]> code.delx.au - gnu-emacs/blob - src/lisp.h
merge master
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2015 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #define DECLARE_GDB_SYM(type, id) type const id EXTERNALLY_VISIBLE
48 #ifdef MAIN_PROGRAM
49 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) DECLARE_GDB_SYM (type, id)
50 # define DEFINE_GDB_SYMBOL_END(id) = id;
51 #else
52 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) extern DECLARE_GDB_SYM (type, id)
53 # define DEFINE_GDB_SYMBOL_END(val) ;
54 #endif
55
56 /* The ubiquitous max and min macros. */
57 #undef min
58 #undef max
59 #define max(a, b) ((a) > (b) ? (a) : (b))
60 #define min(a, b) ((a) < (b) ? (a) : (b))
61
62 /* Number of elements in an array. */
63 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
64
65 /* Number of bits in a Lisp_Object tag. */
66 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
67 #define GCTYPEBITS 3
68 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
69
70 /* The number of bits needed in an EMACS_INT over and above the number
71 of bits in a pointer. This is 0 on systems where:
72 1. We can specify multiple-of-8 alignment on static variables.
73 2. We know malloc returns a multiple of 8. */
74 #if (defined alignas \
75 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
76 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
77 || defined CYGWIN))
78 # define NONPOINTER_BITS 0
79 #else
80 # define NONPOINTER_BITS GCTYPEBITS
81 #endif
82
83 /* EMACS_INT - signed integer wide enough to hold an Emacs value
84 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
85 pI - printf length modifier for EMACS_INT
86 EMACS_UINT - unsigned variant of EMACS_INT */
87 #ifndef EMACS_INT_MAX
88 # if INTPTR_MAX <= 0
89 # error "INTPTR_MAX misconfigured"
90 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
91 typedef int EMACS_INT;
92 typedef unsigned int EMACS_UINT;
93 # define EMACS_INT_MAX INT_MAX
94 # define pI ""
95 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
96 typedef long int EMACS_INT;
97 typedef unsigned long EMACS_UINT;
98 # define EMACS_INT_MAX LONG_MAX
99 # define pI "l"
100 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
101 In theory this is not safe, but in practice it seems to be OK. */
102 # elif INTPTR_MAX <= LLONG_MAX
103 typedef long long int EMACS_INT;
104 typedef unsigned long long int EMACS_UINT;
105 # define EMACS_INT_MAX LLONG_MAX
106 # define pI "ll"
107 # else
108 # error "INTPTR_MAX too large"
109 # endif
110 #endif
111
112 /* Number of bits to put in each character in the internal representation
113 of bool vectors. This should not vary across implementations. */
114 enum { BOOL_VECTOR_BITS_PER_CHAR =
115 #define BOOL_VECTOR_BITS_PER_CHAR 8
116 BOOL_VECTOR_BITS_PER_CHAR
117 };
118
119 /* An unsigned integer type representing a fixed-length bit sequence,
120 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
121 for speed, but it is unsigned char on weird platforms. */
122 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
123 typedef size_t bits_word;
124 # define BITS_WORD_MAX SIZE_MAX
125 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
126 #else
127 typedef unsigned char bits_word;
128 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
129 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
130 #endif
131 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
132
133 /* Number of bits in some machine integer types. */
134 enum
135 {
136 BITS_PER_CHAR = CHAR_BIT,
137 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
138 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
139 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
140 };
141
142 /* printmax_t and uprintmax_t are types for printing large integers.
143 These are the widest integers that are supported for printing.
144 pMd etc. are conversions for printing them.
145 On C99 hosts, there's no problem, as even the widest integers work.
146 Fall back on EMACS_INT on pre-C99 hosts. */
147 #ifdef PRIdMAX
148 typedef intmax_t printmax_t;
149 typedef uintmax_t uprintmax_t;
150 # define pMd PRIdMAX
151 # define pMu PRIuMAX
152 #else
153 typedef EMACS_INT printmax_t;
154 typedef EMACS_UINT uprintmax_t;
155 # define pMd pI"d"
156 # define pMu pI"u"
157 #endif
158
159 /* Use pD to format ptrdiff_t values, which suffice for indexes into
160 buffers and strings. Emacs never allocates objects larger than
161 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
162 In C99, pD can always be "t"; configure it here for the sake of
163 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
164 #if PTRDIFF_MAX == INT_MAX
165 # define pD ""
166 #elif PTRDIFF_MAX == LONG_MAX
167 # define pD "l"
168 #elif PTRDIFF_MAX == LLONG_MAX
169 # define pD "ll"
170 #else
171 # define pD "t"
172 #endif
173
174 /* Extra internal type checking? */
175
176 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
177 'assume (COND)'. COND should be free of side effects, as it may or
178 may not be evaluated.
179
180 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
181 defined and suppress_checking is false, and does nothing otherwise.
182 Emacs dies if COND is checked and is false. The suppress_checking
183 variable is initialized to 0 in alloc.c. Set it to 1 using a
184 debugger to temporarily disable aborting on detected internal
185 inconsistencies or error conditions.
186
187 In some cases, a good compiler may be able to optimize away the
188 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
189 uses eassert to test STRINGP (x), but a particular use of XSTRING
190 is invoked only after testing that STRINGP (x) is true, making the
191 test redundant.
192
193 eassume is like eassert except that it also causes the compiler to
194 assume that COND is true afterwards, regardless of whether runtime
195 checking is enabled. This can improve performance in some cases,
196 though it can degrade performance in others. It's often suboptimal
197 for COND to call external functions or access volatile storage. */
198
199 #ifndef ENABLE_CHECKING
200 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
201 # define eassume(cond) assume (cond)
202 #else /* ENABLE_CHECKING */
203
204 extern _Noreturn void die (const char *, const char *, int);
205
206 extern bool suppress_checking EXTERNALLY_VISIBLE;
207
208 # define eassert(cond) \
209 (suppress_checking || (cond) \
210 ? (void) 0 \
211 : die (# cond, __FILE__, __LINE__))
212 # define eassume(cond) \
213 (suppress_checking \
214 ? assume (cond) \
215 : (cond) \
216 ? (void) 0 \
217 : die (# cond, __FILE__, __LINE__))
218 #endif /* ENABLE_CHECKING */
219
220 \f
221 /* Use the configure flag --enable-check-lisp-object-type to make
222 Lisp_Object use a struct type instead of the default int. The flag
223 causes CHECK_LISP_OBJECT_TYPE to be defined. */
224
225 /***** Select the tagging scheme. *****/
226 /* The following option controls the tagging scheme:
227 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
228 always 0, and we can thus use them to hold tag bits, without
229 restricting our addressing space.
230
231 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
232 restricting our possible address range.
233
234 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
235 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
236 on the few static Lisp_Objects used: lispsym, all the defsubr, and
237 the two special buffers buffer_defaults and buffer_local_symbols. */
238
239 enum Lisp_Bits
240 {
241 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
242 integer constant, for MSVC. */
243 #define GCALIGNMENT 8
244
245 /* Number of bits in a Lisp_Object value, not counting the tag. */
246 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
247
248 /* Number of bits in a Lisp fixnum tag. */
249 INTTYPEBITS = GCTYPEBITS - 1,
250
251 /* Number of bits in a Lisp fixnum value, not counting the tag. */
252 FIXNUM_BITS = VALBITS + 1
253 };
254
255 #if GCALIGNMENT != 1 << GCTYPEBITS
256 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
257 #endif
258
259 /* The maximum value that can be stored in a EMACS_INT, assuming all
260 bits other than the type bits contribute to a nonnegative signed value.
261 This can be used in #if, e.g., '#if USB_TAG' below expands to an
262 expression involving VAL_MAX. */
263 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
264
265 /* Whether the least-significant bits of an EMACS_INT contain the tag.
266 On hosts where pointers-as-ints do not exceed VAL_MAX / 2, USE_LSB_TAG is:
267 a. unnecessary, because the top bits of an EMACS_INT are unused, and
268 b. slower, because it typically requires extra masking.
269 So, USE_LSB_TAG is true only on hosts where it might be useful. */
270 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
271 #define USE_LSB_TAG (VAL_MAX / 2 < INTPTR_MAX)
272 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
273
274 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
275 # error "USE_LSB_TAG not supported on this platform; please report this." \
276 "Try 'configure --with-wide-int' to work around the problem."
277 error !;
278 #endif
279
280 #ifndef alignas
281 # define alignas(alignment) /* empty */
282 # if USE_LSB_TAG
283 # error "USE_LSB_TAG requires alignas"
284 # endif
285 #endif
286
287 #ifdef HAVE_STRUCT_ATTRIBUTE_ALIGNED
288 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
289 #else
290 # define GCALIGNED /* empty */
291 #endif
292
293 /* Some operations are so commonly executed that they are implemented
294 as macros, not functions, because otherwise runtime performance would
295 suffer too much when compiling with GCC without optimization.
296 There's no need to inline everything, just the operations that
297 would otherwise cause a serious performance problem.
298
299 For each such operation OP, define a macro lisp_h_OP that contains
300 the operation's implementation. That way, OP can be implemented
301 via a macro definition like this:
302
303 #define OP(x) lisp_h_OP (x)
304
305 and/or via a function definition like this:
306
307 LISP_MACRO_DEFUN (OP, Lisp_Object, (Lisp_Object x), (x))
308
309 which macro-expands to this:
310
311 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
312
313 without worrying about the implementations diverging, since
314 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
315 are intended to be private to this include file, and should not be
316 used elsewhere.
317
318 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
319 functions, once most developers have access to GCC 4.8 or later and
320 can use "gcc -Og" to debug. Maybe in the year 2016. See
321 Bug#11935.
322
323 Commentary for these macros can be found near their corresponding
324 functions, below. */
325
326 #if CHECK_LISP_OBJECT_TYPE
327 # define lisp_h_XLI(o) ((o).i)
328 # define lisp_h_XIL(i) ((Lisp_Object) { i })
329 #else
330 # define lisp_h_XLI(o) (o)
331 # define lisp_h_XIL(i) (i)
332 #endif
333 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
334 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
335 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
336 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
337 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
338 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
339 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
340 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
341 #define lisp_h_INTEGERP(x) ((XTYPE (x) & (Lisp_Int0 | ~Lisp_Int1)) == Lisp_Int0)
342 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
343 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
344 #define lisp_h_NILP(x) EQ (x, Qnil)
345 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
346 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
347 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
348 #define lisp_h_SYMBOL_VAL(sym) \
349 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
350 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
351 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
352 #define lisp_h_XCAR(c) XCONS (c)->car
353 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
354 #define lisp_h_XCONS(a) \
355 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
356 #define lisp_h_XHASH(a) XUINT (a)
357 #define lisp_h_XPNTR(a) \
358 (SYMBOLP (a) ? XSYMBOL (a) : (void *) ((intptr_t) (XLI (a) & VALMASK)))
359 #ifndef GC_CHECK_CONS_LIST
360 # define lisp_h_check_cons_list() ((void) 0)
361 #endif
362 #if USE_LSB_TAG
363 # define lisp_h_make_number(n) \
364 XIL ((EMACS_INT) (((EMACS_UINT) (n) << INTTYPEBITS) + Lisp_Int0))
365 # define lisp_h_XFASTINT(a) XINT (a)
366 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
367 # define lisp_h_XSYMBOL(a) \
368 (eassert (SYMBOLP (a)), \
369 (struct Lisp_Symbol *) ((uintptr_t) XLI (a) - Lisp_Symbol \
370 + (char *) lispsym))
371 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
372 # define lisp_h_XUNTAG(a, type) ((void *) (intptr_t) (XLI (a) - (type)))
373 #endif
374
375 /* When compiling via gcc -O0, define the key operations as macros, as
376 Emacs is too slow otherwise. To disable this optimization, compile
377 with -DINLINING=false. */
378 #if (defined __NO_INLINE__ \
379 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
380 && ! (defined INLINING && ! INLINING))
381 # define XLI(o) lisp_h_XLI (o)
382 # define XIL(i) lisp_h_XIL (i)
383 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
384 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
385 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
386 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
387 # define CONSP(x) lisp_h_CONSP (x)
388 # define EQ(x, y) lisp_h_EQ (x, y)
389 # define FLOATP(x) lisp_h_FLOATP (x)
390 # define INTEGERP(x) lisp_h_INTEGERP (x)
391 # define MARKERP(x) lisp_h_MARKERP (x)
392 # define MISCP(x) lisp_h_MISCP (x)
393 # define NILP(x) lisp_h_NILP (x)
394 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
395 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
396 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
397 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
398 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
399 # define XCAR(c) lisp_h_XCAR (c)
400 # define XCDR(c) lisp_h_XCDR (c)
401 # define XCONS(a) lisp_h_XCONS (a)
402 # define XHASH(a) lisp_h_XHASH (a)
403 # define XPNTR(a) lisp_h_XPNTR (a)
404 # ifndef GC_CHECK_CONS_LIST
405 # define check_cons_list() lisp_h_check_cons_list ()
406 # endif
407 # if USE_LSB_TAG
408 # define make_number(n) lisp_h_make_number (n)
409 # define XFASTINT(a) lisp_h_XFASTINT (a)
410 # define XINT(a) lisp_h_XINT (a)
411 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
412 # define XTYPE(a) lisp_h_XTYPE (a)
413 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
414 # endif
415 #endif
416
417 /* Define NAME as a lisp.h inline function that returns TYPE and has
418 arguments declared as ARGDECLS and passed as ARGS. ARGDECLS and
419 ARGS should be parenthesized. Implement the function by calling
420 lisp_h_NAME ARGS. */
421 #define LISP_MACRO_DEFUN(name, type, argdecls, args) \
422 INLINE type (name) argdecls { return lisp_h_##name args; }
423
424 /* like LISP_MACRO_DEFUN, except NAME returns void. */
425 #define LISP_MACRO_DEFUN_VOID(name, argdecls, args) \
426 INLINE void (name) argdecls { lisp_h_##name args; }
427
428
429 /* Define the fundamental Lisp data structures. */
430
431 /* This is the set of Lisp data types. If you want to define a new
432 data type, read the comments after Lisp_Fwd_Type definition
433 below. */
434
435 /* Lisp integers use 2 tags, to give them one extra bit, thus
436 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
437 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
438 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
439
440 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
441 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
442 vociferously about them. */
443 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
444 || (defined __SUNPRO_C && __STDC__))
445 #define ENUM_BF(TYPE) unsigned int
446 #else
447 #define ENUM_BF(TYPE) enum TYPE
448 #endif
449
450
451 enum Lisp_Type
452 {
453 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
454 Lisp_Symbol = 0,
455
456 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
457 whose first member indicates the subtype. */
458 Lisp_Misc = 1,
459
460 /* Integer. XINT (obj) is the integer value. */
461 Lisp_Int0 = 2,
462 Lisp_Int1 = USE_LSB_TAG ? 6 : 3,
463
464 /* String. XSTRING (object) points to a struct Lisp_String.
465 The length of the string, and its contents, are stored therein. */
466 Lisp_String = 4,
467
468 /* Vector of Lisp objects, or something resembling it.
469 XVECTOR (object) points to a struct Lisp_Vector, which contains
470 the size and contents. The size field also contains the type
471 information, if it's not a real vector object. */
472 Lisp_Vectorlike = 5,
473
474 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
475 Lisp_Cons = USE_LSB_TAG ? 3 : 6,
476
477 Lisp_Float = 7
478 };
479
480 /* This is the set of data types that share a common structure.
481 The first member of the structure is a type code from this set.
482 The enum values are arbitrary, but we'll use large numbers to make it
483 more likely that we'll spot the error if a random word in memory is
484 mistakenly interpreted as a Lisp_Misc. */
485 enum Lisp_Misc_Type
486 {
487 Lisp_Misc_Free = 0x5eab,
488 Lisp_Misc_Marker,
489 Lisp_Misc_Overlay,
490 Lisp_Misc_Save_Value,
491 /* Currently floats are not a misc type,
492 but let's define this in case we want to change that. */
493 Lisp_Misc_Float,
494 /* This is not a type code. It is for range checking. */
495 Lisp_Misc_Limit
496 };
497
498 /* These are the types of forwarding objects used in the value slot
499 of symbols for special built-in variables whose value is stored in
500 C variables. */
501 enum Lisp_Fwd_Type
502 {
503 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
504 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
505 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
506 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
507 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
508 };
509
510 /* If you want to define a new Lisp data type, here are some
511 instructions. See the thread at
512 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
513 for more info.
514
515 First, there are already a couple of Lisp types that can be used if
516 your new type does not need to be exposed to Lisp programs nor
517 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
518 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
519 is suitable for temporarily stashing away pointers and integers in
520 a Lisp object. The latter is useful for vector-like Lisp objects
521 that need to be used as part of other objects, but which are never
522 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
523 an example).
524
525 These two types don't look pretty when printed, so they are
526 unsuitable for Lisp objects that can be exposed to users.
527
528 To define a new data type, add one more Lisp_Misc subtype or one
529 more pseudovector subtype. Pseudovectors are more suitable for
530 objects with several slots that need to support fast random access,
531 while Lisp_Misc types are for everything else. A pseudovector object
532 provides one or more slots for Lisp objects, followed by struct
533 members that are accessible only from C. A Lisp_Misc object is a
534 wrapper for a C struct that can contain anything you like.
535
536 Explicit freeing is discouraged for Lisp objects in general. But if
537 you really need to exploit this, use Lisp_Misc (check free_misc in
538 alloc.c to see why). There is no way to free a vectorlike object.
539
540 To add a new pseudovector type, extend the pvec_type enumeration;
541 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
542
543 For a Lisp_Misc, you will also need to add your entry to union
544 Lisp_Misc (but make sure the first word has the same structure as
545 the others, starting with a 16-bit member of the Lisp_Misc_Type
546 enumeration and a 1-bit GC markbit) and make sure the overall size
547 of the union is not increased by your addition.
