]> code.delx.au - gnu-emacs/blob - lisp/emacs-lisp/byte-opt.el
Merge from emacs--rel--22
[gnu-emacs] / lisp / emacs-lisp / byte-opt.el
1 ;;; byte-opt.el --- the optimization passes of the emacs-lisp byte compiler
2
3 ;; Copyright (C) 1991, 1994, 2000, 2001, 2002, 2003, 2004,
4 ;; 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
5
6 ;; Author: Jamie Zawinski <jwz@lucid.com>
7 ;; Hallvard Furuseth <hbf@ulrik.uio.no>
8 ;; Maintainer: FSF
9 ;; Keywords: internal
10
11 ;; This file is part of GNU Emacs.
12
13 ;; GNU Emacs is free software; you can redistribute it and/or modify
14 ;; it under the terms of the GNU General Public License as published by
15 ;; the Free Software Foundation; either version 3, or (at your option)
16 ;; any later version.
17
18 ;; GNU Emacs is distributed in the hope that it will be useful,
19 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
20 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 ;; GNU General Public License for more details.
22
23 ;; You should have received a copy of the GNU General Public License
24 ;; along with GNU Emacs; see the file COPYING. If not, write to the
25 ;; Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
26 ;; Boston, MA 02110-1301, USA.
27
28 ;;; Commentary:
29
30 ;; ========================================================================
31 ;; "No matter how hard you try, you can't make a racehorse out of a pig.
32 ;; You can, however, make a faster pig."
33 ;;
34 ;; Or, to put it another way, the Emacs byte compiler is a VW Bug. This code
35 ;; makes it be a VW Bug with fuel injection and a turbocharger... You're
36 ;; still not going to make it go faster than 70 mph, but it might be easier
37 ;; to get it there.
38 ;;
39
40 ;; TO DO:
41 ;;
42 ;; (apply (lambda (x &rest y) ...) 1 (foo))
43 ;;
44 ;; maintain a list of functions known not to access any global variables
45 ;; (actually, give them a 'dynamically-safe property) and then
46 ;; (let ( v1 v2 ... vM vN ) <...dynamically-safe...> ) ==>
47 ;; (let ( v1 v2 ... vM ) vN <...dynamically-safe...> )
48 ;; by recursing on this, we might be able to eliminate the entire let.
49 ;; However certain variables should never have their bindings optimized
50 ;; away, because they affect everything.
51 ;; (put 'debug-on-error 'binding-is-magic t)
52 ;; (put 'debug-on-abort 'binding-is-magic t)
53 ;; (put 'debug-on-next-call 'binding-is-magic t)
54 ;; (put 'inhibit-quit 'binding-is-magic t)
55 ;; (put 'quit-flag 'binding-is-magic t)
56 ;; (put 't 'binding-is-magic t)
57 ;; (put 'nil 'binding-is-magic t)
58 ;; possibly also
59 ;; (put 'gc-cons-threshold 'binding-is-magic t)
60 ;; (put 'track-mouse 'binding-is-magic t)
61 ;; others?
62 ;;
63 ;; Simple defsubsts often produce forms like
64 ;; (let ((v1 (f1)) (v2 (f2)) ...)
65 ;; (FN v1 v2 ...))
66 ;; It would be nice if we could optimize this to
67 ;; (FN (f1) (f2) ...)
68 ;; but we can't unless FN is dynamically-safe (it might be dynamically
69 ;; referring to the bindings that the lambda arglist established.)
70 ;; One of the uncountable lossages introduced by dynamic scope...
71 ;;
72 ;; Maybe there should be a control-structure that says "turn on
73 ;; fast-and-loose type-assumptive optimizations here." Then when
74 ;; we see a form like (car foo) we can from then on assume that
75 ;; the variable foo is of type cons, and optimize based on that.
76 ;; But, this won't win much because of (you guessed it) dynamic
77 ;; scope. Anything down the stack could change the value.
78 ;; (Another reason it doesn't work is that it is perfectly valid
79 ;; to call car with a null argument.) A better approach might
80 ;; be to allow type-specification of the form
81 ;; (put 'foo 'arg-types '(float (list integer) dynamic))
82 ;; (put 'foo 'result-type 'bool)
83 ;; It should be possible to have these types checked to a certain
84 ;; degree.
85 ;;
86 ;; collapse common subexpressions
87 ;;
88 ;; It would be nice if redundant sequences could be factored out as well,
89 ;; when they are known to have no side-effects:
90 ;; (list (+ a b c) (+ a b c)) --> a b add c add dup list-2
91 ;; but beware of traps like
92 ;; (cons (list x y) (list x y))
93 ;;
94 ;; Tail-recursion elimination is not really possible in Emacs Lisp.
95 ;; Tail-recursion elimination is almost always impossible when all variables
96 ;; have dynamic scope, but given that the "return" byteop requires the
97 ;; binding stack to be empty (rather than emptying it itself), there can be
98 ;; no truly tail-recursive Emacs Lisp functions that take any arguments or
99 ;; make any bindings.
100 ;;
101 ;; Here is an example of an Emacs Lisp function which could safely be
102 ;; byte-compiled tail-recursively:
103 ;;
104 ;; (defun tail-map (fn list)
105 ;; (cond (list
106 ;; (funcall fn (car list))
107 ;; (tail-map fn (cdr list)))))
108 ;;
109 ;; However, if there was even a single let-binding around the COND,
110 ;; it could not be byte-compiled, because there would be an "unbind"
111 ;; byte-op between the final "call" and "return." Adding a
112 ;; Bunbind_all byteop would fix this.
113 ;;
114 ;; (defun foo (x y z) ... (foo a b c))
115 ;; ... (const foo) (varref a) (varref b) (varref c) (call 3) END: (return)
116 ;; ... (varref a) (varbind x) (varref b) (varbind y) (varref c) (varbind z) (goto 0) END: (unbind-all) (return)
117 ;; ... (varref a) (varset x) (varref b) (varset y) (varref c) (varset z) (goto 0) END: (return)
118 ;;
119 ;; this also can be considered tail recursion:
120 ;;
121 ;; ... (const foo) (varref a) (call 1) (goto X) ... X: (return)
122 ;; could generalize this by doing the optimization
123 ;; (goto X) ... X: (return) --> (return)
124 ;;
125 ;; But this doesn't solve all of the problems: although by doing tail-
126 ;; recursion elimination in this way, the call-stack does not grow, the
127 ;; binding-stack would grow with each recursive step, and would eventually
128 ;; overflow. I don't believe there is any way around this without lexical
129 ;; scope.
130 ;;
131 ;; Wouldn't it be nice if Emacs Lisp had lexical scope.
132 ;;
133 ;; Idea: the form (lexical-scope) in a file means that the file may be
134 ;; compiled lexically. This proclamation is file-local. Then, within
135 ;; that file, "let" would establish lexical bindings, and "let-dynamic"
136 ;; would do things the old way. (Or we could use CL "declare" forms.)
137 ;; We'd have to notice defvars and defconsts, since those variables should
138 ;; always be dynamic, and attempting to do a lexical binding of them
139 ;; should simply do a dynamic binding instead.
140 ;; But! We need to know about variables that were not necessarily defvarred
141 ;; in the file being compiled (doing a boundp check isn't good enough.)
142 ;; Fdefvar() would have to be modified to add something to the plist.
143 ;;
144 ;; A major disadvantage of this scheme is that the interpreter and compiler
145 ;; would have different semantics for files compiled with (dynamic-scope).
146 ;; Since this would be a file-local optimization, there would be no way to
147 ;; modify the interpreter to obey this (unless the loader was hacked
148 ;; in some grody way, but that's a really bad idea.)
149
150 ;; Other things to consider:
151
152 ;; ;; Associative math should recognize subcalls to identical function:
153 ;; (disassemble (lambda (x) (+ (+ (foo) 1) (+ (bar) 2))))
154 ;; ;; This should generate the same as (1+ x) and (1- x)
155
156 ;; (disassemble (lambda (x) (cons (+ x 1) (- x 1))))
157 ;; ;; An awful lot of functions always return a non-nil value. If they're
158 ;; ;; error free also they may act as true-constants.
159
160 ;; (disassemble (lambda (x) (and (point) (foo))))
161 ;; ;; When
162 ;; ;; - all but one arguments to a function are constant
163 ;; ;; - the non-constant argument is an if-expression (cond-expression?)
164 ;; ;; then the outer function can be distributed. If the guarding
165 ;; ;; condition is side-effect-free [assignment-free] then the other
166 ;; ;; arguments may be any expressions. Since, however, the code size
167 ;; ;; can increase this way they should be "simple". Compare:
168
169 ;; (disassemble (lambda (x) (eq (if (point) 'a 'b) 'c)))
170 ;; (disassemble (lambda (x) (if (point) (eq 'a 'c) (eq 'b 'c))))
171
172 ;; ;; (car (cons A B)) -> (prog1 A B)
173 ;; (disassemble (lambda (x) (car (cons (foo) 42))))
174
175 ;; ;; (cdr (cons A B)) -> (progn A B)
176 ;; (disassemble (lambda (x) (cdr (cons 42 (foo)))))
177
178 ;; ;; (car (list A B ...)) -> (prog1 A B ...)
179 ;; (disassemble (lambda (x) (car (list (foo) 42 (bar)))))
180
181 ;; ;; (cdr (list A B ...)) -> (progn A (list B ...))
182 ;; (disassemble (lambda (x) (cdr (list 42 (foo) (bar)))))
183
184
185 ;;; Code:
186
187 (require 'bytecomp)
188 (eval-when-compile (require 'cl))
189
190 (defun byte-compile-log-lap-1 (format &rest args)
191 (if (aref byte-code-vector 0)
192 (error "The old version of the disassembler is loaded. Reload new-bytecomp as well"))
193 (byte-compile-log-1
194 (apply 'format format
195 (let (c a)
196 (mapcar (lambda (arg)
197 (if (not (consp arg))
198 (if (and (symbolp arg)
199 (string-match "^byte-" (symbol-name arg)))
200 (intern (substring (symbol-name arg) 5))
201 arg)
202 (if (integerp (setq c (car arg)))
203 (error "non-symbolic byte-op %s" c))
204 (if (eq c 'TAG)
205 (setq c arg)
206 (setq a (cond ((memq c byte-goto-ops)
207 (car (cdr (cdr arg))))
208 ((memq c byte-constref-ops)
209 (car (cdr arg)))
210 (t (cdr arg))))
211 (setq c (symbol-name c))
212 (if (string-match "^byte-." c)
213 (setq c (intern (substring c 5)))))
214 (if (eq c 'constant) (setq c 'const))
215 (if (and (eq (cdr arg) 0)
216 (not (memq c '(unbind call const))))
217 c
218 (format "(%s %s)" c a))))
219 args)))))
220
221 (defmacro byte-compile-log-lap (format-string &rest args)
222 `(and (memq byte-optimize-log '(t byte))
223 (byte-compile-log-lap-1 ,format-string ,@args)))
224
225 \f
226 ;;; byte-compile optimizers to support inlining
227
228 (put 'inline 'byte-optimizer 'byte-optimize-inline-handler)
229
230 (defun byte-optimize-inline-handler (form)
231 "byte-optimize-handler for the `inline' special-form."
232 (cons 'progn
233 (mapcar
234 (lambda (sexp)
235 (let ((f (car-safe sexp)))
236 (if (and (symbolp f)
237 (or (cdr (assq f byte-compile-function-environment))
238 (not (or (not (fboundp f))
239 (cdr (assq f byte-compile-macro-environment))
240 (and (consp (setq f (symbol-function f)))
241 (eq (car f) 'macro))
242 (subrp f)))))
243 (byte-compile-inline-expand sexp)
244 sexp)))
245 (cdr form))))
246
247
248 ;; Splice the given lap code into the current instruction stream.
