]> code.delx.au - gnu-emacs/blob - src/keymap.c
* emacs.c (standard_args): Removed options -i, -itype, --icon-type,
[gnu-emacs] / src / keymap.c
1 /* Manipulation of keymaps
2 Copyright (C) 1985, 1986, 1987, 1988, 1993, 1994, 1995,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23
24 #include <config.h>
25 #include <stdio.h>
26 #include "lisp.h"
27 #include "commands.h"
28 #include "buffer.h"
29 #include "charset.h"
30 #include "keyboard.h"
31 #include "termhooks.h"
32 #include "blockinput.h"
33 #include "puresize.h"
34 #include "intervals.h"
35 #include "keymap.h"
36
37 /* The number of elements in keymap vectors. */
38 #define DENSE_TABLE_SIZE (0200)
39
40 /* Actually allocate storage for these variables */
41
42 Lisp_Object current_global_map; /* Current global keymap */
43
44 Lisp_Object global_map; /* default global key bindings */
45
46 Lisp_Object meta_map; /* The keymap used for globally bound
47 ESC-prefixed default commands */
48
49 Lisp_Object control_x_map; /* The keymap used for globally bound
50 C-x-prefixed default commands */
51
52 /* was MinibufLocalMap */
53 Lisp_Object Vminibuffer_local_map;
54 /* The keymap used by the minibuf for local
55 bindings when spaces are allowed in the
56 minibuf */
57
58 /* was MinibufLocalNSMap */
59 Lisp_Object Vminibuffer_local_ns_map;
60 /* The keymap used by the minibuf for local
61 bindings when spaces are not encouraged
62 in the minibuf */
63
64 /* keymap used for minibuffers when doing completion */
65 /* was MinibufLocalCompletionMap */
66 Lisp_Object Vminibuffer_local_completion_map;
67
68 /* keymap used for minibuffers when doing completion and require a match */
69 /* was MinibufLocalMustMatchMap */
70 Lisp_Object Vminibuffer_local_must_match_map;
71
72 /* Alist of minor mode variables and keymaps. */
73 Lisp_Object Vminor_mode_map_alist;
74
75 /* Alist of major-mode-specific overrides for
76 minor mode variables and keymaps. */
77 Lisp_Object Vminor_mode_overriding_map_alist;
78
79 /* List of emulation mode keymap alists. */
80 Lisp_Object Vemulation_mode_map_alists;
81
82 /* Keymap mapping ASCII function key sequences onto their preferred forms.
83 Initialized by the terminal-specific lisp files. See DEFVAR for more
84 documentation. */
85 Lisp_Object Vfunction_key_map;
86
87 /* Keymap mapping ASCII function key sequences onto their preferred forms. */
88 Lisp_Object Vkey_translation_map;
89
90 /* A list of all commands given new bindings since a certain time
91 when nil was stored here.
92 This is used to speed up recomputation of menu key equivalents
93 when Emacs starts up. t means don't record anything here. */
94 Lisp_Object Vdefine_key_rebound_commands;
95
96 Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii, Qmenu_item, Qremap;
97
98 /* Alist of elements like (DEL . "\d"). */
99 static Lisp_Object exclude_keys;
100
101 /* Pre-allocated 2-element vector for Fcommand_remapping to use. */
102 static Lisp_Object command_remapping_vector;
103
104 /* A char with the CHAR_META bit set in a vector or the 0200 bit set
105 in a string key sequence is equivalent to prefixing with this
106 character. */
107 extern Lisp_Object meta_prefix_char;
108
109 extern Lisp_Object Voverriding_local_map;
110
111 /* Hash table used to cache a reverse-map to speed up calls to where-is. */
112 static Lisp_Object where_is_cache;
113 /* Which keymaps are reverse-stored in the cache. */
114 static Lisp_Object where_is_cache_keymaps;
115
116 static Lisp_Object store_in_keymap P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
117 static void fix_submap_inheritance P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
118
119 static Lisp_Object define_as_prefix P_ ((Lisp_Object, Lisp_Object));
120 static void describe_command P_ ((Lisp_Object, Lisp_Object));
121 static void describe_translation P_ ((Lisp_Object, Lisp_Object));
122 static void describe_map P_ ((Lisp_Object, Lisp_Object,
123 void (*) P_ ((Lisp_Object, Lisp_Object)),
124 int, Lisp_Object, Lisp_Object*, int, int));
125 static void describe_vector P_ ((Lisp_Object, Lisp_Object, Lisp_Object,
126 void (*) (Lisp_Object, Lisp_Object), int,
127 Lisp_Object, Lisp_Object, int *,
128 int, int, int));
129 static void silly_event_symbol_error P_ ((Lisp_Object));
130 \f
131 /* Keymap object support - constructors and predicates. */
132
133 DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
134 doc: /* Construct and return a new keymap, of the form (keymap CHARTABLE . ALIST).
135 CHARTABLE is a char-table that holds the bindings for all characters
136 without modifiers. All entries in it are initially nil, meaning
137 "command undefined". ALIST is an assoc-list which holds bindings for
138 function keys, mouse events, and any other things that appear in the
139 input stream. Initially, ALIST is nil.
140
141 The optional arg STRING supplies a menu name for the keymap
142 in case you use it as a menu with `x-popup-menu'. */)
143 (string)
144 Lisp_Object string;
145 {
146 Lisp_Object tail;
147 if (!NILP (string))
148 tail = Fcons (string, Qnil);
149 else
150 tail = Qnil;
151 return Fcons (Qkeymap,
152 Fcons (Fmake_char_table (Qkeymap, Qnil), tail));
153 }
154
155 DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
156 doc: /* Construct and return a new sparse keymap.
157 Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),
158 which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),
159 which binds the function key or mouse event SYMBOL to DEFINITION.
160 Initially the alist is nil.
161
162 The optional arg STRING supplies a menu name for the keymap
163 in case you use it as a menu with `x-popup-menu'. */)
164 (string)
165 Lisp_Object string;
166 {
167 if (!NILP (string))
168 return Fcons (Qkeymap, Fcons (string, Qnil));
169 return Fcons (Qkeymap, Qnil);
170 }
171
172 /* This function is used for installing the standard key bindings
173 at initialization time.
174
175 For example:
176
177 initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
178
179 void
180 initial_define_key (keymap, key, defname)
181 Lisp_Object keymap;
182 int key;
183 char *defname;
184 {
185 store_in_keymap (keymap, make_number (key), intern (defname));
186 }
187
188 void
189 initial_define_lispy_key (keymap, keyname, defname)
190 Lisp_Object keymap;
191 char *keyname;
192 char *defname;
193 {
194 store_in_keymap (keymap, intern (keyname), intern (defname));
195 }
196
197 DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
198 doc: /* Return t if OBJECT is a keymap.
199
200 A keymap is a list (keymap . ALIST),
201 or a symbol whose function definition is itself a keymap.
202 ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);
203 a vector of densely packed bindings for small character codes
204 is also allowed as an element. */)
205 (object)
206 Lisp_Object object;
207 {
208 return (KEYMAPP (object) ? Qt : Qnil);
209 }
210
211 DEFUN ("keymap-prompt", Fkeymap_prompt, Skeymap_prompt, 1, 1, 0,
212 doc: /* Return the prompt-string of a keymap MAP.
213 If non-nil, the prompt is shown in the echo-area
214 when reading a key-sequence to be looked-up in this keymap. */)
215 (map)
216 Lisp_Object map;
217 {
218 map = get_keymap (map, 0, 0);
219 while (CONSP (map))
220 {
221 Lisp_Object tem = XCAR (map);
222 if (STRINGP (tem))
223 return tem;
224 map = XCDR (map);
225 }
226 return Qnil;
227 }
228
229 /* Check that OBJECT is a keymap (after dereferencing through any
230 symbols). If it is, return it.
231
232 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
233 is an autoload form, do the autoload and try again.
234 If AUTOLOAD is nonzero, callers must assume GC is possible.
235
236 If the map needs to be autoloaded, but AUTOLOAD is zero (and ERROR
237 is zero as well), return Qt.
238
239 ERROR controls how we respond if OBJECT isn't a keymap.
240 If ERROR is non-zero, signal an error; otherwise, just return Qnil.
241
242 Note that most of the time, we don't want to pursue autoloads.
243 Functions like Faccessible_keymaps which scan entire keymap trees
244 shouldn't load every autoloaded keymap. I'm not sure about this,
245 but it seems to me that only read_key_sequence, Flookup_key, and
246 Fdefine_key should cause keymaps to be autoloaded.
247
248 This function can GC when AUTOLOAD is non-zero, because it calls
249 do_autoload which can GC. */
250
251 Lisp_Object
252 get_keymap (object, error, autoload)
253 Lisp_Object object;
254 int error, autoload;
255 {
256 Lisp_Object tem;
257
258 autoload_retry:
259 if (NILP (object))
260 goto end;
261 if (CONSP (object) && EQ (XCAR (object), Qkeymap))
262 return object;
263
264 tem = indirect_function (object);
265 if (CONSP (tem))
266 {
267 if (EQ (XCAR (tem), Qkeymap))
268 return tem;
269
270 /* Should we do an autoload? Autoload forms for keymaps have
271 Qkeymap as their fifth element. */
272 if ((autoload || !error) && EQ (XCAR (tem), Qautoload)
273 && SYMBOLP (object))
274 {
275 Lisp_Object tail;
276
277 tail = Fnth (make_number (4), tem);
278 if (EQ (tail, Qkeymap))
279 {
280 if (autoload)
281 {
282 struct gcpro gcpro1, gcpro2;
283
284 GCPRO2 (tem, object);
285 do_autoload (tem, object);
286 UNGCPRO;
287
288 goto autoload_retry;
289 }
290 else
291 return Qt;
292 }
293 }
294 }
295
296 end:
297 if (error)
298 wrong_type_argument (Qkeymapp, object);
299 return Qnil;
300 }
301 \f
302 /* Return the parent map of KEYMAP, or nil if it has none.
303 We assume that KEYMAP is a valid keymap. */
304
305 Lisp_Object
306 keymap_parent (keymap, autoload)
307 Lisp_Object keymap;
308 int autoload;
309 {
310 Lisp_Object list;
311
312 keymap = get_keymap (keymap, 1, autoload);
313
314 /* Skip past the initial element `keymap'. */
315 list = XCDR (keymap);
316 for (; CONSP (list); list = XCDR (list))
317 {
318 /* See if there is another `keymap'. */
319 if (KEYMAPP (list))
320 return list;
321 }
322
323 return get_keymap (list, 0, autoload);
324 }
325
326 DEFUN ("keymap-parent", Fkeymap_parent, Skeymap_parent, 1, 1, 0,
327 doc: /* Return the parent keymap of KEYMAP. */)
328 (keymap)
329 Lisp_Object keymap;
330 {
331 return keymap_parent (keymap, 1);
332 }
333
334 /* Check whether MAP is one of MAPS parents. */
335 int
336 keymap_memberp (map, maps)
337 Lisp_Object map, maps;
338 {
339 if (NILP (map)) return 0;
340 while (KEYMAPP (maps) && !EQ (map, maps))
341 maps = keymap_parent (maps, 0);
342 return (EQ (map, maps));
343 }
344
345 /* Set the parent keymap of MAP to PARENT. */
346
347 DEFUN ("set-keymap-parent", Fset_keymap_parent, Sset_keymap_parent, 2, 2, 0,
348 doc: /* Modify KEYMAP to set its parent map to PARENT.
349 Return PARENT. PARENT should be nil or another keymap. */)
350 (keymap, parent)
351 Lisp_Object keymap, parent;
352 {
353 Lisp_Object list, prev;
354 struct gcpro gcpro1, gcpro2;
355 int i;
356
357 /* Force a keymap flush for the next call to where-is.
358 Since this can be called from within where-is, we don't set where_is_cache
359 directly but only where_is_cache_keymaps, since where_is_cache shouldn't
360 be changed during where-is, while where_is_cache_keymaps is only used at
361 the very beginning of where-is and can thus be changed here without any
362 adverse effect.
363 This is a very minor correctness (rather than safety) issue. */
364 where_is_cache_keymaps = Qt;
365
366 GCPRO2 (keymap, parent);
367 keymap = get_keymap (keymap, 1, 1);
368
369 if (!NILP (parent))
370 {
371 parent = get_keymap (parent, 1, 1);
372
373 /* Check for cycles. */
374 if (keymap_memberp (keymap, parent))
375 error ("Cyclic keymap inheritance");
376 }
377
378 /* Skip past the initial element `keymap'. */
379 prev = keymap;
380 while (1)
381 {
382 list = XCDR (prev);
383 /* If there is a parent keymap here, replace it.
384 If we came to the end, add the parent in PREV. */
385 if (!CONSP (list) || KEYMAPP (list))
386 {
387 /* If we already have the right parent, return now
388 so that we avoid the loops below. */
389 if (EQ (XCDR (prev), parent))
390 RETURN_UNGCPRO (parent);
391
392 XSETCDR (prev, parent);
393 break;
394 }
395 prev = list;
396 }
397
398 /* Scan through for submaps, and set their parents too. */
399
400 for (list = XCDR (keymap); CONSP (list); list = XCDR (list))
401 {
402 /* Stop the scan when we come to the parent. */
403 if (EQ (XCAR (list), Qkeymap))
404 break;
405
406 /* If this element holds a prefix map, deal with it. */
407 if (CONSP (XCAR (list))
408 && CONSP (XCDR (XCAR (list))))
409 fix_submap_inheritance (keymap, XCAR (XCAR (list)),
410 XCDR (XCAR (list)));
411
412 if (VECTORP (XCAR (list)))
413 for (i = 0; i < XVECTOR (XCAR (list))->size; i++)
414 if (CONSP (XVECTOR (XCAR (list))->contents[i]))
415 fix_submap_inheritance (keymap, make_number (i),
416 XVECTOR (XCAR (list))->contents[i]);
417
418 if (CHAR_TABLE_P (XCAR (list)))
419 {
420 Lisp_Object indices[3];
421
422 map_char_table (fix_submap_inheritance, Qnil,
423 XCAR (list), XCAR (list),
424 keymap, 0, indices);
425 }
426 }
427
428 RETURN_UNGCPRO (parent);
429 }
430
431 /* EVENT is defined in MAP as a prefix, and SUBMAP is its definition.
432 if EVENT is also a prefix in MAP's parent,
433 make sure that SUBMAP inherits that definition as its own parent. */
434
435 static void
436 fix_submap_inheritance (map, event, submap)
437 Lisp_Object map, event, submap;
438 {
439 Lisp_Object map_parent, parent_entry;
440
441 /* SUBMAP is a cons that we found as a key binding.
442 Discard the other things found in a menu key binding. */
443
444 submap = get_keymap (get_keyelt (submap, 0), 0, 0);
445
446 /* If it isn't a keymap now, there's no work to do. */
447 if (!CONSP (submap))
448 return;
449
450 map_parent = keymap_parent (map, 0);
451 if (!NILP (map_parent))
452 parent_entry =
453 get_keymap (access_keymap (map_parent, event, 0, 0, 0), 0, 0);
454 else
455 parent_entry = Qnil;
456
457 /* If MAP's parent has something other than a keymap,
458 our own submap shadows it completely. */
459 if (!CONSP (parent_entry))
460 return;
461
462 if (! EQ (parent_entry, submap))
463 {
464 Lisp_Object submap_parent;
465 submap_parent = submap;
466 while (1)
467 {
468 Lisp_Object tem;
469
470 tem = keymap_parent (submap_parent, 0);
471
472 if (KEYMAPP (tem))
473 {
474 if (keymap_memberp (tem, parent_entry))
475 /* Fset_keymap_parent could create a cycle. */
476 return;
477 submap_parent = tem;
478 }
479 else
480 break;
481 }
482 Fset_keymap_parent (submap_parent, parent_entry);
483 }
484 }
485 \f
486 /* Look up IDX in MAP. IDX may be any sort of event.
487 Note that this does only one level of lookup; IDX must be a single
488 event, not a sequence.
489
490 If T_OK is non-zero, bindings for Qt are treated as default
491 bindings; any key left unmentioned by other tables and bindings is
492 given the binding of Qt.
