]> code.delx.au - gnu-emacs/blob - src/search.c
(Freplace_match): Remove unused variable `inslen'.
[gnu-emacs] / src / search.c
1 /* String search routines for GNU Emacs.
2 Copyright (C) 1985, 86,87,93,94,97,98, 1999 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 #include <config.h>
23 #include "lisp.h"
24 #include "syntax.h"
25 #include "category.h"
26 #include "buffer.h"
27 #include "charset.h"
28 #include "region-cache.h"
29 #include "commands.h"
30 #include "blockinput.h"
31 #include "intervals.h"
32
33 #include <sys/types.h>
34 #include "regex.h"
35
36 #define REGEXP_CACHE_SIZE 20
37
38 /* If the regexp is non-nil, then the buffer contains the compiled form
39 of that regexp, suitable for searching. */
40 struct regexp_cache
41 {
42 struct regexp_cache *next;
43 Lisp_Object regexp;
44 struct re_pattern_buffer buf;
45 char fastmap[0400];
46 /* Nonzero means regexp was compiled to do full POSIX backtracking. */
47 char posix;
48 };
49
50 /* The instances of that struct. */
51 struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];
52
53 /* The head of the linked list; points to the most recently used buffer. */
54 struct regexp_cache *searchbuf_head;
55
56
57 /* Every call to re_match, etc., must pass &search_regs as the regs
58 argument unless you can show it is unnecessary (i.e., if re_match
59 is certainly going to be called again before region-around-match
60 can be called).
61
62 Since the registers are now dynamically allocated, we need to make
63 sure not to refer to the Nth register before checking that it has
64 been allocated by checking search_regs.num_regs.
65
66 The regex code keeps track of whether it has allocated the search
67 buffer using bits in the re_pattern_buffer. This means that whenever
68 you compile a new pattern, it completely forgets whether it has
69 allocated any registers, and will allocate new registers the next
70 time you call a searching or matching function. Therefore, we need
71 to call re_set_registers after compiling a new pattern or after
72 setting the match registers, so that the regex functions will be
73 able to free or re-allocate it properly. */
74 static struct re_registers search_regs;
75
76 /* The buffer in which the last search was performed, or
77 Qt if the last search was done in a string;
78 Qnil if no searching has been done yet. */
79 static Lisp_Object last_thing_searched;
80
81 /* error condition signaled when regexp compile_pattern fails */
82
83 Lisp_Object Qinvalid_regexp;
84
85 static void set_search_regs ();
86 static void save_search_regs ();
87 static int simple_search ();
88 static int boyer_moore ();
89 static int search_buffer ();
90
91 static void
92 matcher_overflow ()
93 {
94 error ("Stack overflow in regexp matcher");
95 }
96
97 /* Compile a regexp and signal a Lisp error if anything goes wrong.
98 PATTERN is the pattern to compile.
99 CP is the place to put the result.
100 TRANSLATE is a translation table for ignoring case, or nil for none.
101 REGP is the structure that says where to store the "register"
102 values that will result from matching this pattern.
103 If it is 0, we should compile the pattern not to record any
104 subexpression bounds.
105 POSIX is nonzero if we want full backtracking (POSIX style)
106 for this pattern. 0 means backtrack only enough to get a valid match.
107 MULTIBYTE is nonzero if we want to handle multibyte characters in
108 PATTERN. 0 means all multibyte characters are recognized just as
109 sequences of binary data. */
110
111 static void
112 compile_pattern_1 (cp, pattern, translate, regp, posix, multibyte)
113 struct regexp_cache *cp;
114 Lisp_Object pattern;
115 Lisp_Object translate;
116 struct re_registers *regp;
117 int posix;
118 int multibyte;
119 {
120 unsigned char *raw_pattern;
121 int raw_pattern_size;
122 char *val;
123 reg_syntax_t old;
124
125 /* MULTIBYTE says whether the text to be searched is multibyte.
126 We must convert PATTERN to match that, or we will not really
127 find things right. */
128
129 if (multibyte == STRING_MULTIBYTE (pattern))
130 {
131 raw_pattern = (unsigned char *) XSTRING (pattern)->data;
132 raw_pattern_size = STRING_BYTES (XSTRING (pattern));
133 }
134 else if (multibyte)
135 {
136 raw_pattern_size = count_size_as_multibyte (XSTRING (pattern)->data,
137 XSTRING (pattern)->size);
138 raw_pattern = (unsigned char *) alloca (raw_pattern_size + 1);
139 copy_text (XSTRING (pattern)->data, raw_pattern,
140 XSTRING (pattern)->size, 0, 1);
141 }
142 else
143 {
144 /* Converting multibyte to single-byte.
145
146 ??? Perhaps this conversion should be done in a special way
147 by subtracting nonascii-insert-offset from each non-ASCII char,
148 so that only the multibyte chars which really correspond to
149 the chosen single-byte character set can possibly match. */
150 raw_pattern_size = XSTRING (pattern)->size;
151 raw_pattern = (unsigned char *) alloca (raw_pattern_size + 1);
152 copy_text (XSTRING (pattern)->data, raw_pattern,
153 STRING_BYTES (XSTRING (pattern)), 1, 0);
154 }
155
156 cp->regexp = Qnil;
157 cp->buf.translate = (! NILP (translate) ? translate : make_number (0));
158 cp->posix = posix;
159 cp->buf.multibyte = multibyte;
160 BLOCK_INPUT;
161 old = re_set_syntax (RE_SYNTAX_EMACS
162 | (posix ? 0 : RE_NO_POSIX_BACKTRACKING));
163 val = (char *) re_compile_pattern ((char *)raw_pattern,
164 raw_pattern_size, &cp->buf);
165 re_set_syntax (old);
166 UNBLOCK_INPUT;
167 if (val)
168 Fsignal (Qinvalid_regexp, Fcons (build_string (val), Qnil));
169
170 cp->regexp = Fcopy_sequence (pattern);
171 }
172
173 /* Shrink each compiled regexp buffer in the cache
174 to the size actually used right now.
175 This is called from garbage collection. */
176
177 void
178 shrink_regexp_cache ()
179 {
180 struct regexp_cache *cp;
181
182 for (cp = searchbuf_head; cp != 0; cp = cp->next)
183 {
184 cp->buf.allocated = cp->buf.used;
185 cp->buf.buffer
186 = (unsigned char *) realloc (cp->buf.buffer, cp->buf.used);
187 }
188 }
189
190 /* Compile a regexp if necessary, but first check to see if there's one in
191 the cache.
192 PATTERN is the pattern to compile.
193 TRANSLATE is a translation table for ignoring case, or nil for none.
194 REGP is the structure that says where to store the "register"
195 values that will result from matching this pattern.
196 If it is 0, we should compile the pattern not to record any
197 subexpression bounds.
198 POSIX is nonzero if we want full backtracking (POSIX style)
199 for this pattern. 0 means backtrack only enough to get a valid match. */
200
201 struct re_pattern_buffer *
202 compile_pattern (pattern, regp, translate, posix, multibyte)
203 Lisp_Object pattern;
204 struct re_registers *regp;
205 Lisp_Object translate;
206 int posix, multibyte;
207 {
208 struct regexp_cache *cp, **cpp;
209
210 for (cpp = &searchbuf_head; ; cpp = &cp->next)
211 {
212 cp = *cpp;
213 /* Entries are initialized to nil, and may be set to nil by
214 compile_pattern_1 if the pattern isn't valid. Don't apply
215 XSTRING in those cases. However, compile_pattern_1 is only
216 applied to the cache entry we pick here to reuse. So nil
217 should never appear before a non-nil entry. */
218 if (NILP (cp->regexp))
219 goto compile_it;
220 if (XSTRING (cp->regexp)->size == XSTRING (pattern)->size
221 && STRING_MULTIBYTE (cp->regexp) == STRING_MULTIBYTE (pattern)
222 && !NILP (Fstring_equal (cp->regexp, pattern))
223 && EQ (cp->buf.translate, (! NILP (translate) ? translate : make_number (0)))
224 && cp->posix == posix
225 && cp->buf.multibyte == multibyte)
226 break;
227
228 /* If we're at the end of the cache, compile into the nil cell
229 we found, or the last (least recently used) cell with a
230 string value. */
231 if (cp->next == 0)
232 {
233 compile_it:
234 compile_pattern_1 (cp, pattern, translate, regp, posix, multibyte);
235 break;
236 }
237 }
238
239 /* When we get here, cp (aka *cpp) contains the compiled pattern,
240 either because we found it in the cache or because we just compiled it.
241 Move it to the front of the queue to mark it as most recently used. */
242 *cpp = cp->next;
243 cp->next = searchbuf_head;
244 searchbuf_head = cp;
245
246 /* Advise the searching functions about the space we have allocated
247 for register data. */
248 if (regp)
249 re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);
250
251 return &cp->buf;
252 }
253
254 /* Error condition used for failing searches */
255 Lisp_Object Qsearch_failed;
256
257 Lisp_Object
258 signal_failure (arg)
259 Lisp_Object arg;
260 {
261 Fsignal (Qsearch_failed, Fcons (arg, Qnil));
262 return Qnil;
263 }
264 \f
265 static Lisp_Object
266 looking_at_1 (string, posix)
267 Lisp_Object string;
268 int posix;
269 {
270 Lisp_Object val;
271 unsigned char *p1, *p2;
272 int s1, s2;
273 register int i;
274 struct re_pattern_buffer *bufp;
275
276 if (running_asynch_code)
277 save_search_regs ();
278
279 CHECK_STRING (string);
280 bufp = compile_pattern (string, &search_regs,
281 (!NILP (current_buffer->case_fold_search)
282 ? DOWNCASE_TABLE : Qnil),
283 posix,
284 !NILP (current_buffer->enable_multibyte_characters));
285
286 immediate_quit = 1;
287 QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
288
289 /* Get pointers and sizes of the two strings
290 that make up the visible portion of the buffer. */
291
292 p1 = BEGV_ADDR;
293 s1 = GPT_BYTE - BEGV_BYTE;
294 p2 = GAP_END_ADDR;
295 s2 = ZV_BYTE - GPT_BYTE;
296 if (s1 < 0)
297 {
298 p2 = p1;
299 s2 = ZV_BYTE - BEGV_BYTE;
300 s1 = 0;
301 }
302 if (s2 < 0)
303 {
304 s1 = ZV_BYTE - BEGV_BYTE;
305 s2 = 0;
306 }
307
308 re_match_object = Qnil;
309
310 i = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
311 PT_BYTE - BEGV_BYTE, &search_regs,
312 ZV_BYTE - BEGV_BYTE);
313 immediate_quit = 0;
314
315 if (i == -2)
316 matcher_overflow ();
317
318 val = (0 <= i ? Qt : Qnil);
319 if (i >= 0)
320 for (i = 0; i < search_regs.num_regs; i++)
321 if (search_regs.start[i] >= 0)
322 {
323 search_regs.start[i]
324 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
325 search_regs.end[i]
326 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
327 }
328 XSETBUFFER (last_thing_searched, current_buffer);
329 return val;
330 }
331
332 DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
333 doc: /* Return t if text after point matches regular expression REGEXP.
334 This function modifies the match data that `match-beginning',
335 `match-end' and `match-data' access; save and restore the match
336 data if you want to preserve them. */)
337 (regexp)
338 Lisp_Object regexp;
339 {
340 return looking_at_1 (regexp, 0);
341 }
342
343 DEFUN ("posix-looking-at", Fposix_looking_at, Sposix_looking_at, 1, 1, 0,
344 doc: /* Return t if text after point matches regular expression REGEXP.
