]> code.delx.au - gnu-emacs/blob - src/alloc.c
Compute C decls for DEFSYMs automatically
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2015 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
29
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
33
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
46 #include TERM_HEADER
47 #endif /* HAVE_WINDOW_SYSTEM */
48
49 #include <verify.h>
50 #include <execinfo.h> /* For backtrace. */
51
52 #ifdef HAVE_LINUX_SYSINFO
53 #include <sys/sysinfo.h>
54 #endif
55
56 #ifdef MSDOS
57 #include "dosfns.h" /* For dos_memory_info. */
58 #endif
59
60 #if (defined ENABLE_CHECKING \
61 && defined HAVE_VALGRIND_VALGRIND_H \
62 && !defined USE_VALGRIND)
63 # define USE_VALGRIND 1
64 #endif
65
66 #if USE_VALGRIND
67 #include <valgrind/valgrind.h>
68 #include <valgrind/memcheck.h>
69 static bool valgrind_p;
70 #endif
71
72 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
73 Doable only if GC_MARK_STACK. */
74 #if ! GC_MARK_STACK
75 # undef GC_CHECK_MARKED_OBJECTS
76 #endif
77
78 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
79 memory. Can do this only if using gmalloc.c and if not checking
80 marked objects. */
81
82 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
83 || defined HYBRID_MALLOC || defined GC_CHECK_MARKED_OBJECTS)
84 #undef GC_MALLOC_CHECK
85 #endif
86
87 #include <unistd.h>
88 #include <fcntl.h>
89
90 #ifdef USE_GTK
91 # include "gtkutil.h"
92 #endif
93 #ifdef WINDOWSNT
94 #include "w32.h"
95 #include "w32heap.h" /* for sbrk */
96 #endif
97
98 #ifdef DOUG_LEA_MALLOC
99
100 #include <malloc.h>
101
102 /* Specify maximum number of areas to mmap. It would be nice to use a
103 value that explicitly means "no limit". */
104
105 #define MMAP_MAX_AREAS 100000000
106
107 #endif /* not DOUG_LEA_MALLOC */
108
109 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
110 to a struct Lisp_String. */
111
112 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
113 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
114 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
115
116 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
117 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
118 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
119
120 /* Default value of gc_cons_threshold (see below). */
121
122 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
123
124 /* Global variables. */
125 struct emacs_globals globals;
126
127 /* Number of bytes of consing done since the last gc. */
128
129 EMACS_INT consing_since_gc;
130
131 /* Similar minimum, computed from Vgc_cons_percentage. */
132
133 EMACS_INT gc_relative_threshold;
134
135 /* Minimum number of bytes of consing since GC before next GC,
136 when memory is full. */
137
138 EMACS_INT memory_full_cons_threshold;
139
140 /* True during GC. */
141
142 bool gc_in_progress;
143
144 /* True means abort if try to GC.
145 This is for code which is written on the assumption that
146 no GC will happen, so as to verify that assumption. */
147
148 bool abort_on_gc;
149
150 /* Number of live and free conses etc. */
151
152 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
153 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
154 static EMACS_INT total_free_floats, total_floats;
155
156 /* Points to memory space allocated as "spare", to be freed if we run
157 out of memory. We keep one large block, four cons-blocks, and
158 two string blocks. */
159
160 static char *spare_memory[7];
161
162 /* Amount of spare memory to keep in large reserve block, or to see
163 whether this much is available when malloc fails on a larger request. */
164
165 #define SPARE_MEMORY (1 << 14)
166
167 /* Initialize it to a nonzero value to force it into data space
168 (rather than bss space). That way unexec will remap it into text
169 space (pure), on some systems. We have not implemented the
170 remapping on more recent systems because this is less important
171 nowadays than in the days of small memories and timesharing. */
172
173 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
174 #define PUREBEG (char *) pure
175
176 /* Pointer to the pure area, and its size. */
177
178 static char *purebeg;
179 static ptrdiff_t pure_size;
180
181 /* Number of bytes of pure storage used before pure storage overflowed.