493
494 If T_OK is zero, bindings for Qt are not treated specially.
495
496 If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */
497
498 Lisp_Object
499 access_keymap (map, idx, t_ok, noinherit, autoload)
500 Lisp_Object map;
501 Lisp_Object idx;
502 int t_ok;
503 int noinherit;
504 int autoload;
505 {
506 Lisp_Object val;
507
508 /* Qunbound in VAL means we have found no binding yet. */
509 val = Qunbound;
510
511 /* If idx is a list (some sort of mouse click, perhaps?),
512 the index we want to use is the car of the list, which
513 ought to be a symbol. */
514 idx = EVENT_HEAD (idx);
515
516 /* If idx is a symbol, it might have modifiers, which need to
517 be put in the canonical order. */
518 if (SYMBOLP (idx))
519 idx = reorder_modifiers (idx);
520 else if (INTEGERP (idx))
521 /* Clobber the high bits that can be present on a machine
522 with more than 24 bits of integer. */
523 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
524
525 /* Handle the special meta -> esc mapping. */
526 if (INTEGERP (idx) && XUINT (idx) & meta_modifier)
527 {
528 /* See if there is a meta-map. If there's none, there is
529 no binding for IDX, unless a default binding exists in MAP. */
530 struct gcpro gcpro1;
531 Lisp_Object meta_map;
532 GCPRO1 (map);
533 /* A strange value in which Meta is set would cause
534 infinite recursion. Protect against that. */
535 if (XINT (meta_prefix_char) & CHAR_META)
536 meta_prefix_char = make_number (27);
537 meta_map = get_keymap (access_keymap (map, meta_prefix_char,
538 t_ok, noinherit, autoload),
539 0, autoload);
540 UNGCPRO;
541 if (CONSP (meta_map))
542 {
543 map = meta_map;
544 idx = make_number (XUINT (idx) & ~meta_modifier);
545 }
546 else if (t_ok)
547 /* Set IDX to t, so that we only find a default binding. */
548 idx = Qt;
549 else
550 /* We know there is no binding. */
551 return Qnil;
552 }
553
554 /* t_binding is where we put a default binding that applies,
555 to use in case we do not find a binding specifically
556 for this key sequence. */
557 {
558 Lisp_Object tail;
559 Lisp_Object t_binding = Qnil;
560 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
561
562 GCPRO4 (map, tail, idx, t_binding);
563
564 /* If `t_ok' is 2, both `t' and generic-char bindings are accepted.
565 If it is 1, only generic-char bindings are accepted.
566 Otherwise, neither are. */
567 t_ok = t_ok ? 2 : 0;
568
569 for (tail = XCDR (map);
570 (CONSP (tail)
571 || (tail = get_keymap (tail, 0, autoload), CONSP (tail)));
572 tail = XCDR (tail))
573 {
574 Lisp_Object binding;
575
576 binding = XCAR (tail);
577 if (SYMBOLP (binding))
578 {
579 /* If NOINHERIT, stop finding prefix definitions
580 after we pass a second occurrence of the `keymap' symbol. */
581 if (noinherit && EQ (binding, Qkeymap))
582 RETURN_UNGCPRO (Qnil);
583 }
584 else if (CONSP (binding))
585 {
586 Lisp_Object key = XCAR (binding);
587
588 if (EQ (key, idx))
589 val = XCDR (binding);
590 else if (t_ok
591 && INTEGERP (idx)
592 && (XINT (idx) & CHAR_MODIFIER_MASK) == 0
593 && INTEGERP (key)
594 && (XINT (key) & CHAR_MODIFIER_MASK) == 0
595 && !SINGLE_BYTE_CHAR_P (XINT (idx))
596 && !SINGLE_BYTE_CHAR_P (XINT (key))
597 && CHAR_VALID_P (XINT (key), 1)
598 && !CHAR_VALID_P (XINT (key), 0)
599 && (CHAR_CHARSET (XINT (key))
600 == CHAR_CHARSET (XINT (idx))))
601 {
602 /* KEY is the generic character of the charset of IDX.
603 Use KEY's binding if there isn't a binding for IDX
604 itself. */
605 t_binding = XCDR (binding);
606 t_ok = 0;
607 }
608 else if (t_ok > 1 && EQ (key, Qt))
609 {
610 t_binding = XCDR (binding);
611 t_ok = 1;
612 }
613 }
614 else if (VECTORP (binding))
615 {
616 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (binding))
617 val = AREF (binding, XFASTINT (idx));
618 }
619 else if (CHAR_TABLE_P (binding))
620 {
621 /* Character codes with modifiers
622 are not included in a char-table.
623 All character codes without modifiers are included. */
624 if (NATNUMP (idx) && (XFASTINT (idx) & CHAR_MODIFIER_MASK) == 0)
625 {
626 val = Faref (binding, idx);
627 /* `nil' has a special meaning for char-tables, so
628 we use something else to record an explicitly
629 unbound entry. */
630 if (NILP (val))
631 val = Qunbound;
632 }
633 }
634
635 /* If we found a binding, clean it up and return it. */
636 if (!EQ (val, Qunbound))
637 {
638 if (EQ (val, Qt))
639 /* A Qt binding is just like an explicit nil binding
640 (i.e. it shadows any parent binding but not bindings in
641 keymaps of lower precedence). */
642 val = Qnil;
643 val = get_keyelt (val, autoload);
644 if (KEYMAPP (val))
645 fix_submap_inheritance (map, idx, val);
646 RETURN_UNGCPRO (val);
647 }
648 QUIT;
649 }
650 UNGCPRO;
651 return get_keyelt (t_binding, autoload);
652 }
653 }
654
655 static void
656 map_keymap_item (fun, args, key, val, data)
657 map_keymap_function_t fun;
658 Lisp_Object args, key, val;
659 void *data;
660 {
661 /* We should maybe try to detect bindings shadowed by previous
662 ones and things like that. */
663 if (EQ (val, Qt))
664 val = Qnil;
665 (*fun) (key, val, args, data);
666 }
667
668 static void
669 map_keymap_char_table_item (args, key, val)
670 Lisp_Object args, key, val;
671 {
672 if (!NILP (val))
673 {
674 map_keymap_function_t fun = XSAVE_VALUE (XCAR (args))->pointer;
675 args = XCDR (args);
676 map_keymap_item (fun, XCDR (args), key, val,
677 XSAVE_VALUE (XCAR (args))->pointer);
678 }
679 }
680
681 /* Call FUN for every binding in MAP.
682 FUN is called with 4 arguments: FUN (KEY, BINDING, ARGS, DATA).
683 AUTOLOAD if non-zero means that we can autoload keymaps if necessary. */
684 void
685 map_keymap (map, fun, args, data, autoload)
686 map_keymap_function_t fun;
687 Lisp_Object map, args;
688 void *data;
689 int autoload;
690 {
691 struct gcpro gcpro1, gcpro2, gcpro3;
692 Lisp_Object tail;
693
694 GCPRO3 (map, args, tail);
695 map = get_keymap (map, 1, autoload);
696 for (tail = (CONSP (map) && EQ (Qkeymap, XCAR (map))) ? XCDR (map) : map;
697 CONSP (tail) || (tail = get_keymap (tail, 0, autoload), CONSP (tail));
698 tail = XCDR (tail))
699 {
700 Lisp_Object binding = XCAR (tail);
701
702 if (CONSP (binding))
703 map_keymap_item (fun, args, XCAR (binding), XCDR (binding), data);
704 else if (VECTORP (binding))
705 {
706 /* Loop over the char values represented in the vector. */
707 int len = ASIZE (binding);
708 int c;
709 for (c = 0; c < len; c++)
710 {
711 Lisp_Object character;
712 XSETFASTINT (character, c);
713 map_keymap_item (fun, args, character, AREF (binding, c), data);
714 }
715 }
716 else if (CHAR_TABLE_P (binding))
717 {
718 Lisp_Object indices[3];
719 map_char_table (map_keymap_char_table_item, Qnil, binding, binding,
720 Fcons (make_save_value (fun, 0),
721 Fcons (make_save_value (data, 0),
722 args)),
723 0, indices);
724 }
725 }
726 UNGCPRO;
727 }
728
729 static void
730 map_keymap_call (key, val, fun, dummy)
731 Lisp_Object key, val, fun;
732 void *dummy;
733 {
734 call2 (fun, key, val);
735 }
736
737 DEFUN ("map-keymap", Fmap_keymap, Smap_keymap, 2, 3, 0,
738 doc: /* Call FUNCTION for every binding in KEYMAP.
739 FUNCTION is called with two arguments: the event and its binding.
740 If KEYMAP has a parent, the parent's bindings are included as well.
741 This works recursively: if the parent has itself a parent, then the
742 grandparent's bindings are also included and so on.
743 usage: (map-keymap FUNCTION KEYMAP) */)
744 (function, keymap, sort_first)
745 Lisp_Object function, keymap, sort_first;
746 {
747 if (INTEGERP (function))
748 /* We have to stop integers early since map_keymap gives them special
749 significance. */
750 Fsignal (Qinvalid_function, Fcons (function, Qnil));
751 if (! NILP (sort_first))
752 return call3 (intern ("map-keymap-internal"), function, keymap, Qt);
753
754 map_keymap (keymap, map_keymap_call, function, NULL, 1);
755 return Qnil;
756 }
757
758 /* Given OBJECT which was found in a slot in a keymap,
759 trace indirect definitions to get the actual definition of that slot.
760 An indirect definition is a list of the form
761 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
762 and INDEX is the object to look up in KEYMAP to yield the definition.
763
764 Also if OBJECT has a menu string as the first element,
765 remove that. Also remove a menu help string as second element.
766
767 If AUTOLOAD is nonzero, load autoloadable keymaps
768 that are referred to with indirection.
769
770 This can GC because menu_item_eval_property calls Feval. */
771
772 Lisp_Object
773 get_keyelt (object, autoload)
774 Lisp_Object object;
775 int autoload;
776 {
777 while (1)
778 {
779 if (!(CONSP (object)))
780 /* This is really the value. */
781 return object;
782
783 /* If the keymap contents looks like (keymap ...) or (lambda ...)
784 then use itself. */
785 else if (EQ (XCAR (object), Qkeymap) || EQ (XCAR (object), Qlambda))
786 return object;
787
788 /* If the keymap contents looks like (menu-item name . DEFN)
789 or (menu-item name DEFN ...) then use DEFN.
790 This is a new format menu item. */
791 else if (EQ (XCAR (object), Qmenu_item))
792 {
793 if (CONSP (XCDR (object)))
794 {
795 Lisp_Object tem;
796
797 object = XCDR (XCDR (object));
798 tem = object;
799 if (CONSP (object))
800 object = XCAR (object);
801
802 /* If there's a `:filter FILTER', apply FILTER to the
803 menu-item's definition to get the real definition to
804 use. */
805 for (; CONSP (tem) && CONSP (XCDR (tem)); tem = XCDR (tem))
806 if (EQ (XCAR (tem), QCfilter) && autoload)
807 {
808 Lisp_Object filter;
809 filter = XCAR (XCDR (tem));
810 filter = list2 (filter, list2 (Qquote, object));
811 object = menu_item_eval_property (filter);
812 break;
813 }
814 }
815 else
816 /* Invalid keymap. */
817 return object;
818 }
819
820 /* If the keymap contents looks like (STRING . DEFN), use DEFN.
821 Keymap alist elements like (CHAR MENUSTRING . DEFN)
822 will be used by HierarKey menus. */
823 else if (STRINGP (XCAR (object)))
824 {
825 object = XCDR (object);
826 /* Also remove a menu help string, if any,
827 following the menu item name. */
828 if (CONSP (object) && STRINGP (XCAR (object)))
829 object = XCDR (object);
830 /* Also remove the sublist that caches key equivalences, if any. */
831 if (CONSP (object) && CONSP (XCAR (object)))
832 {
833 Lisp_Object carcar;
834 carcar = XCAR (XCAR (object));
835 if (NILP (carcar) || VECTORP (carcar))
836 object = XCDR (object);
837 }
838 }
839
840 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
841 else
842 {
843 struct gcpro gcpro1;
844 Lisp_Object map;
845 GCPRO1 (object);
846 map = get_keymap (Fcar_safe (object), 0, autoload);
847 UNGCPRO;
848 return (!CONSP (map) ? object /* Invalid keymap */
849 : access_keymap (map, Fcdr (object), 0, 0, autoload));
850 }
851 }
852 }
853
854 static Lisp_Object
855 store_in_keymap (keymap, idx, def)
856 Lisp_Object keymap;
857 register Lisp_Object idx;
858 register Lisp_Object def;
859 {
860 /* Flush any reverse-map cache. */
861 where_is_cache = Qnil;
862 where_is_cache_keymaps = Qt;
863
864 /* If we are preparing to dump, and DEF is a menu element
865 with a menu item indicator, copy it to ensure it is not pure. */
866 if (CONSP (def) && PURE_P (def)
867 && (EQ (XCAR (def), Qmenu_item) || STRINGP (XCAR (def))))
868 def = Fcons (XCAR (def), XCDR (def));
869
870 if (!CONSP (keymap) || !EQ (XCAR (keymap), Qkeymap))
871 error ("attempt to define a key in a non-keymap");
872
873 /* If idx is a list (some sort of mouse click, perhaps?),
874 the index we want to use is the car of the list, which
875 ought to be a symbol. */
876 idx = EVENT_HEAD (idx);
877
878 /* If idx is a symbol, it might have modifiers, which need to
879 be put in the canonical order. */
880 if (SYMBOLP (idx))
881 idx = reorder_modifiers (idx);
882 else if (INTEGERP (idx))
883 /* Clobber the high bits that can be present on a machine
884 with more than 24 bits of integer. */
885 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
886
887 /* Scan the keymap for a binding of idx. */
888 {
889 Lisp_Object tail;
890
891 /* The cons after which we should insert new bindings. If the
892 keymap has a table element, we record its position here, so new
893 bindings will go after it; this way, the table will stay
894 towards the front of the alist and character lookups in dense
895 keymaps will remain fast. Otherwise, this just points at the
896 front of the keymap. */
897 Lisp_Object insertion_point;
898
899 insertion_point = keymap;
900 for (tail = XCDR (keymap); CONSP (tail); tail = XCDR (tail))
901 {
902 Lisp_Object elt;
903
904 elt = XCAR (tail);
905 if (VECTORP (elt))
906 {
907 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (elt))
908 {
909 ASET (elt, XFASTINT (idx), def);
910 return def;
911 }
912 insertion_point = tail;
913 }
914 else if (CHAR_TABLE_P (elt))
915 {
916 /* Character codes with modifiers
917 are not included in a char-table.
918 All character codes without modifiers are included. */
919 if (NATNUMP (idx) && !(XFASTINT (idx) & CHAR_MODIFIER_MASK))
920 {
921 Faset (elt, idx,
922 /* `nil' has a special meaning for char-tables, so
923 we use something else to record an explicitly
924 unbound entry. */
925 NILP (def) ? Qt : def);
926 return def;
927 }
928 insertion_point = tail;
929 }
930 else if (CONSP (elt))
931 {
932 if (EQ (idx, XCAR (elt)))
933 {
934 XSETCDR (elt, def);
935 return def;
936 }
937 }
938 else if (EQ (elt, Qkeymap))
939 /* If we find a 'keymap' symbol in the spine of KEYMAP,
940 then we must have found the start of a second keymap
941 being used as the tail of KEYMAP, and a binding for IDX
942 should be inserted before it. */
943 goto keymap_end;
944
945 QUIT;
946 }
947
948 keymap_end:
949 /* We have scanned the entire keymap, and not found a binding for
950 IDX. Let's add one. */
951 XSETCDR (insertion_point,
952 Fcons (Fcons (idx, def), XCDR (insertion_point)));
953 }
954
955 return def;
956 }
957
958 EXFUN (Fcopy_keymap, 1);
959
960 Lisp_Object
961 copy_keymap_item (elt)
962 Lisp_Object elt;
963 {
964 Lisp_Object res, tem;
965
966 if (!CONSP (elt))
967 return elt;
968
969 res = tem = elt;
970
971 /* Is this a new format menu item. */
972 if (EQ (XCAR (tem), Qmenu_item))
973 {
974 /* Copy cell with menu-item marker. */
975 res = elt = Fcons (XCAR (tem), XCDR (tem));
976 tem = XCDR (elt);
977 if (CONSP (tem))
978 {
979 /* Copy cell with menu-item name. */
980 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
981 elt = XCDR (elt);
982 tem = XCDR (elt);
983 }
984 if (CONSP (tem))
985 {
986 /* Copy cell with binding and if the binding is a keymap,
987 copy that. */
988 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
989 elt = XCDR (elt);
990 tem = XCAR (elt);
991 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
992 XSETCAR (elt, Fcopy_keymap (tem));
993 tem = XCDR (elt);
994 if (CONSP (tem) && CONSP (XCAR (tem)))
995 /* Delete cache for key equivalences. */
996 XSETCDR (elt, XCDR (tem));
997 }
998 }
999 else
1000 {
1001 /* It may be an old fomat menu item.
1002 Skip the optional menu string. */
1003 if (STRINGP (XCAR (tem)))
1004 {
1005 /* Copy the cell, since copy-alist didn't go this deep. */
1006 res = elt = Fcons (XCAR (tem), XCDR (tem));
1007 tem = XCDR (elt);
1008 /* Also skip the optional menu help string. */
1009 if (CONSP (tem) && STRINGP (XCAR (tem)))
1010 {
1011 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
1012 elt = XCDR (elt);
1013 tem = XCDR (elt);
1014 }
1015 /* There may also be a list that caches key equivalences.
1016 Just delete it for the new keymap. */
1017 if (CONSP (tem)
1018 && CONSP (XCAR (tem))
1019 && (NILP (XCAR (XCAR (tem)))
1020 || VECTORP (XCAR (XCAR (tem)))))
1021 {
1022 XSETCDR (elt, XCDR (tem));
1023 tem = XCDR (tem);
1024 }
1025 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
1026 XSETCDR (elt, Fcopy_keymap (tem));
1027 }
1028 else if (EQ (XCAR (tem), Qkeymap))
1029 res = Fcopy_keymap (elt);
1030 }
1031 return res;
1032 }
1033
1034 static void
1035 copy_keymap_1 (chartable, idx, elt)
1036 Lisp_Object chartable, idx, elt;
1037 {
1038 Faset (chartable, idx, copy_keymap_item (elt));
1039 }
1040
1041 DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
1042 doc: /* Return a copy of the keymap KEYMAP.
