]> code.delx.au - gnu-emacs/blob - src/lisp.h
Merge from emacs-24; up to 2014-06-19T14:03:45Z!monnier@iro.umontreal.ca
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2014 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 #define ID_val (some integer preprocessor expression)
40 #if ENUMABLE (ID_val)
41 DEFINE_GDB_SYMBOL_ENUM (ID)
42 #else
43 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
44 # define ID ID_val
45 DEFINE_GDB_SYMBOL_END (ID)
46 #endif
47
48 This hack is for the benefit of compilers that do not make macro
49 definitions visible to the debugger. It's used for symbols that
50 .gdbinit needs, symbols whose values may not fit in 'int' (where an
51 enum would suffice).
52
53 Some GCC versions before GCC 4.2 omit enums in debugging output;
54 see GCC bug 23336. So don't use enums with older GCC. */
55
56 #if !defined __GNUC__ || 4 < __GNUC__ + (2 <= __GNUC_MINOR__)
57 # define ENUMABLE(val) (INT_MIN <= (val) && (val) <= INT_MAX)
58 #else
59 # define ENUMABLE(val) 0
60 #endif
61
62 #define DEFINE_GDB_SYMBOL_ENUM(id) enum { id = id##_val };
63 #if defined MAIN_PROGRAM
64 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) type const id EXTERNALLY_VISIBLE
65 # define DEFINE_GDB_SYMBOL_END(id) = id;
66 #else
67 # define DEFINE_GDB_SYMBOL_BEGIN(type, id)
68 # define DEFINE_GDB_SYMBOL_END(val)
69 #endif
70
71 /* The ubiquitous max and min macros. */
72 #undef min
73 #undef max
74 #define max(a, b) ((a) > (b) ? (a) : (b))
75 #define min(a, b) ((a) < (b) ? (a) : (b))
76
77 /* Number of elements in an array. */
78 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
79
80 /* Number of bits in a Lisp_Object tag. */
81 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
82 #define GCTYPEBITS 3
83 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
84
85 /* The number of bits needed in an EMACS_INT over and above the number
86 of bits in a pointer. This is 0 on systems where:
87 1. We can specify multiple-of-8 alignment on static variables.
88 2. We know malloc returns a multiple of 8. */
89 #if (defined alignas \
90 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
91 || defined DARWIN_OS || defined __sun || defined __MINGW32__))
92 # define NONPOINTER_BITS 0
93 #else
94 # define NONPOINTER_BITS GCTYPEBITS
95 #endif
96
97 /* EMACS_INT - signed integer wide enough to hold an Emacs value
98 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
99 pI - printf length modifier for EMACS_INT
100 EMACS_UINT - unsigned variant of EMACS_INT */
101 #ifndef EMACS_INT_MAX
102 # if INTPTR_MAX <= 0
103 # error "INTPTR_MAX misconfigured"
104 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
105 typedef int EMACS_INT;
106 typedef unsigned int EMACS_UINT;
107 # define EMACS_INT_MAX INT_MAX
108 # define pI ""
109 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
110 typedef long int EMACS_INT;
111 typedef unsigned long EMACS_UINT;
112 # define EMACS_INT_MAX LONG_MAX
113 # define pI "l"
114 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
115 In theory this is not safe, but in practice it seems to be OK. */
116 # elif INTPTR_MAX <= LLONG_MAX
117 typedef long long int EMACS_INT;
118 typedef unsigned long long int EMACS_UINT;
119 # define EMACS_INT_MAX LLONG_MAX
120 # define pI "ll"
121 # else
122 # error "INTPTR_MAX too large"
123 # endif
124 #endif
125
126 /* Number of bits to put in each character in the internal representation
127 of bool vectors. This should not vary across implementations. */
128 enum { BOOL_VECTOR_BITS_PER_CHAR =
129 #define BOOL_VECTOR_BITS_PER_CHAR 8
130 BOOL_VECTOR_BITS_PER_CHAR
131 };
132
133 /* An unsigned integer type representing a fixed-length bit sequence,
134 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
135 for speed, but it is unsigned char on weird platforms. */
136 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
137 typedef size_t bits_word;
138 # define BITS_WORD_MAX SIZE_MAX
139 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
140 #else
141 typedef unsigned char bits_word;
142 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
143 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
144 #endif
145 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
146
147 /* Number of bits in some machine integer types. */
148 enum
149 {
150 BITS_PER_CHAR = CHAR_BIT,
151 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
152 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
153 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
154 };
155
156 /* printmax_t and uprintmax_t are types for printing large integers.
157 These are the widest integers that are supported for printing.
158 pMd etc. are conversions for printing them.
159 On C99 hosts, there's no problem, as even the widest integers work.
160 Fall back on EMACS_INT on pre-C99 hosts. */
161 #ifdef PRIdMAX
162 typedef intmax_t printmax_t;
163 typedef uintmax_t uprintmax_t;
164 # define pMd PRIdMAX
165 # define pMu PRIuMAX
166 #else
167 typedef EMACS_INT printmax_t;
168 typedef EMACS_UINT uprintmax_t;
169 # define pMd pI"d"
170 # define pMu pI"u"
171 #endif
172
173 /* Use pD to format ptrdiff_t values, which suffice for indexes into
174 buffers and strings. Emacs never allocates objects larger than
175 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
176 In C99, pD can always be "t"; configure it here for the sake of
177 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
178 #if PTRDIFF_MAX == INT_MAX
179 # define pD ""
180 #elif PTRDIFF_MAX == LONG_MAX
181 # define pD "l"
182 #elif PTRDIFF_MAX == LLONG_MAX
183 # define pD "ll"
184 #else
185 # define pD "t"
186 #endif
187
188 /* Extra internal type checking? */
189
190 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
191 'assume (COND)'. COND should be free of side effects, as it may or
192 may not be evaluated.
193
194 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
195 defined and suppress_checking is false, and does nothing otherwise.
196 Emacs dies if COND is checked and is false. The suppress_checking
197 variable is initialized to 0 in alloc.c. Set it to 1 using a
198 debugger to temporarily disable aborting on detected internal
199 inconsistencies or error conditions.
200
201 In some cases, a good compiler may be able to optimize away the
202 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
203 uses eassert to test STRINGP (x), but a particular use of XSTRING
204 is invoked only after testing that STRINGP (x) is true, making the
205 test redundant.
206
207 eassume is like eassert except that it also causes the compiler to
208 assume that COND is true afterwards, regardless of whether runtime
209 checking is enabled. This can improve performance in some cases,
210 though it can degrade performance in others. It's often suboptimal
211 for COND to call external functions or access volatile storage. */
212
213 #ifndef ENABLE_CHECKING
214 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
215 # define eassume(cond) assume (cond)
216 #else /* ENABLE_CHECKING */
217
218 extern _Noreturn void die (const char *, const char *, int);
219
220 extern bool suppress_checking EXTERNALLY_VISIBLE;
221
222 # define eassert(cond) \
223 (suppress_checking || (cond) \
224 ? (void) 0 \
225 : die (# cond, __FILE__, __LINE__))
226 # define eassume(cond) \
227 (suppress_checking \
228 ? assume (cond) \
229 : (cond) \
230 ? (void) 0 \
231 : die (# cond, __FILE__, __LINE__))
232 #endif /* ENABLE_CHECKING */
233
234 \f
235 /* Use the configure flag --enable-check-lisp-object-type to make
236 Lisp_Object use a struct type instead of the default int. The flag
237 causes CHECK_LISP_OBJECT_TYPE to be defined. */
238
239 /***** Select the tagging scheme. *****/
240 /* The following option controls the tagging scheme:
241 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
242 always 0, and we can thus use them to hold tag bits, without
243 restricting our addressing space.
244
245 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
246 restricting our possible address range.
247
248 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
249 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
250 on the few static Lisp_Objects used: all the defsubr as well
251 as the two special buffers buffer_defaults and buffer_local_symbols. */
252
253 enum Lisp_Bits
254 {
255 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
256 integer constant, for MSVC. */
257 #define GCALIGNMENT 8
258
259 /* Number of bits in a Lisp_Object value, not counting the tag. */
260 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
261
262 /* Number of bits in a Lisp fixnum tag. */
263 INTTYPEBITS = GCTYPEBITS - 1,
264
265 /* Number of bits in a Lisp fixnum value, not counting the tag. */
266 FIXNUM_BITS = VALBITS + 1
267 };
268
269 #if GCALIGNMENT != 1 << GCTYPEBITS
270 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
271 #endif
272
273 /* The maximum value that can be stored in a EMACS_INT, assuming all
274 bits other than the type bits contribute to a nonnegative signed value.
275 This can be used in #if, e.g., '#if VAL_MAX < UINTPTR_MAX' below. */
276 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
277
278 /* Whether the least-significant bits of an EMACS_INT contain the tag.
279 On hosts where pointers-as-ints do not exceed VAL_MAX, USE_LSB_TAG is:
280 a. unnecessary, because the top bits of an EMACS_INT are unused, and
281 b. slower, because it typically requires extra masking.
282 So, USE_LSB_TAG is true only on hosts where it might be useful. */
283 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
284 #define USE_LSB_TAG (EMACS_INT_MAX >> GCTYPEBITS < INTPTR_MAX)
285 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
286
287 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
288 # error "USE_LSB_TAG not supported on this platform; please report this." \
289 "Try 'configure --with-wide-int' to work around the problem."
290 error !;
291 #endif
292
293 #ifndef alignas
294 # define alignas(alignment) /* empty */
295 # if USE_LSB_TAG
296 # error "USE_LSB_TAG requires alignas"
297 # endif
298 #endif
299
300
301 /* Some operations are so commonly executed that they are implemented
302 as macros, not functions, because otherwise runtime performance would
303 suffer too much when compiling with GCC without optimization.
304 There's no need to inline everything, just the operations that
305 would otherwise cause a serious performance problem.
306
307 For each such operation OP, define a macro lisp_h_OP that contains
308 the operation's implementation. That way, OP can be implemented
309 via a macro definition like this:
310
311 #define OP(x) lisp_h_OP (x)
312
313 and/or via a function definition like this:
314
315 LISP_MACRO_DEFUN (OP, Lisp_Object, (Lisp_Object x), (x))
316
317 which macro-expands to this:
318
319 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
320
321 without worrying about the implementations diverging, since
322 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
323 are intended to be private to this include file, and should not be
324 used elsewhere.
325
326 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
327 functions, once most developers have access to GCC 4.8 or later and
328 can use "gcc -Og" to debug. Maybe in the year 2016. See
329 Bug#11935.
330
331 Commentary for these macros can be found near their corresponding
332 functions, below. */
333
334 #if CHECK_LISP_OBJECT_TYPE
335 # define lisp_h_XLI(o) ((o).i)
336 # define lisp_h_XIL(i) ((Lisp_Object) { i })
337 #else
338 # define lisp_h_XLI(o) (o)
339 # define lisp_h_XIL(i) (i)
340 #endif
341 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
342 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
343 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
344 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
345 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
346 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
347 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
348 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
349 #define lisp_h_INTEGERP(x) ((XTYPE (x) & ~Lisp_Int1) == 0)
350 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
351 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
352 #define lisp_h_NILP(x) EQ (x, Qnil)
353 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
354 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
355 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
356 #define lisp_h_SYMBOL_VAL(sym) \
357 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
358 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
359 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
360 #define lisp_h_XCAR(c) XCONS (c)->car
361 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
362 #define lisp_h_XCONS(a) \
363 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
364 #define lisp_h_XHASH(a) XUINT (a)
365 #define lisp_h_XPNTR(a) ((void *) (intptr_t) (XLI (a) & VALMASK))
366 #define lisp_h_XSYMBOL(a) \
367 (eassert (SYMBOLP (a)), (struct Lisp_Symbol *) XUNTAG (a, Lisp_Symbol))
368 #ifndef GC_CHECK_CONS_LIST
369 # define lisp_h_check_cons_list() ((void) 0)
370 #endif
371 #if USE_LSB_TAG
372 # define lisp_h_make_number(n) \
373 XIL ((EMACS_INT) ((EMACS_UINT) (n) << INTTYPEBITS))
374 # define lisp_h_XFASTINT(a) XINT (a)
375 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
376 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
377 # define lisp_h_XUNTAG(a, type) ((void *) (XLI (a) - (type)))
378 #endif
379
380 /* When compiling via gcc -O0, define the key operations as macros, as
381 Emacs is too slow otherwise. To disable this optimization, compile
382 with -DINLINING=false. */
383 #if (defined __NO_INLINE__ \
384 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
385 && ! (defined INLINING && ! INLINING))
386 # define XLI(o) lisp_h_XLI (o)
387 # define XIL(i) lisp_h_XIL (i)
388 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
389 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
390 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
391 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
392 # define CONSP(x) lisp_h_CONSP (x)
393 # define EQ(x, y) lisp_h_EQ (x, y)
394 # define FLOATP(x) lisp_h_FLOATP (x)
395 # define INTEGERP(x) lisp_h_INTEGERP (x)
396 # define MARKERP(x) lisp_h_MARKERP (x)
397 # define MISCP(x) lisp_h_MISCP (x)
398 # define NILP(x) lisp_h_NILP (x)
399 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
400 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
401 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
402 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
403 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
404 # define XCAR(c) lisp_h_XCAR (c)
405 # define XCDR(c) lisp_h_XCDR (c)
406 # define XCONS(a) lisp_h_XCONS (a)
407 # define XHASH(a) lisp_h_XHASH (a)
408 # define XPNTR(a) lisp_h_XPNTR (a)
409 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
410 # ifndef GC_CHECK_CONS_LIST
411 # define check_cons_list() lisp_h_check_cons_list ()
412 # endif
413 # if USE_LSB_TAG
414 # define make_number(n) lisp_h_make_number (n)
415 # define XFASTINT(a) lisp_h_XFASTINT (a)
416 # define XINT(a) lisp_h_XINT (a)
417 # define XTYPE(a) lisp_h_XTYPE (a)
418 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
419 # endif
420 #endif
421
422 /* Define NAME as a lisp.h inline function that returns TYPE and has
423 arguments declared as ARGDECLS and passed as ARGS. ARGDECLS and
424 ARGS should be parenthesized. Implement the function by calling
425 lisp_h_NAME ARGS. */
426 #define LISP_MACRO_DEFUN(name, type, argdecls, args) \
427 INLINE type (name) argdecls { return lisp_h_##name args; }
428
429 /* like LISP_MACRO_DEFUN, except NAME returns void. */
430 #define LISP_MACRO_DEFUN_VOID(name, argdecls, args) \
431 INLINE void (name) argdecls { lisp_h_##name args; }
432
433
434 /* Define the fundamental Lisp data structures. */
435
436 /* This is the set of Lisp data types. If you want to define a new
437 data type, read the comments after Lisp_Fwd_Type definition
438 below. */
439
440 /* Lisp integers use 2 tags, to give them one extra bit, thus
441 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
442 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
443 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
444
445 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
446 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
447 vociferously about them. */
448 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
449 || (defined __SUNPRO_C && __STDC__))
450 #define ENUM_BF(TYPE) unsigned int
451 #else
452 #define ENUM_BF(TYPE) enum TYPE
453 #endif
454
455
456 enum Lisp_Type
457 {
458 /* Integer. XINT (obj) is the integer value. */
459 Lisp_Int0 = 0,
460 Lisp_Int1 = USE_LSB_TAG ? 1 << INTTYPEBITS : 1,
461
462 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
463 Lisp_Symbol = 2,
464
465 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
466 whose first member indicates the subtype. */
467 Lisp_Misc = 3,
468
469 /* String. XSTRING (object) points to a struct Lisp_String.
470 The length of the string, and its contents, are stored therein. */
471 Lisp_String = USE_LSB_TAG ? 1 : 1 << INTTYPEBITS,
472
473 /* Vector of Lisp objects, or something resembling it.
474 XVECTOR (object) points to a struct Lisp_Vector, which contains
475 the size and contents. The size field also contains the type
476 information, if it's not a real vector object. */
477 Lisp_Vectorlike = 5,
478
479 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
480 Lisp_Cons = 6,
481
482 Lisp_Float = 7
483 };
484
485 /* This is the set of data types that share a common structure.
486 The first member of the structure is a type code from this set.
487 The enum values are arbitrary, but we'll use large numbers to make it
488 more likely that we'll spot the error if a random word in memory is
489 mistakenly interpreted as a Lisp_Misc. */
490 enum Lisp_Misc_Type
491 {
492 Lisp_Misc_Free = 0x5eab,
493 Lisp_Misc_Marker,
494 Lisp_Misc_Overlay,
495 Lisp_Misc_Save_Value,
496 /* Currently floats are not a misc type,
497 but let's define this in case we want to change that. */
498 Lisp_Misc_Float,
499 /* This is not a type code. It is for range checking. */
500 Lisp_Misc_Limit
501 };
502
503 /* These are the types of forwarding objects used in the value slot
504 of symbols for special built-in variables whose value is stored in
505 C variables. */
506 enum Lisp_Fwd_Type
507 {
508 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
509 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
510 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
511 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
512 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
513 };
514
515 /* If you want to define a new Lisp data type, here are some
516 instructions. See the thread at
517 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
518 for more info.
519
520 First, there are already a couple of Lisp types that can be used if
521 your new type does not need to be exposed to Lisp programs nor
522 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
523 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
524 is suitable for temporarily stashing away pointers and integers in
525 a Lisp object. The latter is useful for vector-like Lisp objects
526 that need to be used as part of other objects, but which are never
527 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
528 an example).
529
530 These two types don't look pretty when printed, so they are
531 unsuitable for Lisp objects that can be exposed to users.
532
533 To define a new data type, add one more Lisp_Misc subtype or one
534 more pseudovector subtype. Pseudovectors are more suitable for
535 objects with several slots that need to support fast random access,
536 while Lisp_Misc types are for everything else. A pseudovector object
537 provides one or more slots for Lisp objects, followed by struct
538 members that are accessible only from C. A Lisp_Misc object is a
539 wrapper for a C struct that can contain anything you like.
540
541 Explicit freeing is discouraged for Lisp objects in general. But if
542 you really need to exploit this, use Lisp_Misc (check free_misc in
543 alloc.c to see why). There is no way to free a vectorlike object.
544
545 To add a new pseudovector type, extend the pvec_type enumeration;
546 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
547
548 For a Lisp_Misc, you will also need to add your entry to union
549 Lisp_Misc (but make sure the first word has the same structure as
550 the others, starting with a 16-bit member of the Lisp_Misc_Type
551 enumeration and a 1-bit GC markbit) and make sure the overall size
552 of the union is not increased by your addition.