548
549 For a new pseudovector, it's highly desirable to limit the size
550 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
551 Otherwise you will need to change sweep_vectors (also in alloc.c).
552
553 Then you will need to add switch branches in print.c (in
554 print_object, to print your object, and possibly also in
555 print_preprocess) and to alloc.c, to mark your object (in
556 mark_object) and to free it (in gc_sweep). The latter is also the
557 right place to call any code specific to your data type that needs
558 to run when the object is recycled -- e.g., free any additional
559 resources allocated for it that are not Lisp objects. You can even
560 make a pointer to the function that frees the resources a slot in
561 your object -- this way, the same object could be used to represent
562 several disparate C structures. */
563
564 #ifdef CHECK_LISP_OBJECT_TYPE
565
566 typedef struct { EMACS_INT i; } Lisp_Object;
567
568 #define LISP_INITIALLY(i) {i}
569
570 #undef CHECK_LISP_OBJECT_TYPE
571 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
572 #else /* CHECK_LISP_OBJECT_TYPE */
573
574 /* If a struct type is not wanted, define Lisp_Object as just a number. */
575
576 typedef EMACS_INT Lisp_Object;
577 #define LISP_INITIALLY(i) (i)
578 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
579 #endif /* CHECK_LISP_OBJECT_TYPE */
580
581 #define LISP_INITIALLY_ZERO LISP_INITIALLY (0)
582 \f
583 /* Forward declarations. */
584
585 /* Defined in this file. */
586 union Lisp_Fwd;
587 INLINE bool BOOL_VECTOR_P (Lisp_Object);
588 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
589 INLINE bool BUFFERP (Lisp_Object);
590 INLINE bool CHAR_TABLE_P (Lisp_Object);
591 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
592 INLINE bool (CONSP) (Lisp_Object);
593 INLINE bool (FLOATP) (Lisp_Object);
594 INLINE bool functionp (Lisp_Object);
595 INLINE bool (INTEGERP) (Lisp_Object);
596 INLINE bool (MARKERP) (Lisp_Object);
597 INLINE bool (MISCP) (Lisp_Object);
598 INLINE bool (NILP) (Lisp_Object);
599 INLINE bool OVERLAYP (Lisp_Object);
600 INLINE bool PROCESSP (Lisp_Object);
601 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
602 INLINE bool SAVE_VALUEP (Lisp_Object);
603 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
604 Lisp_Object);
605 INLINE bool STRINGP (Lisp_Object);
606 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
607 INLINE bool SUBRP (Lisp_Object);
608 INLINE bool (SYMBOLP) (Lisp_Object);
609 INLINE bool (VECTORLIKEP) (Lisp_Object);
610 INLINE bool WINDOWP (Lisp_Object);
611 INLINE bool TERMINALP (Lisp_Object);
612 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
613 INLINE struct Lisp_Symbol *(XSYMBOL) (Lisp_Object);
614 INLINE void *(XUNTAG) (Lisp_Object, int);
615
616 /* Defined in chartab.c. */
617 extern Lisp_Object char_table_ref (Lisp_Object, int);
618 extern void char_table_set (Lisp_Object, int, Lisp_Object);
619
620 /* Defined in data.c. */
621 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
622 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
623
624 /* Defined in emacs.c. */
625 extern bool might_dump;
626 /* True means Emacs has already been initialized.
627 Used during startup to detect startup of dumped Emacs. */
628 extern bool initialized;
629
630 /* Defined in floatfns.c. */
631 extern double extract_float (Lisp_Object);
632
633 \f
634 /* Interned state of a symbol. */
635
636 enum symbol_interned
637 {
638 SYMBOL_UNINTERNED = 0,
639 SYMBOL_INTERNED = 1,
640 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
641 };
642
643 enum symbol_redirect
644 {
645 SYMBOL_PLAINVAL = 4,
646 SYMBOL_VARALIAS = 1,
647 SYMBOL_LOCALIZED = 2,
648 SYMBOL_FORWARDED = 3
649 };
650
651 struct Lisp_Symbol
652 {
653 bool_bf gcmarkbit : 1;
654
655 /* Indicates where the value can be found:
656 0 : it's a plain var, the value is in the `value' field.
657 1 : it's a varalias, the value is really in the `alias' symbol.
658 2 : it's a localized var, the value is in the `blv' object.
659 3 : it's a forwarding variable, the value is in `forward'. */
660 ENUM_BF (symbol_redirect) redirect : 3;
661
662 /* Non-zero means symbol is constant, i.e. changing its value
663 should signal an error. If the value is 3, then the var
664 can be changed, but only by `defconst'. */
665 unsigned constant : 2;
666
667 /* Interned state of the symbol. This is an enumerator from
668 enum symbol_interned. */
669 unsigned interned : 2;
670
671 /* True means that this variable has been explicitly declared
672 special (with `defvar' etc), and shouldn't be lexically bound. */
673 bool_bf declared_special : 1;
674
675 /* True if pointed to from purespace and hence can't be GC'd. */
676 bool_bf pinned : 1;
677
678 /* The symbol's name, as a Lisp string. */
679 Lisp_Object name;
680
681 /* Value of the symbol or Qunbound if unbound. Which alternative of the
682 union is used depends on the `redirect' field above. */
683 union {
684 Lisp_Object value;
685 struct Lisp_Symbol *alias;
686 struct Lisp_Buffer_Local_Value *blv;
687 union Lisp_Fwd *fwd;
688 } val;
689
690 /* Function value of the symbol or Qnil if not fboundp. */
691 Lisp_Object function;
692
693 /* The symbol's property list. */
694 Lisp_Object plist;
695
696 /* Next symbol in obarray bucket, if the symbol is interned. */
697 struct Lisp_Symbol *next;
698 };
699
700 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
701 meaning as in the DEFUN macro, and is used to construct a prototype. */
702 /* We can use the same trick as in the DEFUN macro to generate the
703 appropriate prototype. */
704 #define EXFUN(fnname, maxargs) \
705 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
706
707 /* Note that the weird token-substitution semantics of ANSI C makes
708 this work for MANY and UNEVALLED. */
709 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
710 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
711 #define DEFUN_ARGS_0 (void)
712 #define DEFUN_ARGS_1 (Lisp_Object)
713 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
714 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
715 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
716 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
717 Lisp_Object)
718 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
719 Lisp_Object, Lisp_Object)
720 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
721 Lisp_Object, Lisp_Object, Lisp_Object)
722 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
723 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
724
725 /* Yield an integer that contains TAG along with PTR. */
726 #define TAG_PTR(tag, ptr) \
727 ((USE_LSB_TAG ? (tag) : (EMACS_UINT) (tag) << VALBITS) + (uintptr_t) (ptr))
728
729 /* Yield an integer that contains a symbol tag along with OFFSET.
730 OFFSET should be the offset in bytes from 'lispsym' to the symbol. */
731 #define TAG_SYMOFFSET(offset) \
732 TAG_PTR (Lisp_Symbol, \
733 ((uintptr_t) (offset) >> (USE_LSB_TAG ? 0 : GCTYPEBITS)))
734
735 /* XLI_BUILTIN_LISPSYM (iQwhatever) is equivalent to
736 XLI (builtin_lisp_symbol (Qwhatever)),
737 except the former expands to an integer constant expression. */
738 #define XLI_BUILTIN_LISPSYM(iname) TAG_SYMOFFSET ((iname) * sizeof *lispsym)
739
740 /* Declare extern constants for Lisp symbols. These can be helpful
741 when using a debugger like GDB, on older platforms where the debug
742 format does not represent C macros. */
743 #define DEFINE_LISP_SYMBOL_BEGIN(name) \
744 DEFINE_GDB_SYMBOL_BEGIN (Lisp_Object, name)
745 #define DEFINE_LISP_SYMBOL_END(name) \
746 DEFINE_GDB_SYMBOL_END (LISP_INITIALLY (XLI_BUILTIN_LISPSYM (i##name)))
747
748 #include "globals.h"
749
750 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
751 At the machine level, these operations are no-ops. */
752 LISP_MACRO_DEFUN (XLI, EMACS_INT, (Lisp_Object o), (o))
753 LISP_MACRO_DEFUN (XIL, Lisp_Object, (EMACS_INT i), (i))
754
755 /* In the size word of a vector, this bit means the vector has been marked. */
756
757 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
758 # define ARRAY_MARK_FLAG PTRDIFF_MIN
759 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
760
761 /* In the size word of a struct Lisp_Vector, this bit means it's really
762 some other vector-like object. */
763 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
764 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
765 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
766
767 /* In a pseudovector, the size field actually contains a word with one
768 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
769 with PVEC_TYPE_MASK to indicate the actual type. */
770 enum pvec_type
771 {
772 PVEC_NORMAL_VECTOR,
773 PVEC_FREE,
774 PVEC_PROCESS,
775 PVEC_FRAME,
776 PVEC_WINDOW,
777 PVEC_BOOL_VECTOR,
778 PVEC_BUFFER,
779 PVEC_HASH_TABLE,
780 PVEC_TERMINAL,
781 PVEC_WINDOW_CONFIGURATION,
782 PVEC_SUBR,
783 PVEC_OTHER,
784 #ifdef HAVE_XWIDGETS
785 PVEC_XWIDGET,
786 PVEC_XWIDGET_VIEW,
787 #endif
788
789 /* These should be last, check internal_equal to see why. */
790 PVEC_COMPILED,
791 PVEC_CHAR_TABLE,
792 PVEC_SUB_CHAR_TABLE,
793 PVEC_FONT /* Should be last because it's used for range checking. */
794 };
795
796 enum More_Lisp_Bits
797 {
798 /* For convenience, we also store the number of elements in these bits.
799 Note that this size is not necessarily the memory-footprint size, but
800 only the number of Lisp_Object fields (that need to be traced by GC).
801 The distinction is used, e.g., by Lisp_Process, which places extra
802 non-Lisp_Object fields at the end of the structure. */
803 PSEUDOVECTOR_SIZE_BITS = 12,
804 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
805
806 /* To calculate the memory footprint of the pseudovector, it's useful
807 to store the size of non-Lisp area in word_size units here. */
808 PSEUDOVECTOR_REST_BITS = 12,
809 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
810 << PSEUDOVECTOR_SIZE_BITS),
811
812 /* Used to extract pseudovector subtype information. */
813 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
814 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
815 };
816 \f
817 /* These functions extract various sorts of values from a Lisp_Object.
818 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
819 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
820 that cons. */
821
822 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
823 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
824 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
825 DEFINE_GDB_SYMBOL_END (VALMASK)
826
827 /* Largest and smallest representable fixnum values. These are the C
828 values. They are macros for use in static initializers. */
829 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
830 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
831
832 #if USE_LSB_TAG
833
834 LISP_MACRO_DEFUN (make_number, Lisp_Object, (EMACS_INT n), (n))
835 LISP_MACRO_DEFUN (XINT, EMACS_INT, (Lisp_Object a), (a))
836 LISP_MACRO_DEFUN (XFASTINT, EMACS_INT, (Lisp_Object a), (a))
837 LISP_MACRO_DEFUN (XSYMBOL, struct Lisp_Symbol *, (Lisp_Object a), (a))
838 LISP_MACRO_DEFUN (XTYPE, enum Lisp_Type, (Lisp_Object a), (a))
839 LISP_MACRO_DEFUN (XUNTAG, void *, (Lisp_Object a, int type), (a, type))
840
841 #else /* ! USE_LSB_TAG */
842
843 /* Although compiled only if ! USE_LSB_TAG, the following functions
844 also work when USE_LSB_TAG; this is to aid future maintenance when
845 the lisp_h_* macros are eventually removed. */
846
847 /* Make a Lisp integer representing the value of the low order
848 bits of N. */
849 INLINE Lisp_Object
850 make_number (EMACS_INT n)
851 {
852 EMACS_INT int0 = Lisp_Int0;
853 if (USE_LSB_TAG)
854 {
855 EMACS_UINT u = n;
856 n = u << INTTYPEBITS;
857 n += int0;
858 }
859 else
860 {
861 n &= INTMASK;
862 n += (int0 << VALBITS);
863 }
864 return XIL (n);
865 }
866
867 /* Extract A's value as a signed integer. */
868 INLINE EMACS_INT
869 XINT (Lisp_Object a)
870 {
871 EMACS_INT i = XLI (a);
872 if (! USE_LSB_TAG)
873 {
874 EMACS_UINT u = i;
875 i = u << INTTYPEBITS;
876 }
877 return i >> INTTYPEBITS;
878 }
879
880 /* Like XINT (A), but may be faster. A must be nonnegative.
881 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
882 integers have zero-bits in their tags. */
883 INLINE EMACS_INT
884 XFASTINT (Lisp_Object a)
885 {
886 EMACS_INT int0 = Lisp_Int0;
887 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a) - (int0 << VALBITS);
888 eassert (0 <= n);
889 return n;
890 }
891
892 /* Extract A's value as a symbol. */
893 INLINE struct Lisp_Symbol *
894 XSYMBOL (Lisp_Object a)
895 {
896 uintptr_t i = (uintptr_t) XUNTAG (a, Lisp_Symbol);
897 if (! USE_LSB_TAG)
898 i <<= GCTYPEBITS;
899 void *p = (char *) lispsym + i;
900 return p;
901 }
902
903 /* Extract A's type. */
904 INLINE enum Lisp_Type
905 XTYPE (Lisp_Object a)
906 {
907 EMACS_UINT i = XLI (a);
908 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
909 }
910
911 /* Extract A's pointer value, assuming A's type is TYPE. */
912 INLINE void *
913 XUNTAG (Lisp_Object a, int type)
914 {
915 intptr_t i = USE_LSB_TAG ? XLI (a) - type : XLI (a) & VALMASK;
916 return (void *) i;
917 }
918
919 #endif /* ! USE_LSB_TAG */
920
921 /* Extract the pointer hidden within A. */
922 LISP_MACRO_DEFUN (XPNTR, void *, (Lisp_Object a), (a))
923
924 /* Extract A's value as an unsigned integer. */
925 INLINE EMACS_UINT
926 XUINT (Lisp_Object a)
927 {
928 EMACS_UINT i = XLI (a);
929 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
930 }
931
932 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
933 right now, but XUINT should only be applied to objects we know are
934 integers. */
935 LISP_MACRO_DEFUN (XHASH, EMACS_INT, (Lisp_Object a), (a))
936
937 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
938 INLINE Lisp_Object
939 make_natnum (EMACS_INT n)
940 {
941 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
942 EMACS_INT int0 = Lisp_Int0;
943 return USE_LSB_TAG ? make_number (n) : XIL (n + (int0 << VALBITS));
944 }
945
946 /* Return true if X and Y are the same object. */
947 LISP_MACRO_DEFUN (EQ, bool, (Lisp_Object x, Lisp_Object y), (x, y))
948
949 /* Value is true if I doesn't fit into a Lisp fixnum. It is
950 written this way so that it also works if I is of unsigned
951 type or if I is a NaN. */
952
953 #define FIXNUM_OVERFLOW_P(i) \
954 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
955
956 INLINE ptrdiff_t
957 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
958 {
959 return num < lower ? lower : num <= upper ? num : upper;
960 }
961 \f
962
963 /* Extract a value or address from a Lisp_Object. */
964
965 LISP_MACRO_DEFUN (XCONS, struct Lisp_Cons *, (Lisp_Object a), (a))
966
967 INLINE struct Lisp_Vector *
968 XVECTOR (Lisp_Object a)
969 {
970 eassert (VECTORLIKEP (a));
971 return XUNTAG (a, Lisp_Vectorlike);
972 }
973
974 INLINE struct Lisp_String *
975 XSTRING (Lisp_Object a)
976 {
977 eassert (STRINGP (a));
978 return XUNTAG (a, Lisp_String);
979 }
980
981 /* The index of the C-defined Lisp symbol SYM.
982 This can be used in a static initializer. */
983 #define SYMBOL_INDEX(sym) i##sym
984
985 INLINE struct Lisp_Float *
986 XFLOAT (Lisp_Object a)
987 {
988 eassert (FLOATP (a));
989 return XUNTAG (a, Lisp_Float);
990 }
991
992 /* Pseudovector types. */
993
994 INLINE struct Lisp_Process *
995 XPROCESS (Lisp_Object a)
996 {
997 eassert (PROCESSP (a));
998 return XUNTAG (a, Lisp_Vectorlike);
999 }
1000
1001 INLINE struct window *
1002 XWINDOW (Lisp_Object a)
1003 {
1004 eassert (WINDOWP (a));
1005 return XUNTAG (a, Lisp_Vectorlike);
1006 }
1007
1008 INLINE struct terminal *
1009 XTERMINAL (Lisp_Object a)
1010 {
1011 eassert (TERMINALP (a));
1012 return XUNTAG (a, Lisp_Vectorlike);
1013 }
1014
1015 INLINE struct Lisp_Subr *
1016 XSUBR (Lisp_Object a)
1017 {
1018 eassert (SUBRP (a));
1019 return XUNTAG (a, Lisp_Vectorlike);
1020 }
1021
1022 INLINE struct buffer *
1023 XBUFFER (Lisp_Object a)
1024 {
1025 eassert (BUFFERP (a));
1026 return XUNTAG (a, Lisp_Vectorlike);
1027 }
1028
1029 INLINE struct Lisp_Char_Table *
1030 XCHAR_TABLE (Lisp_Object a)
1031 {
1032 eassert (CHAR_TABLE_P (a));
1033 return XUNTAG (a, Lisp_Vectorlike);
1034 }
1035
1036 INLINE struct Lisp_Sub_Char_Table *
1037 XSUB_CHAR_TABLE (Lisp_Object a)
1038 {
1039 eassert (SUB_CHAR_TABLE_P (a));
1040 return XUNTAG (a, Lisp_Vectorlike);
1041 }
1042
1043 INLINE struct Lisp_Bool_Vector *
1044 XBOOL_VECTOR (Lisp_Object a)
1045 {
1046 eassert (BOOL_VECTOR_P (a));
1047 return XUNTAG (a, Lisp_Vectorlike);
1048 }
1049
1050 /* Construct a Lisp_Object from a value or address. */
1051
1052 INLINE Lisp_Object
1053 make_lisp_ptr (void *ptr, enum Lisp_Type type)
1054 {
1055 Lisp_Object a = XIL (TAG_PTR (type, ptr));
1056 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
1057 return a;
1058 }
1059
1060 INLINE Lisp_Object
1061 make_lisp_symbol (struct Lisp_Symbol *sym)
1062 {
1063 Lisp_Object a = XIL (TAG_SYMOFFSET ((char *) sym - (char *) lispsym));
1064 eassert (XSYMBOL (a) == sym);
1065 return a;
1066 }
1067
1068 INLINE Lisp_Object
1069 builtin_lisp_symbol (int index)
1070 {
1071 return make_lisp_symbol (lispsym + index);
1072 }
1073
1074 #define XSETINT(a, b) ((a) = make_number (b))
1075 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
1076 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
1077 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
1078 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
1079 #define XSETSYMBOL(a, b) ((a) = make_lisp_symbol (b))
1080 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
1081 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
1082
1083 /* Pseudovector types. */
1084
1085 #define XSETPVECTYPE(v, code) \
1086 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
1087 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
1088 ((v)->header.size = (PSEUDOVECTOR_FLAG \
1089 | ((code) << PSEUDOVECTOR_AREA_BITS) \
1090 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
1091 | (lispsize)))
1092
1093 /* The cast to struct vectorlike_header * avoids aliasing issues. */
1094 #define XSETPSEUDOVECTOR(a, b, code) \
1095 XSETTYPED_PSEUDOVECTOR (a, b, \
1096 (((struct vectorlike_header *) \
1097 XUNTAG (a, Lisp_Vectorlike)) \
1098 ->size), \
1099 code)
1100 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
1101 (XSETVECTOR (a, b), \
1102 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
1103 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
1104
1105 #define XSETWINDOW_CONFIGURATION(a, b) \
1106 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
1107 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
1108 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
1109 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
1110 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
1111 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
1112 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
1113 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1114 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1115 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1116
1117 /* Efficiently convert a pointer to a Lisp object and back. The
1118 pointer is represented as a Lisp integer, so the garbage collector
1119 does not know about it. The pointer should not have both Lisp_Int1
1120 bits set, which makes this conversion inherently unportable. */
1121
1122 INLINE void *
1123 XINTPTR (Lisp_Object a)
1124 {
1125 return XUNTAG (a, Lisp_Int0);
1126 }
1127
1128 INLINE Lisp_Object
1129 make_pointer_integer (void *p)
1130 {
1131 Lisp_Object a = XIL (TAG_PTR (Lisp_Int0, p));
1132 eassert (INTEGERP (a) && XINTPTR (a) == p);
1133 return a;
1134 }
1135
1136 /* Type checking. */
1137
1138 LISP_MACRO_DEFUN_VOID (CHECK_TYPE,
1139 (int ok, Lisp_Object predicate, Lisp_Object x),
1140 (ok, predicate, x))
1141
1142 /* Deprecated and will be removed soon. */
1143
1144 #define INTERNAL_FIELD(field) field ## _
1145
1146 /* See the macros in intervals.h. */
1147
1148 typedef struct interval *INTERVAL;
1149
1150 struct GCALIGNED Lisp_Cons
1151 {
1152 /* Car of this cons cell. */
1153 Lisp_Object car;
1154
1155 union
1156 {
1157 /* Cdr of this cons cell. */
1158 Lisp_Object cdr;
1159
1160 /* Used to chain conses on a free list. */
1161 struct Lisp_Cons *chain;
1162 } u;
1163 };
1164
1165 /* Take the car or cdr of something known to be a cons cell. */
1166 /* The _addr functions shouldn't be used outside of the minimal set
1167 of code that has to know what a cons cell looks like. Other code not
1168 part of the basic lisp implementation should assume that the car and cdr
1169 fields are not accessible. (What if we want to switch to
1170 a copying collector someday? Cached cons cell field addresses may be
1171 invalidated at arbitrary points.) */
1172 INLINE Lisp_Object *
1173 xcar_addr (Lisp_Object c)
1174 {
1175 return &XCONS (c)->car;
1176 }
1177 INLINE Lisp_Object *
1178 xcdr_addr (Lisp_Object c)
1179 {
1180 return &XCONS (c)->u.cdr;
1181 }
1182
1183 /* Use these from normal code. */
1184 LISP_MACRO_DEFUN (XCAR, Lisp_Object, (Lisp_Object c), (c))
1185 LISP_MACRO_DEFUN (XCDR, Lisp_Object, (Lisp_Object c), (c))
1186
1187 /* Use these to set the fields of a cons cell.