1043 The copy starts out with the same definitions of KEYMAP,
1044 but changing either the copy or KEYMAP does not affect the other.
1045 Any key definitions that are subkeymaps are recursively copied.
1046 However, a key definition which is a symbol whose definition is a keymap
1047 is not copied. */)
1048 (keymap)
1049 Lisp_Object keymap;
1050 {
1051 register Lisp_Object copy, tail;
1052 keymap = get_keymap (keymap, 1, 0);
1053 copy = tail = Fcons (Qkeymap, Qnil);
1054 keymap = XCDR (keymap); /* Skip the `keymap' symbol. */
1055
1056 while (CONSP (keymap) && !EQ (XCAR (keymap), Qkeymap))
1057 {
1058 Lisp_Object elt = XCAR (keymap);
1059 if (CHAR_TABLE_P (elt))
1060 {
1061 Lisp_Object indices[3];
1062 elt = Fcopy_sequence (elt);
1063 map_char_table (copy_keymap_1, Qnil, elt, elt, elt, 0, indices);
1064 }
1065 else if (VECTORP (elt))
1066 {
1067 int i;
1068 elt = Fcopy_sequence (elt);
1069 for (i = 0; i < ASIZE (elt); i++)
1070 ASET (elt, i, copy_keymap_item (AREF (elt, i)));
1071 }
1072 else if (CONSP (elt))
1073 elt = Fcons (XCAR (elt), copy_keymap_item (XCDR (elt)));
1074 XSETCDR (tail, Fcons (elt, Qnil));
1075 tail = XCDR (tail);
1076 keymap = XCDR (keymap);
1077 }
1078 XSETCDR (tail, keymap);
1079 return copy;
1080 }
1081 \f
1082 /* Simple Keymap mutators and accessors. */
1083
1084 /* GC is possible in this function if it autoloads a keymap. */
1085
1086 DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
1087 doc: /* In KEYMAP, define key sequence KEY as DEF.
1088 KEYMAP is a keymap.
1089
1090 KEY is a string or a vector of symbols and characters meaning a
1091 sequence of keystrokes and events. Non-ASCII characters with codes
1092 above 127 (such as ISO Latin-1) can be included if you use a vector.
1093 Using [t] for KEY creates a default definition, which applies to any
1094 event type that has no other definition in this keymap.
1095
1096 DEF is anything that can be a key's definition:
1097 nil (means key is undefined in this keymap),
1098 a command (a Lisp function suitable for interactive calling),
1099 a string (treated as a keyboard macro),
1100 a keymap (to define a prefix key),
1101 a symbol (when the key is looked up, the symbol will stand for its
1102 function definition, which should at that time be one of the above,
1103 or another symbol whose function definition is used, etc.),
1104 a cons (STRING . DEFN), meaning that DEFN is the definition
1105 (DEFN should be a valid definition in its own right),
1106 or a cons (MAP . CHAR), meaning use definition of CHAR in keymap MAP.
1107
1108 If KEYMAP is a sparse keymap with a binding for KEY, the existing
1109 binding is altered. If there is no binding for KEY, the new pair
1110 binding KEY to DEF is added at the front of KEYMAP. */)
1111 (keymap, key, def)
1112 Lisp_Object keymap;
1113 Lisp_Object key;
1114 Lisp_Object def;
1115 {
1116 register int idx;
1117 register Lisp_Object c;
1118 register Lisp_Object cmd;
1119 int metized = 0;
1120 int meta_bit;
1121 int length;
1122 struct gcpro gcpro1, gcpro2, gcpro3;
1123
1124 GCPRO3 (keymap, key, def);
1125 keymap = get_keymap (keymap, 1, 1);
1126
1127 if (!VECTORP (key) && !STRINGP (key))
1128 key = wrong_type_argument (Qarrayp, key);
1129
1130 length = XFASTINT (Flength (key));
1131 if (length == 0)
1132 RETURN_UNGCPRO (Qnil);
1133
1134 if (SYMBOLP (def) && !EQ (Vdefine_key_rebound_commands, Qt))
1135 Vdefine_key_rebound_commands = Fcons (def, Vdefine_key_rebound_commands);
1136
1137 meta_bit = VECTORP (key) ? meta_modifier : 0x80;
1138
1139 idx = 0;
1140 while (1)
1141 {
1142 c = Faref (key, make_number (idx));
1143
1144 if (CONSP (c) && lucid_event_type_list_p (c))
1145 c = Fevent_convert_list (c);
1146
1147 if (SYMBOLP (c))
1148 silly_event_symbol_error (c);
1149
1150 if (INTEGERP (c)
1151 && (XINT (c) & meta_bit)
1152 && !metized)
1153 {
1154 c = meta_prefix_char;
1155 metized = 1;
1156 }
1157 else
1158 {
1159 if (INTEGERP (c))
1160 XSETINT (c, XINT (c) & ~meta_bit);
1161
1162 metized = 0;
1163 idx++;
1164 }
1165
1166 if (!INTEGERP (c) && !SYMBOLP (c) && !CONSP (c))
1167 error ("Key sequence contains invalid event");
1168
1169 if (idx == length)
1170 RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
1171
1172 cmd = access_keymap (keymap, c, 0, 1, 1);
1173
1174 /* If this key is undefined, make it a prefix. */
1175 if (NILP (cmd))
1176 cmd = define_as_prefix (keymap, c);
1177
1178 keymap = get_keymap (cmd, 0, 1);
1179 if (!CONSP (keymap))
1180 /* We must use Fkey_description rather than just passing key to
1181 error; key might be a vector, not a string. */
1182 error ("Key sequence %s uses invalid prefix characters",
1183 SDATA (Fkey_description (key, Qnil)));
1184 }
1185 }
1186
1187 /* This function may GC (it calls Fkey_binding). */
1188
1189 DEFUN ("command-remapping", Fcommand_remapping, Scommand_remapping, 1, 1, 0,
1190 doc: /* Return the remapping for command COMMAND in current keymaps.
1191 Returns nil if COMMAND is not remapped (or not a symbol). */)
1192 (command)
1193 Lisp_Object command;
1194 {
1195 if (!SYMBOLP (command))
1196 return Qnil;
1197
1198 ASET (command_remapping_vector, 1, command);
1199 return Fkey_binding (command_remapping_vector, Qnil, Qt);
1200 }
1201
1202 /* Value is number if KEY is too long; nil if valid but has no definition. */
1203 /* GC is possible in this function if it autoloads a keymap. */
1204
1205 DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
1206 doc: /* In keymap KEYMAP, look up key sequence KEY. Return the definition.
1207 nil means undefined. See doc of `define-key' for kinds of definitions.
1208
1209 A number as value means KEY is "too long";
1210 that is, characters or symbols in it except for the last one
1211 fail to be a valid sequence of prefix characters in KEYMAP.
1212 The number is how many characters at the front of KEY
1213 it takes to reach a non-prefix command.
1214
1215 Normally, `lookup-key' ignores bindings for t, which act as default
1216 bindings, used when nothing else in the keymap applies; this makes it
1217 usable as a general function for probing keymaps. However, if the
1218 third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will
1219 recognize the default bindings, just as `read-key-sequence' does. */)
1220 (keymap, key, accept_default)
1221 Lisp_Object keymap;
1222 Lisp_Object key;
1223 Lisp_Object accept_default;
1224 {
1225 register int idx;
1226 register Lisp_Object cmd;
1227 register Lisp_Object c;
1228 int length;
1229 int t_ok = !NILP (accept_default);
1230 struct gcpro gcpro1, gcpro2;
1231
1232 GCPRO2 (keymap, key);
1233 keymap = get_keymap (keymap, 1, 1);
1234
1235 if (!VECTORP (key) && !STRINGP (key))
1236 key = wrong_type_argument (Qarrayp, key);
1237
1238 length = XFASTINT (Flength (key));
1239 if (length == 0)
1240 RETURN_UNGCPRO (keymap);
1241
1242 idx = 0;
1243 while (1)
1244 {
1245 c = Faref (key, make_number (idx++));
1246
1247 if (CONSP (c) && lucid_event_type_list_p (c))
1248 c = Fevent_convert_list (c);
1249
1250 /* Turn the 8th bit of string chars into a meta modifier. */
1251 if (INTEGERP (c) && XINT (c) & 0x80 && STRINGP (key))
1252 XSETINT (c, (XINT (c) | meta_modifier) & ~0x80);
1253
1254 /* Allow string since binding for `menu-bar-select-buffer'
1255 includes the buffer name in the key sequence. */
1256 if (!INTEGERP (c) && !SYMBOLP (c) && !CONSP (c) && !STRINGP (c))
1257 error ("Key sequence contains invalid event");
1258
1259 cmd = access_keymap (keymap, c, t_ok, 0, 1);
1260 if (idx == length)
1261 RETURN_UNGCPRO (cmd);
1262
1263 keymap = get_keymap (cmd, 0, 1);
1264 if (!CONSP (keymap))
1265 RETURN_UNGCPRO (make_number (idx));
1266
1267 QUIT;
1268 }
1269 }
1270
1271 /* Make KEYMAP define event C as a keymap (i.e., as a prefix).
1272 Assume that currently it does not define C at all.
1273 Return the keymap. */
1274
1275 static Lisp_Object
1276 define_as_prefix (keymap, c)
1277 Lisp_Object keymap, c;
1278 {
1279 Lisp_Object cmd;
1280
1281 cmd = Fmake_sparse_keymap (Qnil);
1282 /* If this key is defined as a prefix in an inherited keymap,
1283 make it a prefix in this map, and make its definition
1284 inherit the other prefix definition. */
1285 cmd = nconc2 (cmd, access_keymap (keymap, c, 0, 0, 0));
1286 store_in_keymap (keymap, c, cmd);
1287
1288 return cmd;
1289 }
1290
1291 /* Append a key to the end of a key sequence. We always make a vector. */
1292
1293 Lisp_Object
1294 append_key (key_sequence, key)
1295 Lisp_Object key_sequence, key;
1296 {
1297 Lisp_Object args[2];
1298
1299 args[0] = key_sequence;
1300
1301 args[1] = Fcons (key, Qnil);
1302 return Fvconcat (2, args);
1303 }
1304
1305 /* Given a event type C which is a symbol,
1306 signal an error if is a mistake such as RET or M-RET or C-DEL, etc. */
1307
1308 static void
1309 silly_event_symbol_error (c)
1310 Lisp_Object c;
1311 {
1312 Lisp_Object parsed, base, name, assoc;
1313 int modifiers;
1314
1315 parsed = parse_modifiers (c);
1316 modifiers = (int) XUINT (XCAR (XCDR (parsed)));
1317 base = XCAR (parsed);
1318 name = Fsymbol_name (base);
1319 /* This alist includes elements such as ("RET" . "\\r"). */
1320 assoc = Fassoc (name, exclude_keys);
1321
1322 if (! NILP (assoc))
1323 {
1324 char new_mods[sizeof ("\\A-\\C-\\H-\\M-\\S-\\s-")];
1325 char *p = new_mods;
1326 Lisp_Object keystring;
1327 if (modifiers & alt_modifier)
1328 { *p++ = '\\'; *p++ = 'A'; *p++ = '-'; }
1329 if (modifiers & ctrl_modifier)
1330 { *p++ = '\\'; *p++ = 'C'; *p++ = '-'; }
1331 if (modifiers & hyper_modifier)
1332 { *p++ = '\\'; *p++ = 'H'; *p++ = '-'; }
1333 if (modifiers & meta_modifier)
1334 { *p++ = '\\'; *p++ = 'M'; *p++ = '-'; }
1335 if (modifiers & shift_modifier)
1336 { *p++ = '\\'; *p++ = 'S'; *p++ = '-'; }
1337 if (modifiers & super_modifier)
1338 { *p++ = '\\'; *p++ = 's'; *p++ = '-'; }
1339 *p = 0;
1340
1341 c = reorder_modifiers (c);
1342 keystring = concat2 (build_string (new_mods), XCDR (assoc));
1343
1344 error ((modifiers & ~meta_modifier
1345 ? "To bind the key %s, use [?%s], not [%s]"
1346 : "To bind the key %s, use \"%s\", not [%s]"),
1347 SDATA (SYMBOL_NAME (c)), SDATA (keystring),
1348 SDATA (SYMBOL_NAME (c)));
1349 }
1350 }
1351 \f
1352 /* Global, local, and minor mode keymap stuff. */
1353
1354 /* We can't put these variables inside current_minor_maps, since under
1355 some systems, static gets macro-defined to be the empty string.
1356 Ickypoo. */
1357 static Lisp_Object *cmm_modes = NULL, *cmm_maps = NULL;
1358 static int cmm_size = 0;
1359
1360 /* Error handler used in current_minor_maps. */
1361 static Lisp_Object
1362 current_minor_maps_error ()
1363 {
1364 return Qnil;
1365 }
1366
1367 /* Store a pointer to an array of the keymaps of the currently active
1368 minor modes in *buf, and return the number of maps it contains.
1369
1370 This function always returns a pointer to the same buffer, and may
1371 free or reallocate it, so if you want to keep it for a long time or
1372 hand it out to lisp code, copy it. This procedure will be called
1373 for every key sequence read, so the nice lispy approach (return a
1374 new assoclist, list, what have you) for each invocation would
1375 result in a lot of consing over time.
1376
1377 If we used xrealloc/xmalloc and ran out of memory, they would throw
1378 back to the command loop, which would try to read a key sequence,
1379 which would call this function again, resulting in an infinite
1380 loop. Instead, we'll use realloc/malloc and silently truncate the
1381 list, let the key sequence be read, and hope some other piece of
1382 code signals the error. */
1383 int
1384 current_minor_maps (modeptr, mapptr)
1385 Lisp_Object **modeptr, **mapptr;
1386 {
1387 int i = 0;
1388 int list_number = 0;
1389 Lisp_Object alist, assoc, var, val;
1390 Lisp_Object emulation_alists;
1391 Lisp_Object lists[2];
1392
1393 emulation_alists = Vemulation_mode_map_alists;
1394 lists[0] = Vminor_mode_overriding_map_alist;
1395 lists[1] = Vminor_mode_map_alist;
1396
1397 for (list_number = 0; list_number < 2; list_number++)
1398 {
1399 if (CONSP (emulation_alists))
1400 {
1401 alist = XCAR (emulation_alists);
1402 emulation_alists = XCDR (emulation_alists);
1403 if (SYMBOLP (alist))
1404 alist = find_symbol_value (alist);
1405 list_number = -1;
1406 }
1407 else
1408 alist = lists[list_number];
1409
1410 for ( ; CONSP (alist); alist = XCDR (alist))
1411 if ((assoc = XCAR (alist), CONSP (assoc))
1412 && (var = XCAR (assoc), SYMBOLP (var))
1413 && (val = find_symbol_value (var), !EQ (val, Qunbound))
1414 && !NILP (val))
1415 {
1416 Lisp_Object temp;
1417
1418 /* If a variable has an entry in Vminor_mode_overriding_map_alist,
1419 and also an entry in Vminor_mode_map_alist,
1420 ignore the latter. */
1421 if (list_number == 1)
1422 {
1423 val = assq_no_quit (var, lists[0]);
1424 if (!NILP (val))
1425 continue;
1426 }
1427
1428 if (i >= cmm_size)
1429 {
1430 int newsize, allocsize;
1431 Lisp_Object *newmodes, *newmaps;
1432
1433 newsize = cmm_size == 0 ? 30 : cmm_size * 2;
1434 allocsize = newsize * sizeof *newmodes;
1435
1436 /* Use malloc here. See the comment above this function.
1437 Avoid realloc here; it causes spurious traps on GNU/Linux [KFS] */
1438 BLOCK_INPUT;
1439 newmodes = (Lisp_Object *) malloc (allocsize);
1440 if (newmodes)
1441 {
1442 if (cmm_modes)
1443 {
1444 bcopy (cmm_modes, newmodes, cmm_size * sizeof cmm_modes[0]);
1445 free (cmm_modes);
1446 }
1447 cmm_modes = newmodes;
1448 }
1449
1450 newmaps = (Lisp_Object *) malloc (allocsize);
1451 if (newmaps)
1452 {
1453 if (cmm_maps)
1454 {
1455 bcopy (cmm_maps, newmaps, cmm_size * sizeof cmm_maps[0]);
1456 free (cmm_maps);
1457 }
1458 cmm_maps = newmaps;
1459 }
1460 UNBLOCK_INPUT;
1461
1462 if (newmodes == NULL || newmaps == NULL)
1463 break;
1464 cmm_size = newsize;
1465 }
1466
1467 /* Get the keymap definition--or nil if it is not defined. */
1468 temp = internal_condition_case_1 (Findirect_function,
1469 XCDR (assoc),
1470 Qerror, current_minor_maps_error);
1471 if (!NILP (temp))
1472 {
1473 cmm_modes[i] = var;
1474 cmm_maps [i] = temp;
1475 i++;
1476 }
1477 }
1478 }
1479
1480 if (modeptr) *modeptr = cmm_modes;
1481 if (mapptr) *mapptr = cmm_maps;
1482 return i;
1483 }
1484
1485 DEFUN ("current-active-maps", Fcurrent_active_maps, Scurrent_active_maps,
1486 0, 1, 0,
1487 doc: /* Return a list of the currently active keymaps.