345 Find the longest match, in accord with Posix regular expression rules.
346 This function modifies the match data that `match-beginning',
347 `match-end' and `match-data' access; save and restore the match
348 data if you want to preserve them. */)
349 (regexp)
350 Lisp_Object regexp;
351 {
352 return looking_at_1 (regexp, 1);
353 }
354 \f
355 static Lisp_Object
356 string_match_1 (regexp, string, start, posix)
357 Lisp_Object regexp, string, start;
358 int posix;
359 {
360 int val;
361 struct re_pattern_buffer *bufp;
362 int pos, pos_byte;
363 int i;
364
365 if (running_asynch_code)
366 save_search_regs ();
367
368 CHECK_STRING (regexp);
369 CHECK_STRING (string);
370
371 if (NILP (start))
372 pos = 0, pos_byte = 0;
373 else
374 {
375 int len = XSTRING (string)->size;
376
377 CHECK_NUMBER (start);
378 pos = XINT (start);
379 if (pos < 0 && -pos <= len)
380 pos = len + pos;
381 else if (0 > pos || pos > len)
382 args_out_of_range (string, start);
383 pos_byte = string_char_to_byte (string, pos);
384 }
385
386 bufp = compile_pattern (regexp, &search_regs,
387 (!NILP (current_buffer->case_fold_search)
388 ? DOWNCASE_TABLE : Qnil),
389 posix,
390 STRING_MULTIBYTE (string));
391 immediate_quit = 1;
392 re_match_object = string;
393
394 val = re_search (bufp, (char *) XSTRING (string)->data,
395 STRING_BYTES (XSTRING (string)), pos_byte,
396 STRING_BYTES (XSTRING (string)) - pos_byte,
397 &search_regs);
398 immediate_quit = 0;
399 last_thing_searched = Qt;
400 if (val == -2)
401 matcher_overflow ();
402 if (val < 0) return Qnil;
403
404 for (i = 0; i < search_regs.num_regs; i++)
405 if (search_regs.start[i] >= 0)
406 {
407 search_regs.start[i]
408 = string_byte_to_char (string, search_regs.start[i]);
409 search_regs.end[i]
410 = string_byte_to_char (string, search_regs.end[i]);
411 }
412
413 return make_number (string_byte_to_char (string, val));
414 }
415
416 DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
417 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
418 Case is ignored if `case-fold-search' is non-nil in the current buffer.
419 If third arg START is non-nil, start search at that index in STRING.
420 For index of first char beyond the match, do (match-end 0).
421 `match-end' and `match-beginning' also give indices of substrings
422 matched by parenthesis constructs in the pattern. */)
423 (regexp, string, start)
424 Lisp_Object regexp, string, start;
425 {
426 return string_match_1 (regexp, string, start, 0);
427 }
428
429 DEFUN ("posix-string-match", Fposix_string_match, Sposix_string_match, 2, 3, 0,
430 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
431 Find the longest match, in accord with Posix regular expression rules.
432 Case is ignored if `case-fold-search' is non-nil in the current buffer.
433 If third arg START is non-nil, start search at that index in STRING.
434 For index of first char beyond the match, do (match-end 0).
435 `match-end' and `match-beginning' also give indices of substrings
436 matched by parenthesis constructs in the pattern. */)
437 (regexp, string, start)
438 Lisp_Object regexp, string, start;
439 {
440 return string_match_1 (regexp, string, start, 1);
441 }
442
443 /* Match REGEXP against STRING, searching all of STRING,
444 and return the index of the match, or negative on failure.
445 This does not clobber the match data. */
446
447 int
448 fast_string_match (regexp, string)
449 Lisp_Object regexp, string;
450 {
451 int val;
452 struct re_pattern_buffer *bufp;
453
454 bufp = compile_pattern (regexp, 0, Qnil,
455 0, STRING_MULTIBYTE (string));
456 immediate_quit = 1;
457 re_match_object = string;
458
459 val = re_search (bufp, (char *) XSTRING (string)->data,
460 STRING_BYTES (XSTRING (string)), 0,
461 STRING_BYTES (XSTRING (string)), 0);
462 immediate_quit = 0;
463 return val;
464 }
465
466 /* Match REGEXP against STRING, searching all of STRING ignoring case,
467 and return the index of the match, or negative on failure.
468 This does not clobber the match data.
469 We assume that STRING contains single-byte characters. */
470
471 extern Lisp_Object Vascii_downcase_table;
472
473 int
474 fast_c_string_match_ignore_case (regexp, string)
475 Lisp_Object regexp;
476 char *string;
477 {
478 int val;
479 struct re_pattern_buffer *bufp;
480 int len = strlen (string);
481
482 regexp = string_make_unibyte (regexp);
483 re_match_object = Qt;
484 bufp = compile_pattern (regexp, 0,
485 Vascii_downcase_table, 0,
486 0);
487 immediate_quit = 1;
488 val = re_search (bufp, string, len, 0, len, 0);
489 immediate_quit = 0;
490 return val;
491 }
492 \f
493 /* The newline cache: remembering which sections of text have no newlines. */
494
495 /* If the user has requested newline caching, make sure it's on.
496 Otherwise, make sure it's off.
497 This is our cheezy way of associating an action with the change of
498 state of a buffer-local variable. */
499 static void
500 newline_cache_on_off (buf)
501 struct buffer *buf;
502 {
503 if (NILP (buf->cache_long_line_scans))
504 {
505 /* It should be off. */
506 if (buf->newline_cache)
507 {
508 free_region_cache (buf->newline_cache);
509 buf->newline_cache = 0;
510 }
511 }
512 else
513 {
514 /* It should be on. */
515 if (buf->newline_cache == 0)
516 buf->newline_cache = new_region_cache ();
517 }
518 }
519
520 \f
521 /* Search for COUNT instances of the character TARGET between START and END.
522
523 If COUNT is positive, search forwards; END must be >= START.
524 If COUNT is negative, search backwards for the -COUNTth instance;
525 END must be <= START.
526 If COUNT is zero, do anything you please; run rogue, for all I care.
527
528 If END is zero, use BEGV or ZV instead, as appropriate for the
529 direction indicated by COUNT.
530
531 If we find COUNT instances, set *SHORTAGE to zero, and return the
532 position after the COUNTth match. Note that for reverse motion
533 this is not the same as the usual convention for Emacs motion commands.
534
535 If we don't find COUNT instances before reaching END, set *SHORTAGE
536 to the number of TARGETs left unfound, and return END.
537
538 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
539 except when inside redisplay. */
540
541 int
542 scan_buffer (target, start, end, count, shortage, allow_quit)
543 register int target;
544 int start, end;
545 int count;
546 int *shortage;
547 int allow_quit;
548 {
549 struct region_cache *newline_cache;
550 int direction;
551
552 if (count > 0)
553 {
554 direction = 1;
555 if (! end) end = ZV;
556 }
557 else
558 {
559 direction = -1;
560 if (! end) end = BEGV;
561 }
562
563 newline_cache_on_off (current_buffer);
564 newline_cache = current_buffer->newline_cache;
565
566 if (shortage != 0)
567 *shortage = 0;
568
569 immediate_quit = allow_quit;
570
571 if (count > 0)
572 while (start != end)
573 {
574 /* Our innermost scanning loop is very simple; it doesn't know
575 about gaps, buffer ends, or the newline cache. ceiling is
576 the position of the last character before the next such
577 obstacle --- the last character the dumb search loop should
578 examine. */
579 int ceiling_byte = CHAR_TO_BYTE (end) - 1;
580 int start_byte = CHAR_TO_BYTE (start);
581 int tem;
582
583 /* If we're looking for a newline, consult the newline cache
584 to see where we can avoid some scanning. */
585 if (target == '\n' && newline_cache)
586 {
587 int next_change;
588 immediate_quit = 0;
589 while (region_cache_forward
590 (current_buffer, newline_cache, start_byte, &next_change))
591 start_byte = next_change;
592 immediate_quit = allow_quit;
593
594 /* START should never be after END. */
595 if (start_byte > ceiling_byte)
596 start_byte = ceiling_byte;
597
598 /* Now the text after start is an unknown region, and
599 next_change is the position of the next known region. */
600 ceiling_byte = min (next_change - 1, ceiling_byte);
601 }
602
603 /* The dumb loop can only scan text stored in contiguous
604 bytes. BUFFER_CEILING_OF returns the last character
605 position that is contiguous, so the ceiling is the
606 position after that. */
607 tem = BUFFER_CEILING_OF (start_byte);
608 ceiling_byte = min (tem, ceiling_byte);
609
610 {
611 /* The termination address of the dumb loop. */
612 register unsigned char *ceiling_addr
613 = BYTE_POS_ADDR (ceiling_byte) + 1;
614 register unsigned char *cursor
615 = BYTE_POS_ADDR (start_byte);
616 unsigned char *base = cursor;
617
618 while (cursor < ceiling_addr)
619 {
620 unsigned char *scan_start = cursor;
621
622 /* The dumb loop. */
623 while (*cursor != target && ++cursor < ceiling_addr)
624 ;
625
626 /* If we're looking for newlines, cache the fact that
627 the region from start to cursor is free of them. */
628 if (target == '\n' && newline_cache)
629 know_region_cache (current_buffer, newline_cache,
630 start_byte + scan_start - base,
631 start_byte + cursor - base);
632
633 /* Did we find the target character? */
634 if (cursor < ceiling_addr)
635 {
636 if (--count == 0)
637 {
638 immediate_quit = 0;
639 return BYTE_TO_CHAR (start_byte + cursor - base + 1);
640 }
641 cursor++;
642 }
643 }
644
645 start = BYTE_TO_CHAR (start_byte + cursor - base);
646 }
647 }
648 else
649 while (start > end)
650 {
651 /* The last character to check before the next obstacle. */
652 int ceiling_byte = CHAR_TO_BYTE (end);
653 int start_byte = CHAR_TO_BYTE (start);
654 int tem;
655
656 /* Consult the newline cache, if appropriate. */
657 if (target == '\n' && newline_cache)
658 {
659 int next_change;
660 immediate_quit = 0;
661 while (region_cache_backward
662 (current_buffer, newline_cache, start_byte, &next_change))
663 start_byte = next_change;
664 immediate_quit = allow_quit;
665
666 /* Start should never be at or before end. */
667 if (start_byte <= ceiling_byte)
668 start_byte = ceiling_byte + 1;
669
670 /* Now the text before start is an unknown region, and
671 next_change is the position of the next known region. */
672 ceiling_byte = max (next_change, ceiling_byte);
673 }
674
675 /* Stop scanning before the gap. */
676 tem = BUFFER_FLOOR_OF (start_byte - 1);
677 ceiling_byte = max (tem, ceiling_byte);
678
679 {
680 /* The termination address of the dumb loop. */
681 register unsigned char *ceiling_addr = BYTE_POS_ADDR (ceiling_byte);
682 register unsigned char *cursor = BYTE_POS_ADDR (start_byte - 1);
683 unsigned char *base = cursor;
684
685 while (cursor >= ceiling_addr)
686 {
687 unsigned char *scan_start = cursor;
688
689 while (*cursor != target && --cursor >= ceiling_addr)
690 ;
691
692 /* If we're looking for newlines, cache the fact that
693 the region from after the cursor to start is free of them. */
694 if (target == '\n' && newline_cache)
695 know_region_cache (current_buffer, newline_cache,
696 start_byte + cursor - base,
697 start_byte + scan_start - base);
698
699 /* Did we find the target character? */
700 if (cursor >= ceiling_addr)
701 {
702 if (++count >= 0)
703 {
704 immediate_quit = 0;
705 return BYTE_TO_CHAR (start_byte + cursor - base);
706 }
707 cursor--;
708 }
709 }
710
711 start = BYTE_TO_CHAR (start_byte + cursor - base);
712 }
713 }
714
715 immediate_quit = 0;
716 if (shortage != 0)
717 *shortage = count * direction;
718 return start;
719 }
720 \f
721 /* Search for COUNT instances of a line boundary, which means either a
722 newline or (if selective display enabled) a carriage return.
723 Start at START. If COUNT is negative, search backwards.
724
725 We report the resulting position by calling TEMP_SET_PT_BOTH.
726
727 If we find COUNT instances. we position after (always after,
728 even if scanning backwards) the COUNTth match, and return 0.
729
730 If we don't find COUNT instances before reaching the end of the
731 buffer (or the beginning, if scanning backwards), we return
732 the number of line boundaries left unfound, and position at
733 the limit we bumped up against.