249 ;; If it has any labels in it, you're responsible for making sure there
250 ;; are no collisions, and that byte-compile-tag-number is reasonable
251 ;; after this is spliced in. The provided list is destroyed.
252 (defun byte-inline-lapcode (lap)
253 (setq byte-compile-output (nconc (nreverse lap) byte-compile-output)))
254
255 (defun byte-compile-inline-expand (form)
256 (let* ((name (car form))
257 (fn (or (cdr (assq name byte-compile-function-environment))
258 (and (fboundp name) (symbol-function name)))))
259 (if (null fn)
260 (progn
261 (byte-compile-warn "attempt to inline `%s' before it was defined"
262 name)
263 form)
264 ;; else
265 (when (and (consp fn) (eq (car fn) 'autoload))
266 (load (nth 1 fn))
267 (setq fn (or (and (fboundp name) (symbol-function name))
268 (cdr (assq name byte-compile-function-environment)))))
269 (if (and (consp fn) (eq (car fn) 'autoload))
270 (error "File `%s' didn't define `%s'" (nth 1 fn) name))
271 (if (and (symbolp fn) (not (eq fn t)))
272 (byte-compile-inline-expand (cons fn (cdr form)))
273 (if (byte-code-function-p fn)
274 (let (string)
275 (fetch-bytecode fn)
276 (setq string (aref fn 1))
277 ;; Isn't it an error for `string' not to be unibyte?? --stef
278 (if (fboundp 'string-as-unibyte)
279 (setq string (string-as-unibyte string)))
280 ;; `byte-compile-splice-in-already-compiled-code'
281 ;; takes care of inlining the body.
282 (cons `(lambda ,(aref fn 0)
283 (byte-code ,string ,(aref fn 2) ,(aref fn 3)))
284 (cdr form)))
285 (if (eq (car-safe fn) 'lambda)
286 (cons fn (cdr form))
287 ;; Give up on inlining.
288 form))))))
289
290 ;; ((lambda ...) ...)
291 (defun byte-compile-unfold-lambda (form &optional name)
292 (or name (setq name "anonymous lambda"))
293 (let ((lambda (car form))
294 (values (cdr form)))
295 (if (byte-code-function-p lambda)
296 (setq lambda (list 'lambda (aref lambda 0)
297 (list 'byte-code (aref lambda 1)
298 (aref lambda 2) (aref lambda 3)))))
299 (let ((arglist (nth 1 lambda))
300 (body (cdr (cdr lambda)))
301 optionalp restp
302 bindings)
303 (if (and (stringp (car body)) (cdr body))
304 (setq body (cdr body)))
305 (if (and (consp (car body)) (eq 'interactive (car (car body))))
306 (setq body (cdr body)))
307 (while arglist
308 (cond ((eq (car arglist) '&optional)
309 ;; ok, I'll let this slide because funcall_lambda() does...
310 ;; (if optionalp (error "multiple &optional keywords in %s" name))
311 (if restp (error "&optional found after &rest in %s" name))
312 (if (null (cdr arglist))
313 (error "nothing after &optional in %s" name))
314 (setq optionalp t))
315 ((eq (car arglist) '&rest)
316 ;; ...but it is by no stretch of the imagination a reasonable
317 ;; thing that funcall_lambda() allows (&rest x y) and
318 ;; (&rest x &optional y) in arglists.
319 (if (null (cdr arglist))
320 (error "nothing after &rest in %s" name))
321 (if (cdr (cdr arglist))
322 (error "multiple vars after &rest in %s" name))
323 (setq restp t))
324 (restp
325 (setq bindings (cons (list (car arglist)
326 (and values (cons 'list values)))
327 bindings)
328 values nil))
329 ((and (not optionalp) (null values))
330 (byte-compile-warn "attempt to open-code `%s' with too few arguments" name)
331 (setq arglist nil values 'too-few))
332 (t
333 (setq bindings (cons (list (car arglist) (car values))
334 bindings)
335 values (cdr values))))
336 (setq arglist (cdr arglist)))
337 (if values
338 (progn
339 (or (eq values 'too-few)
340 (byte-compile-warn
341 "attempt to open-code `%s' with too many arguments" name))
342 form)
343
344 ;; The following leads to infinite recursion when loading a
345 ;; file containing `(defsubst f () (f))', and then trying to
346 ;; byte-compile that file.
347 ;(setq body (mapcar 'byte-optimize-form body)))
348
349 (let ((newform
350 (if bindings
351 (cons 'let (cons (nreverse bindings) body))
352 (cons 'progn body))))
353 (byte-compile-log " %s\t==>\t%s" form newform)
354 newform)))))
355
356 \f
357 ;;; implementing source-level optimizers
358
359 (defun byte-optimize-form-code-walker (form for-effect)
360 ;;
361 ;; For normal function calls, We can just mapcar the optimizer the cdr. But
362 ;; we need to have special knowledge of the syntax of the special forms
363 ;; like let and defun (that's why they're special forms :-). (Actually,
364 ;; the important aspect is that they are subrs that don't evaluate all of
365 ;; their args.)
366 ;;
367 (let ((fn (car-safe form))
368 tmp)
369 (cond ((not (consp form))
370 (if (not (and for-effect
371 (or byte-compile-delete-errors
372 (not (symbolp form))
373 (eq form t))))
374 form))
375 ((eq fn 'quote)
376 (if (cdr (cdr form))
377 (byte-compile-warn "malformed quote form: `%s'"
378 (prin1-to-string form)))
379 ;; map (quote nil) to nil to simplify optimizer logic.
380 ;; map quoted constants to nil if for-effect (just because).
381 (and (nth 1 form)
382 (not for-effect)
383 form))
384 ((or (byte-code-function-p fn)
385 (eq 'lambda (car-safe fn)))
386 (byte-optimize-form-code-walker
387 (byte-compile-unfold-lambda form)
388 for-effect))
389 ((memq fn '(let let*))
390 ;; recursively enter the optimizer for the bindings and body
391 ;; of a let or let*. This for depth-firstness: forms that
392 ;; are more deeply nested are optimized first.
393 (cons fn
394 (cons
395 (mapcar (lambda (binding)
396 (if (symbolp binding)
397 binding
398 (if (cdr (cdr binding))
399 (byte-compile-warn "malformed let binding: `%s'"
400 (prin1-to-string binding)))
401 (list (car binding)
402 (byte-optimize-form (nth 1 binding) nil))))
403 (nth 1 form))
404 (byte-optimize-body (cdr (cdr form)) for-effect))))
405 ((eq fn 'cond)
406 (cons fn
407 (mapcar (lambda (clause)
408 (if (consp clause)
409 (cons
410 (byte-optimize-form (car clause) nil)
411 (byte-optimize-body (cdr clause) for-effect))
412 (byte-compile-warn "malformed cond form: `%s'"
413 (prin1-to-string clause))
414 clause))
415 (cdr form))))
416 ((eq fn 'progn)
417 ;; as an extra added bonus, this simplifies (progn <x>) --> <x>
418 (if (cdr (cdr form))
419 (progn
420 (setq tmp (byte-optimize-body (cdr form) for-effect))
421 (if (cdr tmp) (cons 'progn tmp) (car tmp)))
422 (byte-optimize-form (nth 1 form) for-effect)))
423 ((eq fn 'prog1)
424 (if (cdr (cdr form))
425 (cons 'prog1
426 (cons (byte-optimize-form (nth 1 form) for-effect)
427 (byte-optimize-body (cdr (cdr form)) t)))
428 (byte-optimize-form (nth 1 form) for-effect)))
429 ((eq fn 'prog2)
430 (cons 'prog2
431 (cons (byte-optimize-form (nth 1 form) t)
432 (cons (byte-optimize-form (nth 2 form) for-effect)
433 (byte-optimize-body (cdr (cdr (cdr form))) t)))))
434
435 ((memq fn '(save-excursion save-restriction save-current-buffer))
436 ;; those subrs which have an implicit progn; it's not quite good
437 ;; enough to treat these like normal function calls.
438 ;; This can turn (save-excursion ...) into (save-excursion) which
439 ;; will be optimized away in the lap-optimize pass.
440 (cons fn (byte-optimize-body (cdr form) for-effect)))
441
442 ((eq fn 'with-output-to-temp-buffer)
443 ;; this is just like the above, except for the first argument.
444 (cons fn
445 (cons
446 (byte-optimize-form (nth 1 form) nil)
447 (byte-optimize-body (cdr (cdr form)) for-effect))))
448
449 ((eq fn 'if)
450 (when (< (length form) 3)
451 (byte-compile-warn "too few arguments for `if'"))
452 (cons fn
453 (cons (byte-optimize-form (nth 1 form) nil)
454 (cons
455 (byte-optimize-form (nth 2 form) for-effect)
456 (byte-optimize-body (nthcdr 3 form) for-effect)))))
457
458 ((memq fn '(and or)) ; remember, and/or are control structures.
459 ;; take forms off the back until we can't any more.
460 ;; In the future it could conceivably be a problem that the
461 ;; subexpressions of these forms are optimized in the reverse
462 ;; order, but it's ok for now.
463 (if for-effect
464 (let ((backwards (reverse (cdr form))))
465 (while (and backwards
466 (null (setcar backwards
467 (byte-optimize-form (car backwards)
468 for-effect))))
469 (setq backwards (cdr backwards)))
470 (if (and (cdr form) (null backwards))
471 (byte-compile-log
472 " all subforms of %s called for effect; deleted" form))
473 (and backwards
474 (cons fn (nreverse (mapcar 'byte-optimize-form backwards)))))
475 (cons fn (mapcar 'byte-optimize-form (cdr form)))))
476
477 ((eq fn 'interactive)
478 (byte-compile-warn "misplaced interactive spec: `%s'"
479 (prin1-to-string form))
480 nil)
481
482 ((memq fn '(defun defmacro function
483 condition-case save-window-excursion))
484 ;; These forms are compiled as constants or by breaking out
485 ;; all the subexpressions and compiling them separately.
486 form)
487
488 ((eq fn 'unwind-protect)
489 ;; the "protected" part of an unwind-protect is compiled (and thus
490 ;; optimized) as a top-level form, so don't do it here. But the
491 ;; non-protected part has the same for-effect status as the
492 ;; unwind-protect itself. (The protected part is always for effect,
493 ;; but that isn't handled properly yet.)
494 (cons fn
495 (cons (byte-optimize-form (nth 1 form) for-effect)
496 (cdr (cdr form)))))
497
498 ((eq fn 'catch)
499 ;; the body of a catch is compiled (and thus optimized) as a
500 ;; top-level form, so don't do it here. The tag is never
501 ;; for-effect. The body should have the same for-effect status
502 ;; as the catch form itself, but that isn't handled properly yet.
503 (cons fn
504 (cons (byte-optimize-form (nth 1 form) nil)
505 (cdr (cdr form)))))
506
507 ((eq fn 'ignore)
508 ;; Don't treat the args to `ignore' as being
509 ;; computed for effect. We want to avoid the warnings
510 ;; that might occur if they were treated that way.
511 ;; However, don't actually bother calling `ignore'.
512 `(prog1 nil . ,(mapcar 'byte-optimize-form (cdr form))))
513
514 ;; If optimization is on, this is the only place that macros are
515 ;; expanded. If optimization is off, then macroexpansion happens
516 ;; in byte-compile-form. Otherwise, the macros are already expanded
517 ;; by the time that is reached.
518 ((not (eq form
519 (setq form (macroexpand form
520 byte-compile-macro-environment))))
521 (byte-optimize-form form for-effect))
522
523 ;; Support compiler macros as in cl.el.
524 ((and (fboundp 'compiler-macroexpand)
525 (symbolp (car-safe form))
526 (get (car-safe form) 'cl-compiler-macro)
527 (not (eq form
528 (with-no-warnings
529 (setq form (compiler-macroexpand form))))))
530 (byte-optimize-form form for-effect))
531
532 ((not (symbolp fn))
533 (byte-compile-warn "`%s' is a malformed function"
534 (prin1-to-string fn))
535 form)
536
537 ((and for-effect (setq tmp (get fn 'side-effect-free))
538 (or byte-compile-delete-errors
539 (eq tmp 'error-free)
540 ;; Detect the expansion of (pop foo).