1488 OLP if non-nil indicates that we should obey `overriding-local-map' and
1489 `overriding-terminal-local-map'. */)
1490 (olp)
1491 Lisp_Object olp;
1492 {
1493 Lisp_Object keymaps = Fcons (current_global_map, Qnil);
1494
1495 if (!NILP (olp))
1496 {
1497 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1498 keymaps = Fcons (current_kboard->Voverriding_terminal_local_map, keymaps);
1499 /* The doc said that overriding-terminal-local-map should
1500 override overriding-local-map. The code used them both,
1501 but it seems clearer to use just one. rms, jan 2005. */
1502 else if (!NILP (Voverriding_local_map))
1503 keymaps = Fcons (Voverriding_local_map, keymaps);
1504 }
1505 if (NILP (XCDR (keymaps)))
1506 {
1507 Lisp_Object local;
1508 Lisp_Object *maps;
1509 int nmaps, i;
1510
1511 /* This usually returns the buffer's local map,
1512 but that can be overridden by a `local-map' property. */
1513 local = get_local_map (PT, current_buffer, Qlocal_map);
1514 if (!NILP (local))
1515 keymaps = Fcons (local, keymaps);
1516
1517 /* Now put all the minor mode keymaps on the list. */
1518 nmaps = current_minor_maps (0, &maps);
1519
1520 for (i = --nmaps; i >= 0; i--)
1521 if (!NILP (maps[i]))
1522 keymaps = Fcons (maps[i], keymaps);
1523
1524 /* This returns nil unless there is a `keymap' property. */
1525 local = get_local_map (PT, current_buffer, Qkeymap);
1526 if (!NILP (local))
1527 keymaps = Fcons (local, keymaps);
1528 }
1529
1530 return keymaps;
1531 }
1532
1533 /* GC is possible in this function if it autoloads a keymap. */
1534
1535 DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 3, 0,
1536 doc: /* Return the binding for command KEY in current keymaps.
1537 KEY is a string or vector, a sequence of keystrokes.
1538 The binding is probably a symbol with a function definition.
1539
1540 Normally, `key-binding' ignores bindings for t, which act as default
1541 bindings, used when nothing else in the keymap applies; this makes it
1542 usable as a general function for probing keymaps. However, if the
1543 optional second argument ACCEPT-DEFAULT is non-nil, `key-binding' does
1544 recognize the default bindings, just as `read-key-sequence' does.
1545
1546 Like the normal command loop, `key-binding' will remap the command
1547 resulting from looking up KEY by looking up the command in the
1548 current keymaps. However, if the optional third argument NO-REMAP
1549 is non-nil, `key-binding' returns the unmapped command. */)
1550 (key, accept_default, no_remap)
1551 Lisp_Object key, accept_default, no_remap;
1552 {
1553 Lisp_Object *maps, value;
1554 int nmaps, i;
1555 struct gcpro gcpro1;
1556
1557 GCPRO1 (key);
1558
1559 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1560 {
1561 value = Flookup_key (current_kboard->Voverriding_terminal_local_map,
1562 key, accept_default);
1563 if (! NILP (value) && !INTEGERP (value))
1564 goto done;
1565 }
1566 else if (!NILP (Voverriding_local_map))
1567 {
1568 value = Flookup_key (Voverriding_local_map, key, accept_default);
1569 if (! NILP (value) && !INTEGERP (value))
1570 goto done;
1571 }
1572 else
1573 {
1574 Lisp_Object local;
1575
1576 local = get_local_map (PT, current_buffer, Qkeymap);
1577 if (! NILP (local))
1578 {
1579 value = Flookup_key (local, key, accept_default);
1580 if (! NILP (value) && !INTEGERP (value))
1581 goto done;
1582 }
1583
1584 nmaps = current_minor_maps (0, &maps);
1585 /* Note that all these maps are GCPRO'd
1586 in the places where we found them. */
1587
1588 for (i = 0; i < nmaps; i++)
1589 if (! NILP (maps[i]))
1590 {
1591 value = Flookup_key (maps[i], key, accept_default);
1592 if (! NILP (value) && !INTEGERP (value))
1593 goto done;
1594 }
1595
1596 local = get_local_map (PT, current_buffer, Qlocal_map);
1597 if (! NILP (local))
1598 {
1599 value = Flookup_key (local, key, accept_default);
1600 if (! NILP (value) && !INTEGERP (value))
1601 goto done;
1602 }
1603 }
1604
1605 value = Flookup_key (current_global_map, key, accept_default);
1606
1607 done:
1608 UNGCPRO;
1609 if (NILP (value) || INTEGERP (value))
1610 return Qnil;
1611
1612 /* If the result of the ordinary keymap lookup is an interactive
1613 command, look for a key binding (ie. remapping) for that command. */
1614
1615 if (NILP (no_remap) && SYMBOLP (value))
1616 {
1617 Lisp_Object value1;
1618 if (value1 = Fcommand_remapping (value), !NILP (value1))
1619 value = value1;
1620 }
1621
1622 return value;
1623 }
1624
1625 /* GC is possible in this function if it autoloads a keymap. */
1626
1627 DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
1628 doc: /* Return the binding for command KEYS in current local keymap only.
1629 KEYS is a string or vector, a sequence of keystrokes.
1630 The binding is probably a symbol with a function definition.
1631
1632 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1633 bindings; see the description of `lookup-key' for more details about this. */)
1634 (keys, accept_default)
1635 Lisp_Object keys, accept_default;
1636 {
1637 register Lisp_Object map;
1638 map = current_buffer->keymap;
1639 if (NILP (map))
1640 return Qnil;
1641 return Flookup_key (map, keys, accept_default);
1642 }
1643
1644 /* GC is possible in this function if it autoloads a keymap. */
1645
1646 DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
1647 doc: /* Return the binding for command KEYS in current global keymap only.
1648 KEYS is a string or vector, a sequence of keystrokes.
1649 The binding is probably a symbol with a function definition.
1650 This function's return values are the same as those of `lookup-key'
1651 \(which see).
1652
1653 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1654 bindings; see the description of `lookup-key' for more details about this. */)
1655 (keys, accept_default)
1656 Lisp_Object keys, accept_default;
1657 {
1658 return Flookup_key (current_global_map, keys, accept_default);
1659 }
1660
1661 /* GC is possible in this function if it autoloads a keymap. */
1662
1663 DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
1664 doc: /* Find the visible minor mode bindings of KEY.
1665 Return an alist of pairs (MODENAME . BINDING), where MODENAME is
1666 the symbol which names the minor mode binding KEY, and BINDING is
1667 KEY's definition in that mode. In particular, if KEY has no
1668 minor-mode bindings, return nil. If the first binding is a
1669 non-prefix, all subsequent bindings will be omitted, since they would
1670 be ignored. Similarly, the list doesn't include non-prefix bindings
1671 that come after prefix bindings.
1672
1673 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1674 bindings; see the description of `lookup-key' for more details about this. */)
1675 (key, accept_default)
1676 Lisp_Object key, accept_default;
1677 {
1678 Lisp_Object *modes, *maps;
1679 int nmaps;
1680 Lisp_Object binding;
1681 int i, j;
1682 struct gcpro gcpro1, gcpro2;
1683
1684 nmaps = current_minor_maps (&modes, &maps);
1685 /* Note that all these maps are GCPRO'd
1686 in the places where we found them. */
1687
1688 binding = Qnil;
1689 GCPRO2 (key, binding);
1690
1691 for (i = j = 0; i < nmaps; i++)
1692 if (!NILP (maps[i])
1693 && !NILP (binding = Flookup_key (maps[i], key, accept_default))
1694 && !INTEGERP (binding))
1695 {
1696 if (KEYMAPP (binding))
1697 maps[j++] = Fcons (modes[i], binding);
1698 else if (j == 0)
1699 RETURN_UNGCPRO (Fcons (Fcons (modes[i], binding), Qnil));
1700 }
1701
1702 UNGCPRO;
1703 return Flist (j, maps);
1704 }
1705
1706 DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 3, 0,
1707 doc: /* Define COMMAND as a prefix command. COMMAND should be a symbol.
1708 A new sparse keymap is stored as COMMAND's function definition and its value.
1709 If a second optional argument MAPVAR is given, the map is stored as
1710 its value instead of as COMMAND's value; but COMMAND is still defined
1711 as a function.
1712 The third optional argument NAME, if given, supplies a menu name
1713 string for the map. This is required to use the keymap as a menu.
1714 This function returns COMMAND. */)
1715 (command, mapvar, name)
1716 Lisp_Object command, mapvar, name;
1717 {
1718 Lisp_Object map;
1719 map = Fmake_sparse_keymap (name);
1720 Ffset (command, map);
1721 if (!NILP (mapvar))
1722 Fset (mapvar, map);
1723 else
1724 Fset (command, map);
1725 return command;
1726 }
1727
1728 DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
1729 doc: /* Select KEYMAP as the global keymap. */)
1730 (keymap)
1731 Lisp_Object keymap;
1732 {
1733 keymap = get_keymap (keymap, 1, 1);
1734 current_global_map = keymap;
1735
1736 return Qnil;
1737 }
1738
1739 DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
1740 doc: /* Select KEYMAP as the local keymap.
1741 If KEYMAP is nil, that means no local keymap. */)
1742 (keymap)
1743 Lisp_Object keymap;
1744 {
1745 if (!NILP (keymap))
1746 keymap = get_keymap (keymap, 1, 1);
1747
1748 current_buffer->keymap = keymap;
1749
1750 return Qnil;
1751 }
1752
1753 DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
1754 doc: /* Return current buffer's local keymap, or nil if it has none. */)
1755 ()
1756 {
1757 return current_buffer->keymap;
1758 }
1759
1760 DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
1761 doc: /* Return the current global keymap. */)
1762 ()
1763 {
1764 return current_global_map;
1765 }
1766
1767 DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
1768 doc: /* Return a list of keymaps for the minor modes of the current buffer. */)
1769 ()
1770 {
1771 Lisp_Object *maps;
1772 int nmaps = current_minor_maps (0, &maps);
1773
1774 return Flist (nmaps, maps);
1775 }
1776 \f
1777 /* Help functions for describing and documenting keymaps. */
1778
1779
1780 static void
1781 accessible_keymaps_1 (key, cmd, maps, tail, thisseq, is_metized)
1782 Lisp_Object maps, tail, thisseq, key, cmd;
1783 int is_metized; /* If 1, `key' is assumed to be INTEGERP. */
1784 {
1785 Lisp_Object tem;
1786
1787 cmd = get_keymap (get_keyelt (cmd, 0), 0, 0);
1788 if (NILP (cmd))
1789 return;
1790
1791 /* Look for and break cycles. */
1792 while (!NILP (tem = Frassq (cmd, maps)))
1793 {
1794 Lisp_Object prefix = XCAR (tem);
1795 int lim = XINT (Flength (XCAR (tem)));
1796 if (lim <= XINT (Flength (thisseq)))
1797 { /* This keymap was already seen with a smaller prefix. */
1798 int i = 0;
1799 while (i < lim && EQ (Faref (prefix, make_number (i)),
1800 Faref (thisseq, make_number (i))))
1801 i++;
1802 if (i >= lim)
1803 /* `prefix' is a prefix of `thisseq' => there's a cycle. */
1804 return;
1805 }
1806 /* This occurrence of `cmd' in `maps' does not correspond to a cycle,
1807 but maybe `cmd' occurs again further down in `maps', so keep
1808 looking. */
1809 maps = XCDR (Fmemq (tem, maps));
1810 }
1811
1812 /* If the last key in thisseq is meta-prefix-char,
1813 turn it into a meta-ized keystroke. We know
1814 that the event we're about to append is an
1815 ascii keystroke since we're processing a
1816 keymap table. */
1817 if (is_metized)
1818 {
1819 int meta_bit = meta_modifier;
1820 Lisp_Object last = make_number (XINT (Flength (thisseq)) - 1);
1821 tem = Fcopy_sequence (thisseq);
1822
1823 Faset (tem, last, make_number (XINT (key) | meta_bit));
1824
1825 /* This new sequence is the same length as
1826 thisseq, so stick it in the list right
1827 after this one. */
1828 XSETCDR (tail,
1829 Fcons (Fcons (tem, cmd), XCDR (tail)));
1830 }
1831 else
1832 {
1833 tem = append_key (thisseq, key);
1834 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1835 }
1836 }
1837
1838 static void
1839 accessible_keymaps_char_table (args, index, cmd)
1840 Lisp_Object args, index, cmd;
1841 {
1842 accessible_keymaps_1 (index, cmd,
1843 XCAR (XCAR (args)),
1844 XCAR (XCDR (args)),
1845 XCDR (XCDR (args)),
1846 XINT (XCDR (XCAR (args))));
1847 }
1848
1849 /* This function cannot GC. */
1850
1851 DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
1852 1, 2, 0,
1853 doc: /* Find all keymaps accessible via prefix characters from KEYMAP.
1854 Returns a list of elements of the form (KEYS . MAP), where the sequence
1855 KEYS starting from KEYMAP gets you to MAP. These elements are ordered
1856 so that the KEYS increase in length. The first element is ([] . KEYMAP).
1857 An optional argument PREFIX, if non-nil, should be a key sequence;
1858 then the value includes only maps for prefixes that start with PREFIX. */)
1859 (keymap, prefix)
1860 Lisp_Object keymap, prefix;
1861 {
1862 Lisp_Object maps, tail;
1863 int prefixlen = 0;
1864
1865 /* no need for gcpro because we don't autoload any keymaps. */
1866
1867 if (!NILP (prefix))
1868 prefixlen = XINT (Flength (prefix));
1869
1870 if (!NILP (prefix))
1871 {
1872 /* If a prefix was specified, start with the keymap (if any) for
1873 that prefix, so we don't waste time considering other prefixes. */
1874 Lisp_Object tem;
1875 tem = Flookup_key (keymap, prefix, Qt);
1876 /* Flookup_key may give us nil, or a number,
1877 if the prefix is not defined in this particular map.
1878 It might even give us a list that isn't a keymap. */
1879 tem = get_keymap (tem, 0, 0);
1880 if (CONSP (tem))
1881 {
1882 /* Convert PREFIX to a vector now, so that later on
1883 we don't have to deal with the possibility of a string. */
1884 if (STRINGP (prefix))
1885 {
1886 int i, i_byte, c;
1887 Lisp_Object copy;
1888
1889 copy = Fmake_vector (make_number (SCHARS (prefix)), Qnil);
1890 for (i = 0, i_byte = 0; i < SCHARS (prefix);)
1891 {
1892 int i_before = i;
1893
1894 FETCH_STRING_CHAR_ADVANCE (c, prefix, i, i_byte);
1895 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1896 c ^= 0200 | meta_modifier;
1897 ASET (copy, i_before, make_number (c));
1898 }
1899 prefix = copy;
1900 }
1901 maps = Fcons (Fcons (prefix, tem), Qnil);
1902 }
1903 else
1904 return Qnil;
1905 }
1906 else
1907 maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil),
1908 get_keymap (keymap, 1, 0)),
1909 Qnil);
1910
1911 /* For each map in the list maps,
1912 look at any other maps it points to,
1913 and stick them at the end if they are not already in the list.
1914
1915 This is a breadth-first traversal, where tail is the queue of
1916 nodes, and maps accumulates a list of all nodes visited. */
1917
1918 for (tail = maps; CONSP (tail); tail = XCDR (tail))
1919 {
1920 register Lisp_Object thisseq, thismap;
1921 Lisp_Object last;
1922 /* Does the current sequence end in the meta-prefix-char? */
1923 int is_metized;
1924
1925 thisseq = Fcar (Fcar (tail));
1926 thismap = Fcdr (Fcar (tail));
1927 last = make_number (XINT (Flength (thisseq)) - 1);
1928 is_metized = (XINT (last) >= 0
1929 /* Don't metize the last char of PREFIX. */
1930 && XINT (last) >= prefixlen
1931 && EQ (Faref (thisseq, last), meta_prefix_char));
1932
1933 for (; CONSP (thismap); thismap = XCDR (thismap))
1934 {
1935 Lisp_Object elt;
1936
1937 elt = XCAR (thismap);
1938
1939 QUIT;
1940
1941 if (CHAR_TABLE_P (elt))
1942 {
1943 Lisp_Object indices[3];
1944
1945 map_char_table (accessible_keymaps_char_table, Qnil, elt,
1946 elt, Fcons (Fcons (maps, make_number (is_metized)),
1947 Fcons (tail, thisseq)),
1948 0, indices);
1949 }
1950 else if (VECTORP (elt))
1951 {
1952 register int i;
1953
1954 /* Vector keymap. Scan all the elements. */
1955 for (i = 0; i < ASIZE (elt); i++)
1956 accessible_keymaps_1 (make_number (i), AREF (elt, i),
1957 maps, tail, thisseq, is_metized);
1958
1959 }
1960 else if (CONSP (elt))
1961 accessible_keymaps_1 (XCAR (elt), XCDR (elt),
1962 maps, tail, thisseq,
1963 is_metized && INTEGERP (XCAR (elt)));
1964
1965 }
1966 }
1967
1968 return maps;
1969 }
1970 \f
1971 Lisp_Object Qsingle_key_description, Qkey_description;
1972
1973 /* This function cannot GC. */
1974
1975 DEFUN ("key-description", Fkey_description, Skey_description, 1, 2, 0,
1976 doc: /* Return a pretty description of key-sequence KEYS.