734
735 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
736 except in special cases. */
737
738 int
739 scan_newline (start, start_byte, limit, limit_byte, count, allow_quit)
740 int start, start_byte;
741 int limit, limit_byte;
742 register int count;
743 int allow_quit;
744 {
745 int direction = ((count > 0) ? 1 : -1);
746
747 register unsigned char *cursor;
748 unsigned char *base;
749
750 register int ceiling;
751 register unsigned char *ceiling_addr;
752
753 int old_immediate_quit = immediate_quit;
754
755 /* The code that follows is like scan_buffer
756 but checks for either newline or carriage return. */
757
758 if (allow_quit)
759 immediate_quit++;
760
761 start_byte = CHAR_TO_BYTE (start);
762
763 if (count > 0)
764 {
765 while (start_byte < limit_byte)
766 {
767 ceiling = BUFFER_CEILING_OF (start_byte);
768 ceiling = min (limit_byte - 1, ceiling);
769 ceiling_addr = BYTE_POS_ADDR (ceiling) + 1;
770 base = (cursor = BYTE_POS_ADDR (start_byte));
771 while (1)
772 {
773 while (*cursor != '\n' && ++cursor != ceiling_addr)
774 ;
775
776 if (cursor != ceiling_addr)
777 {
778 if (--count == 0)
779 {
780 immediate_quit = old_immediate_quit;
781 start_byte = start_byte + cursor - base + 1;
782 start = BYTE_TO_CHAR (start_byte);
783 TEMP_SET_PT_BOTH (start, start_byte);
784 return 0;
785 }
786 else
787 if (++cursor == ceiling_addr)
788 break;
789 }
790 else
791 break;
792 }
793 start_byte += cursor - base;
794 }
795 }
796 else
797 {
798 while (start_byte > limit_byte)
799 {
800 ceiling = BUFFER_FLOOR_OF (start_byte - 1);
801 ceiling = max (limit_byte, ceiling);
802 ceiling_addr = BYTE_POS_ADDR (ceiling) - 1;
803 base = (cursor = BYTE_POS_ADDR (start_byte - 1) + 1);
804 while (1)
805 {
806 while (--cursor != ceiling_addr && *cursor != '\n')
807 ;
808
809 if (cursor != ceiling_addr)
810 {
811 if (++count == 0)
812 {
813 immediate_quit = old_immediate_quit;
814 /* Return the position AFTER the match we found. */
815 start_byte = start_byte + cursor - base + 1;
816 start = BYTE_TO_CHAR (start_byte);
817 TEMP_SET_PT_BOTH (start, start_byte);
818 return 0;
819 }
820 }
821 else
822 break;
823 }
824 /* Here we add 1 to compensate for the last decrement
825 of CURSOR, which took it past the valid range. */
826 start_byte += cursor - base + 1;
827 }
828 }
829
830 TEMP_SET_PT_BOTH (limit, limit_byte);
831 immediate_quit = old_immediate_quit;
832
833 return count * direction;
834 }
835
836 int
837 find_next_newline_no_quit (from, cnt)
838 register int from, cnt;
839 {
840 return scan_buffer ('\n', from, 0, cnt, (int *) 0, 0);
841 }
842
843 /* Like find_next_newline, but returns position before the newline,
844 not after, and only search up to TO. This isn't just
845 find_next_newline (...)-1, because you might hit TO. */
846
847 int
848 find_before_next_newline (from, to, cnt)
849 int from, to, cnt;
850 {
851 int shortage;
852 int pos = scan_buffer ('\n', from, to, cnt, &shortage, 1);
853
854 if (shortage == 0)
855 pos--;
856
857 return pos;
858 }
859 \f
860 /* Subroutines of Lisp buffer search functions. */
861
862 static Lisp_Object
863 search_command (string, bound, noerror, count, direction, RE, posix)
864 Lisp_Object string, bound, noerror, count;
865 int direction;
866 int RE;
867 int posix;
868 {
869 register int np;
870 int lim, lim_byte;
871 int n = direction;
872
873 if (!NILP (count))
874 {
875 CHECK_NUMBER (count);
876 n *= XINT (count);
877 }
878
879 CHECK_STRING (string);
880 if (NILP (bound))
881 {
882 if (n > 0)
883 lim = ZV, lim_byte = ZV_BYTE;
884 else
885 lim = BEGV, lim_byte = BEGV_BYTE;
886 }
887 else
888 {
889 CHECK_NUMBER_COERCE_MARKER (bound);
890 lim = XINT (bound);
891 if (n > 0 ? lim < PT : lim > PT)
892 error ("Invalid search bound (wrong side of point)");
893 if (lim > ZV)
894 lim = ZV, lim_byte = ZV_BYTE;
895 else if (lim < BEGV)
896 lim = BEGV, lim_byte = BEGV_BYTE;
897 else
898 lim_byte = CHAR_TO_BYTE (lim);
899 }
900
901 np = search_buffer (string, PT, PT_BYTE, lim, lim_byte, n, RE,
902 (!NILP (current_buffer->case_fold_search)
903 ? current_buffer->case_canon_table
904 : Qnil),
905 (!NILP (current_buffer->case_fold_search)
906 ? current_buffer->case_eqv_table
907 : Qnil),
908 posix);
909 if (np <= 0)
910 {
911 if (NILP (noerror))
912 return signal_failure (string);
913 if (!EQ (noerror, Qt))
914 {
915 if (lim < BEGV || lim > ZV)
916 abort ();
917 SET_PT_BOTH (lim, lim_byte);
918 return Qnil;
919 #if 0 /* This would be clean, but maybe programs depend on
920 a value of nil here. */
921 np = lim;
922 #endif
923 }
924 else
925 return Qnil;
926 }
927
928 if (np < BEGV || np > ZV)
929 abort ();
930
931 SET_PT (np);
932
933 return make_number (np);
934 }
935 \f
936 /* Return 1 if REGEXP it matches just one constant string. */
937
938 static int
939 trivial_regexp_p (regexp)
940 Lisp_Object regexp;
941 {
942 int len = STRING_BYTES (XSTRING (regexp));
943 unsigned char *s = XSTRING (regexp)->data;
944 while (--len >= 0)
945 {
946 switch (*s++)
947 {
948 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
949 return 0;
950 case '\\':
951 if (--len < 0)
952 return 0;
953 switch (*s++)
954 {
955 case '|': case '(': case ')': case '`': case '\'': case 'b':
956 case 'B': case '<': case '>': case 'w': case 'W': case 's':
957 case 'S': case '=': case '{': case '}':
958 case 'c': case 'C': /* for categoryspec and notcategoryspec */
959 case '1': case '2': case '3': case '4': case '5':
960 case '6': case '7': case '8': case '9':
961 return 0;
962 }
963 }
964 }
965 return 1;
966 }
967
968 /* Search for the n'th occurrence of STRING in the current buffer,
969 starting at position POS and stopping at position LIM,
970 treating STRING as a literal string if RE is false or as
971 a regular expression if RE is true.
972
973 If N is positive, searching is forward and LIM must be greater than POS.
974 If N is negative, searching is backward and LIM must be less than POS.
975
976 Returns -x if x occurrences remain to be found (x > 0),
977 or else the position at the beginning of the Nth occurrence
978 (if searching backward) or the end (if searching forward).
979
980 POSIX is nonzero if we want full backtracking (POSIX style)
981 for this pattern. 0 means backtrack only enough to get a valid match. */
982
983 #define TRANSLATE(out, trt, d) \
984 do \
985 { \
986 if (! NILP (trt)) \
987 { \
988 Lisp_Object temp; \
989 temp = Faref (trt, make_number (d)); \
990 if (INTEGERP (temp)) \
991 out = XINT (temp); \
992 else \
993 out = d; \
994 } \
995 else \
996 out = d; \
997 } \
998 while (0)
999
1000 static int
1001 search_buffer (string, pos, pos_byte, lim, lim_byte, n,
1002 RE, trt, inverse_trt, posix)
1003 Lisp_Object string;
1004 int pos;
1005 int pos_byte;
1006 int lim;
1007 int lim_byte;
1008 int n;
1009 int RE;
1010 Lisp_Object trt;
1011 Lisp_Object inverse_trt;
1012 int posix;
1013 {
1014 int len = XSTRING (string)->size;
1015 int len_byte = STRING_BYTES (XSTRING (string));
1016 register int i;
1017
1018 if (running_asynch_code)
1019 save_search_regs ();
1020
1021 /* Searching 0 times means don't move. */
1022 /* Null string is found at starting position. */
1023 if (len == 0 || n == 0)
1024 {
1025 set_search_regs (pos_byte, 0);
1026 return pos;
1027 }
1028
1029 if (RE && !trivial_regexp_p (string))
1030 {
1031 unsigned char *p1, *p2;
1032 int s1, s2;
1033 struct re_pattern_buffer *bufp;
1034
1035 bufp = compile_pattern (string, &search_regs, trt, posix,
1036 !NILP (current_buffer->enable_multibyte_characters));
1037
1038 immediate_quit = 1; /* Quit immediately if user types ^G,
1039 because letting this function finish
1040 can take too long. */
1041 QUIT; /* Do a pending quit right away,
1042 to avoid paradoxical behavior */
1043 /* Get pointers and sizes of the two strings
1044 that make up the visible portion of the buffer. */
1045
1046 p1 = BEGV_ADDR;
1047 s1 = GPT_BYTE - BEGV_BYTE;
1048 p2 = GAP_END_ADDR;
1049 s2 = ZV_BYTE - GPT_BYTE;
1050 if (s1 < 0)
1051 {
1052 p2 = p1;
1053 s2 = ZV_BYTE - BEGV_BYTE;
1054 s1 = 0;
1055 }
1056 if (s2 < 0)
1057 {
1058 s1 = ZV_BYTE - BEGV_BYTE;
1059 s2 = 0;
1060 }
1061 re_match_object = Qnil;
1062
1063 while (n < 0)
1064 {
1065 int val;
1066 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1067 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1068 &search_regs,
1069 /* Don't allow match past current point */
1070 pos_byte - BEGV_BYTE);
1071 if (val == -2)
1072 {
1073 matcher_overflow ();
1074 }
1075 if (val >= 0)
1076 {
1077 pos_byte = search_regs.start[0] + BEGV_BYTE;
1078 for (i = 0; i < search_regs.num_regs; i++)
1079 if (search_regs.start[i] >= 0)
1080 {
1081 search_regs.start[i]
1082 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1083 search_regs.end[i]
1084 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1085 }
1086 XSETBUFFER (last_thing_searched, current_buffer);
1087 /* Set pos to the new position. */
1088 pos = search_regs.start[0];
1089 }
1090 else
1091 {
1092 immediate_quit = 0;
1093 return (n);
1094 }
1095 n++;
1096 }
1097 while (n > 0)
1098 {
1099 int val;
1100 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1101 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1102 &search_regs,
1103 lim_byte - BEGV_BYTE);
1104 if (val == -2)
1105 {
1106 matcher_overflow ();
1107 }
1108 if (val >= 0)
1109 {
1110 pos_byte = search_regs.end[0] + BEGV_BYTE;
1111 for (i = 0; i < search_regs.num_regs; i++)
1112 if (search_regs.start[i] >= 0)
1113 {
1114 search_regs.start[i]
1115 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1116 search_regs.end[i]
1117 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1118 }
1119 XSETBUFFER (last_thing_searched, current_buffer);
1120 pos = search_regs.end[0];
1121 }
1122 else
1123 {
1124 immediate_quit = 0;
1125 return (0 - n);
1126 }
1127 n--;
1128 }
1129 immediate_quit = 0;
1130 return (pos);
1131 }
1132 else /* non-RE case */
1133 {
1134 unsigned char *raw_pattern, *pat;
1135 int raw_pattern_size;
1136 int raw_pattern_size_byte;
1137 unsigned char *patbuf;
1138 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
1139 unsigned char *base_pat = XSTRING (string)->data;
1140 int charset_base = -1;
1141 int boyer_moore_ok = 1;
1142
1143 /* MULTIBYTE says whether the text to be searched is multibyte.
1144 We must convert PATTERN to match that, or we will not really
1145 find things right. */
1146
1147 if (multibyte == STRING_MULTIBYTE (string))
1148 {
1149 raw_pattern = (unsigned char *) XSTRING (string)->data;
1150 raw_pattern_size = XSTRING (string)->size;
1151 raw_pattern_size_byte = STRING_BYTES (XSTRING (string));
1152 }
1153 else if (multibyte)
1154 {
1155 raw_pattern_size = XSTRING (string)->size;
1156 raw_pattern_size_byte
1157 = count_size_as_multibyte (XSTRING (string)->data,
1158 raw_pattern_size);
1159 raw_pattern = (unsigned char *) alloca (raw_pattern_size_byte + 1);
1160 copy_text (XSTRING (string)->data, raw_pattern,
1161 XSTRING (string)->size, 0, 1);
1162 }
1163 else
1164 {
1165 /* Converting multibyte to single-byte.