541 ;; There is no need to compile the call to `car' there.
542 (and (eq fn 'car)
543 (eq (car-safe (cadr form)) 'prog1)
544 (let ((var (cadr (cadr form)))
545 (last (nth 2 (cadr form))))
546 (and (symbolp var)
547 (null (nthcdr 3 (cadr form)))
548 (eq (car-safe last) 'setq)
549 (eq (cadr last) var)
550 (eq (car-safe (nth 2 last)) 'cdr)
551 (eq (cadr (nth 2 last)) var))))
552 (progn
553 (byte-compile-warn "value returned from %s is unused"
554 (prin1-to-string form))
555 nil)))
556 (byte-compile-log " %s called for effect; deleted" fn)
557 ;; appending a nil here might not be necessary, but it can't hurt.
558 (byte-optimize-form
559 (cons 'progn (append (cdr form) '(nil))) t))
560
561 (t
562 ;; Otherwise, no args can be considered to be for-effect,
563 ;; even if the called function is for-effect, because we
564 ;; don't know anything about that function.
565 (let ((args (mapcar #'byte-optimize-form (cdr form))))
566 (if (and (get fn 'pure)
567 (byte-optimize-all-constp args))
568 (list 'quote (apply fn (mapcar #'eval args)))
569 (cons fn args)))))))
570
571 (defun byte-optimize-all-constp (list)
572 "Non-nil if all elements of LIST satisfy `byte-compile-constp'."
573 (let ((constant t))
574 (while (and list constant)
575 (unless (byte-compile-constp (car list))
576 (setq constant nil))
577 (setq list (cdr list)))
578 constant))
579
580 (defun byte-optimize-form (form &optional for-effect)
581 "The source-level pass of the optimizer."
582 ;;
583 ;; First, optimize all sub-forms of this one.
584 (setq form (byte-optimize-form-code-walker form for-effect))
585 ;;
586 ;; after optimizing all subforms, optimize this form until it doesn't
587 ;; optimize any further. This means that some forms will be passed through
588 ;; the optimizer many times, but that's necessary to make the for-effect
589 ;; processing do as much as possible.
590 ;;
591 (let (opt new)
592 (if (and (consp form)
593 (symbolp (car form))
594 (or (and for-effect
595 ;; we don't have any of these yet, but we might.
596 (setq opt (get (car form) 'byte-for-effect-optimizer)))
597 (setq opt (get (car form) 'byte-optimizer)))
598 (not (eq form (setq new (funcall opt form)))))
599 (progn
600 ;; (if (equal form new) (error "bogus optimizer -- %s" opt))
601 (byte-compile-log " %s\t==>\t%s" form new)
602 (setq new (byte-optimize-form new for-effect))
603 new)
604 form)))
605
606
607 (defun byte-optimize-body (forms all-for-effect)
608 ;; optimize the cdr of a progn or implicit progn; all forms is a list of
609 ;; forms, all but the last of which are optimized with the assumption that
610 ;; they are being called for effect. the last is for-effect as well if
611 ;; all-for-effect is true. returns a new list of forms.
612 (let ((rest forms)
613 (result nil)
614 fe new)
615 (while rest
616 (setq fe (or all-for-effect (cdr rest)))
617 (setq new (and (car rest) (byte-optimize-form (car rest) fe)))
618 (if (or new (not fe))
619 (setq result (cons new result)))
620 (setq rest (cdr rest)))
621 (nreverse result)))
622
623 \f
624 ;; some source-level optimizers
625 ;;
626 ;; when writing optimizers, be VERY careful that the optimizer returns
627 ;; something not EQ to its argument if and ONLY if it has made a change.
628 ;; This implies that you cannot simply destructively modify the list;
629 ;; you must return something not EQ to it if you make an optimization.
630 ;;
631 ;; It is now safe to optimize code such that it introduces new bindings.
632
633 (defsubst byte-compile-trueconstp (form)
634 "Return non-nil if FORM always evaluates to a non-nil value."
635 (while (eq (car-safe form) 'progn)
636 (setq form (car (last (cdr form)))))
637 (cond ((consp form)
638 (case (car form)
639 (quote (cadr form))
640 ;; Can't use recursion in a defsubst.
641 ;; (progn (byte-compile-trueconstp (car (last (cdr form)))))
642 ))
643 ((not (symbolp form)))
644 ((eq form t))
645 ((keywordp form))))
646
647 (defsubst byte-compile-nilconstp (form)
648 "Return non-nil if FORM always evaluates to a nil value."
649 (while (eq (car-safe form) 'progn)
650 (setq form (car (last (cdr form)))))
651 (cond ((consp form)
652 (case (car form)
653 (quote (null (cadr form)))
654 ;; Can't use recursion in a defsubst.
655 ;; (progn (byte-compile-nilconstp (car (last (cdr form)))))
656 ))
657 ((not (symbolp form)) nil)
658 ((null form))))
659
660 ;; If the function is being called with constant numeric args,
661 ;; evaluate as much as possible at compile-time. This optimizer
662 ;; assumes that the function is associative, like + or *.
663 (defun byte-optimize-associative-math (form)
664 (let ((args nil)
665 (constants nil)
666 (rest (cdr form)))
667 (while rest
668 (if (numberp (car rest))
669 (setq constants (cons (car rest) constants))
670 (setq args (cons (car rest) args)))
671 (setq rest (cdr rest)))
672 (if (cdr constants)
673 (if args
674 (list (car form)
675 (apply (car form) constants)
676 (if (cdr args)
677 (cons (car form) (nreverse args))
678 (car args)))
679 (apply (car form) constants))
680 form)))
681
682 ;; If the function is being called with constant numeric args,
683 ;; evaluate as much as possible at compile-time. This optimizer
684 ;; assumes that the function satisfies
685 ;; (op x1 x2 ... xn) == (op ...(op (op x1 x2) x3) ...xn)
686 ;; like - and /.
687 (defun byte-optimize-nonassociative-math (form)
688 (if (or (not (numberp (car (cdr form))))
689 (not (numberp (car (cdr (cdr form))))))
690 form
691 (let ((constant (car (cdr form)))
692 (rest (cdr (cdr form))))
693 (while (numberp (car rest))
694 (setq constant (funcall (car form) constant (car rest))
695 rest (cdr rest)))
696 (if rest
697 (cons (car form) (cons constant rest))
698 constant))))
699
700 ;;(defun byte-optimize-associative-two-args-math (form)
701 ;; (setq form (byte-optimize-associative-math form))
702 ;; (if (consp form)
703 ;; (byte-optimize-two-args-left form)
704 ;; form))
705
706 ;;(defun byte-optimize-nonassociative-two-args-math (form)
707 ;; (setq form (byte-optimize-nonassociative-math form))
708 ;; (if (consp form)
709 ;; (byte-optimize-two-args-right form)
710 ;; form))
711
712 (defun byte-optimize-approx-equal (x y)
713 (<= (* (abs (- x y)) 100) (abs (+ x y))))
714
715 ;; Collect all the constants from FORM, after the STARTth arg,
716 ;; and apply FUN to them to make one argument at the end.
717 ;; For functions that can handle floats, that optimization
718 ;; can be incorrect because reordering can cause an overflow
719 ;; that would otherwise be avoided by encountering an arg that is a float.
720 ;; We avoid this problem by (1) not moving float constants and
721 ;; (2) not moving anything if it would cause an overflow.
722 (defun byte-optimize-delay-constants-math (form start fun)
723 ;; Merge all FORM's constants from number START, call FUN on them
724 ;; and put the result at the end.
725 (let ((rest (nthcdr (1- start) form))
726 (orig form)
727 ;; t means we must check for overflow.
728 (overflow (memq fun '(+ *))))
729 (while (cdr (setq rest (cdr rest)))
730 (if (integerp (car rest))
731 (let (constants)
732 (setq form (copy-sequence form)
733 rest (nthcdr (1- start) form))
734 (while (setq rest (cdr rest))
735 (cond ((integerp (car rest))
736 (setq constants (cons (car rest) constants))
737 (setcar rest nil))))
738 ;; If necessary, check now for overflow
739 ;; that might be caused by reordering.
740 (if (and overflow
741 ;; We have overflow if the result of doing the arithmetic
742 ;; on floats is not even close to the result
743 ;; of doing it on integers.
744 (not (byte-optimize-approx-equal
745 (apply fun (mapcar 'float constants))
746 (float (apply fun constants)))))
747 (setq form orig)
748 (setq form (nconc (delq nil form)
749 (list (apply fun (nreverse constants)))))))))
750 form))
751
752 (defun byte-optimize-plus (form)
753 (setq form (byte-optimize-delay-constants-math form 1 '+))
754 (if (memq 0 form) (setq form (delq 0 (copy-sequence form))))
755 ;;(setq form (byte-optimize-associative-two-args-math form))
756 (cond ((null (cdr form))
757 (condition-case ()
758 (eval form)
759 (error form)))
760 ;;; It is not safe to delete the function entirely
761 ;;; (actually, it would be safe if we know the sole arg
762 ;;; is not a marker).
763 ;;; ((null (cdr (cdr form))) (nth 1 form))
764 ((null (cddr form))
765 (if (numberp (nth 1 form))
766 (nth 1 form)
767 form))
768 ((and (null (nthcdr 3 form))
769 (or (memq (nth 1 form) '(1 -1))
770 (memq (nth 2 form) '(1 -1))))
771 ;; Optimize (+ x 1) into (1+ x) and (+ x -1) into (1- x).
772 (let ((integer
773 (if (memq (nth 1 form) '(1 -1))
774 (nth 1 form)
775 (nth 2 form)))
776 (other
777 (if (memq (nth 1 form) '(1 -1))
778 (nth 2 form)
779 (nth 1 form))))
780 (list (if (eq integer 1) '1+ '1-)
781 other)))
782 (t form)))
783
784 (defun byte-optimize-minus (form)
785 ;; Put constants at the end, except the last constant.
786 (setq form (byte-optimize-delay-constants-math form 2 '+))
787 ;; Now only first and last element can be a number.
788 (let ((last (car (reverse (nthcdr 3 form)))))
789 (cond ((eq 0 last)
790 ;; (- x y ... 0) --> (- x y ...)
791 (setq form (copy-sequence form))
792 (setcdr (cdr (cdr form)) (delq 0 (nthcdr 3 form))))
793 ((equal (nthcdr 2 form) '(1))
794 (setq form (list '1- (nth 1 form))))
795 ((equal (nthcdr 2 form) '(-1))
796 (setq form (list '1+ (nth 1 form))))
797 ;; If form is (- CONST foo... CONST), merge first and last.
798 ((and (numberp (nth 1 form))
799 (numberp last))
800 (setq form (nconc (list '- (- (nth 1 form) last) (nth 2 form))
801 (delq last (copy-sequence (nthcdr 3 form))))))))
802 ;;; It is not safe to delete the function entirely
803 ;;; (actually, it would be safe if we know the sole arg
804 ;;; is not a marker).
805 ;;; (if (eq (nth 2 form) 0)
806 ;;; (nth 1 form) ; (- x 0) --> x
807 (byte-optimize-predicate
808 (if (and (null (cdr (cdr (cdr form))))
809 (eq (nth 1 form) 0)) ; (- 0 x) --> (- x)
810 (cons (car form) (cdr (cdr form)))
811 form))
812 ;;; )
813 )
814
815 (defun byte-optimize-multiply (form)
816 (setq form (byte-optimize-delay-constants-math form 1 '*))
817 ;; If there is a constant in FORM, it is now the last element.
