 }
2453
2454
2455 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2456 which occupy NBYTES bytes. */
2457
2458 Lisp_Object
2459 make_uninit_multibyte_string (nchars, nbytes)
2460 int nchars, nbytes;
2461 {
2462 Lisp_Object string;
2463 struct Lisp_String *s;
2464
2465 if (nchars < 0)
2466 abort ();
2467
2468 s = allocate_string ();
2469 allocate_string_data (s, nchars, nbytes);
2470 XSETSTRING (string, s);
2471 string_chars_consed += nbytes;
2472 return string;
2473 }
2474
2475
2476 \f
2477 /***********************************************************************
2478 Float Allocation
2479 ***********************************************************************/
2480
2481 /* We store float cells inside of float_blocks, allocating a new
2482 float_block with malloc whenever necessary. Float cells reclaimed
2483 by GC are put on a free list to be reallocated before allocating
2484 any new float cells from the latest float_block. */
2485
2486 #define FLOAT_BLOCK_SIZE \
2487 (((BLOCK_BYTES - sizeof (struct float_block *) \
2488 /* The compiler might add padding at the end. */ \
2489 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2490 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2491
2492 #define GETMARKBIT(block,n) \
2493 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2494 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2495 & 1)
2496
2497 #define SETMARKBIT(block,n) \
2498 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2499 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2500
2501 #define UNSETMARKBIT(block,n) \
2502 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2503 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2504
2505 #define FLOAT_BLOCK(fptr) \
2506 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2507
2508 #define FLOAT_INDEX(fptr) \
2509 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2510
2511 struct float_block
2512 {
2513 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2514 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2515 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2516 struct float_block *next;
2517 };
2518
2519 #define FLOAT_MARKED_P(fptr) \
2520 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2521
2522 #define FLOAT_MARK(fptr) \
2523 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2524
2525 #define FLOAT_UNMARK(fptr) \
2526 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2527
2528 /* Current float_block. */
2529
2530 struct float_block *float_block;
2531
2532 /* Index of first unused Lisp_Float in the current float_block. */
2533
2534 int float_block_index;
2535
2536 /* Total number of float blocks now in use. */
2537
2538 int n_float_blocks;
2539
2540 /* Free-list of Lisp_Floats. */
2541
2542 struct Lisp_Float *float_free_list;
2543
2544
2545 /* Initialize float allocation. */
2546
2547 void
2548 init_float ()
2549 {
2550 float_block = NULL;
2551 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2552 float_free_list = 0;
2553 n_float_blocks = 0;
2554 }
2555
2556
2557 /* Explicitly free a float cell by putting it on the free-list. */
2558
2559 void
2560 free_float (ptr)
2561 struct Lisp_Float *ptr;
2562 {
2563 *(struct Lisp_Float **)&ptr->data = float_free_list;
2564 float_free_list = ptr;
2565 }
2566
2567
2568 /* Return a new float object with value FLOAT_VALUE. */
2569
2570 Lisp_Object
2571 make_float (float_value)
2572 double float_value;
2573 {
2574 register Lisp_Object val;
2575
2576 if (float_free_list)
2577 {
2578 /* We use the data field for chaining the free list
2579 so that we won't use the same field that has the mark bit. */
2580 XSETFLOAT (val, float_free_list);
2581 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2582 }
2583 else
2584 {
2585 if (float_block_index == FLOAT_BLOCK_SIZE)
2586 {
2587 register struct float_block *new;
2588
2589 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2590 MEM_TYPE_FLOAT);
2591 new->next = float_block;
2592 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2593 float_block = new;
2594 float_block_index = 0;
2595 n_float_blocks++;
2596 }
2597 XSETFLOAT (val, &float_block->floats[float_block_index]);
2598 float_block_index++;
2599 }
2600
2601 XFLOAT_DATA (val) = float_value;
2602 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2603 consing_since_gc += sizeof (struct Lisp_Float);
2604 floats_consed++;
2605 return val;
2606 }
2607
2608
2609 \f
2610 /***********************************************************************
2611 Cons Allocation
2612 ***********************************************************************/
2613
2614 /* We store cons cells inside of cons_blocks, allocating a new
2615 cons_block with malloc whenever necessary. Cons cells reclaimed by
2616 GC are put on a free list to be reallocated before allocating
2617 any new cons cells from the latest cons_block. */
2618
2619 #define CONS_BLOCK_SIZE \
2620 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2621 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2622
2623 #define CONS_BLOCK(fptr) \
2624 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2625
2626 #define CONS_INDEX(fptr) \
2627 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2628
2629 struct cons_block
2630 {
2631 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2632 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2633 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2634 struct cons_block *next;
2635 };
2636
2637 #define CONS_MARKED_P(fptr) \
2638 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2639
2640 #define CONS_MARK(fptr) \
2641 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2642
2643 #define CONS_UNMARK(fptr) \
2644 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2645
2646 /* Current cons_block. */
2647
2648 struct cons_block *cons_block;
2649
2650 /* Index of first unused Lisp_Cons in the current block. */
2651
2652 int cons_block_index;
2653
2654 /* Free-list of Lisp_Cons structures. */
2655
2656 struct Lisp_Cons *cons_free_list;
2657
2658 /* Total number of cons blocks now in use. */
2659
2660 int n_cons_blocks;
2661
2662
2663 /* Initialize cons allocation. */
2664
2665 void
2666 init_cons ()
2667 {
2668 cons_block = NULL;
2669 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2670 cons_free_list = 0;
2671 n_cons_blocks = 0;
2672 }
2673
2674
2675 /* Explicitly free a cons cell by putting it on the free-list. */
2676
2677 void
2678 free_cons (ptr)
2679 struct Lisp_Cons *ptr;
2680 {
2681 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2682 #if GC_MARK_STACK
2683 ptr->car = Vdead;
2684 #endif
2685 cons_free_list = ptr;
2686 }
2687
2688 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2689 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2690 (car, cdr)
2691 Lisp_Object car, cdr;
2692 {
2693 register Lisp_Object val;
2694
2695 if (cons_free_list)
2696 {
2697 /* We use the cdr for chaining the free list
2698 so that we won't use the same field that has the mark bit. */
2699 XSETCONS (val, cons_free_list);
2700 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2701 }
2702 else
2703 {
2704 if (cons_block_index == CONS_BLOCK_SIZE)
2705 {
2706 register struct cons_block *new;
2707 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2708 MEM_TYPE_CONS);
2709 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2710 new->next = cons_block;
2711 cons_block = new;
2712 cons_block_index = 0;
2713 n_cons_blocks++;
2714 }
2715 XSETCONS (val, &cons_block->conses[cons_block_index]);
2716 cons_block_index++;
2717 }
2718
2719 XSETCAR (val, car);
2720 XSETCDR (val, cdr);
2721 eassert (!CONS_MARKED_P (XCONS (val)));
2722 consing_since_gc += sizeof (struct Lisp_Cons);
2723 cons_cells_consed++;
2724 return val;
2725 }
2726
2727 /* Get an error now if there's any junk in the cons free list. */
2728 void
2729 check_cons_list ()
2730 {
2731 #ifdef GC_CHECK_CONS_LIST
2732 struct Lisp_Cons *tail = cons_free_list;
2733
2734 while (tail)
2735 tail = *(struct Lisp_Cons **)&tail->cdr;
2736 #endif
2737 }
2738
2739 /* Make a list of 2, 3, 4 or 5 specified objects. */
2740
2741 Lisp_Object
2742 list2 (arg1, arg2)
2743 Lisp_Object arg1, arg2;
2744 {
2745 return Fcons (arg1, Fcons (arg2, Qnil));
2746 }
2747
2748
2749 Lisp_Object
2750 list3 (arg1, arg2, arg3)
2751 Lisp_Object arg1, arg2, arg3;
2752 {
2753 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2754 }
2755
2756
2757 Lisp_Object
2758 list4 (arg1, arg2, arg3, arg4)
2759 Lisp_Object arg1, arg2, arg3, arg4;
2760 {
2761 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2762 }
2763
2764
2765 Lisp_Object
2766 list5 (arg1, arg2, arg3, arg4, arg5)
2767 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2768 {
2769 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2770 Fcons (arg5, Qnil)))));
2771 }
2772
2773
2774 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2775 doc: /* Return a newly created list with specified arguments as elements.
2776 Any number of arguments, even zero arguments, are allowed.
2777 usage: (list &rest OBJECTS) */)
2778 (nargs, args)
2779 int nargs;
2780 register Lisp_Object *args;
2781 {
2782 register Lisp_Object val;
2783 val = Qnil;
2784
2785 while (nargs > 0)
2786 {
2787 nargs--;
2788 val = Fcons (args[nargs], val);
2789 }
2790 return val;
2791 }
2792
2793
2794 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2795 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2796 (length, init)
2797 register Lisp_Object length, init;
2798 {
2799 register Lisp_Object val;
2800 register int size;
2801
2802 CHECK_NATNUM (length);
2803 size = XFASTINT (length);
2804
2805 val = Qnil;
2806 while (size > 0)
2807 {
2808 val = Fcons (init, val);
2809 --size;
2810
2811 if (size > 0)
2812 {
2813 val = Fcons (init, val);
2814 --size;
2815
2816 if (size > 0)
2817 {
2818 val = Fcons (init, val);
2819 --size;
2820
2821 if (size > 0)
2822 {
2823 val = Fcons (init, val);
2824 --size;
2825
2826 if (size > 0)
2827 {
2828 val = Fcons (init, val);
2829 --size;
2830 }
2831 }
2832 }
2833 }
2834
2835 QUIT;
2836 }
2837
2838 return val;
2839 }
2840
2841
2842 \f
2843 /***********************************************************************
2844 Vector Allocation
2845 ***********************************************************************/
2846
2847 /* Singly-linked list of all vectors. */
2848
2849 struct Lisp_Vector *all_vectors;
2850
2851 /* Total number of vector-like objects now in use. */
2852
2853 int n_vectors;
2854
2855
2856 /* Value is a pointer to a newly allocated Lisp_Vector structure
2857 with room for LEN Lisp_Objects. */
2858
2859 static struct Lisp_Vector *
2860 allocate_vectorlike (len, type)
2861 EMACS_INT len;
2862 enum mem_type type;
2863 {
2864 struct Lisp_Vector *p;
2865 size_t nbytes;
2866
2867 #ifdef DOUG_LEA_MALLOC
2868 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2869 because mapped region contents are not preserved in
2870 a dumped Emacs. */
2871 BLOCK_INPUT;
2872 mallopt (M_MMAP_MAX, 0);
2873 UNBLOCK_INPUT;
2874 #endif
2875
2876 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2877 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2878
2879 #ifdef DOUG_LEA_MALLOC
2880 /* Back to a reasonable maximum of mmap'ed areas. */
2881 BLOCK_INPUT;
2882 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2883 UNBLOCK_INPUT;
2884 #endif
2885
2886 consing_since_gc += nbytes;
2887 vector_cells_consed += len;
2888
2889 p->next = all_vectors;
2890 all_vectors = p;
2891 ++n_vectors;
2892 return p;
2893 }
2894
2895
2896 /* Allocate a vector with NSLOTS slots. */
2897
2898 struct Lisp_Vector *
2899 allocate_vector (nslots)
2900 EMACS_INT nslots;
2901 {
2902 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2903 v->size = nslots;
2904 return v;
2905 }
2906
2907
2908 /* Allocate other vector-like structures. */
2909
2910 struct Lisp_Hash_Table *
2911 allocate_hash_table ()
2912 {
2913 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2914 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2915 EMACS_INT i;
2916
2917 v->size = len;
2918 for (i = 0; i < len; ++i)
2919 v->contents[i] = Qnil;
2920
2921 return (struct Lisp_Hash_Table *) v;
2922 }
2923
2924
2925 struct window *
2926 allocate_window ()
2927 {
2928 EMACS_INT len = VECSIZE (struct window);
2929 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2930 EMACS_INT i;
2931
2932 for (i = 0; i < len; ++i)
2933 v->contents[i] = Qnil;
2934 v->size = len;
2935
2936 return (struct window *) v;
2937 }
2938
2939
2940 struct frame *
2941 allocate_frame ()
2942 {
2943 EMACS_INT len = VECSIZE (struct frame);
2944 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2945 EMACS_INT i;
2946
2947 for (i = 0; i < len; ++i)
2948 v->contents[i] = make_number (0);
2949 v->size = len;
2950 return (struct frame *) v;
2951 }
2952
2953
2954 struct Lisp_Process *
2955 allocate_process ()
2956 {
2957 EMACS_INT len = VECSIZE (struct Lisp_Process);
2958 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2959 EMACS_INT i;
2960
2961 for (i = 0; i < len; ++i)
2962 v->contents[i] = Qnil;
2963 v->size = len;
2964
2965 return (struct Lisp_Process *) v;
2966 }
2967
2968
2969 struct Lisp_Vector *
2970 allocate_other_vector (len)
2971 EMACS_INT len;
2972 {
2973 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2974 EMACS_INT i;
2975
2976 for (i = 0; i < len; ++i)
2977 v->contents[i] = Qnil;
2978 v->size = len;
2979
2980 return v;
2981 }
2982
2983
2984 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2985 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2986 See also the function `vector'. */)
2987 (length, init)
2988 register Lisp_Object length, init;
2989 {
2990 Lisp_Object vector;
2991 register EMACS_INT sizei;
2992 register int index;
2993 register struct Lisp_Vector *p;
2994
2995 CHECK_NATNUM (length);
2996 sizei = XFASTINT (length);
2997
2998 p = allocate_vector (sizei);
2999 for (index = 0; index < sizei; index++)
3000 p->contents[index] = init;
3001
3002 XSETVECTOR (vector, p);
3003 return vector;
3004 }
3005
3006
3007 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
3008 doc: /* Return a newly created char-table, with purpose PURPOSE.