553
554 For a new pseudovector, it's highly desirable to limit the size
555 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
556 Otherwise you will need to change sweep_vectors (also in alloc.c).
557
558 Then you will need to add switch branches in print.c (in
559 print_object, to print your object, and possibly also in
560 print_preprocess) and to alloc.c, to mark your object (in
561 mark_object) and to free it (in gc_sweep). The latter is also the
562 right place to call any code specific to your data type that needs
563 to run when the object is recycled -- e.g., free any additional
564 resources allocated for it that are not Lisp objects. You can even
565 make a pointer to the function that frees the resources a slot in
566 your object -- this way, the same object could be used to represent
567 several disparate C structures. */
568
569 #ifdef CHECK_LISP_OBJECT_TYPE
570
571 typedef struct { EMACS_INT i; } Lisp_Object;
572
573 #define LISP_INITIALLY_ZERO {0}
574
575 #undef CHECK_LISP_OBJECT_TYPE
576 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
577 #else /* CHECK_LISP_OBJECT_TYPE */
578
579 /* If a struct type is not wanted, define Lisp_Object as just a number. */
580
581 typedef EMACS_INT Lisp_Object;
582 #define LISP_INITIALLY_ZERO 0
583 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
584 #endif /* CHECK_LISP_OBJECT_TYPE */
585
586 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
587 At the machine level, these operations are no-ops. */
588 LISP_MACRO_DEFUN (XLI, EMACS_INT, (Lisp_Object o), (o))
589 LISP_MACRO_DEFUN (XIL, Lisp_Object, (EMACS_INT i), (i))
590
591 /* In the size word of a vector, this bit means the vector has been marked. */
592
593 #define ARRAY_MARK_FLAG_val PTRDIFF_MIN
594 #if ENUMABLE (ARRAY_MARK_FLAG_val)
595 DEFINE_GDB_SYMBOL_ENUM (ARRAY_MARK_FLAG)
596 #else
597 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
598 # define ARRAY_MARK_FLAG ARRAY_MARK_FLAG_val
599 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
600 #endif
601
602 /* In the size word of a struct Lisp_Vector, this bit means it's really
603 some other vector-like object. */
604 #define PSEUDOVECTOR_FLAG_val (PTRDIFF_MAX - PTRDIFF_MAX / 2)
605 #if ENUMABLE (PSEUDOVECTOR_FLAG_val)
606 DEFINE_GDB_SYMBOL_ENUM (PSEUDOVECTOR_FLAG)
607 #else
608 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
609 # define PSEUDOVECTOR_FLAG PSEUDOVECTOR_FLAG_val
610 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
611 #endif
612
613 /* In a pseudovector, the size field actually contains a word with one
614 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
615 with PVEC_TYPE_MASK to indicate the actual type. */
616 enum pvec_type
617 {
618 PVEC_NORMAL_VECTOR,
619 PVEC_FREE,
620 PVEC_PROCESS,
621 PVEC_FRAME,
622 PVEC_WINDOW,
623 PVEC_BOOL_VECTOR,
624 PVEC_BUFFER,
625 PVEC_HASH_TABLE,
626 PVEC_TERMINAL,
627 PVEC_WINDOW_CONFIGURATION,
628 PVEC_SUBR,
629 PVEC_OTHER,
630 /* These should be last, check internal_equal to see why. */
631 PVEC_COMPILED,
632 PVEC_CHAR_TABLE,
633 PVEC_SUB_CHAR_TABLE,
634 PVEC_FONT /* Should be last because it's used for range checking. */
635 };
636
637 enum More_Lisp_Bits
638 {
639 /* For convenience, we also store the number of elements in these bits.
640 Note that this size is not necessarily the memory-footprint size, but
641 only the number of Lisp_Object fields (that need to be traced by GC).
642 The distinction is used, e.g., by Lisp_Process, which places extra
643 non-Lisp_Object fields at the end of the structure. */
644 PSEUDOVECTOR_SIZE_BITS = 12,
645 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
646
647 /* To calculate the memory footprint of the pseudovector, it's useful
648 to store the size of non-Lisp area in word_size units here. */
649 PSEUDOVECTOR_REST_BITS = 12,
650 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
651 << PSEUDOVECTOR_SIZE_BITS),
652
653 /* Used to extract pseudovector subtype information. */
654 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
655 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
656 };
657 \f
658 /* These functions extract various sorts of values from a Lisp_Object.
659 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
660 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
661 that cons. */
662
663 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
664 #define VALMASK_val (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
665 #if ENUMABLE (VALMASK_val)
666 DEFINE_GDB_SYMBOL_ENUM (VALMASK)
667 #else
668 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
669 # define VALMASK VALMASK_val
670 DEFINE_GDB_SYMBOL_END (VALMASK)
671 #endif
672
673 /* Largest and smallest representable fixnum values. These are the C
674 values. They are macros for use in static initializers. */
675 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
676 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
677
678 /* Extract the pointer hidden within A. */
679 LISP_MACRO_DEFUN (XPNTR, void *, (Lisp_Object a), (a))
680
681 #if USE_LSB_TAG
682
683 LISP_MACRO_DEFUN (make_number, Lisp_Object, (EMACS_INT n), (n))
684 LISP_MACRO_DEFUN (XINT, EMACS_INT, (Lisp_Object a), (a))
685 LISP_MACRO_DEFUN (XFASTINT, EMACS_INT, (Lisp_Object a), (a))
686 LISP_MACRO_DEFUN (XTYPE, enum Lisp_Type, (Lisp_Object a), (a))
687 LISP_MACRO_DEFUN (XUNTAG, void *, (Lisp_Object a, int type), (a, type))
688
689 #else /* ! USE_LSB_TAG */
690
691 /* Although compiled only if ! USE_LSB_TAG, the following functions
692 also work when USE_LSB_TAG; this is to aid future maintenance when
693 the lisp_h_* macros are eventually removed. */
694
695 /* Make a Lisp integer representing the value of the low order
696 bits of N. */
697 INLINE Lisp_Object
698 make_number (EMACS_INT n)
699 {
700 if (USE_LSB_TAG)
701 {
702 EMACS_UINT u = n;
703 n = u << INTTYPEBITS;
704 }
705 else
706 n &= INTMASK;
707 return XIL (n);
708 }
709
710 /* Extract A's value as a signed integer. */
711 INLINE EMACS_INT
712 XINT (Lisp_Object a)
713 {
714 EMACS_INT i = XLI (a);
715 if (! USE_LSB_TAG)
716 {
717 EMACS_UINT u = i;
718 i = u << INTTYPEBITS;
719 }
720 return i >> INTTYPEBITS;
721 }
722
723 /* Like XINT (A), but may be faster. A must be nonnegative.
724 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
725 integers have zero-bits in their tags. */
726 INLINE EMACS_INT
727 XFASTINT (Lisp_Object a)
728 {
729 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a);
730 eassert (0 <= n);
731 return n;
732 }
733
734 /* Extract A's type. */
735 INLINE enum Lisp_Type
736 XTYPE (Lisp_Object a)
737 {
738 EMACS_UINT i = XLI (a);
739 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
740 }
741
742 /* Extract A's pointer value, assuming A's type is TYPE. */
743 INLINE void *
744 XUNTAG (Lisp_Object a, int type)
745 {
746 if (USE_LSB_TAG)
747 {
748 intptr_t i = XLI (a) - type;
749 return (void *) i;
750 }
751 return XPNTR (a);
752 }
753
754 #endif /* ! USE_LSB_TAG */
755
756 /* Extract A's value as an unsigned integer. */
757 INLINE EMACS_UINT
758 XUINT (Lisp_Object a)
759 {
760 EMACS_UINT i = XLI (a);
761 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
762 }
763
764 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
765 right now, but XUINT should only be applied to objects we know are
766 integers. */
767 LISP_MACRO_DEFUN (XHASH, EMACS_INT, (Lisp_Object a), (a))
768
769 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
770 INLINE Lisp_Object
771 make_natnum (EMACS_INT n)
772 {
773 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
774 return USE_LSB_TAG ? make_number (n) : XIL (n);
775 }
776
777 /* Return true if X and Y are the same object. */
778 LISP_MACRO_DEFUN (EQ, bool, (Lisp_Object x, Lisp_Object y), (x, y))
779
780 /* Value is true if I doesn't fit into a Lisp fixnum. It is
781 written this way so that it also works if I is of unsigned
782 type or if I is a NaN. */
783
784 #define FIXNUM_OVERFLOW_P(i) \
785 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
786
787 INLINE ptrdiff_t
788 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
789 {
790 return num < lower ? lower : num <= upper ? num : upper;
791 }
792 \f
793 /* Forward declarations. */
794
795 /* Defined in this file. */
796 union Lisp_Fwd;
797 INLINE bool BOOL_VECTOR_P (Lisp_Object);
798 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
799 INLINE bool BUFFERP (Lisp_Object);
800 INLINE bool CHAR_TABLE_P (Lisp_Object);
801 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
802 INLINE bool (CONSP) (Lisp_Object);
803 INLINE bool (FLOATP) (Lisp_Object);
804 INLINE bool functionp (Lisp_Object);
805 INLINE bool (INTEGERP) (Lisp_Object);
806 INLINE bool (MARKERP) (Lisp_Object);
807 INLINE bool (MISCP) (Lisp_Object);
808 INLINE bool (NILP) (Lisp_Object);
809 INLINE bool OVERLAYP (Lisp_Object);
810 INLINE bool PROCESSP (Lisp_Object);
811 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
812 INLINE bool SAVE_VALUEP (Lisp_Object);
813 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
814 Lisp_Object);
815 INLINE bool STRINGP (Lisp_Object);
816 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
817 INLINE bool SUBRP (Lisp_Object);
818 INLINE bool (SYMBOLP) (Lisp_Object);
819 INLINE bool (VECTORLIKEP) (Lisp_Object);
820 INLINE bool WINDOWP (Lisp_Object);
821 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
822
823 /* Defined in chartab.c. */
824 extern Lisp_Object char_table_ref (Lisp_Object, int);
825 extern void char_table_set (Lisp_Object, int, Lisp_Object);
826
827 /* Defined in data.c. */
828 extern Lisp_Object Qarrayp, Qbufferp, Qbuffer_or_string_p, Qchar_table_p;
829 extern Lisp_Object Qconsp, Qfloatp, Qintegerp, Qlambda, Qlistp, Qmarkerp, Qnil;
830 extern Lisp_Object Qnumberp, Qstringp, Qsymbolp, Qt, Qvectorp;
831 extern Lisp_Object Qbool_vector_p;
832 extern Lisp_Object Qvector_or_char_table_p, Qwholenump;
833 extern Lisp_Object Qwindow;
834 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
835
836 /* Defined in emacs.c. */
837 extern bool might_dump;
838 /* True means Emacs has already been initialized.
839 Used during startup to detect startup of dumped Emacs. */
840 extern bool initialized;
841
842 /* Defined in eval.c. */
843 extern Lisp_Object Qautoload;
844
845 /* Defined in floatfns.c. */
846 extern double extract_float (Lisp_Object);
847
848 /* Defined in process.c. */
849 extern Lisp_Object Qprocessp;
850
851 /* Defined in window.c. */
852 extern Lisp_Object Qwindowp;
853
854 /* Defined in xdisp.c. */
855 extern Lisp_Object Qimage;
856 \f
857
858 /* Extract a value or address from a Lisp_Object. */
859
860 LISP_MACRO_DEFUN (XCONS, struct Lisp_Cons *, (Lisp_Object a), (a))
861
862 INLINE struct Lisp_Vector *
863 XVECTOR (Lisp_Object a)
864 {
865 eassert (VECTORLIKEP (a));
866 return XUNTAG (a, Lisp_Vectorlike);
867 }
868
869 INLINE struct Lisp_String *
870 XSTRING (Lisp_Object a)
871 {
872 eassert (STRINGP (a));
873 return XUNTAG (a, Lisp_String);
874 }
875
876 LISP_MACRO_DEFUN (XSYMBOL, struct Lisp_Symbol *, (Lisp_Object a), (a))
877
878 INLINE struct Lisp_Float *
879 XFLOAT (Lisp_Object a)
880 {
881 eassert (FLOATP (a));
882 return XUNTAG (a, Lisp_Float);
883 }
884
885 /* Pseudovector types. */
886
887 INLINE struct Lisp_Process *
888 XPROCESS (Lisp_Object a)
889 {
890 eassert (PROCESSP (a));
891 return XUNTAG (a, Lisp_Vectorlike);
892 }
893
894 INLINE struct window *
895 XWINDOW (Lisp_Object a)
896 {
897 eassert (WINDOWP (a));
898 return XUNTAG (a, Lisp_Vectorlike);
899 }
900
901 INLINE struct terminal *
902 XTERMINAL (Lisp_Object a)
903 {
904 return XUNTAG (a, Lisp_Vectorlike);
905 }
906
907 INLINE struct Lisp_Subr *
908 XSUBR (Lisp_Object a)
909 {
910 eassert (SUBRP (a));
911 return XUNTAG (a, Lisp_Vectorlike);
912 }
913
914 INLINE struct buffer *
915 XBUFFER (Lisp_Object a)
916 {
917 eassert (BUFFERP (a));
918 return XUNTAG (a, Lisp_Vectorlike);
919 }
920
921 INLINE struct Lisp_Char_Table *
922 XCHAR_TABLE (Lisp_Object a)
923 {
924 eassert (CHAR_TABLE_P (a));
925 return XUNTAG (a, Lisp_Vectorlike);
926 }
927
928 INLINE struct Lisp_Sub_Char_Table *
929 XSUB_CHAR_TABLE (Lisp_Object a)
930 {
931 eassert (SUB_CHAR_TABLE_P (a));
932 return XUNTAG (a, Lisp_Vectorlike);
933 }
934
935 INLINE struct Lisp_Bool_Vector *
936 XBOOL_VECTOR (Lisp_Object a)
937 {
938 eassert (BOOL_VECTOR_P (a));
939 return XUNTAG (a, Lisp_Vectorlike);
940 }
941
942 /* Construct a Lisp_Object from a value or address. */
943
944 INLINE Lisp_Object
945 make_lisp_ptr (void *ptr, enum Lisp_Type type)
946 {
947 EMACS_UINT utype = type;
948 EMACS_UINT typebits = USE_LSB_TAG ? type : utype << VALBITS;
949 Lisp_Object a = XIL (typebits | (uintptr_t) ptr);
950 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
951 return a;
952 }
953
954 INLINE Lisp_Object
955 make_lisp_proc (struct Lisp_Process *p)
956 {
957 return make_lisp_ptr (p, Lisp_Vectorlike);
958 }
959
960 #define XSETINT(a, b) ((a) = make_number (b))
961 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
962 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
963 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
964 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
965 #define XSETSYMBOL(a, b) ((a) = make_lisp_ptr (b, Lisp_Symbol))
966 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
967 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
968
969 /* Pseudovector types. */
970
971 #define XSETPVECTYPE(v, code) \
972 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
973 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
974 ((v)->header.size = (PSEUDOVECTOR_FLAG \
975 | ((code) << PSEUDOVECTOR_AREA_BITS) \
976 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
977 | (lispsize)))
978
979 /* The cast to struct vectorlike_header * avoids aliasing issues. */
980 #define XSETPSEUDOVECTOR(a, b, code) \
981 XSETTYPED_PSEUDOVECTOR (a, b, \
982 (((struct vectorlike_header *) \
983 XUNTAG (a, Lisp_Vectorlike)) \
984 ->size), \
985 code)
986 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
987 (XSETVECTOR (a, b), \
988 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
989 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
990
991 #define XSETWINDOW_CONFIGURATION(a, b) \
992 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
993 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
994 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
995 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
996 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
997 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
998 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
999 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1000 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1001 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1002
1003 /* Type checking. */
1004
1005 LISP_MACRO_DEFUN_VOID (CHECK_TYPE,
1006 (int ok, Lisp_Object predicate, Lisp_Object x),
1007 (ok, predicate, x))
1008
1009 /* Deprecated and will be removed soon. */
1010
1011 #define INTERNAL_FIELD(field) field ## _
1012
1013 /* See the macros in intervals.h. */
1014
1015 typedef struct interval *INTERVAL;
1016
1017 struct Lisp_Cons
1018 {
1019 /* Car of this cons cell. */
1020 Lisp_Object car;
1021
1022 union
1023 {
1024 /* Cdr of this cons cell. */
1025 Lisp_Object cdr;
1026
1027 /* Used to chain conses on a free list. */
1028 struct Lisp_Cons *chain;
1029 } u;
1030 };
1031
1032 /* Take the car or cdr of something known to be a cons cell. */
1033 /* The _addr functions shouldn't be used outside of the minimal set
1034 of code that has to know what a cons cell looks like. Other code not
1035 part of the basic lisp implementation should assume that the car and cdr
1036 fields are not accessible. (What if we want to switch to
1037 a copying collector someday? Cached cons cell field addresses may be
1038 invalidated at arbitrary points.) */
1039 INLINE Lisp_Object *
1040 xcar_addr (Lisp_Object c)
1041 {
1042 return &XCONS (c)->car;
1043 }
1044 INLINE Lisp_Object *
1045 xcdr_addr (Lisp_Object c)
1046 {
1047 return &XCONS (c)->u.cdr;
1048 }
1049
1050 /* Use these from normal code. */
1051 LISP_MACRO_DEFUN (XCAR, Lisp_Object, (Lisp_Object c), (c))
1052 LISP_MACRO_DEFUN (XCDR, Lisp_Object, (Lisp_Object c), (c))
1053
1054 /* Use these to set the fields of a cons cell.
1055
1056 Note that both arguments may refer to the same object, so 'n'
1057 should not be read after 'c' is first modified. */
1058 INLINE void
1059 XSETCAR (Lisp_Object c, Lisp_Object n)
1060 {
1061 *xcar_addr (c) = n;
1062 }
1063 INLINE void
1064 XSETCDR (Lisp_Object c, Lisp_Object n)
1065 {
1066 *xcdr_addr (c) = n;
1067 }
1068
1069 /* Take the car or cdr of something whose type is not known. */
1070 INLINE Lisp_Object
1071 CAR (Lisp_Object c)
1072 {
1073 return (CONSP (c) ? XCAR (c)
1074 : NILP (c) ? Qnil
1075 : wrong_type_argument (Qlistp, c));
1076 }
1077 INLINE Lisp_Object
1078 CDR (Lisp_Object c)
1079 {
1080 return (CONSP (c) ? XCDR (c)
1081 : NILP (c) ? Qnil
1082 : wrong_type_argument (Qlistp, c));
1083 }
1084
1085 /* Take the car or cdr of something whose type is not known. */
1086 INLINE Lisp_Object
1087 CAR_SAFE (Lisp_Object c)
1088 {
1089 return CONSP (c) ? XCAR (c) : Qnil;
1090 }
1091 INLINE Lisp_Object
1092 CDR_SAFE (Lisp_Object c)
1093 {
1094 return CONSP (c) ? XCDR (c) : Qnil;
1095 }
1096
1097 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1098
1099 struct Lisp_String
1100 {
1101 ptrdiff_t size;
1102 ptrdiff_t size_byte;
1103 INTERVAL intervals; /* Text properties in this string. */
1104 unsigned char *data;
1105 };
1106
1107 /* True if STR is a multibyte string. */
1108 INLINE bool
1109 STRING_MULTIBYTE (Lisp_Object str)
1110 {
1111 return 0 <= XSTRING (str)->size_byte;
1112 }
1113
1114 /* An upper bound on the number of bytes in a Lisp string, not
1115 counting the terminating null. This a tight enough bound to
1116 prevent integer overflow errors that would otherwise occur during
1117 string size calculations. A string cannot contain more bytes than
1118 a fixnum can represent, nor can it be so long that C pointer
1119 arithmetic stops working on the string plus its terminating null.