1166
1167 ??? Perhaps this conversion should be done in a special way
1168 by subtracting nonascii-insert-offset from each non-ASCII char,
1169 so that only the multibyte chars which really correspond to
1170 the chosen single-byte character set can possibly match. */
1171 raw_pattern_size = XSTRING (string)->size;
1172 raw_pattern_size_byte = XSTRING (string)->size;
1173 raw_pattern = (unsigned char *) alloca (raw_pattern_size + 1);
1174 copy_text (XSTRING (string)->data, raw_pattern,
1175 STRING_BYTES (XSTRING (string)), 1, 0);
1176 }
1177
1178 /* Copy and optionally translate the pattern. */
1179 len = raw_pattern_size;
1180 len_byte = raw_pattern_size_byte;
1181 patbuf = (unsigned char *) alloca (len_byte);
1182 pat = patbuf;
1183 base_pat = raw_pattern;
1184 if (multibyte)
1185 {
1186 while (--len >= 0)
1187 {
1188 unsigned char str[MAX_MULTIBYTE_LENGTH];
1189 int c, translated, inverse;
1190 int in_charlen, charlen;
1191
1192 /* If we got here and the RE flag is set, it's because we're
1193 dealing with a regexp known to be trivial, so the backslash
1194 just quotes the next character. */
1195 if (RE && *base_pat == '\\')
1196 {
1197 len--;
1198 len_byte--;
1199 base_pat++;
1200 }
1201
1202 c = STRING_CHAR_AND_LENGTH (base_pat, len_byte, in_charlen);
1203
1204 /* Translate the character, if requested. */
1205 TRANSLATE (translated, trt, c);
1206 /* If translation changed the byte-length, go back
1207 to the original character. */
1208 charlen = CHAR_STRING (translated, str);
1209 if (in_charlen != charlen)
1210 {
1211 translated = c;
1212 charlen = CHAR_STRING (c, str);
1213 }
1214
1215 /* If we are searching for something strange,
1216 an invalid multibyte code, don't use boyer-moore. */
1217 if (! ASCII_BYTE_P (translated)
1218 && (charlen == 1 /* 8bit code */
1219 || charlen != in_charlen /* invalid multibyte code */
1220 ))
1221 boyer_moore_ok = 0;
1222
1223 TRANSLATE (inverse, inverse_trt, c);
1224
1225 /* Did this char actually get translated?
1226 Would any other char get translated into it? */
1227 if (translated != c || inverse != c)
1228 {
1229 /* Keep track of which character set row
1230 contains the characters that need translation. */
1231 int charset_base_code = c & ~CHAR_FIELD3_MASK;
1232 if (charset_base == -1)
1233 charset_base = charset_base_code;
1234 else if (charset_base != charset_base_code)
1235 /* If two different rows appear, needing translation,
1236 then we cannot use boyer_moore search. */
1237 boyer_moore_ok = 0;
1238 }
1239
1240 /* Store this character into the translated pattern. */
1241 bcopy (str, pat, charlen);
1242 pat += charlen;
1243 base_pat += in_charlen;
1244 len_byte -= in_charlen;
1245 }
1246 }
1247 else
1248 {
1249 /* Unibyte buffer. */
1250 charset_base = 0;
1251 while (--len >= 0)
1252 {
1253 int c, translated;
1254
1255 /* If we got here and the RE flag is set, it's because we're
1256 dealing with a regexp known to be trivial, so the backslash
1257 just quotes the next character. */
1258 if (RE && *base_pat == '\\')
1259 {
1260 len--;
1261 base_pat++;
1262 }
1263 c = *base_pat++;
1264 TRANSLATE (translated, trt, c);
1265 *pat++ = translated;
1266 }
1267 }
1268
1269 len_byte = pat - patbuf;
1270 len = raw_pattern_size;
1271 pat = base_pat = patbuf;
1272
1273 if (boyer_moore_ok)
1274 return boyer_moore (n, pat, len, len_byte, trt, inverse_trt,
1275 pos, pos_byte, lim, lim_byte,
1276 charset_base);
1277 else
1278 return simple_search (n, pat, len, len_byte, trt,
1279 pos, pos_byte, lim, lim_byte);
1280 }
1281 }
1282 \f
1283 /* Do a simple string search N times for the string PAT,
1284 whose length is LEN/LEN_BYTE,
1285 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1286 TRT is the translation table.
1287
1288 Return the character position where the match is found.
1289 Otherwise, if M matches remained to be found, return -M.
1290
1291 This kind of search works regardless of what is in PAT and
1292 regardless of what is in TRT. It is used in cases where
1293 boyer_moore cannot work. */
1294
1295 static int
1296 simple_search (n, pat, len, len_byte, trt, pos, pos_byte, lim, lim_byte)
1297 int n;
1298 unsigned char *pat;
1299 int len, len_byte;
1300 Lisp_Object trt;
1301 int pos, pos_byte;
1302 int lim, lim_byte;
1303 {
1304 int multibyte = ! NILP (current_buffer->enable_multibyte_characters);
1305 int forward = n > 0;
1306
1307 if (lim > pos && multibyte)
1308 while (n > 0)
1309 {
1310 while (1)
1311 {
1312 /* Try matching at position POS. */
1313 int this_pos = pos;
1314 int this_pos_byte = pos_byte;
1315 int this_len = len;
1316 int this_len_byte = len_byte;
1317 unsigned char *p = pat;
1318 if (pos + len > lim)
1319 goto stop;
1320
1321 while (this_len > 0)
1322 {
1323 int charlen, buf_charlen;
1324 int pat_ch, buf_ch;
1325
1326 pat_ch = STRING_CHAR_AND_LENGTH (p, this_len_byte, charlen);
1327 buf_ch = STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte),
1328 ZV_BYTE - this_pos_byte,
1329 buf_charlen);
1330 TRANSLATE (buf_ch, trt, buf_ch);
1331
1332 if (buf_ch != pat_ch)
1333 break;
1334
1335 this_len_byte -= charlen;
1336 this_len--;
1337 p += charlen;
1338
1339 this_pos_byte += buf_charlen;
1340 this_pos++;
1341 }
1342
1343 if (this_len == 0)
1344 {
1345 pos += len;
1346 pos_byte += len_byte;
1347 break;
1348 }
1349
1350 INC_BOTH (pos, pos_byte);
1351 }
1352
1353 n--;
1354 }
1355 else if (lim > pos)
1356 while (n > 0)
1357 {
1358 while (1)
1359 {
1360 /* Try matching at position POS. */
1361 int this_pos = pos;
1362 int this_len = len;
1363 unsigned char *p = pat;
1364
1365 if (pos + len > lim)
1366 goto stop;
1367
1368 while (this_len > 0)
1369 {
1370 int pat_ch = *p++;
1371 int buf_ch = FETCH_BYTE (this_pos);
1372 TRANSLATE (buf_ch, trt, buf_ch);
1373
1374 if (buf_ch != pat_ch)
1375 break;
1376
1377 this_len--;
1378 this_pos++;
1379 }
1380
1381 if (this_len == 0)
1382 {
1383 pos += len;
1384 break;
1385 }
1386
1387 pos++;
1388 }
1389
1390 n--;
1391 }
1392 /* Backwards search. */
1393 else if (lim < pos && multibyte)
1394 while (n < 0)
1395 {
1396 while (1)
1397 {
1398 /* Try matching at position POS. */
1399 int this_pos = pos - len;
1400 int this_pos_byte = pos_byte - len_byte;
1401 int this_len = len;
1402 int this_len_byte = len_byte;
1403 unsigned char *p = pat;
1404
1405 if (pos - len < lim)
1406 goto stop;
1407
1408 while (this_len > 0)
1409 {
1410 int charlen, buf_charlen;
1411 int pat_ch, buf_ch;
1412
1413 pat_ch = STRING_CHAR_AND_LENGTH (p, this_len_byte, charlen);
1414 buf_ch = STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte),
1415 ZV_BYTE - this_pos_byte,
1416 buf_charlen);
1417 TRANSLATE (buf_ch, trt, buf_ch);
1418
1419 if (buf_ch != pat_ch)
1420 break;
1421
1422 this_len_byte -= charlen;
1423 this_len--;
1424 p += charlen;
1425 this_pos_byte += buf_charlen;
1426 this_pos++;
1427 }
1428
1429 if (this_len == 0)
1430 {
1431 pos -= len;
1432 pos_byte -= len_byte;
1433 break;
1434 }
1435
1436 DEC_BOTH (pos, pos_byte);
1437 }
1438
1439 n++;
1440 }
1441 else if (lim < pos)
1442 while (n < 0)
1443 {
1444 while (1)
1445 {
1446 /* Try matching at position POS. */
1447 int this_pos = pos - len;
1448 int this_len = len;
1449 unsigned char *p = pat;
1450
1451 if (pos - len < lim)
1452 goto stop;
1453
1454 while (this_len > 0)
1455 {
1456 int pat_ch = *p++;
1457 int buf_ch = FETCH_BYTE (this_pos);
1458 TRANSLATE (buf_ch, trt, buf_ch);
1459
1460 if (buf_ch != pat_ch)
1461 break;
1462 this_len--;
1463 this_pos++;
1464 }
1465
1466 if (this_len == 0)
1467 {
1468 pos -= len;
1469 break;
1470 }
1471
1472 pos--;
1473 }
1474
1475 n++;
1476 }
1477
1478 stop:
1479 if (n == 0)
1480 {
1481 if (forward)
1482 set_search_regs ((multibyte ? pos_byte : pos) - len_byte, len_byte);
1483 else
1484 set_search_regs (multibyte ? pos_byte : pos, len_byte);
1485
1486 return pos;
1487 }
1488 else if (n > 0)
1489 return -n;
1490 else
1491 return n;
1492 }
1493 \f
1494 /* Do Boyer-Moore search N times for the string PAT,
1495 whose length is LEN/LEN_BYTE,
1496 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1497 DIRECTION says which direction we search in.
1498 TRT and INVERSE_TRT are translation tables.
1499
1500 This kind of search works if all the characters in PAT that have
1501 nontrivial translation are the same aside from the last byte. This
1502 makes it possible to translate just the last byte of a character,
1503 and do so after just a simple test of the context.
1504
1505 If that criterion is not satisfied, do not call this function. */
1506
1507 static int
1508 boyer_moore (n, base_pat, len, len_byte, trt, inverse_trt,
1509 pos, pos_byte, lim, lim_byte, charset_base)
1510 int n;
1511 unsigned char *base_pat;
1512 int len, len_byte;
1513 Lisp_Object trt;
1514 Lisp_Object inverse_trt;
1515 int pos, pos_byte;
1516 int lim, lim_byte;
1517 int charset_base;
1518 {
1519 int direction = ((n > 0) ? 1 : -1);
1520 register int dirlen;
1521 int infinity, limit, stride_for_teases = 0;
1522 register int *BM_tab;
1523 int *BM_tab_base;
1524 register unsigned char *cursor, *p_limit;
1525 register int i, j;
1526 unsigned char *pat, *pat_end;
1527 int multibyte = ! NILP (current_buffer->enable_multibyte_characters);
1528
1529 unsigned char simple_translate[0400];
1530 int translate_prev_byte = 0;
1531 int translate_anteprev_byte = 0;
1532
1533 #ifdef C_ALLOCA
1534 int BM_tab_space[0400];
1535 BM_tab = &BM_tab_space[0];
1536 #else
1537 BM_tab = (int *) alloca (0400 * sizeof (int));
1538 #endif
1539 /* The general approach is that we are going to maintain that we know */
1540 /* the first (closest to the present position, in whatever direction */
1541 /* we're searching) character that could possibly be the last */
1542 /* (furthest from present position) character of a valid match. We */
1543 /* advance the state of our knowledge by looking at that character */
1544 /* and seeing whether it indeed matches the last character of the */
1545 /* pattern. If it does, we take a closer look. If it does not, we */
1546 /* move our pointer (to putative last characters) as far as is */
1547 /* logically possible. This amount of movement, which I call a */
1548 /* stride, will be the length of the pattern if the actual character */
1549 /* appears nowhere in the pattern, otherwise it will be the distance */
1550 /* from the last occurrence of that character to the end of the */
1551 /* pattern. */
1552 /* As a coding trick, an enormous stride is coded into the table for */
1553 /* characters that match the last character. This allows use of only */
1554 /* a single test, a test for having gone past the end of the */
1555 /* permissible match region, to test for both possible matches (when */
1556 /* the stride goes past the end immediately) and failure to */
1557 /* match (where you get nudged past the end one stride at a time). */
1558
1559 /* Here we make a "mickey mouse" BM table. The stride of the search */
1560 /* is determined only by the last character of the putative match. */
1561 /* If that character does not match, we will stride the proper */
1562 /* distance to propose a match that superimposes it on the last */
1563 /* instance of a character that matches it (per trt), or misses */
1564 /* it entirely if there is none. */
1565
1566 dirlen = len_byte * direction;
1567 infinity = dirlen - (lim_byte + pos_byte + len_byte + len_byte) * direction;
1568
1569 /* Record position after the end of the pattern. */
1570 pat_end = base_pat + len_byte;
1571 /* BASE_PAT points to a character that we start scanning from.