182 If this is non-zero, this implies that an overflow occurred. */
183
184 static ptrdiff_t pure_bytes_used_before_overflow;
185
186 /* True if P points into pure space. */
187
188 #define PURE_POINTER_P(P) \
189 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
190
191 /* Index in pure at which next pure Lisp object will be allocated.. */
192
193 static ptrdiff_t pure_bytes_used_lisp;
194
195 /* Number of bytes allocated for non-Lisp objects in pure storage. */
196
197 static ptrdiff_t pure_bytes_used_non_lisp;
198
199 /* If nonzero, this is a warning delivered by malloc and not yet
200 displayed. */
201
202 const char *pending_malloc_warning;
203
204 #if 0 /* Normally, pointer sanity only on request... */
205 #ifdef ENABLE_CHECKING
206 #define SUSPICIOUS_OBJECT_CHECKING 1
207 #endif
208 #endif
209
210 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
211 bug is unresolved. */
212 #define SUSPICIOUS_OBJECT_CHECKING 1
213
214 #ifdef SUSPICIOUS_OBJECT_CHECKING
215 struct suspicious_free_record
216 {
217 void *suspicious_object;
218 void *backtrace[128];
219 };
220 static void *suspicious_objects[32];
221 static int suspicious_object_index;
222 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
223 static int suspicious_free_history_index;
224 /* Find the first currently-monitored suspicious pointer in range
225 [begin,end) or NULL if no such pointer exists. */
226 static void *find_suspicious_object_in_range (void *begin, void *end);
227 static void detect_suspicious_free (void *ptr);
228 #else
229 # define find_suspicious_object_in_range(begin, end) NULL
230 # define detect_suspicious_free(ptr) (void)
231 #endif
232
233 /* Maximum amount of C stack to save when a GC happens. */
234
235 #ifndef MAX_SAVE_STACK
236 #define MAX_SAVE_STACK 16000
237 #endif
238
239 /* Buffer in which we save a copy of the C stack at each GC. */
240
241 #if MAX_SAVE_STACK > 0
242 static char *stack_copy;
243 static ptrdiff_t stack_copy_size;
244
245 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
246 avoiding any address sanitization. */
247
248 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
249 no_sanitize_memcpy (void *dest, void const *src, size_t size)
250 {
251 if (! ADDRESS_SANITIZER)
252 return memcpy (dest, src, size);
253 else
254 {
255 size_t i;
256 char *d = dest;
257 char const *s = src;
258 for (i = 0; i < size; i++)
259 d[i] = s[i];
260 return dest;
261 }
262 }
263
264 #endif /* MAX_SAVE_STACK > 0 */
265
266 static void mark_terminals (void);
267 static void gc_sweep (void);
268 static Lisp_Object make_pure_vector (ptrdiff_t);
269 static void mark_buffer (struct buffer *);
270
271 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
272 static void refill_memory_reserve (void);
273 #endif
274 static void compact_small_strings (void);
275 static void free_large_strings (void);
276 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
277
278 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
279 what memory allocated via lisp_malloc and lisp_align_malloc is intended
280 for what purpose. This enumeration specifies the type of memory. */
281
282 enum mem_type
283 {
284 MEM_TYPE_NON_LISP,
285 MEM_TYPE_BUFFER,
286 MEM_TYPE_CONS,
287 MEM_TYPE_STRING,
288 MEM_TYPE_MISC,
289 MEM_TYPE_SYMBOL,
290 MEM_TYPE_FLOAT,
291 /* Since all non-bool pseudovectors are small enough to be
292 allocated from vector blocks, this memory type denotes
293 large regular vectors and large bool pseudovectors. */
294 MEM_TYPE_VECTORLIKE,
295 /* Special type to denote vector blocks. */
296 MEM_TYPE_VECTOR_BLOCK,
297 /* Special type to denote reserved memory. */
298 MEM_TYPE_SPARE
299 };
300
301 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
302
303 /* A unique object in pure space used to make some Lisp objects
304 on free lists recognizable in O(1). */
305
306 static Lisp_Object Vdead;
307 #define DEADP(x) EQ (x, Vdead)
308
309 #ifdef GC_MALLOC_CHECK
310
311 enum mem_type allocated_mem_type;
312
313 #endif /* GC_MALLOC_CHECK */
314
315 /* A node in the red-black tree describing allocated memory containing
316 Lisp data. Each such block is recorded with its start and end
317 address when it is allocated, and removed from the tree when it
318 is freed.
319
320 A red-black tree is a balanced binary tree with the following
321 properties:
322
323 1. Every node is either red or black.
324 2. Every leaf is black.
325 3. If a node is red, then both of its children are black.