3009 Each element is initialized to INIT, which defaults to nil.
3010 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
3011 The property's value should be an integer between 0 and 10. */)
3012 (purpose, init)
3013 register Lisp_Object purpose, init;
3014 {
3015 Lisp_Object vector;
3016 Lisp_Object n;
3017 CHECK_SYMBOL (purpose);
3018 n = Fget (purpose, Qchar_table_extra_slots);
3019 CHECK_NUMBER (n);
3020 if (XINT (n) < 0 || XINT (n) > 10)
3021 args_out_of_range (n, Qnil);
3022 /* Add 2 to the size for the defalt and parent slots. */
3023 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
3024 init);
3025 XCHAR_TABLE (vector)->top = Qt;
3026 XCHAR_TABLE (vector)->parent = Qnil;
3027 XCHAR_TABLE (vector)->purpose = purpose;
3028 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3029 return vector;
3030 }
3031
3032
3033 /* Return a newly created sub char table with slots initialized by INIT.
3034 Since a sub char table does not appear as a top level Emacs Lisp
3035 object, we don't need a Lisp interface to make it. */
3036
3037 Lisp_Object
3038 make_sub_char_table (init)
3039 Lisp_Object init;
3040 {
3041 Lisp_Object vector
3042 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), init);
3043 XCHAR_TABLE (vector)->top = Qnil;
3044 XCHAR_TABLE (vector)->defalt = Qnil;
3045 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3046 return vector;
3047 }
3048
3049
3050 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3051 doc: /* Return a newly created vector with specified arguments as elements.
3052 Any number of arguments, even zero arguments, are allowed.
3053 usage: (vector &rest OBJECTS) */)
3054 (nargs, args)
3055 register int nargs;
3056 Lisp_Object *args;
3057 {
3058 register Lisp_Object len, val;
3059 register int index;
3060 register struct Lisp_Vector *p;
3061
3062 XSETFASTINT (len, nargs);
3063 val = Fmake_vector (len, Qnil);
3064 p = XVECTOR (val);
3065 for (index = 0; index < nargs; index++)
3066 p->contents[index] = args[index];
3067 return val;
3068 }
3069
3070
3071 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3072 doc: /* Create a byte-code object with specified arguments as elements.
3073 The arguments should be the arglist, bytecode-string, constant vector,
3074 stack size, (optional) doc string, and (optional) interactive spec.
3075 The first four arguments are required; at most six have any
3076 significance.
3077 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3078 (nargs, args)
3079 register int nargs;
3080 Lisp_Object *args;
3081 {
3082 register Lisp_Object len, val;
3083 register int index;
3084 register struct Lisp_Vector *p;
3085
3086 XSETFASTINT (len, nargs);
3087 if (!NILP (Vpurify_flag))
3088 val = make_pure_vector ((EMACS_INT) nargs);
3089 else
3090 val = Fmake_vector (len, Qnil);
3091
3092 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3093 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3094 earlier because they produced a raw 8-bit string for byte-code
3095 and now such a byte-code string is loaded as multibyte while
3096 raw 8-bit characters converted to multibyte form. Thus, now we
3097 must convert them back to the original unibyte form. */
3098 args[1] = Fstring_as_unibyte (args[1]);
3099
3100 p = XVECTOR (val);
3101 for (index = 0; index < nargs; index++)
3102 {
3103 if (!NILP (Vpurify_flag))
3104 args[index] = Fpurecopy (args[index]);
3105 p->contents[index] = args[index];
3106 }
3107 XSETCOMPILED (val, p);
3108 return val;
3109 }
3110
3111
3112 \f
3113 /***********************************************************************
3114 Symbol Allocation
3115 ***********************************************************************/
3116
3117 /* Each symbol_block is just under 1020 bytes long, since malloc
3118 really allocates in units of powers of two and uses 4 bytes for its
3119 own overhead. */
3120
3121 #define SYMBOL_BLOCK_SIZE \
3122 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3123
3124 struct symbol_block
3125 {
3126 /* Place `symbols' first, to preserve alignment. */
3127 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3128 struct symbol_block *next;
3129 };
3130
3131 /* Current symbol block and index of first unused Lisp_Symbol
3132 structure in it. */
3133
3134 struct symbol_block *symbol_block;
3135 int symbol_block_index;
3136
3137 /* List of free symbols. */
3138
3139 struct Lisp_Symbol *symbol_free_list;
3140
3141 /* Total number of symbol blocks now in use. */
3142
3143 int n_symbol_blocks;
3144
3145
3146 /* Initialize symbol allocation. */
3147
3148 void
3149 init_symbol ()
3150 {
3151 symbol_block = NULL;
3152 symbol_block_index = SYMBOL_BLOCK_SIZE;
3153 symbol_free_list = 0;
3154 n_symbol_blocks = 0;
3155 }
3156
3157
3158 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3159 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3160 Its value and function definition are void, and its property list is nil. */)
3161 (name)
3162 Lisp_Object name;
3163 {
3164 register Lisp_Object val;
3165 register struct Lisp_Symbol *p;
3166
3167 CHECK_STRING (name);
3168
3169 if (symbol_free_list)
3170 {
3171 XSETSYMBOL (val, symbol_free_list);
3172 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
3173 }
3174 else
3175 {
3176 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3177 {
3178 struct symbol_block *new;
3179 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3180 MEM_TYPE_SYMBOL);
3181 new->next = symbol_block;
3182 symbol_block = new;
3183 symbol_block_index = 0;
3184 n_symbol_blocks++;
3185 }
3186 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3187 symbol_block_index++;
3188 }
3189
3190 p = XSYMBOL (val);
3191 p->xname = name;
3192 p->plist = Qnil;
3193 p->value = Qunbound;
3194 p->function = Qunbound;
3195 p->next = NULL;
3196 p->gcmarkbit = 0;
3197 p->interned = SYMBOL_UNINTERNED;
3198 p->constant = 0;
3199 p->indirect_variable = 0;
3200 consing_since_gc += sizeof (struct Lisp_Symbol);
3201 symbols_consed++;
3202 return val;
3203 }
3204
3205
3206 \f
3207 /***********************************************************************
3208 Marker (Misc) Allocation
3209 ***********************************************************************/
3210
3211 /* Allocation of markers and other objects that share that structure.
3212 Works like allocation of conses. */
3213
3214 #define MARKER_BLOCK_SIZE \
3215 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3216
3217 struct marker_block
3218 {
3219 /* Place `markers' first, to preserve alignment. */
3220 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3221 struct marker_block *next;
3222 };
3223
3224 struct marker_block *marker_block;
3225 int marker_block_index;
3226
3227 union Lisp_Misc *marker_free_list;
3228
3229 /* Total number of marker blocks now in use. */
3230
3231 int n_marker_blocks;
3232
3233 void
3234 init_marker ()
3235 {
3236 marker_block = NULL;
3237 marker_block_index = MARKER_BLOCK_SIZE;
3238 marker_free_list = 0;
3239 n_marker_blocks = 0;
3240 }
3241
3242 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3243
3244 Lisp_Object
3245 allocate_misc ()
3246 {
3247 Lisp_Object val;
3248
3249 if (marker_free_list)
3250 {
3251 XSETMISC (val, marker_free_list);
3252 marker_free_list = marker_free_list->u_free.chain;
3253 }
3254 else
3255 {
3256 if (marker_block_index == MARKER_BLOCK_SIZE)
3257 {
3258 struct marker_block *new;
3259 new = (struct marker_block *) lisp_malloc (sizeof *new,
3260 MEM_TYPE_MISC);
3261 new->next = marker_block;
3262 marker_block = new;
3263 marker_block_index = 0;
3264 n_marker_blocks++;
3265 total_free_markers += MARKER_BLOCK_SIZE;
3266 }
3267 XSETMISC (val, &marker_block->markers[marker_block_index]);
3268 marker_block_index++;
3269 }
3270
3271 --total_free_markers;
3272 consing_since_gc += sizeof (union Lisp_Misc);
3273 misc_objects_consed++;
3274 XMARKER (val)->gcmarkbit = 0;
3275 return val;
3276 }
3277
3278 /* Free a Lisp_Misc object */
3279
3280 void
3281 free_misc (misc)
3282 Lisp_Object misc;
3283 {
3284 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
3285 XMISC (misc)->u_free.chain = marker_free_list;
3286 marker_free_list = XMISC (misc);
3287
3288 total_free_markers++;
3289 }
3290
3291 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3292 INTEGER. This is used to package C values to call record_unwind_protect.
3293 The unwind function can get the C values back using XSAVE_VALUE. */
3294
3295 Lisp_Object
3296 make_save_value (pointer, integer)
3297 void *pointer;
3298 int integer;
3299 {
3300 register Lisp_Object val;
3301 register struct Lisp_Save_Value *p;
3302
3303 val = allocate_misc ();
3304 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3305 p = XSAVE_VALUE (val);
3306 p->pointer = pointer;
3307 p->integer = integer;
3308 p->dogc = 0;
3309 return val;
3310 }
3311
3312 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3313 doc: /* Return a newly allocated marker which does not point at any place. */)
3314 ()
3315 {
3316 register Lisp_Object val;
3317 register struct Lisp_Marker *p;
3318
3319 val = allocate_misc ();
3320 XMISCTYPE (val) = Lisp_Misc_Marker;
3321 p = XMARKER (val);
3322 p->buffer = 0;
3323 p->bytepos = 0;
3324 p->charpos = 0;
3325 p->next = NULL;
3326 p->insertion_type = 0;
3327 return val;
3328 }
3329
3330 /* Put MARKER back on the free list after using it temporarily. */
3331
3332 void
3333 free_marker (marker)
3334 Lisp_Object marker;
3335 {
3336 unchain_marker (XMARKER (marker));
3337 free_misc (marker);
3338 }
3339
3340 \f
3341 /* Return a newly created vector or string with specified arguments as
3342 elements. If all the arguments are characters that can fit
3343 in a string of events, make a string; otherwise, make a vector.