1120 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1121 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1122 would expose alloc.c internal details that we'd rather keep
1123 private.
1124
1125 This is a macro for use in static initializers. The cast to
1126 ptrdiff_t ensures that the macro is signed. */
1127 #define STRING_BYTES_BOUND \
1128 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1129
1130 /* Mark STR as a unibyte string. */
1131 #define STRING_SET_UNIBYTE(STR) \
1132 do { \
1133 if (EQ (STR, empty_multibyte_string)) \
1134 (STR) = empty_unibyte_string; \
1135 else \
1136 XSTRING (STR)->size_byte = -1; \
1137 } while (false)
1138
1139 /* Mark STR as a multibyte string. Assure that STR contains only
1140 ASCII characters in advance. */
1141 #define STRING_SET_MULTIBYTE(STR) \
1142 do { \
1143 if (EQ (STR, empty_unibyte_string)) \
1144 (STR) = empty_multibyte_string; \
1145 else \
1146 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1147 } while (false)
1148
1149 /* Convenience functions for dealing with Lisp strings. */
1150
1151 INLINE unsigned char *
1152 SDATA (Lisp_Object string)
1153 {
1154 return XSTRING (string)->data;
1155 }
1156 INLINE char *
1157 SSDATA (Lisp_Object string)
1158 {
1159 /* Avoid "differ in sign" warnings. */
1160 return (char *) SDATA (string);
1161 }
1162 INLINE unsigned char
1163 SREF (Lisp_Object string, ptrdiff_t index)
1164 {
1165 return SDATA (string)[index];
1166 }
1167 INLINE void
1168 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1169 {
1170 SDATA (string)[index] = new;
1171 }
1172 INLINE ptrdiff_t
1173 SCHARS (Lisp_Object string)
1174 {
1175 return XSTRING (string)->size;
1176 }
1177
1178 #ifdef GC_CHECK_STRING_BYTES
1179 extern ptrdiff_t string_bytes (struct Lisp_String *);
1180 #endif
1181 INLINE ptrdiff_t
1182 STRING_BYTES (struct Lisp_String *s)
1183 {
1184 #ifdef GC_CHECK_STRING_BYTES
1185 return string_bytes (s);
1186 #else
1187 return s->size_byte < 0 ? s->size : s->size_byte;
1188 #endif
1189 }
1190
1191 INLINE ptrdiff_t
1192 SBYTES (Lisp_Object string)
1193 {
1194 return STRING_BYTES (XSTRING (string));
1195 }
1196 INLINE void
1197 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1198 {
1199 XSTRING (string)->size = newsize;
1200 }
1201
1202 /* Header of vector-like objects. This documents the layout constraints on
1203 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1204 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1205 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1206 because when two such pointers potentially alias, a compiler won't
1207 incorrectly reorder loads and stores to their size fields. See
1208 Bug#8546. */
1209 struct vectorlike_header
1210 {
1211 /* The only field contains various pieces of information:
1212 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1213 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1214 vector (0) or a pseudovector (1).
1215 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1216 of slots) of the vector.
1217 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1218 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1219 - b) number of Lisp_Objects slots at the beginning of the object
1220 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1221 traced by the GC;
1222 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1223 measured in word_size units. Rest fields may also include
1224 Lisp_Objects, but these objects usually needs some special treatment
1225 during GC.
1226 There are some exceptions. For PVEC_FREE, b) is always zero. For
1227 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1228 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1229 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1230 ptrdiff_t size;
1231 };
1232
1233 /* A regular vector is just a header plus an array of Lisp_Objects. */
1234
1235 struct Lisp_Vector
1236 {
1237 struct vectorlike_header header;
1238 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1239 };
1240
1241 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1242 enum
1243 {
1244 ALIGNOF_STRUCT_LISP_VECTOR
1245 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1246 };
1247
1248 /* A boolvector is a kind of vectorlike, with contents like a string. */
1249
1250 struct Lisp_Bool_Vector
1251 {
1252 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1253 just the subtype information. */
1254 struct vectorlike_header header;
1255 /* This is the size in bits. */
1256 EMACS_INT size;
1257 /* The actual bits, packed into bytes.
1258 Zeros fill out the last word if needed.
1259 The bits are in little-endian order in the bytes, and
1260 the bytes are in little-endian order in the words. */
1261 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1262 };
1263
1264 INLINE EMACS_INT
1265 bool_vector_size (Lisp_Object a)
1266 {
1267 EMACS_INT size = XBOOL_VECTOR (a)->size;
1268 eassume (0 <= size);
1269 return size;
1270 }
1271
1272 INLINE bits_word *
1273 bool_vector_data (Lisp_Object a)
1274 {
1275 return XBOOL_VECTOR (a)->data;
1276 }
1277
1278 INLINE unsigned char *
1279 bool_vector_uchar_data (Lisp_Object a)
1280 {
1281 return (unsigned char *) bool_vector_data (a);
1282 }
1283
1284 /* The number of data words and bytes in a bool vector with SIZE bits. */
1285
1286 INLINE EMACS_INT
1287 bool_vector_words (EMACS_INT size)
1288 {
1289 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1290 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1291 }
1292
1293 INLINE EMACS_INT
1294 bool_vector_bytes (EMACS_INT size)
1295 {
1296 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1297 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1298 }
1299
1300 /* True if A's Ith bit is set. */
1301
1302 INLINE bool
1303 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1304 {
1305 eassume (0 <= i && i < bool_vector_size (a));
1306 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1307 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1308 }
1309
1310 INLINE Lisp_Object
1311 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1312 {
1313 return bool_vector_bitref (a, i) ? Qt : Qnil;
1314 }
1315
1316 /* Set A's Ith bit to B. */
1317
1318 INLINE void
1319 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1320 {
1321 unsigned char *addr;
1322
1323 eassume (0 <= i && i < bool_vector_size (a));
1324 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1325
1326 if (b)
1327 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1328 else
1329 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1330 }
1331
1332 /* Some handy constants for calculating sizes
1333 and offsets, mostly of vectorlike objects. */
1334
1335 enum
1336 {
1337 header_size = offsetof (struct Lisp_Vector, contents),
1338 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1339 word_size = sizeof (Lisp_Object)
1340 };
1341
1342 /* Conveniences for dealing with Lisp arrays. */
1343
1344 INLINE Lisp_Object
1345 AREF (Lisp_Object array, ptrdiff_t idx)
1346 {
1347 return XVECTOR (array)->contents[idx];
1348 }
1349
1350 INLINE Lisp_Object *
1351 aref_addr (Lisp_Object array, ptrdiff_t idx)
1352 {
1353 return & XVECTOR (array)->contents[idx];
1354 }
1355
1356 INLINE ptrdiff_t
1357 ASIZE (Lisp_Object array)
1358 {
1359 return XVECTOR (array)->header.size;
1360 }
1361
1362 INLINE void
1363 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1364 {
1365 eassert (0 <= idx && idx < ASIZE (array));
1366 XVECTOR (array)->contents[idx] = val;
1367 }
1368
1369 INLINE void
1370 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1371 {
1372 /* Like ASET, but also can be used in the garbage collector:
1373 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1374 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1375 XVECTOR (array)->contents[idx] = val;
1376 }
1377
1378 /* If a struct is made to look like a vector, this macro returns the length
1379 of the shortest vector that would hold that struct. */
1380
1381 #define VECSIZE(type) \
1382 ((sizeof (type) - header_size + word_size - 1) / word_size)
1383
1384 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1385 at the end and we need to compute the number of Lisp_Object fields (the
1386 ones that the GC needs to trace). */
1387
1388 #define PSEUDOVECSIZE(type, nonlispfield) \
1389 ((offsetof (type, nonlispfield) - header_size) / word_size)
1390
1391 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1392 should be integer expressions. This is not the same as
1393 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1394 returns true. For efficiency, prefer plain unsigned comparison if A
1395 and B's sizes both fit (after integer promotion). */
1396 #define UNSIGNED_CMP(a, op, b) \
1397 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1398 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1399 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1400
1401 /* True iff C is an ASCII character. */
1402 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1403
1404 /* A char-table is a kind of vectorlike, with contents are like a
1405 vector but with a few other slots. For some purposes, it makes
1406 sense to handle a char-table with type struct Lisp_Vector. An
1407 element of a char table can be any Lisp objects, but if it is a sub
1408 char-table, we treat it a table that contains information of a
1409 specific range of characters. A sub char-table is like a vector but
1410 with two integer fields between the header and Lisp data, which means
1411 that it has to be marked with some precautions (see mark_char_table
1412 in alloc.c). A sub char-table appears only in an element of a char-table,
1413 and there's no way to access it directly from Emacs Lisp program. */
1414
1415 enum CHARTAB_SIZE_BITS
1416 {
1417 CHARTAB_SIZE_BITS_0 = 6,
1418 CHARTAB_SIZE_BITS_1 = 4,
1419 CHARTAB_SIZE_BITS_2 = 5,
1420 CHARTAB_SIZE_BITS_3 = 7
1421 };
1422
1423 extern const int chartab_size[4];
1424
1425 struct Lisp_Char_Table
1426 {
1427 /* HEADER.SIZE is the vector's size field, which also holds the
1428 pseudovector type information. It holds the size, too.
1429 The size counts the defalt, parent, purpose, ascii,
1430 contents, and extras slots. */
1431 struct vectorlike_header header;
1432
1433 /* This holds a default value,
1434 which is used whenever the value for a specific character is nil. */
1435 Lisp_Object defalt;
1436
1437 /* This points to another char table, which we inherit from when the
1438 value for a specific character is nil. The `defalt' slot takes
1439 precedence over this. */
1440 Lisp_Object parent;
1441
1442 /* This is a symbol which says what kind of use this char-table is
1443 meant for. */
1444 Lisp_Object purpose;
1445
1446 /* The bottom sub char-table for characters of the range 0..127. It
1447 is nil if none of ASCII character has a specific value. */
1448 Lisp_Object ascii;
1449
1450 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1451
1452 /* These hold additional data. It is a vector. */
1453 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1454 };
1455
1456 struct Lisp_Sub_Char_Table
1457 {
1458 /* HEADER.SIZE is the vector's size field, which also holds the
1459 pseudovector type information. It holds the size, too. */
1460 struct vectorlike_header header;
1461
1462 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1463 char-table of depth 1 contains 16 elements, and each element
1464 covers 4096 (128*32) characters. A sub char-table of depth 2
1465 contains 32 elements, and each element covers 128 characters. A
1466 sub char-table of depth 3 contains 128 elements, and each element
1467 is for one character. */
1468 int depth;
1469
1470 /* Minimum character covered by the sub char-table. */
1471 int min_char;
1472
1473 /* Use set_sub_char_table_contents to set this. */
1474 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1475 };
1476
1477 INLINE Lisp_Object
1478 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1479 {
1480 struct Lisp_Char_Table *tbl = NULL;
1481 Lisp_Object val;
1482 do
1483 {
1484 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1485 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1486 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1487 if (NILP (val))
1488 val = tbl->defalt;
1489 }
1490 while (NILP (val) && ! NILP (tbl->parent));
1491
1492 return val;
1493 }
1494
1495 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1496 characters. Do not check validity of CT. */
1497 INLINE Lisp_Object
1498 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1499 {
1500 return (ASCII_CHAR_P (idx)
1501 ? CHAR_TABLE_REF_ASCII (ct, idx)
1502 : char_table_ref (ct, idx));
1503 }
1504
1505 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1506 8-bit European characters. Do not check validity of CT. */
1507 INLINE void
1508 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1509 {
1510 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1511 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1512 else
1513 char_table_set (ct, idx, val);
1514 }
1515
1516 /* This structure describes a built-in function.
1517 It is generated by the DEFUN macro only.
1518 defsubr makes it into a Lisp object. */
1519
1520 struct Lisp_Subr
1521 {
1522 struct vectorlike_header header;
1523 union {
1524 Lisp_Object (*a0) (void);
1525 Lisp_Object (*a1) (Lisp_Object);
1526 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1527 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1528 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1529 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1530 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1531 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1532 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1533 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1534 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1535 } function;
1536 short min_args, max_args;
1537 const char *symbol_name;
1538 const char *intspec;
1539 const char *doc;
1540 };
1541
1542 enum char_table_specials
1543 {
1544 /* This is the number of slots that every char table must have. This
1545 counts the ordinary slots and the top, defalt, parent, and purpose
1546 slots. */
1547 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1548
1549 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1550 when the latter is treated as an ordinary Lisp_Vector. */
1551 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1552 };
1553
1554 /* Return the number of "extra" slots in the char table CT. */
1555
1556 INLINE int
1557 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1558 {
1559 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1560 - CHAR_TABLE_STANDARD_SLOTS);
1561 }
1562
1563 /* Make sure that sub char-table contents slot
1564 is aligned on a multiple of Lisp_Objects. */
1565 verify ((offsetof (struct Lisp_Sub_Char_Table, contents)
1566 - offsetof (struct Lisp_Sub_Char_Table, depth)) % word_size == 0);
1567
1568 /***********************************************************************
1569 Symbols
1570 ***********************************************************************/
1571
1572 /* Interned state of a symbol. */
1573
1574 enum symbol_interned
1575 {
1576 SYMBOL_UNINTERNED = 0,
1577 SYMBOL_INTERNED = 1,
1578 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
1579 };
1580
1581 enum symbol_redirect
1582 {
1583 SYMBOL_PLAINVAL = 4,
1584 SYMBOL_VARALIAS = 1,
1585 SYMBOL_LOCALIZED = 2,
1586 SYMBOL_FORWARDED = 3
1587 };
1588
1589 struct Lisp_Symbol
1590 {
1591 bool_bf gcmarkbit : 1;
1592
1593 /* Indicates where the value can be found:
1594 0 : it's a plain var, the value is in the `value' field.
1595 1 : it's a varalias, the value is really in the `alias' symbol.
1596 2 : it's a localized var, the value is in the `blv' object.
1597 3 : it's a forwarding variable, the value is in `forward'. */
1598 ENUM_BF (symbol_redirect) redirect : 3;
1599
1600 /* Non-zero means symbol is constant, i.e. changing its value
1601 should signal an error. If the value is 3, then the var
1602 can be changed, but only by `defconst'. */
1603 unsigned constant : 2;
1604
1605 /* Interned state of the symbol. This is an enumerator from
1606 enum symbol_interned. */
1607 unsigned interned : 2;
1608
1609 /* True means that this variable has been explicitly declared
1610 special (with `defvar' etc), and shouldn't be lexically bound. */
1611 bool_bf declared_special : 1;
1612
1613 /* True if pointed to from purespace and hence can't be GC'd. */
1614 bool_bf pinned : 1;
1615
1616 /* The symbol's name, as a Lisp string. */
1617 Lisp_Object name;
1618
1619 /* Value of the symbol or Qunbound if unbound. Which alternative of the
1620 union is used depends on the `redirect' field above. */
1621 union {
1622 Lisp_Object value;
1623 struct Lisp_Symbol *alias;
1624 struct Lisp_Buffer_Local_Value *blv;
1625 union Lisp_Fwd *fwd;
1626 } val;
1627
1628 /* Function value of the symbol or Qnil if not fboundp. */
1629 Lisp_Object function;
1630
1631 /* The symbol's property list. */
1632 Lisp_Object plist;
1633
1634 /* Next symbol in obarray bucket, if the symbol is interned. */
1635 struct Lisp_Symbol *next;
1636 };
1637
1638 /* Value is name of symbol. */
1639
1640 LISP_MACRO_DEFUN (SYMBOL_VAL, Lisp_Object, (struct Lisp_Symbol *sym), (sym))
1641
1642 INLINE struct Lisp_Symbol *
1643 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1644 {
1645 eassert (sym->redirect == SYMBOL_VARALIAS);
1646 return sym->val.alias;
1647 }
1648 INLINE struct Lisp_Buffer_Local_Value *
1649 SYMBOL_BLV (struct Lisp_Symbol *sym)
1650 {
1651 eassert (sym->redirect == SYMBOL_LOCALIZED);
1652 return sym->val.blv;
1653 }
1654 INLINE union Lisp_Fwd *
1655 SYMBOL_FWD (struct Lisp_Symbol *sym)
1656 {
1657 eassert (sym->redirect == SYMBOL_FORWARDED);
1658 return sym->val.fwd;
1659 }
1660
1661 LISP_MACRO_DEFUN_VOID (SET_SYMBOL_VAL,
1662 (struct Lisp_Symbol *sym, Lisp_Object v), (sym, v))
1663
1664 INLINE void
1665 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1666 {
1667 eassert (sym->redirect == SYMBOL_VARALIAS);
1668 sym->val.alias = v;
1669 }
1670 INLINE void
1671 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1672 {
1673 eassert (sym->redirect == SYMBOL_LOCALIZED);
1674 sym->val.blv = v;
1675 }
1676 INLINE void
1677 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1678 {
1679 eassert (sym->redirect == SYMBOL_FORWARDED);
1680 sym->val.fwd = v;
1681 }
1682
1683 INLINE Lisp_Object
1684 SYMBOL_NAME (Lisp_Object sym)
1685 {
1686 return XSYMBOL (sym)->name;
1687 }
1688
1689 /* Value is true if SYM is an interned symbol. */
1690
1691 INLINE bool
1692 SYMBOL_INTERNED_P (Lisp_Object sym)
1693 {
1694 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1695 }
1696
1697 /* Value is true if SYM is interned in initial_obarray. */
1698
1699 INLINE bool
1700 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1701 {
1702 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1703 }
1704
1705 /* Value is non-zero if symbol is considered a constant, i.e. its
1706 value cannot be changed (there is an exception for keyword symbols,
1707 whose value can be set to the keyword symbol itself). */
1708
1709 LISP_MACRO_DEFUN (SYMBOL_CONSTANT_P, int, (Lisp_Object sym), (sym))
1710
1711 #define DEFSYM(sym, name) \
1712 do { (sym) = intern_c_string ((name)); staticpro (&(sym)); } while (false)
1713
1714 \f
1715 /***********************************************************************
1716 Hash Tables
1717 ***********************************************************************/
1718
1719 /* The structure of a Lisp hash table. */
1720
1721 struct hash_table_test
1722 {
1723 /* Name of the function used to compare keys. */
1724 Lisp_Object name;
1725
1726 /* User-supplied hash function, or nil. */
1727 Lisp_Object user_hash_function;
1728
1729 /* User-supplied key comparison function, or nil. */
1730 Lisp_Object user_cmp_function;
1731
1732 /* C function to compare two keys. */
1733 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1734
1735 /* C function to compute hash code. */
1736 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1737 };
1738
1739 struct Lisp_Hash_Table
1740 {
1741 /* This is for Lisp; the hash table code does not refer to it. */
1742 struct vectorlike_header header;
1743
1744 /* Nil if table is non-weak. Otherwise a symbol describing the
1745 weakness of the table. */
1746 Lisp_Object weak;
1747
1748 /* When the table is resized, and this is an integer, compute the
1749 new size by adding this to the old size. If a float, compute the
1750 new size by multiplying the old size with this factor. */
1751 Lisp_Object rehash_size;
1752
1753 /* Resize hash table when number of entries/ table size is >= this
1754 ratio, a float. */
1755 Lisp_Object rehash_threshold;
1756
1757 /* Vector of hash codes. If hash[I] is nil, this means that the
1758 I-th entry is unused. */
1759 Lisp_Object hash;
1760
1761 /* Vector used to chain entries. If entry I is free, next[I] is the
1762 entry number of the next free item. If entry I is non-free,
1763 next[I] is the index of the next entry in the collision chain. */
1764 Lisp_Object next;
1765
1766 /* Index of first free entry in free list. */
1767 Lisp_Object next_free;
1768
1769 /* Bucket vector. A non-nil entry is the index of the first item in
1770 a collision chain. This vector's size can be larger than the
1771 hash table size to reduce collisions. */
1772 Lisp_Object index;
1773
1774 /* Only the fields above are traced normally by the GC. The ones below
1775 `count' are special and are either ignored by the GC or traced in
1776 a special way (e.g. because of weakness). */
1777
1778 /* Number of key/value entries in the table. */
1779 ptrdiff_t count;
1780
1781 /* Vector of keys and values. The key of item I is found at index
1782 2 * I, the value is found at index 2 * I + 1.