818 (cond ((null (cdr form)) 1)
819 ;;; It is not safe to delete the function entirely
820 ;;; (actually, it would be safe if we know the sole arg
821 ;;; is not a marker or if it appears in other arithmetic).
822 ;;; ((null (cdr (cdr form))) (nth 1 form))
823 ((let ((last (car (reverse form))))
824 (cond ((eq 0 last) (cons 'progn (cdr form)))
825 ((eq 1 last) (delq 1 (copy-sequence form)))
826 ((eq -1 last) (list '- (delq -1 (copy-sequence form))))
827 ((and (eq 2 last)
828 (memq t (mapcar 'symbolp (cdr form))))
829 (prog1 (setq form (delq 2 (copy-sequence form)))
830 (while (not (symbolp (car (setq form (cdr form))))))
831 (setcar form (list '+ (car form) (car form)))))
832 (form))))))
833
834 (defsubst byte-compile-butlast (form)
835 (nreverse (cdr (reverse form))))
836
837 (defun byte-optimize-divide (form)
838 (setq form (byte-optimize-delay-constants-math form 2 '*))
839 (let ((last (car (reverse (cdr (cdr form))))))
840 (if (numberp last)
841 (cond ((= (length form) 3)
842 (if (and (numberp (nth 1 form))
843 (not (zerop last))
844 (condition-case nil
845 (/ (nth 1 form) last)
846 (error nil)))
847 (setq form (list 'progn (/ (nth 1 form) last)))))
848 ((= last 1)
849 (setq form (byte-compile-butlast form)))
850 ((numberp (nth 1 form))
851 (setq form (cons (car form)
852 (cons (/ (nth 1 form) last)
853 (byte-compile-butlast (cdr (cdr form)))))
854 last nil))))
855 (cond
856 ;;; ((null (cdr (cdr form)))
857 ;;; (nth 1 form))
858 ((eq (nth 1 form) 0)
859 (append '(progn) (cdr (cdr form)) '(0)))
860 ((eq last -1)
861 (list '- (if (nthcdr 3 form)
862 (byte-compile-butlast form)
863 (nth 1 form))))
864 (form))))
865
866 (defun byte-optimize-logmumble (form)
867 (setq form (byte-optimize-delay-constants-math form 1 (car form)))
868 (byte-optimize-predicate
869 (cond ((memq 0 form)
870 (setq form (if (eq (car form) 'logand)
871 (cons 'progn (cdr form))
872 (delq 0 (copy-sequence form)))))
873 ((and (eq (car-safe form) 'logior)
874 (memq -1 form))
875 (cons 'progn (cdr form)))
876 (form))))
877
878
879 (defun byte-optimize-binary-predicate (form)
880 (if (byte-compile-constp (nth 1 form))
881 (if (byte-compile-constp (nth 2 form))
882 (condition-case ()
883 (list 'quote (eval form))
884 (error form))
885 ;; This can enable some lapcode optimizations.
886 (list (car form) (nth 2 form) (nth 1 form)))
887 form))
888
889 (defun byte-optimize-predicate (form)
890 (let ((ok t)
891 (rest (cdr form)))
892 (while (and rest ok)
893 (setq ok (byte-compile-constp (car rest))
894 rest (cdr rest)))
895 (if ok
896 (condition-case ()
897 (list 'quote (eval form))
898 (error form))
899 form)))
900
901 (defun byte-optimize-identity (form)
902 (if (and (cdr form) (null (cdr (cdr form))))
903 (nth 1 form)
904 (byte-compile-warn "identity called with %d arg%s, but requires 1"
905 (length (cdr form))
906 (if (= 1 (length (cdr form))) "" "s"))
907 form))
908
909 (put 'identity 'byte-optimizer 'byte-optimize-identity)
910
911 (put '+ 'byte-optimizer 'byte-optimize-plus)
912 (put '* 'byte-optimizer 'byte-optimize-multiply)
913 (put '- 'byte-optimizer 'byte-optimize-minus)
914 (put '/ 'byte-optimizer 'byte-optimize-divide)
915 (put 'max 'byte-optimizer 'byte-optimize-associative-math)
916 (put 'min 'byte-optimizer 'byte-optimize-associative-math)
917
918 (put '= 'byte-optimizer 'byte-optimize-binary-predicate)
919 (put 'eq 'byte-optimizer 'byte-optimize-binary-predicate)
920 (put 'equal 'byte-optimizer 'byte-optimize-binary-predicate)
921 (put 'string= 'byte-optimizer 'byte-optimize-binary-predicate)
922 (put 'string-equal 'byte-optimizer 'byte-optimize-binary-predicate)
923
924 (put '< 'byte-optimizer 'byte-optimize-predicate)
925 (put '> 'byte-optimizer 'byte-optimize-predicate)
926 (put '<= 'byte-optimizer 'byte-optimize-predicate)
927 (put '>= 'byte-optimizer 'byte-optimize-predicate)
928 (put '1+ 'byte-optimizer 'byte-optimize-predicate)
929 (put '1- 'byte-optimizer 'byte-optimize-predicate)
930 (put 'not 'byte-optimizer 'byte-optimize-predicate)
931 (put 'null 'byte-optimizer 'byte-optimize-predicate)
932 (put 'memq 'byte-optimizer 'byte-optimize-predicate)
933 (put 'consp 'byte-optimizer 'byte-optimize-predicate)
934 (put 'listp 'byte-optimizer 'byte-optimize-predicate)
935 (put 'symbolp 'byte-optimizer 'byte-optimize-predicate)
936 (put 'stringp 'byte-optimizer 'byte-optimize-predicate)
937 (put 'string< 'byte-optimizer 'byte-optimize-predicate)
938 (put 'string-lessp 'byte-optimizer 'byte-optimize-predicate)
939
940 (put 'logand 'byte-optimizer 'byte-optimize-logmumble)
941 (put 'logior 'byte-optimizer 'byte-optimize-logmumble)
942 (put 'logxor 'byte-optimizer 'byte-optimize-logmumble)
943 (put 'lognot 'byte-optimizer 'byte-optimize-predicate)
944
945 (put 'car 'byte-optimizer 'byte-optimize-predicate)
946 (put 'cdr 'byte-optimizer 'byte-optimize-predicate)
947 (put 'car-safe 'byte-optimizer 'byte-optimize-predicate)
948 (put 'cdr-safe 'byte-optimizer 'byte-optimize-predicate)
949
950
951 ;; I'm not convinced that this is necessary. Doesn't the optimizer loop
952 ;; take care of this? - Jamie
953 ;; I think this may some times be necessary to reduce ie (quote 5) to 5,
954 ;; so arithmetic optimizers recognize the numeric constant. - Hallvard
955 (put 'quote 'byte-optimizer 'byte-optimize-quote)
956 (defun byte-optimize-quote (form)
957 (if (or (consp (nth 1 form))
958 (and (symbolp (nth 1 form))
959 (not (byte-compile-const-symbol-p form))))
960 form
961 (nth 1 form)))
962
963 (defun byte-optimize-zerop (form)
964 (cond ((numberp (nth 1 form))
965 (eval form))
966 (byte-compile-delete-errors
967 (list '= (nth 1 form) 0))
968 (form)))
969
970 (put 'zerop 'byte-optimizer 'byte-optimize-zerop)
971
972 (defun byte-optimize-and (form)
973 ;; Simplify if less than 2 args.
974 ;; if there is a literal nil in the args to `and', throw it and following
975 ;; forms away, and surround the `and' with (progn ... nil).
976 (cond ((null (cdr form)))
977 ((memq nil form)
978 (list 'progn
979 (byte-optimize-and
980 (prog1 (setq form (copy-sequence form))
981 (while (nth 1 form)
982 (setq form (cdr form)))
983 (setcdr form nil)))
984 nil))
985 ((null (cdr (cdr form)))
986 (nth 1 form))
987 ((byte-optimize-predicate form))))
988
989 (defun byte-optimize-or (form)
990 ;; Throw away nil's, and simplify if less than 2 args.
991 ;; If there is a literal non-nil constant in the args to `or', throw away all
992 ;; following forms.
993 (if (memq nil form)
994 (setq form (delq nil (copy-sequence form))))
995 (let ((rest form))
996 (while (cdr (setq rest (cdr rest)))
997 (if (byte-compile-trueconstp (car rest))
998 (setq form (copy-sequence form)
999 rest (setcdr (memq (car rest) form) nil))))
1000 (if (cdr (cdr form))
1001 (byte-optimize-predicate form)
1002 (nth 1 form))))
1003
1004 (defun byte-optimize-cond (form)
1005 ;; if any clauses have a literal nil as their test, throw them away.
1006 ;; if any clause has a literal non-nil constant as its test, throw
1007 ;; away all following clauses.
1008 (let (rest)
1009 ;; This must be first, to reduce (cond (t ...) (nil)) to (progn t ...)
1010 (while (setq rest (assq nil (cdr form)))
1011 (setq form (delq rest (copy-sequence form))))
1012 (if (memq nil (cdr form))
1013 (setq form (delq nil (copy-sequence form))))
1014 (setq rest form)
1015 (while (setq rest (cdr rest))
1016 (cond ((byte-compile-trueconstp (car-safe (car rest)))
1017 ;; This branch will always be taken: kill the subsequent ones.
1018 (cond ((eq rest (cdr form)) ;First branch of `cond'.
1019 (setq form `(progn ,@(car rest))))
1020 ((cdr rest)
1021 (setq form (copy-sequence form))
1022 (setcdr (memq (car rest) form) nil)))
1023 (setq rest nil))
1024 ((and (consp (car rest))
1025 (byte-compile-nilconstp (caar rest)))
1026 ;; This branch will never be taken: kill its body.
1027 (setcdr (car rest) nil)))))
1028 ;;
1029 ;; Turn (cond (( <x> )) ... ) into (or <x> (cond ... ))
1030 (if (eq 'cond (car-safe form))
1031 (let ((clauses (cdr form)))
1032 (if (and (consp (car clauses))
1033 (null (cdr (car clauses))))
1034 (list 'or (car (car clauses))
1035 (byte-optimize-cond
1036 (cons (car form) (cdr (cdr form)))))
1037 form))
1038 form))
1039
1040 (defun byte-optimize-if (form)
1041 ;; (if (progn <insts> <test>) <rest>) ==> (progn <insts> (if <test> <rest>))
1042 ;; (if <true-constant> <then> <else...>) ==> <then>
1043 ;; (if <false-constant> <then> <else...>) ==> (progn <else...>)
1044 ;; (if <test> nil <else...>) ==> (if (not <test>) (progn <else...>))
1045 ;; (if <test> <then> nil) ==> (if <test> <then>)
1046 (let ((clause (nth 1 form)))
1047 (cond ((and (eq (car-safe clause) 'progn)
1048 ;; `clause' is a proper list.
1049 (null (cdr (last clause))))
1050 (if (null (cddr clause))
1051 ;; A trivial `progn'.
1052 (byte-optimize-if `(if ,(cadr clause) ,@(nthcdr 2 form)))
1053 (nconc (butlast clause)
1054 (list
1055 (byte-optimize-if
1056 `(if ,(car (last clause)) ,@(nthcdr 2 form)))))))
1057 ((byte-compile-trueconstp clause)
1058 `(progn ,clause ,(nth 2 form)))
1059 ((byte-compile-nilconstp clause)
1060 `(progn ,clause ,@(nthcdr 3 form)))
1061 ((nth 2 form)
1062 (if (equal '(nil) (nthcdr 3 form))
1063 (list 'if clause (nth 2 form))
1064 form))
1065 ((or (nth 3 form) (nthcdr 4 form))
1066 (list 'if
1067 ;; Don't make a double negative;
1068 ;; instead, take away the one that is there.