1188
1189 Note that both arguments may refer to the same object, so 'n'
1190 should not be read after 'c' is first modified. */
1191 INLINE void
1192 XSETCAR (Lisp_Object c, Lisp_Object n)
1193 {
1194 *xcar_addr (c) = n;
1195 }
1196 INLINE void
1197 XSETCDR (Lisp_Object c, Lisp_Object n)
1198 {
1199 *xcdr_addr (c) = n;
1200 }
1201
1202 /* Take the car or cdr of something whose type is not known. */
1203 INLINE Lisp_Object
1204 CAR (Lisp_Object c)
1205 {
1206 return (CONSP (c) ? XCAR (c)
1207 : NILP (c) ? Qnil
1208 : wrong_type_argument (Qlistp, c));
1209 }
1210 INLINE Lisp_Object
1211 CDR (Lisp_Object c)
1212 {
1213 return (CONSP (c) ? XCDR (c)
1214 : NILP (c) ? Qnil
1215 : wrong_type_argument (Qlistp, c));
1216 }
1217
1218 /* Take the car or cdr of something whose type is not known. */
1219 INLINE Lisp_Object
1220 CAR_SAFE (Lisp_Object c)
1221 {
1222 return CONSP (c) ? XCAR (c) : Qnil;
1223 }
1224 INLINE Lisp_Object
1225 CDR_SAFE (Lisp_Object c)
1226 {
1227 return CONSP (c) ? XCDR (c) : Qnil;
1228 }
1229
1230 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1231
1232 struct GCALIGNED Lisp_String
1233 {
1234 ptrdiff_t size;
1235 ptrdiff_t size_byte;
1236 INTERVAL intervals; /* Text properties in this string. */
1237 unsigned char *data;
1238 };
1239
1240 /* True if STR is a multibyte string. */
1241 INLINE bool
1242 STRING_MULTIBYTE (Lisp_Object str)
1243 {
1244 return 0 <= XSTRING (str)->size_byte;
1245 }
1246
1247 /* An upper bound on the number of bytes in a Lisp string, not
1248 counting the terminating null. This a tight enough bound to
1249 prevent integer overflow errors that would otherwise occur during
1250 string size calculations. A string cannot contain more bytes than
1251 a fixnum can represent, nor can it be so long that C pointer
1252 arithmetic stops working on the string plus its terminating null.
1253 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1254 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1255 would expose alloc.c internal details that we'd rather keep
1256 private.
1257
1258 This is a macro for use in static initializers. The cast to
1259 ptrdiff_t ensures that the macro is signed. */
1260 #define STRING_BYTES_BOUND \
1261 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1262
1263 /* Mark STR as a unibyte string. */
1264 #define STRING_SET_UNIBYTE(STR) \
1265 do { \
1266 if (EQ (STR, empty_multibyte_string)) \
1267 (STR) = empty_unibyte_string; \
1268 else \
1269 XSTRING (STR)->size_byte = -1; \
1270 } while (false)
1271
1272 /* Mark STR as a multibyte string. Assure that STR contains only
1273 ASCII characters in advance. */
1274 #define STRING_SET_MULTIBYTE(STR) \
1275 do { \
1276 if (EQ (STR, empty_unibyte_string)) \
1277 (STR) = empty_multibyte_string; \
1278 else \
1279 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1280 } while (false)
1281
1282 /* Convenience functions for dealing with Lisp strings. */
1283
1284 INLINE unsigned char *
1285 SDATA (Lisp_Object string)
1286 {
1287 return XSTRING (string)->data;
1288 }
1289 INLINE char *
1290 SSDATA (Lisp_Object string)
1291 {
1292 /* Avoid "differ in sign" warnings. */
1293 return (char *) SDATA (string);
1294 }
1295 INLINE unsigned char
1296 SREF (Lisp_Object string, ptrdiff_t index)
1297 {
1298 return SDATA (string)[index];
1299 }
1300 INLINE void
1301 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1302 {
1303 SDATA (string)[index] = new;
1304 }
1305 INLINE ptrdiff_t
1306 SCHARS (Lisp_Object string)
1307 {
1308 return XSTRING (string)->size;
1309 }
1310
1311 #ifdef GC_CHECK_STRING_BYTES
1312 extern ptrdiff_t string_bytes (struct Lisp_String *);
1313 #endif
1314 INLINE ptrdiff_t
1315 STRING_BYTES (struct Lisp_String *s)
1316 {
1317 #ifdef GC_CHECK_STRING_BYTES
1318 return string_bytes (s);
1319 #else
1320 return s->size_byte < 0 ? s->size : s->size_byte;
1321 #endif
1322 }
1323
1324 INLINE ptrdiff_t
1325 SBYTES (Lisp_Object string)
1326 {
1327 return STRING_BYTES (XSTRING (string));
1328 }
1329 INLINE void
1330 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1331 {
1332 XSTRING (string)->size = newsize;
1333 }
1334
1335 /* Header of vector-like objects. This documents the layout constraints on
1336 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1337 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1338 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1339 because when two such pointers potentially alias, a compiler won't
1340 incorrectly reorder loads and stores to their size fields. See
1341 Bug#8546. */
1342 struct vectorlike_header
1343 {
1344 /* The only field contains various pieces of information:
1345 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1346 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1347 vector (0) or a pseudovector (1).
1348 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1349 of slots) of the vector.
1350 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1351 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1352 - b) number of Lisp_Objects slots at the beginning of the object
1353 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1354 traced by the GC;
1355 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1356 measured in word_size units. Rest fields may also include
1357 Lisp_Objects, but these objects usually needs some special treatment
1358 during GC.
1359 There are some exceptions. For PVEC_FREE, b) is always zero. For
1360 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1361 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1362 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1363 ptrdiff_t size;
1364 };
1365
1366 /* A regular vector is just a header plus an array of Lisp_Objects. */
1367
1368 struct Lisp_Vector
1369 {
1370 struct vectorlike_header header;
1371 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1372 };
1373
1374 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1375 enum
1376 {
1377 ALIGNOF_STRUCT_LISP_VECTOR
1378 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1379 };
1380
1381 /* A boolvector is a kind of vectorlike, with contents like a string. */
1382
1383 struct Lisp_Bool_Vector
1384 {
1385 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1386 just the subtype information. */
1387 struct vectorlike_header header;
1388 /* This is the size in bits. */
1389 EMACS_INT size;
1390 /* The actual bits, packed into bytes.
1391 Zeros fill out the last word if needed.
1392 The bits are in little-endian order in the bytes, and
1393 the bytes are in little-endian order in the words. */
1394 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1395 };
1396
1397 INLINE EMACS_INT
1398 bool_vector_size (Lisp_Object a)
1399 {
1400 EMACS_INT size = XBOOL_VECTOR (a)->size;
1401 eassume (0 <= size);
1402 return size;
1403 }
1404
1405 INLINE bits_word *
1406 bool_vector_data (Lisp_Object a)
1407 {
1408 return XBOOL_VECTOR (a)->data;
1409 }
1410
1411 INLINE unsigned char *
1412 bool_vector_uchar_data (Lisp_Object a)
1413 {
1414 return (unsigned char *) bool_vector_data (a);
1415 }
1416
1417 /* The number of data words and bytes in a bool vector with SIZE bits. */
1418
1419 INLINE EMACS_INT
1420 bool_vector_words (EMACS_INT size)
1421 {
1422 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1423 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1424 }
1425
1426 INLINE EMACS_INT
1427 bool_vector_bytes (EMACS_INT size)
1428 {
1429 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1430 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1431 }
1432
1433 /* True if A's Ith bit is set. */
1434
1435 INLINE bool
1436 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1437 {
1438 eassume (0 <= i && i < bool_vector_size (a));
1439 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1440 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1441 }
1442
1443 INLINE Lisp_Object
1444 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1445 {
1446 return bool_vector_bitref (a, i) ? Qt : Qnil;
1447 }
1448
1449 /* Set A's Ith bit to B. */
1450
1451 INLINE void
1452 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1453 {
1454 unsigned char *addr;
1455
1456 eassume (0 <= i && i < bool_vector_size (a));
1457 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1458
1459 if (b)
1460 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1461 else
1462 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1463 }
1464
1465 /* Some handy constants for calculating sizes
1466 and offsets, mostly of vectorlike objects. */
1467
1468 enum
1469 {
1470 header_size = offsetof (struct Lisp_Vector, contents),
1471 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1472 word_size = sizeof (Lisp_Object)
1473 };
1474
1475 /* Conveniences for dealing with Lisp arrays. */
1476
1477 INLINE Lisp_Object
1478 AREF (Lisp_Object array, ptrdiff_t idx)
1479 {
1480 return XVECTOR (array)->contents[idx];
1481 }
1482
1483 INLINE Lisp_Object *
1484 aref_addr (Lisp_Object array, ptrdiff_t idx)
1485 {
1486 return & XVECTOR (array)->contents[idx];
1487 }
1488
1489 INLINE ptrdiff_t
1490 ASIZE (Lisp_Object array)
1491 {
1492 return XVECTOR (array)->header.size;
1493 }
1494
1495 INLINE void
1496 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1497 {
1498 eassert (0 <= idx && idx < ASIZE (array));
1499 XVECTOR (array)->contents[idx] = val;
1500 }
1501
1502 INLINE void
1503 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1504 {
1505 /* Like ASET, but also can be used in the garbage collector:
1506 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1507 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1508 XVECTOR (array)->contents[idx] = val;
1509 }
1510
1511 /* True, since Qnil's representation is zero. Every place in the code
1512 that assumes Qnil is zero should verify (NIL_IS_ZERO), to make it easy
1513 to find such assumptions later if we change Qnil to be nonzero. */
1514 enum { NIL_IS_ZERO = XLI_BUILTIN_LISPSYM (iQnil) == 0 };
1515
1516 /* Clear the object addressed by P, with size NBYTES, so that all its
1517 bytes are zero and all its Lisp values are nil. */
1518 INLINE void
1519 memclear (void *p, ptrdiff_t nbytes)
1520 {
1521 eassert (0 <= nbytes);
1522 verify (NIL_IS_ZERO);
1523 /* Since Qnil is zero, memset suffices. */
1524 memset (p, 0, nbytes);
1525 }
1526
1527 /* If a struct is made to look like a vector, this macro returns the length
1528 of the shortest vector that would hold that struct. */
1529
1530 #define VECSIZE(type) \
1531 ((sizeof (type) - header_size + word_size - 1) / word_size)
1532
1533 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1534 at the end and we need to compute the number of Lisp_Object fields (the
1535 ones that the GC needs to trace). */
1536
1537 #define PSEUDOVECSIZE(type, nonlispfield) \
1538 ((offsetof (type, nonlispfield) - header_size) / word_size)
1539
1540 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1541 should be integer expressions. This is not the same as
1542 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1543 returns true. For efficiency, prefer plain unsigned comparison if A
1544 and B's sizes both fit (after integer promotion). */
1545 #define UNSIGNED_CMP(a, op, b) \
1546 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1547 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1548 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1549
1550 /* True iff C is an ASCII character. */
1551 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1552
1553 /* A char-table is a kind of vectorlike, with contents are like a
1554 vector but with a few other slots. For some purposes, it makes
1555 sense to handle a char-table with type struct Lisp_Vector. An
1556 element of a char table can be any Lisp objects, but if it is a sub
1557 char-table, we treat it a table that contains information of a
1558 specific range of characters. A sub char-table is like a vector but
1559 with two integer fields between the header and Lisp data, which means
1560 that it has to be marked with some precautions (see mark_char_table
1561 in alloc.c). A sub char-table appears only in an element of a char-table,
1562 and there's no way to access it directly from Emacs Lisp program. */
1563
1564 enum CHARTAB_SIZE_BITS
1565 {
1566 CHARTAB_SIZE_BITS_0 = 6,
1567 CHARTAB_SIZE_BITS_1 = 4,
1568 CHARTAB_SIZE_BITS_2 = 5,
1569 CHARTAB_SIZE_BITS_3 = 7
1570 };
1571
1572 extern const int chartab_size[4];
1573
1574 struct Lisp_Char_Table
1575 {
1576 /* HEADER.SIZE is the vector's size field, which also holds the
1577 pseudovector type information. It holds the size, too.
1578 The size counts the defalt, parent, purpose, ascii,
1579 contents, and extras slots. */
1580 struct vectorlike_header header;
1581
1582 /* This holds a default value,
1583 which is used whenever the value for a specific character is nil. */
1584 Lisp_Object defalt;
1585
1586 /* This points to another char table, which we inherit from when the
1587 value for a specific character is nil. The `defalt' slot takes
1588 precedence over this. */
1589 Lisp_Object parent;
1590
1591 /* This is a symbol which says what kind of use this char-table is
1592 meant for. */
1593 Lisp_Object purpose;
1594
1595 /* The bottom sub char-table for characters of the range 0..127. It
1596 is nil if none of ASCII character has a specific value. */
1597 Lisp_Object ascii;
1598
1599 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1600
1601 /* These hold additional data. It is a vector. */
1602 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1603 };
1604
1605 struct Lisp_Sub_Char_Table
1606 {
1607 /* HEADER.SIZE is the vector's size field, which also holds the
1608 pseudovector type information. It holds the size, too. */
1609 struct vectorlike_header header;
1610
1611 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1612 char-table of depth 1 contains 16 elements, and each element
1613 covers 4096 (128*32) characters. A sub char-table of depth 2
1614 contains 32 elements, and each element covers 128 characters. A
1615 sub char-table of depth 3 contains 128 elements, and each element
1616 is for one character. */
1617 int depth;
1618
1619 /* Minimum character covered by the sub char-table. */
1620 int min_char;
1621
1622 /* Use set_sub_char_table_contents to set this. */
1623 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1624 };
1625
1626 INLINE Lisp_Object
1627 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1628 {
1629 struct Lisp_Char_Table *tbl = NULL;
1630 Lisp_Object val;
1631 do
1632 {
1633 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1634 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1635 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1636 if (NILP (val))
1637 val = tbl->defalt;
1638 }
1639 while (NILP (val) && ! NILP (tbl->parent));
1640
1641 return val;
1642 }
1643
1644 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1645 characters. Do not check validity of CT. */
1646 INLINE Lisp_Object
1647 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1648 {
1649 return (ASCII_CHAR_P (idx)
1650 ? CHAR_TABLE_REF_ASCII (ct, idx)
1651 : char_table_ref (ct, idx));
1652 }
1653
1654 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1655 8-bit European characters. Do not check validity of CT. */
1656 INLINE void
1657 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1658 {
1659 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1660 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1661 else
1662 char_table_set (ct, idx, val);
1663 }
1664
1665 /* This structure describes a built-in function.