1783 This is gc_marked specially if the table is weak. */
1784 Lisp_Object key_and_value;
1785
1786 /* The comparison and hash functions. */
1787 struct hash_table_test test;
1788
1789 /* Next weak hash table if this is a weak hash table. The head
1790 of the list is in weak_hash_tables. */
1791 struct Lisp_Hash_Table *next_weak;
1792 };
1793
1794
1795 INLINE struct Lisp_Hash_Table *
1796 XHASH_TABLE (Lisp_Object a)
1797 {
1798 return XUNTAG (a, Lisp_Vectorlike);
1799 }
1800
1801 #define XSET_HASH_TABLE(VAR, PTR) \
1802 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1803
1804 INLINE bool
1805 HASH_TABLE_P (Lisp_Object a)
1806 {
1807 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1808 }
1809
1810 /* Value is the key part of entry IDX in hash table H. */
1811 INLINE Lisp_Object
1812 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1813 {
1814 return AREF (h->key_and_value, 2 * idx);
1815 }
1816
1817 /* Value is the value part of entry IDX in hash table H. */
1818 INLINE Lisp_Object
1819 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1820 {
1821 return AREF (h->key_and_value, 2 * idx + 1);
1822 }
1823
1824 /* Value is the index of the next entry following the one at IDX
1825 in hash table H. */
1826 INLINE Lisp_Object
1827 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1828 {
1829 return AREF (h->next, idx);
1830 }
1831
1832 /* Value is the hash code computed for entry IDX in hash table H. */
1833 INLINE Lisp_Object
1834 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1835 {
1836 return AREF (h->hash, idx);
1837 }
1838
1839 /* Value is the index of the element in hash table H that is the
1840 start of the collision list at index IDX in the index vector of H. */
1841 INLINE Lisp_Object
1842 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1843 {
1844 return AREF (h->index, idx);
1845 }
1846
1847 /* Value is the size of hash table H. */
1848 INLINE ptrdiff_t
1849 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1850 {
1851 return ASIZE (h->next);
1852 }
1853
1854 /* Default size for hash tables if not specified. */
1855
1856 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1857
1858 /* Default threshold specifying when to resize a hash table. The
1859 value gives the ratio of current entries in the hash table and the
1860 size of the hash table. */
1861
1862 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
1863
1864 /* Default factor by which to increase the size of a hash table. */
1865
1866 static double const DEFAULT_REHASH_SIZE = 1.5;
1867
1868 /* Combine two integers X and Y for hashing. The result might not fit
1869 into a Lisp integer. */
1870
1871 INLINE EMACS_UINT
1872 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
1873 {
1874 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
1875 }
1876
1877 /* Hash X, returning a value that fits into a fixnum. */
1878
1879 INLINE EMACS_UINT
1880 SXHASH_REDUCE (EMACS_UINT x)
1881 {
1882 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
1883 }
1884
1885 /* These structures are used for various misc types. */
1886
1887 struct Lisp_Misc_Any /* Supertype of all Misc types. */
1888 {
1889 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
1890 bool_bf gcmarkbit : 1;
1891 unsigned spacer : 15;
1892 };
1893
1894 struct Lisp_Marker
1895 {
1896 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
1897 bool_bf gcmarkbit : 1;
1898 unsigned spacer : 13;
1899 /* This flag is temporarily used in the functions
1900 decode/encode_coding_object to record that the marker position
1901 must be adjusted after the conversion. */
1902 bool_bf need_adjustment : 1;
1903 /* True means normal insertion at the marker's position
1904 leaves the marker after the inserted text. */
1905 bool_bf insertion_type : 1;
1906 /* This is the buffer that the marker points into, or 0 if it points nowhere.
1907 Note: a chain of markers can contain markers pointing into different
1908 buffers (the chain is per buffer_text rather than per buffer, so it's
1909 shared between indirect buffers). */
1910 /* This is used for (other than NULL-checking):
1911 - Fmarker_buffer
1912 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
1913 - unchain_marker: to find the list from which to unchain.
1914 - Fkill_buffer: to only unchain the markers of current indirect buffer.
1915 */
1916 struct buffer *buffer;
1917
1918 /* The remaining fields are meaningless in a marker that
1919 does not point anywhere. */
1920
1921 /* For markers that point somewhere,
1922 this is used to chain of all the markers in a given buffer. */
1923 /* We could remove it and use an array in buffer_text instead.
1924 That would also allow to preserve it ordered. */
1925 struct Lisp_Marker *next;
1926 /* This is the char position where the marker points. */
1927 ptrdiff_t charpos;
1928 /* This is the byte position.
1929 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
1930 used to implement the functionality of markers, but rather to (ab)use
1931 markers as a cache for char<->byte mappings). */
1932 ptrdiff_t bytepos;
1933 };
1934
1935 /* START and END are markers in the overlay's buffer, and
1936 PLIST is the overlay's property list. */
1937 struct Lisp_Overlay
1938 /* An overlay's real data content is:
1939 - plist
1940 - buffer (really there are two buffer pointers, one per marker,
1941 and both points to the same buffer)
1942 - insertion type of both ends (per-marker fields)
1943 - start & start byte (of start marker)
1944 - end & end byte (of end marker)
1945 - next (singly linked list of overlays)
1946 - next fields of start and end markers (singly linked list of markers).
1947 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
1948 */
1949 {
1950 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
1951 bool_bf gcmarkbit : 1;
1952 unsigned spacer : 15;
1953 struct Lisp_Overlay *next;
1954 Lisp_Object start;
1955 Lisp_Object end;
1956 Lisp_Object plist;
1957 };
1958
1959 /* Types of data which may be saved in a Lisp_Save_Value. */
1960
1961 enum
1962 {
1963 SAVE_UNUSED,
1964 SAVE_INTEGER,
1965 SAVE_FUNCPOINTER,
1966 SAVE_POINTER,
1967 SAVE_OBJECT
1968 };
1969
1970 /* Number of bits needed to store one of the above values. */
1971 enum { SAVE_SLOT_BITS = 3 };
1972
1973 /* Number of slots in a save value where save_type is nonzero. */
1974 enum { SAVE_VALUE_SLOTS = 4 };
1975
1976 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
1977
1978 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
1979
1980 enum Lisp_Save_Type
1981 {
1982 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
1983 SAVE_TYPE_INT_INT_INT
1984 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
1985 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
1986 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
1987 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
1988 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
1989 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
1990 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
1991 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
1992 SAVE_TYPE_FUNCPTR_PTR_OBJ
1993 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
1994
1995 /* This has an extra bit indicating it's raw memory. */
1996 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
1997 };
1998
1999 /* Special object used to hold a different values for later use.
2000
2001 This is mostly used to package C integers and pointers to call
2002 record_unwind_protect when two or more values need to be saved.
2003 For example:
2004
2005 ...
2006 struct my_data *md = get_my_data ();
2007 ptrdiff_t mi = get_my_integer ();
2008 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2009 ...
2010
2011 Lisp_Object my_unwind (Lisp_Object arg)
2012 {
2013 struct my_data *md = XSAVE_POINTER (arg, 0);
2014 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2015 ...
2016 }
2017
2018 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2019 saved objects and raise eassert if type of the saved object doesn't match
2020 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2021 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2022 slot 0 is a pointer. */
2023
2024 typedef void (*voidfuncptr) (void);
2025
2026 struct Lisp_Save_Value
2027 {
2028 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2029 bool_bf gcmarkbit : 1;
2030 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2031
2032 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2033 V's data entries are determined by V->save_type. E.g., if
2034 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2035 V->data[1] is an integer, and V's other data entries are unused.
2036
2037 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2038 a memory area containing V->data[1].integer potential Lisp_Objects. */
2039 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2040 union {
2041 void *pointer;
2042 voidfuncptr funcpointer;
2043 ptrdiff_t integer;
2044 Lisp_Object object;
2045 } data[SAVE_VALUE_SLOTS];
2046 };
2047
2048 /* Return the type of V's Nth saved value. */
2049 INLINE int
2050 save_type (struct Lisp_Save_Value *v, int n)
2051 {
2052 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2053 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2054 }
2055
2056 /* Get and set the Nth saved pointer. */
2057
2058 INLINE void *
2059 XSAVE_POINTER (Lisp_Object obj, int n)
2060 {
2061 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2062 return XSAVE_VALUE (obj)->data[n].pointer;
2063 }
2064 INLINE void
2065 set_save_pointer (Lisp_Object obj, int n, void *val)
2066 {
2067 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2068 XSAVE_VALUE (obj)->data[n].pointer = val;
2069 }
2070 INLINE voidfuncptr
2071 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2072 {
2073 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2074 return XSAVE_VALUE (obj)->data[n].funcpointer;
2075 }
2076
2077 /* Likewise for the saved integer. */
2078
2079 INLINE ptrdiff_t
2080 XSAVE_INTEGER (Lisp_Object obj, int n)
2081 {
2082 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2083 return XSAVE_VALUE (obj)->data[n].integer;
2084 }
2085 INLINE void
2086 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2087 {
2088 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2089 XSAVE_VALUE (obj)->data[n].integer = val;
2090 }
2091
2092 /* Extract Nth saved object. */
2093
2094 INLINE Lisp_Object
2095 XSAVE_OBJECT (Lisp_Object obj, int n)
2096 {
2097 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2098 return XSAVE_VALUE (obj)->data[n].object;
2099 }
2100
2101 /* A miscellaneous object, when it's on the free list. */
2102 struct Lisp_Free
2103 {
2104 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2105 bool_bf gcmarkbit : 1;
2106 unsigned spacer : 15;
2107 union Lisp_Misc *chain;
2108 };
2109
2110 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2111 It uses one of these struct subtypes to get the type field. */
2112
2113 union Lisp_Misc
2114 {
2115 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2116 struct Lisp_Free u_free;
2117 struct Lisp_Marker u_marker;
2118 struct Lisp_Overlay u_overlay;
2119 struct Lisp_Save_Value u_save_value;
2120 };
2121
2122 INLINE union Lisp_Misc *
2123 XMISC (Lisp_Object a)
2124 {
2125 return XUNTAG (a, Lisp_Misc);
2126 }
2127
2128 INLINE struct Lisp_Misc_Any *
2129 XMISCANY (Lisp_Object a)
2130 {
2131 eassert (MISCP (a));
2132 return & XMISC (a)->u_any;
2133 }
2134
2135 INLINE enum Lisp_Misc_Type
2136 XMISCTYPE (Lisp_Object a)
2137 {
2138 return XMISCANY (a)->type;
2139 }
2140
2141 INLINE struct Lisp_Marker *
2142 XMARKER (Lisp_Object a)
2143 {
2144 eassert (MARKERP (a));
2145 return & XMISC (a)->u_marker;
2146 }
2147
2148 INLINE struct Lisp_Overlay *
2149 XOVERLAY (Lisp_Object a)
2150 {
2151 eassert (OVERLAYP (a));
2152 return & XMISC (a)->u_overlay;
2153 }
2154
2155 INLINE struct Lisp_Save_Value *
2156 XSAVE_VALUE (Lisp_Object a)
2157 {
2158 eassert (SAVE_VALUEP (a));
2159 return & XMISC (a)->u_save_value;
2160 }
2161 \f
2162 /* Forwarding pointer to an int variable.
2163 This is allowed only in the value cell of a symbol,
2164 and it means that the symbol's value really lives in the
2165 specified int variable. */
2166 struct Lisp_Intfwd
2167 {
2168 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2169 EMACS_INT *intvar;
2170 };
2171
2172 /* Boolean forwarding pointer to an int variable.
2173 This is like Lisp_Intfwd except that the ostensible
2174 "value" of the symbol is t if the bool variable is true,
2175 nil if it is false. */
2176 struct Lisp_Boolfwd
2177 {
2178 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2179 bool *boolvar;
2180 };
2181
2182 /* Forwarding pointer to a Lisp_Object variable.
2183 This is allowed only in the value cell of a symbol,
2184 and it means that the symbol's value really lives in the
2185 specified variable. */
2186 struct Lisp_Objfwd
2187 {
2188 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2189 Lisp_Object *objvar;
2190 };
2191
2192 /* Like Lisp_Objfwd except that value lives in a slot in the
2193 current buffer. Value is byte index of slot within buffer. */
2194 struct Lisp_Buffer_Objfwd
2195 {
2196 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2197 int offset;
2198 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2199 Lisp_Object predicate;
2200 };
2201
2202 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2203 the symbol has buffer-local or frame-local bindings. (Exception:
2204 some buffer-local variables are built-in, with their values stored
2205 in the buffer structure itself. They are handled differently,
2206 using struct Lisp_Buffer_Objfwd.)
2207
2208 The `realvalue' slot holds the variable's current value, or a
2209 forwarding pointer to where that value is kept. This value is the
2210 one that corresponds to the loaded binding. To read or set the
2211 variable, you must first make sure the right binding is loaded;
2212 then you can access the value in (or through) `realvalue'.
2213
2214 `buffer' and `frame' are the buffer and frame for which the loaded
2215 binding was found. If those have changed, to make sure the right
2216 binding is loaded it is necessary to find which binding goes with
2217 the current buffer and selected frame, then load it. To load it,
2218 first unload the previous binding, then copy the value of the new
2219 binding into `realvalue' (or through it). Also update
2220 LOADED-BINDING to point to the newly loaded binding.
2221
2222 `local_if_set' indicates that merely setting the variable creates a
2223 local binding for the current buffer. Otherwise the latter, setting
2224 the variable does not do that; only make-local-variable does that. */
2225
2226 struct Lisp_Buffer_Local_Value
2227 {
2228 /* True means that merely setting the variable creates a local
2229 binding for the current buffer. */
2230 bool_bf local_if_set : 1;
2231 /* True means this variable can have frame-local bindings, otherwise, it is
2232 can have buffer-local bindings. The two cannot be combined. */
2233 bool_bf frame_local : 1;
2234 /* True means that the binding now loaded was found.
2235 Presumably equivalent to (defcell!=valcell). */
2236 bool_bf found : 1;
2237 /* If non-NULL, a forwarding to the C var where it should also be set. */
2238 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2239 /* The buffer or frame for which the loaded binding was found. */
2240 Lisp_Object where;
2241 /* A cons cell that holds the default value. It has the form
2242 (SYMBOL . DEFAULT-VALUE). */
2243 Lisp_Object defcell;
2244 /* The cons cell from `where's parameter alist.
2245 It always has the form (SYMBOL . VALUE)
2246 Note that if `forward' is non-nil, VALUE may be out of date.
2247 Also if the currently loaded binding is the default binding, then
2248 this is `eq'ual to defcell. */
2249 Lisp_Object valcell;
2250 };
2251
2252 /* Like Lisp_Objfwd except that value lives in a slot in the
2253 current kboard. */
2254 struct Lisp_Kboard_Objfwd
2255 {
2256 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2257 int offset;
2258 };
2259
2260 union Lisp_Fwd
2261 {
2262 struct Lisp_Intfwd u_intfwd;
2263 struct Lisp_Boolfwd u_boolfwd;
2264 struct Lisp_Objfwd u_objfwd;
2265 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2266 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2267 };
2268
2269 INLINE enum Lisp_Fwd_Type
2270 XFWDTYPE (union Lisp_Fwd *a)
2271 {
2272 return a->u_intfwd.type;
2273 }
2274
2275 INLINE struct Lisp_Buffer_Objfwd *
2276 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2277 {
2278 eassert (BUFFER_OBJFWDP (a));
2279 return &a->u_buffer_objfwd;
2280 }
2281 \f
2282 /* Lisp floating point type. */
2283 struct Lisp_Float
2284 {
2285 union
2286 {
2287 double data;
2288 struct Lisp_Float *chain;
2289 } u;
2290 };
2291
2292 INLINE double
2293 XFLOAT_DATA (Lisp_Object f)
2294 {
2295 return XFLOAT (f)->u.data;
2296 }
2297
2298 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2299 representations, have infinities and NaNs, and do not trap on
2300 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2301 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2302 wanted here, but is not quite right because Emacs does not require
2303 all the features of C11 Annex F (and does not require C11 at all,
2304 for that matter). */
2305 enum
2306 {
2307 IEEE_FLOATING_POINT
2308 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2309 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2310 };
2311
2312 /* A character, declared with the following typedef, is a member
2313 of some character set associated with the current buffer. */
2314 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2315 #define _UCHAR_T
2316 typedef unsigned char UCHAR;
2317 #endif
2318
2319 /* Meanings of slots in a Lisp_Compiled: */
2320
2321 enum Lisp_Compiled
2322 {
2323 COMPILED_ARGLIST = 0,
2324 COMPILED_BYTECODE = 1,
2325 COMPILED_CONSTANTS = 2,
2326 COMPILED_STACK_DEPTH = 3,
2327 COMPILED_DOC_STRING = 4,
2328 COMPILED_INTERACTIVE = 5
2329 };
2330
2331 /* Flag bits in a character. These also get used in termhooks.h.