3344
3345 Any number of arguments, even zero arguments, are allowed. */
3346
3347 Lisp_Object
3348 make_event_array (nargs, args)
3349 register int nargs;
3350 Lisp_Object *args;
3351 {
3352 int i;
3353
3354 for (i = 0; i < nargs; i++)
3355 /* The things that fit in a string
3356 are characters that are in 0...127,
3357 after discarding the meta bit and all the bits above it. */
3358 if (!INTEGERP (args[i])
3359 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3360 return Fvector (nargs, args);
3361
3362 /* Since the loop exited, we know that all the things in it are
3363 characters, so we can make a string. */
3364 {
3365 Lisp_Object result;
3366
3367 result = Fmake_string (make_number (nargs), make_number (0));
3368 for (i = 0; i < nargs; i++)
3369 {
3370 SSET (result, i, XINT (args[i]));
3371 /* Move the meta bit to the right place for a string char. */
3372 if (XINT (args[i]) & CHAR_META)
3373 SSET (result, i, SREF (result, i) | 0x80);
3374 }
3375
3376 return result;
3377 }
3378 }
3379
3380
3381 \f
3382 /************************************************************************
3383 C Stack Marking
3384 ************************************************************************/
3385
3386 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3387
3388 /* Conservative C stack marking requires a method to identify possibly
3389 live Lisp objects given a pointer value. We do this by keeping
3390 track of blocks of Lisp data that are allocated in a red-black tree
3391 (see also the comment of mem_node which is the type of nodes in
3392 that tree). Function lisp_malloc adds information for an allocated
3393 block to the red-black tree with calls to mem_insert, and function
3394 lisp_free removes it with mem_delete. Functions live_string_p etc
3395 call mem_find to lookup information about a given pointer in the
3396 tree, and use that to determine if the pointer points to a Lisp
3397 object or not. */
3398
3399 /* Initialize this part of alloc.c. */
3400
3401 static void
3402 mem_init ()
3403 {
3404 mem_z.left = mem_z.right = MEM_NIL;
3405 mem_z.parent = NULL;
3406 mem_z.color = MEM_BLACK;
3407 mem_z.start = mem_z.end = NULL;
3408 mem_root = MEM_NIL;
3409 }
3410
3411
3412 /* Value is a pointer to the mem_node containing START. Value is
3413 MEM_NIL if there is no node in the tree containing START. */
3414
3415 static INLINE struct mem_node *
3416 mem_find (start)
3417 void *start;
3418 {
3419 struct mem_node *p;
3420
3421 if (start < min_heap_address || start > max_heap_address)
3422 return MEM_NIL;
3423
3424 /* Make the search always successful to speed up the loop below. */
3425 mem_z.start = start;
3426 mem_z.end = (char *) start + 1;
3427
3428 p = mem_root;
3429 while (start < p->start || start >= p->end)
3430 p = start < p->start ? p->left : p->right;
3431 return p;
3432 }
3433
3434
3435 /* Insert a new node into the tree for a block of memory with start
3436 address START, end address END, and type TYPE. Value is a
3437 pointer to the node that was inserted. */
3438
3439 static struct mem_node *
3440 mem_insert (start, end, type)
3441 void *start, *end;
3442 enum mem_type type;
3443 {
3444 struct mem_node *c, *parent, *x;
3445
3446 if (start < min_heap_address)
3447 min_heap_address = start;
3448 if (end > max_heap_address)
3449 max_heap_address = end;
3450
3451 /* See where in the tree a node for START belongs. In this
3452 particular application, it shouldn't happen that a node is already
3453 present. For debugging purposes, let's check that. */
3454 c = mem_root;
3455 parent = NULL;
3456
3457 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3458
3459 while (c != MEM_NIL)
3460 {
3461 if (start >= c->start && start < c->end)
3462 abort ();
3463 parent = c;
3464 c = start < c->start ? c->left : c->right;
3465 }
3466
3467 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3468
3469 while (c != MEM_NIL)
3470 {
3471 parent = c;
3472 c = start < c->start ? c->left : c->right;
3473 }
3474
3475 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3476
3477 /* Create a new node. */
3478 #ifdef GC_MALLOC_CHECK
3479 x = (struct mem_node *) _malloc_internal (sizeof *x);
3480 if (x == NULL)
3481 abort ();
3482 #else
3483 x = (struct mem_node *) xmalloc (sizeof *x);
3484 #endif
3485 x->start = start;
3486 x->end = end;
3487 x->type = type;
3488 x->parent = parent;
3489 x->left = x->right = MEM_NIL;
3490 x->color = MEM_RED;
3491
3492 /* Insert it as child of PARENT or install it as root. */
3493 if (parent)
3494 {
3495 if (start < parent->start)
3496 parent->left = x;
3497 else
3498 parent->right = x;
3499 }
3500 else
3501 mem_root = x;
3502
3503 /* Re-establish red-black tree properties. */
3504 mem_insert_fixup (x);
3505
3506 return x;
3507 }
3508
3509
3510 /* Re-establish the red-black properties of the tree, and thereby
3511 balance the tree, after node X has been inserted; X is always red. */
3512
3513 static void
3514 mem_insert_fixup (x)
3515 struct mem_node *x;
3516 {
3517 while (x != mem_root && x->parent->color == MEM_RED)
3518 {
3519 /* X is red and its parent is red. This is a violation of
3520 red-black tree property #3. */
3521
3522 if (x->parent == x->parent->parent->left)
3523 {
3524 /* We're on the left side of our grandparent, and Y is our
3525 "uncle". */
3526 struct mem_node *y = x->parent->parent->right;
3527
3528 if (y->color == MEM_RED)
3529 {
3530 /* Uncle and parent are red but should be black because
3531 X is red. Change the colors accordingly and proceed
3532 with the grandparent. */
3533 x->parent->color = MEM_BLACK;
3534 y->color = MEM_BLACK;
3535 x->parent->parent->color = MEM_RED;
3536 x = x->parent->parent;
3537 }
3538 else
3539 {
3540 /* Parent and uncle have different colors; parent is
3541 red, uncle is black. */
3542 if (x == x->parent->right)
3543 {
3544 x = x->parent;
3545 mem_rotate_left (x);
3546 }
3547
3548 x->parent->color = MEM_BLACK;
3549 x->parent->parent->color = MEM_RED;
3550 mem_rotate_right (x->parent->parent);
3551 }
3552 }
3553 else
3554 {
3555 /* This is the symmetrical case of above. */
3556 struct mem_node *y = x->parent->parent->left;
3557
3558 if (y->color == MEM_RED)
3559 {
3560 x->parent->color = MEM_BLACK;
3561 y->color = MEM_BLACK;
3562 x->parent->parent->color = MEM_RED;
3563 x = x->parent->parent;
3564 }
3565 else
3566 {
3567 if (x == x->parent->left)
3568 {
3569 x = x->parent;
3570 mem_rotate_right (x);
3571 }
3572
3573 x->parent->color = MEM_BLACK;
3574 x->parent->parent->color = MEM_RED;
3575 mem_rotate_left (x->parent->parent);
3576 }
3577 }
3578 }
3579
3580 /* The root may have been changed to red due to the algorithm. Set
3581 it to black so that property #5 is satisfied. */
3582 mem_root->color = MEM_BLACK;
3583 }
3584
3585
3586 /* (x) (y)
3587 / \ / \
3588 a (y) ===> (x) c
3589 / \ / \
3590 b c a b */
3591
3592 static void
3593 mem_rotate_left (x)
3594 struct mem_node *x;
3595 {
3596 struct mem_node *y;
3597
3598 /* Turn y's left sub-tree into x's right sub-tree. */
3599 y = x->right;
3600 x->right = y->left;
3601 if (y->left != MEM_NIL)
3602 y->left->parent = x;
3603
3604 /* Y's parent was x's parent. */
3605 if (y != MEM_NIL)
3606 y->parent = x->parent;
3607
3608 /* Get the parent to point to y instead of x. */
3609 if (x->parent)
3610 {
3611 if (x == x->parent->left)
3612 x->parent->left = y;
3613 else
3614 x->parent->right = y;
3615 }
3616 else
3617 mem_root = y;
3618
3619 /* Put x on y's left. */
3620 y->left = x;
3621 if (x != MEM_NIL)
3622 x->parent = y;
3623 }
3624
3625
3626 /* (x) (Y)
3627 / \ / \
3628 (y) c ===> a (x)
3629 / \ / \
3630 a b b c */
3631
3632 static void
3633 mem_rotate_right (x)
3634 struct mem_node *x;
3635 {
3636 struct mem_node *y = x->left;
3637
3638 x->left = y->right;
3639 if (y->right != MEM_NIL)
3640 y->right->parent = x;
3641
3642 if (y != MEM_NIL)
3643 y->parent = x->parent;
3644 if (x->parent)
3645 {
3646 if (x == x->parent->right)
3647 x->parent->right = y;
3648 else
3649 x->parent->left = y;
3650 }
3651 else
3652 mem_root = y;
3653
3654 y->right = x;
3655 if (x != MEM_NIL)
3656 x->parent = y;
3657 }
3658
3659
3660 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3661
3662 static void
3663 mem_delete (z)
3664 struct mem_node *z;
3665 {
3666 struct mem_node *x, *y;
3667
3668 if (!z || z == MEM_NIL)
3669 return;
3670
3671 if (z->left == MEM_NIL || z->right == MEM_NIL)
3672 y = z;
3673 else
3674 {
3675 y = z->right;
3676 while (y->left != MEM_NIL)
3677 y = y->left;
3678 }
3679
3680 if (y->left != MEM_NIL)
3681 x = y->left;
3682 else
3683 x = y->right;
3684
3685 x->parent = y->parent;
3686 if (y->parent)
3687 {
3688 if (y == y->parent->left)
3689 y->parent->left = x;
3690 else
3691 y->parent->right = x;
3692 }
3693 else
3694 mem_root = x;
3695
3696 if (y != z)
3697 {
3698 z->start = y->start;
3699 z->end = y->end;
3700 z->type = y->type;
3701 }
3702
3703 if (y->color == MEM_BLACK)
3704 mem_delete_fixup (x);
3705
3706 #ifdef GC_MALLOC_CHECK
3707 _free_internal (y);
3708 #else
3709 xfree (y);
3710 #endif
3711 }
3712
3713
3714 /* Re-establish the red-black properties of the tree, after a
3715 deletion. */
3716
3717 static void
3718 mem_delete_fixup (x)
3719 struct mem_node *x;
3720 {
3721 while (x != mem_root && x->color == MEM_BLACK)
3722 {
3723 if (x == x->parent->left)
3724 {
3725 struct mem_node *w = x->parent->right;
3726
3727 if (w->color == MEM_RED)
3728 {
3729 w->color = MEM_BLACK;
3730 x->parent->color = MEM_RED;
3731 mem_rotate_left (x->parent);
3732 w = x->parent->right;
3733 }
3734
3735 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3736 {
3737 w->color = MEM_RED;
3738 x = x->parent;
3739 }
3740 else
3741 {
3742 if (w->right->color == MEM_BLACK)
3743 {
3744 w->left->color = MEM_BLACK;
3745 w->color = MEM_RED;
3746 mem_rotate_right (w);
3747 w = x->parent->right;
3748 }
3749 w->color = x->parent->color;
3750 x->parent->color = MEM_BLACK;
3751 w->right->color = MEM_BLACK;
3752 mem_rotate_left (x->parent);
3753 x = mem_root;
3754 }
3755 }
3756 else
3757 {
3758 struct mem_node *w = x->parent->left;
3759
3760 if (w->color == MEM_RED)
3761 {
3762 w->color = MEM_BLACK;
3763 x->parent->color = MEM_RED;
3764 mem_rotate_right (x->parent);
3765 w = x->parent->left;
3766 }
3767
3768 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3769 {
3770 w->color = MEM_RED;
3771 x = x->parent;
3772 }
3773 else
3774 {
3775 if (w->left->color == MEM_BLACK)
3776 {
3777 w->right->color = MEM_BLACK;
3778 w->color = MEM_RED;
3779 mem_rotate_left (w);
3780 w = x->parent->left;
3781 }
3782
3783 w->color = x->parent->color;
3784 x->parent->color = MEM_BLACK;
3785 w->left->color = MEM_BLACK;
3786 mem_rotate_right (x->parent);
3787 x = mem_root;
3788 }
3789 }
3790 }
3791
3792 x->color = MEM_BLACK;
3793 }
3794
3795
3796 /* Value is non-zero if P is a pointer to a live Lisp string on
3797 the heap. M is a pointer to the mem_block for P. */
3798
3799 static INLINE int
3800 live_string_p (m, p)
3801 struct mem_node *m;
3802 void *p;
3803 {
3804 if (m->type == MEM_TYPE_STRING)
3805 {
3806 struct string_block *b = (struct string_block *) m->start;
3807 int offset = (char *) p - (char *) &b->strings[0];
3808
3809 /* P must point to the start of a Lisp_String structure, and it
3810 must not be on the free-list. */
3811 return (offset >= 0
3812 && offset % sizeof b->strings[0] == 0
3813 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3814 && ((struct Lisp_String *) p)->data != NULL);
3815 }
3816 else
3817 return 0;
3818 }
3819
3820
3821 /* Value is non-zero if P is a pointer to a live Lisp cons on
3822 the heap. M is a pointer to the mem_block for P. */
3823
3824 static INLINE int
3825 live_cons_p (m, p)
3826 struct mem_node *m;
3827 void *p;
3828 {
3829 if (m->type == MEM_TYPE_CONS)
3830 {
3831 struct cons_block *b = (struct cons_block *) m->start;
3832 int offset = (char *) p - (char *) &b->conses[0];
3833
3834 /* P must point to the start of a Lisp_Cons, not be
3835 one of the unused cells in the current cons block,
3836 and not be on the free-list. */
3837 return (offset >= 0
3838 && offset % sizeof b->conses[0] == 0
3839 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3840 && (b != cons_block
3841 || offset / sizeof b->conses[0] < cons_block_index)
3842 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3843 }
3844 else
3845 return 0;
3846 }
3847
3848
3849 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3850 the heap. M is a pointer to the mem_block for P. */
3851
3852 static INLINE int
3853 live_symbol_p (m, p)
3854 struct mem_node *m;
3855 void *p;
3856 {
3857 if (m->type == MEM_TYPE_SYMBOL)
3858 {
3859 struct symbol_block *b = (struct symbol_block *) m->start;
3860 int offset = (char *) p - (char *) &b->symbols[0];
3861
3862 /* P must point to the start of a Lisp_Symbol, not be
3863 one of the unused cells in the current symbol block,
3864 and not be on the free-list. */
3865 return (offset >= 0
3866 && offset % sizeof b->symbols[0] == 0
3867 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3868 && (b != symbol_block
3869 || offset / sizeof b->symbols[0] < symbol_block_index)
3870 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3871 }
3872 else
3873 return 0;
3874 }
3875
3876
3877 /* Value is non-zero if P is a pointer to a live Lisp float on
3878 the heap. M is a pointer to the mem_block for P. */
3879
3880 static INLINE int
3881 live_float_p (m, p)
3882 struct mem_node *m;
3883 void *p;
3884 {
3885 if (m->type == MEM_TYPE_FLOAT)
3886 {
3887 struct float_block *b = (struct float_block *) m->start;
3888 int offset = (char *) p - (char *) &b->floats[0];
3889
3890 /* P must point to the start of a Lisp_Float and not be
3891 one of the unused cells in the current float block. */
3892 return (offset >= 0
3893 && offset % sizeof b->floats[0] == 0
3894 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3895 && (b != float_block
3896 || offset / sizeof b->floats[0] < float_block_index));
3897 }
3898 else
3899 return 0;
3900 }
3901
3902
3903 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3904 the heap. M is a pointer to the mem_block for P. */
3905
3906 static INLINE int
3907 live_misc_p (m, p)
3908 struct mem_node *m;
3909 void *p;
3910 {
3911 if (m->type == MEM_TYPE_MISC)
3912 {
3913 struct marker_block *b = (struct marker_block *) m->start;
3914 int offset = (char *) p - (char *) &b->markers[0];
3915
3916 /* P must point to the start of a Lisp_Misc, not be
3917 one of the unused cells in the current misc block,
3918 and not be on the free-list. */
3919 return (offset >= 0
3920 && offset % sizeof b->markers[0] == 0
3921 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3922 && (b != marker_block
3923 || offset / sizeof b->markers[0] < marker_block_index)
3924 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3925 }
3926 else
3927 return 0;
3928 }
3929
3930
3931 /* Value is non-zero if P is a pointer to a live vector-like object.