1069 (if (and (consp clause) (memq (car clause) '(not null))
1070 (= (length clause) 2)) ; (not xxxx) or (not (xxxx))
1071 (nth 1 clause)
1072 (list 'not clause))
1073 (if (nthcdr 4 form)
1074 (cons 'progn (nthcdr 3 form))
1075 (nth 3 form))))
1076 (t
1077 (list 'progn clause nil)))))
1078
1079 (defun byte-optimize-while (form)
1080 (when (< (length form) 2)
1081 (byte-compile-warn "too few arguments for `while'"))
1082 (if (nth 1 form)
1083 form))
1084
1085 (put 'and 'byte-optimizer 'byte-optimize-and)
1086 (put 'or 'byte-optimizer 'byte-optimize-or)
1087 (put 'cond 'byte-optimizer 'byte-optimize-cond)
1088 (put 'if 'byte-optimizer 'byte-optimize-if)
1089 (put 'while 'byte-optimizer 'byte-optimize-while)
1090
1091 ;; byte-compile-negation-optimizer lives in bytecomp.el
1092 (put '/= 'byte-optimizer 'byte-compile-negation-optimizer)
1093 (put 'atom 'byte-optimizer 'byte-compile-negation-optimizer)
1094 (put 'nlistp 'byte-optimizer 'byte-compile-negation-optimizer)
1095
1096
1097 (defun byte-optimize-funcall (form)
1098 ;; (funcall (lambda ...) ...) ==> ((lambda ...) ...)
1099 ;; (funcall foo ...) ==> (foo ...)
1100 (let ((fn (nth 1 form)))
1101 (if (memq (car-safe fn) '(quote function))
1102 (cons (nth 1 fn) (cdr (cdr form)))
1103 form)))
1104
1105 (defun byte-optimize-apply (form)
1106 ;; If the last arg is a literal constant, turn this into a funcall.
1107 ;; The funcall optimizer can then transform (funcall 'foo ...) -> (foo ...).
1108 (let ((fn (nth 1 form))
1109 (last (nth (1- (length form)) form))) ; I think this really is fastest
1110 (or (if (or (null last)
1111 (eq (car-safe last) 'quote))
1112 (if (listp (nth 1 last))
1113 (let ((butlast (nreverse (cdr (reverse (cdr (cdr form)))))))
1114 (nconc (list 'funcall fn) butlast
1115 (mapcar (lambda (x) (list 'quote x)) (nth 1 last))))
1116 (byte-compile-warn
1117 "last arg to apply can't be a literal atom: `%s'"
1118 (prin1-to-string last))
1119 nil))
1120 form)))
1121
1122 (put 'funcall 'byte-optimizer 'byte-optimize-funcall)
1123 (put 'apply 'byte-optimizer 'byte-optimize-apply)
1124
1125
1126 (put 'let 'byte-optimizer 'byte-optimize-letX)
1127 (put 'let* 'byte-optimizer 'byte-optimize-letX)
1128 (defun byte-optimize-letX (form)
1129 (cond ((null (nth 1 form))
1130 ;; No bindings
1131 (cons 'progn (cdr (cdr form))))
1132 ((or (nth 2 form) (nthcdr 3 form))
1133 form)
1134 ;; The body is nil
1135 ((eq (car form) 'let)
1136 (append '(progn) (mapcar 'car-safe (mapcar 'cdr-safe (nth 1 form)))
1137 '(nil)))
1138 (t
1139 (let ((binds (reverse (nth 1 form))))
1140 (list 'let* (reverse (cdr binds)) (nth 1 (car binds)) nil)))))
1141
1142
1143 (put 'nth 'byte-optimizer 'byte-optimize-nth)
1144 (defun byte-optimize-nth (form)
1145 (if (= (safe-length form) 3)
1146 (if (memq (nth 1 form) '(0 1))
1147 (list 'car (if (zerop (nth 1 form))
1148 (nth 2 form)
1149 (list 'cdr (nth 2 form))))
1150 (byte-optimize-predicate form))
1151 form))
1152
1153 (put 'nthcdr 'byte-optimizer 'byte-optimize-nthcdr)
1154 (defun byte-optimize-nthcdr (form)
1155 (if (= (safe-length form) 3)
1156 (if (memq (nth 1 form) '(0 1 2))
1157 (let ((count (nth 1 form)))
1158 (setq form (nth 2 form))
1159 (while (>= (setq count (1- count)) 0)
1160 (setq form (list 'cdr form)))
1161 form)
1162 (byte-optimize-predicate form))
1163 form))
1164
1165 ;; Fixme: delete-char -> delete-region (byte-coded)
1166 ;; optimize string-as-unibyte, string-as-multibyte, string-make-unibyte,
1167 ;; string-make-multibyte for constant args.
1168
1169 (put 'featurep 'byte-optimizer 'byte-optimize-featurep)
1170 (defun byte-optimize-featurep (form)
1171 ;; Emacs-21's byte-code doesn't run under XEmacs or SXEmacs anyway, so we
1172 ;; can safely optimize away this test.
1173 (if (member (cdr-safe form) '(((quote xemacs)) ((quote sxemacs))))
1174 nil
1175 (if (member (cdr-safe form) '(((quote emacs))))
1176 t
1177 form)))
1178
1179 (put 'set 'byte-optimizer 'byte-optimize-set)
1180 (defun byte-optimize-set (form)
1181 (let ((var (car-safe (cdr-safe form))))
1182 (cond
1183 ((and (eq (car-safe var) 'quote) (consp (cdr var)))
1184 `(setq ,(cadr var) ,@(cddr form)))
1185 ((and (eq (car-safe var) 'make-local-variable)
1186 (eq (car-safe (setq var (car-safe (cdr var)))) 'quote)
1187 (consp (cdr var)))
1188 `(progn ,(cadr form) (setq ,(cadr var) ,@(cddr form))))
1189 (t form))))
1190 \f
1191 ;; enumerating those functions which need not be called if the returned
1192 ;; value is not used. That is, something like
1193 ;; (progn (list (something-with-side-effects) (yow))
1194 ;; (foo))
1195 ;; may safely be turned into
1196 ;; (progn (progn (something-with-side-effects) (yow))
1197 ;; (foo))
1198 ;; Further optimizations will turn (progn (list 1 2 3) 'foo) into 'foo.
1199
1200 ;; Some of these functions have the side effect of allocating memory
1201 ;; and it would be incorrect to replace two calls with one.
1202 ;; But we don't try to do those kinds of optimizations,
1203 ;; so it is safe to list such functions here.
1204 ;; Some of these functions return values that depend on environment
1205 ;; state, so that constant folding them would be wrong,
1206 ;; but we don't do constant folding based on this list.
1207
1208 ;; However, at present the only optimization we normally do
1209 ;; is delete calls that need not occur, and we only do that
1210 ;; with the error-free functions.
1211
1212 ;; I wonder if I missed any :-\)
1213 (let ((side-effect-free-fns
1214 '(% * + - / /= 1+ 1- < <= = > >= abs acos append aref ash asin atan
1215 assoc assq
1216 boundp buffer-file-name buffer-local-variables buffer-modified-p
1217 buffer-substring byte-code-function-p
1218 capitalize car-less-than-car car cdr ceiling char-after char-before
1219 char-equal char-to-string char-width
1220 compare-strings concat coordinates-in-window-p
1221 copy-alist copy-sequence copy-marker cos count-lines
1222 decdoe-char
1223 decode-time default-boundp default-value documentation downcase
1224 elt encode-char exp expt encode-time error-message-string
1225 fboundp fceiling featurep ffloor
1226 file-directory-p file-exists-p file-locked-p file-name-absolute-p
1227 file-newer-than-file-p file-readable-p file-symlink-p file-writable-p
1228 float float-time floor format format-time-string frame-visible-p
1229 fround ftruncate
1230 get gethash get-buffer get-buffer-window getenv get-file-buffer
1231 hash-table-count
1232 int-to-string intern-soft
1233 keymap-parent
1234 length local-variable-if-set-p local-variable-p log log10 logand
1235 logb logior lognot logxor lsh langinfo
1236 make-list make-string make-symbol
1237 marker-buffer max member memq min mod multibyte-char-to-unibyte
1238 next-window nth nthcdr number-to-string
1239 parse-colon-path plist-get plist-member
1240 prefix-numeric-value previous-window prin1-to-string propertize
1241 radians-to-degrees rassq rassoc read-from-string regexp-quote
1242 region-beginning region-end reverse round
1243 sin sqrt string string< string= string-equal string-lessp string-to-char
1244 string-to-int string-to-number substring sxhash symbol-function
1245 symbol-name symbol-plist symbol-value string-make-unibyte
1246 string-make-multibyte string-as-multibyte string-as-unibyte
1247 string-to-multibyte
1248 tan truncate
1249 unibyte-char-to-multibyte upcase user-full-name
1250 user-login-name user-original-login-name user-variable-p
1251 vconcat
1252 window-buffer window-dedicated-p window-edges window-height
1253 window-hscroll window-minibuffer-p window-width
1254 zerop))
1255 (side-effect-and-error-free-fns
1256 '(arrayp atom
1257 bobp bolp bool-vector-p
1258 buffer-end buffer-list buffer-size buffer-string bufferp
1259 car-safe case-table-p cdr-safe char-or-string-p characterp
1260 charsetp commandp cons consp
1261 current-buffer current-global-map current-indentation
1262 current-local-map current-minor-mode-maps current-time
1263 current-time-string current-time-zone
1264 eobp eolp eq equal eventp
1265 floatp following-char framep
1266 get-largest-window get-lru-window
1267 hash-table-p
1268 identity ignore integerp integer-or-marker-p interactive-p
1269 invocation-directory invocation-name
1270 keymapp
1271 line-beginning-position line-end-position list listp
1272 make-marker mark mark-marker markerp max-char
1273 memory-limit minibuffer-window
1274 mouse-movement-p
1275 natnump nlistp not null number-or-marker-p numberp
1276 one-window-p overlayp
1277 point point-marker point-min point-max preceding-char primary-charset
1278 processp
1279 recent-keys recursion-depth
1280 safe-length selected-frame selected-window sequencep
1281 standard-case-table standard-syntax-table stringp subrp symbolp
1282 syntax-table syntax-table-p
1283 this-command-keys this-command-keys-vector this-single-command-keys
1284 this-single-command-raw-keys
1285 user-real-login-name user-real-uid user-uid
1286 vector vectorp visible-frame-list
1287 wholenump window-configuration-p window-live-p windowp)))
1288 (while side-effect-free-fns
1289 (put (car side-effect-free-fns) 'side-effect-free t)
1290 (setq side-effect-free-fns (cdr side-effect-free-fns)))
1291 (while side-effect-and-error-free-fns
1292 (put (car side-effect-and-error-free-fns) 'side-effect-free 'error-free)
1293 (setq side-effect-and-error-free-fns (cdr side-effect-and-error-free-fns)))
1294 nil)
1295
1296 \f
1297 ;; pure functions are side-effect free functions whose values depend
1298 ;; only on their arguments. For these functions, calls with constant
1299 ;; arguments can be evaluated at compile time. This may shift run time
1300 ;; errors to compile time.
1301
1302 (let ((pure-fns
1303 '(concat symbol-name regexp-opt regexp-quote string-to-syntax)))
1304 (while pure-fns
1305 (put (car pure-fns) 'pure t)
1306 (setq pure-fns (cdr pure-fns)))
1307 nil)
1308
1309 (defun byte-compile-splice-in-already-compiled-code (form)
1310 ;; form is (byte-code "..." [...] n)
1311 (if (not (memq byte-optimize '(t lap)))
1312 (byte-compile-normal-call form)
1313 (byte-inline-lapcode
1314 (byte-decompile-bytecode-1 (nth 1 form) (nth 2 form) t))
1315 (setq byte-compile-maxdepth (max (+ byte-compile-depth (nth 3 form))
1316 byte-compile-maxdepth))
1317 (setq byte-compile-depth (1+ byte-compile-depth))))
1318
1319 (put 'byte-code 'byte-compile 'byte-compile-splice-in-already-compiled-code)
1320
1321 \f
1322 (defconst byte-constref-ops
1323 '(byte-constant byte-constant2 byte-varref byte-varset byte-varbind))
1324
1325 ;; This function extracts the bitfields from variable-length opcodes.