2332 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2333 (MUlti-Lingual Emacs) might need 22 bits for the character value
2334 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2335 enum char_bits
2336 {
2337 CHAR_ALT = 0x0400000,
2338 CHAR_SUPER = 0x0800000,
2339 CHAR_HYPER = 0x1000000,
2340 CHAR_SHIFT = 0x2000000,
2341 CHAR_CTL = 0x4000000,
2342 CHAR_META = 0x8000000,
2343
2344 CHAR_MODIFIER_MASK =
2345 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2346
2347 /* Actually, the current Emacs uses 22 bits for the character value
2348 itself. */
2349 CHARACTERBITS = 22
2350 };
2351 \f
2352 /* Data type checking. */
2353
2354 LISP_MACRO_DEFUN (NILP, bool, (Lisp_Object x), (x))
2355
2356 INLINE bool
2357 NUMBERP (Lisp_Object x)
2358 {
2359 return INTEGERP (x) || FLOATP (x);
2360 }
2361 INLINE bool
2362 NATNUMP (Lisp_Object x)
2363 {
2364 return INTEGERP (x) && 0 <= XINT (x);
2365 }
2366
2367 INLINE bool
2368 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2369 {
2370 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2371 }
2372
2373 #define TYPE_RANGED_INTEGERP(type, x) \
2374 (INTEGERP (x) \
2375 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2376 && XINT (x) <= TYPE_MAXIMUM (type))
2377
2378 LISP_MACRO_DEFUN (CONSP, bool, (Lisp_Object x), (x))
2379 LISP_MACRO_DEFUN (FLOATP, bool, (Lisp_Object x), (x))
2380 LISP_MACRO_DEFUN (MISCP, bool, (Lisp_Object x), (x))
2381 LISP_MACRO_DEFUN (SYMBOLP, bool, (Lisp_Object x), (x))
2382 LISP_MACRO_DEFUN (INTEGERP, bool, (Lisp_Object x), (x))
2383 LISP_MACRO_DEFUN (VECTORLIKEP, bool, (Lisp_Object x), (x))
2384 LISP_MACRO_DEFUN (MARKERP, bool, (Lisp_Object x), (x))
2385
2386 INLINE bool
2387 STRINGP (Lisp_Object x)
2388 {
2389 return XTYPE (x) == Lisp_String;
2390 }
2391 INLINE bool
2392 VECTORP (Lisp_Object x)
2393 {
2394 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2395 }
2396 INLINE bool
2397 OVERLAYP (Lisp_Object x)
2398 {
2399 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2400 }
2401 INLINE bool
2402 SAVE_VALUEP (Lisp_Object x)
2403 {
2404 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2405 }
2406
2407 INLINE bool
2408 AUTOLOADP (Lisp_Object x)
2409 {
2410 return CONSP (x) && EQ (Qautoload, XCAR (x));
2411 }
2412
2413 INLINE bool
2414 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2415 {
2416 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2417 }
2418
2419 INLINE bool
2420 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2421 {
2422 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2423 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2424 }
2425
2426 /* True if A is a pseudovector whose code is CODE. */
2427 INLINE bool
2428 PSEUDOVECTORP (Lisp_Object a, int code)
2429 {
2430 if (! VECTORLIKEP (a))
2431 return false;
2432 else
2433 {
2434 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2435 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2436 return PSEUDOVECTOR_TYPEP (h, code);
2437 }
2438 }
2439
2440
2441 /* Test for specific pseudovector types. */
2442
2443 INLINE bool
2444 WINDOW_CONFIGURATIONP (Lisp_Object a)
2445 {
2446 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2447 }
2448
2449 INLINE bool
2450 PROCESSP (Lisp_Object a)
2451 {
2452 return PSEUDOVECTORP (a, PVEC_PROCESS);
2453 }
2454
2455 INLINE bool
2456 WINDOWP (Lisp_Object a)
2457 {
2458 return PSEUDOVECTORP (a, PVEC_WINDOW);
2459 }
2460
2461 INLINE bool
2462 TERMINALP (Lisp_Object a)
2463 {
2464 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2465 }
2466
2467 INLINE bool
2468 SUBRP (Lisp_Object a)
2469 {
2470 return PSEUDOVECTORP (a, PVEC_SUBR);
2471 }
2472
2473 INLINE bool
2474 COMPILEDP (Lisp_Object a)
2475 {
2476 return PSEUDOVECTORP (a, PVEC_COMPILED);
2477 }
2478
2479 INLINE bool
2480 BUFFERP (Lisp_Object a)
2481 {
2482 return PSEUDOVECTORP (a, PVEC_BUFFER);
2483 }
2484
2485 INLINE bool
2486 CHAR_TABLE_P (Lisp_Object a)
2487 {
2488 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2489 }
2490
2491 INLINE bool
2492 SUB_CHAR_TABLE_P (Lisp_Object a)
2493 {
2494 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2495 }
2496
2497 INLINE bool
2498 BOOL_VECTOR_P (Lisp_Object a)
2499 {
2500 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2501 }
2502
2503 INLINE bool
2504 FRAMEP (Lisp_Object a)
2505 {
2506 return PSEUDOVECTORP (a, PVEC_FRAME);
2507 }
2508
2509 /* Test for image (image . spec) */
2510 INLINE bool
2511 IMAGEP (Lisp_Object x)
2512 {
2513 return CONSP (x) && EQ (XCAR (x), Qimage);
2514 }
2515
2516 /* Array types. */
2517 INLINE bool
2518 ARRAYP (Lisp_Object x)
2519 {
2520 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2521 }
2522 \f
2523 INLINE void
2524 CHECK_LIST (Lisp_Object x)
2525 {
2526 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2527 }
2528
2529 LISP_MACRO_DEFUN_VOID (CHECK_LIST_CONS, (Lisp_Object x, Lisp_Object y), (x, y))
2530 LISP_MACRO_DEFUN_VOID (CHECK_SYMBOL, (Lisp_Object x), (x))
2531 LISP_MACRO_DEFUN_VOID (CHECK_NUMBER, (Lisp_Object x), (x))
2532
2533 INLINE void
2534 CHECK_STRING (Lisp_Object x)
2535 {
2536 CHECK_TYPE (STRINGP (x), Qstringp, x);
2537 }
2538 INLINE void
2539 CHECK_STRING_CAR (Lisp_Object x)
2540 {
2541 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2542 }
2543 INLINE void
2544 CHECK_CONS (Lisp_Object x)
2545 {
2546 CHECK_TYPE (CONSP (x), Qconsp, x);
2547 }
2548 INLINE void
2549 CHECK_VECTOR (Lisp_Object x)
2550 {
2551 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2552 }
2553 INLINE void
2554 CHECK_BOOL_VECTOR (Lisp_Object x)
2555 {
2556 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2557 }
2558 INLINE void
2559 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2560 {
2561 CHECK_TYPE (VECTORP (x) || STRINGP (x), Qarrayp, x);
2562 }
2563 INLINE void
2564 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2565 {
2566 CHECK_TYPE (ARRAYP (x), predicate, x);
2567 }
2568 INLINE void
2569 CHECK_BUFFER (Lisp_Object x)
2570 {
2571 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2572 }
2573 INLINE void
2574 CHECK_WINDOW (Lisp_Object x)
2575 {
2576 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2577 }
2578 #ifdef subprocesses
2579 INLINE void
2580 CHECK_PROCESS (Lisp_Object x)
2581 {
2582 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2583 }
2584 #endif
2585 INLINE void
2586 CHECK_NATNUM (Lisp_Object x)
2587 {
2588 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2589 }
2590
2591 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2592 do { \
2593 CHECK_NUMBER (x); \
2594 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2595 args_out_of_range_3 \
2596 (x, \
2597 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2598 ? MOST_NEGATIVE_FIXNUM \
2599 : (lo)), \
2600 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2601 } while (false)
2602 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2603 do { \
2604 if (TYPE_SIGNED (type)) \
2605 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2606 else \
2607 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2608 } while (false)
2609
2610 #define CHECK_NUMBER_COERCE_MARKER(x) \
2611 do { \
2612 if (MARKERP ((x))) \
2613 XSETFASTINT (x, marker_position (x)); \
2614 else \
2615 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2616 } while (false)
2617
2618 INLINE double
2619 XFLOATINT (Lisp_Object n)
2620 {
2621 return extract_float (n);
2622 }
2623
2624 INLINE void
2625 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2626 {
2627 CHECK_TYPE (FLOATP (x) || INTEGERP (x), Qnumberp, x);
2628 }
2629
2630 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2631 do { \
2632 if (MARKERP (x)) \
2633 XSETFASTINT (x, marker_position (x)); \
2634 else \
2635 CHECK_TYPE (INTEGERP (x) || FLOATP (x), Qnumber_or_marker_p, x); \
2636 } while (false)
2637
2638 /* Since we can't assign directly to the CAR or CDR fields of a cons
2639 cell, use these when checking that those fields contain numbers. */
2640 INLINE void
2641 CHECK_NUMBER_CAR (Lisp_Object x)
2642 {
2643 Lisp_Object tmp = XCAR (x);
2644 CHECK_NUMBER (tmp);
2645 XSETCAR (x, tmp);
2646 }
2647
2648 INLINE void
2649 CHECK_NUMBER_CDR (Lisp_Object x)
2650 {
2651 Lisp_Object tmp = XCDR (x);
2652 CHECK_NUMBER (tmp);
2653 XSETCDR (x, tmp);
2654 }
2655 \f
2656 /* Define a built-in function for calling from Lisp.
2657 `lname' should be the name to give the function in Lisp,
2658 as a null-terminated C string.
2659 `fnname' should be the name of the function in C.
2660 By convention, it starts with F.
2661 `sname' should be the name for the C constant structure
2662 that records information on this function for internal use.
2663 By convention, it should be the same as `fnname' but with S instead of F.
2664 It's too bad that C macros can't compute this from `fnname'.
2665 `minargs' should be a number, the minimum number of arguments allowed.
2666 `maxargs' should be a number, the maximum number of arguments allowed,
2667 or else MANY or UNEVALLED.
2668 MANY means pass a vector of evaluated arguments,
2669 in the form of an integer number-of-arguments
2670 followed by the address of a vector of Lisp_Objects
2671 which contains the argument values.
2672 UNEVALLED means pass the list of unevaluated arguments
2673 `intspec' says how interactive arguments are to be fetched.
2674 If the string starts with a `(', `intspec' is evaluated and the resulting
2675 list is the list of arguments.
2676 If it's a string that doesn't start with `(', the value should follow
2677 the one of the doc string for `interactive'.
2678 A null string means call interactively with no arguments.
2679 `doc' is documentation for the user. */
2680
2681 /* This version of DEFUN declares a function prototype with the right
2682 arguments, so we can catch errors with maxargs at compile-time. */
2683 #ifdef _MSC_VER
2684 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2685 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2686 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2687 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2688 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2689 { (Lisp_Object (__cdecl *)(void))fnname }, \
2690 minargs, maxargs, lname, intspec, 0}; \
2691 Lisp_Object fnname
2692 #else /* not _MSC_VER */
2693 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2694 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2695 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2696 { .a ## maxargs = fnname }, \
2697 minargs, maxargs, lname, intspec, 0}; \
2698 Lisp_Object fnname
2699 #endif
2700
2701 /* Note that the weird token-substitution semantics of ANSI C makes
2702 this work for MANY and UNEVALLED. */
2703 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
2704 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
2705 #define DEFUN_ARGS_0 (void)
2706 #define DEFUN_ARGS_1 (Lisp_Object)
2707 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
2708 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
2709 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
2710 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2711 Lisp_Object)
2712 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2713 Lisp_Object, Lisp_Object)
2714 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2715 Lisp_Object, Lisp_Object, Lisp_Object)
2716 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2717 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
2718
2719 /* True if OBJ is a Lisp function. */
2720 INLINE bool
2721 FUNCTIONP (Lisp_Object obj)
2722 {
2723 return functionp (obj);
2724 }
2725
2726 /* defsubr (Sname);
2727 is how we define the symbol for function `name' at start-up time. */
2728 extern void defsubr (struct Lisp_Subr *);
2729
2730 enum maxargs
2731 {
2732 MANY = -2,
2733 UNEVALLED = -1
2734 };
2735
2736 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2737 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2738 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2739 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2740 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2741
2742 /* Macros we use to define forwarded Lisp variables.
2743 These are used in the syms_of_FILENAME functions.
2744
2745 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2746 lisp variable is actually a field in `struct emacs_globals'. The
2747 field's name begins with "f_", which is a convention enforced by
2748 these macros. Each such global has a corresponding #define in
2749 globals.h; the plain name should be used in the code.
2750
2751 E.g., the global "cons_cells_consed" is declared as "int
2752 f_cons_cells_consed" in globals.h, but there is a define:
2753
2754 #define cons_cells_consed globals.f_cons_cells_consed
2755
2756 All C code uses the `cons_cells_consed' name. This is all done
2757 this way to support indirection for multi-threaded Emacs. */
2758
2759 #define DEFVAR_LISP(lname, vname, doc) \
2760 do { \
2761 static struct Lisp_Objfwd o_fwd; \
2762 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
2763 } while (false)
2764 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
2765 do { \
2766 static struct Lisp_Objfwd o_fwd; \
2767 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
2768 } while (false)
2769 #define DEFVAR_BOOL(lname, vname, doc) \
2770 do { \
2771 static struct Lisp_Boolfwd b_fwd; \
2772 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
2773 } while (false)
2774 #define DEFVAR_INT(lname, vname, doc) \
2775 do { \
2776 static struct Lisp_Intfwd i_fwd; \
2777 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
2778 } while (false)
2779
2780 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
2781 do { \
2782 static struct Lisp_Objfwd o_fwd; \
2783 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
2784 } while (false)
2785
2786 #define DEFVAR_KBOARD(lname, vname, doc) \
2787 do { \
2788 static struct Lisp_Kboard_Objfwd ko_fwd; \
2789 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
2790 } while (false)
2791 \f
2792 /* Save and restore the instruction and environment pointers,
2793 without affecting the signal mask. */
2794
2795 #ifdef HAVE__SETJMP
2796 typedef jmp_buf sys_jmp_buf;
2797 # define sys_setjmp(j) _setjmp (j)
2798 # define sys_longjmp(j, v) _longjmp (j, v)
2799 #elif defined HAVE_SIGSETJMP
2800 typedef sigjmp_buf sys_jmp_buf;
2801 # define sys_setjmp(j) sigsetjmp (j, 0)
2802 # define sys_longjmp(j, v) siglongjmp (j, v)
2803 #else
2804 /* A platform that uses neither _longjmp nor siglongjmp; assume
2805 longjmp does not affect the sigmask. */
2806 typedef jmp_buf sys_jmp_buf;
2807 # define sys_setjmp(j) setjmp (j)
2808 # define sys_longjmp(j, v) longjmp (j, v)
2809 #endif
2810
2811 \f
2812 /* Elisp uses several stacks:
2813 - the C stack.
2814 - the bytecode stack: used internally by the bytecode interpreter.
2815 Allocated from the C stack.
2816 - The specpdl stack: keeps track of active unwind-protect and
2817 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
2818 managed stack.
2819 - The handler stack: keeps track of active catch tags and condition-case
2820 handlers. Allocated in a manually managed stack implemented by a
2821 doubly-linked list allocated via xmalloc and never freed. */
2822
2823 /* Structure for recording Lisp call stack for backtrace purposes. */
2824
2825 /* The special binding stack holds the outer values of variables while
2826 they are bound by a function application or a let form, stores the
2827 code to be executed for unwind-protect forms.
2828
2829 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
2830 used all over the place, needs to be fast, and needs to know the size of
2831 union specbinding. But only eval.c should access it. */
2832
2833 enum specbind_tag {
2834 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
2835 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
2836 SPECPDL_UNWIND_INT, /* Likewise, on int. */
2837 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
2838 SPECPDL_BACKTRACE, /* An element of the backtrace. */
2839 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
2840 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
2841 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
2842 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
2843 };
2844
2845 union specbinding
2846 {
2847 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2848 struct {
2849 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2850 void (*func) (Lisp_Object);
2851 Lisp_Object arg;
2852 } unwind;
2853 struct {
2854 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2855 void (*func) (void *);
2856 void *arg;
2857 } unwind_ptr;
2858 struct {
2859 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2860 void (*func) (int);
2861 int arg;
2862 } unwind_int;
2863 struct {
2864 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2865 void (*func) (void);
2866 } unwind_void;
2867 struct {
2868 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2869 /* `where' is not used in the case of SPECPDL_LET. */
2870 Lisp_Object symbol, old_value, where;
2871 } let;
2872 struct {
2873 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2874 bool_bf debug_on_exit : 1;
2875 Lisp_Object function;
2876 Lisp_Object *args;
2877 ptrdiff_t nargs;
2878 } bt;
2879 };
2880
2881 extern union specbinding *specpdl;
2882 extern union specbinding *specpdl_ptr;
2883 extern ptrdiff_t specpdl_size;
2884
2885 INLINE ptrdiff_t
2886 SPECPDL_INDEX (void)
2887 {
2888 return specpdl_ptr - specpdl;
2889 }
2890
2891 /* This structure helps implement the `catch/throw' and `condition-case/signal'
2892 control structures. A struct handler contains all the information needed to
2893 restore the state of the interpreter after a non-local jump.
2894
2895 handler structures are chained together in a doubly linked list; the `next'
2896 member points to the next outer catchtag and the `nextfree' member points in
2897 the other direction to the next inner element (which is typically the next
2898 free element since we mostly use it on the deepest handler).
2899
2900 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
2901 member is TAG, and then unbinds to it. The `val' member is used to
2902 hold VAL while the stack is unwound; `val' is returned as the value
2903 of the catch form.
2904
2905 All the other members are concerned with restoring the interpreter
2906 state.
2907
2908 Members are volatile if their values need to survive _longjmp when
2909 a 'struct handler' is a local variable. */
2910
2911 enum handlertype { CATCHER, CONDITION_CASE };
2912
2913 struct handler
2914 {
2915 enum handlertype type;
2916 Lisp_Object tag_or_ch;
2917 Lisp_Object val;
2918 struct handler *next;
2919 struct handler *nextfree;
2920
2921 /* The bytecode interpreter can have several handlers active at the same
2922 time, so when we longjmp to one of them, it needs to know which handler
2923 this was and what was the corresponding internal state. This is stored
2924 here, and when we longjmp we make sure that handlerlist points to the
2925 proper handler. */
2926 Lisp_Object *bytecode_top;
2927 int bytecode_dest;
2928
2929 /* Most global vars are reset to their value via the specpdl mechanism,
2930 but a few others are handled by storing their value here. */
2931 #if true /* GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS, but defined later. */
2932 struct gcpro *gcpro;
2933 #endif
2934 sys_jmp_buf jmp;
2935 EMACS_INT lisp_eval_depth;
2936 ptrdiff_t pdlcount;
2937 int poll_suppress_count;
2938 int interrupt_input_blocked;
2939 struct byte_stack *byte_stack;
2940 };
2941
2942 /* Fill in the components of c, and put it on the list. */
2943 #define PUSH_HANDLER(c, tag_ch_val, handlertype) \
2944 if (handlerlist->nextfree) \
2945 (c) = handlerlist->nextfree; \
2946 else \
2947 { \
2948 (c) = xmalloc (sizeof (struct handler)); \
2949 (c)->nextfree = NULL; \
2950 handlerlist->nextfree = (c); \
2951 } \
2952 (c)->type = (handlertype); \
2953 (c)->tag_or_ch = (tag_ch_val); \
2954 (c)->val = Qnil; \
2955 (c)->next = handlerlist; \
2956 (c)->lisp_eval_depth = lisp_eval_depth; \
2957 (c)->pdlcount = SPECPDL_INDEX (); \
2958 (c)->poll_suppress_count = poll_suppress_count; \
2959 (c)->interrupt_input_blocked = interrupt_input_blocked;\
2960 (c)->gcpro = gcprolist; \
2961 (c)->byte_stack = byte_stack_list; \
2962 handlerlist = (c);
2963
2964
2965 extern Lisp_Object memory_signal_data;
2966
2967 /* An address near the bottom of the stack.