3932 M is a pointer to the mem_block for P. */
3933
3934 static INLINE int
3935 live_vector_p (m, p)
3936 struct mem_node *m;
3937 void *p;
3938 {
3939 return (p == m->start
3940 && m->type >= MEM_TYPE_VECTOR
3941 && m->type <= MEM_TYPE_WINDOW);
3942 }
3943
3944
3945 /* Value is non-zero if P is a pointer to a live buffer. M is a
3946 pointer to the mem_block for P. */
3947
3948 static INLINE int
3949 live_buffer_p (m, p)
3950 struct mem_node *m;
3951 void *p;
3952 {
3953 /* P must point to the start of the block, and the buffer
3954 must not have been killed. */
3955 return (m->type == MEM_TYPE_BUFFER
3956 && p == m->start
3957 && !NILP (((struct buffer *) p)->name));
3958 }
3959
3960 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3961
3962 #if GC_MARK_STACK
3963
3964 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3965
3966 /* Array of objects that are kept alive because the C stack contains
3967 a pattern that looks like a reference to them . */
3968
3969 #define MAX_ZOMBIES 10
3970 static Lisp_Object zombies[MAX_ZOMBIES];
3971
3972 /* Number of zombie objects. */
3973
3974 static int nzombies;
3975
3976 /* Number of garbage collections. */
3977
3978 static int ngcs;
3979
3980 /* Average percentage of zombies per collection. */
3981
3982 static double avg_zombies;
3983
3984 /* Max. number of live and zombie objects. */
3985
3986 static int max_live, max_zombies;
3987
3988 /* Average number of live objects per GC. */
3989
3990 static double avg_live;
3991
3992 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3993 doc: /* Show information about live and zombie objects. */)
3994 ()
3995 {
3996 Lisp_Object args[8], zombie_list = Qnil;
3997 int i;
3998 for (i = 0; i < nzombies; i++)
3999 zombie_list = Fcons (zombies[i], zombie_list);
4000 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4001 args[1] = make_number (ngcs);
4002 args[2] = make_float (avg_live);
4003 args[3] = make_float (avg_zombies);
4004 args[4] = make_float (avg_zombies / avg_live / 100);
4005 args[5] = make_number (max_live);
4006 args[6] = make_number (max_zombies);
4007 args[7] = zombie_list;
4008 return Fmessage (8, args);
4009 }
4010
4011 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4012
4013
4014 /* Mark OBJ if we can prove it's a Lisp_Object. */
4015
4016 static INLINE void
4017 mark_maybe_object (obj)
4018 Lisp_Object obj;
4019 {
4020 void *po = (void *) XPNTR (obj);
4021 struct mem_node *m = mem_find (po);
4022
4023 if (m != MEM_NIL)
4024 {
4025 int mark_p = 0;
4026
4027 switch (XGCTYPE (obj))
4028 {
4029 case Lisp_String:
4030 mark_p = (live_string_p (m, po)
4031 && !STRING_MARKED_P ((struct Lisp_String *) po));
4032 break;
4033
4034 case Lisp_Cons:
4035 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4036 break;
4037
4038 case Lisp_Symbol:
4039 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4040 break;
4041
4042 case Lisp_Float:
4043 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4044 break;
4045
4046 case Lisp_Vectorlike:
4047 /* Note: can't check GC_BUFFERP before we know it's a
4048 buffer because checking that dereferences the pointer
4049 PO which might point anywhere. */
4050 if (live_vector_p (m, po))
4051 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4052 else if (live_buffer_p (m, po))
4053 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4054 break;
4055
4056 case Lisp_Misc:
4057 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
4058 break;
4059
4060 case Lisp_Int:
4061 case Lisp_Type_Limit:
4062 break;
4063 }
4064
4065 if (mark_p)
4066 {
4067 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4068 if (nzombies < MAX_ZOMBIES)
4069 zombies[nzombies] = obj;
4070 ++nzombies;
4071 #endif
4072 mark_object (obj);
4073 }
4074 }
4075 }
4076
4077
4078 /* If P points to Lisp data, mark that as live if it isn't already
4079 marked. */
4080
4081 static INLINE void
4082 mark_maybe_pointer (p)
4083 void *p;
4084 {
4085 struct mem_node *m;
4086
4087 /* Quickly rule out some values which can't point to Lisp data. We
4088 assume that Lisp data is aligned on even addresses. */
4089 if ((EMACS_INT) p & 1)
4090 return;
4091
4092 m = mem_find (p);
4093 if (m != MEM_NIL)
4094 {
4095 Lisp_Object obj = Qnil;
4096
4097 switch (m->type)
4098 {
4099 case MEM_TYPE_NON_LISP:
4100 /* Nothing to do; not a pointer to Lisp memory. */
4101 break;
4102
4103 case MEM_TYPE_BUFFER:
4104 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4105 XSETVECTOR (obj, p);
4106 break;
4107
4108 case MEM_TYPE_CONS:
4109 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4110 XSETCONS (obj, p);
4111 break;
4112
4113 case MEM_TYPE_STRING:
4114 if (live_string_p (m, p)
4115 && !STRING_MARKED_P ((struct Lisp_String *) p))
4116 XSETSTRING (obj, p);
4117 break;
4118
4119 case MEM_TYPE_MISC:
4120 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4121 XSETMISC (obj, p);
4122 break;
4123
4124 case MEM_TYPE_SYMBOL:
4125 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4126 XSETSYMBOL (obj, p);
4127 break;
4128
4129 case MEM_TYPE_FLOAT:
4130 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4131 XSETFLOAT (obj, p);
4132 break;
4133
4134 case MEM_TYPE_VECTOR:
4135 case MEM_TYPE_PROCESS:
4136 case MEM_TYPE_HASH_TABLE:
4137 case MEM_TYPE_FRAME:
4138 case MEM_TYPE_WINDOW:
4139 if (live_vector_p (m, p))
4140 {
4141 Lisp_Object tem;
4142 XSETVECTOR (tem, p);
4143 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4144 obj = tem;
4145 }
4146 break;
4147
4148 default:
4149 abort ();
4150 }
4151
4152 if (!GC_NILP (obj))
4153 mark_object (obj);
4154 }
4155 }
4156
4157
4158 /* Mark Lisp objects referenced from the address range START..END. */
4159
4160 static void
4161 mark_memory (start, end)
4162 void *start, *end;
4163 {
4164 Lisp_Object *p;
4165 void **pp;
4166
4167 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4168 nzombies = 0;
4169 #endif
4170
4171 /* Make START the pointer to the start of the memory region,
4172 if it isn't already. */
4173 if (end < start)
4174 {
4175 void *tem = start;
4176 start = end;
4177 end = tem;
4178 }
4179
4180 /* Mark Lisp_Objects. */
4181 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
4182 mark_maybe_object (*p);
4183
4184 /* Mark Lisp data pointed to. This is necessary because, in some
4185 situations, the C compiler optimizes Lisp objects away, so that
4186 only a pointer to them remains. Example:
4187
4188 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4189 ()
4190 {
4191 Lisp_Object obj = build_string ("test");
4192 struct Lisp_String *s = XSTRING (obj);
4193 Fgarbage_collect ();
4194 fprintf (stderr, "test `%s'\n", s->data);
4195 return Qnil;
4196 }
4197
4198 Here, `obj' isn't really used, and the compiler optimizes it
4199 away. The only reference to the life string is through the
4200 pointer `s'. */
4201
4202 for (pp = (void **) start; (void *) pp < end; ++pp)
4203 mark_maybe_pointer (*pp);
4204 }
4205
4206 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4207 the GCC system configuration. In gcc 3.2, the only systems for
4208 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4209 by others?) and ns32k-pc532-min. */
4210
4211 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4212
4213 static int setjmp_tested_p, longjmps_done;
4214
4215 #define SETJMP_WILL_LIKELY_WORK "\
4216 \n\
4217 Emacs garbage collector has been changed to use conservative stack\n\
4218 marking. Emacs has determined that the method it uses to do the\n\
4219 marking will likely work on your system, but this isn't sure.\n\
4220 \n\
4221 If you are a system-programmer, or can get the help of a local wizard\n\
4222 who is, please take a look at the function mark_stack in alloc.c, and\n\
4223 verify that the methods used are appropriate for your system.\n\
4224 \n\
4225 Please mail the result to <emacs-devel@gnu.org>.\n\
4226 "
4227
4228 #define SETJMP_WILL_NOT_WORK "\
4229 \n\
4230 Emacs garbage collector has been changed to use conservative stack\n\
4231 marking. Emacs has determined that the default method it uses to do the\n\
4232 marking will not work on your system. We will need a system-dependent\n\
4233 solution for your system.\n\
4234 \n\
4235 Please take a look at the function mark_stack in alloc.c, and\n\
4236 try to find a way to make it work on your system.\n\
4237 \n\
4238 Note that you may get false negatives, depending on the compiler.\n\
4239 In particular, you need to use -O with GCC for this test.\n\
4240 \n\
4241 Please mail the result to <emacs-devel@gnu.org>.\n\
4242 "
4243
4244
4245 /* Perform a quick check if it looks like setjmp saves registers in a
4246 jmp_buf. Print a message to stderr saying so. When this test
4247 succeeds, this is _not_ a proof that setjmp is sufficient for
4248 conservative stack marking. Only the sources or a disassembly
4249 can prove that. */
4250
4251 static void
4252 test_setjmp ()
4253 {
4254 char buf[10];
4255 register int x;
4256 jmp_buf jbuf;
4257 int result = 0;
4258
4259 /* Arrange for X to be put in a register. */
4260 sprintf (buf, "1");
4261 x = strlen (buf);
4262 x = 2 * x - 1;
4263
4264 setjmp (jbuf);
4265 if (longjmps_done == 1)
4266 {
4267 /* Came here after the longjmp at the end of the function.
4268
4269 If x == 1, the longjmp has restored the register to its
4270 value before the setjmp, and we can hope that setjmp
4271 saves all such registers in the jmp_buf, although that
4272 isn't sure.
4273
4274 For other values of X, either something really strange is
4275 taking place, or the setjmp just didn't save the register. */
4276
4277 if (x == 1)
4278 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4279 else
4280 {
4281 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4282 exit (1);
4283 }
4284 }
4285
4286 ++longjmps_done;
4287 x = 2;
4288 if (longjmps_done == 1)
4289 longjmp (jbuf, 1);
4290 }
4291
4292 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4293
4294
4295 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4296
4297 /* Abort if anything GCPRO'd doesn't survive the GC. */
4298
4299 static void
4300 check_gcpros ()
4301 {
4302 struct gcpro *p;
4303 int i;
4304
4305 for (p = gcprolist; p; p = p->next)
4306 for (i = 0; i < p->nvars; ++i)
4307 if (!survives_gc_p (p->var[i]))
4308 /* FIXME: It's not necessarily a bug. It might just be that the
4309 GCPRO is unnecessary or should release the object sooner. */
4310 abort ();
4311 }
4312
4313 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4314
4315 static void
4316 dump_zombies ()
4317 {
4318 int i;
4319
4320 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4321 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4322 {
4323 fprintf (stderr, " %d = ", i);
4324 debug_print (zombies[i]);
4325 }
4326 }
4327
4328 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4329
4330
4331 /* Mark live Lisp objects on the C stack.
4332
4333 There are several system-dependent problems to consider when
4334 porting this to new architectures:
4335
4336 Processor Registers
4337
4338 We have to mark Lisp objects in CPU registers that can hold local
4339 variables or are used to pass parameters.
4340
4341 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4342 something that either saves relevant registers on the stack, or
4343 calls mark_maybe_object passing it each register's contents.
4344
4345 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4346 implementation assumes that calling setjmp saves registers we need
4347 to see in a jmp_buf which itself lies on the stack. This doesn't
4348 have to be true! It must be verified for each system, possibly
4349 by taking a look at the source code of setjmp.
4350
4351 Stack Layout
4352
4353 Architectures differ in the way their processor stack is organized.
4354 For example, the stack might look like this
4355
4356 +----------------+
4357 | Lisp_Object | size = 4
4358 +----------------+
4359 | something else | size = 2
4360 +----------------+
4361 | Lisp_Object | size = 4
4362 +----------------+
4363 | ... |
4364
4365 In such a case, not every Lisp_Object will be aligned equally. To
4366 find all Lisp_Object on the stack it won't be sufficient to walk
4367 the stack in steps of 4 bytes. Instead, two passes will be
4368 necessary, one starting at the start of the stack, and a second
4369 pass starting at the start of the stack + 2. Likewise, if the
4370 minimal alignment of Lisp_Objects on the stack is 1, four passes
4371 would be necessary, each one starting with one byte more offset
4372 from the stack start.