1977 Optional arg PREFIX is the sequence of keys leading up to KEYS.
1978 Control characters turn into "C-foo" sequences, meta into "M-foo",
1979 spaces are put between sequence elements, etc. */)
1980 (keys, prefix)
1981 Lisp_Object keys, prefix;
1982 {
1983 int len = 0;
1984 int i, i_byte;
1985 Lisp_Object *args;
1986 int size = XINT (Flength (keys));
1987 Lisp_Object list;
1988 Lisp_Object sep = build_string (" ");
1989 Lisp_Object key;
1990 int add_meta = 0;
1991
1992 if (!NILP (prefix))
1993 size += XINT (Flength (prefix));
1994
1995 /* This has one extra element at the end that we don't pass to Fconcat. */
1996 args = (Lisp_Object *) alloca (size * 4 * sizeof (Lisp_Object));
1997
1998 /* In effect, this computes
1999 (mapconcat 'single-key-description keys " ")
2000 but we shouldn't use mapconcat because it can do GC. */
2001
2002 next_list:
2003 if (!NILP (prefix))
2004 list = prefix, prefix = Qnil;
2005 else if (!NILP (keys))
2006 list = keys, keys = Qnil;
2007 else
2008 {
2009 if (add_meta)
2010 {
2011 args[len] = Fsingle_key_description (meta_prefix_char, Qnil);
2012 len += 2;
2013 }
2014 else if (len == 0)
2015 return empty_string;
2016 return Fconcat (len - 1, args);
2017 }
2018
2019 if (STRINGP (list))
2020 size = SCHARS (list);
2021 else if (VECTORP (list))
2022 size = XVECTOR (list)->size;
2023 else if (CONSP (list))
2024 size = XINT (Flength (list));
2025 else
2026 wrong_type_argument (Qarrayp, list);
2027
2028 i = i_byte = 0;
2029
2030 while (i < size)
2031 {
2032 if (STRINGP (list))
2033 {
2034 int c;
2035 FETCH_STRING_CHAR_ADVANCE (c, list, i, i_byte);
2036 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
2037 c ^= 0200 | meta_modifier;
2038 XSETFASTINT (key, c);
2039 }
2040 else if (VECTORP (list))
2041 {
2042 key = AREF (list, i++);
2043 }
2044 else
2045 {
2046 key = XCAR (list);
2047 list = XCDR (list);
2048 i++;
2049 }
2050
2051 if (add_meta)
2052 {
2053 if (!INTEGERP (key)
2054 || EQ (key, meta_prefix_char)
2055 || (XINT (key) & meta_modifier))
2056 {
2057 args[len++] = Fsingle_key_description (meta_prefix_char, Qnil);
2058 args[len++] = sep;
2059 if (EQ (key, meta_prefix_char))
2060 continue;
2061 }
2062 else
2063 XSETINT (key, (XINT (key) | meta_modifier) & ~0x80);
2064 add_meta = 0;
2065 }
2066 else if (EQ (key, meta_prefix_char))
2067 {
2068 add_meta = 1;
2069 continue;
2070 }
2071 args[len++] = Fsingle_key_description (key, Qnil);
2072 args[len++] = sep;
2073 }
2074 goto next_list;
2075 }
2076
2077
2078 char *
2079 push_key_description (c, p, force_multibyte)
2080 register unsigned int c;
2081 register char *p;
2082 int force_multibyte;
2083 {
2084 unsigned c2;
2085
2086 /* Clear all the meaningless bits above the meta bit. */
2087 c &= meta_modifier | ~ - meta_modifier;
2088 c2 = c & ~(alt_modifier | ctrl_modifier | hyper_modifier
2089 | meta_modifier | shift_modifier | super_modifier);
2090
2091 if (c & alt_modifier)
2092 {
2093 *p++ = 'A';
2094 *p++ = '-';
2095 c -= alt_modifier;
2096 }
2097 if ((c & ctrl_modifier) != 0
2098 || (c2 < ' ' && c2 != 27 && c2 != '\t' && c2 != Ctl ('M')))
2099 {
2100 *p++ = 'C';
2101 *p++ = '-';
2102 c &= ~ctrl_modifier;
2103 }
2104 if (c & hyper_modifier)
2105 {
2106 *p++ = 'H';
2107 *p++ = '-';
2108 c -= hyper_modifier;
2109 }
2110 if (c & meta_modifier)
2111 {
2112 *p++ = 'M';
2113 *p++ = '-';
2114 c -= meta_modifier;
2115 }
2116 if (c & shift_modifier)
2117 {
2118 *p++ = 'S';
2119 *p++ = '-';
2120 c -= shift_modifier;
2121 }
2122 if (c & super_modifier)
2123 {
2124 *p++ = 's';
2125 *p++ = '-';
2126 c -= super_modifier;
2127 }
2128 if (c < 040)
2129 {
2130 if (c == 033)
2131 {
2132 *p++ = 'E';
2133 *p++ = 'S';
2134 *p++ = 'C';
2135 }
2136 else if (c == '\t')
2137 {
2138 *p++ = 'T';
2139 *p++ = 'A';
2140 *p++ = 'B';
2141 }
2142 else if (c == Ctl ('M'))
2143 {
2144 *p++ = 'R';
2145 *p++ = 'E';
2146 *p++ = 'T';
2147 }
2148 else
2149 {
2150 /* `C-' already added above. */
2151 if (c > 0 && c <= Ctl ('Z'))
2152 *p++ = c + 0140;
2153 else
2154 *p++ = c + 0100;
2155 }
2156 }
2157 else if (c == 0177)
2158 {
2159 *p++ = 'D';
2160 *p++ = 'E';
2161 *p++ = 'L';
2162 }
2163 else if (c == ' ')
2164 {
2165 *p++ = 'S';
2166 *p++ = 'P';
2167 *p++ = 'C';
2168 }
2169 else if (c < 128
2170 || (NILP (current_buffer->enable_multibyte_characters)
2171 && SINGLE_BYTE_CHAR_P (c)
2172 && !force_multibyte))
2173 {
2174 *p++ = c;
2175 }
2176 else
2177 {
2178 int valid_p = SINGLE_BYTE_CHAR_P (c) || char_valid_p (c, 0);
2179
2180 if (force_multibyte && valid_p)
2181 {
2182 if (SINGLE_BYTE_CHAR_P (c))
2183 c = unibyte_char_to_multibyte (c);
2184 p += CHAR_STRING (c, p);
2185 }
2186 else if (NILP (current_buffer->enable_multibyte_characters)
2187 || valid_p)
2188 {
2189 int bit_offset;
2190 *p++ = '\\';
2191 /* The biggest character code uses 19 bits. */
2192 for (bit_offset = 18; bit_offset >= 0; bit_offset -= 3)
2193 {
2194 if (c >= (1 << bit_offset))
2195 *p++ = ((c & (7 << bit_offset)) >> bit_offset) + '0';
2196 }
2197 }
2198 else
2199 p += CHAR_STRING (c, p);
2200 }
2201
2202 return p;
2203 }
2204
2205 /* This function cannot GC. */
2206
2207 DEFUN ("single-key-description", Fsingle_key_description,
2208 Ssingle_key_description, 1, 2, 0,
2209 doc: /* Return a pretty description of command character KEY.
2210 Control characters turn into C-whatever, etc.
2211 Optional argument NO-ANGLES non-nil means don't put angle brackets
2212 around function keys and event symbols. */)
2213 (key, no_angles)
2214 Lisp_Object key, no_angles;
2215 {
2216 if (CONSP (key) && lucid_event_type_list_p (key))
2217 key = Fevent_convert_list (key);
2218
2219 key = EVENT_HEAD (key);
2220
2221 if (INTEGERP (key)) /* Normal character */
2222 {
2223 unsigned int charset, c1, c2;
2224 int without_bits = XINT (key) & ~((-1) << CHARACTERBITS);
2225
2226 if (SINGLE_BYTE_CHAR_P (without_bits))
2227 charset = 0;
2228 else
2229 SPLIT_CHAR (without_bits, charset, c1, c2);
2230
2231 if (charset
2232 && CHARSET_DEFINED_P (charset)
2233 && ((c1 >= 0 && c1 < 32)
2234 || (c2 >= 0 && c2 < 32)))
2235 {
2236 /* Handle a generic character. */
2237 Lisp_Object name;
2238 name = CHARSET_TABLE_INFO (charset, CHARSET_LONG_NAME_IDX);
2239 CHECK_STRING (name);
2240 return concat2 (build_string ("Character set "), name);
2241 }
2242 else
2243 {
2244 char tem[KEY_DESCRIPTION_SIZE], *end;
2245 int nbytes, nchars;
2246 Lisp_Object string;
2247
2248 end = push_key_description (XUINT (key), tem, 1);
2249 nbytes = end - tem;
2250 nchars = multibyte_chars_in_text (tem, nbytes);
2251 if (nchars == nbytes)
2252 {
2253 *end = '\0';
2254 string = build_string (tem);
2255 }
2256 else
2257 string = make_multibyte_string (tem, nchars, nbytes);
2258 return string;
2259 }
2260 }
2261 else if (SYMBOLP (key)) /* Function key or event-symbol */
2262 {
2263 if (NILP (no_angles))
2264 {
2265 char *buffer
2266 = (char *) alloca (SBYTES (SYMBOL_NAME (key)) + 5);
2267 sprintf (buffer, "<%s>", SDATA (SYMBOL_NAME (key)));
2268 return build_string (buffer);
2269 }
2270 else
2271 return Fsymbol_name (key);
2272 }
2273 else if (STRINGP (key)) /* Buffer names in the menubar. */
2274 return Fcopy_sequence (key);
2275 else
2276 error ("KEY must be an integer, cons, symbol, or string");
2277 return Qnil;
2278 }
2279
2280 char *
2281 push_text_char_description (c, p)
2282 register unsigned int c;
2283 register char *p;
2284 {
2285 if (c >= 0200)
2286 {
2287 *p++ = 'M';
2288 *p++ = '-';
2289 c -= 0200;
2290 }
2291 if (c < 040)
2292 {
2293 *p++ = '^';
2294 *p++ = c + 64; /* 'A' - 1 */
2295 }
2296 else if (c == 0177)
2297 {
2298 *p++ = '^';
2299 *p++ = '?';
2300 }
2301 else
2302 *p++ = c;
2303 return p;
2304 }
2305
2306 /* This function cannot GC. */
2307
2308 DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
2309 doc: /* Return a pretty description of file-character CHARACTER.
2310 Control characters turn into "^char", etc. This differs from
2311 `single-key-description' which turns them into "C-char".
2312 Also, this function recognizes the 2**7 bit as the Meta character,
2313 whereas `single-key-description' uses the 2**27 bit for Meta.
2314 See Info node `(elisp)Describing Characters' for examples. */)
2315 (character)
2316 Lisp_Object character;
2317 {
2318 /* Currently MAX_MULTIBYTE_LENGTH is 4 (< 6). */
2319 unsigned char str[6];
2320 int c;
2321
2322 CHECK_NUMBER (character);
2323
2324 c = XINT (character);
2325 if (!SINGLE_BYTE_CHAR_P (c))
2326 {
2327 int len = CHAR_STRING (c, str);
2328
2329 return make_multibyte_string (str, 1, len);
2330 }
2331
2332 *push_text_char_description (c & 0377, str) = 0;
2333
2334 return build_string (str);
2335 }
2336
2337 /* Return non-zero if SEQ contains only ASCII characters, perhaps with
2338 a meta bit. */
2339 static int
2340 ascii_sequence_p (seq)
2341 Lisp_Object seq;
2342 {
2343 int i;
2344 int len = XINT (Flength (seq));
2345
2346 for (i = 0; i < len; i++)
2347 {
2348 Lisp_Object ii, elt;
2349
2350 XSETFASTINT (ii, i);
2351 elt = Faref (seq, ii);
2352
2353 if (!INTEGERP (elt)
2354 || (XUINT (elt) & ~CHAR_META) >= 0x80)
2355 return 0;
2356 }
2357
2358 return 1;
2359 }
2360
2361 \f
2362 /* where-is - finding a command in a set of keymaps. */
2363
2364 static Lisp_Object where_is_internal ();
2365 static Lisp_Object where_is_internal_1 ();
2366 static void where_is_internal_2 ();
2367
2368 /* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map.
2369 Returns the first non-nil binding found in any of those maps. */
2370
2371 static Lisp_Object
2372 shadow_lookup (shadow, key, flag)
2373 Lisp_Object shadow, key, flag;
2374 {
2375 Lisp_Object tail, value;
2376
2377 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2378 {
2379 value = Flookup_key (XCAR (tail), key, flag);
2380 if (!NILP (value) && !NATNUMP (value))
2381 return value;
2382 }
2383 return Qnil;
2384 }
2385
2386 static Lisp_Object Vmouse_events;
2387
2388 /* This function can GC if Flookup_key autoloads any keymaps. */
2389
2390 static Lisp_Object
2391 where_is_internal (definition, keymaps, firstonly, noindirect, no_remap)
2392 Lisp_Object definition, keymaps;
2393 Lisp_Object firstonly, noindirect, no_remap;
2394 {
2395 Lisp_Object maps = Qnil;
2396 Lisp_Object found, sequences;
2397 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2398 /* 1 means ignore all menu bindings entirely. */
2399 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2400
2401 /* If this command is remapped, then it has no key bindings
2402 of its own. */
2403 if (NILP (no_remap) && SYMBOLP (definition))
2404 {
2405 Lisp_Object tem;
2406 if (tem = Fcommand_remapping (definition), !NILP (tem))
2407 return Qnil;
2408 }
2409
2410 found = keymaps;
2411 while (CONSP (found))
2412 {
2413 maps =
2414 nconc2 (maps,
2415 Faccessible_keymaps (get_keymap (XCAR (found), 1, 0), Qnil));
2416 found = XCDR (found);
2417 }
2418
2419 GCPRO5 (definition, keymaps, maps, found, sequences);
2420 found = Qnil;
2421 sequences = Qnil;
2422
2423 for (; !NILP (maps); maps = Fcdr (maps))
2424 {
2425 /* Key sequence to reach map, and the map that it reaches */
2426 register Lisp_Object this, map, tem;
2427
2428 /* In order to fold [META-PREFIX-CHAR CHAR] sequences into
2429 [M-CHAR] sequences, check if last character of the sequence
2430 is the meta-prefix char. */
2431 Lisp_Object last;
2432 int last_is_meta;
2433
2434 this = Fcar (Fcar (maps));
2435 map = Fcdr (Fcar (maps));
2436 last = make_number (XINT (Flength (this)) - 1);
2437 last_is_meta = (XINT (last) >= 0
2438 && EQ (Faref (this, last), meta_prefix_char));
2439
2440 /* if (nomenus && !ascii_sequence_p (this)) */
2441 if (nomenus && XINT (last) >= 0
2442 && SYMBOLP (tem = Faref (this, make_number (0)))
2443 && !NILP (Fmemq (XCAR (parse_modifiers (tem)), Vmouse_events)))
2444 /* If no menu entries should be returned, skip over the
2445 keymaps bound to `menu-bar' and `tool-bar' and other
2446 non-ascii prefixes like `C-down-mouse-2'. */
2447 continue;
2448
2449 QUIT;
2450
2451 while (CONSP (map))
2452 {
2453 /* Because the code we want to run on each binding is rather
2454 large, we don't want to have two separate loop bodies for
2455 sparse keymap bindings and tables; we want to iterate one
2456 loop body over both keymap and vector bindings.