1572 It is the first character in a forward search,
1573 the last character in a backward search. */
1574 if (direction < 0)
1575 base_pat = pat_end - 1;
1576
1577 BM_tab_base = BM_tab;
1578 BM_tab += 0400;
1579 j = dirlen; /* to get it in a register */
1580 /* A character that does not appear in the pattern induces a */
1581 /* stride equal to the pattern length. */
1582 while (BM_tab_base != BM_tab)
1583 {
1584 *--BM_tab = j;
1585 *--BM_tab = j;
1586 *--BM_tab = j;
1587 *--BM_tab = j;
1588 }
1589
1590 /* We use this for translation, instead of TRT itself.
1591 We fill this in to handle the characters that actually
1592 occur in the pattern. Others don't matter anyway! */
1593 bzero (simple_translate, sizeof simple_translate);
1594 for (i = 0; i < 0400; i++)
1595 simple_translate[i] = i;
1596
1597 i = 0;
1598 while (i != infinity)
1599 {
1600 unsigned char *ptr = base_pat + i;
1601 i += direction;
1602 if (i == dirlen)
1603 i = infinity;
1604 if (! NILP (trt))
1605 {
1606 int ch;
1607 int untranslated;
1608 int this_translated = 1;
1609
1610 if (multibyte
1611 /* Is *PTR the last byte of a character? */
1612 && (pat_end - ptr == 1 || CHAR_HEAD_P (ptr[1])))
1613 {
1614 unsigned char *charstart = ptr;
1615 while (! CHAR_HEAD_P (*charstart))
1616 charstart--;
1617 untranslated = STRING_CHAR (charstart, ptr - charstart + 1);
1618 if (charset_base == (untranslated & ~CHAR_FIELD3_MASK))
1619 {
1620 TRANSLATE (ch, trt, untranslated);
1621 if (! CHAR_HEAD_P (*ptr))
1622 {
1623 translate_prev_byte = ptr[-1];
1624 if (! CHAR_HEAD_P (translate_prev_byte))
1625 translate_anteprev_byte = ptr[-2];
1626 }
1627 }
1628 else
1629 {
1630 this_translated = 0;
1631 ch = *ptr;
1632 }
1633 }
1634 else if (!multibyte)
1635 TRANSLATE (ch, trt, *ptr);
1636 else
1637 {
1638 ch = *ptr;
1639 this_translated = 0;
1640 }
1641
1642 if (ch > 0400)
1643 j = ((unsigned char) ch) | 0200;
1644 else
1645 j = (unsigned char) ch;
1646
1647 if (i == infinity)
1648 stride_for_teases = BM_tab[j];
1649
1650 BM_tab[j] = dirlen - i;
1651 /* A translation table is accompanied by its inverse -- see */
1652 /* comment following downcase_table for details */
1653 if (this_translated)
1654 {
1655 int starting_ch = ch;
1656 int starting_j = j;
1657 while (1)
1658 {
1659 TRANSLATE (ch, inverse_trt, ch);
1660 if (ch > 0400)
1661 j = ((unsigned char) ch) | 0200;
1662 else
1663 j = (unsigned char) ch;
1664
1665 /* For all the characters that map into CH,
1666 set up simple_translate to map the last byte
1667 into STARTING_J. */
1668 simple_translate[j] = starting_j;
1669 if (ch == starting_ch)
1670 break;
1671 BM_tab[j] = dirlen - i;
1672 }
1673 }
1674 }
1675 else
1676 {
1677 j = *ptr;
1678
1679 if (i == infinity)
1680 stride_for_teases = BM_tab[j];
1681 BM_tab[j] = dirlen - i;
1682 }
1683 /* stride_for_teases tells how much to stride if we get a */
1684 /* match on the far character but are subsequently */
1685 /* disappointed, by recording what the stride would have been */
1686 /* for that character if the last character had been */
1687 /* different. */
1688 }
1689 infinity = dirlen - infinity;
1690 pos_byte += dirlen - ((direction > 0) ? direction : 0);
1691 /* loop invariant - POS_BYTE points at where last char (first
1692 char if reverse) of pattern would align in a possible match. */
1693 while (n != 0)
1694 {
1695 int tail_end;
1696 unsigned char *tail_end_ptr;
1697
1698 /* It's been reported that some (broken) compiler thinks that
1699 Boolean expressions in an arithmetic context are unsigned.
1700 Using an explicit ?1:0 prevents this. */
1701 if ((lim_byte - pos_byte - ((direction > 0) ? 1 : 0)) * direction
1702 < 0)
1703 return (n * (0 - direction));
1704 /* First we do the part we can by pointers (maybe nothing) */
1705 QUIT;
1706 pat = base_pat;
1707 limit = pos_byte - dirlen + direction;
1708 if (direction > 0)
1709 {
1710 limit = BUFFER_CEILING_OF (limit);
1711 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1712 can take on without hitting edge of buffer or the gap. */
1713 limit = min (limit, pos_byte + 20000);
1714 limit = min (limit, lim_byte - 1);
1715 }
1716 else
1717 {
1718 limit = BUFFER_FLOOR_OF (limit);
1719 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1720 can take on without hitting edge of buffer or the gap. */
1721 limit = max (limit, pos_byte - 20000);
1722 limit = max (limit, lim_byte);
1723 }
1724 tail_end = BUFFER_CEILING_OF (pos_byte) + 1;
1725 tail_end_ptr = BYTE_POS_ADDR (tail_end);
1726
1727 if ((limit - pos_byte) * direction > 20)
1728 {
1729 unsigned char *p2;
1730
1731 p_limit = BYTE_POS_ADDR (limit);
1732 p2 = (cursor = BYTE_POS_ADDR (pos_byte));
1733 /* In this loop, pos + cursor - p2 is the surrogate for pos */
1734 while (1) /* use one cursor setting as long as i can */
1735 {
1736 if (direction > 0) /* worth duplicating */
1737 {
1738 /* Use signed comparison if appropriate
1739 to make cursor+infinity sure to be > p_limit.
1740 Assuming that the buffer lies in a range of addresses
1741 that are all "positive" (as ints) or all "negative",
1742 either kind of comparison will work as long
1743 as we don't step by infinity. So pick the kind
1744 that works when we do step by infinity. */
1745 if ((EMACS_INT) (p_limit + infinity) > (EMACS_INT) p_limit)
1746 while ((EMACS_INT) cursor <= (EMACS_INT) p_limit)
1747 cursor += BM_tab[*cursor];
1748 else
1749 while ((EMACS_UINT) cursor <= (EMACS_UINT) p_limit)
1750 cursor += BM_tab[*cursor];
1751 }
1752 else
1753 {
1754 if ((EMACS_INT) (p_limit + infinity) < (EMACS_INT) p_limit)
1755 while ((EMACS_INT) cursor >= (EMACS_INT) p_limit)
1756 cursor += BM_tab[*cursor];
1757 else
1758 while ((EMACS_UINT) cursor >= (EMACS_UINT) p_limit)
1759 cursor += BM_tab[*cursor];
1760 }
1761 /* If you are here, cursor is beyond the end of the searched region. */
1762 /* This can happen if you match on the far character of the pattern, */
1763 /* because the "stride" of that character is infinity, a number able */
1764 /* to throw you well beyond the end of the search. It can also */
1765 /* happen if you fail to match within the permitted region and would */
1766 /* otherwise try a character beyond that region */
1767 if ((cursor - p_limit) * direction <= len_byte)
1768 break; /* a small overrun is genuine */
1769 cursor -= infinity; /* large overrun = hit */
1770 i = dirlen - direction;
1771 if (! NILP (trt))
1772 {
1773 while ((i -= direction) + direction != 0)
1774 {
1775 int ch;
1776 cursor -= direction;
1777 /* Translate only the last byte of a character. */
1778 if (! multibyte
1779 || ((cursor == tail_end_ptr
1780 || CHAR_HEAD_P (cursor[1]))
1781 && (CHAR_HEAD_P (cursor[0])
1782 || (translate_prev_byte == cursor[-1]
1783 && (CHAR_HEAD_P (translate_prev_byte)
1784 || translate_anteprev_byte == cursor[-2])))))
1785 ch = simple_translate[*cursor];
1786 else
1787 ch = *cursor;
1788 if (pat[i] != ch)
1789 break;
1790 }
1791 }
1792 else
1793 {
1794 while ((i -= direction) + direction != 0)
1795 {
1796 cursor -= direction;
1797 if (pat[i] != *cursor)
1798 break;
1799 }
1800 }
1801 cursor += dirlen - i - direction; /* fix cursor */
1802 if (i + direction == 0)
1803 {
1804 int position;
1805
1806 cursor -= direction;
1807
1808 position = pos_byte + cursor - p2 + ((direction > 0)
1809 ? 1 - len_byte : 0);
1810 set_search_regs (position, len_byte);
1811
1812 if ((n -= direction) != 0)
1813 cursor += dirlen; /* to resume search */
1814 else
1815 return ((direction > 0)
1816 ? search_regs.end[0] : search_regs.start[0]);
1817 }
1818 else
1819 cursor += stride_for_teases; /* <sigh> we lose - */
1820 }
1821 pos_byte += cursor - p2;
1822 }
1823 else
1824 /* Now we'll pick up a clump that has to be done the hard */
1825 /* way because it covers a discontinuity */
1826 {
1827 limit = ((direction > 0)
1828 ? BUFFER_CEILING_OF (pos_byte - dirlen + 1)
1829 : BUFFER_FLOOR_OF (pos_byte - dirlen - 1));
1830 limit = ((direction > 0)
1831 ? min (limit + len_byte, lim_byte - 1)
1832 : max (limit - len_byte, lim_byte));
1833 /* LIMIT is now the last value POS_BYTE can have
1834 and still be valid for a possible match. */
1835 while (1)
1836 {
1837 /* This loop can be coded for space rather than */
1838 /* speed because it will usually run only once. */
1839 /* (the reach is at most len + 21, and typically */
1840 /* does not exceed len) */
1841 while ((limit - pos_byte) * direction >= 0)
1842 pos_byte += BM_tab[FETCH_BYTE (pos_byte)];
1843 /* now run the same tests to distinguish going off the */
1844 /* end, a match or a phony match. */
1845 if ((pos_byte - limit) * direction <= len_byte)
1846 break; /* ran off the end */
1847 /* Found what might be a match.
1848 Set POS_BYTE back to last (first if reverse) pos. */
1849 pos_byte -= infinity;
1850 i = dirlen - direction;
1851 while ((i -= direction) + direction != 0)
1852 {
1853 int ch;
1854 unsigned char *ptr;
1855 pos_byte -= direction;
1856 ptr = BYTE_POS_ADDR (pos_byte);
1857 /* Translate only the last byte of a character. */
1858 if (! multibyte
1859 || ((ptr == tail_end_ptr
1860 || CHAR_HEAD_P (ptr[1]))
1861 && (CHAR_HEAD_P (ptr[0])
1862 || (translate_prev_byte == ptr[-1]
1863 && (CHAR_HEAD_P (translate_prev_byte)
1864 || translate_anteprev_byte == ptr[-2])))))
1865 ch = simple_translate[*ptr];
1866 else
1867 ch = *ptr;
1868 if (pat[i] != ch)
1869 break;
1870 }
1871 /* Above loop has moved POS_BYTE part or all the way
1872 back to the first pos (last pos if reverse).