4373
4374 The current code assumes by default that Lisp_Objects are aligned
4375 equally on the stack. */
4376
4377 static void
4378 mark_stack ()
4379 {
4380 int i;
4381 jmp_buf j;
4382 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4383 void *end;
4384
4385 /* This trick flushes the register windows so that all the state of
4386 the process is contained in the stack. */
4387 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4388 needed on ia64 too. See mach_dep.c, where it also says inline
4389 assembler doesn't work with relevant proprietary compilers. */
4390 #ifdef sparc
4391 asm ("ta 3");
4392 #endif
4393
4394 /* Save registers that we need to see on the stack. We need to see
4395 registers used to hold register variables and registers used to
4396 pass parameters. */
4397 #ifdef GC_SAVE_REGISTERS_ON_STACK
4398 GC_SAVE_REGISTERS_ON_STACK (end);
4399 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4400
4401 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4402 setjmp will definitely work, test it
4403 and print a message with the result
4404 of the test. */
4405 if (!setjmp_tested_p)
4406 {
4407 setjmp_tested_p = 1;
4408 test_setjmp ();
4409 }
4410 #endif /* GC_SETJMP_WORKS */
4411
4412 setjmp (j);
4413 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4414 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4415
4416 /* This assumes that the stack is a contiguous region in memory. If
4417 that's not the case, something has to be done here to iterate
4418 over the stack segments. */
4419 #ifndef GC_LISP_OBJECT_ALIGNMENT
4420 #ifdef __GNUC__
4421 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4422 #else
4423 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4424 #endif
4425 #endif
4426 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4427 mark_memory ((char *) stack_base + i, end);
4428 /* Allow for marking a secondary stack, like the register stack on the
4429 ia64. */
4430 #ifdef GC_MARK_SECONDARY_STACK
4431 GC_MARK_SECONDARY_STACK ();
4432 #endif
4433
4434 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4435 check_gcpros ();
4436 #endif
4437 }
4438
4439
4440 #endif /* GC_MARK_STACK != 0 */
4441
4442
4443 \f
4444 /***********************************************************************
4445 Pure Storage Management
4446 ***********************************************************************/
4447
4448 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4449 pointer to it. TYPE is the Lisp type for which the memory is
4450 allocated. TYPE < 0 means it's not used for a Lisp object.
4451
4452 If store_pure_type_info is set and TYPE is >= 0, the type of
4453 the allocated object is recorded in pure_types. */
4454
4455 static POINTER_TYPE *
4456 pure_alloc (size, type)
4457 size_t size;
4458 int type;
4459 {
4460 POINTER_TYPE *result;
4461 #ifdef USE_LSB_TAG
4462 size_t alignment = (1 << GCTYPEBITS);
4463 #else
4464 size_t alignment = sizeof (EMACS_INT);
4465
4466 /* Give Lisp_Floats an extra alignment. */
4467 if (type == Lisp_Float)
4468 {
4469 #if defined __GNUC__ && __GNUC__ >= 2
4470 alignment = __alignof (struct Lisp_Float);
4471 #else
4472 alignment = sizeof (struct Lisp_Float);
4473 #endif
4474 }
4475 #endif
4476
4477 again:
4478 result = ALIGN (purebeg + pure_bytes_used, alignment);
4479 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4480
4481 if (pure_bytes_used <= pure_size)
4482 return result;
4483
4484 /* Don't allocate a large amount here,
4485 because it might get mmap'd and then its address
4486 might not be usable. */
4487 purebeg = (char *) xmalloc (10000);
4488 pure_size = 10000;
4489 pure_bytes_used_before_overflow += pure_bytes_used - size;
4490 pure_bytes_used = 0;
4491 goto again;
4492 }
4493
4494
4495 /* Print a warning if PURESIZE is too small. */
4496
4497 void
4498 check_pure_size ()
4499 {
4500 if (pure_bytes_used_before_overflow)
4501 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4502 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4503 }
4504
4505
4506 /* Return a string allocated in pure space. DATA is a buffer holding
4507 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4508 non-zero means make the result string multibyte.
4509
4510 Must get an error if pure storage is full, since if it cannot hold
4511 a large string it may be able to hold conses that point to that
4512 string; then the string is not protected from gc. */
4513
4514 Lisp_Object
4515 make_pure_string (data, nchars, nbytes, multibyte)
4516 char *data;
4517 int nchars, nbytes;
4518 int multibyte;
4519 {
4520 Lisp_Object string;
4521 struct Lisp_String *s;
4522
4523 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4524 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4525 s->size = nchars;
4526 s->size_byte = multibyte ? nbytes : -1;
4527 bcopy (data, s->data, nbytes);
4528 s->data[nbytes] = '\0';
4529 s->intervals = NULL_INTERVAL;
4530 XSETSTRING (string, s);
4531 return string;
4532 }
4533
4534
4535 /* Return a cons allocated from pure space. Give it pure copies
4536 of CAR as car and CDR as cdr. */
4537
4538 Lisp_Object
4539 pure_cons (car, cdr)
4540 Lisp_Object car, cdr;
4541 {
4542 register Lisp_Object new;
4543 struct Lisp_Cons *p;
4544
4545 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4546 XSETCONS (new, p);
4547 XSETCAR (new, Fpurecopy (car));
4548 XSETCDR (new, Fpurecopy (cdr));
4549 return new;
4550 }
4551
4552
4553 /* Value is a float object with value NUM allocated from pure space. */
4554
4555 Lisp_Object
4556 make_pure_float (num)
4557 double num;
4558 {
4559 register Lisp_Object new;
4560 struct Lisp_Float *p;
4561
4562 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4563 XSETFLOAT (new, p);
4564 XFLOAT_DATA (new) = num;
4565 return new;
4566 }
4567
4568
4569 /* Return a vector with room for LEN Lisp_Objects allocated from
4570 pure space. */
4571
4572 Lisp_Object
4573 make_pure_vector (len)
4574 EMACS_INT len;
4575 {
4576 Lisp_Object new;
4577 struct Lisp_Vector *p;
4578 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4579
4580 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4581 XSETVECTOR (new, p);
4582 XVECTOR (new)->size = len;
4583 return new;
4584 }
4585
4586
4587 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4588 doc: /* Make a copy of OBJECT in pure storage.
4589 Recursively copies contents of vectors and cons cells.
4590 Does not copy symbols. Copies strings without text properties. */)
4591 (obj)
4592 register Lisp_Object obj;
4593 {
4594 if (NILP (Vpurify_flag))
4595 return obj;
4596
4597 if (PURE_POINTER_P (XPNTR (obj)))
4598 return obj;
4599
4600 if (CONSP (obj))
4601 return pure_cons (XCAR (obj), XCDR (obj));
4602 else if (FLOATP (obj))
4603 return make_pure_float (XFLOAT_DATA (obj));
4604 else if (STRINGP (obj))
4605 return make_pure_string (SDATA (obj), SCHARS (obj),
4606 SBYTES (obj),
4607 STRING_MULTIBYTE (obj));
4608 else if (COMPILEDP (obj) || VECTORP (obj))
4609 {
4610 register struct Lisp_Vector *vec;
4611 register int i;
4612 EMACS_INT size;
4613
4614 size = XVECTOR (obj)->size;
4615 if (size & PSEUDOVECTOR_FLAG)
4616 size &= PSEUDOVECTOR_SIZE_MASK;
4617 vec = XVECTOR (make_pure_vector (size));
4618 for (i = 0; i < size; i++)
4619 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4620 if (COMPILEDP (obj))
4621 XSETCOMPILED (obj, vec);
4622 else
4623 XSETVECTOR (obj, vec);
4624 return obj;
4625 }
4626 else if (MARKERP (obj))
4627 error ("Attempt to copy a marker to pure storage");
4628
4629 return obj;
4630 }
4631
4632
4633 \f
4634 /***********************************************************************
4635 Protection from GC
4636 ***********************************************************************/
4637
4638 /* Put an entry in staticvec, pointing at the variable with address
4639 VARADDRESS. */
4640
4641 void
4642 staticpro (varaddress)
4643 Lisp_Object *varaddress;
4644 {
4645 staticvec[staticidx++] = varaddress;
4646 if (staticidx >= NSTATICS)
4647 abort ();
4648 }
4649
4650 struct catchtag
4651 {
4652 Lisp_Object tag;
4653 Lisp_Object val;
4654 struct catchtag *next;
4655 };
4656
4657 \f
4658 /***********************************************************************
4659 Protection from GC
4660 ***********************************************************************/
4661
4662 /* Temporarily prevent garbage collection. */
4663
4664 int
4665 inhibit_garbage_collection ()
4666 {
4667 int count = SPECPDL_INDEX ();
4668 int nbits = min (VALBITS, BITS_PER_INT);
4669
4670 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4671 return count;
4672 }
4673
4674
4675 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4676 doc: /* Reclaim storage for Lisp objects no longer needed.
4677 Garbage collection happens automatically if you cons more than
4678 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4679 `garbage-collect' normally returns a list with info on amount of space in use:
4680 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4681 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4682 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4683 (USED-STRINGS . FREE-STRINGS))
4684 However, if there was overflow in pure space, `garbage-collect'
4685 returns nil, because real GC can't be done. */)
4686 ()
4687 {
4688 register struct specbinding *bind;
4689 struct catchtag *catch;
4690 struct handler *handler;
4691 char stack_top_variable;
4692 register int i;
4693 int message_p;
4694 Lisp_Object total[8];
4695 int count = SPECPDL_INDEX ();
4696 EMACS_TIME t1, t2, t3;
4697
4698 if (abort_on_gc)
4699 abort ();
4700
4701 /* Can't GC if pure storage overflowed because we can't determine
4702 if something is a pure object or not. */
4703 if (pure_bytes_used_before_overflow)
4704 return Qnil;
4705
4706 CHECK_CONS_LIST ();
4707
4708 /* Don't keep undo information around forever.
4709 Do this early on, so it is no problem if the user quits. */
4710 {
4711 register struct buffer *nextb = all_buffers;
4712
4713 while (nextb)
4714 {
4715 /* If a buffer's undo list is Qt, that means that undo is
4716 turned off in that buffer. Calling truncate_undo_list on
4717 Qt tends to return NULL, which effectively turns undo back on.
4718 So don't call truncate_undo_list if undo_list is Qt. */
4719 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
4720 truncate_undo_list (nextb);
4721
4722 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4723 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4724 {
4725 /* If a buffer's gap size is more than 10% of the buffer
4726 size, or larger than 2000 bytes, then shrink it
4727 accordingly. Keep a minimum size of 20 bytes. */
4728 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4729
4730 if (nextb->text->gap_size > size)
4731 {
4732 struct buffer *save_current = current_buffer;
4733 current_buffer = nextb;
4734 make_gap (-(nextb->text->gap_size - size));
4735 current_buffer = save_current;
4736 }
4737 }
4738
4739 nextb = nextb->next;
4740 }
4741 }
4742
4743 EMACS_GET_TIME (t1);
4744
4745 /* In case user calls debug_print during GC,
4746 don't let that cause a recursive GC. */
4747 consing_since_gc = 0;
4748
4749 /* Save what's currently displayed in the echo area. */
4750 message_p = push_message ();
4751 record_unwind_protect (pop_message_unwind, Qnil);
4752
4753 /* Save a copy of the contents of the stack, for debugging. */
4754 #if MAX_SAVE_STACK > 0
4755 if (NILP (Vpurify_flag))
4756 {
4757 i = &stack_top_variable - stack_bottom;
4758 if (i < 0) i = -i;
4759 if (i < MAX_SAVE_STACK)
4760 {
4761 if (stack_copy == 0)
4762 stack_copy = (char *) xmalloc (stack_copy_size = i);
4763 else if (stack_copy_size < i)
4764 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4765 if (stack_copy)
4766 {
4767 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4768 bcopy (stack_bottom, stack_copy, i);
4769 else
4770 bcopy (&stack_top_variable, stack_copy, i);
4771 }
4772 }
4773 }
4774 #endif /* MAX_SAVE_STACK > 0 */
4775
4776 if (garbage_collection_messages)
4777 message1_nolog ("Garbage collecting...");
4778
4779 BLOCK_INPUT;
4780
4781 shrink_regexp_cache ();
4782
4783 gc_in_progress = 1;
4784
4785 /* clear_marks (); */
4786
4787 /* Mark all the special slots that serve as the roots of accessibility. */
4788
4789 for (i = 0; i < staticidx; i++)
4790 mark_object (*staticvec[i]);
4791
4792 for (bind = specpdl; bind != specpdl_ptr; bind++)
4793 {
4794 mark_object (bind->symbol);
4795 mark_object (bind->old_value);
4796 }
4797 mark_kboards ();
4798
4799 #ifdef USE_GTK
4800 {
4801 extern void xg_mark_data ();
4802 xg_mark_data ();
4803 }
4804 #endif
4805
4806 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4807 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4808 mark_stack ();
4809 #else
4810 {
4811 register struct gcpro *tail;
4812 for (tail = gcprolist; tail; tail = tail->next)
4813 for (i = 0; i < tail->nvars; i++)
4814 mark_object (tail->var[i]);
4815 }
4816 #endif
4817
4818 mark_byte_stack ();
4819 for (catch = catchlist; catch; catch = catch->next)
4820 {
4821 mark_object (catch->tag);
4822 mark_object (catch->val);
4823 }
4824 for (handler = handlerlist; handler; handler = handler->next)
4825 {
4826 mark_object (handler->handler);
4827 mark_object (handler->var);
4828 }
4829 mark_backtrace ();
4830
4831 #ifdef HAVE_WINDOW_SYSTEM
4832 mark_fringe_data ();
4833 #endif
4834
4835 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4836 mark_stack ();
4837 #endif
4838
4839 /* Everything is now marked, except for the things that require special
4840 finalization, i.e. the undo_list.