1326 ;; Originally defined in disass.el (which no longer uses it.)
1327
1328 (defun disassemble-offset ()
1329 "Don't call this!"
1330 ;; fetch and return the offset for the current opcode.
1331 ;; return nil if this opcode has no offset
1332 ;; OP, PTR and BYTES are used and set dynamically
1333 (defvar op)
1334 (defvar ptr)
1335 (defvar bytes)
1336 (cond ((< op byte-nth)
1337 (let ((tem (logand op 7)))
1338 (setq op (logand op 248))
1339 (cond ((eq tem 6)
1340 (setq ptr (1+ ptr)) ;offset in next byte
1341 (aref bytes ptr))
1342 ((eq tem 7)
1343 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1344 (+ (aref bytes ptr)
1345 (progn (setq ptr (1+ ptr))
1346 (lsh (aref bytes ptr) 8))))
1347 (t tem)))) ;offset was in opcode
1348 ((>= op byte-constant)
1349 (prog1 (- op byte-constant) ;offset in opcode
1350 (setq op byte-constant)))
1351 ((and (>= op byte-constant2)
1352 (<= op byte-goto-if-not-nil-else-pop))
1353 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1354 (+ (aref bytes ptr)
1355 (progn (setq ptr (1+ ptr))
1356 (lsh (aref bytes ptr) 8))))
1357 ((and (>= op byte-listN)
1358 (<= op byte-insertN))
1359 (setq ptr (1+ ptr)) ;offset in next byte
1360 (aref bytes ptr))))
1361
1362
1363 ;; This de-compiler is used for inline expansion of compiled functions,
1364 ;; and by the disassembler.
1365 ;;
1366 ;; This list contains numbers, which are pc values,
1367 ;; before each instruction.
1368 (defun byte-decompile-bytecode (bytes constvec)
1369 "Turn BYTECODE into lapcode, referring to CONSTVEC."
1370 (let ((byte-compile-constants nil)
1371 (byte-compile-variables nil)
1372 (byte-compile-tag-number 0))
1373 (byte-decompile-bytecode-1 bytes constvec)))
1374
1375 ;; As byte-decompile-bytecode, but updates
1376 ;; byte-compile-{constants, variables, tag-number}.
1377 ;; If MAKE-SPLICEABLE is true, then `return' opcodes are replaced
1378 ;; with `goto's destined for the end of the code.
1379 ;; That is for use by the compiler.
1380 ;; If MAKE-SPLICEABLE is nil, we are being called for the disassembler.
1381 ;; In that case, we put a pc value into the list
1382 ;; before each insn (or its label).
1383 (defun byte-decompile-bytecode-1 (bytes constvec &optional make-spliceable)
1384 (let ((length (length bytes))
1385 (ptr 0) optr tags op offset
1386 lap tmp
1387 endtag)
1388 (while (not (= ptr length))
1389 (or make-spliceable
1390 (setq lap (cons ptr lap)))
1391 (setq op (aref bytes ptr)
1392 optr ptr
1393 offset (disassemble-offset)) ; this does dynamic-scope magic
1394 (setq op (aref byte-code-vector op))
1395 (cond ((memq op byte-goto-ops)
1396 ;; it's a pc
1397 (setq offset
1398 (cdr (or (assq offset tags)
1399 (car (setq tags
1400 (cons (cons offset
1401 (byte-compile-make-tag))
1402 tags)))))))
1403 ((cond ((eq op 'byte-constant2) (setq op 'byte-constant) t)
1404 ((memq op byte-constref-ops)))
1405 (setq tmp (if (>= offset (length constvec))
1406 (list 'out-of-range offset)
1407 (aref constvec offset))
1408 offset (if (eq op 'byte-constant)
1409 (byte-compile-get-constant tmp)
1410 (or (assq tmp byte-compile-variables)
1411 (car (setq byte-compile-variables
1412 (cons (list tmp)
1413 byte-compile-variables)))))))
1414 ((and make-spliceable
1415 (eq op 'byte-return))
1416 (if (= ptr (1- length))
1417 (setq op nil)
1418 (setq offset (or endtag (setq endtag (byte-compile-make-tag)))
1419 op 'byte-goto))))
1420 ;; lap = ( [ (pc . (op . arg)) ]* )
1421 (setq lap (cons (cons optr (cons op (or offset 0)))
1422 lap))
1423 (setq ptr (1+ ptr)))
1424 ;; take off the dummy nil op that we replaced a trailing "return" with.
1425 (let ((rest lap))
1426 (while rest
1427 (cond ((numberp (car rest)))
1428 ((setq tmp (assq (car (car rest)) tags))
1429 ;; this addr is jumped to
1430 (setcdr rest (cons (cons nil (cdr tmp))
1431 (cdr rest)))
1432 (setq tags (delq tmp tags))
1433 (setq rest (cdr rest))))
1434 (setq rest (cdr rest))))
1435 (if tags (error "optimizer error: missed tags %s" tags))
1436 (if (null (car (cdr (car lap))))
1437 (setq lap (cdr lap)))
1438 (if endtag
1439 (setq lap (cons (cons nil endtag) lap)))
1440 ;; remove addrs, lap = ( [ (op . arg) | (TAG tagno) ]* )
1441 (mapcar (function (lambda (elt)
1442 (if (numberp elt)
1443 elt
1444 (cdr elt))))
1445 (nreverse lap))))
1446
1447 \f
1448 ;;; peephole optimizer
1449
1450 (defconst byte-tagref-ops (cons 'TAG byte-goto-ops))
1451
1452 (defconst byte-conditional-ops
1453 '(byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop
1454 byte-goto-if-not-nil-else-pop))
1455
1456 (defconst byte-after-unbind-ops
1457 '(byte-constant byte-dup
1458 byte-symbolp byte-consp byte-stringp byte-listp byte-numberp byte-integerp
1459 byte-eq byte-not
1460 byte-cons byte-list1 byte-list2 ; byte-list3 byte-list4
1461 byte-interactive-p)
1462 ;; How about other side-effect-free-ops? Is it safe to move an
1463 ;; error invocation (such as from nth) out of an unwind-protect?
1464 ;; No, it is not, because the unwind-protect forms can alter
1465 ;; the inside of the object to which nth would apply.
1466 ;; For the same reason, byte-equal was deleted from this list.
1467 "Byte-codes that can be moved past an unbind.")
1468
1469 (defconst byte-compile-side-effect-and-error-free-ops
1470 '(byte-constant byte-dup byte-symbolp byte-consp byte-stringp byte-listp
1471 byte-integerp byte-numberp byte-eq byte-equal byte-not byte-car-safe
1472 byte-cdr-safe byte-cons byte-list1 byte-list2 byte-point byte-point-max
1473 byte-point-min byte-following-char byte-preceding-char
1474 byte-current-column byte-eolp byte-eobp byte-bolp byte-bobp
1475 byte-current-buffer byte-interactive-p))
1476
1477 (defconst byte-compile-side-effect-free-ops
1478 (nconc
1479 '(byte-varref byte-nth byte-memq byte-car byte-cdr byte-length byte-aref
1480 byte-symbol-value byte-get byte-concat2 byte-concat3 byte-sub1 byte-add1
1481 byte-eqlsign byte-gtr byte-lss byte-leq byte-geq byte-diff byte-negate
1482 byte-plus byte-max byte-min byte-mult byte-char-after byte-char-syntax
1483 byte-buffer-substring byte-string= byte-string< byte-nthcdr byte-elt
1484 byte-member byte-assq byte-quo byte-rem)
1485 byte-compile-side-effect-and-error-free-ops))
1486
1487 ;; This crock is because of the way DEFVAR_BOOL variables work.
1488 ;; Consider the code
1489 ;;
1490 ;; (defun foo (flag)
1491 ;; (let ((old-pop-ups pop-up-windows)
1492 ;; (pop-up-windows flag))
1493 ;; (cond ((not (eq pop-up-windows old-pop-ups))
1494 ;; (setq old-pop-ups pop-up-windows)
1495 ;; ...))))
1496 ;;
1497 ;; Uncompiled, old-pop-ups will always be set to nil or t, even if FLAG is
1498 ;; something else. But if we optimize
1499 ;;
1500 ;; varref flag
1501 ;; varbind pop-up-windows
1502 ;; varref pop-up-windows
1503 ;; not
1504 ;; to
1505 ;; varref flag
1506 ;; dup
1507 ;; varbind pop-up-windows
1508 ;; not
1509 ;;
1510 ;; we break the program, because it will appear that pop-up-windows and
1511 ;; old-pop-ups are not EQ when really they are. So we have to know what
1512 ;; the BOOL variables are, and not perform this optimization on them.
1513
1514 ;; The variable `byte-boolean-vars' is now primitive and updated
1515 ;; automatically by DEFVAR_BOOL.
1516
1517 (defun byte-optimize-lapcode (lap &optional for-effect)
1518 "Simple peephole optimizer. LAP is both modified and returned.
1519 If FOR-EFFECT is non-nil, the return value is assumed to be of no importance."
1520 (let (lap0
1521 lap1
1522 lap2
1523 (keep-going 'first-time)
1524 (add-depth 0)
1525 rest tmp tmp2 tmp3
1526 (side-effect-free (if byte-compile-delete-errors
1527 byte-compile-side-effect-free-ops
1528 byte-compile-side-effect-and-error-free-ops)))
1529 (while keep-going
1530 (or (eq keep-going 'first-time)
1531 (byte-compile-log-lap " ---- next pass"))
1532 (setq rest lap
1533 keep-going nil)
1534 (while rest
1535 (setq lap0 (car rest)
1536 lap1 (nth 1 rest)
1537 lap2 (nth 2 rest))
1538
1539 ;; You may notice that sequences like "dup varset discard" are
1540 ;; optimized but sequences like "dup varset TAG1: discard" are not.
1541 ;; You may be tempted to change this; resist that temptation.
1542 (cond ;;
1543 ;; <side-effect-free> pop --> <deleted>
1544 ;; ...including:
1545 ;; const-X pop --> <deleted>
1546 ;; varref-X pop --> <deleted>
1547 ;; dup pop --> <deleted>
1548 ;;
1549 ((and (eq 'byte-discard (car lap1))
1550 (memq (car lap0) side-effect-free))
1551 (setq keep-going t)
1552 (setq tmp (aref byte-stack+-info (symbol-value (car lap0))))
1553 (setq rest (cdr rest))
1554 (cond ((= tmp 1)
1555 (byte-compile-log-lap
1556 " %s discard\t-->\t<deleted>" lap0)
1557 (setq lap (delq lap0 (delq lap1 lap))))
1558 ((= tmp 0)
1559 (byte-compile-log-lap
1560 " %s discard\t-->\t<deleted> discard" lap0)
1561 (setq lap (delq lap0 lap)))
1562 ((= tmp -1)
1563 (byte-compile-log-lap
1564 " %s discard\t-->\tdiscard discard" lap0)
1565 (setcar lap0 'byte-discard)
1566 (setcdr lap0 0))
1567 ((error "Optimizer error: too much on the stack"))))
1568 ;;
1569 ;; goto*-X X: --> X:
1570 ;;
1571 ((and (memq (car lap0) byte-goto-ops)
1572 (eq (cdr lap0) lap1))
1573 (cond ((eq (car lap0) 'byte-goto)
1574 (setq lap (delq lap0 lap))
1575 (setq tmp "<deleted>"))
1576 ((memq (car lap0) byte-goto-always-pop-ops)
1577 (setcar lap0 (setq tmp 'byte-discard))
1578 (setcdr lap0 0))
1579 ((error "Depth conflict at tag %d" (nth 2 lap0))))
1580 (and (memq byte-optimize-log '(t byte))
1581 (byte-compile-log " (goto %s) %s:\t-->\t%s %s:"
1582 (nth 1 lap1) (nth 1 lap1)
1583 tmp (nth 1 lap1)))
1584 (setq keep-going t))
1585 ;;
1586 ;; varset-X varref-X --> dup varset-X
1587 ;; varbind-X varref-X --> dup varbind-X
1588 ;; const/dup varset-X varref-X --> const/dup varset-X const/dup
1589 ;; const/dup varbind-X varref-X --> const/dup varbind-X const/dup
1590 ;; The latter two can enable other optimizations.