1873 Set it once again at the last (first if reverse) char. */
1874 pos_byte += dirlen - i- direction;
1875 if (i + direction == 0)
1876 {
1877 int position;
1878 pos_byte -= direction;
1879
1880 position = pos_byte + ((direction > 0) ? 1 - len_byte : 0);
1881
1882 set_search_regs (position, len_byte);
1883
1884 if ((n -= direction) != 0)
1885 pos_byte += dirlen; /* to resume search */
1886 else
1887 return ((direction > 0)
1888 ? search_regs.end[0] : search_regs.start[0]);
1889 }
1890 else
1891 pos_byte += stride_for_teases;
1892 }
1893 }
1894 /* We have done one clump. Can we continue? */
1895 if ((lim_byte - pos_byte) * direction < 0)
1896 return ((0 - n) * direction);
1897 }
1898 return BYTE_TO_CHAR (pos_byte);
1899 }
1900
1901 /* Record beginning BEG_BYTE and end BEG_BYTE + NBYTES
1902 for the overall match just found in the current buffer.
1903 Also clear out the match data for registers 1 and up. */
1904
1905 static void
1906 set_search_regs (beg_byte, nbytes)
1907 int beg_byte, nbytes;
1908 {
1909 int i;
1910
1911 /* Make sure we have registers in which to store
1912 the match position. */
1913 if (search_regs.num_regs == 0)
1914 {
1915 search_regs.start = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
1916 search_regs.end = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
1917 search_regs.num_regs = 2;
1918 }
1919
1920 /* Clear out the other registers. */
1921 for (i = 1; i < search_regs.num_regs; i++)
1922 {
1923 search_regs.start[i] = -1;
1924 search_regs.end[i] = -1;
1925 }
1926
1927 search_regs.start[0] = BYTE_TO_CHAR (beg_byte);
1928 search_regs.end[0] = BYTE_TO_CHAR (beg_byte + nbytes);
1929 XSETBUFFER (last_thing_searched, current_buffer);
1930 }
1931 \f
1932 /* Given a string of words separated by word delimiters,
1933 compute a regexp that matches those exact words
1934 separated by arbitrary punctuation. */
1935
1936 static Lisp_Object
1937 wordify (string)
1938 Lisp_Object string;
1939 {
1940 register unsigned char *p, *o;
1941 register int i, i_byte, len, punct_count = 0, word_count = 0;
1942 Lisp_Object val;
1943 int prev_c = 0;
1944 int adjust;
1945
1946 CHECK_STRING (string);
1947 p = XSTRING (string)->data;
1948 len = XSTRING (string)->size;
1949
1950 for (i = 0, i_byte = 0; i < len; )
1951 {
1952 int c;
1953
1954 FETCH_STRING_CHAR_ADVANCE (c, string, i, i_byte);
1955
1956 if (SYNTAX (c) != Sword)
1957 {
1958 punct_count++;
1959 if (i > 0 && SYNTAX (prev_c) == Sword)
1960 word_count++;
1961 }
1962
1963 prev_c = c;
1964 }
1965
1966 if (SYNTAX (prev_c) == Sword)
1967 word_count++;
1968 if (!word_count)
1969 return empty_string;
1970
1971 adjust = - punct_count + 5 * (word_count - 1) + 4;
1972 if (STRING_MULTIBYTE (string))
1973 val = make_uninit_multibyte_string (len + adjust,
1974 STRING_BYTES (XSTRING (string))
1975 + adjust);
1976 else
1977 val = make_uninit_string (len + adjust);
1978
1979 o = XSTRING (val)->data;
1980 *o++ = '\\';
1981 *o++ = 'b';
1982 prev_c = 0;
1983
1984 for (i = 0, i_byte = 0; i < len; )
1985 {
1986 int c;
1987 int i_byte_orig = i_byte;
1988
1989 FETCH_STRING_CHAR_ADVANCE (c, string, i, i_byte);
1990
1991 if (SYNTAX (c) == Sword)
1992 {
1993 bcopy (&XSTRING (string)->data[i_byte_orig], o,
1994 i_byte - i_byte_orig);
1995 o += i_byte - i_byte_orig;
1996 }
1997 else if (i > 0 && SYNTAX (prev_c) == Sword && --word_count)
1998 {
1999 *o++ = '\\';
2000 *o++ = 'W';
2001 *o++ = '\\';
2002 *o++ = 'W';
2003 *o++ = '*';
2004 }
2005
2006 prev_c = c;
2007 }
2008
2009 *o++ = '\\';
2010 *o++ = 'b';
2011
2012 return val;
2013 }
2014 \f
2015 DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
2016 "MSearch backward: ",
2017 doc: /* Search backward from point for STRING.
2018 Set point to the beginning of the occurrence found, and return point.
2019 An optional second argument bounds the search; it is a buffer position.
2020 The match found must not extend before that position.
2021 Optional third argument, if t, means if fail just return nil (no error).
2022 If not nil and not t, position at limit of search and return nil.
2023 Optional fourth argument is repeat count--search for successive occurrences.
2024
2025 Search case-sensitivity is determined by the value of the variable
2026 `case-fold-search', which see.
2027
2028 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2029 (string, bound, noerror, count)
2030 Lisp_Object string, bound, noerror, count;
2031 {
2032 return search_command (string, bound, noerror, count, -1, 0, 0);
2033 }
2034
2035 DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "MSearch: ",
2036 doc: /* Search forward from point for STRING.
2037 Set point to the end of the occurrence found, and return point.
2038 An optional second argument bounds the search; it is a buffer position.
2039 The match found must not extend after that position. nil is equivalent
2040 to (point-max).
2041 Optional third argument, if t, means if fail just return nil (no error).
2042 If not nil and not t, move to limit of search and return nil.
2043 Optional fourth argument is repeat count--search for successive occurrences.
2044
2045 Search case-sensitivity is determined by the value of the variable
2046 `case-fold-search', which see.
2047
2048 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2049 (string, bound, noerror, count)
2050 Lisp_Object string, bound, noerror, count;
2051 {
2052 return search_command (string, bound, noerror, count, 1, 0, 0);
2053 }
2054
2055 DEFUN ("word-search-backward", Fword_search_backward, Sword_search_backward, 1, 4,
2056 "sWord search backward: ",
2057 doc: /* Search backward from point for STRING, ignoring differences in punctuation.
2058 Set point to the beginning of the occurrence found, and return point.
2059 An optional second argument bounds the search; it is a buffer position.
2060 The match found must not extend before that position.
2061 Optional third argument, if t, means if fail just return nil (no error).
2062 If not nil and not t, move to limit of search and return nil.
2063 Optional fourth argument is repeat count--search for successive occurrences. */)
2064 (string, bound, noerror, count)
2065 Lisp_Object string, bound, noerror, count;
2066 {
2067 return search_command (wordify (string), bound, noerror, count, -1, 1, 0);
2068 }
2069
2070 DEFUN ("word-search-forward", Fword_search_forward, Sword_search_forward, 1, 4,
2071 "sWord search: ",
2072 doc: /* Search forward from point for STRING, ignoring differences in punctuation.
2073 Set point to the end of the occurrence found, and return point.
2074 An optional second argument bounds the search; it is a buffer position.
2075 The match found must not extend after that position.
2076 Optional third argument, if t, means if fail just return nil (no error).
2077 If not nil and not t, move to limit of search and return nil.
2078 Optional fourth argument is repeat count--search for successive occurrences. */)
2079 (string, bound, noerror, count)
2080 Lisp_Object string, bound, noerror, count;
2081 {
2082 return search_command (wordify (string), bound, noerror, count, 1, 1, 0);
2083 }
2084
2085 DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
2086 "sRE search backward: ",
2087 doc: /* Search backward from point for match for regular expression REGEXP.
2088 Set point to the beginning of the match, and return point.
2089 The match found is the one starting last in the buffer
2090 and yet ending before the origin of the search.
2091 An optional second argument bounds the search; it is a buffer position.
2092 The match found must start at or after that position.
2093 Optional third argument, if t, means if fail just return nil (no error).
2094 If not nil and not t, move to limit of search and return nil.
2095 Optional fourth argument is repeat count--search for successive occurrences.
2096 See also the functions `match-beginning', `match-end', `match-string',
2097 and `replace-match'. */)
2098 (regexp, bound, noerror, count)
2099 Lisp_Object regexp, bound, noerror, count;
2100 {
2101 return search_command (regexp, bound, noerror, count, -1, 1, 0);
2102 }
2103
2104 DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
2105 "sRE search: ",
2106 doc: /* Search forward from point for regular expression REGEXP.
2107 Set point to the end of the occurrence found, and return point.
2108 An optional second argument bounds the search; it is a buffer position.
2109 The match found must not extend after that position.
2110 Optional third argument, if t, means if fail just return nil (no error).
2111 If not nil and not t, move to limit of search and return nil.
2112 Optional fourth argument is repeat count--search for successive occurrences.
2113 See also the functions `match-beginning', `match-end', `match-string',
2114 and `replace-match'. */)
2115 (regexp, bound, noerror, count)
2116 Lisp_Object regexp, bound, noerror, count;
2117 {
2118 return search_command (regexp, bound, noerror, count, 1, 1, 0);
2119 }
2120
2121 DEFUN ("posix-search-backward", Fposix_search_backward, Sposix_search_backward, 1, 4,
2122 "sPosix search backward: ",
2123 doc: /* Search backward from point for match for regular expression REGEXP.
2124 Find the longest match in accord with Posix regular expression rules.
2125 Set point to the beginning of the match, and return point.
2126 The match found is the one starting last in the buffer
2127 and yet ending before the origin of the search.
2128 An optional second argument bounds the search; it is a buffer position.
2129 The match found must start at or after that position.
2130 Optional third argument, if t, means if fail just return nil (no error).
2131 If not nil and not t, move to limit of search and return nil.
2132 Optional fourth argument is repeat count--search for successive occurrences.
2133 See also the functions `match-beginning', `match-end', `match-string',
2134 and `replace-match'. */)
2135 (regexp, bound, noerror, count)
2136 Lisp_Object regexp, bound, noerror, count;
2137 {
2138 return search_command (regexp, bound, noerror, count, -1, 1, 1);
2139 }
2140
2141 DEFUN ("posix-search-forward", Fposix_search_forward, Sposix_search_forward, 1, 4,
2142 "sPosix search: ",
2143 doc: /* Search forward from point for regular expression REGEXP.
2144 Find the longest match in accord with Posix regular expression rules.
2145 Set point to the end of the occurrence found, and return point.
2146 An optional second argument bounds the search; it is a buffer position.
2147 The match found must not extend after that position.
2148 Optional third argument, if t, means if fail just return nil (no error).
2149 If not nil and not t, move to limit of search and return nil.
2150 Optional fourth argument is repeat count--search for successive occurrences.
2151 See also the functions `match-beginning', `match-end', `match-string',
2152 and `replace-match'. */)
2153 (regexp, bound, noerror, count)
2154 Lisp_Object regexp, bound, noerror, count;
2155 {
2156 return search_command (regexp, bound, noerror, count, 1, 1, 1);
2157 }
2158 \f
2159 DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 5, 0,
2160 doc: /* Replace text matched by last search with NEWTEXT.
2161 If second arg FIXEDCASE is non-nil, do not alter case of replacement text.
2162 Otherwise maybe capitalize the whole text, or maybe just word initials,
2163 based on the replaced text.
2164 If the replaced text has only capital letters
2165 and has at least one multiletter word, convert NEWTEXT to all caps.
2166 If the replaced text has at least one word starting with a capital letter,
2167 then capitalize each word in NEWTEXT.
2168
2169 If third arg LITERAL is non-nil, insert NEWTEXT literally.
2170 Otherwise treat `\\' as special:
2171 `\\&' in NEWTEXT means substitute original matched text.
2172 `\\N' means substitute what matched the Nth `\\(...\\)'.
2173 If Nth parens didn't match, substitute nothing.
2174 `\\\\' means insert one `\\'.
2175 FIXEDCASE and LITERAL are optional arguments.
2176 Leaves point at end of replacement text.
2177
2178 The optional fourth argument STRING can be a string to modify.
2179 This is meaningful when the previous match was done against STRING,
2180 using `string-match'. When used this way, `replace-match'
2181 creates and returns a new string made by copying STRING and replacing
2182 the part of STRING that was matched.
2183
2184 The optional fifth argument SUBEXP specifies a subexpression;
2185 it says to replace just that subexpression with NEWTEXT,
2186 rather than replacing the entire matched text.