326 4. Every simple path from a node to a descendant leaf contains
327 the same number of black nodes.
328 5. The root is always black.
329
330 When nodes are inserted into the tree, or deleted from the tree,
331 the tree is "fixed" so that these properties are always true.
332
333 A red-black tree with N internal nodes has height at most 2
334 log(N+1). Searches, insertions and deletions are done in O(log N).
335 Please see a text book about data structures for a detailed
336 description of red-black trees. Any book worth its salt should
337 describe them. */
338
339 struct mem_node
340 {
341 /* Children of this node. These pointers are never NULL. When there
342 is no child, the value is MEM_NIL, which points to a dummy node. */
343 struct mem_node *left, *right;
344
345 /* The parent of this node. In the root node, this is NULL. */
346 struct mem_node *parent;
347
348 /* Start and end of allocated region. */
349 void *start, *end;
350
351 /* Node color. */
352 enum {MEM_BLACK, MEM_RED} color;
353
354 /* Memory type. */
355 enum mem_type type;
356 };
357
358 /* Base address of stack. Set in main. */
359
360 Lisp_Object *stack_base;
361
362 /* Root of the tree describing allocated Lisp memory. */
363
364 static struct mem_node *mem_root;
365
366 /* Lowest and highest known address in the heap. */
367
368 static void *min_heap_address, *max_heap_address;
369
370 /* Sentinel node of the tree. */
371
372 static struct mem_node mem_z;
373 #define MEM_NIL &mem_z
374
375 static struct mem_node *mem_insert (void *, void *, enum mem_type);
376 static void mem_insert_fixup (struct mem_node *);
377 static void mem_rotate_left (struct mem_node *);
378 static void mem_rotate_right (struct mem_node *);
379 static void mem_delete (struct mem_node *);
380 static void mem_delete_fixup (struct mem_node *);
381 static struct mem_node *mem_find (void *);
382
383 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
384
385 #ifndef DEADP
386 # define DEADP(x) 0
387 #endif
388
389 /* Recording what needs to be marked for gc. */
390
391 struct gcpro *gcprolist;
392
393 /* Addresses of staticpro'd variables. Initialize it to a nonzero
394 value; otherwise some compilers put it into BSS. */
395
396 enum { NSTATICS = 2048 };
397 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
398
399 /* Index of next unused slot in staticvec. */
400
401 static int staticidx;
402
403 static void *pure_alloc (size_t, int);
404
405 /* Return X rounded to the next multiple of Y. Arguments should not
406 have side effects, as they are evaluated more than once. Assume X
407 + Y - 1 does not overflow. Tune for Y being a power of 2. */
408
409 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
410 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
411 : ((x) + (y) - 1) & ~ ((y) - 1))
412
413 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
414
415 static void *
416 ALIGN (void *ptr, int alignment)
417 {
418 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
419 }
420
421 static void
422 XFLOAT_INIT (Lisp_Object f, double n)
423 {
424 XFLOAT (f)->u.data = n;
425 }
426
427 static bool
428 pointers_fit_in_lispobj_p (void)
429 {
430 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
431 }
432
433 static bool
434 mmap_lisp_allowed_p (void)
435 {
436 /* If we can't store all memory addresses in our lisp objects, it's
437 risky to let the heap use mmap and give us addresses from all
438 over our address space. We also can't use mmap for lisp objects
439 if we might dump: unexec doesn't preserve the contents of mmapped
440 regions. */
441 return pointers_fit_in_lispobj_p () && !might_dump;
442 }
443
444 \f
445 /************************************************************************
446 Malloc
447 ************************************************************************/
448
449 /* Function malloc calls this if it finds we are near exhausting storage. */
450
451 void
452 malloc_warning (const char *str)
453 {
454 pending_malloc_warning = str;
455 }
456
457
458 /* Display an already-pending malloc warning. */
459
460 void
461 display_malloc_warning (void)
462 {
463 call3 (intern ("display-warning"),
464 intern ("alloc"),
465 build_string (pending_malloc_warning),
466 intern ("emergency"));
467 pending_malloc_warning = 0;
468 }
469 \f
470 /* Called if we can't allocate relocatable space for a buffer. */
471
472 void
473 buffer_memory_full (ptrdiff_t nbytes)
474 {
475 /* If buffers use the relocating allocator, no need to free
476 spare_memory, because we may have plenty of malloc space left
477 that we could get, and if we don't, the malloc that fails will
478 itself cause spare_memory to be freed. If buffers don't use the
479 relocating allocator, treat this like any other failing
480 malloc. */
481
482 #ifndef REL_ALLOC
483 memory_full (nbytes);
484 #else
485 /* This used to call error, but if we've run out of memory, we could
486 get infinite recursion trying to build the string. */
487 xsignal (Qnil, Vmemory_signal_data);
488 #endif
489 }
490
491 /* A common multiple of the positive integers A and B. Ideally this
492 would be the least common multiple, but there's no way to do that
493 as a constant expression in C, so do the best that we can easily do. */
494 #define COMMON_MULTIPLE(a, b) \
495 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
496
497 #ifndef XMALLOC_OVERRUN_CHECK
498 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
499 #else
500
501 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
502 around each block.