2968 Tells GC how to save a copy of the stack. */
2969 extern char *stack_bottom;
2970
2971 /* Check quit-flag and quit if it is non-nil.
2972 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
2973 So the program needs to do QUIT at times when it is safe to quit.
2974 Every loop that might run for a long time or might not exit
2975 ought to do QUIT at least once, at a safe place.
2976 Unless that is impossible, of course.
2977 But it is very desirable to avoid creating loops where QUIT is impossible.
2978
2979 Exception: if you set immediate_quit to true,
2980 then the handler that responds to the C-g does the quit itself.
2981 This is a good thing to do around a loop that has no side effects
2982 and (in particular) cannot call arbitrary Lisp code.
2983
2984 If quit-flag is set to `kill-emacs' the SIGINT handler has received
2985 a request to exit Emacs when it is safe to do. */
2986
2987 extern void process_pending_signals (void);
2988 extern bool volatile pending_signals;
2989
2990 extern void process_quit_flag (void);
2991 #define QUIT \
2992 do { \
2993 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
2994 process_quit_flag (); \
2995 else if (pending_signals) \
2996 process_pending_signals (); \
2997 } while (false)
2998
2999
3000 /* True if ought to quit now. */
3001
3002 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3003 \f
3004 extern Lisp_Object Vascii_downcase_table;
3005 extern Lisp_Object Vascii_canon_table;
3006 \f
3007 /* Structure for recording stack slots that need marking. */
3008
3009 /* This is a chain of structures, each of which points at a Lisp_Object
3010 variable whose value should be marked in garbage collection.
3011 Normally every link of the chain is an automatic variable of a function,
3012 and its `val' points to some argument or local variable of the function.
3013 On exit to the function, the chain is set back to the value it had on entry.
3014 This way, no link remains in the chain when the stack frame containing the
3015 link disappears.
3016
3017 Every function that can call Feval must protect in this fashion all
3018 Lisp_Object variables whose contents will be used again. */
3019
3020 extern struct gcpro *gcprolist;
3021
3022 struct gcpro
3023 {
3024 struct gcpro *next;
3025
3026 /* Address of first protected variable. */
3027 volatile Lisp_Object *var;
3028
3029 /* Number of consecutive protected variables. */
3030 ptrdiff_t nvars;
3031
3032 #ifdef DEBUG_GCPRO
3033 int level;
3034 #endif
3035 };
3036
3037 /* Values of GC_MARK_STACK during compilation:
3038
3039 0 Use GCPRO as before
3040 1 Do the real thing, make GCPROs and UNGCPRO no-ops.
3041 2 Mark the stack, and check that everything GCPRO'd is
3042 marked.
3043 3 Mark using GCPRO's, mark stack last, and count how many
3044 dead objects are kept alive.
3045
3046 Formerly, method 0 was used. Currently, method 1 is used unless
3047 otherwise specified by hand when building, e.g.,
3048 "make CPPFLAGS='-DGC_MARK_STACK=GC_USE_GCPROS_AS_BEFORE'".
3049 Methods 2 and 3 are present mainly to debug the transition from 0 to 1. */
3050
3051 #define GC_USE_GCPROS_AS_BEFORE 0
3052 #define GC_MAKE_GCPROS_NOOPS 1
3053 #define GC_MARK_STACK_CHECK_GCPROS 2
3054 #define GC_USE_GCPROS_CHECK_ZOMBIES 3
3055
3056 #ifndef GC_MARK_STACK
3057 #define GC_MARK_STACK GC_MAKE_GCPROS_NOOPS
3058 #endif
3059
3060 /* Whether we do the stack marking manually. */
3061 #define BYTE_MARK_STACK !(GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
3062 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
3063
3064
3065 #if GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS
3066
3067 /* Do something silly with gcproN vars just so gcc shuts up. */
3068 /* You get warnings from MIPSPro... */
3069
3070 #define GCPRO1(varname) ((void) gcpro1)
3071 #define GCPRO2(varname1, varname2) ((void) gcpro2, (void) gcpro1)
3072 #define GCPRO3(varname1, varname2, varname3) \
3073 ((void) gcpro3, (void) gcpro2, (void) gcpro1)
3074 #define GCPRO4(varname1, varname2, varname3, varname4) \
3075 ((void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3076 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3077 ((void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3078 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3079 ((void) gcpro6, (void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, \
3080 (void) gcpro1)
3081 #define GCPRO7(a, b, c, d, e, f, g) (GCPRO6 (a, b, c, d, e, f), (void) gcpro7)
3082 #define UNGCPRO ((void) 0)
3083
3084 #else /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3085
3086 #ifndef DEBUG_GCPRO
3087
3088 #define GCPRO1(varname) \
3089 {gcpro1.next = gcprolist; gcpro1.var = &varname; gcpro1.nvars = 1; \
3090 gcprolist = &gcpro1; }
3091
3092 #define GCPRO2(varname1, varname2) \
3093 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3094 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3095 gcprolist = &gcpro2; }
3096
3097 #define GCPRO3(varname1, varname2, varname3) \
3098 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3099 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3100 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3101 gcprolist = &gcpro3; }
3102
3103 #define GCPRO4(varname1, varname2, varname3, varname4) \
3104 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3105 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3106 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3107 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3108 gcprolist = &gcpro4; }
3109
3110 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3111 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3112 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3113 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3114 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3115 gcpro5.next = &gcpro4; gcpro5.var = &varname5; gcpro5.nvars = 1; \
3116 gcprolist = &gcpro5; }
3117
3118 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3119 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3120 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3121 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3122 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3123 gcpro5.next = &gcpro4; gcpro5.var = &varname5; gcpro5.nvars = 1; \
3124 gcpro6.next = &gcpro5; gcpro6.var = &varname6; gcpro6.nvars = 1; \
3125 gcprolist = &gcpro6; }
3126
3127 #define GCPRO7(a, b, c, d, e, f, g) \
3128 {gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3129 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3130 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3131 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3132 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3133 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3134 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3135 gcprolist = &gcpro7; }
3136
3137 #define UNGCPRO (gcprolist = gcpro1.next)
3138
3139 #else
3140
3141 extern int gcpro_level;
3142
3143 #define GCPRO1(varname) \
3144 {gcpro1.next = gcprolist; gcpro1.var = &varname; gcpro1.nvars = 1; \
3145 gcpro1.level = gcpro_level++; \
3146 gcprolist = &gcpro1; }
3147
3148 #define GCPRO2(varname1, varname2) \
3149 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3150 gcpro1.level = gcpro_level; \
3151 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3152 gcpro2.level = gcpro_level++; \
3153 gcprolist = &gcpro2; }
3154
3155 #define GCPRO3(varname1, varname2, varname3) \
3156 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3157 gcpro1.level = gcpro_level; \
3158 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3159 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3160 gcpro3.level = gcpro_level++; \
3161 gcprolist = &gcpro3; }
3162
3163 #define GCPRO4(varname1, varname2, varname3, varname4) \
3164 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3165 gcpro1.level = gcpro_level; \
3166 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3167 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3168 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3169 gcpro4.level = gcpro_level++; \
3170 gcprolist = &gcpro4; }
3171
3172 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3173 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3174 gcpro1.level = gcpro_level; \
3175 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3176 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3177 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3178 gcpro5.next = &gcpro4; gcpro5.var = &varname5; gcpro5.nvars = 1; \
3179 gcpro5.level = gcpro_level++; \
3180 gcprolist = &gcpro5; }
3181
3182 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3183 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3184 gcpro1.level = gcpro_level; \
3185 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3186 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3187 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3188 gcpro5.next = &gcpro4; gcpro5.var = &varname5; gcpro5.nvars = 1; \
3189 gcpro6.next = &gcpro5; gcpro6.var = &varname6; gcpro6.nvars = 1; \
3190 gcpro6.level = gcpro_level++; \
3191 gcprolist = &gcpro6; }
3192
3193 #define GCPRO7(a, b, c, d, e, f, g) \
3194 {gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3195 gcpro1.level = gcpro_level; \
3196 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3197 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3198 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3199 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3200 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3201 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3202 gcpro7.level = gcpro_level++; \
3203 gcprolist = &gcpro7; }
3204
3205 #define UNGCPRO \
3206 (--gcpro_level != gcpro1.level \
3207 ? emacs_abort () \
3208 : (void) (gcprolist = gcpro1.next))
3209
3210 #endif /* DEBUG_GCPRO */
3211 #endif /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3212
3213
3214 /* Evaluate expr, UNGCPRO, and then return the value of expr. */
3215 #define RETURN_UNGCPRO(expr) \
3216 do \
3217 { \
3218 Lisp_Object ret_ungc_val; \
3219 ret_ungc_val = (expr); \
3220 UNGCPRO; \
3221 return ret_ungc_val; \
3222 } \
3223 while (false)
3224
3225 /* Call staticpro (&var) to protect static variable `var'. */
3226
3227 void staticpro (Lisp_Object *);
3228 \f
3229 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
3230 meaning as in the DEFUN macro, and is used to construct a prototype. */
3231 /* We can use the same trick as in the DEFUN macro to generate the
3232 appropriate prototype. */
3233 #define EXFUN(fnname, maxargs) \
3234 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
3235
3236 #include "globals.h"
3237
3238 /* Forward declarations for prototypes. */
3239 struct window;
3240 struct frame;
3241
3242 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3243
3244 INLINE void
3245 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3246 {
3247 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3248 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3249 }
3250
3251 /* Functions to modify hash tables. */
3252
3253 INLINE void
3254 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3255 {
3256 gc_aset (h->key_and_value, 2 * idx, val);
3257 }
3258
3259 INLINE void
3260 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3261 {
3262 gc_aset (h->key_and_value, 2 * idx + 1, val);
3263 }
3264
3265 /* Use these functions to set Lisp_Object
3266 or pointer slots of struct Lisp_Symbol. */
3267
3268 INLINE void
3269 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3270 {
3271 XSYMBOL (sym)->function = function;
3272 }
3273
3274 INLINE void
3275 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3276 {
3277 XSYMBOL (sym)->plist = plist;
3278 }
3279
3280 INLINE void
3281 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3282 {
3283 XSYMBOL (sym)->next = next;
3284 }
3285
3286 /* Buffer-local (also frame-local) variable access functions. */
3287
3288 INLINE int
3289 blv_found (struct Lisp_Buffer_Local_Value *blv)
3290 {
3291 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3292 return blv->found;
3293 }
3294
3295 /* Set overlay's property list. */
3296
3297 INLINE void
3298 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3299 {
3300 XOVERLAY (overlay)->plist = plist;
3301 }
3302
3303 /* Get text properties of S. */
3304
3305 INLINE INTERVAL
3306 string_intervals (Lisp_Object s)
3307 {
3308 return XSTRING (s)->intervals;
3309 }
3310
3311 /* Set text properties of S to I. */
3312
3313 INLINE void
3314 set_string_intervals (Lisp_Object s, INTERVAL i)
3315 {
3316 XSTRING (s)->intervals = i;
3317 }
3318
3319 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3320 of setting slots directly. */
3321
3322 INLINE void
3323 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3324 {
3325 XCHAR_TABLE (table)->defalt = val;
3326 }
3327 INLINE void
3328 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3329 {
3330 XCHAR_TABLE (table)->purpose = val;
3331 }
3332
3333 /* Set different slots in (sub)character tables. */
3334
3335 INLINE void
3336 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3337 {
3338 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3339 XCHAR_TABLE (table)->extras[idx] = val;
3340 }
3341
3342 INLINE void
3343 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3344 {
3345 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3346 XCHAR_TABLE (table)->contents[idx] = val;
3347 }
3348
3349 INLINE void
3350 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3351 {
3352 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3353 }
3354
3355 /* Defined in data.c. */
3356 extern Lisp_Object Qquote, Qunbound;
3357 extern Lisp_Object Qerror_conditions, Qerror_message, Qtop_level;
3358 extern Lisp_Object Qerror, Qquit, Qargs_out_of_range;
3359 extern Lisp_Object Qvoid_variable, Qvoid_function;
3360 extern Lisp_Object Qinvalid_read_syntax;
3361 extern Lisp_Object Qinvalid_function, Qwrong_number_of_arguments, Qno_catch;
3362 extern Lisp_Object Quser_error, Qend_of_file, Qarith_error, Qmark_inactive;
3363 extern Lisp_Object Qbeginning_of_buffer, Qend_of_buffer, Qbuffer_read_only;
3364 extern Lisp_Object Qtext_read_only;
3365 extern Lisp_Object Qinteractive_form;
3366 extern Lisp_Object Qcircular_list;
3367 extern Lisp_Object Qsequencep;
3368 extern Lisp_Object Qchar_or_string_p, Qinteger_or_marker_p;
3369 extern Lisp_Object Qfboundp;
3370
3371 extern Lisp_Object Qcdr;
3372
3373 extern Lisp_Object Qrange_error, Qoverflow_error;
3374
3375 extern Lisp_Object Qnumber_or_marker_p;
3376
3377 extern Lisp_Object Qbuffer, Qinteger, Qsymbol;
3378
3379 /* Defined in data.c. */
3380 extern Lisp_Object indirect_function (Lisp_Object);
3381 extern Lisp_Object find_symbol_value (Lisp_Object);
3382 enum Arith_Comparison {
3383 ARITH_EQUAL,
3384 ARITH_NOTEQUAL,
3385 ARITH_LESS,
3386 ARITH_GRTR,
3387 ARITH_LESS_OR_EQUAL,
3388 ARITH_GRTR_OR_EQUAL
3389 };
3390 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3391 enum Arith_Comparison comparison);
3392
3393 /* Convert the integer I to an Emacs representation, either the integer
3394 itself, or a cons of two or three integers, or if all else fails a float.