4841 Look thru every buffer's undo list
4842 for elements that update markers that were not marked,
4843 and delete them. */
4844 {
4845 register struct buffer *nextb = all_buffers;
4846
4847 while (nextb)
4848 {
4849 /* If a buffer's undo list is Qt, that means that undo is
4850 turned off in that buffer. Calling truncate_undo_list on
4851 Qt tends to return NULL, which effectively turns undo back on.
4852 So don't call truncate_undo_list if undo_list is Qt. */
4853 if (! EQ (nextb->undo_list, Qt))
4854 {
4855 Lisp_Object tail, prev;
4856 tail = nextb->undo_list;
4857 prev = Qnil;
4858 while (CONSP (tail))
4859 {
4860 if (GC_CONSP (XCAR (tail))
4861 && GC_MARKERP (XCAR (XCAR (tail)))
4862 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4863 {
4864 if (NILP (prev))
4865 nextb->undo_list = tail = XCDR (tail);
4866 else
4867 {
4868 tail = XCDR (tail);
4869 XSETCDR (prev, tail);
4870 }
4871 }
4872 else
4873 {
4874 prev = tail;
4875 tail = XCDR (tail);
4876 }
4877 }
4878 }
4879 /* Now that we have stripped the elements that need not be in the
4880 undo_list any more, we can finally mark the list. */
4881 mark_object (nextb->undo_list);
4882
4883 nextb = nextb->next;
4884 }
4885 }
4886
4887 gc_sweep ();
4888
4889 /* Clear the mark bits that we set in certain root slots. */
4890
4891 unmark_byte_stack ();
4892 VECTOR_UNMARK (&buffer_defaults);
4893 VECTOR_UNMARK (&buffer_local_symbols);
4894
4895 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4896 dump_zombies ();
4897 #endif
4898
4899 UNBLOCK_INPUT;
4900
4901 CHECK_CONS_LIST ();
4902
4903 /* clear_marks (); */
4904 gc_in_progress = 0;
4905
4906 consing_since_gc = 0;
4907 if (gc_cons_threshold < 10000)
4908 gc_cons_threshold = 10000;
4909
4910 if (FLOATP (Vgc_cons_percentage))
4911 { /* Set gc_cons_combined_threshold. */
4912 EMACS_INT total = 0;
4913
4914 total += total_conses * sizeof (struct Lisp_Cons);
4915 total += total_symbols * sizeof (struct Lisp_Symbol);
4916 total += total_markers * sizeof (union Lisp_Misc);
4917 total += total_string_size;
4918 total += total_vector_size * sizeof (Lisp_Object);
4919 total += total_floats * sizeof (struct Lisp_Float);
4920 total += total_intervals * sizeof (struct interval);
4921 total += total_strings * sizeof (struct Lisp_String);
4922
4923 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
4924 }
4925 else
4926 gc_relative_threshold = 0;
4927
4928 if (garbage_collection_messages)
4929 {
4930 if (message_p || minibuf_level > 0)
4931 restore_message ();
4932 else
4933 message1_nolog ("Garbage collecting...done");
4934 }
4935
4936 unbind_to (count, Qnil);
4937
4938 total[0] = Fcons (make_number (total_conses),
4939 make_number (total_free_conses));
4940 total[1] = Fcons (make_number (total_symbols),
4941 make_number (total_free_symbols));
4942 total[2] = Fcons (make_number (total_markers),
4943 make_number (total_free_markers));
4944 total[3] = make_number (total_string_size);
4945 total[4] = make_number (total_vector_size);
4946 total[5] = Fcons (make_number (total_floats),
4947 make_number (total_free_floats));
4948 total[6] = Fcons (make_number (total_intervals),
4949 make_number (total_free_intervals));
4950 total[7] = Fcons (make_number (total_strings),
4951 make_number (total_free_strings));
4952
4953 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4954 {
4955 /* Compute average percentage of zombies. */
4956 double nlive = 0;
4957
4958 for (i = 0; i < 7; ++i)
4959 if (CONSP (total[i]))
4960 nlive += XFASTINT (XCAR (total[i]));
4961
4962 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4963 max_live = max (nlive, max_live);
4964 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4965 max_zombies = max (nzombies, max_zombies);
4966 ++ngcs;
4967 }
4968 #endif
4969
4970 if (!NILP (Vpost_gc_hook))
4971 {
4972 int count = inhibit_garbage_collection ();
4973 safe_run_hooks (Qpost_gc_hook);
4974 unbind_to (count, Qnil);
4975 }
4976
4977 /* Accumulate statistics. */
4978 EMACS_GET_TIME (t2);
4979 EMACS_SUB_TIME (t3, t2, t1);
4980 if (FLOATP (Vgc_elapsed))
4981 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4982 EMACS_SECS (t3) +
4983 EMACS_USECS (t3) * 1.0e-6);
4984 gcs_done++;
4985
4986 return Flist (sizeof total / sizeof *total, total);
4987 }
4988
4989
4990 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4991 only interesting objects referenced from glyphs are strings. */
4992
4993 static void
4994 mark_glyph_matrix (matrix)
4995 struct glyph_matrix *matrix;
4996 {
4997 struct glyph_row *row = matrix->rows;
4998 struct glyph_row *end = row + matrix->nrows;
4999
5000 for (; row < end; ++row)
5001 if (row->enabled_p)
5002 {
5003 int area;
5004 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5005 {
5006 struct glyph *glyph = row->glyphs[area];
5007 struct glyph *end_glyph = glyph + row->used[area];
5008
5009 for (; glyph < end_glyph; ++glyph)
5010 if (GC_STRINGP (glyph->object)
5011 && !STRING_MARKED_P (XSTRING (glyph->object)))
5012 mark_object (glyph->object);
5013 }
5014 }
5015 }
5016
5017
5018 /* Mark Lisp faces in the face cache C. */
5019
5020 static void
5021 mark_face_cache (c)
5022 struct face_cache *c;
5023 {
5024 if (c)
5025 {
5026 int i, j;
5027 for (i = 0; i < c->used; ++i)
5028 {
5029 struct face *face = FACE_FROM_ID (c->f, i);
5030
5031 if (face)
5032 {
5033 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5034 mark_object (face->lface[j]);
5035 }
5036 }
5037 }
5038 }
5039
5040
5041 #ifdef HAVE_WINDOW_SYSTEM
5042
5043 /* Mark Lisp objects in image IMG. */
5044
5045 static void
5046 mark_image (img)
5047 struct image *img;
5048 {
5049 mark_object (img->spec);
5050
5051 if (!NILP (img->data.lisp_val))
5052 mark_object (img->data.lisp_val);
5053 }
5054
5055
5056 /* Mark Lisp objects in image cache of frame F. It's done this way so
5057 that we don't have to include xterm.h here. */
5058
5059 static void
5060 mark_image_cache (f)
5061 struct frame *f;
5062 {
5063 forall_images_in_image_cache (f, mark_image);
5064 }
5065
5066 #endif /* HAVE_X_WINDOWS */
5067
5068
5069 \f
5070 /* Mark reference to a Lisp_Object.
5071 If the object referred to has not been seen yet, recursively mark
5072 all the references contained in it. */
5073
5074 #define LAST_MARKED_SIZE 500
5075 Lisp_Object last_marked[LAST_MARKED_SIZE];
5076 int last_marked_index;
5077
5078 /* For debugging--call abort when we cdr down this many
5079 links of a list, in mark_object. In debugging,
5080 the call to abort will hit a breakpoint.
5081 Normally this is zero and the check never goes off. */
5082 int mark_object_loop_halt;
5083
5084 void
5085 mark_object (arg)
5086 Lisp_Object arg;
5087 {
5088 register Lisp_Object obj = arg;
5089 #ifdef GC_CHECK_MARKED_OBJECTS
5090 void *po;
5091 struct mem_node *m;
5092 #endif
5093 int cdr_count = 0;
5094
5095 loop:
5096
5097 if (PURE_POINTER_P (XPNTR (obj)))
5098 return;
5099
5100 last_marked[last_marked_index++] = obj;
5101 if (last_marked_index == LAST_MARKED_SIZE)
5102 last_marked_index = 0;
5103
5104 /* Perform some sanity checks on the objects marked here. Abort if
5105 we encounter an object we know is bogus. This increases GC time
5106 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5107 #ifdef GC_CHECK_MARKED_OBJECTS
5108
5109 po = (void *) XPNTR (obj);
5110
5111 /* Check that the object pointed to by PO is known to be a Lisp
5112 structure allocated from the heap. */
5113 #define CHECK_ALLOCATED() \
5114 do { \
5115 m = mem_find (po); \
5116 if (m == MEM_NIL) \
5117 abort (); \
5118 } while (0)
5119
5120 /* Check that the object pointed to by PO is live, using predicate
5121 function LIVEP. */
5122 #define CHECK_LIVE(LIVEP) \
5123 do { \
5124 if (!LIVEP (m, po)) \
5125 abort (); \
5126 } while (0)
5127
5128 /* Check both of the above conditions. */
5129 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5130 do { \
5131 CHECK_ALLOCATED (); \
5132 CHECK_LIVE (LIVEP); \
5133 } while (0) \
5134
5135 #else /* not GC_CHECK_MARKED_OBJECTS */
5136
5137 #define CHECK_ALLOCATED() (void) 0
5138 #define CHECK_LIVE(LIVEP) (void) 0
5139 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5140
5141 #endif /* not GC_CHECK_MARKED_OBJECTS */
5142
5143 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
5144 {
5145 case Lisp_String:
5146 {
5147 register struct Lisp_String *ptr = XSTRING (obj);
5148 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5149 MARK_INTERVAL_TREE (ptr->intervals);
5150 MARK_STRING (ptr);
5151 #ifdef GC_CHECK_STRING_BYTES
5152 /* Check that the string size recorded in the string is the
5153 same as the one recorded in the sdata structure. */
5154 CHECK_STRING_BYTES (ptr);
5155 #endif /* GC_CHECK_STRING_BYTES */
5156 }
5157 break;
5158
5159 case Lisp_Vectorlike:
5160 #ifdef GC_CHECK_MARKED_OBJECTS
5161 m = mem_find (po);
5162 if (m == MEM_NIL && !GC_SUBRP (obj)
5163 && po != &buffer_defaults
5164 && po != &buffer_local_symbols)
5165 abort ();
5166 #endif /* GC_CHECK_MARKED_OBJECTS */
5167
5168 if (GC_BUFFERP (obj))
5169 {
5170 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5171 {
5172 #ifdef GC_CHECK_MARKED_OBJECTS
5173 if (po != &buffer_defaults && po != &buffer_local_symbols)
5174 {
5175 struct buffer *b;
5176 for (b = all_buffers; b && b != po; b = b->next)
5177 ;
5178 if (b == NULL)
5179 abort ();
5180 }
5181 #endif /* GC_CHECK_MARKED_OBJECTS */
5182 mark_buffer (obj);
5183 }
5184 }
5185 else if (GC_SUBRP (obj))
5186 break;
5187 else if (GC_COMPILEDP (obj))
5188 /* We could treat this just like a vector, but it is better to
5189 save the COMPILED_CONSTANTS element for last and avoid
5190 recursion there. */
5191 {
5192 register struct Lisp_Vector *ptr = XVECTOR (obj);
5193 register EMACS_INT size = ptr->size;
5194 register int i;
5195
5196 if (VECTOR_MARKED_P (ptr))
5197 break; /* Already marked */
5198
5199 CHECK_LIVE (live_vector_p);
5200 VECTOR_MARK (ptr); /* Else mark it */
5201 size &= PSEUDOVECTOR_SIZE_MASK;
5202 for (i = 0; i < size; i++) /* and then mark its elements */
5203 {
5204 if (i != COMPILED_CONSTANTS)
5205 mark_object (ptr->contents[i]);
5206 }
5207 obj = ptr->contents[COMPILED_CONSTANTS];
5208 goto loop;
5209 }
5210 else if (GC_FRAMEP (obj))
5211 {
5212 register struct frame *ptr = XFRAME (obj);
5213
5214 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5215 VECTOR_MARK (ptr); /* Else mark it */
5216
5217 CHECK_LIVE (live_vector_p);
5218 mark_object (ptr->name);
5219 mark_object (ptr->icon_name);
5220 mark_object (ptr->title);
5221 mark_object (ptr->focus_frame);
5222 mark_object (ptr->selected_window);
5223 mark_object (ptr->minibuffer_window);
5224 mark_object (ptr->param_alist);
5225 mark_object (ptr->scroll_bars);
5226 mark_object (ptr->condemned_scroll_bars);
5227 mark_object (ptr->menu_bar_items);
5228 mark_object (ptr->face_alist);
5229 mark_object (ptr->menu_bar_vector);
5230 mark_object (ptr->buffer_predicate);
5231 mark_object (ptr->buffer_list);
5232 mark_object (ptr->menu_bar_window);
5233 mark_object (ptr->tool_bar_window);
5234 mark_face_cache (ptr->face_cache);
5235 #ifdef HAVE_WINDOW_SYSTEM
5236 mark_image_cache (ptr);
5237 mark_object (ptr->tool_bar_items);
5238 mark_object (ptr->desired_tool_bar_string);
5239 mark_object (ptr->current_tool_bar_string);
5240 #endif /* HAVE_WINDOW_SYSTEM */
5241 }
5242 else if (GC_BOOL_VECTOR_P (obj))
5243 {
5244 register struct Lisp_Vector *ptr = XVECTOR (obj);
5245
5246 if (VECTOR_MARKED_P (ptr))
5247 break; /* Already marked */
5248 CHECK_LIVE (live_vector_p);
5249 VECTOR_MARK (ptr); /* Else mark it */
5250 }
5251 else if (GC_WINDOWP (obj))
5252 {
5253 register struct Lisp_Vector *ptr = XVECTOR (obj);
5254 struct window *w = XWINDOW (obj);
5255 register int i;
5256
5257 /* Stop if already marked. */
5258 if (VECTOR_MARKED_P (ptr))
5259 break;
5260
5261 /* Mark it. */
5262 CHECK_LIVE (live_vector_p);
5263 VECTOR_MARK (ptr);
5264
5265 /* There is no Lisp data above The member CURRENT_MATRIX in
5266 struct WINDOW. Stop marking when that slot is reached. */
5267 for (i = 0;
5268 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
5269 i++)
5270 mark_object (ptr->contents[i]);
5271
5272 /* Mark glyphs for leaf windows. Marking window matrices is
5273 sufficient because frame matrices use the same glyph
5274 memory. */
5275 if (NILP (w->hchild)
5276 && NILP (w->vchild)
5277 && w->current_matrix)
5278 {
5279 mark_glyph_matrix (w->current_matrix);
5280 mark_glyph_matrix (w->desired_matrix);
5281 }
5282 }
5283 else if (GC_HASH_TABLE_P (obj))
5284 {
5285 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5286
5287 /* Stop if already marked. */
5288 if (VECTOR_MARKED_P (h))
5289 break;
5290
5291 /* Mark it. */
5292 CHECK_LIVE (live_vector_p);
5293 VECTOR_MARK (h);
5294
5295 /* Mark contents. */
5296 /* Do not mark next_free or next_weak.