2457
2458 For this reason, if Fcar (map) is a vector, we don't
2459 advance map to the next element until i indicates that we
2460 have finished off the vector. */
2461 Lisp_Object elt, key, binding;
2462 elt = XCAR (map);
2463 map = XCDR (map);
2464
2465 sequences = Qnil;
2466
2467 QUIT;
2468
2469 /* Set key and binding to the current key and binding, and
2470 advance map and i to the next binding. */
2471 if (VECTORP (elt))
2472 {
2473 Lisp_Object sequence;
2474 int i;
2475 /* In a vector, look at each element. */
2476 for (i = 0; i < XVECTOR (elt)->size; i++)
2477 {
2478 binding = AREF (elt, i);
2479 XSETFASTINT (key, i);
2480 sequence = where_is_internal_1 (binding, key, definition,
2481 noindirect, this,
2482 last, nomenus, last_is_meta);
2483 if (!NILP (sequence))
2484 sequences = Fcons (sequence, sequences);
2485 }
2486 }
2487 else if (CHAR_TABLE_P (elt))
2488 {
2489 Lisp_Object indices[3];
2490 Lisp_Object args;
2491
2492 args = Fcons (Fcons (Fcons (definition, noindirect),
2493 Qnil), /* Result accumulator. */
2494 Fcons (Fcons (this, last),
2495 Fcons (make_number (nomenus),
2496 make_number (last_is_meta))));
2497 map_char_table (where_is_internal_2, Qnil, elt, elt, args,
2498 0, indices);
2499 sequences = XCDR (XCAR (args));
2500 }
2501 else if (CONSP (elt))
2502 {
2503 Lisp_Object sequence;
2504
2505 key = XCAR (elt);
2506 binding = XCDR (elt);
2507
2508 sequence = where_is_internal_1 (binding, key, definition,
2509 noindirect, this,
2510 last, nomenus, last_is_meta);
2511 if (!NILP (sequence))
2512 sequences = Fcons (sequence, sequences);
2513 }
2514
2515
2516 while (!NILP (sequences))
2517 {
2518 Lisp_Object sequence, remapped, function;
2519
2520 sequence = XCAR (sequences);
2521 sequences = XCDR (sequences);
2522
2523 /* If the current sequence is a command remapping with
2524 format [remap COMMAND], find the key sequences
2525 which run COMMAND, and use those sequences instead. */
2526 remapped = Qnil;
2527 if (NILP (no_remap)
2528 && VECTORP (sequence) && XVECTOR (sequence)->size == 2
2529 && EQ (AREF (sequence, 0), Qremap)
2530 && (function = AREF (sequence, 1), SYMBOLP (function)))
2531 {
2532 Lisp_Object remapped1;
2533
2534 remapped1 = where_is_internal (function, keymaps, firstonly, noindirect, Qt);
2535 if (CONSP (remapped1))
2536 {
2537 /* Verify that this key binding actually maps to the
2538 remapped command (see below). */
2539 if (!EQ (shadow_lookup (keymaps, XCAR (remapped1), Qnil), function))
2540 continue;
2541 sequence = XCAR (remapped1);
2542 remapped = XCDR (remapped1);
2543 goto record_sequence;
2544 }
2545 }
2546
2547 /* Verify that this key binding is not shadowed by another
2548 binding for the same key, before we say it exists.
2549
2550 Mechanism: look for local definition of this key and if
2551 it is defined and does not match what we found then
2552 ignore this key.
2553
2554 Either nil or number as value from Flookup_key
2555 means undefined. */
2556 if (!EQ (shadow_lookup (keymaps, sequence, Qnil), definition))
2557 continue;
2558
2559 record_sequence:
2560 /* Don't annoy user with strings from a menu such as
2561 Select Paste. Change them all to "(any string)",
2562 so that there seems to be only one menu item
2563 to report. */
2564 if (! NILP (sequence))
2565 {
2566 Lisp_Object tem;
2567 tem = Faref (sequence, make_number (XVECTOR (sequence)->size - 1));
2568 if (STRINGP (tem))
2569 Faset (sequence, make_number (XVECTOR (sequence)->size - 1),
2570 build_string ("(any string)"));
2571 }
2572
2573 /* It is a true unshadowed match. Record it, unless it's already
2574 been seen (as could happen when inheriting keymaps). */
2575 if (NILP (Fmember (sequence, found)))
2576 found = Fcons (sequence, found);
2577
2578 /* If firstonly is Qnon_ascii, then we can return the first
2579 binding we find. If firstonly is not Qnon_ascii but not
2580 nil, then we should return the first ascii-only binding
2581 we find. */
2582 if (EQ (firstonly, Qnon_ascii))
2583 RETURN_UNGCPRO (sequence);
2584 else if (!NILP (firstonly) && ascii_sequence_p (sequence))
2585 RETURN_UNGCPRO (sequence);
2586
2587 if (CONSP (remapped))
2588 {
2589 sequence = XCAR (remapped);
2590 remapped = XCDR (remapped);
2591 goto record_sequence;
2592 }
2593 }
2594 }
2595 }
2596
2597 UNGCPRO;
2598
2599 found = Fnreverse (found);
2600
2601 /* firstonly may have been t, but we may have gone all the way through
2602 the keymaps without finding an all-ASCII key sequence. So just
2603 return the best we could find. */
2604 if (!NILP (firstonly))
2605 return Fcar (found);
2606
2607 return found;
2608 }
2609
2610 DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 5, 0,
2611 doc: /* Return list of keys that invoke DEFINITION.
2612 If KEYMAP is a keymap, search only KEYMAP and the global keymap.
2613 If KEYMAP is nil, search all the currently active keymaps.
2614 If KEYMAP is a list of keymaps, search only those keymaps.
2615
2616 If optional 3rd arg FIRSTONLY is non-nil, return the first key sequence found,
2617 rather than a list of all possible key sequences.
2618 If FIRSTONLY is the symbol `non-ascii', return the first binding found,
2619 no matter what it is.
2620 If FIRSTONLY has another non-nil value, prefer sequences of ASCII characters
2621 \(or their meta variants) and entirely reject menu bindings.
2622
2623 If optional 4th arg NOINDIRECT is non-nil, don't follow indirections
2624 to other keymaps or slots. This makes it possible to search for an
2625 indirect definition itself.
2626
2627 If optional 5th arg NO-REMAP is non-nil, don't search for key sequences
2628 that invoke a command which is remapped to DEFINITION, but include the
2629 remapped command in the returned list. */)
2630 (definition, keymap, firstonly, noindirect, no_remap)
2631 Lisp_Object definition, keymap;
2632 Lisp_Object firstonly, noindirect, no_remap;
2633 {
2634 Lisp_Object sequences, keymaps;
2635 /* 1 means ignore all menu bindings entirely. */
2636 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2637 Lisp_Object result;
2638
2639 /* Find the relevant keymaps. */
2640 if (CONSP (keymap) && KEYMAPP (XCAR (keymap)))
2641 keymaps = keymap;
2642 else if (!NILP (keymap))
2643 keymaps = Fcons (keymap, Fcons (current_global_map, Qnil));
2644 else
2645 keymaps = Fcurrent_active_maps (Qnil);
2646
2647 /* Only use caching for the menubar (i.e. called with (def nil t nil).
2648 We don't really need to check `keymap'. */
2649 if (nomenus && NILP (noindirect) && NILP (keymap))
2650 {
2651 Lisp_Object *defns;
2652 int i, j, n;
2653 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2654
2655 /* Check heuristic-consistency of the cache. */
2656 if (NILP (Fequal (keymaps, where_is_cache_keymaps)))
2657 where_is_cache = Qnil;
2658
2659 if (NILP (where_is_cache))
2660 {
2661 /* We need to create the cache. */
2662 Lisp_Object args[2];
2663 where_is_cache = Fmake_hash_table (0, args);
2664 where_is_cache_keymaps = Qt;
2665
2666 /* Fill in the cache. */
2667 GCPRO5 (definition, keymaps, firstonly, noindirect, no_remap);
2668 where_is_internal (definition, keymaps, firstonly, noindirect, no_remap);
2669 UNGCPRO;
2670
2671 where_is_cache_keymaps = keymaps;
2672 }
2673
2674 /* We want to process definitions from the last to the first.
2675 Instead of consing, copy definitions to a vector and step
2676 over that vector. */
2677 sequences = Fgethash (definition, where_is_cache, Qnil);
2678 n = XINT (Flength (sequences));
2679 defns = (Lisp_Object *) alloca (n * sizeof *defns);
2680 for (i = 0; CONSP (sequences); sequences = XCDR (sequences))
2681 defns[i++] = XCAR (sequences);
2682
2683 /* Verify that the key bindings are not shadowed. Note that
2684 the following can GC. */
2685 GCPRO2 (definition, keymaps);
2686 result = Qnil;
2687 j = -1;
2688 for (i = n - 1; i >= 0; --i)
2689 if (EQ (shadow_lookup (keymaps, defns[i], Qnil), definition))
2690 {
2691 if (ascii_sequence_p (defns[i]))
2692 break;
2693 else if (j < 0)
2694 j = i;
2695 }
2696
2697 result = i >= 0 ? defns[i] : (j >= 0 ? defns[j] : Qnil);
2698 UNGCPRO;
2699 }
2700 else
2701 {
2702 /* Kill the cache so that where_is_internal_1 doesn't think
2703 we're filling it up. */
2704 where_is_cache = Qnil;
2705 result = where_is_internal (definition, keymaps, firstonly, noindirect, no_remap);
2706 }
2707
2708 return result;
2709 }
2710
2711 /* This is the function that Fwhere_is_internal calls using map_char_table.
2712 ARGS has the form
2713 (((DEFINITION . NOINDIRECT) . (KEYMAP . RESULT))
2714 .
2715 ((THIS . LAST) . (NOMENUS . LAST_IS_META)))
2716 Since map_char_table doesn't really use the return value from this function,
2717 we the result append to RESULT, the slot in ARGS.
2718
2719 This function can GC because it calls where_is_internal_1 which can
2720 GC. */
2721
2722 static void
2723 where_is_internal_2 (args, key, binding)
2724 Lisp_Object args, key, binding;
2725 {
2726 Lisp_Object definition, noindirect, this, last;
2727 Lisp_Object result, sequence;
2728 int nomenus, last_is_meta;
2729 struct gcpro gcpro1, gcpro2, gcpro3;
2730
2731 GCPRO3 (args, key, binding);
2732 result = XCDR (XCAR (args));
2733 definition = XCAR (XCAR (XCAR (args)));
2734 noindirect = XCDR (XCAR (XCAR (args)));
2735 this = XCAR (XCAR (XCDR (args)));
2736 last = XCDR (XCAR (XCDR (args)));
2737 nomenus = XFASTINT (XCAR (XCDR (XCDR (args))));
2738 last_is_meta = XFASTINT (XCDR (XCDR (XCDR (args))));
2739
2740 sequence = where_is_internal_1 (binding, key, definition, noindirect,
2741 this, last, nomenus, last_is_meta);
2742
2743 if (!NILP (sequence))
2744 XSETCDR (XCAR (args), Fcons (sequence, result));
2745
2746 UNGCPRO;
2747 }
2748
2749
2750 /* This function can GC because get_keyelt can. */
2751
2752 static Lisp_Object
2753 where_is_internal_1 (binding, key, definition, noindirect, this, last,
2754 nomenus, last_is_meta)
2755 Lisp_Object binding, key, definition, noindirect, this, last;
2756 int nomenus, last_is_meta;
2757 {
2758 Lisp_Object sequence;
2759
2760 /* Search through indirections unless that's not wanted. */
2761 if (NILP (noindirect))
2762 binding = get_keyelt (binding, 0);
2763
2764 /* End this iteration if this element does not match
2765 the target. */
2766
2767 if (!(!NILP (where_is_cache) /* everything "matches" during cache-fill. */
2768 || EQ (binding, definition)
2769 || (CONSP (definition) && !NILP (Fequal (binding, definition)))))
2770 /* Doesn't match. */
2771 return Qnil;
2772
2773 /* We have found a match. Construct the key sequence where we found it. */
2774 if (INTEGERP (key) && last_is_meta)
2775 {
2776 sequence = Fcopy_sequence (this);
2777 Faset (sequence, last, make_number (XINT (key) | meta_modifier));
2778 }
2779 else
2780 sequence = append_key (this, key);
2781
2782 if (!NILP (where_is_cache))
2783 {
2784 Lisp_Object sequences = Fgethash (binding, where_is_cache, Qnil);
2785 Fputhash (binding, Fcons (sequence, sequences), where_is_cache);
2786 return Qnil;
2787 }
2788 else
2789 return sequence;
2790 }
2791 \f
2792 /* describe-bindings - summarizing all the bindings in a set of keymaps. */
2793
2794 DEFUN ("describe-buffer-bindings", Fdescribe_buffer_bindings, Sdescribe_buffer_bindings, 1, 3, 0,
2795 doc: /* Insert the list of all defined keys and their definitions.
2796 The list is inserted in the current buffer, while the bindings are
2797 looked up in BUFFER.
2798 The optional argument PREFIX, if non-nil, should be a key sequence;
2799 then we display only bindings that start with that prefix.
2800 The optional argument MENUS, if non-nil, says to mention menu bindings.
2801 \(Ordinarily these are omitted from the output.) */)
2802 (buffer, prefix, menus)
2803 Lisp_Object buffer, prefix, menus;
2804 {
2805 Lisp_Object outbuf, shadow;
2806 int nomenu = NILP (menus);
2807 register Lisp_Object start1;
2808 struct gcpro gcpro1;
2809
2810 char *alternate_heading
2811 = "\
2812 Keyboard translations:\n\n\
2813 You type Translation\n\
2814 -------- -----------\n";
2815
2816 shadow = Qnil;
2817 GCPRO1 (shadow);
2818
2819 outbuf = Fcurrent_buffer ();
2820
2821 /* Report on alternates for keys. */
2822 if (STRINGP (Vkeyboard_translate_table) && !NILP (prefix))
2823 {
2824 int c;
2825 const unsigned char *translate = SDATA (Vkeyboard_translate_table);
2826 int translate_len = SCHARS (Vkeyboard_translate_table);
2827
2828 for (c = 0; c < translate_len; c++)
2829 if (translate[c] != c)
2830 {
2831 char buf[KEY_DESCRIPTION_SIZE];
2832 char *bufend;
2833
2834 if (alternate_heading)
2835 {
2836 insert_string (alternate_heading);
2837 alternate_heading = 0;
2838 }
2839
2840 bufend = push_key_description (translate[c], buf, 1);
2841 insert (buf, bufend - buf);
2842 Findent_to (make_number (16), make_number (1));
2843 bufend = push_key_description (c, buf, 1);
2844 insert (buf, bufend - buf);
2845
2846 insert ("\n", 1);
2847
2848 /* Insert calls signal_after_change which may GC. */
2849 translate = SDATA (Vkeyboard_translate_table);
2850 }
2851
2852 insert ("\n", 1);
2853 }
2854
2855 if (!NILP (Vkey_translation_map))
2856 describe_map_tree (Vkey_translation_map, 0, Qnil, prefix,
2857 "Key translations", nomenu, 1, 0, 0);
2858
2859
2860 /* Print the (major mode) local map. */
2861 start1 = Qnil;
2862 if (!NILP (current_kboard->Voverriding_terminal_local_map))
2863 start1 = current_kboard->Voverriding_terminal_local_map;
2864 else if (!NILP (Voverriding_local_map))
2865 start1 = Voverriding_local_map;
2866
2867 if (!NILP (start1))
2868 {
2869 describe_map_tree (start1, 1, shadow, prefix,
2870 "\f\nOverriding Bindings", nomenu, 0, 0, 0);
2871 shadow = Fcons (start1, shadow);
2872 }
2873 else
2874 {
2875 /* Print the minor mode and major mode keymaps. */
2876 int i, nmaps;
2877 Lisp_Object *modes, *maps;
2878
2879 /* Temporarily switch to `buffer', so that we can get that buffer's
2880 minor modes correctly. */
2881 Fset_buffer (buffer);
2882
2883 nmaps = current_minor_maps (&modes, &maps);
2884 Fset_buffer (outbuf);
2885
2886 start1 = get_local_map (BUF_PT (XBUFFER (buffer)),
2887 XBUFFER (buffer), Qkeymap);
2888 if (!NILP (start1))
2889 {
2890 describe_map_tree (start1, 1, shadow, prefix,
2891 "\f\n`keymap' Property Bindings", nomenu,
2892 0, 0, 0);
2893 shadow = Fcons (start1, shadow);
2894 }
2895
2896 /* Print the minor mode maps. */
2897 for (i = 0; i < nmaps; i++)
2898 {
2899 /* The title for a minor mode keymap
2900 is constructed at run time.
2901 We let describe_map_tree do the actual insertion
2902 because it takes care of other features when doing so. */
2903 char *title, *p;
2904
2905 if (!SYMBOLP (modes[i]))
2906 abort();
2907
2908 p = title = (char *) alloca (42 + SCHARS (SYMBOL_NAME (modes[i])));
2909 *p++ = '\f';
2910 *p++ = '\n';
2911 *p++ = '`';
2912 bcopy (SDATA (SYMBOL_NAME (modes[i])), p,
2913 SCHARS (SYMBOL_NAME (modes[i])));
2914 p += SCHARS (SYMBOL_NAME (modes[i]));
2915 *p++ = '\'';
2916 bcopy (" Minor Mode Bindings", p, sizeof (" Minor Mode Bindings") - 1);
2917 p += sizeof (" Minor Mode Bindings") - 1;
2918 *p = 0;
2919
2920 describe_map_tree (maps[i], 1, shadow, prefix,
2921 title, nomenu, 0, 0, 0);
2922 shadow = Fcons (maps[i], shadow);
2923 }
2924
2925 start1 = get_local_map (BUF_PT (XBUFFER (buffer)),
2926 XBUFFER (buffer), Qlocal_map);
2927 if (!NILP (start1))
2928 {
2929 if (EQ (start1, XBUFFER (buffer)->keymap))
2930 describe_map_tree (start1, 1, shadow, prefix,
2931 "\f\nMajor Mode Bindings", nomenu, 0, 0, 0);
2932 else
2933 describe_map_tree (start1, 1, shadow, prefix,
2934 "\f\n`local-map' Property Bindings",
2935 nomenu, 0, 0, 0);
2936
2937 shadow = Fcons (start1, shadow);
2938 }
2939 }
2940
2941 describe_map_tree (current_global_map, 1, shadow, prefix,
2942 "\f\nGlobal Bindings", nomenu, 0, 1, 0);
2943
2944 /* Print the function-key-map translations under this prefix. */
2945 if (!NILP (Vfunction_key_map))
2946 describe_map_tree (Vfunction_key_map, 0, Qnil, prefix,
2947 "\f\nFunction key map translations", nomenu, 1, 0, 0);
2948
2949 UNGCPRO;
2950 return Qnil;
2951 }
2952
2953 /* Insert a description of the key bindings in STARTMAP,
2954 followed by those of all maps reachable through STARTMAP.