3395 I should not have side effects. */
3396 #define INTEGER_TO_CONS(i) \
3397 (! FIXNUM_OVERFLOW_P (i) \
3398 ? make_number (i) \
3399 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16) \
3400 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16)) \
3401 && FIXNUM_OVERFLOW_P ((i) >> 16)) \
3402 ? Fcons (make_number ((i) >> 16), make_number ((i) & 0xffff)) \
3403 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16 >> 24) \
3404 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16 >> 24)) \
3405 && FIXNUM_OVERFLOW_P ((i) >> 16 >> 24)) \
3406 ? Fcons (make_number ((i) >> 16 >> 24), \
3407 Fcons (make_number ((i) >> 16 & 0xffffff), \
3408 make_number ((i) & 0xffff))) \
3409 : make_float (i))
3410
3411 /* Convert the Emacs representation CONS back to an integer of type
3412 TYPE, storing the result the variable VAR. Signal an error if CONS
3413 is not a valid representation or is out of range for TYPE. */
3414 #define CONS_TO_INTEGER(cons, type, var) \
3415 (TYPE_SIGNED (type) \
3416 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3417 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3418 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3419 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3420
3421 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3422 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3423 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3424 Lisp_Object);
3425 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3426 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3427 extern void syms_of_data (void);
3428 extern void swap_in_global_binding (struct Lisp_Symbol *);
3429
3430 /* Defined in cmds.c */
3431 extern void syms_of_cmds (void);
3432 extern void keys_of_cmds (void);
3433
3434 /* Defined in coding.c. */
3435 extern Lisp_Object Qcharset;
3436 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3437 ptrdiff_t, bool, bool, Lisp_Object);
3438 extern void init_coding (void);
3439 extern void init_coding_once (void);
3440 extern void syms_of_coding (void);
3441
3442 /* Defined in character.c. */
3443 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3444 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3445 extern void syms_of_character (void);
3446
3447 /* Defined in charset.c. */
3448 extern void init_charset (void);
3449 extern void init_charset_once (void);
3450 extern void syms_of_charset (void);
3451 /* Structure forward declarations. */
3452 struct charset;
3453
3454 /* Defined in syntax.c. */
3455 extern void init_syntax_once (void);
3456 extern void syms_of_syntax (void);
3457
3458 /* Defined in fns.c. */
3459 extern Lisp_Object QCrehash_size, QCrehash_threshold;
3460 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3461 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3462 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3463 extern void sweep_weak_hash_tables (void);
3464 extern Lisp_Object Qcursor_in_echo_area;
3465 extern Lisp_Object Qstring_lessp;
3466 extern Lisp_Object QCsize, QCtest, QCweakness, Qequal, Qeq;
3467 EMACS_UINT hash_string (char const *, ptrdiff_t);
3468 EMACS_UINT sxhash (Lisp_Object, int);
3469 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3470 Lisp_Object, Lisp_Object);
3471 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3472 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3473 EMACS_UINT);
3474 extern struct hash_table_test hashtest_eql, hashtest_equal;
3475 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3476 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3477 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3478 ptrdiff_t, ptrdiff_t);
3479 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3480 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3481 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3482 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3483 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3484 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3485 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3486 extern void clear_string_char_byte_cache (void);
3487 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3488 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3489 extern Lisp_Object string_to_multibyte (Lisp_Object);
3490 extern Lisp_Object string_make_unibyte (Lisp_Object);
3491 extern void syms_of_fns (void);
3492
3493 /* Defined in floatfns.c. */
3494 extern void syms_of_floatfns (void);
3495 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3496
3497 /* Defined in fringe.c. */
3498 extern void syms_of_fringe (void);
3499 extern void init_fringe (void);
3500 #ifdef HAVE_WINDOW_SYSTEM
3501 extern void mark_fringe_data (void);
3502 extern void init_fringe_once (void);
3503 #endif /* HAVE_WINDOW_SYSTEM */
3504
3505 /* Defined in image.c. */
3506 extern Lisp_Object QCascent, QCmargin, QCrelief;
3507 extern Lisp_Object QCconversion;
3508 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3509 extern void reset_image_types (void);
3510 extern void syms_of_image (void);
3511
3512 /* Defined in insdel.c. */
3513 extern Lisp_Object Qinhibit_modification_hooks;
3514 extern Lisp_Object Qregion_extract_function;
3515 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3516 extern _Noreturn void buffer_overflow (void);
3517 extern void make_gap (ptrdiff_t);
3518 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3519 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3520 ptrdiff_t, bool, bool);
3521 extern int count_combining_before (const unsigned char *,
3522 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3523 extern int count_combining_after (const unsigned char *,
3524 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3525 extern void insert (const char *, ptrdiff_t);
3526 extern void insert_and_inherit (const char *, ptrdiff_t);
3527 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3528 bool, bool, bool);
3529 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3530 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3531 ptrdiff_t, ptrdiff_t, bool);
3532 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3533 extern void insert_char (int);
3534 extern void insert_string (const char *);
3535 extern void insert_before_markers (const char *, ptrdiff_t);
3536 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3537 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3538 ptrdiff_t, ptrdiff_t,
3539 ptrdiff_t, bool);
3540 extern void del_range (ptrdiff_t, ptrdiff_t);
3541 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3542 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3543 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3544 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3545 ptrdiff_t, ptrdiff_t, bool);
3546 extern void modify_text (ptrdiff_t, ptrdiff_t);
3547 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3548 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3549 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3550 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3551 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3552 ptrdiff_t, ptrdiff_t);
3553 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3554 ptrdiff_t, ptrdiff_t);
3555 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3556 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3557 const char *, ptrdiff_t, ptrdiff_t, bool);
3558 extern void syms_of_insdel (void);
3559
3560 /* Defined in dispnew.c. */
3561 #if (defined PROFILING \
3562 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3563 _Noreturn void __executable_start (void);
3564 #endif
3565 extern Lisp_Object Vwindow_system;
3566 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3567
3568 /* Defined in xdisp.c. */
3569 extern Lisp_Object Qinhibit_point_motion_hooks;
3570 extern Lisp_Object Qinhibit_redisplay;
3571 extern Lisp_Object Qmenu_bar_update_hook;
3572 extern Lisp_Object Qwindow_scroll_functions;
3573 extern Lisp_Object Qoverriding_local_map, Qoverriding_terminal_local_map;
3574 extern Lisp_Object Qtext, Qboth, Qboth_horiz, Qtext_image_horiz;
3575 extern Lisp_Object Qspace, Qcenter, QCalign_to;
3576 extern Lisp_Object Qbar, Qhbar, Qhollow;
3577 extern Lisp_Object Qleft_margin, Qright_margin;
3578 extern Lisp_Object QCdata, QCfile;
3579 extern Lisp_Object QCmap;
3580 extern Lisp_Object Qrisky_local_variable;
3581 extern bool noninteractive_need_newline;
3582 extern Lisp_Object echo_area_buffer[2];
3583 extern void add_to_log (const char *, Lisp_Object, Lisp_Object);
3584 extern void check_message_stack (void);
3585 extern void setup_echo_area_for_printing (int);
3586 extern bool push_message (void);
3587 extern void pop_message_unwind (void);
3588 extern Lisp_Object restore_message_unwind (Lisp_Object);
3589 extern void restore_message (void);
3590 extern Lisp_Object current_message (void);
3591 extern void clear_message (bool, bool);
3592 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3593 extern void message1 (const char *);
3594 extern void message1_nolog (const char *);
3595 extern void message3 (Lisp_Object);
3596 extern void message3_nolog (Lisp_Object);
3597 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3598 extern void message_with_string (const char *, Lisp_Object, int);
3599 extern void message_log_maybe_newline (void);
3600 extern void update_echo_area (void);
3601 extern void truncate_echo_area (ptrdiff_t);
3602 extern void redisplay (void);
3603
3604 void set_frame_cursor_types (struct frame *, Lisp_Object);
3605 extern void syms_of_xdisp (void);
3606 extern void init_xdisp (void);
3607 extern Lisp_Object safe_eval (Lisp_Object);
3608 extern int pos_visible_p (struct window *, ptrdiff_t, int *,
3609 int *, int *, int *, int *, int *);
3610
3611 /* Defined in xsettings.c. */
3612 extern void syms_of_xsettings (void);
3613
3614 /* Defined in vm-limit.c. */
3615 extern void memory_warnings (void *, void (*warnfun) (const char *));
3616
3617 /* Defined in alloc.c. */
3618 extern void check_pure_size (void);
3619 extern void free_misc (Lisp_Object);
3620 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3621 extern void malloc_warning (const char *);
3622 extern _Noreturn void memory_full (size_t);
3623 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3624 extern bool survives_gc_p (Lisp_Object);
3625 extern void mark_object (Lisp_Object);
3626 #if defined REL_ALLOC && !defined SYSTEM_MALLOC
3627 extern void refill_memory_reserve (void);
3628 #endif
3629 extern const char *pending_malloc_warning;
3630 extern Lisp_Object zero_vector;
3631 extern Lisp_Object *stack_base;
3632 extern EMACS_INT consing_since_gc;
3633 extern EMACS_INT gc_relative_threshold;
3634 extern EMACS_INT memory_full_cons_threshold;
3635 extern Lisp_Object list1 (Lisp_Object);
3636 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3637 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3638 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3639 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3640 Lisp_Object);
3641 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3642 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3643
3644 /* Build a frequently used 2/3/4-integer lists. */
3645
3646 INLINE Lisp_Object
3647 list2i (EMACS_INT x, EMACS_INT y)
3648 {
3649 return list2 (make_number (x), make_number (y));
3650 }
3651
3652 INLINE Lisp_Object
3653 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3654 {
3655 return list3 (make_number (x), make_number (y), make_number (w));
3656 }
3657
3658 INLINE Lisp_Object
3659 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3660 {
3661 return list4 (make_number (x), make_number (y),
3662 make_number (w), make_number (h));
3663 }
3664
3665 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3666 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3667 extern _Noreturn void string_overflow (void);
3668 extern Lisp_Object make_string (const char *, ptrdiff_t);
3669 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3670 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3671 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3672
3673 /* Make unibyte string from C string when the length isn't known. */
3674
3675 INLINE Lisp_Object
3676 build_unibyte_string (const char *str)
3677 {
3678 return make_unibyte_string (str, strlen (str));
3679 }
3680
3681 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3682 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3683 extern Lisp_Object make_uninit_string (EMACS_INT);
3684 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3685 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3686 extern Lisp_Object make_specified_string (const char *,
3687 ptrdiff_t, ptrdiff_t, bool);
3688 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3689 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3690
3691 /* Make a string allocated in pure space, use STR as string data. */
3692
3693 INLINE Lisp_Object
3694 build_pure_c_string (const char *str)
3695 {
3696 return make_pure_c_string (str, strlen (str));
3697 }
3698
3699 /* Make a string from the data at STR, treating it as multibyte if the
3700 data warrants. */
3701
3702 INLINE Lisp_Object
3703 build_string (const char *str)
3704 {
3705 return make_string (str, strlen (str));
3706 }
3707
3708 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3709 extern void make_byte_code (struct Lisp_Vector *);
3710 extern Lisp_Object Qautomatic_gc;
3711 extern Lisp_Object Qchar_table_extra_slots;
3712 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3713
3714 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3715 be sure that GC cannot happen until the vector is completely
3716 initialized. E.g. the following code is likely to crash:
3717
3718 v = make_uninit_vector (3);
3719 ASET (v, 0, obj0);
3720 ASET (v, 1, Ffunction_can_gc ());
3721 ASET (v, 2, obj1); */
3722
3723 INLINE Lisp_Object
3724 make_uninit_vector (ptrdiff_t size)
3725 {
3726 Lisp_Object v;
3727 struct Lisp_Vector *p;
3728
3729 p = allocate_vector (size);
3730 XSETVECTOR (v, p);
3731 return v;
3732 }
3733
3734 /* Like above, but special for sub char-tables. */
3735
3736 INLINE Lisp_Object
3737 make_uninit_sub_char_table (int depth, int min_char)
3738 {
3739 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3740 Lisp_Object v = make_uninit_vector (slots);
3741
3742 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3743 XSUB_CHAR_TABLE (v)->depth = depth;
3744 XSUB_CHAR_TABLE (v)->min_char = min_char;
3745 return v;
3746 }
3747
3748 extern struct Lisp_Vector *allocate_pseudovector (int, int, enum pvec_type);
3749 #define ALLOCATE_PSEUDOVECTOR(typ,field,tag) \
3750 ((typ*) \
3751 allocate_pseudovector \
3752 (VECSIZE (typ), PSEUDOVECSIZE (typ, field), tag))
3753 extern struct Lisp_Hash_Table *allocate_hash_table (void);
3754 extern struct window *allocate_window (void);
3755 extern struct frame *allocate_frame (void);
3756 extern struct Lisp_Process *allocate_process (void);
3757 extern struct terminal *allocate_terminal (void);
3758 extern bool gc_in_progress;
3759 extern bool abort_on_gc;
3760 extern Lisp_Object make_float (double);
3761 extern void display_malloc_warning (void);
3762 extern ptrdiff_t inhibit_garbage_collection (void);
3763 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3764 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3765 Lisp_Object, Lisp_Object);
3766 extern Lisp_Object make_save_ptr (void *);
3767 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3768 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3769 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3770 Lisp_Object);
3771 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3772 extern void free_save_value (Lisp_Object);
3773 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3774 extern void free_marker (Lisp_Object);
3775 extern void free_cons (struct Lisp_Cons *);
3776 extern void init_alloc_once (void);
3777 extern void init_alloc (void);
3778 extern void syms_of_alloc (void);
3779 extern struct buffer * allocate_buffer (void);
3780 extern int valid_lisp_object_p (Lisp_Object);
3781 extern int relocatable_string_data_p (const char *);
3782 #ifdef GC_CHECK_CONS_LIST
3783 extern void check_cons_list (void);
3784 #else
3785 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3786 #endif
3787
3788 #ifdef REL_ALLOC
3789 /* Defined in ralloc.c. */
3790 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3791 extern void r_alloc_free (void **);
3792 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3793 extern void r_alloc_reset_variable (void **, void **);
3794 extern void r_alloc_inhibit_buffer_relocation (int);
3795 #endif
3796
3797 /* Defined in chartab.c. */
3798 extern Lisp_Object copy_char_table (Lisp_Object);
3799 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3800 int *, int *);
3801 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3802 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3803 Lisp_Object),
3804 Lisp_Object, Lisp_Object, Lisp_Object);
3805 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3806 Lisp_Object, Lisp_Object,
3807 Lisp_Object, struct charset *,
3808 unsigned, unsigned);
3809 extern Lisp_Object uniprop_table (Lisp_Object);
3810 extern void syms_of_chartab (void);
3811
3812 /* Defined in print.c. */
3813 extern Lisp_Object Vprin1_to_string_buffer;
3814 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3815 extern Lisp_Object Qstandard_output;
3816 extern Lisp_Object Qexternal_debugging_output;
3817 extern void temp_output_buffer_setup (const char *);
3818 extern int print_level;
3819 extern Lisp_Object Qprint_escape_newlines;
3820 extern void write_string (const char *, int);
3821 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3822 Lisp_Object);
3823 extern Lisp_Object internal_with_output_to_temp_buffer
3824 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3825 #define FLOAT_TO_STRING_BUFSIZE 350
3826 extern int float_to_string (char *, double);
3827 extern void init_print_once (void);
3828 extern void syms_of_print (void);
3829
3830 /* Defined in doprnt.c. */
3831 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3832 va_list);
3833 extern ptrdiff_t esprintf (char *, char const *, ...)
3834 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3835 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3836 char const *, ...)
3837 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3838 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3839 char const *, va_list)
3840 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3841
3842 /* Defined in lread.c. */
3843 extern Lisp_Object Qvariable_documentation, Qstandard_input;
3844 extern Lisp_Object Qbackquote, Qcomma, Qcomma_at, Qcomma_dot, Qfunction;
3845 extern Lisp_Object Qlexical_binding;
3846 extern Lisp_Object check_obarray (Lisp_Object);
3847 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3848 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3849 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3850 INLINE void
3851 LOADHIST_ATTACH (Lisp_Object x)
3852 {
3853 if (initialized)
3854 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3855 }
3856 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3857 Lisp_Object *, Lisp_Object, bool);
3858 extern Lisp_Object string_to_number (char const *, int, bool);
3859 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3860 Lisp_Object);
3861 extern void dir_warning (const char *, Lisp_Object);
3862 extern void init_obarray (void);
3863 extern void init_lread (void);
3864 extern void syms_of_lread (void);
3865
3866 INLINE Lisp_Object
3867 intern (const char *str)
3868 {
3869 return intern_1 (str, strlen (str));
3870 }
3871
3872 INLINE Lisp_Object
3873 intern_c_string (const char *str)
3874 {
3875 return intern_c_string_1 (str, strlen (str));
3876 }
3877
3878 /* Defined in eval.c. */
3879 extern Lisp_Object Qexit, Qinteractive, Qcommandp, Qmacro;
3880 extern Lisp_Object Qinhibit_quit, Qinternal_interpreter_environment, Qclosure;
3881 extern Lisp_Object Qand_rest;
3882 extern Lisp_Object Vautoload_queue;
3883 extern Lisp_Object Vsignaling_function;
3884 extern Lisp_Object inhibit_lisp_code;
3885 extern struct handler *handlerlist;
3886
3887 /* To run a normal hook, use the appropriate function from the list below.
3888 The calling convention:
3889
3890 if (!NILP (Vrun_hooks))
3891 call1 (Vrun_hooks, Qmy_funny_hook);
3892
3893 should no longer be used. */
3894 extern Lisp_Object Vrun_hooks;
3895 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3896 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3897 Lisp_Object (*funcall)
3898 (ptrdiff_t nargs, Lisp_Object *args));
3899 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3900 extern _Noreturn void xsignal0 (Lisp_Object);
3901 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3902 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3903 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3904 Lisp_Object);
3905 extern _Noreturn void signal_error (const char *, Lisp_Object);
3906 extern Lisp_Object eval_sub (Lisp_Object form);
3907 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3908 extern Lisp_Object call0 (Lisp_Object);
3909 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3910 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3911 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3912 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3913 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3914 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3915 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3916 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3917 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3918 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3919 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3920 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3921 extern Lisp_Object internal_condition_case_n
3922 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3923 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3924 extern void specbind (Lisp_Object, Lisp_Object);
3925 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3926 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3927 extern void record_unwind_protect_int (void (*) (int), int);
3928 extern void record_unwind_protect_void (void (*) (void));
3929 extern void record_unwind_protect_nothing (void);
3930 extern void clear_unwind_protect (ptrdiff_t);
3931 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3932 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3933 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3934 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3935 extern _Noreturn void verror (const char *, va_list)
3936 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3937 extern void un_autoload (Lisp_Object);
3938 extern Lisp_Object call_debugger (Lisp_Object arg);
3939 extern void init_eval_once (void);
3940 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3941 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