1666 It is generated by the DEFUN macro only.
1667 defsubr makes it into a Lisp object. */
1668
1669 struct Lisp_Subr
1670 {
1671 struct vectorlike_header header;
1672 union {
1673 Lisp_Object (*a0) (void);
1674 Lisp_Object (*a1) (Lisp_Object);
1675 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1676 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1677 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1678 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1679 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1680 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1681 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1682 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1683 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1684 } function;
1685 short min_args, max_args;
1686 const char *symbol_name;
1687 const char *intspec;
1688 const char *doc;
1689 };
1690
1691 enum char_table_specials
1692 {
1693 /* This is the number of slots that every char table must have. This
1694 counts the ordinary slots and the top, defalt, parent, and purpose
1695 slots. */
1696 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1697
1698 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1699 when the latter is treated as an ordinary Lisp_Vector. */
1700 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1701 };
1702
1703 /* Return the number of "extra" slots in the char table CT. */
1704
1705 INLINE int
1706 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1707 {
1708 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1709 - CHAR_TABLE_STANDARD_SLOTS);
1710 }
1711
1712 /* Make sure that sub char-table contents slot is where we think it is. */
1713 verify (offsetof (struct Lisp_Sub_Char_Table, contents)
1714 == offsetof (struct Lisp_Vector, contents[SUB_CHAR_TABLE_OFFSET]));
1715
1716 /***********************************************************************
1717 Symbols
1718 ***********************************************************************/
1719
1720 /* Value is name of symbol. */
1721
1722 LISP_MACRO_DEFUN (SYMBOL_VAL, Lisp_Object, (struct Lisp_Symbol *sym), (sym))
1723
1724 INLINE struct Lisp_Symbol *
1725 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1726 {
1727 eassert (sym->redirect == SYMBOL_VARALIAS);
1728 return sym->val.alias;
1729 }
1730 INLINE struct Lisp_Buffer_Local_Value *
1731 SYMBOL_BLV (struct Lisp_Symbol *sym)
1732 {
1733 eassert (sym->redirect == SYMBOL_LOCALIZED);
1734 return sym->val.blv;
1735 }
1736 INLINE union Lisp_Fwd *
1737 SYMBOL_FWD (struct Lisp_Symbol *sym)
1738 {
1739 eassert (sym->redirect == SYMBOL_FORWARDED);
1740 return sym->val.fwd;
1741 }
1742
1743 LISP_MACRO_DEFUN_VOID (SET_SYMBOL_VAL,
1744 (struct Lisp_Symbol *sym, Lisp_Object v), (sym, v))
1745
1746 INLINE void
1747 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1748 {
1749 eassert (sym->redirect == SYMBOL_VARALIAS);
1750 sym->val.alias = v;
1751 }
1752 INLINE void
1753 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1754 {
1755 eassert (sym->redirect == SYMBOL_LOCALIZED);
1756 sym->val.blv = v;
1757 }
1758 INLINE void
1759 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1760 {
1761 eassert (sym->redirect == SYMBOL_FORWARDED);
1762 sym->val.fwd = v;
1763 }
1764
1765 INLINE Lisp_Object
1766 SYMBOL_NAME (Lisp_Object sym)
1767 {
1768 return XSYMBOL (sym)->name;
1769 }
1770
1771 /* Value is true if SYM is an interned symbol. */
1772
1773 INLINE bool
1774 SYMBOL_INTERNED_P (Lisp_Object sym)
1775 {
1776 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1777 }
1778
1779 /* Value is true if SYM is interned in initial_obarray. */
1780
1781 INLINE bool
1782 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1783 {
1784 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1785 }
1786
1787 /* Value is non-zero if symbol is considered a constant, i.e. its
1788 value cannot be changed (there is an exception for keyword symbols,
1789 whose value can be set to the keyword symbol itself). */
1790
1791 LISP_MACRO_DEFUN (SYMBOL_CONSTANT_P, int, (Lisp_Object sym), (sym))
1792
1793 /* Placeholder for make-docfile to process. The actual symbol
1794 definition is done by lread.c's defsym. */
1795 #define DEFSYM(sym, name) /* empty */
1796
1797 \f
1798 /***********************************************************************
1799 Hash Tables
1800 ***********************************************************************/
1801
1802 /* The structure of a Lisp hash table. */
1803
1804 struct hash_table_test
1805 {
1806 /* Name of the function used to compare keys. */
1807 Lisp_Object name;
1808
1809 /* User-supplied hash function, or nil. */
1810 Lisp_Object user_hash_function;
1811
1812 /* User-supplied key comparison function, or nil. */
1813 Lisp_Object user_cmp_function;
1814
1815 /* C function to compare two keys. */
1816 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1817
1818 /* C function to compute hash code. */
1819 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1820 };
1821
1822 struct Lisp_Hash_Table
1823 {
1824 /* This is for Lisp; the hash table code does not refer to it. */
1825 struct vectorlike_header header;
1826
1827 /* Nil if table is non-weak. Otherwise a symbol describing the
1828 weakness of the table. */
1829 Lisp_Object weak;
1830
1831 /* When the table is resized, and this is an integer, compute the
1832 new size by adding this to the old size. If a float, compute the
1833 new size by multiplying the old size with this factor. */
1834 Lisp_Object rehash_size;
1835
1836 /* Resize hash table when number of entries/ table size is >= this
1837 ratio, a float. */
1838 Lisp_Object rehash_threshold;
1839
1840 /* Vector of hash codes. If hash[I] is nil, this means that the
1841 I-th entry is unused. */
1842 Lisp_Object hash;
1843
1844 /* Vector used to chain entries. If entry I is free, next[I] is the
1845 entry number of the next free item. If entry I is non-free,
1846 next[I] is the index of the next entry in the collision chain. */
1847 Lisp_Object next;
1848
1849 /* Index of first free entry in free list. */
1850 Lisp_Object next_free;
1851
1852 /* Bucket vector. A non-nil entry is the index of the first item in
1853 a collision chain. This vector's size can be larger than the
1854 hash table size to reduce collisions. */
1855 Lisp_Object index;
1856
1857 /* Only the fields above are traced normally by the GC. The ones below
1858 `count' are special and are either ignored by the GC or traced in
1859 a special way (e.g. because of weakness). */
1860
1861 /* Number of key/value entries in the table. */
1862 ptrdiff_t count;
1863
1864 /* Vector of keys and values. The key of item I is found at index
1865 2 * I, the value is found at index 2 * I + 1.
1866 This is gc_marked specially if the table is weak. */
1867 Lisp_Object key_and_value;
1868
1869 /* The comparison and hash functions. */
1870 struct hash_table_test test;
1871
1872 /* Next weak hash table if this is a weak hash table. The head
1873 of the list is in weak_hash_tables. */
1874 struct Lisp_Hash_Table *next_weak;
1875 };
1876
1877
1878 INLINE struct Lisp_Hash_Table *
1879 XHASH_TABLE (Lisp_Object a)
1880 {
1881 return XUNTAG (a, Lisp_Vectorlike);
1882 }
1883
1884 #define XSET_HASH_TABLE(VAR, PTR) \
1885 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1886
1887 INLINE bool
1888 HASH_TABLE_P (Lisp_Object a)
1889 {
1890 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1891 }
1892
1893 /* Value is the key part of entry IDX in hash table H. */
1894 INLINE Lisp_Object
1895 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1896 {
1897 return AREF (h->key_and_value, 2 * idx);
1898 }
1899
1900 /* Value is the value part of entry IDX in hash table H. */
1901 INLINE Lisp_Object
1902 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1903 {
1904 return AREF (h->key_and_value, 2 * idx + 1);
1905 }
1906
1907 /* Value is the index of the next entry following the one at IDX
1908 in hash table H. */
1909 INLINE Lisp_Object
1910 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1911 {
1912 return AREF (h->next, idx);
1913 }
1914
1915 /* Value is the hash code computed for entry IDX in hash table H. */
1916 INLINE Lisp_Object
1917 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1918 {
1919 return AREF (h->hash, idx);
1920 }
1921
1922 /* Value is the index of the element in hash table H that is the
1923 start of the collision list at index IDX in the index vector of H. */
1924 INLINE Lisp_Object
1925 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1926 {
1927 return AREF (h->index, idx);
1928 }
1929
1930 /* Value is the size of hash table H. */
1931 INLINE ptrdiff_t
1932 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1933 {
1934 return ASIZE (h->next);
1935 }
1936
1937 /* Default size for hash tables if not specified. */
1938
1939 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1940
1941 /* Default threshold specifying when to resize a hash table. The
1942 value gives the ratio of current entries in the hash table and the
1943 size of the hash table. */
1944
1945 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
1946
1947 /* Default factor by which to increase the size of a hash table. */
1948
1949 static double const DEFAULT_REHASH_SIZE = 1.5;
1950
1951 /* Combine two integers X and Y for hashing. The result might not fit
1952 into a Lisp integer. */
1953
1954 INLINE EMACS_UINT
1955 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
1956 {
1957 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
1958 }
1959
1960 /* Hash X, returning a value that fits into a fixnum. */
1961
1962 INLINE EMACS_UINT
1963 SXHASH_REDUCE (EMACS_UINT x)
1964 {
1965 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
1966 }
1967
1968 /* These structures are used for various misc types. */
1969
1970 struct Lisp_Misc_Any /* Supertype of all Misc types. */
1971 {
1972 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
1973 bool_bf gcmarkbit : 1;
1974 unsigned spacer : 15;
1975 };
1976
1977 struct Lisp_Marker
1978 {
1979 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
1980 bool_bf gcmarkbit : 1;
1981 unsigned spacer : 13;
1982 /* This flag is temporarily used in the functions
1983 decode/encode_coding_object to record that the marker position
1984 must be adjusted after the conversion. */
1985 bool_bf need_adjustment : 1;
1986 /* True means normal insertion at the marker's position
1987 leaves the marker after the inserted text. */
1988 bool_bf insertion_type : 1;
1989 /* This is the buffer that the marker points into, or 0 if it points nowhere.
1990 Note: a chain of markers can contain markers pointing into different
1991 buffers (the chain is per buffer_text rather than per buffer, so it's
1992 shared between indirect buffers). */
1993 /* This is used for (other than NULL-checking):
1994 - Fmarker_buffer
1995 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
1996 - unchain_marker: to find the list from which to unchain.
1997 - Fkill_buffer: to only unchain the markers of current indirect buffer.
1998 */
1999 struct buffer *buffer;
2000
2001 /* The remaining fields are meaningless in a marker that
2002 does not point anywhere. */
2003
2004 /* For markers that point somewhere,
2005 this is used to chain of all the markers in a given buffer. */
2006 /* We could remove it and use an array in buffer_text instead.
2007 That would also allow to preserve it ordered. */
2008 struct Lisp_Marker *next;
2009 /* This is the char position where the marker points. */
2010 ptrdiff_t charpos;
2011 /* This is the byte position.
2012 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
2013 used to implement the functionality of markers, but rather to (ab)use
2014 markers as a cache for char<->byte mappings). */
2015 ptrdiff_t bytepos;
2016 };
2017
2018 /* START and END are markers in the overlay's buffer, and
2019 PLIST is the overlay's property list. */
2020 struct Lisp_Overlay
2021 /* An overlay's real data content is:
2022 - plist
2023 - buffer (really there are two buffer pointers, one per marker,
2024 and both points to the same buffer)
2025 - insertion type of both ends (per-marker fields)
2026 - start & start byte (of start marker)
2027 - end & end byte (of end marker)
2028 - next (singly linked list of overlays)
2029 - next fields of start and end markers (singly linked list of markers).
2030 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
2031 */
2032 {
2033 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
2034 bool_bf gcmarkbit : 1;
2035 unsigned spacer : 15;
2036 struct Lisp_Overlay *next;
2037 Lisp_Object start;
2038 Lisp_Object end;
2039 Lisp_Object plist;
2040 };
2041
2042 /* Types of data which may be saved in a Lisp_Save_Value. */
2043
2044 enum
2045 {
2046 SAVE_UNUSED,
2047 SAVE_INTEGER,
2048 SAVE_FUNCPOINTER,
2049 SAVE_POINTER,
2050 SAVE_OBJECT
2051 };
2052
2053 /* Number of bits needed to store one of the above values. */
2054 enum { SAVE_SLOT_BITS = 3 };
2055
2056 /* Number of slots in a save value where save_type is nonzero. */
2057 enum { SAVE_VALUE_SLOTS = 4 };
2058
2059 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
2060
2061 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
2062
2063 enum Lisp_Save_Type
2064 {
2065 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2066 SAVE_TYPE_INT_INT_INT
2067 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
2068 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
2069 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
2070 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
2071 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
2072 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2073 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
2074 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
2075 SAVE_TYPE_FUNCPTR_PTR_OBJ
2076 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
2077
2078 /* This has an extra bit indicating it's raw memory. */
2079 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
2080 };
2081
2082 /* Special object used to hold a different values for later use.
2083
2084 This is mostly used to package C integers and pointers to call
2085 record_unwind_protect when two or more values need to be saved.
2086 For example:
2087
2088 ...
2089 struct my_data *md = get_my_data ();
2090 ptrdiff_t mi = get_my_integer ();
2091 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2092 ...
2093
2094 Lisp_Object my_unwind (Lisp_Object arg)
2095 {
2096 struct my_data *md = XSAVE_POINTER (arg, 0);
2097 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2098 ...
2099 }
2100
2101 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2102 saved objects and raise eassert if type of the saved object doesn't match
2103 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2104 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2105 slot 0 is a pointer. */
2106
2107 typedef void (*voidfuncptr) (void);
2108
2109 struct Lisp_Save_Value
2110 {
2111 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2112 bool_bf gcmarkbit : 1;
2113 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2114
2115 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2116 V's data entries are determined by V->save_type. E.g., if
2117 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2118 V->data[1] is an integer, and V's other data entries are unused.
2119
2120 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2121 a memory area containing V->data[1].integer potential Lisp_Objects. */
2122 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2123 union {
2124 void *pointer;
2125 voidfuncptr funcpointer;
2126 ptrdiff_t integer;
2127 Lisp_Object object;
2128 } data[SAVE_VALUE_SLOTS];
2129 };
2130
2131 /* Return the type of V's Nth saved value. */
2132 INLINE int
2133 save_type (struct Lisp_Save_Value *v, int n)
2134 {
2135 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2136 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2137 }
2138
2139 /* Get and set the Nth saved pointer. */
2140
2141 INLINE void *
2142 XSAVE_POINTER (Lisp_Object obj, int n)
2143 {
2144 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2145 return XSAVE_VALUE (obj)->data[n].pointer;
2146 }
2147 INLINE void
2148 set_save_pointer (Lisp_Object obj, int n, void *val)
2149 {
2150 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2151 XSAVE_VALUE (obj)->data[n].pointer = val;
2152 }
2153 INLINE voidfuncptr
2154 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2155 {
2156 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2157 return XSAVE_VALUE (obj)->data[n].funcpointer;
2158 }
2159
2160 /* Likewise for the saved integer. */
2161
2162 INLINE ptrdiff_t
2163 XSAVE_INTEGER (Lisp_Object obj, int n)
2164 {
2165 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2166 return XSAVE_VALUE (obj)->data[n].integer;
2167 }
2168 INLINE void
2169 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2170 {
2171 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2172 XSAVE_VALUE (obj)->data[n].integer = val;
2173 }
2174
2175 /* Extract Nth saved object. */
2176
2177 INLINE Lisp_Object
2178 XSAVE_OBJECT (Lisp_Object obj, int n)
2179 {
2180 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2181 return XSAVE_VALUE (obj)->data[n].object;
2182 }
2183
2184 /* A miscellaneous object, when it's on the free list. */
2185 struct Lisp_Free
2186 {
2187 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2188 bool_bf gcmarkbit : 1;
2189 unsigned spacer : 15;
2190 union Lisp_Misc *chain;
2191 };
2192
2193 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2194 It uses one of these struct subtypes to get the type field. */
2195
2196 union Lisp_Misc
2197 {
2198 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2199 struct Lisp_Free u_free;
2200 struct Lisp_Marker u_marker;
2201 struct Lisp_Overlay u_overlay;
2202 struct Lisp_Save_Value u_save_value;
2203 };
2204
2205 INLINE union Lisp_Misc *
2206 XMISC (Lisp_Object a)
2207 {
2208 return XUNTAG (a, Lisp_Misc);
2209 }
2210
2211 INLINE struct Lisp_Misc_Any *
2212 XMISCANY (Lisp_Object a)
2213 {
2214 eassert (MISCP (a));
2215 return & XMISC (a)->u_any;
2216 }
2217
2218 INLINE enum Lisp_Misc_Type
2219 XMISCTYPE (Lisp_Object a)
2220 {
2221 return XMISCANY (a)->type;
2222 }
2223
2224 INLINE struct Lisp_Marker *
2225 XMARKER (Lisp_Object a)
2226 {
2227 eassert (MARKERP (a));
2228 return & XMISC (a)->u_marker;
2229 }
2230
2231 INLINE struct Lisp_Overlay *
2232 XOVERLAY (Lisp_Object a)
2233 {
2234 eassert (OVERLAYP (a));
2235 return & XMISC (a)->u_overlay;
2236 }
2237
2238 INLINE struct Lisp_Save_Value *
2239 XSAVE_VALUE (Lisp_Object a)
2240 {
2241 eassert (SAVE_VALUEP (a));
2242 return & XMISC (a)->u_save_value;
2243 }
2244 \f
2245 /* Forwarding pointer to an int variable.
2246 This is allowed only in the value cell of a symbol,
2247 and it means that the symbol's value really lives in the
2248 specified int variable. */
2249 struct Lisp_Intfwd
2250 {
2251 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2252 EMACS_INT *intvar;
2253 };
2254
2255 /* Boolean forwarding pointer to an int variable.
2256 This is like Lisp_Intfwd except that the ostensible
2257 "value" of the symbol is t if the bool variable is true,
2258 nil if it is false. */
2259 struct Lisp_Boolfwd
2260 {
2261 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2262 bool *boolvar;
2263 };
2264
2265 /* Forwarding pointer to a Lisp_Object variable.
2266 This is allowed only in the value cell of a symbol,
2267 and it means that the symbol's value really lives in the
2268 specified variable. */
2269 struct Lisp_Objfwd
2270 {
2271 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2272 Lisp_Object *objvar;
2273 };
2274
2275 /* Like Lisp_Objfwd except that value lives in a slot in the
2276 current buffer. Value is byte index of slot within buffer. */
2277 struct Lisp_Buffer_Objfwd
2278 {
2279 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2280 int offset;
2281 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2282 Lisp_Object predicate;
2283 };
2284
2285 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2286 the symbol has buffer-local or frame-local bindings. (Exception:
2287 some buffer-local variables are built-in, with their values stored
2288 in the buffer structure itself. They are handled differently,
2289 using struct Lisp_Buffer_Objfwd.)
2290
2291 The `realvalue' slot holds the variable's current value, or a
2292 forwarding pointer to where that value is kept. This value is the
2293 one that corresponds to the loaded binding. To read or set the
2294 variable, you must first make sure the right binding is loaded;
2295 then you can access the value in (or through) `realvalue'.
2296
2297 `buffer' and `frame' are the buffer and frame for which the loaded
2298 binding was found. If those have changed, to make sure the right
2299 binding is loaded it is necessary to find which binding goes with
2300 the current buffer and selected frame, then load it. To load it,
2301 first unload the previous binding, then copy the value of the new
2302 binding into `realvalue' (or through it). Also update
2303 LOADED-BINDING to point to the newly loaded binding.
2304
2305 `local_if_set' indicates that merely setting the variable creates a
2306 local binding for the current buffer. Otherwise the latter, setting
2307 the variable does not do that; only make-local-variable does that. */
2308
2309 struct Lisp_Buffer_Local_Value
2310 {
2311 /* True means that merely setting the variable creates a local
2312 binding for the current buffer. */
2313 bool_bf local_if_set : 1;
2314 /* True means this variable can have frame-local bindings, otherwise, it is
2315 can have buffer-local bindings. The two cannot be combined. */
2316 bool_bf frame_local : 1;
2317 /* True means that the binding now loaded was found.
2318 Presumably equivalent to (defcell!=valcell). */
2319 bool_bf found : 1;
2320 /* If non-NULL, a forwarding to the C var where it should also be set. */
2321 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2322 /* The buffer or frame for which the loaded binding was found. */
2323 Lisp_Object where;
2324 /* A cons cell that holds the default value. It has the form
2325 (SYMBOL . DEFAULT-VALUE). */
2326 Lisp_Object defcell;
2327 /* The cons cell from `where's parameter alist.
2328 It always has the form (SYMBOL . VALUE)
2329 Note that if `forward' is non-nil, VALUE may be out of date.
2330 Also if the currently loaded binding is the default binding, then
2331 this is `eq'ual to defcell. */
2332 Lisp_Object valcell;
2333 };
2334
2335 /* Like Lisp_Objfwd except that value lives in a slot in the
2336 current kboard. */
2337 struct Lisp_Kboard_Objfwd
2338 {
2339 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2340 int offset;
2341 };
2342
2343 union Lisp_Fwd
2344 {
2345 struct Lisp_Intfwd u_intfwd;
2346 struct Lisp_Boolfwd u_boolfwd;
2347 struct Lisp_Objfwd u_objfwd;
2348 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2349 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2350 };
2351
2352 INLINE enum Lisp_Fwd_Type
2353 XFWDTYPE (union Lisp_Fwd *a)
2354 {
2355 return a->u_intfwd.type;
2356 }
2357
2358 INLINE struct Lisp_Buffer_Objfwd *
2359 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2360 {
2361 eassert (BUFFER_OBJFWDP (a));
2362 return &a->u_buffer_objfwd;
2363 }
2364 \f
2365 /* Lisp floating point type. */
2366 struct Lisp_Float
2367 {
2368 union
2369 {
2370 double data;
2371 struct Lisp_Float *chain;
2372 } u;
2373 };
2374
2375 INLINE double
2376 XFLOAT_DATA (Lisp_Object f)
2377 {
2378 return XFLOAT (f)->u.data;
2379 }
2380
2381 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2382 representations, have infinities and NaNs, and do not trap on
2383 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2384 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2385 wanted here, but is not quite right because Emacs does not require
2386 all the features of C11 Annex F (and does not require C11 at all,
2387 for that matter). */
2388 enum
2389 {
2390 IEEE_FLOATING_POINT
2391 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2392 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2393 };
2394
2395 /* A character, declared with the following typedef, is a member
2396 of some character set associated with the current buffer. */
2397 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2398 #define _UCHAR_T
2399 typedef unsigned char UCHAR;
2400 #endif
2401
2402 /* Meanings of slots in a Lisp_Compiled: */
2403
2404 enum Lisp_Compiled
2405 {
2406 COMPILED_ARGLIST = 0,
2407 COMPILED_BYTECODE = 1,
2408 COMPILED_CONSTANTS = 2,
2409 COMPILED_STACK_DEPTH = 3,
2410 COMPILED_DOC_STRING = 4,
2411 COMPILED_INTERACTIVE = 5
2412 };
2413
2414 /* Flag bits in a character. These also get used in termhooks.h.