503
504 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
505 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
506 block size in little-endian order. The trailer consists of
507 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
508
509 The header is used to detect whether this block has been allocated
510 through these functions, as some low-level libc functions may
511 bypass the malloc hooks. */
512
513 #define XMALLOC_OVERRUN_CHECK_SIZE 16
514 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
515 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
516
517 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
518 hold a size_t value and (2) the header size is a multiple of the
519 alignment that Emacs needs for C types and for USE_LSB_TAG. */
520 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
521
522 #if USE_LSB_TAG
523 # define XMALLOC_HEADER_ALIGNMENT \
524 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
525 #else
526 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
527 #endif
528 #define XMALLOC_OVERRUN_SIZE_SIZE \
529 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
530 + XMALLOC_HEADER_ALIGNMENT - 1) \
531 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
532 - XMALLOC_OVERRUN_CHECK_SIZE)
533
534 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
535 { '\x9a', '\x9b', '\xae', '\xaf',
536 '\xbf', '\xbe', '\xce', '\xcf',
537 '\xea', '\xeb', '\xec', '\xed',
538 '\xdf', '\xde', '\x9c', '\x9d' };
539
540 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
541 { '\xaa', '\xab', '\xac', '\xad',
542 '\xba', '\xbb', '\xbc', '\xbd',
543 '\xca', '\xcb', '\xcc', '\xcd',
544 '\xda', '\xdb', '\xdc', '\xdd' };
545
546 /* Insert and extract the block size in the header. */
547
548 static void
549 xmalloc_put_size (unsigned char *ptr, size_t size)
550 {
551 int i;
552 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
553 {
554 *--ptr = size & ((1 << CHAR_BIT) - 1);
555 size >>= CHAR_BIT;
556 }
557 }
558
559 static size_t
560 xmalloc_get_size (unsigned char *ptr)
561 {
562 size_t size = 0;
563 int i;
564 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
565 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
566 {
567 size <<= CHAR_BIT;
568 size += *ptr++;
569 }
570 return size;
571 }
572
573
574 /* Like malloc, but wraps allocated block with header and trailer. */
575
576 static void *
577 overrun_check_malloc (size_t size)
578 {
579 register unsigned char *val;
580 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
581 emacs_abort ();
582
583 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
584 if (val)
585 {
586 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
587 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
588 xmalloc_put_size (val, size);
589 memcpy (val + size, xmalloc_overrun_check_trailer,
590 XMALLOC_OVERRUN_CHECK_SIZE);
591 }
592 return val;
593 }
594
595
596 /* Like realloc, but checks old block for overrun, and wraps new block
597 with header and trailer. */
598
599 static void *
600 overrun_check_realloc (void *block, size_t size)
601 {
602 register unsigned char *val = (unsigned char *) block;
603 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
604 emacs_abort ();
605
606 if (val
607 && memcmp (xmalloc_overrun_check_header,
608 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
609 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
610 {
611 size_t osize = xmalloc_get_size (val);
612 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
613 XMALLOC_OVERRUN_CHECK_SIZE))
614 emacs_abort ();
615 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
616 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
617 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
618 }
619
620 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
621
622 if (val)
623 {
624 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
625 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
626 xmalloc_put_size (val, size);
627 memcpy (val + size, xmalloc_overrun_check_trailer,
628 XMALLOC_OVERRUN_CHECK_SIZE);
629 }
630 return val;
631 }
632
633 /* Like free, but checks block for overrun. */
634
635 static void
636 overrun_check_free (void *block)
637 {
638 unsigned char *val = (unsigned char *) block;
639
640 if (val
641 && memcmp (xmalloc_overrun_check_header,