2187 This is, in a vague sense, the inverse of using `\\N' in NEWTEXT;
2188 `\\N' copies subexp N into NEWTEXT, but using N as SUBEXP puts
2189 NEWTEXT in place of subexp N.
2190 This is useful only after a regular expression search or match,
2191 since only regular expressions have distinguished subexpressions. */)
2192 (newtext, fixedcase, literal, string, subexp)
2193 Lisp_Object newtext, fixedcase, literal, string, subexp;
2194 {
2195 enum { nochange, all_caps, cap_initial } case_action;
2196 register int pos, pos_byte;
2197 int some_multiletter_word;
2198 int some_lowercase;
2199 int some_uppercase;
2200 int some_nonuppercase_initial;
2201 register int c, prevc;
2202 int sub;
2203 int opoint, newpoint;
2204
2205 CHECK_STRING (newtext);
2206
2207 if (! NILP (string))
2208 CHECK_STRING (string);
2209
2210 case_action = nochange; /* We tried an initialization */
2211 /* but some C compilers blew it */
2212
2213 if (search_regs.num_regs <= 0)
2214 error ("replace-match called before any match found");
2215
2216 if (NILP (subexp))
2217 sub = 0;
2218 else
2219 {
2220 CHECK_NUMBER (subexp);
2221 sub = XINT (subexp);
2222 if (sub < 0 || sub >= search_regs.num_regs)
2223 args_out_of_range (subexp, make_number (search_regs.num_regs));
2224 }
2225
2226 if (NILP (string))
2227 {
2228 if (search_regs.start[sub] < BEGV
2229 || search_regs.start[sub] > search_regs.end[sub]
2230 || search_regs.end[sub] > ZV)
2231 args_out_of_range (make_number (search_regs.start[sub]),
2232 make_number (search_regs.end[sub]));
2233 }
2234 else
2235 {
2236 if (search_regs.start[sub] < 0
2237 || search_regs.start[sub] > search_regs.end[sub]
2238 || search_regs.end[sub] > XSTRING (string)->size)
2239 args_out_of_range (make_number (search_regs.start[sub]),
2240 make_number (search_regs.end[sub]));
2241 }
2242
2243 if (NILP (fixedcase))
2244 {
2245 /* Decide how to casify by examining the matched text. */
2246 int last;
2247
2248 pos = search_regs.start[sub];
2249 last = search_regs.end[sub];
2250
2251 if (NILP (string))
2252 pos_byte = CHAR_TO_BYTE (pos);
2253 else
2254 pos_byte = string_char_to_byte (string, pos);
2255
2256 prevc = '\n';
2257 case_action = all_caps;
2258
2259 /* some_multiletter_word is set nonzero if any original word
2260 is more than one letter long. */
2261 some_multiletter_word = 0;
2262 some_lowercase = 0;
2263 some_nonuppercase_initial = 0;
2264 some_uppercase = 0;
2265
2266 while (pos < last)
2267 {
2268 if (NILP (string))
2269 {
2270 c = FETCH_CHAR (pos_byte);
2271 INC_BOTH (pos, pos_byte);
2272 }
2273 else
2274 FETCH_STRING_CHAR_ADVANCE (c, string, pos, pos_byte);
2275
2276 if (LOWERCASEP (c))
2277 {
2278 /* Cannot be all caps if any original char is lower case */
2279
2280 some_lowercase = 1;
2281 if (SYNTAX (prevc) != Sword)
2282 some_nonuppercase_initial = 1;
2283 else
2284 some_multiletter_word = 1;
2285 }
2286 else if (!NOCASEP (c))
2287 {
2288 some_uppercase = 1;
2289 if (SYNTAX (prevc) != Sword)
2290 ;
2291 else
2292 some_multiletter_word = 1;
2293 }
2294 else
2295 {
2296 /* If the initial is a caseless word constituent,
2297 treat that like a lowercase initial. */
2298 if (SYNTAX (prevc) != Sword)
2299 some_nonuppercase_initial = 1;
2300 }
2301
2302 prevc = c;
2303 }
2304
2305 /* Convert to all caps if the old text is all caps
2306 and has at least one multiletter word. */
2307 if (! some_lowercase && some_multiletter_word)
2308 case_action = all_caps;
2309 /* Capitalize each word, if the old text has all capitalized words. */
2310 else if (!some_nonuppercase_initial && some_multiletter_word)
2311 case_action = cap_initial;
2312 else if (!some_nonuppercase_initial && some_uppercase)
2313 /* Should x -> yz, operating on X, give Yz or YZ?
2314 We'll assume the latter. */
2315 case_action = all_caps;
2316 else
2317 case_action = nochange;
2318 }
2319
2320 /* Do replacement in a string. */
2321 if (!NILP (string))
2322 {
2323 Lisp_Object before, after;
2324
2325 before = Fsubstring (string, make_number (0),
2326 make_number (search_regs.start[sub]));
2327 after = Fsubstring (string, make_number (search_regs.end[sub]), Qnil);
2328
2329 /* Substitute parts of the match into NEWTEXT
2330 if desired. */
2331 if (NILP (literal))
2332 {
2333 int lastpos = 0;
2334 int lastpos_byte = 0;
2335 /* We build up the substituted string in ACCUM. */
2336 Lisp_Object accum;
2337 Lisp_Object middle;
2338 int length = STRING_BYTES (XSTRING (newtext));
2339
2340 accum = Qnil;
2341
2342 for (pos_byte = 0, pos = 0; pos_byte < length;)
2343 {
2344 int substart = -1;
2345 int subend = 0;
2346 int delbackslash = 0;
2347
2348 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2349
2350 if (c == '\\')
2351 {
2352 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2353
2354 if (c == '&')
2355 {
2356 substart = search_regs.start[sub];
2357 subend = search_regs.end[sub];
2358 }
2359 else if (c >= '1' && c <= '9' && c <= search_regs.num_regs + '0')
2360 {
2361 if (search_regs.start[c - '0'] >= 0)
2362 {
2363 substart = search_regs.start[c - '0'];
2364 subend = search_regs.end[c - '0'];
2365 }
2366 }
2367 else if (c == '\\')
2368 delbackslash = 1;
2369 else
2370 error ("Invalid use of `\\' in replacement text");
2371 }
2372 if (substart >= 0)
2373 {
2374 if (pos - 2 != lastpos)
2375 middle = substring_both (newtext, lastpos,
2376 lastpos_byte,
2377 pos - 2, pos_byte - 2);
2378 else
2379 middle = Qnil;
2380 accum = concat3 (accum, middle,
2381 Fsubstring (string,
2382 make_number (substart),
2383 make_number (subend)));
2384 lastpos = pos;
2385 lastpos_byte = pos_byte;
2386 }
2387 else if (delbackslash)
2388 {
2389 middle = substring_both (newtext, lastpos,
2390 lastpos_byte,
2391 pos - 1, pos_byte - 1);
2392
2393 accum = concat2 (accum, middle);
2394 lastpos = pos;
2395 lastpos_byte = pos_byte;
2396 }
2397 }
2398
2399 if (pos != lastpos)
2400 middle = substring_both (newtext, lastpos,
2401 lastpos_byte,
2402 pos, pos_byte);
2403 else
2404 middle = Qnil;
2405
2406 newtext = concat2 (accum, middle);
2407 }
2408
2409 /* Do case substitution in NEWTEXT if desired. */
2410 if (case_action == all_caps)
2411 newtext = Fupcase (newtext);
2412 else if (case_action == cap_initial)
2413 newtext = Fupcase_initials (newtext);
2414
2415 return concat3 (before, newtext, after);
2416 }
2417
2418 /* Record point, then move (quietly) to the start of the match. */
2419 if (PT >= search_regs.end[sub])
2420 opoint = PT - ZV;
2421 else if (PT > search_regs.start[sub])
2422 opoint = search_regs.end[sub] - ZV;
2423 else
2424 opoint = PT;
2425
2426 /* If we want non-literal replacement,
2427 perform substitution on the replacement string. */
2428 if (NILP (literal))
2429 {
2430 int length = STRING_BYTES (XSTRING (newtext));
2431 unsigned char *substed;
2432 int substed_alloc_size, substed_len;
2433 int buf_multibyte = !NILP (current_buffer->enable_multibyte_characters);
2434 int str_multibyte = STRING_MULTIBYTE (newtext);
2435 Lisp_Object rev_tbl;
2436 int really_changed = 0;
2437
2438 rev_tbl= (!buf_multibyte && CHAR_TABLE_P (Vnonascii_translation_table)
2439 ? Fchar_table_extra_slot (Vnonascii_translation_table,
2440 make_number (0))
2441 : Qnil);
2442
2443 substed_alloc_size = length * 2 + 100;
2444 substed = (unsigned char *) xmalloc (substed_alloc_size + 1);
2445 substed_len = 0;
2446
2447 /* Go thru NEWTEXT, producing the actual text to insert in
2448 SUBSTED while adjusting multibyteness to that of the current
2449 buffer. */
2450
2451 for (pos_byte = 0, pos = 0; pos_byte < length;)
2452 {
2453 unsigned char str[MAX_MULTIBYTE_LENGTH];
2454 unsigned char *add_stuff = NULL;
2455 int add_len = 0;
2456 int idx = -1;
2457
2458 if (str_multibyte)
2459 {
2460 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext, pos, pos_byte);
2461 if (!buf_multibyte)
2462 c = multibyte_char_to_unibyte (c, rev_tbl);
2463 }
2464 else
2465 {
2466 /* Note that we don't have to increment POS. */
2467 c = XSTRING (newtext)->data[pos_byte++];
2468 if (buf_multibyte)
2469 c = unibyte_char_to_multibyte (c);
2470 }
2471
2472 /* Either set ADD_STUFF and ADD_LEN to the text to put in SUBSTED,
2473 or set IDX to a match index, which means put that part
2474 of the buffer text into SUBSTED. */
2475
2476 if (c == '\\')
2477 {
2478 really_changed = 1;
2479
2480 if (str_multibyte)
2481 {
2482 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext,
2483 pos, pos_byte);
2484 if (!buf_multibyte && !SINGLE_BYTE_CHAR_P (c))
2485 c = multibyte_char_to_unibyte (c, rev_tbl);
2486 }
2487 else
2488 {
2489 c = XSTRING (newtext)->data[pos_byte++];
2490 if (buf_multibyte)
2491 c = unibyte_char_to_multibyte (c);
2492 }
2493
2494 if (c == '&')
2495 idx = sub;
2496 else if (c >= '1' && c <= '9' && c <= search_regs.num_regs + '0')
2497 {
2498 if (search_regs.start[c - '0'] >= 1)
2499 idx = c - '0';
2500 }
2501 else if (c == '\\')
2502 add_len = 1, add_stuff = "\\";
2503 else
2504 {
2505 xfree (substed);
2506 error ("Invalid use of `\\' in replacement text");
2507 }
2508 }
2509 else
2510 {
2511 add_len = CHAR_STRING (c, str);
2512 add_stuff = str;
2513 }
2514
2515 /* If we want to copy part of a previous match,
2516 set up ADD_STUFF and ADD_LEN to point to it. */
2517 if (idx >= 0)
2518 {
2519 int begbyte = CHAR_TO_BYTE (search_regs.start[idx]);
2520 add_len = CHAR_TO_BYTE (search_regs.end[idx]) - begbyte;
2521 if (search_regs.start[idx] < GPT && GPT < search_regs.end[idx])
2522 move_gap (search_regs.start[idx]);
2523 add_stuff = BYTE_POS_ADDR (begbyte);
2524 }
2525
2526 /* Now the stuff we want to add to SUBSTED
2527 is invariably ADD_LEN bytes starting at ADD_STUFF. */
2528
2529 /* Make sure SUBSTED is big enough. */
2530 if (substed_len + add_len >= substed_alloc_size)
2531 {
2532 substed_alloc_size = substed_len + add_len + 500;
2533 substed = (unsigned char *) xrealloc (substed,
2534 substed_alloc_size + 1);
2535 }
2536
2537 /* Now add to the end of SUBSTED. */
2538 if (add_stuff)
2539 {
2540 bcopy (add_stuff, substed + substed_len, add_len);
2541 substed_len += add_len;
2542 }
2543 }
2544
2545 if (really_changed)
2546 newtext = make_string (substed, substed_len);
2547
2548 xfree (substed);
2549 }
2550
2551 /* Replace the old text with the new in the cleanest possible way. */
2552 replace_range (search_regs.start[sub], search_regs.end[sub],
2553 newtext, 1, 0, 1);
2554 newpoint = search_regs.start[sub] + XSTRING (newtext)->size;
2555
2556 if (case_action == all_caps)
2557 Fupcase_region (make_number (search_regs.start[sub]),
2558 make_number (newpoint));
2559 else if (case_action == cap_initial)
2560 Fupcase_initials_region (make_number (search_regs.start[sub]),
2561 make_number (newpoint));
2562
2563 /* Put point back where it was in the text. */
2564 if (opoint <= 0)
2565 TEMP_SET_PT (opoint + ZV);
2566 else
2567 TEMP_SET_PT (opoint);
2568
2569 /* Now move point "officially" to the start of the inserted replacement. */
2570 move_if_not_intangible (newpoint);
2571
2572 return Qnil;
2573 }
2574 \f
2575 static Lisp_Object
2576 match_limit (num, beginningp)
2577 Lisp_Object num;
2578 int beginningp;
2579 {
2580 register int n;
2581
2582 CHECK_NUMBER (num);
2583 n = XINT (num);
2584 if (n < 0 || n >= search_regs.num_regs)
2585 args_out_of_range (num, make_number (search_regs.num_regs));
2586 if (search_regs.num_regs <= 0
2587 || search_regs.start[n] < 0)
2588 return Qnil;
2589 return (make_number ((beginningp) ? search_regs.start[n]
2590 : search_regs.end[n]));
2591 }
2592
2593 DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
2594 doc: /* Return position of start of text matched by last search.