2415 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2416 (MUlti-Lingual Emacs) might need 22 bits for the character value
2417 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2418 enum char_bits
2419 {
2420 CHAR_ALT = 0x0400000,
2421 CHAR_SUPER = 0x0800000,
2422 CHAR_HYPER = 0x1000000,
2423 CHAR_SHIFT = 0x2000000,
2424 CHAR_CTL = 0x4000000,
2425 CHAR_META = 0x8000000,
2426
2427 CHAR_MODIFIER_MASK =
2428 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2429
2430 /* Actually, the current Emacs uses 22 bits for the character value
2431 itself. */
2432 CHARACTERBITS = 22
2433 };
2434 \f
2435 /* Data type checking. */
2436
2437 LISP_MACRO_DEFUN (NILP, bool, (Lisp_Object x), (x))
2438
2439 INLINE bool
2440 NUMBERP (Lisp_Object x)
2441 {
2442 return INTEGERP (x) || FLOATP (x);
2443 }
2444 INLINE bool
2445 NATNUMP (Lisp_Object x)
2446 {
2447 return INTEGERP (x) && 0 <= XINT (x);
2448 }
2449
2450 INLINE bool
2451 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2452 {
2453 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2454 }
2455
2456 #define TYPE_RANGED_INTEGERP(type, x) \
2457 (INTEGERP (x) \
2458 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2459 && XINT (x) <= TYPE_MAXIMUM (type))
2460
2461 LISP_MACRO_DEFUN (CONSP, bool, (Lisp_Object x), (x))
2462 LISP_MACRO_DEFUN (FLOATP, bool, (Lisp_Object x), (x))
2463 LISP_MACRO_DEFUN (MISCP, bool, (Lisp_Object x), (x))
2464 LISP_MACRO_DEFUN (SYMBOLP, bool, (Lisp_Object x), (x))
2465 LISP_MACRO_DEFUN (INTEGERP, bool, (Lisp_Object x), (x))
2466 LISP_MACRO_DEFUN (VECTORLIKEP, bool, (Lisp_Object x), (x))
2467 LISP_MACRO_DEFUN (MARKERP, bool, (Lisp_Object x), (x))
2468
2469 INLINE bool
2470 STRINGP (Lisp_Object x)
2471 {
2472 return XTYPE (x) == Lisp_String;
2473 }
2474 INLINE bool
2475 VECTORP (Lisp_Object x)
2476 {
2477 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2478 }
2479 INLINE bool
2480 OVERLAYP (Lisp_Object x)
2481 {
2482 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2483 }
2484 INLINE bool
2485 SAVE_VALUEP (Lisp_Object x)
2486 {
2487 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2488 }
2489
2490 INLINE bool
2491 AUTOLOADP (Lisp_Object x)
2492 {
2493 return CONSP (x) && EQ (Qautoload, XCAR (x));
2494 }
2495
2496 INLINE bool
2497 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2498 {
2499 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2500 }
2501
2502 INLINE bool
2503 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2504 {
2505 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2506 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2507 }
2508
2509 /* True if A is a pseudovector whose code is CODE. */
2510 INLINE bool
2511 PSEUDOVECTORP (Lisp_Object a, int code)
2512 {
2513 if (! VECTORLIKEP (a))
2514 return false;
2515 else
2516 {
2517 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2518 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2519 return PSEUDOVECTOR_TYPEP (h, code);
2520 }
2521 }
2522
2523
2524 /* Test for specific pseudovector types. */
2525
2526 INLINE bool
2527 WINDOW_CONFIGURATIONP (Lisp_Object a)
2528 {
2529 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2530 }
2531
2532 INLINE bool
2533 PROCESSP (Lisp_Object a)
2534 {
2535 return PSEUDOVECTORP (a, PVEC_PROCESS);
2536 }
2537
2538 INLINE bool
2539 WINDOWP (Lisp_Object a)
2540 {
2541 return PSEUDOVECTORP (a, PVEC_WINDOW);
2542 }
2543
2544 INLINE bool
2545 TERMINALP (Lisp_Object a)
2546 {
2547 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2548 }
2549
2550 INLINE bool
2551 SUBRP (Lisp_Object a)
2552 {
2553 return PSEUDOVECTORP (a, PVEC_SUBR);
2554 }
2555
2556 INLINE bool
2557 COMPILEDP (Lisp_Object a)
2558 {
2559 return PSEUDOVECTORP (a, PVEC_COMPILED);
2560 }
2561
2562 INLINE bool
2563 BUFFERP (Lisp_Object a)
2564 {
2565 return PSEUDOVECTORP (a, PVEC_BUFFER);
2566 }
2567
2568 INLINE bool
2569 CHAR_TABLE_P (Lisp_Object a)
2570 {
2571 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2572 }
2573
2574 INLINE bool
2575 SUB_CHAR_TABLE_P (Lisp_Object a)
2576 {
2577 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2578 }
2579
2580 INLINE bool
2581 BOOL_VECTOR_P (Lisp_Object a)
2582 {
2583 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2584 }
2585
2586 INLINE bool
2587 FRAMEP (Lisp_Object a)
2588 {
2589 return PSEUDOVECTORP (a, PVEC_FRAME);
2590 }
2591
2592 /* Test for image (image . spec) */
2593 INLINE bool
2594 IMAGEP (Lisp_Object x)
2595 {
2596 return CONSP (x) && EQ (XCAR (x), Qimage);
2597 }
2598
2599 /* Array types. */
2600 INLINE bool
2601 ARRAYP (Lisp_Object x)
2602 {
2603 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2604 }
2605 \f
2606 INLINE void
2607 CHECK_LIST (Lisp_Object x)
2608 {
2609 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2610 }
2611
2612 LISP_MACRO_DEFUN_VOID (CHECK_LIST_CONS, (Lisp_Object x, Lisp_Object y), (x, y))
2613 LISP_MACRO_DEFUN_VOID (CHECK_SYMBOL, (Lisp_Object x), (x))
2614 LISP_MACRO_DEFUN_VOID (CHECK_NUMBER, (Lisp_Object x), (x))
2615
2616 INLINE void
2617 CHECK_STRING (Lisp_Object x)
2618 {
2619 CHECK_TYPE (STRINGP (x), Qstringp, x);
2620 }
2621 INLINE void
2622 CHECK_STRING_CAR (Lisp_Object x)
2623 {
2624 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2625 }
2626 INLINE void
2627 CHECK_CONS (Lisp_Object x)
2628 {
2629 CHECK_TYPE (CONSP (x), Qconsp, x);
2630 }
2631 INLINE void
2632 CHECK_VECTOR (Lisp_Object x)
2633 {
2634 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2635 }
2636 INLINE void
2637 CHECK_BOOL_VECTOR (Lisp_Object x)
2638 {
2639 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2640 }
2641 /* This is a bit special because we always need size afterwards. */
2642 INLINE ptrdiff_t
2643 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2644 {
2645 if (VECTORP (x))
2646 return ASIZE (x);
2647 if (STRINGP (x))
2648 return SCHARS (x);
2649 wrong_type_argument (Qarrayp, x);
2650 }
2651 INLINE void
2652 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2653 {
2654 CHECK_TYPE (ARRAYP (x), predicate, x);
2655 }
2656 INLINE void
2657 CHECK_BUFFER (Lisp_Object x)
2658 {
2659 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2660 }
2661 INLINE void
2662 CHECK_WINDOW (Lisp_Object x)
2663 {
2664 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2665 }
2666 #ifdef subprocesses
2667 INLINE void
2668 CHECK_PROCESS (Lisp_Object x)
2669 {
2670 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2671 }
2672 #endif
2673 INLINE void
2674 CHECK_NATNUM (Lisp_Object x)
2675 {
2676 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2677 }
2678
2679 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2680 do { \
2681 CHECK_NUMBER (x); \
2682 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2683 args_out_of_range_3 \
2684 (x, \
2685 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2686 ? MOST_NEGATIVE_FIXNUM \
2687 : (lo)), \
2688 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2689 } while (false)
2690 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2691 do { \
2692 if (TYPE_SIGNED (type)) \
2693 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2694 else \
2695 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2696 } while (false)
2697
2698 #define CHECK_NUMBER_COERCE_MARKER(x) \
2699 do { \
2700 if (MARKERP ((x))) \
2701 XSETFASTINT (x, marker_position (x)); \
2702 else \
2703 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2704 } while (false)
2705
2706 INLINE double
2707 XFLOATINT (Lisp_Object n)
2708 {
2709 return extract_float (n);
2710 }
2711
2712 INLINE void
2713 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2714 {
2715 CHECK_TYPE (FLOATP (x) || INTEGERP (x), Qnumberp, x);
2716 }
2717
2718 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2719 do { \
2720 if (MARKERP (x)) \
2721 XSETFASTINT (x, marker_position (x)); \
2722 else \
2723 CHECK_TYPE (INTEGERP (x) || FLOATP (x), Qnumber_or_marker_p, x); \
2724 } while (false)
2725
2726 /* Since we can't assign directly to the CAR or CDR fields of a cons
2727 cell, use these when checking that those fields contain numbers. */
2728 INLINE void
2729 CHECK_NUMBER_CAR (Lisp_Object x)
2730 {
2731 Lisp_Object tmp = XCAR (x);
2732 CHECK_NUMBER (tmp);
2733 XSETCAR (x, tmp);
2734 }
2735
2736 INLINE void
2737 CHECK_NUMBER_CDR (Lisp_Object x)
2738 {
2739 Lisp_Object tmp = XCDR (x);
2740 CHECK_NUMBER (tmp);
2741 XSETCDR (x, tmp);
2742 }
2743 \f
2744 /* Define a built-in function for calling from Lisp.
2745 `lname' should be the name to give the function in Lisp,
2746 as a null-terminated C string.
2747 `fnname' should be the name of the function in C.
2748 By convention, it starts with F.
2749 `sname' should be the name for the C constant structure
2750 that records information on this function for internal use.
2751 By convention, it should be the same as `fnname' but with S instead of F.
2752 It's too bad that C macros can't compute this from `fnname'.
2753 `minargs' should be a number, the minimum number of arguments allowed.
2754 `maxargs' should be a number, the maximum number of arguments allowed,
2755 or else MANY or UNEVALLED.
2756 MANY means pass a vector of evaluated arguments,
2757 in the form of an integer number-of-arguments
2758 followed by the address of a vector of Lisp_Objects
2759 which contains the argument values.
2760 UNEVALLED means pass the list of unevaluated arguments
2761 `intspec' says how interactive arguments are to be fetched.
2762 If the string starts with a `(', `intspec' is evaluated and the resulting
2763 list is the list of arguments.
2764 If it's a string that doesn't start with `(', the value should follow
2765 the one of the doc string for `interactive'.
2766 A null string means call interactively with no arguments.
2767 `doc' is documentation for the user. */
2768
2769 /* This version of DEFUN declares a function prototype with the right
2770 arguments, so we can catch errors with maxargs at compile-time. */
2771 #ifdef _MSC_VER
2772 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2773 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2774 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2775 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2776 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2777 { (Lisp_Object (__cdecl *)(void))fnname }, \
2778 minargs, maxargs, lname, intspec, 0}; \
2779 Lisp_Object fnname
2780 #else /* not _MSC_VER */
2781 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2782 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2783 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2784 { .a ## maxargs = fnname }, \
2785 minargs, maxargs, lname, intspec, 0}; \
2786 Lisp_Object fnname
2787 #endif
2788
2789 /* True if OBJ is a Lisp function. */
2790 INLINE bool
2791 FUNCTIONP (Lisp_Object obj)
2792 {
2793 return functionp (obj);
2794 }
2795
2796 /* defsubr (Sname);
2797 is how we define the symbol for function `name' at start-up time. */
2798 extern void defsubr (struct Lisp_Subr *);
2799
2800 enum maxargs
2801 {
2802 MANY = -2,
2803 UNEVALLED = -1
2804 };
2805
2806 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2807 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2808 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2809 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2810 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2811
2812 /* Macros we use to define forwarded Lisp variables.
2813 These are used in the syms_of_FILENAME functions.
2814
2815 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2816 lisp variable is actually a field in `struct emacs_globals'. The
2817 field's name begins with "f_", which is a convention enforced by
2818 these macros. Each such global has a corresponding #define in
2819 globals.h; the plain name should be used in the code.
2820
2821 E.g., the global "cons_cells_consed" is declared as "int
2822 f_cons_cells_consed" in globals.h, but there is a define:
2823
2824 #define cons_cells_consed globals.f_cons_cells_consed
2825
2826 All C code uses the `cons_cells_consed' name. This is all done
2827 this way to support indirection for multi-threaded Emacs. */
2828
2829 #define DEFVAR_LISP(lname, vname, doc) \
2830 do { \
2831 static struct Lisp_Objfwd o_fwd; \
2832 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
2833 } while (false)
2834 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
2835 do { \
2836 static struct Lisp_Objfwd o_fwd; \
2837 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
2838 } while (false)
2839 #define DEFVAR_BOOL(lname, vname, doc) \
2840 do { \
2841 static struct Lisp_Boolfwd b_fwd; \
2842 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
2843 } while (false)
2844 #define DEFVAR_INT(lname, vname, doc) \
2845 do { \
2846 static struct Lisp_Intfwd i_fwd; \
2847 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
2848 } while (false)
2849
2850 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
2851 do { \
2852 static struct Lisp_Objfwd o_fwd; \
2853 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
2854 } while (false)
2855
2856 #define DEFVAR_KBOARD(lname, vname, doc) \
2857 do { \
2858 static struct Lisp_Kboard_Objfwd ko_fwd; \
2859 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
2860 } while (false)
2861 \f
2862 /* Save and restore the instruction and environment pointers,
2863 without affecting the signal mask. */
2864
2865 #ifdef HAVE__SETJMP
2866 typedef jmp_buf sys_jmp_buf;
2867 # define sys_setjmp(j) _setjmp (j)
2868 # define sys_longjmp(j, v) _longjmp (j, v)
2869 #elif defined HAVE_SIGSETJMP
2870 typedef sigjmp_buf sys_jmp_buf;
2871 # define sys_setjmp(j) sigsetjmp (j, 0)
2872 # define sys_longjmp(j, v) siglongjmp (j, v)
2873 #else
2874 /* A platform that uses neither _longjmp nor siglongjmp; assume
2875 longjmp does not affect the sigmask. */
2876 typedef jmp_buf sys_jmp_buf;
2877 # define sys_setjmp(j) setjmp (j)
2878 # define sys_longjmp(j, v) longjmp (j, v)
2879 #endif
2880
2881 \f
2882 /* Elisp uses several stacks:
2883 - the C stack.
2884 - the bytecode stack: used internally by the bytecode interpreter.
2885 Allocated from the C stack.
2886 - The specpdl stack: keeps track of active unwind-protect and
2887 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
2888 managed stack.
2889 - The handler stack: keeps track of active catch tags and condition-case
2890 handlers. Allocated in a manually managed stack implemented by a
2891 doubly-linked list allocated via xmalloc and never freed. */
2892
2893 /* Structure for recording Lisp call stack for backtrace purposes. */
2894
2895 /* The special binding stack holds the outer values of variables while
2896 they are bound by a function application or a let form, stores the
2897 code to be executed for unwind-protect forms.
2898
2899 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
2900 used all over the place, needs to be fast, and needs to know the size of
2901 union specbinding. But only eval.c should access it. */
2902
2903 enum specbind_tag {
2904 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
2905 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
2906 SPECPDL_UNWIND_INT, /* Likewise, on int. */
2907 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
2908 SPECPDL_BACKTRACE, /* An element of the backtrace. */
2909 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
2910 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
2911 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
2912 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
2913 };
2914
2915 union specbinding
2916 {
2917 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2918 struct {
2919 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2920 void (*func) (Lisp_Object);
2921 Lisp_Object arg;
2922 } unwind;
2923 struct {
2924 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2925 void (*func) (void *);
2926 void *arg;
2927 } unwind_ptr;
2928 struct {
2929 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2930 void (*func) (int);
2931 int arg;
2932 } unwind_int;
2933 struct {
2934 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2935 void (*func) (void);
2936 } unwind_void;
2937 struct {
2938 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2939 /* `where' is not used in the case of SPECPDL_LET. */
2940 Lisp_Object symbol, old_value, where;
2941 } let;
2942 struct {
2943 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2944 bool_bf debug_on_exit : 1;
2945 Lisp_Object function;
2946 Lisp_Object *args;
2947 ptrdiff_t nargs;
2948 } bt;
2949 };
2950
2951 extern union specbinding *specpdl;
2952 extern union specbinding *specpdl_ptr;
2953 extern ptrdiff_t specpdl_size;
2954
2955 INLINE ptrdiff_t
2956 SPECPDL_INDEX (void)
2957 {
2958 return specpdl_ptr - specpdl;
2959 }
2960
2961 /* This structure helps implement the `catch/throw' and `condition-case/signal'
2962 control structures. A struct handler contains all the information needed to
2963 restore the state of the interpreter after a non-local jump.
2964
2965 handler structures are chained together in a doubly linked list; the `next'
2966 member points to the next outer catchtag and the `nextfree' member points in
2967 the other direction to the next inner element (which is typically the next
2968 free element since we mostly use it on the deepest handler).
2969
2970 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
2971 member is TAG, and then unbinds to it. The `val' member is used to
2972 hold VAL while the stack is unwound; `val' is returned as the value
2973 of the catch form.
2974
2975 All the other members are concerned with restoring the interpreter
2976 state.