1591 ;;
1592 ((and (eq 'byte-varref (car lap2))
1593 (eq (cdr lap1) (cdr lap2))
1594 (memq (car lap1) '(byte-varset byte-varbind)))
1595 (if (and (setq tmp (memq (car (cdr lap2)) byte-boolean-vars))
1596 (not (eq (car lap0) 'byte-constant)))
1597 nil
1598 (setq keep-going t)
1599 (if (memq (car lap0) '(byte-constant byte-dup))
1600 (progn
1601 (setq tmp (if (or (not tmp)
1602 (byte-compile-const-symbol-p
1603 (car (cdr lap0))))
1604 (cdr lap0)
1605 (byte-compile-get-constant t)))
1606 (byte-compile-log-lap " %s %s %s\t-->\t%s %s %s"
1607 lap0 lap1 lap2 lap0 lap1
1608 (cons (car lap0) tmp))
1609 (setcar lap2 (car lap0))
1610 (setcdr lap2 tmp))
1611 (byte-compile-log-lap " %s %s\t-->\tdup %s" lap1 lap2 lap1)
1612 (setcar lap2 (car lap1))
1613 (setcar lap1 'byte-dup)
1614 (setcdr lap1 0)
1615 ;; The stack depth gets locally increased, so we will
1616 ;; increase maxdepth in case depth = maxdepth here.
1617 ;; This can cause the third argument to byte-code to
1618 ;; be larger than necessary.
1619 (setq add-depth 1))))
1620 ;;
1621 ;; dup varset-X discard --> varset-X
1622 ;; dup varbind-X discard --> varbind-X
1623 ;; (the varbind variant can emerge from other optimizations)
1624 ;;
1625 ((and (eq 'byte-dup (car lap0))
1626 (eq 'byte-discard (car lap2))
1627 (memq (car lap1) '(byte-varset byte-varbind)))
1628 (byte-compile-log-lap " dup %s discard\t-->\t%s" lap1 lap1)
1629 (setq keep-going t
1630 rest (cdr rest))
1631 (setq lap (delq lap0 (delq lap2 lap))))
1632 ;;
1633 ;; not goto-X-if-nil --> goto-X-if-non-nil
1634 ;; not goto-X-if-non-nil --> goto-X-if-nil
1635 ;;
1636 ;; it is wrong to do the same thing for the -else-pop variants.
1637 ;;
1638 ((and (eq 'byte-not (car lap0))
1639 (or (eq 'byte-goto-if-nil (car lap1))
1640 (eq 'byte-goto-if-not-nil (car lap1))))
1641 (byte-compile-log-lap " not %s\t-->\t%s"
1642 lap1
1643 (cons
1644 (if (eq (car lap1) 'byte-goto-if-nil)
1645 'byte-goto-if-not-nil
1646 'byte-goto-if-nil)
1647 (cdr lap1)))
1648 (setcar lap1 (if (eq (car lap1) 'byte-goto-if-nil)
1649 'byte-goto-if-not-nil
1650 'byte-goto-if-nil))
1651 (setq lap (delq lap0 lap))
1652 (setq keep-going t))
1653 ;;
1654 ;; goto-X-if-nil goto-Y X: --> goto-Y-if-non-nil X:
1655 ;; goto-X-if-non-nil goto-Y X: --> goto-Y-if-nil X:
1656 ;;
1657 ;; it is wrong to do the same thing for the -else-pop variants.
1658 ;;
1659 ((and (or (eq 'byte-goto-if-nil (car lap0))
1660 (eq 'byte-goto-if-not-nil (car lap0))) ; gotoX
1661 (eq 'byte-goto (car lap1)) ; gotoY
1662 (eq (cdr lap0) lap2)) ; TAG X
1663 (let ((inverse (if (eq 'byte-goto-if-nil (car lap0))
1664 'byte-goto-if-not-nil 'byte-goto-if-nil)))
1665 (byte-compile-log-lap " %s %s %s:\t-->\t%s %s:"
1666 lap0 lap1 lap2
1667 (cons inverse (cdr lap1)) lap2)
1668 (setq lap (delq lap0 lap))
1669 (setcar lap1 inverse)
1670 (setq keep-going t)))
1671 ;;
1672 ;; const goto-if-* --> whatever
1673 ;;
1674 ((and (eq 'byte-constant (car lap0))
1675 (memq (car lap1) byte-conditional-ops))
1676 (cond ((if (or (eq (car lap1) 'byte-goto-if-nil)
1677 (eq (car lap1) 'byte-goto-if-nil-else-pop))
1678 (car (cdr lap0))
1679 (not (car (cdr lap0))))
1680 (byte-compile-log-lap " %s %s\t-->\t<deleted>"
1681 lap0 lap1)
1682 (setq rest (cdr rest)
1683 lap (delq lap0 (delq lap1 lap))))
1684 (t
1685 (if (memq (car lap1) byte-goto-always-pop-ops)
1686 (progn
1687 (byte-compile-log-lap " %s %s\t-->\t%s"
1688 lap0 lap1 (cons 'byte-goto (cdr lap1)))
1689 (setq lap (delq lap0 lap)))
1690 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1691 (cons 'byte-goto (cdr lap1))))
1692 (setcar lap1 'byte-goto)))
1693 (setq keep-going t))
1694 ;;
1695 ;; varref-X varref-X --> varref-X dup
1696 ;; varref-X [dup ...] varref-X --> varref-X [dup ...] dup
1697 ;; We don't optimize the const-X variations on this here,
1698 ;; because that would inhibit some goto optimizations; we
1699 ;; optimize the const-X case after all other optimizations.
1700 ;;
1701 ((and (eq 'byte-varref (car lap0))
1702 (progn
1703 (setq tmp (cdr rest))
1704 (while (eq (car (car tmp)) 'byte-dup)
1705 (setq tmp (cdr tmp)))
1706 t)
1707 (eq (cdr lap0) (cdr (car tmp)))
1708 (eq 'byte-varref (car (car tmp))))
1709 (if (memq byte-optimize-log '(t byte))
1710 (let ((str ""))
1711 (setq tmp2 (cdr rest))
1712 (while (not (eq tmp tmp2))
1713 (setq tmp2 (cdr tmp2)
1714 str (concat str " dup")))
1715 (byte-compile-log-lap " %s%s %s\t-->\t%s%s dup"
1716 lap0 str lap0 lap0 str)))
1717 (setq keep-going t)
1718 (setcar (car tmp) 'byte-dup)
1719 (setcdr (car tmp) 0)
1720 (setq rest tmp))
1721 ;;
1722 ;; TAG1: TAG2: --> TAG1: <deleted>
1723 ;; (and other references to TAG2 are replaced with TAG1)
1724 ;;
1725 ((and (eq (car lap0) 'TAG)
1726 (eq (car lap1) 'TAG))
1727 (and (memq byte-optimize-log '(t byte))
1728 (byte-compile-log " adjacent tags %d and %d merged"
1729 (nth 1 lap1) (nth 1 lap0)))
1730 (setq tmp3 lap)
1731 (while (setq tmp2 (rassq lap0 tmp3))
1732 (setcdr tmp2 lap1)
1733 (setq tmp3 (cdr (memq tmp2 tmp3))))
1734 (setq lap (delq lap0 lap)
1735 keep-going t))
1736 ;;
1737 ;; unused-TAG: --> <deleted>
1738 ;;
1739 ((and (eq 'TAG (car lap0))
1740 (not (rassq lap0 lap)))
1741 (and (memq byte-optimize-log '(t byte))
1742 (byte-compile-log " unused tag %d removed" (nth 1 lap0)))
1743 (setq lap (delq lap0 lap)
1744 keep-going t))
1745 ;;
1746 ;; goto ... --> goto <delete until TAG or end>
1747 ;; return ... --> return <delete until TAG or end>
1748 ;;
1749 ((and (memq (car lap0) '(byte-goto byte-return))
1750 (not (memq (car lap1) '(TAG nil))))
1751 (setq tmp rest)
1752 (let ((i 0)
1753 (opt-p (memq byte-optimize-log '(t lap)))
1754 str deleted)
1755 (while (and (setq tmp (cdr tmp))
1756 (not (eq 'TAG (car (car tmp)))))
1757 (if opt-p (setq deleted (cons (car tmp) deleted)
1758 str (concat str " %s")
1759 i (1+ i))))
1760 (if opt-p
1761 (let ((tagstr
1762 (if (eq 'TAG (car (car tmp)))
1763 (format "%d:" (car (cdr (car tmp))))
1764 (or (car tmp) ""))))
1765 (if (< i 6)
1766 (apply 'byte-compile-log-lap-1
1767 (concat " %s" str
1768 " %s\t-->\t%s <deleted> %s")
1769 lap0
1770 (nconc (nreverse deleted)
1771 (list tagstr lap0 tagstr)))
1772 (byte-compile-log-lap
1773 " %s <%d unreachable op%s> %s\t-->\t%s <deleted> %s"
1774 lap0 i (if (= i 1) "" "s")
1775 tagstr lap0 tagstr))))
1776 (rplacd rest tmp))
1777 (setq keep-going t))
1778 ;;
1779 ;; <safe-op> unbind --> unbind <safe-op>
1780 ;; (this may enable other optimizations.)
1781 ;;
1782 ((and (eq 'byte-unbind (car lap1))
1783 (memq (car lap0) byte-after-unbind-ops))
1784 (byte-compile-log-lap " %s %s\t-->\t%s %s" lap0 lap1 lap1 lap0)
1785 (setcar rest lap1)
1786 (setcar (cdr rest) lap0)
1787 (setq keep-going t))
1788 ;;
1789 ;; varbind-X unbind-N --> discard unbind-(N-1)
1790 ;; save-excursion unbind-N --> unbind-(N-1)
1791 ;; save-restriction unbind-N --> unbind-(N-1)
1792 ;;
1793 ((and (eq 'byte-unbind (car lap1))
1794 (memq (car lap0) '(byte-varbind byte-save-excursion
1795 byte-save-restriction))
1796 (< 0 (cdr lap1)))
1797 (if (zerop (setcdr lap1 (1- (cdr lap1))))
1798 (delq lap1 rest))
1799 (if (eq (car lap0) 'byte-varbind)
1800 (setcar rest (cons 'byte-discard 0))
1801 (setq lap (delq lap0 lap)))
1802 (byte-compile-log-lap " %s %s\t-->\t%s %s"
1803 lap0 (cons (car lap1) (1+ (cdr lap1)))
1804 (if (eq (car lap0) 'byte-varbind)
1805 (car rest)
1806 (car (cdr rest)))
1807 (if (and (/= 0 (cdr lap1))
1808 (eq (car lap0) 'byte-varbind))
1809 (car (cdr rest))
1810 ""))
1811 (setq keep-going t))
1812 ;;
1813 ;; goto*-X ... X: goto-Y --> goto*-Y
1814 ;; goto-X ... X: return --> return
1815 ;;
1816 ((and (memq (car lap0) byte-goto-ops)
1817 (memq (car (setq tmp (nth 1 (memq (cdr lap0) lap))))
1818 '(byte-goto byte-return)))
1819 (cond ((and (not (eq tmp lap0))
1820 (or (eq (car lap0) 'byte-goto)
1821 (eq (car tmp) 'byte-goto)))
1822 (byte-compile-log-lap " %s [%s]\t-->\t%s"
1823 (car lap0) tmp tmp)
1824 (if (eq (car tmp) 'byte-return)
1825 (setcar lap0 'byte-return))
1826 (setcdr lap0 (cdr tmp))
1827 (setq keep-going t))))
1828 ;;
1829 ;; goto-*-else-pop X ... X: goto-if-* --> whatever
1830 ;; goto-*-else-pop X ... X: discard --> whatever
1831 ;;
1832 ((and (memq (car lap0) '(byte-goto-if-nil-else-pop
1833 byte-goto-if-not-nil-else-pop))
1834 (memq (car (car (setq tmp (cdr (memq (cdr lap0) lap)))))
1835 (eval-when-compile
1836 (cons 'byte-discard byte-conditional-ops)))
1837 (not (eq lap0 (car tmp))))
1838 (setq tmp2 (car tmp))
1839 (setq tmp3 (assq (car lap0) '((byte-goto-if-nil-else-pop
1840 byte-goto-if-nil)
1841 (byte-goto-if-not-nil-else-pop
1842 byte-goto-if-not-nil))))
1843 (if (memq (car tmp2) tmp3)
1844 (progn (setcar lap0 (car tmp2))
1845 (setcdr lap0 (cdr tmp2))
1846 (byte-compile-log-lap " %s-else-pop [%s]\t-->\t%s"
1847 (car lap0) tmp2 lap0))
1848 ;; Get rid of the -else-pop's and jump one step further.