5297 Being in the next_weak chain
5298 should not keep the hash table alive.
5299 No need to mark `count' since it is an integer. */
5300 mark_object (h->test);
5301 mark_object (h->weak);
5302 mark_object (h->rehash_size);
5303 mark_object (h->rehash_threshold);
5304 mark_object (h->hash);
5305 mark_object (h->next);
5306 mark_object (h->index);
5307 mark_object (h->user_hash_function);
5308 mark_object (h->user_cmp_function);
5309
5310 /* If hash table is not weak, mark all keys and values.
5311 For weak tables, mark only the vector. */
5312 if (GC_NILP (h->weak))
5313 mark_object (h->key_and_value);
5314 else
5315 VECTOR_MARK (XVECTOR (h->key_and_value));
5316 }
5317 else
5318 {
5319 register struct Lisp_Vector *ptr = XVECTOR (obj);
5320 register EMACS_INT size = ptr->size;
5321 register int i;
5322
5323 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5324 CHECK_LIVE (live_vector_p);
5325 VECTOR_MARK (ptr); /* Else mark it */
5326 if (size & PSEUDOVECTOR_FLAG)
5327 size &= PSEUDOVECTOR_SIZE_MASK;
5328
5329 for (i = 0; i < size; i++) /* and then mark its elements */
5330 mark_object (ptr->contents[i]);
5331 }
5332 break;
5333
5334 case Lisp_Symbol:
5335 {
5336 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5337 struct Lisp_Symbol *ptrx;
5338
5339 if (ptr->gcmarkbit) break;
5340 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5341 ptr->gcmarkbit = 1;
5342 mark_object (ptr->value);
5343 mark_object (ptr->function);
5344 mark_object (ptr->plist);
5345
5346 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5347 MARK_STRING (XSTRING (ptr->xname));
5348 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5349
5350 /* Note that we do not mark the obarray of the symbol.
5351 It is safe not to do so because nothing accesses that
5352 slot except to check whether it is nil. */
5353 ptr = ptr->next;
5354 if (ptr)
5355 {
5356 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5357 XSETSYMBOL (obj, ptrx);
5358 goto loop;
5359 }
5360 }
5361 break;
5362
5363 case Lisp_Misc:
5364 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5365 if (XMARKER (obj)->gcmarkbit)
5366 break;
5367 XMARKER (obj)->gcmarkbit = 1;
5368
5369 switch (XMISCTYPE (obj))
5370 {
5371 case Lisp_Misc_Buffer_Local_Value:
5372 case Lisp_Misc_Some_Buffer_Local_Value:
5373 {
5374 register struct Lisp_Buffer_Local_Value *ptr
5375 = XBUFFER_LOCAL_VALUE (obj);
5376 /* If the cdr is nil, avoid recursion for the car. */
5377 if (EQ (ptr->cdr, Qnil))
5378 {
5379 obj = ptr->realvalue;
5380 goto loop;
5381 }
5382 mark_object (ptr->realvalue);
5383 mark_object (ptr->buffer);
5384 mark_object (ptr->frame);
5385 obj = ptr->cdr;
5386 goto loop;
5387 }
5388
5389 case Lisp_Misc_Marker:
5390 /* DO NOT mark thru the marker's chain.
5391 The buffer's markers chain does not preserve markers from gc;
5392 instead, markers are removed from the chain when freed by gc. */
5393 break;
5394
5395 case Lisp_Misc_Intfwd:
5396 case Lisp_Misc_Boolfwd:
5397 case Lisp_Misc_Objfwd:
5398 case Lisp_Misc_Buffer_Objfwd:
5399 case Lisp_Misc_Kboard_Objfwd:
5400 /* Don't bother with Lisp_Buffer_Objfwd,
5401 since all markable slots in current buffer marked anyway. */
5402 /* Don't need to do Lisp_Objfwd, since the places they point
5403 are protected with staticpro. */
5404 break;
5405
5406 case Lisp_Misc_Save_Value:
5407 #if GC_MARK_STACK
5408 {
5409 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5410 /* If DOGC is set, POINTER is the address of a memory
5411 area containing INTEGER potential Lisp_Objects. */
5412 if (ptr->dogc)
5413 {
5414 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5415 int nelt;
5416 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5417 mark_maybe_object (*p);
5418 }
5419 }
5420 #endif
5421 break;
5422
5423 case Lisp_Misc_Overlay:
5424 {
5425 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5426 mark_object (ptr->start);
5427 mark_object (ptr->end);
5428 mark_object (ptr->plist);
5429 if (ptr->next)
5430 {
5431 XSETMISC (obj, ptr->next);
5432 goto loop;
5433 }
5434 }
5435 break;
5436
5437 default:
5438 abort ();
5439 }
5440 break;
5441
5442 case Lisp_Cons:
5443 {
5444 register struct Lisp_Cons *ptr = XCONS (obj);
5445 if (CONS_MARKED_P (ptr)) break;
5446 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5447 CONS_MARK (ptr);
5448 /* If the cdr is nil, avoid recursion for the car. */
5449 if (EQ (ptr->cdr, Qnil))
5450 {
5451 obj = ptr->car;
5452 cdr_count = 0;
5453 goto loop;
5454 }
5455 mark_object (ptr->car);
5456 obj = ptr->cdr;
5457 cdr_count++;
5458 if (cdr_count == mark_object_loop_halt)
5459 abort ();
5460 goto loop;
5461 }
5462
5463 case Lisp_Float:
5464 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5465 FLOAT_MARK (XFLOAT (obj));
5466 break;
5467
5468 case Lisp_Int:
5469 break;
5470
5471 default:
5472 abort ();
5473 }
5474
5475 #undef CHECK_LIVE
5476 #undef CHECK_ALLOCATED
5477 #undef CHECK_ALLOCATED_AND_LIVE
5478 }
5479
5480 /* Mark the pointers in a buffer structure. */
5481
5482 static void
5483 mark_buffer (buf)
5484 Lisp_Object buf;
5485 {
5486 register struct buffer *buffer = XBUFFER (buf);
5487 register Lisp_Object *ptr, tmp;
5488 Lisp_Object base_buffer;
5489
5490 VECTOR_MARK (buffer);
5491
5492 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5493
5494 /* For now, we just don't mark the undo_list. It's done later in
5495 a special way just before the sweep phase, and after stripping
5496 some of its elements that are not needed any more. */
5497
5498 if (buffer->overlays_before)
5499 {
5500 XSETMISC (tmp, buffer->overlays_before);
5501 mark_object (tmp);
5502 }
5503 if (buffer->overlays_after)
5504 {
5505 XSETMISC (tmp, buffer->overlays_after);
5506 mark_object (tmp);
5507 }
5508
5509 for (ptr = &buffer->name;
5510 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5511 ptr++)
5512 mark_object (*ptr);
5513
5514 /* If this is an indirect buffer, mark its base buffer. */
5515 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5516 {
5517 XSETBUFFER (base_buffer, buffer->base_buffer);
5518 mark_buffer (base_buffer);
5519 }
5520 }
5521
5522
5523 /* Value is non-zero if OBJ will survive the current GC because it's
5524 either marked or does not need to be marked to survive. */
5525
5526 int
5527 survives_gc_p (obj)
5528 Lisp_Object obj;
5529 {
5530 int survives_p;
5531
5532 switch (XGCTYPE (obj))
5533 {
5534 case Lisp_Int:
5535 survives_p = 1;
5536 break;
5537
5538 case Lisp_Symbol:
5539 survives_p = XSYMBOL (obj)->gcmarkbit;
5540 break;
5541
5542 case Lisp_Misc:
5543 survives_p = XMARKER (obj)->gcmarkbit;
5544 break;
5545
5546 case Lisp_String:
5547 survives_p = STRING_MARKED_P (XSTRING (obj));
5548 break;
5549
5550 case Lisp_Vectorlike:
5551 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5552 break;
5553
5554 case Lisp_Cons:
5555 survives_p = CONS_MARKED_P (XCONS (obj));
5556 break;
5557
5558 case Lisp_Float:
5559 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5560 break;
5561
5562 default:
5563 abort ();
5564 }
5565
5566 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5567 }
5568
5569
5570 \f
5571 /* Sweep: find all structures not marked, and free them. */
5572
5573 static void
5574 gc_sweep ()
5575 {
5576 /* Remove or mark entries in weak hash tables.