2595 SUBEXP, a number, specifies which parenthesized expression in the last
2596 regexp.
2597 Value is nil if SUBEXPth pair didn't match, or there were less than
2598 SUBEXP pairs.
2599 Zero means the entire text matched by the whole regexp or whole string. */)
2600 (subexp)
2601 Lisp_Object subexp;
2602 {
2603 return match_limit (subexp, 1);
2604 }
2605
2606 DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
2607 doc: /* Return position of end of text matched by last search.
2608 SUBEXP, a number, specifies which parenthesized expression in the last
2609 regexp.
2610 Value is nil if SUBEXPth pair didn't match, or there were less than
2611 SUBEXP pairs.
2612 Zero means the entire text matched by the whole regexp or whole string. */)
2613 (subexp)
2614 Lisp_Object subexp;
2615 {
2616 return match_limit (subexp, 0);
2617 }
2618
2619 DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 2, 0,
2620 doc: /* Return a list containing all info on what the last search matched.
2621 Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.
2622 All the elements are markers or nil (nil if the Nth pair didn't match)
2623 if the last match was on a buffer; integers or nil if a string was matched.
2624 Use `store-match-data' to reinstate the data in this list.
2625
2626 If INTEGERS (the optional first argument) is non-nil, always use integers
2627 \(rather than markers) to represent buffer positions.
2628 If REUSE is a list, reuse it as part of the value. If REUSE is long enough
2629 to hold all the values, and if INTEGERS is non-nil, no consing is done. */)
2630 (integers, reuse)
2631 Lisp_Object integers, reuse;
2632 {
2633 Lisp_Object tail, prev;
2634 Lisp_Object *data;
2635 int i, len;
2636
2637 if (NILP (last_thing_searched))
2638 return Qnil;
2639
2640 prev = Qnil;
2641
2642 data = (Lisp_Object *) alloca ((2 * search_regs.num_regs)
2643 * sizeof (Lisp_Object));
2644
2645 len = -1;
2646 for (i = 0; i < search_regs.num_regs; i++)
2647 {
2648 int start = search_regs.start[i];
2649 if (start >= 0)
2650 {
2651 if (EQ (last_thing_searched, Qt)
2652 || ! NILP (integers))
2653 {
2654 XSETFASTINT (data[2 * i], start);
2655 XSETFASTINT (data[2 * i + 1], search_regs.end[i]);
2656 }
2657 else if (BUFFERP (last_thing_searched))
2658 {
2659 data[2 * i] = Fmake_marker ();
2660 Fset_marker (data[2 * i],
2661 make_number (start),
2662 last_thing_searched);
2663 data[2 * i + 1] = Fmake_marker ();
2664 Fset_marker (data[2 * i + 1],
2665 make_number (search_regs.end[i]),
2666 last_thing_searched);
2667 }
2668 else
2669 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
2670 abort ();
2671
2672 len = i;
2673 }
2674 else
2675 data[2 * i] = data [2 * i + 1] = Qnil;
2676 }
2677
2678 /* If REUSE is not usable, cons up the values and return them. */
2679 if (! CONSP (reuse))
2680 return Flist (2 * len + 2, data);
2681
2682 /* If REUSE is a list, store as many value elements as will fit
2683 into the elements of REUSE. */
2684 for (i = 0, tail = reuse; CONSP (tail);
2685 i++, tail = XCDR (tail))
2686 {
2687 if (i < 2 * len + 2)
2688 XSETCAR (tail, data[i]);
2689 else
2690 XSETCAR (tail, Qnil);
2691 prev = tail;
2692 }
2693
2694 /* If we couldn't fit all value elements into REUSE,
2695 cons up the rest of them and add them to the end of REUSE. */
2696 if (i < 2 * len + 2)
2697 XSETCDR (prev, Flist (2 * len + 2 - i, data + i));
2698
2699 return reuse;
2700 }
2701
2702
2703 DEFUN ("set-match-data", Fset_match_data, Sset_match_data, 1, 1, 0,
2704 doc: /* Set internal data on last search match from elements of LIST.
2705 LIST should have been created by calling `match-data' previously. */)
2706 (list)
2707 register Lisp_Object list;
2708 {
2709 register int i;
2710 register Lisp_Object marker;
2711
2712 if (running_asynch_code)
2713 save_search_regs ();
2714
2715 if (!CONSP (list) && !NILP (list))
2716 list = wrong_type_argument (Qconsp, list);
2717
2718 /* Unless we find a marker with a buffer in LIST, assume that this
2719 match data came from a string. */
2720 last_thing_searched = Qt;
2721
2722 /* Allocate registers if they don't already exist. */
2723 {
2724 int length = XFASTINT (Flength (list)) / 2;
2725
2726 if (length > search_regs.num_regs)
2727 {
2728 if (search_regs.num_regs == 0)
2729 {
2730 search_regs.start
2731 = (regoff_t *) xmalloc (length * sizeof (regoff_t));
2732 search_regs.end
2733 = (regoff_t *) xmalloc (length * sizeof (regoff_t));
2734 }
2735 else
2736 {
2737 search_regs.start
2738 = (regoff_t *) xrealloc (search_regs.start,
2739 length * sizeof (regoff_t));
2740 search_regs.end
2741 = (regoff_t *) xrealloc (search_regs.end,
2742 length * sizeof (regoff_t));
2743 }
2744
2745 for (i = search_regs.num_regs; i < length; i++)
2746 search_regs.start[i] = -1;
2747
2748 search_regs.num_regs = length;
2749 }
2750 }
2751
2752 for (i = 0; i < search_regs.num_regs; i++)
2753 {
2754 marker = Fcar (list);
2755 if (NILP (marker))
2756 {
2757 search_regs.start[i] = -1;
2758 list = Fcdr (list);
2759 }
2760 else
2761 {
2762 int from;
2763
2764 if (MARKERP (marker))
2765 {
2766 if (XMARKER (marker)->buffer == 0)
2767 XSETFASTINT (marker, 0);
2768 else
2769 XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
2770 }
2771
2772 CHECK_NUMBER_COERCE_MARKER (marker);
2773 from = XINT (marker);
2774 list = Fcdr (list);
2775
2776 marker = Fcar (list);
2777 if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
2778 XSETFASTINT (marker, 0);
2779
2780 CHECK_NUMBER_COERCE_MARKER (marker);
2781 search_regs.start[i] = from;
2782 search_regs.end[i] = XINT (marker);
2783 }
2784 list = Fcdr (list);
2785 }
2786
2787 return Qnil;
2788 }
2789
2790 /* If non-zero the match data have been saved in saved_search_regs
2791 during the execution of a sentinel or filter. */
2792 static int search_regs_saved;
2793 static struct re_registers saved_search_regs;
2794
2795 /* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
2796 if asynchronous code (filter or sentinel) is running. */
2797 static void
2798 save_search_regs ()
2799 {
2800 if (!search_regs_saved)
2801 {
2802 saved_search_regs.num_regs = search_regs.num_regs;
2803 saved_search_regs.start = search_regs.start;
2804 saved_search_regs.end = search_regs.end;
2805 search_regs.num_regs = 0;
2806 search_regs.start = 0;
2807 search_regs.end = 0;
2808
2809 search_regs_saved = 1;
2810 }
2811 }
2812
2813 /* Called upon exit from filters and sentinels. */
2814 void
2815 restore_match_data ()
2816 {
2817 if (search_regs_saved)
2818 {
2819 if (search_regs.num_regs > 0)
2820 {
2821 xfree (search_regs.start);
2822 xfree (search_regs.end);
2823 }
2824 search_regs.num_regs = saved_search_regs.num_regs;
2825 search_regs.start = saved_search_regs.start;
2826 search_regs.end = saved_search_regs.end;
2827
2828 search_regs_saved = 0;
2829 }
2830 }
2831
2832 /* Quote a string to inactivate reg-expr chars */
2833
2834 DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
2835 doc: /* Return a regexp string which matches exactly STRING and nothing else. */)
2836 (string)
2837 Lisp_Object string;
2838 {
2839 register unsigned char *in, *out, *end;
2840 register unsigned char *temp;
2841 int backslashes_added = 0;
2842
2843 CHECK_STRING (string);
2844
2845 temp = (unsigned char *) alloca (STRING_BYTES (XSTRING (string)) * 2);
2846
2847 /* Now copy the data into the new string, inserting escapes. */
2848
2849 in = XSTRING (string)->data;
2850 end = in + STRING_BYTES (XSTRING (string));
2851 out = temp;
2852
2853 for (; in != end; in++)
2854 {
2855 if (*in == '[' || *in == ']'
2856 || *in == '*' || *in == '.' || *in == '\\'
2857 || *in == '?' || *in == '+'
2858 || *in == '^' || *in == '$')
2859 *out++ = '\\', backslashes_added++;
2860 *out++ = *in;
2861 }
2862
2863 return make_specified_string (temp,
2864 XSTRING (string)->size + backslashes_added,
2865 out - temp,
2866 STRING_MULTIBYTE (string));
2867 }
2868 \f
2869 void
2870 syms_of_search ()
2871 {
2872 register int i;
2873
2874 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
2875 {
2876 searchbufs[i].buf.allocated = 100;
2877 searchbufs[i].buf.buffer = (unsigned char *) malloc (100);
2878 searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
2879 searchbufs[i].regexp = Qnil;
2880 staticpro (&searchbufs[i].regexp);
2881 searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
2882 }
2883 searchbuf_head = &searchbufs[0];
2884
2885 Qsearch_failed = intern ("search-failed");
2886 staticpro (&Qsearch_failed);
2887 Qinvalid_regexp = intern ("invalid-regexp");
2888 staticpro (&Qinvalid_regexp);
2889
2890 Fput (Qsearch_failed, Qerror_conditions,
2891 Fcons (Qsearch_failed, Fcons (Qerror, Qnil)));
2892 Fput (Qsearch_failed, Qerror_message,
2893 build_string ("Search failed"));
2894
2895 Fput (Qinvalid_regexp, Qerror_conditions,
2896 Fcons (Qinvalid_regexp, Fcons (Qerror, Qnil)));
2897 Fput (Qinvalid_regexp, Qerror_message,
2898 build_string ("Invalid regexp"));
2899
2900 last_thing_searched = Qnil;
2901 staticpro (&last_thing_searched);
2902
2903 defsubr (&Slooking_at);
2904 defsubr (&Sposix_looking_at);
2905 defsubr (&Sstring_match);
2906 defsubr (&Sposix_string_match);
2907 defsubr (&Ssearch_forward);
2908 defsubr (&Ssearch_backward);
2909 defsubr (&Sword_search_forward);
2910 defsubr (&Sword_search_backward);
2911 defsubr (&Sre_search_forward);
2912 defsubr (&Sre_search_backward);
2913 defsubr (&Sposix_search_forward);
2914 defsubr (&Sposix_search_backward);
2915 defsubr (&Sreplace_match);
2916 defsubr (&Smatch_beginning);
2917 defsubr (&Smatch_end);
2918 defsubr (&Smatch_data);
2919 defsubr (&Sset_match_data);
2920 defsubr (&Sregexp_quote);
2921 }