2955 If PARTIAL is nonzero, omit certain "uninteresting" commands
2956 (such as `undefined').
2957 If SHADOW is non-nil, it is a list of maps;
2958 don't mention keys which would be shadowed by any of them.
2959 PREFIX, if non-nil, says mention only keys that start with PREFIX.
2960 TITLE, if not 0, is a string to insert at the beginning.
2961 TITLE should not end with a colon or a newline; we supply that.
2962 If NOMENU is not 0, then omit menu-bar commands.
2963
2964 If TRANSL is nonzero, the definitions are actually key translations
2965 so print strings and vectors differently.
2966
2967 If ALWAYS_TITLE is nonzero, print the title even if there are no maps
2968 to look through.
2969
2970 If MENTION_SHADOW is nonzero, then when something is shadowed by SHADOW,
2971 don't omit it; instead, mention it but say it is shadowed. */
2972
2973 void
2974 describe_map_tree (startmap, partial, shadow, prefix, title, nomenu, transl,
2975 always_title, mention_shadow)
2976 Lisp_Object startmap, shadow, prefix;
2977 int partial;
2978 char *title;
2979 int nomenu;
2980 int transl;
2981 int always_title;
2982 int mention_shadow;
2983 {
2984 Lisp_Object maps, orig_maps, seen, sub_shadows;
2985 struct gcpro gcpro1, gcpro2, gcpro3;
2986 int something = 0;
2987 char *key_heading
2988 = "\
2989 key binding\n\
2990 --- -------\n";
2991
2992 orig_maps = maps = Faccessible_keymaps (startmap, prefix);
2993 seen = Qnil;
2994 sub_shadows = Qnil;
2995 GCPRO3 (maps, seen, sub_shadows);
2996
2997 if (nomenu)
2998 {
2999 Lisp_Object list;
3000
3001 /* Delete from MAPS each element that is for the menu bar. */
3002 for (list = maps; !NILP (list); list = XCDR (list))
3003 {
3004 Lisp_Object elt, prefix, tem;
3005
3006 elt = Fcar (list);
3007 prefix = Fcar (elt);
3008 if (XVECTOR (prefix)->size >= 1)
3009 {
3010 tem = Faref (prefix, make_number (0));
3011 if (EQ (tem, Qmenu_bar))
3012 maps = Fdelq (elt, maps);
3013 }
3014 }
3015 }
3016
3017 if (!NILP (maps) || always_title)
3018 {
3019 if (title)
3020 {
3021 insert_string (title);
3022 if (!NILP (prefix))
3023 {
3024 insert_string (" Starting With ");
3025 insert1 (Fkey_description (prefix, Qnil));
3026 }
3027 insert_string (":\n");
3028 }
3029 insert_string (key_heading);
3030 something = 1;
3031 }
3032
3033 for (; !NILP (maps); maps = Fcdr (maps))
3034 {
3035 register Lisp_Object elt, prefix, tail;
3036
3037 elt = Fcar (maps);
3038 prefix = Fcar (elt);
3039
3040 sub_shadows = Qnil;
3041
3042 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
3043 {
3044 Lisp_Object shmap;
3045
3046 shmap = XCAR (tail);
3047
3048 /* If the sequence by which we reach this keymap is zero-length,
3049 then the shadow map for this keymap is just SHADOW. */
3050 if ((STRINGP (prefix) && SCHARS (prefix) == 0)
3051 || (VECTORP (prefix) && XVECTOR (prefix)->size == 0))
3052 ;
3053 /* If the sequence by which we reach this keymap actually has
3054 some elements, then the sequence's definition in SHADOW is
3055 what we should use. */
3056 else
3057 {
3058 shmap = Flookup_key (shmap, Fcar (elt), Qt);
3059 if (INTEGERP (shmap))
3060 shmap = Qnil;
3061 }
3062
3063 /* If shmap is not nil and not a keymap,
3064 it completely shadows this map, so don't
3065 describe this map at all. */
3066 if (!NILP (shmap) && !KEYMAPP (shmap))
3067 goto skip;
3068
3069 if (!NILP (shmap))
3070 sub_shadows = Fcons (shmap, sub_shadows);
3071 }
3072
3073 /* Maps we have already listed in this loop shadow this map. */
3074 for (tail = orig_maps; !EQ (tail, maps); tail = XCDR (tail))
3075 {
3076 Lisp_Object tem;
3077 tem = Fequal (Fcar (XCAR (tail)), prefix);
3078 if (!NILP (tem))
3079 sub_shadows = Fcons (XCDR (XCAR (tail)), sub_shadows);
3080 }
3081
3082 describe_map (Fcdr (elt), prefix,
3083 transl ? describe_translation : describe_command,
3084 partial, sub_shadows, &seen, nomenu, mention_shadow);
3085
3086 skip: ;
3087 }
3088
3089 if (something)
3090 insert_string ("\n");
3091
3092 UNGCPRO;
3093 }
3094
3095 static int previous_description_column;
3096
3097 static void
3098 describe_command (definition, args)
3099 Lisp_Object definition, args;
3100 {
3101 register Lisp_Object tem1;
3102 int column = (int) current_column (); /* iftc */
3103 int description_column;
3104
3105 /* If column 16 is no good, go to col 32;
3106 but don't push beyond that--go to next line instead. */
3107 if (column > 30)
3108 {
3109 insert_char ('\n');
3110 description_column = 32;
3111 }
3112 else if (column > 14 || (column > 10 && previous_description_column == 32))
3113 description_column = 32;
3114 else
3115 description_column = 16;
3116
3117 Findent_to (make_number (description_column), make_number (1));
3118 previous_description_column = description_column;
3119
3120 if (SYMBOLP (definition))
3121 {
3122 tem1 = SYMBOL_NAME (definition);
3123 insert1 (tem1);
3124 insert_string ("\n");
3125 }
3126 else if (STRINGP (definition) || VECTORP (definition))
3127 insert_string ("Keyboard Macro\n");
3128 else if (KEYMAPP (definition))
3129 insert_string ("Prefix Command\n");
3130 else
3131 insert_string ("??\n");
3132 }
3133
3134 static void
3135 describe_translation (definition, args)
3136 Lisp_Object definition, args;
3137 {
3138 register Lisp_Object tem1;
3139
3140 Findent_to (make_number (16), make_number (1));
3141
3142 if (SYMBOLP (definition))
3143 {
3144 tem1 = SYMBOL_NAME (definition);
3145 insert1 (tem1);
3146 insert_string ("\n");
3147 }
3148 else if (STRINGP (definition) || VECTORP (definition))
3149 {
3150 insert1 (Fkey_description (definition, Qnil));
3151 insert_string ("\n");
3152 }
3153 else if (KEYMAPP (definition))
3154 insert_string ("Prefix Command\n");
3155 else
3156 insert_string ("??\n");
3157 }
3158
3159 /* Describe the contents of map MAP, assuming that this map itself is
3160 reached by the sequence of prefix keys PREFIX (a string or vector).
3161 PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */
3162
3163 static void
3164 describe_map (map, prefix, elt_describer, partial, shadow,
3165 seen, nomenu, mention_shadow)
3166 register Lisp_Object map;
3167 Lisp_Object prefix;
3168 void (*elt_describer) P_ ((Lisp_Object, Lisp_Object));
3169 int partial;
3170 Lisp_Object shadow;
3171 Lisp_Object *seen;
3172 int nomenu;
3173 int mention_shadow;
3174 {
3175 Lisp_Object tail, definition, event;
3176 Lisp_Object tem;
3177 Lisp_Object suppress;
3178 Lisp_Object kludge;
3179 int first = 1;
3180 struct gcpro gcpro1, gcpro2, gcpro3;
3181
3182 suppress = Qnil;
3183
3184 if (partial)
3185 suppress = intern ("suppress-keymap");
3186
3187 /* This vector gets used to present single keys to Flookup_key. Since
3188 that is done once per keymap element, we don't want to cons up a
3189 fresh vector every time. */
3190 kludge = Fmake_vector (make_number (1), Qnil);
3191 definition = Qnil;
3192
3193 GCPRO3 (prefix, definition, kludge);
3194
3195 for (tail = map; CONSP (tail); tail = XCDR (tail))
3196 {
3197 QUIT;
3198
3199 if (VECTORP (XCAR (tail))
3200 || CHAR_TABLE_P (XCAR (tail)))
3201 describe_vector (XCAR (tail),
3202 prefix, Qnil, elt_describer, partial, shadow, map,
3203 (int *)0, 0, 1, mention_shadow);
3204 else if (CONSP (XCAR (tail)))
3205 {
3206 int this_shadowed = 0;
3207 event = XCAR (XCAR (tail));
3208
3209 /* Ignore bindings whose "prefix" are not really valid events.
3210 (We get these in the frames and buffers menu.) */
3211 if (!(SYMBOLP (event) || INTEGERP (event)))
3212 continue;
3213
3214 if (nomenu && EQ (event, Qmenu_bar))
3215 continue;
3216
3217 definition = get_keyelt (XCDR (XCAR (tail)), 0);
3218
3219 /* Don't show undefined commands or suppressed commands. */
3220 if (NILP (definition)) continue;
3221 if (SYMBOLP (definition) && partial)
3222 {
3223 tem = Fget (definition, suppress);
3224 if (!NILP (tem))
3225 continue;
3226 }
3227
3228 /* Don't show a command that isn't really visible
3229 because a local definition of the same key shadows it. */
3230
3231 ASET (kludge, 0, event);
3232 if (!NILP (shadow))
3233 {
3234 tem = shadow_lookup (shadow, kludge, Qt);
3235 if (!NILP (tem))
3236 {
3237 if (mention_shadow)
3238 this_shadowed = 1;
3239 else
3240 continue;
3241 }
3242 }
3243
3244 tem = Flookup_key (map, kludge, Qt);
3245 if (!EQ (tem, definition)) continue;
3246
3247 if (first)
3248 {
3249 previous_description_column = 0;
3250 insert ("\n", 1);
3251 first = 0;
3252 }
3253
3254 /* THIS gets the string to describe the character EVENT. */
3255 insert1 (Fkey_description (kludge, prefix));
3256
3257 /* Print a description of the definition of this character.
3258 elt_describer will take care of spacing out far enough
3259 for alignment purposes. */
3260 (*elt_describer) (definition, Qnil);
3261
3262 if (this_shadowed)
3263 {
3264 SET_PT (PT - 1);
3265 insert_string (" (binding currently shadowed)");
3266 SET_PT (PT + 1);
3267 }
3268 }
3269 else if (EQ (XCAR (tail), Qkeymap))
3270 {
3271 /* The same keymap might be in the structure twice, if we're
3272 using an inherited keymap. So skip anything we've already
3273 encountered. */
3274 tem = Fassq (tail, *seen);
3275 if (CONSP (tem) && !NILP (Fequal (XCAR (tem), prefix)))
3276 break;
3277 *seen = Fcons (Fcons (tail, prefix), *seen);
3278 }
3279 }
3280
3281 UNGCPRO;
3282 }
3283
3284 static void
3285 describe_vector_princ (elt, fun)
3286 Lisp_Object elt, fun;
3287 {
3288 Findent_to (make_number (16), make_number (1));
3289 call1 (fun, elt);
3290 Fterpri (Qnil);
3291 }
3292
3293 DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 2, 0,
3294 doc: /* Insert a description of contents of VECTOR.
3295 This is text showing the elements of vector matched against indices.
3296 DESCRIBER is the output function used; nil means use `princ'. */)
3297 (vector, describer)
3298 Lisp_Object vector, describer;
3299 {
3300 int count = SPECPDL_INDEX ();
3301 if (NILP (describer))
3302 describer = intern ("princ");
3303 specbind (Qstandard_output, Fcurrent_buffer ());
3304 CHECK_VECTOR_OR_CHAR_TABLE (vector);
3305 describe_vector (vector, Qnil, describer, describe_vector_princ, 0,
3306 Qnil, Qnil, (int *)0, 0, 0, 0);
3307
3308 return unbind_to (count, Qnil);
3309 }
3310
3311 /* Insert in the current buffer a description of the contents of VECTOR.
3312 We call ELT_DESCRIBER to insert the description of one value found
3313 in VECTOR.
3314
3315 ELT_PREFIX describes what "comes before" the keys or indices defined
3316 by this vector. This is a human-readable string whose size
3317 is not necessarily related to the situation.
3318
3319 If the vector is in a keymap, ELT_PREFIX is a prefix key which
3320 leads to this keymap.
3321
3322 If the vector is a chartable, ELT_PREFIX is the vector
3323 of bytes that lead to the character set or portion of a character
3324 set described by this chartable.
3325
3326 If PARTIAL is nonzero, it means do not mention suppressed commands
3327 (that assumes the vector is in a keymap).
3328
3329 SHADOW is a list of keymaps that shadow this map.
3330 If it is non-nil, then we look up the key in those maps
3331 and we don't mention it now if it is defined by any of them.
3332
3333 ENTIRE_MAP is the keymap in which this vector appears.
3334 If the definition in effect in the whole map does not match
3335 the one in this vector, we ignore this one.
3336
3337 When describing a sub-char-table, INDICES is a list of
3338 indices at higher levels in this char-table,
3339 and CHAR_TABLE_DEPTH says how many levels down we have gone.
3340
3341 KEYMAP_P is 1 if vector is known to be a keymap, so map ESC to M-.
3342
3343 ARGS is simply passed as the second argument to ELT_DESCRIBER. */
3344
3345 static void
3346 describe_vector (vector, prefix, args, elt_describer,
3347 partial, shadow, entire_map,
3348 indices, char_table_depth, keymap_p,
3349 mention_shadow)
3350 register Lisp_Object vector;
3351 Lisp_Object prefix, args;
3352 void (*elt_describer) P_ ((Lisp_Object, Lisp_Object));
3353 int partial;
3354 Lisp_Object shadow;
3355 Lisp_Object entire_map;
3356 int *indices;
3357 int char_table_depth;
3358 int keymap_p;
3359 int mention_shadow;
3360 {
3361 Lisp_Object definition;
3362 Lisp_Object tem2;
3363 Lisp_Object elt_prefix = Qnil;
3364 register int i;
3365 Lisp_Object suppress;
3366 Lisp_Object kludge;
3367 int first = 1;
3368 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
3369 /* Range of elements to be handled. */
3370 int from, to;
3371 /* A flag to tell if a leaf in this level of char-table is not a
3372 generic character (i.e. a complete multibyte character). */
3373 int complete_char;
3374 int character;
3375 int starting_i;
3376
3377 suppress = Qnil;
3378
3379 if (indices == 0)
3380 indices = (int *) alloca (3 * sizeof (int));
3381
3382 definition = Qnil;
3383
3384 if (!keymap_p)
3385 {
3386 /* Call Fkey_description first, to avoid GC bug for the other string. */
3387 if (!NILP (prefix) && XFASTINT (Flength (prefix)) > 0)
3388 {
3389 Lisp_Object tem;
3390 tem = Fkey_description (prefix, Qnil);
3391 elt_prefix = concat2 (tem, build_string (" "));
3392 }
3393 prefix = Qnil;
3394 }
3395
3396 /* This vector gets used to present single keys to Flookup_key. Since
3397 that is done once per vector element, we don't want to cons up a
3398 fresh vector every time. */
3399 kludge = Fmake_vector (make_number (1), Qnil);
3400 GCPRO4 (elt_prefix, prefix, definition, kludge);
3401
3402 if (partial)
3403 suppress = intern ("suppress-keymap");
3404
3405 if (CHAR_TABLE_P (vector))
3406 {
3407 if (char_table_depth == 0)
3408 {
3409 /* VECTOR is a top level char-table. */
3410 complete_char = 1;
3411 from = 0;
3412 to = CHAR_TABLE_ORDINARY_SLOTS;
3413 }
3414 else
3415 {
3416 /* VECTOR is a sub char-table. */
3417 if (char_table_depth >= 3)
3418 /* A char-table is never that deep. */
3419 error ("Too deep char table");
3420
3421 complete_char
3422 = (CHARSET_VALID_P (indices[0])
3423 && ((CHARSET_DIMENSION (indices[0]) == 1
3424 && char_table_depth == 1)
3425 || char_table_depth == 2));
3426
3427 /* Meaningful elements are from 32th to 127th. */
3428 from = 32;
3429 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
3430 }
3431 }
3432 else
3433 {
3434 /* This does the right thing for ordinary vectors. */
3435
3436 complete_char = 1;
3437 from = 0;
3438 to = XVECTOR (vector)->size;
3439 }
3440
3441 for (i = from; i < to; i++)
3442 {
3443 int this_shadowed = 0;
3444 QUIT;
3445
3446 if (CHAR_TABLE_P (vector))
3447 {
3448 if (char_table_depth == 0 && i >= CHAR_TABLE_SINGLE_BYTE_SLOTS)
3449 complete_char = 0;
3450
3451 if (i >= CHAR_TABLE_SINGLE_BYTE_SLOTS
3452 && !CHARSET_DEFINED_P (i - 128))
3453 continue;
3454
3455 definition
3456 = get_keyelt (XCHAR_TABLE (vector)->contents[i], 0);
3457 }
3458 else
3459 definition = get_keyelt (AREF (vector, i), 0);
3460
3461 if (NILP (definition)) continue;
3462
3463 /* Don't mention suppressed commands. */
3464 if (SYMBOLP (definition) && partial)
3465 {
3466 Lisp_Object tem;
3467
3468 tem = Fget (definition, suppress);
3469
3470 if (!NILP (tem)) continue;
3471 }
3472
3473 /* Set CHARACTER to the character this entry describes, if any.