2977
2978 Members are volatile if their values need to survive _longjmp when
2979 a 'struct handler' is a local variable. */
2980
2981 enum handlertype { CATCHER, CONDITION_CASE };
2982
2983 struct handler
2984 {
2985 enum handlertype type;
2986 Lisp_Object tag_or_ch;
2987 Lisp_Object val;
2988 struct handler *next;
2989 struct handler *nextfree;
2990
2991 /* The bytecode interpreter can have several handlers active at the same
2992 time, so when we longjmp to one of them, it needs to know which handler
2993 this was and what was the corresponding internal state. This is stored
2994 here, and when we longjmp we make sure that handlerlist points to the
2995 proper handler. */
2996 Lisp_Object *bytecode_top;
2997 int bytecode_dest;
2998
2999 /* Most global vars are reset to their value via the specpdl mechanism,
3000 but a few others are handled by storing their value here. */
3001 #if true /* GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS, but defined later. */
3002 struct gcpro *gcpro;
3003 #endif
3004 sys_jmp_buf jmp;
3005 EMACS_INT lisp_eval_depth;
3006 ptrdiff_t pdlcount;
3007 int poll_suppress_count;
3008 int interrupt_input_blocked;
3009 struct byte_stack *byte_stack;
3010 };
3011
3012 /* Fill in the components of c, and put it on the list. */
3013 #define PUSH_HANDLER(c, tag_ch_val, handlertype) \
3014 if (handlerlist->nextfree) \
3015 (c) = handlerlist->nextfree; \
3016 else \
3017 { \
3018 (c) = xmalloc (sizeof (struct handler)); \
3019 (c)->nextfree = NULL; \
3020 handlerlist->nextfree = (c); \
3021 } \
3022 (c)->type = (handlertype); \
3023 (c)->tag_or_ch = (tag_ch_val); \
3024 (c)->val = Qnil; \
3025 (c)->next = handlerlist; \
3026 (c)->lisp_eval_depth = lisp_eval_depth; \
3027 (c)->pdlcount = SPECPDL_INDEX (); \
3028 (c)->poll_suppress_count = poll_suppress_count; \
3029 (c)->interrupt_input_blocked = interrupt_input_blocked;\
3030 (c)->gcpro = gcprolist; \
3031 (c)->byte_stack = byte_stack_list; \
3032 handlerlist = (c);
3033
3034
3035 extern Lisp_Object memory_signal_data;
3036
3037 /* An address near the bottom of the stack.
3038 Tells GC how to save a copy of the stack. */
3039 extern char *stack_bottom;
3040
3041 /* Check quit-flag and quit if it is non-nil.
3042 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
3043 So the program needs to do QUIT at times when it is safe to quit.
3044 Every loop that might run for a long time or might not exit
3045 ought to do QUIT at least once, at a safe place.
3046 Unless that is impossible, of course.
3047 But it is very desirable to avoid creating loops where QUIT is impossible.
3048
3049 Exception: if you set immediate_quit to true,
3050 then the handler that responds to the C-g does the quit itself.
3051 This is a good thing to do around a loop that has no side effects
3052 and (in particular) cannot call arbitrary Lisp code.
3053
3054 If quit-flag is set to `kill-emacs' the SIGINT handler has received
3055 a request to exit Emacs when it is safe to do. */
3056
3057 extern void process_pending_signals (void);
3058 extern bool volatile pending_signals;
3059
3060 extern void process_quit_flag (void);
3061 #define QUIT \
3062 do { \
3063 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
3064 process_quit_flag (); \
3065 else if (pending_signals) \
3066 process_pending_signals (); \
3067 } while (false)
3068
3069
3070 /* True if ought to quit now. */
3071
3072 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3073 \f
3074 extern Lisp_Object Vascii_downcase_table;
3075 extern Lisp_Object Vascii_canon_table;
3076 \f
3077 /* Structure for recording stack slots that need marking. */
3078
3079 /* This is a chain of structures, each of which points at a Lisp_Object
3080 variable whose value should be marked in garbage collection.
3081 Normally every link of the chain is an automatic variable of a function,
3082 and its `val' points to some argument or local variable of the function.
3083 On exit to the function, the chain is set back to the value it had on entry.
3084 This way, no link remains in the chain when the stack frame containing the
3085 link disappears.
3086
3087 Every function that can call Feval must protect in this fashion all
3088 Lisp_Object variables whose contents will be used again. */
3089
3090 extern struct gcpro *gcprolist;
3091
3092 struct gcpro
3093 {
3094 struct gcpro *next;
3095
3096 /* Address of first protected variable. */
3097 volatile Lisp_Object *var;
3098
3099 /* Number of consecutive protected variables. */
3100 ptrdiff_t nvars;
3101
3102 #ifdef DEBUG_GCPRO
3103 /* File name where this record is used. */
3104 const char *name;
3105
3106 /* Line number in this file. */
3107 int lineno;
3108
3109 /* Index in the local chain of records. */
3110 int idx;
3111
3112 /* Nesting level. */
3113 int level;
3114 #endif
3115 };
3116
3117 /* Values of GC_MARK_STACK during compilation:
3118
3119 0 Use GCPRO as before
3120 1 Do the real thing, make GCPROs and UNGCPRO no-ops.
3121 2 Mark the stack, and check that everything GCPRO'd is
3122 marked.
3123 3 Mark using GCPRO's, mark stack last, and count how many
3124 dead objects are kept alive.
3125
3126 Formerly, method 0 was used. Currently, method 1 is used unless
3127 otherwise specified by hand when building, e.g.,
3128 "make CPPFLAGS='-DGC_MARK_STACK=GC_USE_GCPROS_AS_BEFORE'".
3129 Methods 2 and 3 are present mainly to debug the transition from 0 to 1. */
3130
3131 #define GC_USE_GCPROS_AS_BEFORE 0
3132 #define GC_MAKE_GCPROS_NOOPS 1
3133 #define GC_MARK_STACK_CHECK_GCPROS 2
3134 #define GC_USE_GCPROS_CHECK_ZOMBIES 3
3135
3136 #ifndef GC_MARK_STACK
3137 #define GC_MARK_STACK GC_MAKE_GCPROS_NOOPS
3138 #endif
3139
3140 /* Whether we do the stack marking manually. */
3141 #define BYTE_MARK_STACK !(GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
3142 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
3143
3144
3145 #if GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS
3146
3147 /* Do something silly with gcproN vars just so gcc shuts up. */
3148 /* You get warnings from MIPSPro... */
3149
3150 #define GCPRO1(varname) ((void) gcpro1)
3151 #define GCPRO2(varname1, varname2) ((void) gcpro2, (void) gcpro1)
3152 #define GCPRO3(varname1, varname2, varname3) \
3153 ((void) gcpro3, (void) gcpro2, (void) gcpro1)
3154 #define GCPRO4(varname1, varname2, varname3, varname4) \
3155 ((void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3156 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3157 ((void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3158 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3159 ((void) gcpro6, (void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, \
3160 (void) gcpro1)
3161 #define GCPRO7(a, b, c, d, e, f, g) (GCPRO6 (a, b, c, d, e, f), (void) gcpro7)
3162 #define UNGCPRO ((void) 0)
3163
3164 #else /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3165
3166 #ifndef DEBUG_GCPRO
3167
3168 #define GCPRO1(a) \
3169 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3170 gcprolist = &gcpro1; }
3171
3172 #define GCPRO2(a, b) \
3173 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3174 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3175 gcprolist = &gcpro2; }
3176
3177 #define GCPRO3(a, b, c) \
3178 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3179 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3180 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3181 gcprolist = &gcpro3; }
3182
3183 #define GCPRO4(a, b, c, d) \
3184 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3185 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3186 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3187 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3188 gcprolist = &gcpro4; }
3189
3190 #define GCPRO5(a, b, c, d, e) \
3191 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3192 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3193 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3194 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3195 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3196 gcprolist = &gcpro5; }
3197
3198 #define GCPRO6(a, b, c, d, e, f) \
3199 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3200 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3201 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3202 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3203 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3204 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3205 gcprolist = &gcpro6; }
3206
3207 #define GCPRO7(a, b, c, d, e, f, g) \
3208 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3209 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3210 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3211 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3212 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3213 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3214 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3215 gcprolist = &gcpro7; }
3216
3217 #define UNGCPRO (gcprolist = gcpro1.next)
3218
3219 #else /* !DEBUG_GCPRO */
3220
3221 extern int gcpro_level;
3222
3223 #define GCPRO1(a) \
3224 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3225 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3226 gcpro1.level = gcpro_level++; \
3227 gcprolist = &gcpro1; }
3228
3229 #define GCPRO2(a, b) \
3230 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3231 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3232 gcpro1.level = gcpro_level; \
3233 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3234 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3235 gcpro2.level = gcpro_level++; \
3236 gcprolist = &gcpro2; }
3237
3238 #define GCPRO3(a, b, c) \
3239 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3240 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3241 gcpro1.level = gcpro_level; \
3242 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3243 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3244 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3245 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3246 gcpro3.level = gcpro_level++; \
3247 gcprolist = &gcpro3; }
3248
3249 #define GCPRO4(a, b, c, d) \
3250 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3251 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3252 gcpro1.level = gcpro_level; \
3253 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3254 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3255 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3256 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3257 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3258 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3259 gcpro4.level = gcpro_level++; \
3260 gcprolist = &gcpro4; }
3261
3262 #define GCPRO5(a, b, c, d, e) \
3263 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3264 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3265 gcpro1.level = gcpro_level; \
3266 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3267 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3268 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3269 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3270 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3271 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3272 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3273 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3274 gcpro5.level = gcpro_level++; \
3275 gcprolist = &gcpro5; }
3276
3277 #define GCPRO6(a, b, c, d, e, f) \
3278 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3279 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3280 gcpro1.level = gcpro_level; \
3281 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3282 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3283 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3284 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3285 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3286 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3287 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3288 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3289 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3290 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3291 gcpro6.level = gcpro_level++; \
3292 gcprolist = &gcpro6; }
3293
3294 #define GCPRO7(a, b, c, d, e, f, g) \
3295 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3296 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3297 gcpro1.level = gcpro_level; \
3298 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3299 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3300 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3301 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3302 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3303 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3304 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3305 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3306 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3307 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3308 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3309 gcpro7.name = __FILE__; gcpro7.lineno = __LINE__; gcpro7.idx = 7; \
3310 gcpro7.level = gcpro_level++; \
3311 gcprolist = &gcpro7; }
3312
3313 #define UNGCPRO \
3314 (--gcpro_level != gcpro1.level \
3315 ? emacs_abort () \
3316 : (void) (gcprolist = gcpro1.next))
3317
3318 #endif /* DEBUG_GCPRO */
3319 #endif /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3320
3321
3322 /* Evaluate expr, UNGCPRO, and then return the value of expr. */
3323 #define RETURN_UNGCPRO(expr) \
3324 do \
3325 { \
3326 Lisp_Object ret_ungc_val; \
3327 ret_ungc_val = (expr); \
3328 UNGCPRO; \
3329 return ret_ungc_val; \
3330 } \
3331 while (false)
3332
3333 /* Call staticpro (&var) to protect static variable `var'. */
3334
3335 void staticpro (Lisp_Object *);
3336 \f
3337 /* Forward declarations for prototypes. */
3338 struct window;
3339 struct frame;
3340
3341 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3342
3343 INLINE void
3344 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3345 {
3346 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3347 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3348 }
3349
3350 /* Functions to modify hash tables. */
3351
3352 INLINE void
3353 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3354 {
3355 gc_aset (h->key_and_value, 2 * idx, val);
3356 }
3357
3358 INLINE void
3359 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3360 {
3361 gc_aset (h->key_and_value, 2 * idx + 1, val);
3362 }
3363
3364 /* Use these functions to set Lisp_Object
3365 or pointer slots of struct Lisp_Symbol. */
3366
3367 INLINE void
3368 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3369 {
3370 XSYMBOL (sym)->function = function;
3371 }
3372
3373 INLINE void
3374 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3375 {
3376 XSYMBOL (sym)->plist = plist;
3377 }
3378
3379 INLINE void
3380 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3381 {
3382 XSYMBOL (sym)->next = next;
3383 }
3384
3385 /* Buffer-local (also frame-local) variable access functions. */
3386
3387 INLINE int
3388 blv_found (struct Lisp_Buffer_Local_Value *blv)
3389 {
3390 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3391 return blv->found;
3392 }
3393
3394 /* Set overlay's property list. */
3395
3396 INLINE void
3397 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3398 {
3399 XOVERLAY (overlay)->plist = plist;
3400 }
3401
3402 /* Get text properties of S. */
3403
3404 INLINE INTERVAL
3405 string_intervals (Lisp_Object s)
3406 {
3407 return XSTRING (s)->intervals;
3408 }
3409
3410 /* Set text properties of S to I. */
3411
3412 INLINE void
3413 set_string_intervals (Lisp_Object s, INTERVAL i)
3414 {
3415 XSTRING (s)->intervals = i;
3416 }
3417
3418 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3419 of setting slots directly. */
3420
3421 INLINE void
3422 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3423 {
3424 XCHAR_TABLE (table)->defalt = val;
3425 }
3426 INLINE void
3427 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3428 {
3429 XCHAR_TABLE (table)->purpose = val;
3430 }
3431
3432 /* Set different slots in (sub)character tables. */
3433
3434 INLINE void
3435 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3436 {
3437 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3438 XCHAR_TABLE (table)->extras[idx] = val;
3439 }
3440
3441 INLINE void
3442 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3443 {
3444 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3445 XCHAR_TABLE (table)->contents[idx] = val;
3446 }
3447
3448 INLINE void
3449 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3450 {
3451 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3452 }
3453
3454 /* Defined in data.c. */
3455 extern Lisp_Object indirect_function (Lisp_Object);
3456 extern Lisp_Object find_symbol_value (Lisp_Object);
3457 enum Arith_Comparison {
3458 ARITH_EQUAL,
3459 ARITH_NOTEQUAL,
3460 ARITH_LESS,
3461 ARITH_GRTR,
3462 ARITH_LESS_OR_EQUAL,
3463 ARITH_GRTR_OR_EQUAL
3464 };
3465 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3466 enum Arith_Comparison comparison);
3467
3468 /* Convert the integer I to an Emacs representation, either the integer
3469 itself, or a cons of two or three integers, or if all else fails a float.
3470 I should not have side effects. */
3471 #define INTEGER_TO_CONS(i) \
3472 (! FIXNUM_OVERFLOW_P (i) \
3473 ? make_number (i) \
3474 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16) \
3475 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16)) \
3476 && FIXNUM_OVERFLOW_P ((i) >> 16)) \
3477 ? Fcons (make_number ((i) >> 16), make_number ((i) & 0xffff)) \
3478 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16 >> 24) \
3479 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16 >> 24)) \
3480 && FIXNUM_OVERFLOW_P ((i) >> 16 >> 24)) \
3481 ? Fcons (make_number ((i) >> 16 >> 24), \
3482 Fcons (make_number ((i) >> 16 & 0xffffff), \
3483 make_number ((i) & 0xffff))) \
3484 : make_float (i))
3485
3486 /* Convert the Emacs representation CONS back to an integer of type
3487 TYPE, storing the result the variable VAR. Signal an error if CONS
3488 is not a valid representation or is out of range for TYPE. */
3489 #define CONS_TO_INTEGER(cons, type, var) \
3490 (TYPE_SIGNED (type) \
3491 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3492 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3493 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3494 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3495
3496 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3497 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3498 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3499 Lisp_Object);
3500 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3501 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3502 extern void syms_of_data (void);
3503 extern void swap_in_global_binding (struct Lisp_Symbol *);
3504
3505 /* Defined in cmds.c */
3506 extern void syms_of_cmds (void);
3507 extern void keys_of_cmds (void);
3508
3509 /* Defined in coding.c. */
3510 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3511 ptrdiff_t, bool, bool, Lisp_Object);
3512 extern void init_coding (void);
3513 extern void init_coding_once (void);
3514 extern void syms_of_coding (void);
3515
3516 /* Defined in character.c. */
3517 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3518 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3519 extern void syms_of_character (void);
3520
3521 /* Defined in charset.c. */
3522 extern void init_charset (void);
3523 extern void init_charset_once (void);
3524 extern void syms_of_charset (void);
3525 /* Structure forward declarations. */
3526 struct charset;
3527
3528 /* Defined in syntax.c. */
3529 extern void init_syntax_once (void);
3530 extern void syms_of_syntax (void);
3531
3532 /* Defined in fns.c. */
3533 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3534 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3535 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3536 extern void sweep_weak_hash_tables (void);
3537 EMACS_UINT hash_string (char const *, ptrdiff_t);
3538 EMACS_UINT sxhash (Lisp_Object, int);
3539 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3540 Lisp_Object, Lisp_Object);
3541 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3542 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3543 EMACS_UINT);
3544 extern struct hash_table_test hashtest_eql, hashtest_equal;
3545 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3546 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3547 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3548 ptrdiff_t, ptrdiff_t);
3549 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3550 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3551 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3552 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3553 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3554 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3555 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3556 extern void clear_string_char_byte_cache (void);
3557 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3558 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3559 extern Lisp_Object string_to_multibyte (Lisp_Object);
3560 extern Lisp_Object string_make_unibyte (Lisp_Object);
3561 extern void syms_of_fns (void);
3562
3563 /* Defined in floatfns.c. */
3564 extern void syms_of_floatfns (void);
3565 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3566
3567 /* Defined in fringe.c. */
3568 extern void syms_of_fringe (void);
3569 extern void init_fringe (void);
3570 #ifdef HAVE_WINDOW_SYSTEM
3571 extern void mark_fringe_data (void);
3572 extern void init_fringe_once (void);
3573 #endif /* HAVE_WINDOW_SYSTEM */
3574
3575 /* Defined in image.c. */
3576 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3577 extern void reset_image_types (void);
3578 extern void syms_of_image (void);
3579
3580 /* Defined in insdel.c. */
3581 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3582 extern _Noreturn void buffer_overflow (void);
3583 extern void make_gap (ptrdiff_t);
3584 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3585 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3586 ptrdiff_t, bool, bool);
3587 extern int count_combining_before (const unsigned char *,
3588 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3589 extern int count_combining_after (const unsigned char *,
3590 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3591 extern void insert (const char *, ptrdiff_t);
3592 extern void insert_and_inherit (const char *, ptrdiff_t);
3593 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3594 bool, bool, bool);
3595 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3596 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3597 ptrdiff_t, ptrdiff_t, bool);
3598 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3599 extern void insert_char (int);
3600 extern void insert_string (const char *);
3601 extern void insert_before_markers (const char *, ptrdiff_t);
3602 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3603 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3604 ptrdiff_t, ptrdiff_t,
3605 ptrdiff_t, bool);
3606 extern void del_range (ptrdiff_t, ptrdiff_t);
3607 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3608 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3609 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3610 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3611 ptrdiff_t, ptrdiff_t, bool);
3612 extern void modify_text (ptrdiff_t, ptrdiff_t);
3613 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3614 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3615 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3616 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3617 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3618 ptrdiff_t, ptrdiff_t);
3619 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3620 ptrdiff_t, ptrdiff_t);
3621 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3622 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3623 const char *, ptrdiff_t, ptrdiff_t, bool);
3624 extern void syms_of_insdel (void);
3625
3626 /* Defined in dispnew.c. */
3627 #if (defined PROFILING \
3628 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3629 _Noreturn void __executable_start (void);
3630 #endif
3631 extern Lisp_Object Vwindow_system;
3632 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3633
3634 /* Defined in xdisp.c. */
3635 extern bool noninteractive_need_newline;
3636 extern Lisp_Object echo_area_buffer[2];
3637 extern void add_to_log (const char *, Lisp_Object, Lisp_Object);
3638 extern void check_message_stack (void);
3639 extern void setup_echo_area_for_printing (int);
3640 extern bool push_message (void);
3641 extern void pop_message_unwind (void);
3642 extern Lisp_Object restore_message_unwind (Lisp_Object);
3643 extern void restore_message (void);
3644 extern Lisp_Object current_message (void);
3645 extern void clear_message (bool, bool);
3646 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3647 extern void message1 (const char *);
3648 extern void message1_nolog (const char *);
3649 extern void message3 (Lisp_Object);
3650 extern void message3_nolog (Lisp_Object);
3651 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3652 extern void message_with_string (const char *, Lisp_Object, int);
3653 extern void message_log_maybe_newline (void);
3654 extern void update_echo_area (void);
3655 extern void truncate_echo_area (ptrdiff_t);
3656 extern void redisplay (void);
3657
3658 void set_frame_cursor_types (struct frame *, Lisp_Object);
3659 extern void syms_of_xdisp (void);
3660 extern void init_xdisp (void);
3661 extern Lisp_Object safe_eval (Lisp_Object);
3662 extern int pos_visible_p (struct window *, ptrdiff_t, int *,
3663 int *, int *, int *, int *, int *);
3664
3665 /* Defined in xsettings.c. */
3666 extern void syms_of_xsettings (void);
3667
3668 /* Defined in vm-limit.c. */
3669 extern void memory_warnings (void *, void (*warnfun) (const char *));
3670
3671 /* Defined in character.c. */
3672 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3673 ptrdiff_t *, ptrdiff_t *);
3674
3675 /* Defined in alloc.c. */
3676 extern void check_pure_size (void);
3677 extern void free_misc (Lisp_Object);
3678 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3679 extern void malloc_warning (const char *);
3680 extern _Noreturn void memory_full (size_t);
3681 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3682 extern bool survives_gc_p (Lisp_Object);