5577 This must be done before any object is unmarked. */
5578 sweep_weak_hash_tables ();
5579
5580 sweep_strings ();
5581 #ifdef GC_CHECK_STRING_BYTES
5582 if (!noninteractive)
5583 check_string_bytes (1);
5584 #endif
5585
5586 /* Put all unmarked conses on free list */
5587 {
5588 register struct cons_block *cblk;
5589 struct cons_block **cprev = &cons_block;
5590 register int lim = cons_block_index;
5591 register int num_free = 0, num_used = 0;
5592
5593 cons_free_list = 0;
5594
5595 for (cblk = cons_block; cblk; cblk = *cprev)
5596 {
5597 register int i;
5598 int this_free = 0;
5599 for (i = 0; i < lim; i++)
5600 if (!CONS_MARKED_P (&cblk->conses[i]))
5601 {
5602 this_free++;
5603 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5604 cons_free_list = &cblk->conses[i];
5605 #if GC_MARK_STACK
5606 cons_free_list->car = Vdead;
5607 #endif
5608 }
5609 else
5610 {
5611 num_used++;
5612 CONS_UNMARK (&cblk->conses[i]);
5613 }
5614 lim = CONS_BLOCK_SIZE;
5615 /* If this block contains only free conses and we have already
5616 seen more than two blocks worth of free conses then deallocate
5617 this block. */
5618 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5619 {
5620 *cprev = cblk->next;
5621 /* Unhook from the free list. */
5622 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5623 lisp_align_free (cblk);
5624 n_cons_blocks--;
5625 }
5626 else
5627 {
5628 num_free += this_free;
5629 cprev = &cblk->next;
5630 }
5631 }
5632 total_conses = num_used;
5633 total_free_conses = num_free;
5634 }
5635
5636 /* Put all unmarked floats on free list */
5637 {
5638 register struct float_block *fblk;
5639 struct float_block **fprev = &float_block;
5640 register int lim = float_block_index;
5641 register int num_free = 0, num_used = 0;
5642
5643 float_free_list = 0;
5644
5645 for (fblk = float_block; fblk; fblk = *fprev)
5646 {
5647 register int i;
5648 int this_free = 0;
5649 for (i = 0; i < lim; i++)
5650 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5651 {
5652 this_free++;
5653 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5654 float_free_list = &fblk->floats[i];
5655 }
5656 else
5657 {
5658 num_used++;
5659 FLOAT_UNMARK (&fblk->floats[i]);
5660 }
5661 lim = FLOAT_BLOCK_SIZE;
5662 /* If this block contains only free floats and we have already
5663 seen more than two blocks worth of free floats then deallocate
5664 this block. */
5665 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5666 {
5667 *fprev = fblk->next;
5668 /* Unhook from the free list. */
5669 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5670 lisp_align_free (fblk);
5671 n_float_blocks--;
5672 }
5673 else
5674 {
5675 num_free += this_free;
5676 fprev = &fblk->next;
5677 }
5678 }
5679 total_floats = num_used;
5680 total_free_floats = num_free;
5681 }
5682
5683 /* Put all unmarked intervals on free list */
5684 {
5685 register struct interval_block *iblk;
5686 struct interval_block **iprev = &interval_block;
5687 register int lim = interval_block_index;
5688 register int num_free = 0, num_used = 0;
5689
5690 interval_free_list = 0;
5691
5692 for (iblk = interval_block; iblk; iblk = *iprev)
5693 {
5694 register int i;
5695 int this_free = 0;
5696
5697 for (i = 0; i < lim; i++)
5698 {
5699 if (!iblk->intervals[i].gcmarkbit)
5700 {
5701 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5702 interval_free_list = &iblk->intervals[i];
5703 this_free++;
5704 }
5705 else
5706 {
5707 num_used++;
5708 iblk->intervals[i].gcmarkbit = 0;
5709 }
5710 }
5711 lim = INTERVAL_BLOCK_SIZE;
5712 /* If this block contains only free intervals and we have already
5713 seen more than two blocks worth of free intervals then
5714 deallocate this block. */
5715 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5716 {
5717 *iprev = iblk->next;
5718 /* Unhook from the free list. */
5719 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5720 lisp_free (iblk);
5721 n_interval_blocks--;
5722 }
5723 else
5724 {
5725 num_free += this_free;
5726 iprev = &iblk->next;
5727 }
5728 }
5729 total_intervals = num_used;
5730 total_free_intervals = num_free;
5731 }
5732
5733 /* Put all unmarked symbols on free list */
5734 {
5735 register struct symbol_block *sblk;
5736 struct symbol_block **sprev = &symbol_block;
5737 register int lim = symbol_block_index;
5738 register int num_free = 0, num_used = 0;
5739
5740 symbol_free_list = NULL;
5741
5742 for (sblk = symbol_block; sblk; sblk = *sprev)
5743 {
5744 int this_free = 0;
5745 struct Lisp_Symbol *sym = sblk->symbols;
5746 struct Lisp_Symbol *end = sym + lim;
5747
5748 for (; sym < end; ++sym)
5749 {
5750 /* Check if the symbol was created during loadup. In such a case
5751 it might be pointed to by pure bytecode which we don't trace,
5752 so we conservatively assume that it is live. */
5753 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5754
5755 if (!sym->gcmarkbit && !pure_p)
5756 {
5757 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5758 symbol_free_list = sym;
5759 #if GC_MARK_STACK
5760 symbol_free_list->function = Vdead;
5761 #endif
5762 ++this_free;
5763 }
5764 else
5765 {
5766 ++num_used;
5767 if (!pure_p)
5768 UNMARK_STRING (XSTRING (sym->xname));
5769 sym->gcmarkbit = 0;
5770 }
5771 }
5772
5773 lim = SYMBOL_BLOCK_SIZE;
5774 /* If this block contains only free symbols and we have already
5775 seen more than two blocks worth of free symbols then deallocate
5776 this block. */
5777 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5778 {
5779 *sprev = sblk->next;
5780 /* Unhook from the free list. */
5781 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5782 lisp_free (sblk);
5783 n_symbol_blocks--;
5784 }
5785 else
5786 {
5787 num_free += this_free;
5788 sprev = &sblk->next;
5789 }
5790 }
5791 total_symbols = num_used;
5792 total_free_symbols = num_free;
5793 }
5794
5795 /* Put all unmarked misc's on free list.
5796 For a marker, first unchain it from the buffer it points into. */
5797 {
5798 register struct marker_block *mblk;
5799 struct marker_block **mprev = &marker_block;
5800 register int lim = marker_block_index;
5801 register int num_free = 0, num_used = 0;
5802
5803 marker_free_list = 0;
5804
5805 for (mblk = marker_block; mblk; mblk = *mprev)
5806 {
5807 register int i;
5808 int this_free = 0;
5809
5810 for (i = 0; i < lim; i++)
5811 {
5812 if (!mblk->markers[i].u_marker.gcmarkbit)
5813 {
5814 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5815 unchain_marker (&mblk->markers[i].u_marker);
5816 /* Set the type of the freed object to Lisp_Misc_Free.
5817 We could leave the type alone, since nobody checks it,
5818 but this might catch bugs faster. */
5819 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5820 mblk->markers[i].u_free.chain = marker_free_list;
5821 marker_free_list = &mblk->markers[i];
5822 this_free++;
5823 }
5824 else
5825 {
5826 num_used++;
5827 mblk->markers[i].u_marker.gcmarkbit = 0;
5828 }
5829 }
5830 lim = MARKER_BLOCK_SIZE;
5831 /* If this block contains only free markers and we have already
5832 seen more than two blocks worth of free markers then deallocate
5833 this block. */
5834 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5835 {
5836 *mprev = mblk->next;
5837 /* Unhook from the free list. */
5838 marker_free_list = mblk->markers[0].u_free.chain;
5839 lisp_free (mblk);
5840 n_marker_blocks--;
5841 }
5842 else
5843 {
5844 num_free += this_free;
5845 mprev = &mblk->next;
5846 }
5847 }
5848
5849 total_markers = num_used;
5850 total_free_markers = num_free;
5851 }
5852
5853 /* Free all unmarked buffers */
5854 {
5855 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5856
5857 while (buffer)
5858 if (!VECTOR_MARKED_P (buffer))
5859 {
5860 if (prev)
5861 prev->next = buffer->next;
5862 else
5863 all_buffers = buffer->next;
5864 next = buffer->next;
5865 lisp_free (buffer);
5866 buffer = next;
5867 }
5868 else
5869 {
5870 VECTOR_UNMARK (buffer);
5871 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5872 prev = buffer, buffer = buffer->next;
5873 }
5874 }
5875
5876 /* Free all unmarked vectors */
5877 {
5878 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5879 total_vector_size = 0;
5880
5881 while (vector)
5882 if (!VECTOR_MARKED_P (vector))
5883 {
5884 if (prev)
5885 prev->next = vector->next;
5886 else
5887 all_vectors = vector->next;
5888 next = vector->next;
5889 lisp_free (vector);
5890 n_vectors--;
5891 vector = next;
5892
5893 }
5894 else
5895 {
5896 VECTOR_UNMARK (vector);
5897 if (vector->size & PSEUDOVECTOR_FLAG)
5898 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5899 else
5900 total_vector_size += vector->size;
5901 prev = vector, vector = vector->next;
5902 }
5903 }
5904
5905 #ifdef GC_CHECK_STRING_BYTES
5906 if (!noninteractive)
5907 check_string_bytes (1);
5908 #endif
5909 }
5910
5911
5912
5913 \f
5914 /* Debugging aids. */
5915
5916 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5917 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5918 This may be helpful in debugging Emacs's memory usage.
5919 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5920 ()
5921 {
5922 Lisp_Object end;
5923
5924 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5925
5926 return end;
5927 }
5928
5929 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5930 doc: /* Return a list of counters that measure how much consing there has been.
5931 Each of these counters increments for a certain kind of object.
5932 The counters wrap around from the largest positive integer to zero.
5933 Garbage collection does not decrease them.
5934 The elements of the value are as follows:
5935 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5936 All are in units of 1 = one object consed
5937 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5938 objects consed.
5939 MISCS include overlays, markers, and some internal types.
5940 Frames, windows, buffers, and subprocesses count as vectors
5941 (but the contents of a buffer's text do not count here). */)
5942 ()
5943 {
5944 Lisp_Object consed[8];
5945
5946 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5947 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5948 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5949 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5950 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5951 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5952 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5953 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5954
5955 return Flist (8, consed);
5956 }
5957
5958 int suppress_checking;
5959 void
5960 die (msg, file, line)
5961 const char *msg;
5962 const char *file;
5963 int line;
5964 {
5965 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5966 file, line, msg);
5967 abort ();
5968 }
5969 \f
5970 /* Initialization */
5971
5972 void
5973 init_alloc_once ()
5974 {
5975 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5976 purebeg = PUREBEG;
5977 pure_size = PURESIZE;
5978 pure_bytes_used = 0;
5979 pure_bytes_used_before_overflow = 0;
5980
5981 /* Initialize the list of free aligned blocks. */
5982 free_ablock = NULL;
5983
5984 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5985 mem_init ();
5986 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5987 #endif
5988
5989 all_vectors = 0;
5990 ignore_warnings = 1;
5991 #ifdef DOUG_LEA_MALLOC
5992 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5993 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5994 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5995 #endif
5996 init_strings ();
5997 init_cons ();
5998 init_symbol ();
5999 init_marker ();
6000 init_float ();
6001 init_intervals ();
6002
6003 #ifdef REL_ALLOC
6004 malloc_hysteresis = 32;
6005 #else
6006 malloc_hysteresis = 0;
6007 #endif
6008
6009 spare_memory = (char *) malloc (SPARE_MEMORY);
6010
6011 ignore_warnings = 0;
6012 gcprolist = 0;
6013 byte_stack_list = 0;
6014 staticidx = 0;
6015 consing_since_gc = 0;
6016 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6017 gc_relative_threshold = 0;
6018
6019 #ifdef VIRT_ADDR_VARIES
6020 malloc_sbrk_unused = 1<<22; /* A large number */
6021 malloc_sbrk_used = 100000; /* as reasonable as any number */
6022 #endif /* VIRT_ADDR_VARIES */
6023 }
6024
6025 void
6026 init_alloc ()
6027 {
6028 gcprolist = 0;
6029 byte_stack_list = 0;
6030 #if GC_MARK_STACK
6031 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6032 setjmp_tested_p = longjmps_done = 0;
6033 #endif
6034 #endif
6035 Vgc_elapsed = make_float (0.0);
6036 gcs_done = 0;
6037 }
6038
6039 void
6040 syms_of_alloc ()
6041 {
6042 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6043 doc: /* *Number of bytes of consing between garbage collections.
6044 Garbage collection can happen automatically once this many bytes have been
6045 allocated since the last garbage collection. All data types count.
6046
6047 Garbage collection happens automatically only when `eval' is called.
6048
6049 By binding this temporarily to a large number, you can effectively
6050 prevent garbage collection during a part of the program.
6051 See also `gc-cons-percentage'. */);
6052
6053 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6054 doc: /* *Portion of the heap used for allocation.
6055 Garbage collection can happen automatically once this portion of the heap
6056 has been allocated since the last garbage collection.
6057 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6058 Vgc_cons_percentage = make_float (0.1);
6059
6060 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6061 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6062
6063 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6064 doc: /* Number of cons cells that have been consed so far. */);
6065
6066 DEFVAR_INT ("floats-consed", &floats_consed,
6067 doc: /* Number of floats that have been consed so far. */);
6068
6069 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6070 doc: /* Number of vector cells that have been consed so far. */);
6071
6072 DEFVAR_INT ("symbols-consed", &symbols_consed,
6073 doc: /* Number of symbols that have been consed so far. */);
6074
6075 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6076 doc: /* Number of string characters that have been consed so far. */);
6077
6078 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6079 doc: /* Number of miscellaneous objects that have been consed so far. */);
6080
6081 DEFVAR_INT ("intervals-consed", &intervals_consed,
6082 doc: /* Number of intervals that have been consed so far. */);
6083
6084 DEFVAR_INT ("strings-consed", &strings_consed,
6085 doc: /* Number of strings that have been consed so far. */);
6086
6087 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6088 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6089 This means that certain objects should be allocated in shared (pure) space. */);
6090
6091 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6092 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6093 garbage_collection_messages = 0;
6094
6095 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6096 doc: /* Hook run after garbage collection has finished. */);
6097 Vpost_gc_hook = Qnil;
6098 Qpost_gc_hook = intern ("post-gc-hook");
6099 staticpro (&Qpost_gc_hook);
6100
6101 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6102 doc: /* Precomputed `signal' argument for memory-full error. */);
6103 /* We build this in advance because if we wait until we need it, we might
6104 not be able to allocate the memory to hold it. */
6105 Vmemory_signal_data
6106 = list2 (Qerror,
6107 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6108
6109 DEFVAR_LISP ("memory-full", &Vmemory_full,
6110 doc: /* Non-nil means we are handling a memory-full error. */);
6111 Vmemory_full = Qnil;
6112
6113 staticpro (&Qgc_cons_threshold);
6114 Qgc_cons_threshold = intern ("gc-cons-threshold");
6115
6116 staticpro (&Qchar_table_extra_slots);
6117 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6118
6119 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6120 doc: /* Accumulated time elapsed in garbage collections.
6121 The time is in seconds as a floating point value. */);
6122 DEFVAR_INT ("gcs-done", &gcs_done,
6123 doc: /* Accumulated number of garbage collections done. */);
6124
6125 defsubr (&Smemory_full_p);
6126 defsubr (&Scons);
6127 defsubr (&Slist);
6128 defsubr (&Svector);
6129 defsubr (&Smake_byte_code);
6130 defsubr (&Smake_list);
6131 defsubr (&Smake_vector);
6132 defsubr (&Smake_char_table);
6133 defsubr (&Smake_string);
6134 defsubr (&Smake_bool_vector);
6135 defsubr (&Smake_symbol);
6136 defsubr (&Smake_marker);
6137 defsubr (&Spurecopy);
6138 defsubr (&Sgarbage_collect);
6139 defsubr (&Smemory_limit);
6140 defsubr (&Smemory_use_counts);
6141
6142 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6143 defsubr (&Sgc_status);
6144 #endif
6145 }
6146
6147 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6148 (do not change this comment) */