1849 (or (eq 'TAG (car (nth 1 tmp)))
1850 (setcdr tmp (cons (byte-compile-make-tag)
1851 (cdr tmp))))
1852 (byte-compile-log-lap " %s [%s]\t-->\t%s <skip>"
1853 (car lap0) tmp2 (nth 1 tmp3))
1854 (setcar lap0 (nth 1 tmp3))
1855 (setcdr lap0 (nth 1 tmp)))
1856 (setq keep-going t))
1857 ;;
1858 ;; const goto-X ... X: goto-if-* --> whatever
1859 ;; const goto-X ... X: discard --> whatever
1860 ;;
1861 ((and (eq (car lap0) 'byte-constant)
1862 (eq (car lap1) 'byte-goto)
1863 (memq (car (car (setq tmp (cdr (memq (cdr lap1) lap)))))
1864 (eval-when-compile
1865 (cons 'byte-discard byte-conditional-ops)))
1866 (not (eq lap1 (car tmp))))
1867 (setq tmp2 (car tmp))
1868 (cond ((memq (car tmp2)
1869 (if (null (car (cdr lap0)))
1870 '(byte-goto-if-nil byte-goto-if-nil-else-pop)
1871 '(byte-goto-if-not-nil
1872 byte-goto-if-not-nil-else-pop)))
1873 (byte-compile-log-lap " %s goto [%s]\t-->\t%s %s"
1874 lap0 tmp2 lap0 tmp2)
1875 (setcar lap1 (car tmp2))
1876 (setcdr lap1 (cdr tmp2))
1877 ;; Let next step fix the (const,goto-if*) sequence.
1878 (setq rest (cons nil rest)))
1879 (t
1880 ;; Jump one step further
1881 (byte-compile-log-lap
1882 " %s goto [%s]\t-->\t<deleted> goto <skip>"
1883 lap0 tmp2)
1884 (or (eq 'TAG (car (nth 1 tmp)))
1885 (setcdr tmp (cons (byte-compile-make-tag)
1886 (cdr tmp))))
1887 (setcdr lap1 (car (cdr tmp)))
1888 (setq lap (delq lap0 lap))))
1889 (setq keep-going t))
1890 ;;
1891 ;; X: varref-Y ... varset-Y goto-X -->
1892 ;; X: varref-Y Z: ... dup varset-Y goto-Z
1893 ;; (varset-X goto-BACK, BACK: varref-X --> copy the varref down.)
1894 ;; (This is so usual for while loops that it is worth handling).
1895 ;;
1896 ((and (eq (car lap1) 'byte-varset)
1897 (eq (car lap2) 'byte-goto)
1898 (not (memq (cdr lap2) rest)) ;Backwards jump
1899 (eq (car (car (setq tmp (cdr (memq (cdr lap2) lap)))))
1900 'byte-varref)
1901 (eq (cdr (car tmp)) (cdr lap1))
1902 (not (memq (car (cdr lap1)) byte-boolean-vars)))
1903 ;;(byte-compile-log-lap " Pulled %s to end of loop" (car tmp))
1904 (let ((newtag (byte-compile-make-tag)))
1905 (byte-compile-log-lap
1906 " %s: %s ... %s %s\t-->\t%s: %s %s: ... %s %s %s"
1907 (nth 1 (cdr lap2)) (car tmp)
1908 lap1 lap2
1909 (nth 1 (cdr lap2)) (car tmp)
1910 (nth 1 newtag) 'byte-dup lap1
1911 (cons 'byte-goto newtag)
1912 )
1913 (setcdr rest (cons (cons 'byte-dup 0) (cdr rest)))
1914 (setcdr tmp (cons (setcdr lap2 newtag) (cdr tmp))))
1915 (setq add-depth 1)
1916 (setq keep-going t))
1917 ;;
1918 ;; goto-X Y: ... X: goto-if*-Y --> goto-if-not-*-X+1 Y:
1919 ;; (This can pull the loop test to the end of the loop)
1920 ;;
1921 ((and (eq (car lap0) 'byte-goto)
1922 (eq (car lap1) 'TAG)
1923 (eq lap1
1924 (cdr (car (setq tmp (cdr (memq (cdr lap0) lap))))))
1925 (memq (car (car tmp))
1926 '(byte-goto byte-goto-if-nil byte-goto-if-not-nil
1927 byte-goto-if-nil-else-pop)))
1928 ;; (byte-compile-log-lap " %s %s, %s %s --> moved conditional"
1929 ;; lap0 lap1 (cdr lap0) (car tmp))
1930 (let ((newtag (byte-compile-make-tag)))
1931 (byte-compile-log-lap
1932 "%s %s: ... %s: %s\t-->\t%s ... %s:"
1933 lap0 (nth 1 lap1) (nth 1 (cdr lap0)) (car tmp)
1934 (cons (cdr (assq (car (car tmp))
1935 '((byte-goto-if-nil . byte-goto-if-not-nil)
1936 (byte-goto-if-not-nil . byte-goto-if-nil)
1937 (byte-goto-if-nil-else-pop .
1938 byte-goto-if-not-nil-else-pop)
1939 (byte-goto-if-not-nil-else-pop .
1940 byte-goto-if-nil-else-pop))))
1941 newtag)
1942
1943 (nth 1 newtag)
1944 )
1945 (setcdr tmp (cons (setcdr lap0 newtag) (cdr tmp)))
1946 (if (eq (car (car tmp)) 'byte-goto-if-nil-else-pop)
1947 ;; We can handle this case but not the -if-not-nil case,
1948 ;; because we won't know which non-nil constant to push.
1949 (setcdr rest (cons (cons 'byte-constant
1950 (byte-compile-get-constant nil))
1951 (cdr rest))))
1952 (setcar lap0 (nth 1 (memq (car (car tmp))
1953 '(byte-goto-if-nil-else-pop
1954 byte-goto-if-not-nil
1955 byte-goto-if-nil
1956 byte-goto-if-not-nil
1957 byte-goto byte-goto))))
1958 )
1959 (setq keep-going t))
1960 )
1961 (setq rest (cdr rest)))
1962 )
1963 ;; Cleanup stage:
1964 ;; Rebuild byte-compile-constants / byte-compile-variables.
1965 ;; Simple optimizations that would inhibit other optimizations if they
1966 ;; were done in the optimizing loop, and optimizations which there is no
1967 ;; need to do more than once.
1968 (setq byte-compile-constants nil
1969 byte-compile-variables nil)
1970 (setq rest lap)
1971 (while rest
1972 (setq lap0 (car rest)
1973 lap1 (nth 1 rest))
1974 (if (memq (car lap0) byte-constref-ops)
1975 (if (or (eq (car lap0) 'byte-constant)
1976 (eq (car lap0) 'byte-constant2))
1977 (unless (memq (cdr lap0) byte-compile-constants)
1978 (setq byte-compile-constants (cons (cdr lap0)
1979 byte-compile-constants)))
1980 (unless (memq (cdr lap0) byte-compile-variables)
1981 (setq byte-compile-variables (cons (cdr lap0)
1982 byte-compile-variables)))))
1983 (cond (;;
1984 ;; const-C varset-X const-C --> const-C dup varset-X
1985 ;; const-C varbind-X const-C --> const-C dup varbind-X
1986 ;;
1987 (and (eq (car lap0) 'byte-constant)
1988 (eq (car (nth 2 rest)) 'byte-constant)
1989 (eq (cdr lap0) (cdr (nth 2 rest)))
1990 (memq (car lap1) '(byte-varbind byte-varset)))
1991 (byte-compile-log-lap " %s %s %s\t-->\t%s dup %s"
1992 lap0 lap1 lap0 lap0 lap1)
1993 (setcar (cdr (cdr rest)) (cons (car lap1) (cdr lap1)))
1994 (setcar (cdr rest) (cons 'byte-dup 0))
1995 (setq add-depth 1))
1996 ;;
1997 ;; const-X [dup/const-X ...] --> const-X [dup ...] dup
1998 ;; varref-X [dup/varref-X ...] --> varref-X [dup ...] dup
1999 ;;
2000 ((memq (car lap0) '(byte-constant byte-varref))
2001 (setq tmp rest
2002 tmp2 nil)
2003 (while (progn
2004 (while (eq 'byte-dup (car (car (setq tmp (cdr tmp))))))
2005 (and (eq (cdr lap0) (cdr (car tmp)))
2006 (eq (car lap0) (car (car tmp)))))
2007 (setcar tmp (cons 'byte-dup 0))
2008 (setq tmp2 t))
2009 (if tmp2
2010 (byte-compile-log-lap
2011 " %s [dup/%s]...\t-->\t%s dup..." lap0 lap0 lap0)))
2012 ;;
2013 ;; unbind-N unbind-M --> unbind-(N+M)
2014 ;;
2015 ((and (eq 'byte-unbind (car lap0))
2016 (eq 'byte-unbind (car lap1)))
2017 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
2018 (cons 'byte-unbind
2019 (+ (cdr lap0) (cdr lap1))))
2020 (setq keep-going t)
2021 (setq lap (delq lap0 lap))
2022 (setcdr lap1 (+ (cdr lap1) (cdr lap0))))
2023 )
2024 (setq rest (cdr rest)))
2025 (setq byte-compile-maxdepth (+ byte-compile-maxdepth add-depth)))
2026 lap)
2027
2028 (provide 'byte-opt)
2029
2030 \f
2031 ;; To avoid "lisp nesting exceeds max-lisp-eval-depth" when this file compiles
2032 ;; itself, compile some of its most used recursive functions (at load time).
2033 ;;
2034 (eval-when-compile
2035 (or (byte-code-function-p (symbol-function 'byte-optimize-form))
2036 (assq 'byte-code (symbol-function 'byte-optimize-form))
2037 (let ((byte-optimize nil)
2038 (byte-compile-warnings nil))
2039 (mapc (lambda (x)
2040 (or noninteractive (message "compiling %s..." x))
2041 (byte-compile x)
2042 (or noninteractive (message "compiling %s...done" x)))
2043 '(byte-optimize-form
2044 byte-optimize-body
2045 byte-optimize-predicate
2046 byte-optimize-binary-predicate
2047 ;; Inserted some more than necessary, to speed it up.
2048 byte-optimize-form-code-walker
2049 byte-optimize-lapcode))))
2050 nil)
2051
2052 ;; arch-tag: 0f14076b-737e-4bef-aae6-908826ec1ff1
2053 ;;; byte-opt.el ends here