3683 extern void mark_object (Lisp_Object);
3684 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3685 extern void refill_memory_reserve (void);
3686 #endif
3687 extern const char *pending_malloc_warning;
3688 extern Lisp_Object zero_vector;
3689 extern Lisp_Object *stack_base;
3690 extern EMACS_INT consing_since_gc;
3691 extern EMACS_INT gc_relative_threshold;
3692 extern EMACS_INT memory_full_cons_threshold;
3693 extern Lisp_Object list1 (Lisp_Object);
3694 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3695 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3696 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3697 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3698 Lisp_Object);
3699 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3700 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3701
3702 /* Build a frequently used 2/3/4-integer lists. */
3703
3704 INLINE Lisp_Object
3705 list2i (EMACS_INT x, EMACS_INT y)
3706 {
3707 return list2 (make_number (x), make_number (y));
3708 }
3709
3710 INLINE Lisp_Object
3711 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3712 {
3713 return list3 (make_number (x), make_number (y), make_number (w));
3714 }
3715
3716 INLINE Lisp_Object
3717 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3718 {
3719 return list4 (make_number (x), make_number (y),
3720 make_number (w), make_number (h));
3721 }
3722
3723 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3724 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3725 extern _Noreturn void string_overflow (void);
3726 extern Lisp_Object make_string (const char *, ptrdiff_t);
3727 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3728 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3729 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3730
3731 /* Make unibyte string from C string when the length isn't known. */
3732
3733 INLINE Lisp_Object
3734 build_unibyte_string (const char *str)
3735 {
3736 return make_unibyte_string (str, strlen (str));
3737 }
3738
3739 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3740 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3741 extern Lisp_Object make_uninit_string (EMACS_INT);
3742 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3743 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3744 extern Lisp_Object make_specified_string (const char *,
3745 ptrdiff_t, ptrdiff_t, bool);
3746 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3747 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3748
3749 /* Make a string allocated in pure space, use STR as string data. */
3750
3751 INLINE Lisp_Object
3752 build_pure_c_string (const char *str)
3753 {
3754 return make_pure_c_string (str, strlen (str));
3755 }
3756
3757 /* Make a string from the data at STR, treating it as multibyte if the
3758 data warrants. */
3759
3760 INLINE Lisp_Object
3761 build_string (const char *str)
3762 {
3763 return make_string (str, strlen (str));
3764 }
3765
3766 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3767 extern void make_byte_code (struct Lisp_Vector *);
3768 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3769
3770 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3771 be sure that GC cannot happen until the vector is completely
3772 initialized. E.g. the following code is likely to crash:
3773
3774 v = make_uninit_vector (3);
3775 ASET (v, 0, obj0);
3776 ASET (v, 1, Ffunction_can_gc ());
3777 ASET (v, 2, obj1); */
3778
3779 INLINE Lisp_Object
3780 make_uninit_vector (ptrdiff_t size)
3781 {
3782 Lisp_Object v;
3783 struct Lisp_Vector *p;
3784
3785 p = allocate_vector (size);
3786 XSETVECTOR (v, p);
3787 return v;
3788 }
3789
3790 /* Like above, but special for sub char-tables. */
3791
3792 INLINE Lisp_Object
3793 make_uninit_sub_char_table (int depth, int min_char)
3794 {
3795 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3796 Lisp_Object v = make_uninit_vector (slots);
3797
3798 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3799 XSUB_CHAR_TABLE (v)->depth = depth;
3800 XSUB_CHAR_TABLE (v)->min_char = min_char;
3801 return v;
3802 }
3803
3804 extern struct Lisp_Vector *allocate_pseudovector (int, int, int,
3805 enum pvec_type);
3806
3807 /* Allocate partially initialized pseudovector where all Lisp_Object
3808 slots are set to Qnil but the rest (if any) is left uninitialized. */
3809
3810 #define ALLOCATE_PSEUDOVECTOR(type, field, tag) \
3811 ((type *) allocate_pseudovector (VECSIZE (type), \
3812 PSEUDOVECSIZE (type, field), \
3813 PSEUDOVECSIZE (type, field), tag))
3814
3815 /* Allocate fully initialized pseudovector where all Lisp_Object
3816 slots are set to Qnil and the rest (if any) is zeroed. */
3817
3818 #define ALLOCATE_ZEROED_PSEUDOVECTOR(type, field, tag) \
3819 ((type *) allocate_pseudovector (VECSIZE (type), \
3820 PSEUDOVECSIZE (type, field), \
3821 VECSIZE (type), tag))
3822
3823 extern bool gc_in_progress;
3824 extern bool abort_on_gc;
3825 extern Lisp_Object make_float (double);
3826 extern void display_malloc_warning (void);
3827 extern ptrdiff_t inhibit_garbage_collection (void);
3828 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3829 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3830 Lisp_Object, Lisp_Object);
3831 extern Lisp_Object make_save_ptr (void *);
3832 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3833 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3834 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3835 Lisp_Object);
3836 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3837 extern void free_save_value (Lisp_Object);
3838 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3839 extern void free_marker (Lisp_Object);
3840 extern void free_cons (struct Lisp_Cons *);
3841 extern void init_alloc_once (void);
3842 extern void init_alloc (void);
3843 extern void syms_of_alloc (void);
3844 extern struct buffer * allocate_buffer (void);
3845 extern int valid_lisp_object_p (Lisp_Object);
3846 extern int relocatable_string_data_p (const char *);
3847 #ifdef GC_CHECK_CONS_LIST
3848 extern void check_cons_list (void);
3849 #else
3850 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3851 #endif
3852
3853 #ifdef REL_ALLOC
3854 /* Defined in ralloc.c. */
3855 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3856 extern void r_alloc_free (void **);
3857 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3858 extern void r_alloc_reset_variable (void **, void **);
3859 extern void r_alloc_inhibit_buffer_relocation (int);
3860 #endif
3861
3862 /* Defined in chartab.c. */
3863 extern Lisp_Object copy_char_table (Lisp_Object);
3864 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3865 int *, int *);
3866 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3867 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3868 Lisp_Object),
3869 Lisp_Object, Lisp_Object, Lisp_Object);
3870 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3871 Lisp_Object, Lisp_Object,
3872 Lisp_Object, struct charset *,
3873 unsigned, unsigned);
3874 extern Lisp_Object uniprop_table (Lisp_Object);
3875 extern void syms_of_chartab (void);
3876
3877 /* Defined in print.c. */
3878 extern Lisp_Object Vprin1_to_string_buffer;
3879 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3880 extern void temp_output_buffer_setup (const char *);
3881 extern int print_level;
3882 extern void write_string (const char *, int);
3883 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3884 Lisp_Object);
3885 extern Lisp_Object internal_with_output_to_temp_buffer
3886 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3887 #define FLOAT_TO_STRING_BUFSIZE 350
3888 extern int float_to_string (char *, double);
3889 extern void init_print_once (void);
3890 extern void syms_of_print (void);
3891
3892 /* Defined in doprnt.c. */
3893 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3894 va_list);
3895 extern ptrdiff_t esprintf (char *, char const *, ...)
3896 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3897 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3898 char const *, ...)
3899 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3900 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3901 char const *, va_list)
3902 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3903
3904 /* Defined in lread.c. */
3905 extern Lisp_Object check_obarray (Lisp_Object);
3906 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3907 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3908 extern Lisp_Object intern_driver (Lisp_Object, Lisp_Object, Lisp_Object);
3909 extern void init_symbol (Lisp_Object, Lisp_Object);
3910 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3911 INLINE void
3912 LOADHIST_ATTACH (Lisp_Object x)
3913 {
3914 if (initialized)
3915 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3916 }
3917 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3918 Lisp_Object *, Lisp_Object, bool);
3919 extern Lisp_Object string_to_number (char const *, int, bool);
3920 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3921 Lisp_Object);
3922 extern void dir_warning (const char *, Lisp_Object);
3923 extern void init_obarray (void);
3924 extern void init_lread (void);
3925 extern void syms_of_lread (void);
3926
3927 INLINE Lisp_Object
3928 intern (const char *str)
3929 {
3930 return intern_1 (str, strlen (str));
3931 }
3932
3933 INLINE Lisp_Object
3934 intern_c_string (const char *str)
3935 {
3936 return intern_c_string_1 (str, strlen (str));
3937 }
3938
3939 /* Defined in eval.c. */
3940 extern EMACS_INT lisp_eval_depth;
3941 extern Lisp_Object Vautoload_queue;
3942 extern Lisp_Object Vrun_hooks;
3943 extern Lisp_Object Vsignaling_function;
3944 extern Lisp_Object inhibit_lisp_code;
3945 extern struct handler *handlerlist;
3946
3947 /* To run a normal hook, use the appropriate function from the list below.
3948 The calling convention:
3949
3950 if (!NILP (Vrun_hooks))
3951 call1 (Vrun_hooks, Qmy_funny_hook);
3952
3953 should no longer be used. */
3954 extern void run_hook (Lisp_Object);
3955 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3956 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3957 Lisp_Object (*funcall)
3958 (ptrdiff_t nargs, Lisp_Object *args));
3959 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3960 extern _Noreturn void xsignal0 (Lisp_Object);
3961 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3962 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3963 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3964 Lisp_Object);
3965 extern _Noreturn void signal_error (const char *, Lisp_Object);
3966 extern Lisp_Object eval_sub (Lisp_Object form);
3967 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3968 extern Lisp_Object call0 (Lisp_Object);
3969 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3970 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3971 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3972 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3973 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3974 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3975 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3976 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3977 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3978 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3979 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3980 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3981 extern Lisp_Object internal_condition_case_n
3982 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3983 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3984 extern void specbind (Lisp_Object, Lisp_Object);
3985 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3986 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3987 extern void record_unwind_protect_int (void (*) (int), int);
3988 extern void record_unwind_protect_void (void (*) (void));
3989 extern void record_unwind_protect_nothing (void);
3990 extern void clear_unwind_protect (ptrdiff_t);
3991 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3992 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3993 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3994 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3995 extern _Noreturn void verror (const char *, va_list)
3996 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3997 extern void un_autoload (Lisp_Object);
3998 extern Lisp_Object call_debugger (Lisp_Object arg);
3999 extern void init_eval_once (void);
4000 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
4001 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
4002 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
4003 extern void init_eval (void);
4004 extern void syms_of_eval (void);
4005 extern void unwind_body (Lisp_Object);
4006 extern ptrdiff_t record_in_backtrace (Lisp_Object, Lisp_Object *, ptrdiff_t);
4007 extern void mark_specpdl (void);
4008 extern void get_backtrace (Lisp_Object array);
4009 Lisp_Object backtrace_top_function (void);
4010 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
4011 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
4012
4013
4014 /* Defined in editfns.c. */
4015 extern void insert1 (Lisp_Object);
4016 extern Lisp_Object format2 (const char *, Lisp_Object, Lisp_Object);
4017 extern Lisp_Object save_excursion_save (void);
4018 extern Lisp_Object save_restriction_save (void);
4019 extern void save_excursion_restore (Lisp_Object);
4020 extern void save_restriction_restore (Lisp_Object);
4021 extern _Noreturn void time_overflow (void);
4022 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
4023 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
4024 ptrdiff_t, bool);
4025 extern void init_editfns (void);
4026 extern void syms_of_editfns (void);
4027
4028 /* Defined in buffer.c. */
4029 extern bool mouse_face_overlay_overlaps (Lisp_Object);
4030 extern _Noreturn void nsberror (Lisp_Object);
4031 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
4032 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
4033 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
4034 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
4035 Lisp_Object, Lisp_Object, Lisp_Object);
4036 extern bool overlay_touches_p (ptrdiff_t);
4037 extern Lisp_Object other_buffer_safely (Lisp_Object);
4038 extern Lisp_Object get_truename_buffer (Lisp_Object);
4039 extern void init_buffer_once (void);
4040 extern void init_buffer (int);
4041 extern void syms_of_buffer (void);
4042 extern void keys_of_buffer (void);
4043
4044 /* Defined in marker.c. */
4045
4046 extern ptrdiff_t marker_position (Lisp_Object);
4047 extern ptrdiff_t marker_byte_position (Lisp_Object);
4048 extern void clear_charpos_cache (struct buffer *);
4049 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
4050 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
4051 extern void unchain_marker (struct Lisp_Marker *marker);
4052 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
4053 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
4054 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
4055 ptrdiff_t, ptrdiff_t);
4056 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
4057 extern void syms_of_marker (void);
4058
4059 /* Defined in fileio.c. */
4060
4061 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
4062 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
4063 Lisp_Object, Lisp_Object, Lisp_Object,
4064 Lisp_Object, int);
4065 extern void close_file_unwind (int);
4066 extern void fclose_unwind (void *);
4067 extern void restore_point_unwind (Lisp_Object);
4068 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
4069 extern _Noreturn void report_file_error (const char *, Lisp_Object);
4070 extern bool internal_delete_file (Lisp_Object);
4071 extern Lisp_Object emacs_readlinkat (int, const char *);
4072 extern bool file_directory_p (const char *);
4073 extern bool file_accessible_directory_p (Lisp_Object);
4074 extern void init_fileio (void);
4075 extern void syms_of_fileio (void);
4076 extern Lisp_Object make_temp_name (Lisp_Object, bool);
4077
4078 /* Defined in search.c. */
4079 extern void shrink_regexp_cache (void);
4080 extern void restore_search_regs (void);
4081 extern void record_unwind_save_match_data (void);
4082 struct re_registers;
4083 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4084 struct re_registers *,
4085 Lisp_Object, bool, bool);
4086 extern ptrdiff_t fast_string_match_internal (Lisp_Object, Lisp_Object,
4087 Lisp_Object);
4088
4089 INLINE ptrdiff_t
4090 fast_string_match (Lisp_Object regexp, Lisp_Object string)
4091 {
4092 return fast_string_match_internal (regexp, string, Qnil);
4093 }
4094
4095 INLINE ptrdiff_t
4096 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
4097 {
4098 return fast_string_match_internal (regexp, string, Vascii_canon_table);
4099 }
4100
4101 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4102 ptrdiff_t);
4103 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4104 ptrdiff_t, ptrdiff_t, Lisp_Object);
4105 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4106 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4107 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4108 ptrdiff_t, bool);
4109 extern ptrdiff_t scan_newline_from_point (ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
4110 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4111 ptrdiff_t, ptrdiff_t *);
4112 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4113 ptrdiff_t, ptrdiff_t *);
4114 extern void syms_of_search (void);
4115 extern void clear_regexp_cache (void);
4116
4117 /* Defined in minibuf.c. */
4118
4119 extern Lisp_Object Vminibuffer_list;
4120 extern Lisp_Object last_minibuf_string;
4121 extern Lisp_Object get_minibuffer (EMACS_INT);
4122 extern void init_minibuf_once (void);
4123 extern void syms_of_minibuf (void);
4124
4125 /* Defined in callint.c. */
4126
4127 extern void syms_of_callint (void);
4128
4129 /* Defined in casefiddle.c. */
4130
4131 extern void syms_of_casefiddle (void);
4132 extern void keys_of_casefiddle (void);
4133
4134 /* Defined in casetab.c. */
4135
4136 extern void init_casetab_once (void);
4137 extern void syms_of_casetab (void);
4138
4139 /* Defined in keyboard.c. */
4140
4141 extern Lisp_Object echo_message_buffer;
4142 extern struct kboard *echo_kboard;
4143 extern void cancel_echoing (void);
4144 extern Lisp_Object last_undo_boundary;
4145 extern bool input_pending;
4146 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4147 extern sigjmp_buf return_to_command_loop;
4148 #endif
4149 extern Lisp_Object menu_bar_items (Lisp_Object);
4150 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4151 extern void discard_mouse_events (void);
4152 #ifdef USABLE_SIGIO
4153 void handle_input_available_signal (int);
4154 #endif
4155 extern Lisp_Object pending_funcalls;
4156 extern bool detect_input_pending (void);
4157 extern bool detect_input_pending_ignore_squeezables (void);
4158 extern bool detect_input_pending_run_timers (bool);
4159 extern void safe_run_hooks (Lisp_Object);
4160 extern void cmd_error_internal (Lisp_Object, const char *);
4161 extern Lisp_Object command_loop_1 (void);
4162 extern Lisp_Object read_menu_command (void);
4163 extern Lisp_Object recursive_edit_1 (void);
4164 extern void record_auto_save (void);
4165 extern void force_auto_save_soon (void);
4166 extern void init_keyboard (void);
4167 extern void syms_of_keyboard (void);
4168 extern void keys_of_keyboard (void);
4169
4170 /* Defined in indent.c. */
4171 extern ptrdiff_t current_column (void);
4172 extern void invalidate_current_column (void);
4173 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4174 extern void syms_of_indent (void);
4175
4176 /* Defined in frame.c. */
4177 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4178 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4179 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4180 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4181 extern void frames_discard_buffer (Lisp_Object);
4182 extern void syms_of_frame (void);
4183
4184 /* Defined in emacs.c. */
4185 extern char **initial_argv;
4186 extern int initial_argc;
4187 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4188 extern bool display_arg;
4189 #endif
4190 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4191 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4192 extern _Noreturn void terminate_due_to_signal (int, int);
4193 #ifdef WINDOWSNT
4194 extern Lisp_Object Vlibrary_cache;
4195 #endif
4196 #if HAVE_SETLOCALE
4197 void fixup_locale (void);
4198 void synchronize_system_messages_locale (void);
4199 void synchronize_system_time_locale (void);
4200 #else
4201 INLINE void fixup_locale (void) {}
4202 INLINE void synchronize_system_messages_locale (void) {}
4203 INLINE void synchronize_system_time_locale (void) {}
4204 #endif
4205 extern void shut_down_emacs (int, Lisp_Object);
4206
4207 /* True means don't do interactive redisplay and don't change tty modes. */
4208 extern bool noninteractive;
4209
4210 /* True means remove site-lisp directories from load-path. */
4211 extern bool no_site_lisp;
4212
4213 /* Pipe used to send exit notification to the daemon parent at
4214 startup. */
4215 extern int daemon_pipe[2];
4216 #define IS_DAEMON (daemon_pipe[1] != 0)
4217
4218 /* True if handling a fatal error already. */
4219 extern bool fatal_error_in_progress;
4220
4221 /* True means don't do use window-system-specific display code. */
4222 extern bool inhibit_window_system;
4223 /* True means that a filter or a sentinel is running. */
4224 extern bool running_asynch_code;
4225
4226 /* Defined in process.c. */
4227 extern void kill_buffer_processes (Lisp_Object);
4228 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4229 struct Lisp_Process *, int);
4230 /* Max value for the first argument of wait_reading_process_output. */
4231 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4232 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4233 The bug merely causes a bogus warning, but the warning is annoying. */
4234 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4235 #else
4236 # define WAIT_READING_MAX INTMAX_MAX
4237 #endif
4238 #ifdef HAVE_TIMERFD
4239 extern void add_timer_wait_descriptor (int);
4240 #endif
4241 extern void add_keyboard_wait_descriptor (int);
4242 extern void delete_keyboard_wait_descriptor (int);
4243 #ifdef HAVE_GPM
4244 extern void add_gpm_wait_descriptor (int);
4245 extern void delete_gpm_wait_descriptor (int);
4246 #endif
4247 extern void init_process_emacs (void);
4248 extern void syms_of_process (void);
4249 extern void setup_process_coding_systems (Lisp_Object);
4250
4251 /* Defined in callproc.c. */
4252 #ifndef DOS_NT
4253 _Noreturn
4254 #endif
4255 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4256 extern void init_callproc_1 (void);
4257 extern void init_callproc (void);
4258 extern void set_initial_environment (void);
4259 extern void syms_of_callproc (void);
4260
4261 /* Defined in doc.c. */
4262 extern Lisp_Object read_doc_string (Lisp_Object);
4263 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4264 extern void syms_of_doc (void);
4265 extern int read_bytecode_char (bool);
4266
4267 /* Defined in bytecode.c. */
4268 extern void syms_of_bytecode (void);
4269 extern struct byte_stack *byte_stack_list;
4270 #if BYTE_MARK_STACK
4271 extern void mark_byte_stack (void);
4272 #endif
4273 extern void unmark_byte_stack (void);
4274 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4275 Lisp_Object, ptrdiff_t, Lisp_Object *);
4276
4277 /* Defined in macros.c. */
4278 extern void init_macros (void);
4279 extern void syms_of_macros (void);
4280
4281 /* Defined in undo.c. */
4282 extern void truncate_undo_list (struct buffer *);
4283 extern void record_insert (ptrdiff_t, ptrdiff_t);
4284 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4285 extern void record_first_change (void);
4286 extern void record_change (ptrdiff_t, ptrdiff_t);
4287 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4288 Lisp_Object, Lisp_Object,
4289 Lisp_Object);
4290 extern void syms_of_undo (void);
4291
4292 /* Defined in textprop.c. */
4293 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4294
4295 /* Defined in menu.c. */
4296 extern void syms_of_menu (void);
4297
4298 /* Defined in xmenu.c. */
4299 extern void syms_of_xmenu (void);
4300
4301 /* Defined in termchar.h. */
4302 struct tty_display_info;
4303
4304 /* Defined in termhooks.h. */
4305 struct terminal;
4306
4307 /* Defined in sysdep.c. */
4308 #ifndef HAVE_GET_CURRENT_DIR_NAME
4309 extern char *get_current_dir_name (void);
4310 #endif
4311 extern void stuff_char (char c);
4312 extern void init_foreground_group (void);
4313 extern void sys_subshell (void);
4314 extern void sys_suspend (void);
4315 extern void discard_tty_input (void);
4316 extern void init_sys_modes (struct tty_display_info *);
4317 extern void reset_sys_modes (struct tty_display_info *);
4318 extern void init_all_sys_modes (void);
4319 extern void reset_all_sys_modes (void);
4320 extern void child_setup_tty (int);
4321 extern void setup_pty (int);
4322 extern int set_window_size (int, int, int);
4323 extern EMACS_INT get_random (void);
4324 extern void seed_random (void *, ptrdiff_t);
4325 extern void init_random (void);
4326 extern void emacs_backtrace (int);
4327 extern _Noreturn void emacs_abort (void) NO_INLINE;
4328 extern int emacs_open (const char *, int, int);
4329 extern int emacs_pipe (int[2]);
4330 extern int emacs_close (int);
4331 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4332 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4333 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4334 extern void emacs_perror (char const *);
4335
4336 extern void unlock_all_files (void);
4337 extern void lock_file (Lisp_Object);
4338 extern void unlock_file (Lisp_Object);
4339 extern void unlock_buffer (struct buffer *);
4340 extern void syms_of_filelock (void);
4341 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4342
4343 /* Defined in sound.c. */
4344 extern void syms_of_sound (void);
4345
4346 /* Defined in category.c. */
4347 extern void init_category_once (void);
4348 extern Lisp_Object char_category_set (int);
4349 extern void syms_of_category (void);
4350
4351 /* Defined in ccl.c. */
4352 extern void syms_of_ccl (void);
4353
4354 /* Defined in dired.c. */
4355 extern void syms_of_dired (void);
4356 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4357 Lisp_Object, Lisp_Object,
4358 bool, Lisp_Object);
4359
4360 /* Defined in term.c. */
4361 extern int *char_ins_del_vector;
4362 extern void syms_of_term (void);
4363 extern _Noreturn void fatal (const char *msgid, ...)