3474 Also update *INDICES. */
3475 if (CHAR_TABLE_P (vector))
3476 {
3477 indices[char_table_depth] = i;
3478
3479 if (char_table_depth == 0)
3480 {
3481 character = i;
3482 indices[0] = i - 128;
3483 }
3484 else if (complete_char)
3485 {
3486 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3487 }
3488 else
3489 character = 0;
3490 }
3491 else
3492 character = i;
3493
3494 ASET (kludge, 0, make_number (character));
3495
3496 /* If this binding is shadowed by some other map, ignore it. */
3497 if (!NILP (shadow) && complete_char)
3498 {
3499 Lisp_Object tem;
3500
3501 tem = shadow_lookup (shadow, kludge, Qt);
3502
3503 if (!NILP (tem))
3504 {
3505 if (mention_shadow)
3506 this_shadowed = 1;
3507 else
3508 continue;
3509 }
3510 }
3511
3512 /* Ignore this definition if it is shadowed by an earlier
3513 one in the same keymap. */
3514 if (!NILP (entire_map) && complete_char)
3515 {
3516 Lisp_Object tem;
3517
3518 tem = Flookup_key (entire_map, kludge, Qt);
3519
3520 if (!EQ (tem, definition))
3521 continue;
3522 }
3523
3524 if (first)
3525 {
3526 if (char_table_depth == 0)
3527 insert ("\n", 1);
3528 first = 0;
3529 }
3530
3531 /* For a sub char-table, show the depth by indentation.
3532 CHAR_TABLE_DEPTH can be greater than 0 only for a char-table. */
3533 if (char_table_depth > 0)
3534 insert (" ", char_table_depth * 2); /* depth is 1 or 2. */
3535
3536 /* Output the prefix that applies to every entry in this map. */
3537 if (!NILP (elt_prefix))
3538 insert1 (elt_prefix);
3539
3540 /* Insert or describe the character this slot is for,
3541 or a description of what it is for. */
3542 if (SUB_CHAR_TABLE_P (vector))
3543 {
3544 if (complete_char)
3545 insert_char (character);
3546 else
3547 {
3548 /* We need an octal representation for this block of
3549 characters. */
3550 char work[16];
3551 sprintf (work, "(row %d)", i);
3552 insert (work, strlen (work));
3553 }
3554 }
3555 else if (CHAR_TABLE_P (vector))
3556 {
3557 if (complete_char)
3558 insert1 (Fkey_description (kludge, prefix));
3559 else
3560 {
3561 /* Print the information for this character set. */
3562 insert_string ("<");
3563 tem2 = CHARSET_TABLE_INFO (i - 128, CHARSET_SHORT_NAME_IDX);
3564 if (STRINGP (tem2))
3565 insert_from_string (tem2, 0, 0, SCHARS (tem2),
3566 SBYTES (tem2), 0);
3567 else
3568 insert ("?", 1);
3569 insert (">", 1);
3570 }
3571 }
3572 else
3573 {
3574 insert1 (Fkey_description (kludge, prefix));
3575 }
3576
3577 /* If we find a sub char-table within a char-table,
3578 scan it recursively; it defines the details for
3579 a character set or a portion of a character set. */
3580 if (CHAR_TABLE_P (vector) && SUB_CHAR_TABLE_P (definition))
3581 {
3582 insert ("\n", 1);
3583 describe_vector (definition, prefix, args, elt_describer,
3584 partial, shadow, entire_map,
3585 indices, char_table_depth + 1, keymap_p,
3586 mention_shadow);
3587 continue;
3588 }
3589
3590 starting_i = i;
3591
3592 /* Find all consecutive characters or rows that have the same
3593 definition. But, for elements of a top level char table, if
3594 they are for charsets, we had better describe one by one even
3595 if they have the same definition. */
3596 if (CHAR_TABLE_P (vector))
3597 {
3598 int limit = to;
3599
3600 if (char_table_depth == 0)
3601 limit = CHAR_TABLE_SINGLE_BYTE_SLOTS;
3602
3603 while (i + 1 < limit
3604 && (tem2 = get_keyelt (XCHAR_TABLE (vector)->contents[i + 1], 0),
3605 !NILP (tem2))
3606 && !NILP (Fequal (tem2, definition)))
3607 i++;
3608 }
3609 else
3610 while (i + 1 < to
3611 && (tem2 = get_keyelt (AREF (vector, i + 1), 0),
3612 !NILP (tem2))
3613 && !NILP (Fequal (tem2, definition)))
3614 i++;
3615
3616
3617 /* If we have a range of more than one character,
3618 print where the range reaches to. */
3619
3620 if (i != starting_i)
3621 {
3622 insert (" .. ", 4);
3623
3624 ASET (kludge, 0, make_number (i));
3625
3626 if (!NILP (elt_prefix))
3627 insert1 (elt_prefix);
3628
3629 if (CHAR_TABLE_P (vector))
3630 {
3631 if (char_table_depth == 0)
3632 {
3633 insert1 (Fkey_description (kludge, prefix));
3634 }
3635 else if (complete_char)
3636 {
3637 indices[char_table_depth] = i;
3638 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3639 insert_char (character);
3640 }
3641 else
3642 {
3643 /* We need an octal representation for this block of
3644 characters. */
3645 char work[16];
3646 sprintf (work, "(row %d)", i);
3647 insert (work, strlen (work));
3648 }
3649 }
3650 else
3651 {
3652 insert1 (Fkey_description (kludge, prefix));
3653 }
3654 }
3655
3656 /* Print a description of the definition of this character.
3657 elt_describer will take care of spacing out far enough
3658 for alignment purposes. */
3659 (*elt_describer) (definition, args);
3660
3661 if (this_shadowed)
3662 {
3663 SET_PT (PT - 1);
3664 insert_string (" (binding currently shadowed)");
3665 SET_PT (PT + 1);
3666 }
3667 }
3668
3669 /* For (sub) char-table, print `defalt' slot at last. */
3670 if (CHAR_TABLE_P (vector) && !NILP (XCHAR_TABLE (vector)->defalt))
3671 {
3672 insert (" ", char_table_depth * 2);
3673 insert_string ("<<default>>");
3674 (*elt_describer) (XCHAR_TABLE (vector)->defalt, args);
3675 }
3676
3677 UNGCPRO;
3678 }
3679 \f
3680 /* Apropos - finding all symbols whose names match a regexp. */
3681 static Lisp_Object apropos_predicate;
3682 static Lisp_Object apropos_accumulate;
3683
3684 static void
3685 apropos_accum (symbol, string)
3686 Lisp_Object symbol, string;
3687 {
3688 register Lisp_Object tem;
3689
3690 tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
3691 if (!NILP (tem) && !NILP (apropos_predicate))
3692 tem = call1 (apropos_predicate, symbol);
3693 if (!NILP (tem))
3694 apropos_accumulate = Fcons (symbol, apropos_accumulate);
3695 }
3696
3697 DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
3698 doc: /* Show all symbols whose names contain match for REGEXP.
3699 If optional 2nd arg PREDICATE is non-nil, (funcall PREDICATE SYMBOL) is done
3700 for each symbol and a symbol is mentioned only if that returns non-nil.
3701 Return list of symbols found. */)
3702 (regexp, predicate)
3703 Lisp_Object regexp, predicate;
3704 {
3705 Lisp_Object tem;
3706 CHECK_STRING (regexp);
3707 apropos_predicate = predicate;
3708 apropos_accumulate = Qnil;
3709 map_obarray (Vobarray, apropos_accum, regexp);
3710 tem = Fsort (apropos_accumulate, Qstring_lessp);
3711 apropos_accumulate = Qnil;
3712 apropos_predicate = Qnil;
3713 return tem;
3714 }
3715 \f
3716 void
3717 syms_of_keymap ()
3718 {
3719 Qkeymap = intern ("keymap");
3720 staticpro (&Qkeymap);
3721 staticpro (&apropos_predicate);
3722 staticpro (&apropos_accumulate);
3723 apropos_predicate = Qnil;
3724 apropos_accumulate = Qnil;
3725
3726 /* Now we are ready to set up this property, so we can
3727 create char tables. */
3728 Fput (Qkeymap, Qchar_table_extra_slots, make_number (0));
3729
3730 /* Initialize the keymaps standardly used.
3731 Each one is the value of a Lisp variable, and is also
3732 pointed to by a C variable */
3733
3734 global_map = Fmake_keymap (Qnil);
3735 Fset (intern ("global-map"), global_map);
3736
3737 current_global_map = global_map;
3738 staticpro (&global_map);
3739 staticpro (&current_global_map);
3740
3741 meta_map = Fmake_keymap (Qnil);
3742 Fset (intern ("esc-map"), meta_map);
3743 Ffset (intern ("ESC-prefix"), meta_map);
3744
3745 control_x_map = Fmake_keymap (Qnil);
3746 Fset (intern ("ctl-x-map"), control_x_map);
3747 Ffset (intern ("Control-X-prefix"), control_x_map);
3748
3749 exclude_keys
3750 = Fcons (Fcons (build_string ("DEL"), build_string ("\\d")),
3751 Fcons (Fcons (build_string ("TAB"), build_string ("\\t")),
3752 Fcons (Fcons (build_string ("RET"), build_string ("\\r")),
3753 Fcons (Fcons (build_string ("ESC"), build_string ("\\e")),
3754 Fcons (Fcons (build_string ("SPC"), build_string (" ")),
3755 Qnil)))));
3756 staticpro (&exclude_keys);
3757
3758 DEFVAR_LISP ("define-key-rebound-commands", &Vdefine_key_rebound_commands,
3759 doc: /* List of commands given new key bindings recently.
3760 This is used for internal purposes during Emacs startup;
3761 don't alter it yourself. */);
3762 Vdefine_key_rebound_commands = Qt;
3763
3764 DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map,
3765 doc: /* Default keymap to use when reading from the minibuffer. */);
3766 Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
3767
3768 DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map,
3769 doc: /* Local keymap for the minibuffer when spaces are not allowed. */);
3770 Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
3771 Fset_keymap_parent (Vminibuffer_local_ns_map, Vminibuffer_local_map);
3772
3773 DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map,
3774 doc: /* Local keymap for minibuffer input with completion. */);
3775 Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil);
3776 Fset_keymap_parent (Vminibuffer_local_completion_map, Vminibuffer_local_map);
3777
3778 DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map,
3779 doc: /* Local keymap for minibuffer input with completion, for exact match. */);
3780 Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil);
3781 Fset_keymap_parent (Vminibuffer_local_must_match_map,
3782 Vminibuffer_local_completion_map);
3783
3784 DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist,
3785 doc: /* Alist of keymaps to use for minor modes.
3786 Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read
3787 key sequences and look up bindings iff VARIABLE's value is non-nil.
3788 If two active keymaps bind the same key, the keymap appearing earlier
3789 in the list takes precedence. */);
3790 Vminor_mode_map_alist = Qnil;
3791
3792 DEFVAR_LISP ("minor-mode-overriding-map-alist", &Vminor_mode_overriding_map_alist,
3793 doc: /* Alist of keymaps to use for minor modes, in current major mode.
3794 This variable is an alist just like `minor-mode-map-alist', and it is
3795 used the same way (and before `minor-mode-map-alist'); however,
3796 it is provided for major modes to bind locally. */);
3797 Vminor_mode_overriding_map_alist = Qnil;
3798
3799 DEFVAR_LISP ("emulation-mode-map-alists", &Vemulation_mode_map_alists,
3800 doc: /* List of keymap alists to use for emulations modes.
3801 It is intended for modes or packages using multiple minor-mode keymaps.
3802 Each element is a keymap alist just like `minor-mode-map-alist', or a
3803 symbol with a variable binding which is a keymap alist, and it is used
3804 the same way. The "active" keymaps in each alist are used before
3805 `minor-mode-map-alist' and `minor-mode-overriding-map-alist'. */);
3806 Vemulation_mode_map_alists = Qnil;
3807
3808
3809 DEFVAR_LISP ("function-key-map", &Vfunction_key_map,
3810 doc: /* Keymap mapping ASCII function key sequences onto their preferred forms.
3811 This allows Emacs to recognize function keys sent from ASCII
3812 terminals at any point in a key sequence.
3813
3814 The `read-key-sequence' function replaces any subsequence bound by
3815 `function-key-map' with its binding. More precisely, when the active
3816 keymaps have no binding for the current key sequence but
3817 `function-key-map' binds a suffix of the sequence to a vector or string,
3818 `read-key-sequence' replaces the matching suffix with its binding, and
3819 continues with the new sequence.
3820
3821 The events that come from bindings in `function-key-map' are not
3822 themselves looked up in `function-key-map'.
3823
3824 For example, suppose `function-key-map' binds `ESC O P' to [f1].
3825 Typing `ESC O P' to `read-key-sequence' would return [f1]. Typing
3826 `C-x ESC O P' would return [?\\C-x f1]. If [f1] were a prefix
3827 key, typing `ESC O P x' would return [f1 x]. */);
3828 Vfunction_key_map = Fmake_sparse_keymap (Qnil);
3829
3830 DEFVAR_LISP ("key-translation-map", &Vkey_translation_map,
3831 doc: /* Keymap of key translations that can override keymaps.
3832 This keymap works like `function-key-map', but comes after that,
3833 and its non-prefix bindings override ordinary bindings. */);
3834 Vkey_translation_map = Qnil;
3835
3836 staticpro (&Vmouse_events);
3837 Vmouse_events = Fcons (intern ("menu-bar"),
3838 Fcons (intern ("tool-bar"),
3839 Fcons (intern ("header-line"),
3840 Fcons (intern ("mode-line"),
3841 Fcons (intern ("mouse-1"),
3842 Fcons (intern ("mouse-2"),
3843 Fcons (intern ("mouse-3"),
3844 Fcons (intern ("mouse-4"),
3845 Fcons (intern ("mouse-5"),
3846 Qnil)))))))));
3847
3848
3849 Qsingle_key_description = intern ("single-key-description");
3850 staticpro (&Qsingle_key_description);
3851
3852 Qkey_description = intern ("key-description");
3853 staticpro (&Qkey_description);
3854
3855 Qkeymapp = intern ("keymapp");
3856 staticpro (&Qkeymapp);
3857
3858 Qnon_ascii = intern ("non-ascii");
3859 staticpro (&Qnon_ascii);
3860
3861 Qmenu_item = intern ("menu-item");
3862 staticpro (&Qmenu_item);
3863
3864 Qremap = intern ("remap");
3865 staticpro (&Qremap);
3866
3867 command_remapping_vector = Fmake_vector (make_number (2), Qremap);
3868 staticpro (&command_remapping_vector);
3869
3870 where_is_cache_keymaps = Qt;
3871 where_is_cache = Qnil;
3872 staticpro (&where_is_cache);
3873 staticpro (&where_is_cache_keymaps);
3874
3875 defsubr (&Skeymapp);
3876 defsubr (&Skeymap_parent);
3877 defsubr (&Skeymap_prompt);
3878 defsubr (&Sset_keymap_parent);
3879 defsubr (&Smake_keymap);
3880 defsubr (&Smake_sparse_keymap);
3881 defsubr (&Smap_keymap);
3882 defsubr (&Scopy_keymap);
3883 defsubr (&Scommand_remapping);
3884 defsubr (&Skey_binding);
3885 defsubr (&Slocal_key_binding);
3886 defsubr (&Sglobal_key_binding);
3887 defsubr (&Sminor_mode_key_binding);
3888 defsubr (&Sdefine_key);
3889 defsubr (&Slookup_key);
3890 defsubr (&Sdefine_prefix_command);
3891 defsubr (&Suse_global_map);
3892 defsubr (&Suse_local_map);
3893 defsubr (&Scurrent_local_map);
3894 defsubr (&Scurrent_global_map);
3895 defsubr (&Scurrent_minor_mode_maps);
3896 defsubr (&Scurrent_active_maps);
3897 defsubr (&Saccessible_keymaps);
3898 defsubr (&Skey_description);
3899 defsubr (&Sdescribe_vector);
3900 defsubr (&Ssingle_key_description);
3901 defsubr (&Stext_char_description);
3902 defsubr (&Swhere_is_internal);
3903 defsubr (&Sdescribe_buffer_bindings);
3904 defsubr (&Sapropos_internal);
3905 }
3906
3907 void
3908 keys_of_keymap ()
3909 {
3910 initial_define_key (global_map, 033, "ESC-prefix");
3911 initial_define_key (global_map, Ctl('X'), "Control-X-prefix");
3912 }
3913
3914 /* arch-tag: 6dd15c26-7cf1-41c4-b904-f42f7ddda463
3915 (do not change this comment) */