3942 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3943 extern void init_eval (void);
3944 extern void syms_of_eval (void);
3945 extern void unwind_body (Lisp_Object);
3946 extern void record_in_backtrace (Lisp_Object function,
3947 Lisp_Object *args, ptrdiff_t nargs);
3948 extern void mark_specpdl (void);
3949 extern void get_backtrace (Lisp_Object array);
3950 Lisp_Object backtrace_top_function (void);
3951 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
3952 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
3953
3954
3955 /* Defined in editfns.c. */
3956 extern Lisp_Object Qfield;
3957 extern void insert1 (Lisp_Object);
3958 extern Lisp_Object format2 (const char *, Lisp_Object, Lisp_Object);
3959 extern Lisp_Object save_excursion_save (void);
3960 extern Lisp_Object save_restriction_save (void);
3961 extern void save_excursion_restore (Lisp_Object);
3962 extern void save_restriction_restore (Lisp_Object);
3963 extern _Noreturn void time_overflow (void);
3964 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
3965 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3966 ptrdiff_t, bool);
3967 extern void init_editfns (void);
3968 extern void syms_of_editfns (void);
3969 extern void set_time_zone_rule (const char *);
3970
3971 /* Defined in buffer.c. */
3972 extern bool mouse_face_overlay_overlaps (Lisp_Object);
3973 extern _Noreturn void nsberror (Lisp_Object);
3974 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
3975 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
3976 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
3977 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
3978 Lisp_Object, Lisp_Object, Lisp_Object);
3979 extern bool overlay_touches_p (ptrdiff_t);
3980 extern Lisp_Object other_buffer_safely (Lisp_Object);
3981 extern Lisp_Object get_truename_buffer (Lisp_Object);
3982 extern void init_buffer_once (void);
3983 extern void init_buffer (int);
3984 extern void syms_of_buffer (void);
3985 extern void keys_of_buffer (void);
3986
3987 /* Defined in marker.c. */
3988
3989 extern ptrdiff_t marker_position (Lisp_Object);
3990 extern ptrdiff_t marker_byte_position (Lisp_Object);
3991 extern void clear_charpos_cache (struct buffer *);
3992 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
3993 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
3994 extern void unchain_marker (struct Lisp_Marker *marker);
3995 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
3996 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
3997 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
3998 ptrdiff_t, ptrdiff_t);
3999 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
4000 extern void syms_of_marker (void);
4001
4002 /* Defined in fileio.c. */
4003
4004 extern Lisp_Object Qfile_error;
4005 extern Lisp_Object Qfile_notify_error;
4006 extern Lisp_Object Qfile_exists_p;
4007 extern Lisp_Object Qfile_directory_p;
4008 extern Lisp_Object Qinsert_file_contents;
4009 extern Lisp_Object Qfile_name_history;
4010 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
4011 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
4012 Lisp_Object, Lisp_Object, Lisp_Object,
4013 Lisp_Object, int);
4014 extern void close_file_unwind (int);
4015 extern void fclose_unwind (void *);
4016 extern void restore_point_unwind (Lisp_Object);
4017 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
4018 extern _Noreturn void report_file_error (const char *, Lisp_Object);
4019 extern bool internal_delete_file (Lisp_Object);
4020 extern Lisp_Object emacs_readlinkat (int, const char *);
4021 extern bool file_directory_p (const char *);
4022 extern bool file_accessible_directory_p (const char *);
4023 extern void init_fileio (void);
4024 extern void syms_of_fileio (void);
4025 extern Lisp_Object make_temp_name (Lisp_Object, bool);
4026 extern Lisp_Object Qdelete_file;
4027
4028 /* Defined in search.c. */
4029 extern void shrink_regexp_cache (void);
4030 extern void restore_search_regs (void);
4031 extern void record_unwind_save_match_data (void);
4032 struct re_registers;
4033 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4034 struct re_registers *,
4035 Lisp_Object, bool, bool);
4036 extern ptrdiff_t fast_string_match (Lisp_Object, Lisp_Object);
4037 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4038 ptrdiff_t);
4039 extern ptrdiff_t fast_string_match_ignore_case (Lisp_Object, Lisp_Object);
4040 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4041 ptrdiff_t, ptrdiff_t, Lisp_Object);
4042 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4043 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4044 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4045 ptrdiff_t, bool);
4046 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4047 ptrdiff_t, ptrdiff_t *);
4048 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4049 ptrdiff_t, ptrdiff_t *);
4050 extern void syms_of_search (void);
4051 extern void clear_regexp_cache (void);
4052
4053 /* Defined in minibuf.c. */
4054
4055 extern Lisp_Object Qcompletion_ignore_case;
4056 extern Lisp_Object Vminibuffer_list;
4057 extern Lisp_Object last_minibuf_string;
4058 extern Lisp_Object get_minibuffer (EMACS_INT);
4059 extern void init_minibuf_once (void);
4060 extern void syms_of_minibuf (void);
4061
4062 /* Defined in callint.c. */
4063
4064 extern Lisp_Object Qminus, Qplus;
4065 extern Lisp_Object Qprogn;
4066 extern Lisp_Object Qwhen;
4067 extern Lisp_Object Qmouse_leave_buffer_hook;
4068 extern void syms_of_callint (void);
4069
4070 /* Defined in casefiddle.c. */
4071
4072 extern Lisp_Object Qidentity;
4073 extern void syms_of_casefiddle (void);
4074 extern void keys_of_casefiddle (void);
4075
4076 /* Defined in casetab.c. */
4077
4078 extern void init_casetab_once (void);
4079 extern void syms_of_casetab (void);
4080
4081 /* Defined in keyboard.c. */
4082
4083 extern Lisp_Object echo_message_buffer;
4084 extern struct kboard *echo_kboard;
4085 extern void cancel_echoing (void);
4086 extern Lisp_Object Qdisabled, QCfilter;
4087 extern Lisp_Object Qup, Qdown;
4088 extern Lisp_Object last_undo_boundary;
4089 extern bool input_pending;
4090 extern Lisp_Object menu_bar_items (Lisp_Object);
4091 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4092 extern void discard_mouse_events (void);
4093 #ifdef USABLE_SIGIO
4094 void handle_input_available_signal (int);
4095 #endif
4096 extern Lisp_Object pending_funcalls;
4097 extern bool detect_input_pending (void);
4098 extern bool detect_input_pending_ignore_squeezables (void);
4099 extern bool detect_input_pending_run_timers (bool);
4100 extern void safe_run_hooks (Lisp_Object);
4101 extern void cmd_error_internal (Lisp_Object, const char *);
4102 extern Lisp_Object command_loop_1 (void);
4103 extern Lisp_Object read_menu_command (void);
4104 extern Lisp_Object recursive_edit_1 (void);
4105 extern void record_auto_save (void);
4106 extern void force_auto_save_soon (void);
4107 extern void init_keyboard (void);
4108 extern void syms_of_keyboard (void);
4109 extern void keys_of_keyboard (void);
4110
4111 /* Defined in indent.c. */
4112 extern ptrdiff_t current_column (void);
4113 extern void invalidate_current_column (void);
4114 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4115 extern void syms_of_indent (void);
4116
4117 /* Defined in frame.c. */
4118 extern Lisp_Object Qonly, Qnone;
4119 extern void set_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4120 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4121 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4122 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4123 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4124 extern void frames_discard_buffer (Lisp_Object);
4125 extern void syms_of_frame (void);
4126
4127 /* Defined in emacs.c. */
4128 extern char **initial_argv;
4129 extern int initial_argc;
4130 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4131 extern bool display_arg;
4132 #endif
4133 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4134 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4135 extern Lisp_Object Qfile_name_handler_alist;
4136 extern _Noreturn void terminate_due_to_signal (int, int);
4137 extern Lisp_Object Qkill_emacs;
4138 #ifdef WINDOWSNT
4139 extern Lisp_Object Vlibrary_cache;
4140 #endif
4141 #if HAVE_SETLOCALE
4142 void fixup_locale (void);
4143 void synchronize_system_messages_locale (void);
4144 void synchronize_system_time_locale (void);
4145 #else
4146 INLINE void fixup_locale (void) {}
4147 INLINE void synchronize_system_messages_locale (void) {}
4148 INLINE void synchronize_system_time_locale (void) {}
4149 #endif
4150 extern void shut_down_emacs (int, Lisp_Object);
4151
4152 /* True means don't do interactive redisplay and don't change tty modes. */
4153 extern bool noninteractive;
4154
4155 /* True means remove site-lisp directories from load-path. */
4156 extern bool no_site_lisp;
4157
4158 /* Pipe used to send exit notification to the daemon parent at
4159 startup. */
4160 extern int daemon_pipe[2];
4161 #define IS_DAEMON (daemon_pipe[1] != 0)
4162
4163 /* True if handling a fatal error already. */
4164 extern bool fatal_error_in_progress;
4165
4166 /* True means don't do use window-system-specific display code. */
4167 extern bool inhibit_window_system;
4168 /* True means that a filter or a sentinel is running. */
4169 extern bool running_asynch_code;
4170
4171 /* Defined in process.c. */
4172 extern Lisp_Object QCtype, Qlocal;
4173 extern void kill_buffer_processes (Lisp_Object);
4174 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4175 struct Lisp_Process *, int);
4176 /* Max value for the first argument of wait_reading_process_output. */
4177 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4178 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4179 The bug merely causes a bogus warning, but the warning is annoying. */
4180 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4181 #else
4182 # define WAIT_READING_MAX INTMAX_MAX
4183 #endif
4184 extern void add_keyboard_wait_descriptor (int);
4185 extern void delete_keyboard_wait_descriptor (int);
4186 #ifdef HAVE_GPM
4187 extern void add_gpm_wait_descriptor (int);
4188 extern void delete_gpm_wait_descriptor (int);
4189 #endif
4190 extern void init_process_emacs (void);
4191 extern void syms_of_process (void);
4192 extern void setup_process_coding_systems (Lisp_Object);
4193
4194 /* Defined in callproc.c. */
4195 #ifndef DOS_NT
4196 _Noreturn
4197 #endif
4198 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4199 extern void init_callproc_1 (void);
4200 extern void init_callproc (void);
4201 extern void set_initial_environment (void);
4202 extern void syms_of_callproc (void);
4203
4204 /* Defined in doc.c. */
4205 extern Lisp_Object Qfunction_documentation;
4206 extern Lisp_Object read_doc_string (Lisp_Object);
4207 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4208 extern void syms_of_doc (void);
4209 extern int read_bytecode_char (bool);
4210
4211 /* Defined in bytecode.c. */
4212 extern void syms_of_bytecode (void);
4213 extern struct byte_stack *byte_stack_list;
4214 #if BYTE_MARK_STACK
4215 extern void mark_byte_stack (void);
4216 #endif
4217 extern void unmark_byte_stack (void);
4218 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4219 Lisp_Object, ptrdiff_t, Lisp_Object *);
4220
4221 /* Defined in macros.c. */
4222 extern void init_macros (void);
4223 extern void syms_of_macros (void);
4224
4225 /* Defined in undo.c. */
4226 extern Lisp_Object Qapply;
4227 extern Lisp_Object Qinhibit_read_only;
4228 extern void truncate_undo_list (struct buffer *);
4229 extern void record_insert (ptrdiff_t, ptrdiff_t);
4230 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4231 extern void record_first_change (void);
4232 extern void record_change (ptrdiff_t, ptrdiff_t);
4233 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4234 Lisp_Object, Lisp_Object,
4235 Lisp_Object);
4236 extern void syms_of_undo (void);
4237 /* Defined in textprop.c. */
4238 extern Lisp_Object Qmouse_face;
4239 extern Lisp_Object Qinsert_in_front_hooks, Qinsert_behind_hooks;
4240 extern Lisp_Object Qminibuffer_prompt;
4241
4242 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4243
4244 /* Defined in menu.c. */
4245 extern void syms_of_menu (void);
4246
4247 /* Defined in xmenu.c. */
4248 extern void syms_of_xmenu (void);
4249
4250 /* Defined in termchar.h. */
4251 struct tty_display_info;
4252
4253 /* Defined in termhooks.h. */
4254 struct terminal;
4255
4256 /* Defined in sysdep.c. */
4257 #ifndef HAVE_GET_CURRENT_DIR_NAME
4258 extern char *get_current_dir_name (void);
4259 #endif
4260 extern void stuff_char (char c);
4261 extern void init_foreground_group (void);
4262 extern void sys_subshell (void);
4263 extern void sys_suspend (void);
4264 extern void discard_tty_input (void);
4265 extern void init_sys_modes (struct tty_display_info *);
4266 extern void reset_sys_modes (struct tty_display_info *);
4267 extern void init_all_sys_modes (void);
4268 extern void reset_all_sys_modes (void);
4269 extern void child_setup_tty (int);
4270 extern void setup_pty (int);
4271 extern int set_window_size (int, int, int);
4272 extern EMACS_INT get_random (void);
4273 extern void seed_random (void *, ptrdiff_t);
4274 extern void init_random (void);
4275 extern void emacs_backtrace (int);
4276 extern _Noreturn void emacs_abort (void) NO_INLINE;
4277 extern int emacs_open (const char *, int, int);
4278 extern int emacs_pipe (int[2]);
4279 extern int emacs_close (int);
4280 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4281 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4282 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4283 extern void emacs_perror (char const *);
4284
4285 extern void unlock_all_files (void);
4286 extern void lock_file (Lisp_Object);
4287 extern void unlock_file (Lisp_Object);
4288 extern void unlock_buffer (struct buffer *);
4289 extern void syms_of_filelock (void);
4290
4291 /* Defined in sound.c. */
4292 extern void syms_of_sound (void);
4293
4294 /* Defined in category.c. */
4295 extern void init_category_once (void);
4296 extern Lisp_Object char_category_set (int);
4297 extern void syms_of_category (void);
4298
4299 /* Defined in ccl.c. */
4300 extern void syms_of_ccl (void);
4301
4302 /* Defined in dired.c. */
4303 extern void syms_of_dired (void);
4304 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4305 Lisp_Object, Lisp_Object,
4306 bool, Lisp_Object);
4307
4308 /* Defined in term.c. */
4309 extern int *char_ins_del_vector;
4310 extern void syms_of_term (void);
4311 extern _Noreturn void fatal (const char *msgid, ...)
4312 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4313
4314 /* Defined in terminal.c. */
4315 extern void syms_of_terminal (void);
4316
4317 /* Defined in font.c. */
4318 extern void syms_of_font (void);
4319 extern void init_font (void);
4320
4321 #ifdef HAVE_WINDOW_SYSTEM
4322 /* Defined in fontset.c. */
4323 extern void syms_of_fontset (void);
4324
4325 /* Defined in xfns.c, w32fns.c, or macfns.c. */
4326 extern Lisp_Object Qfont_param;
4327 #endif
4328
4329 /* Defined in gfilenotify.c */
4330 #ifdef HAVE_GFILENOTIFY
4331 extern void globals_of_gfilenotify (void);
4332 extern void syms_of_gfilenotify (void);
4333 #endif
4334
4335 /* Defined in inotify.c */
4336 #ifdef HAVE_INOTIFY
4337 extern void syms_of_inotify (void);
4338 #endif
4339
4340 #ifdef HAVE_W32NOTIFY
4341 /* Defined on w32notify.c. */
4342 extern void syms_of_w32notify (void);
4343 #endif
4344
4345 /* Defined in xfaces.c. */
4346 extern Lisp_Object Qdefault, Qfringe;
4347 extern Lisp_Object Qscroll_bar, Qcursor;
4348 extern Lisp_Object Qmode_line_inactive;
4349 extern Lisp_Object Qface;
4350 extern Lisp_Object Qnormal;
4351 extern Lisp_Object QCfamily, QCweight, QCslant;
4352 extern Lisp_Object QCheight, QCname, QCwidth, QCforeground, QCbackground;
4353 extern Lisp_Object Qextra_light, Qlight, Qsemi_light, Qsemi_bold;
4354 extern Lisp_Object Qbold, Qextra_bold, Qultra_bold;
4355 extern Lisp_Object Qoblique, Qitalic;
4356 extern Lisp_Object Vface_alternative_font_family_alist;
4357 extern Lisp_Object Vface_alternative_font_registry_alist;
4358 extern void syms_of_xfaces (void);
4359
4360 #ifdef HAVE_X_WINDOWS
4361 /* Defined in xfns.c. */
4362 extern void syms_of_xfns (void);
4363
4364 /* Defined in xsmfns.c. */
4365 extern void syms_of_xsmfns (void);
4366
4367 /* Defined in xselect.c. */
4368 extern void syms_of_xselect (void);
4369
4370 /* Defined in xterm.c. */
4371 extern void syms_of_xterm (void);
4372 #endif /* HAVE_X_WINDOWS */
4373
4374 #ifdef HAVE_WINDOW_SYSTEM
4375 /* Defined in xterm.c, nsterm.m, w32term.c. */
4376 extern char *x_get_keysym_name (int);
4377 #endif /* HAVE_WINDOW_SYSTEM */
4378
4379 #ifdef HAVE_LIBXML2
4380 /* Defined in xml.c. */
4381 extern void syms_of_xml (void);
4382 extern void xml_cleanup_parser (void);
4383 #endif
4384
4385 #ifdef HAVE_ZLIB
4386 /* Defined in decompress.c. */
4387 extern void syms_of_decompress (void);
4388 #endif
4389
4390 #ifdef HAVE_DBUS
4391 /* Defined in dbusbind.c. */
4392 void syms_of_dbusbind (void);
4393 #endif
4394
4395
4396 /* Defined in profiler.c. */
4397 extern bool profiler_memory_running;
4398 extern void malloc_probe (size_t);
4399 extern void syms_of_profiler (void);
4400
4401
4402 #ifdef DOS_NT
4403 /* Defined in msdos.c, w32.c. */
4404 extern char *emacs_root_dir (void);
4405 #endif /* DOS_NT */
4406
4407 /* True means ^G can quit instantly. */
4408 extern bool immediate_quit;
4409
4410 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4411 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4412 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4413 extern void xfree (void *);
4414 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4415 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4416 ATTRIBUTE_ALLOC_SIZE ((2,3));
4417 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4418
4419 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4420 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4421 extern void dupstring (char **, char const *);
4422 extern void xputenv (const char *);
4423
4424 extern char *egetenv (const char *);
4425
4426 /* Copy Lisp string to temporary (allocated on stack) C string. */
4427
4428 #define xlispstrdupa(string) \
4429 memcpy (alloca (SBYTES (string) + 1), \
4430 SSDATA (string), SBYTES (string) + 1)
4431
4432 /* Set up the name of the machine we're running on. */
4433 extern void init_system_name (void);
4434
4435 /* Return the absolute value of X. X should be a signed integer
4436 expression without side effects, and X's absolute value should not
4437 exceed the maximum for its promoted type. This is called 'eabs'
4438 because 'abs' is reserved by the C standard. */
4439 #define eabs(x) ((x) < 0 ? -(x) : (x))
4440
4441 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4442 fixnum. */
4443
4444 #define make_fixnum_or_float(val) \
4445 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4446
4447 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4448 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4449
4450 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4451
4452 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4453
4454 #define USE_SAFE_ALLOCA \
4455 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4456
4457 /* SAFE_ALLOCA allocates a simple buffer. */
4458
4459 #define SAFE_ALLOCA(size) ((size) < MAX_ALLOCA \
4460 ? alloca (size) \
4461 : (sa_must_free = true, record_xmalloc (size)))
4462
4463 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4464 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4465 positive. The code is tuned for MULTIPLIER being a constant. */
4466
4467 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4468 do { \
4469 if ((nitems) <= MAX_ALLOCA / sizeof *(buf) / (multiplier)) \
4470 (buf) = alloca (sizeof *(buf) * (multiplier) * (nitems)); \
4471 else \
4472 { \
4473 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4474 sa_must_free = true; \
4475 record_unwind_protect_ptr (xfree, buf); \
4476 } \
4477 } while (false)
4478
4479 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4480
4481 #define SAFE_FREE() \
4482 do { \
4483 if (sa_must_free) { \
4484 sa_must_free = false; \
4485 unbind_to (sa_count, Qnil); \
4486 } \
4487 } while (false)
4488
4489
4490 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4491
4492 #define SAFE_ALLOCA_LISP(buf, nelt) \
4493 do { \
4494 if ((nelt) < MAX_ALLOCA / word_size) \
4495 (buf) = alloca ((nelt) * word_size); \
4496 else if ((nelt) < min (PTRDIFF_MAX, SIZE_MAX) / word_size) \
4497 { \
4498 Lisp_Object arg_; \
4499 (buf) = xmalloc ((nelt) * word_size); \
4500 arg_ = make_save_memory (buf, nelt); \
4501 sa_must_free = true; \
4502 record_unwind_protect (free_save_value, arg_); \
4503 } \
4504 else \
4505 memory_full (SIZE_MAX); \
4506 } while (false)
4507
4508 /* Loop over all tails of a list, checking for cycles.
4509 FIXME: Make tortoise and n internal declarations.
4510 FIXME: Unroll the loop body so we don't need `n'. */
4511 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4512 for ((tortoise) = (hare) = (list), (n) = true; \
4513 CONSP (hare); \
4514 (hare = XCDR (hare), (n) = !(n), \
4515 ((n) \
4516 ? (EQ (hare, tortoise) \
4517 ? xsignal1 (Qcircular_list, list) \
4518 : (void) 0) \
4519 /* Move tortoise before the next iteration, in case */ \
4520 /* the next iteration does an Fsetcdr. */ \
4521 : (void) ((tortoise) = XCDR (tortoise)))))
4522
4523 /* Do a `for' loop over alist values. */
4524
4525 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4526 for ((list_var) = (head_var); \
4527 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4528 (list_var) = XCDR (list_var))
4529
4530 /* Check whether it's time for GC, and run it if so. */
4531
4532 INLINE void
4533 maybe_gc (void)
4534 {
4535 if ((consing_since_gc > gc_cons_threshold
4536 && consing_since_gc > gc_relative_threshold)
4537 || (!NILP (Vmemory_full)
4538 && consing_since_gc > memory_full_cons_threshold))
4539 Fgarbage_collect ();
4540 }
4541
4542 INLINE bool
4543 functionp (Lisp_Object object)
4544 {
4545 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4546 {
4547 object = Findirect_function (object, Qt);
4548
4549 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4550 {
4551 /* Autoloaded symbols are functions, except if they load
4552 macros or keymaps. */
4553 int i;
4554 for (i = 0; i < 4 && CONSP (object); i++)
4555 object = XCDR (object);
4556
4557 return ! (CONSP (object) && !NILP (XCAR (object)));
4558 }
4559 }
4560
4561 if (SUBRP (object))
4562 return XSUBR (object)->max_args != UNEVALLED;
4563 else if (COMPILEDP (object))
4564 return true;
4565 else if (CONSP (object))
4566 {
4567 Lisp_Object car = XCAR (object);
4568 return EQ (car, Qlambda) || EQ (car, Qclosure);
4569 }
4570 else
4571 return false;
4572 }
4573
4574 INLINE_HEADER_END
4575
4576 #endif /* EMACS_LISP_H */