4364 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4365
4366 /* Defined in terminal.c. */
4367 extern void syms_of_terminal (void);
4368
4369 /* Defined in font.c. */
4370 extern void syms_of_font (void);
4371 extern void init_font (void);
4372
4373 #ifdef HAVE_WINDOW_SYSTEM
4374 /* Defined in fontset.c. */
4375 extern void syms_of_fontset (void);
4376 #endif
4377
4378 /* Defined in gfilenotify.c */
4379 #ifdef HAVE_GFILENOTIFY
4380 extern void globals_of_gfilenotify (void);
4381 extern void syms_of_gfilenotify (void);
4382 #endif
4383
4384 /* Defined in inotify.c */
4385 #ifdef HAVE_INOTIFY
4386 extern void syms_of_inotify (void);
4387 #endif
4388
4389 #ifdef HAVE_W32NOTIFY
4390 /* Defined on w32notify.c. */
4391 extern void syms_of_w32notify (void);
4392 #endif
4393
4394 /* Defined in xfaces.c. */
4395 extern Lisp_Object Vface_alternative_font_family_alist;
4396 extern Lisp_Object Vface_alternative_font_registry_alist;
4397 extern void syms_of_xfaces (void);
4398
4399 #ifdef HAVE_X_WINDOWS
4400 /* Defined in xfns.c. */
4401 extern void syms_of_xfns (void);
4402
4403 /* Defined in xsmfns.c. */
4404 extern void syms_of_xsmfns (void);
4405
4406 /* Defined in xselect.c. */
4407 extern void syms_of_xselect (void);
4408
4409 /* Defined in xterm.c. */
4410 extern void init_xterm (void);
4411 extern void syms_of_xterm (void);
4412 #endif /* HAVE_X_WINDOWS */
4413
4414 #ifdef HAVE_WINDOW_SYSTEM
4415 /* Defined in xterm.c, nsterm.m, w32term.c. */
4416 extern char *x_get_keysym_name (int);
4417 #endif /* HAVE_WINDOW_SYSTEM */
4418
4419 #ifdef HAVE_LIBXML2
4420 /* Defined in xml.c. */
4421 extern void syms_of_xml (void);
4422 extern void xml_cleanup_parser (void);
4423 #endif
4424
4425 #ifdef HAVE_ZLIB
4426 /* Defined in decompress.c. */
4427 extern void syms_of_decompress (void);
4428 #endif
4429
4430 #ifdef HAVE_DBUS
4431 /* Defined in dbusbind.c. */
4432 void init_dbusbind (void);
4433 void syms_of_dbusbind (void);
4434 #endif
4435
4436
4437 /* Defined in profiler.c. */
4438 extern bool profiler_memory_running;
4439 extern void malloc_probe (size_t);
4440 extern void syms_of_profiler (void);
4441
4442
4443 #ifdef DOS_NT
4444 /* Defined in msdos.c, w32.c. */
4445 extern char *emacs_root_dir (void);
4446 #endif /* DOS_NT */
4447
4448 /* Defined in lastfile.c. */
4449 extern char my_edata[];
4450 extern char my_endbss[];
4451 extern char *my_endbss_static;
4452
4453 /* True means ^G can quit instantly. */
4454 extern bool immediate_quit;
4455
4456 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4457 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4458 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4459 extern void xfree (void *);
4460 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4461 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4462 ATTRIBUTE_ALLOC_SIZE ((2,3));
4463 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4464
4465 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4466 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4467 extern void dupstring (char **, char const *);
4468
4469 /* Make DEST a copy of STRING's data. Return a pointer to DEST's terminating
4470 null byte. This is like stpcpy, except the source is a Lisp string. */
4471
4472 INLINE char *
4473 lispstpcpy (char *dest, Lisp_Object string)
4474 {
4475 ptrdiff_t len = SBYTES (string);
4476 memcpy (dest, SDATA (string), len + 1);
4477 return dest + len;
4478 }
4479
4480 extern void xputenv (const char *);
4481
4482 extern char *egetenv_internal (const char *, ptrdiff_t);
4483
4484 INLINE char *
4485 egetenv (const char *var)
4486 {
4487 /* When VAR is a string literal, strlen can be optimized away. */
4488 return egetenv_internal (var, strlen (var));
4489 }
4490
4491 /* Set up the name of the machine we're running on. */
4492 extern void init_system_name (void);
4493
4494 /* Return the absolute value of X. X should be a signed integer
4495 expression without side effects, and X's absolute value should not
4496 exceed the maximum for its promoted type. This is called 'eabs'
4497 because 'abs' is reserved by the C standard. */
4498 #define eabs(x) ((x) < 0 ? -(x) : (x))
4499
4500 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4501 fixnum. */
4502
4503 #define make_fixnum_or_float(val) \
4504 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4505
4506 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4507 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4508
4509 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4510
4511 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4512
4513 #define USE_SAFE_ALLOCA \
4514 ptrdiff_t sa_avail = MAX_ALLOCA; \
4515 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4516
4517 #define AVAIL_ALLOCA(size) (sa_avail -= (size), alloca (size))
4518
4519 /* SAFE_ALLOCA allocates a simple buffer. */
4520
4521 #define SAFE_ALLOCA(size) ((size) <= sa_avail \
4522 ? AVAIL_ALLOCA (size) \
4523 : (sa_must_free = true, record_xmalloc (size)))
4524
4525 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4526 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4527 positive. The code is tuned for MULTIPLIER being a constant. */
4528
4529 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4530 do { \
4531 if ((nitems) <= sa_avail / sizeof *(buf) / (multiplier)) \
4532 (buf) = AVAIL_ALLOCA (sizeof *(buf) * (multiplier) * (nitems)); \
4533 else \
4534 { \
4535 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4536 sa_must_free = true; \
4537 record_unwind_protect_ptr (xfree, buf); \
4538 } \
4539 } while (false)
4540
4541 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4542
4543 #define SAFE_ALLOCA_STRING(ptr, string) \
4544 do { \
4545 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4546 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4547 } while (false)
4548
4549 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4550
4551 #define SAFE_FREE() \
4552 do { \
4553 if (sa_must_free) { \
4554 sa_must_free = false; \
4555 unbind_to (sa_count, Qnil); \
4556 } \
4557 } while (false)
4558
4559
4560 /* Return floor (NBYTES / WORD_SIZE). */
4561
4562 INLINE ptrdiff_t
4563 lisp_word_count (ptrdiff_t nbytes)
4564 {
4565 if (-1 >> 1 == -1)
4566 switch (word_size)
4567 {
4568 case 2: return nbytes >> 1;
4569 case 4: return nbytes >> 2;
4570 case 8: return nbytes >> 3;
4571 case 16: return nbytes >> 4;
4572 }
4573 return nbytes / word_size - (nbytes % word_size < 0);
4574 }
4575
4576 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4577
4578 #define SAFE_ALLOCA_LISP(buf, nelt) \
4579 do { \
4580 if ((nelt) <= lisp_word_count (sa_avail)) \
4581 (buf) = AVAIL_ALLOCA ((nelt) * word_size); \
4582 else if ((nelt) <= min (PTRDIFF_MAX, SIZE_MAX) / word_size) \
4583 { \
4584 Lisp_Object arg_; \
4585 (buf) = xmalloc ((nelt) * word_size); \
4586 arg_ = make_save_memory (buf, nelt); \
4587 sa_must_free = true; \
4588 record_unwind_protect (free_save_value, arg_); \
4589 } \
4590 else \
4591 memory_full (SIZE_MAX); \
4592 } while (false)
4593
4594
4595 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that allocate
4596 block-scoped conses and strings. These objects are not
4597 managed by the garbage collector, so they are dangerous: passing them
4598 out of their scope (e.g., to user code) results in undefined behavior.
4599 Conversely, they have better performance because GC is not involved.
4600
4601 This feature is experimental and requires careful debugging.
4602 Build with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS=0' to disable it. */
4603
4604 #ifndef USE_STACK_LISP_OBJECTS
4605 # define USE_STACK_LISP_OBJECTS true
4606 #endif
4607
4608 /* USE_STACK_LISP_OBJECTS requires GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS. */
4609
4610 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
4611 # undef USE_STACK_LISP_OBJECTS
4612 # define USE_STACK_LISP_OBJECTS false
4613 #endif
4614
4615 #ifdef GC_CHECK_STRING_BYTES
4616 enum { defined_GC_CHECK_STRING_BYTES = true };
4617 #else
4618 enum { defined_GC_CHECK_STRING_BYTES = false };
4619 #endif
4620
4621 /* Struct inside unions that are typically no larger and aligned enough. */
4622
4623 union Aligned_Cons
4624 {
4625 struct Lisp_Cons s;
4626 double d; intmax_t i; void *p;
4627 };
4628
4629 union Aligned_String
4630 {
4631 struct Lisp_String s;
4632 double d; intmax_t i; void *p;
4633 };
4634
4635 /* True for stack-based cons and string implementations, respectively.
4636 Use stack-based strings only if stack-based cons also works.
4637 Otherwise, STACK_CONS would create heap-based cons cells that
4638 could point to stack-based strings, which is a no-no. */
4639
4640 enum
4641 {
4642 USE_STACK_CONS = (USE_STACK_LISP_OBJECTS
4643 && alignof (union Aligned_Cons) % GCALIGNMENT == 0),
4644 USE_STACK_STRING = (USE_STACK_CONS
4645 && !defined_GC_CHECK_STRING_BYTES
4646 && alignof (union Aligned_String) % GCALIGNMENT == 0)
4647 };
4648
4649 /* Auxiliary macros used for auto allocation of Lisp objects. Please
4650 use these only in macros like AUTO_CONS that declare a local
4651 variable whose lifetime will be clear to the programmer. */
4652 #define STACK_CONS(a, b) \
4653 make_lisp_ptr (&(union Aligned_Cons) { { a, { b } } }.s, Lisp_Cons)
4654 #define AUTO_CONS_EXPR(a, b) \
4655 (USE_STACK_CONS ? STACK_CONS (a, b) : Fcons (a, b))
4656
4657 /* Declare NAME as an auto Lisp cons or short list if possible, a
4658 GC-based one otherwise. This is in the sense of the C keyword
4659 'auto'; i.e., the object has the lifetime of the containing block.
4660 The resulting object should not be made visible to user Lisp code. */
4661
4662 #define AUTO_CONS(name, a, b) Lisp_Object name = AUTO_CONS_EXPR (a, b)
4663 #define AUTO_LIST1(name, a) \
4664 Lisp_Object name = (USE_STACK_CONS ? STACK_CONS (a, Qnil) : list1 (a))
4665 #define AUTO_LIST2(name, a, b) \
4666 Lisp_Object name = (USE_STACK_CONS \
4667 ? STACK_CONS (a, STACK_CONS (b, Qnil)) \
4668 : list2 (a, b))
4669 #define AUTO_LIST3(name, a, b, c) \
4670 Lisp_Object name = (USE_STACK_CONS \
4671 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, Qnil))) \
4672 : list3 (a, b, c))
4673 #define AUTO_LIST4(name, a, b, c, d) \
4674 Lisp_Object name \
4675 = (USE_STACK_CONS \
4676 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, \
4677 STACK_CONS (d, Qnil)))) \
4678 : list4 (a, b, c, d))
4679
4680 /* Check whether stack-allocated strings are ASCII-only. */
4681
4682 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
4683 extern const char *verify_ascii (const char *);
4684 #else
4685 # define verify_ascii(str) (str)
4686 #endif
4687
4688 /* Declare NAME as an auto Lisp string if possible, a GC-based one if not.
4689 Take its value from STR. STR is not necessarily copied and should
4690 contain only ASCII characters. The resulting Lisp string should
4691 not be modified or made visible to user code. */
4692
4693 #define AUTO_STRING(name, str) \
4694 Lisp_Object name = \
4695 (USE_STACK_STRING \
4696 ? (make_lisp_ptr \
4697 ((&(union Aligned_String) \
4698 {{strlen (str), -1, 0, (unsigned char *) verify_ascii (str)}}.s), \
4699 Lisp_String)) \
4700 : build_string (verify_ascii (str)))
4701
4702 /* Loop over all tails of a list, checking for cycles.
4703 FIXME: Make tortoise and n internal declarations.
4704 FIXME: Unroll the loop body so we don't need `n'. */
4705 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4706 for ((tortoise) = (hare) = (list), (n) = true; \
4707 CONSP (hare); \
4708 (hare = XCDR (hare), (n) = !(n), \
4709 ((n) \
4710 ? (EQ (hare, tortoise) \
4711 ? xsignal1 (Qcircular_list, list) \
4712 : (void) 0) \
4713 /* Move tortoise before the next iteration, in case */ \
4714 /* the next iteration does an Fsetcdr. */ \
4715 : (void) ((tortoise) = XCDR (tortoise)))))
4716
4717 /* Do a `for' loop over alist values. */
4718
4719 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4720 for ((list_var) = (head_var); \
4721 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4722 (list_var) = XCDR (list_var))
4723
4724 /* Check whether it's time for GC, and run it if so. */
4725
4726 INLINE void
4727 maybe_gc (void)
4728 {
4729 if ((consing_since_gc > gc_cons_threshold
4730 && consing_since_gc > gc_relative_threshold)
4731 || (!NILP (Vmemory_full)
4732 && consing_since_gc > memory_full_cons_threshold))
4733 Fgarbage_collect ();
4734 }
4735
4736 INLINE bool
4737 functionp (Lisp_Object object)
4738 {
4739 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4740 {
4741 object = Findirect_function (object, Qt);
4742
4743 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4744 {
4745 /* Autoloaded symbols are functions, except if they load
4746 macros or keymaps. */
4747 int i;
4748 for (i = 0; i < 4 && CONSP (object); i++)
4749 object = XCDR (object);
4750
4751 return ! (CONSP (object) && !NILP (XCAR (object)));
4752 }
4753 }
4754
4755 if (SUBRP (object))
4756 return XSUBR (object)->max_args != UNEVALLED;
4757 else if (COMPILEDP (object))
4758 return true;
4759 else if (CONSP (object))
4760 {
4761 Lisp_Object car = XCAR (object);
4762 return EQ (car, Qlambda) || EQ (car, Qclosure);
4763 }
4764 else
4765 return false;
4766 }
4767
4768 INLINE_HEADER_END
4769
4770 #endif /* EMACS_LISP_H */