642 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
643 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
644 {
645 size_t osize = xmalloc_get_size (val);
646 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
647 XMALLOC_OVERRUN_CHECK_SIZE))
648 emacs_abort ();
649 #ifdef XMALLOC_CLEAR_FREE_MEMORY
650 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
651 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
652 #else
653 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
654 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
655 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
656 #endif
657 }
658
659 free (val);
660 }
661
662 #undef malloc
663 #undef realloc
664 #undef free
665 #define malloc overrun_check_malloc
666 #define realloc overrun_check_realloc
667 #define free overrun_check_free
668 #endif
669
670 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
671 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
672 If that variable is set, block input while in one of Emacs's memory
673 allocation functions. There should be no need for this debugging
674 option, since signal handlers do not allocate memory, but Emacs
675 formerly allocated memory in signal handlers and this compile-time
676 option remains as a way to help debug the issue should it rear its
677 ugly head again. */
678 #ifdef XMALLOC_BLOCK_INPUT_CHECK
679 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
680 static void
681 malloc_block_input (void)
682 {
683 if (block_input_in_memory_allocators)
684 block_input ();
685 }
686 static void
687 malloc_unblock_input (void)
688 {
689 if (block_input_in_memory_allocators)
690 unblock_input ();
691 }
692 # define MALLOC_BLOCK_INPUT malloc_block_input ()
693 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
694 #else
695 # define MALLOC_BLOCK_INPUT ((void) 0)
696 # define MALLOC_UNBLOCK_INPUT ((void) 0)
697 #endif
698
699 #define MALLOC_PROBE(size) \
700 do { \
701 if (profiler_memory_running) \
702 malloc_probe (size); \
703 } while (0)
704
705
706 /* Like malloc but check for no memory and block interrupt input.. */
707
708 void *
709 xmalloc (size_t size)
710 {
711 void *val;
712
713 MALLOC_BLOCK_INPUT;
714 val = malloc (size);
715 MALLOC_UNBLOCK_INPUT;
716
717 if (!val && size)
718 memory_full (size);
719 MALLOC_PROBE (size);
720 return val;
721 }
722
723 /* Like the above, but zeroes out the memory just allocated. */
724
725 void *
726 xzalloc (size_t size)
727 {
728 void *val;
729
730 MALLOC_BLOCK_INPUT;
731 val = malloc (size);
732 MALLOC_UNBLOCK_INPUT;
733
734 if (!val && size)
735 memory_full (size);
736 memset (val, 0, size);
737 MALLOC_PROBE (size);
738 return val;
739 }
740
741 /* Like realloc but check for no memory and block interrupt input.. */
742
743 void *
744 xrealloc (void *block, size_t size)
745 {
746 void *val;
747
748 MALLOC_BLOCK_INPUT;
749 /* We must call malloc explicitly when BLOCK is 0, since some
750 reallocs don't do this. */
751 if (! block)
752 val = malloc (size);
753 else
754 val = realloc (block, size);
755 MALLOC_UNBLOCK_INPUT;
756
757 if (!val && size)
758 memory_full (size);
759 MALLOC_PROBE (size);
760 return val;
761 }
762
763
764 /* Like free but block interrupt input. */
765
766 void
767 xfree (void *block)
768 {
769 if (!block)
770 return;
771 MALLOC_BLOCK_INPUT;
772 free (block);
773 MALLOC_UNBLOCK_INPUT;
774 /* We don't call refill_memory_reserve here
775 because in practice the call in r_alloc_free seems to suffice. */
776 }
777
778
779 /* Other parts of Emacs pass large int values to allocator functions
780 expecting ptrdiff_t. This is portable in practice, but check it to
781 be safe. */
782 verify (INT_MAX <= PTRDIFF_MAX);
783
784
785 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
786 Signal an error on memory exhaustion, and block interrupt input. */
787
788 void *
789 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
790 {
791 eassert (0 <= nitems && 0 < item_size);
792 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
793 memory_full (SIZE_MAX);
794 return xmalloc (nitems * item_size);
795 }
796
797
798 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
799 Signal an error on memory exhaustion, and block interrupt input. */
800
801 void *
802 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
803 {
804 eassert (0 <= nitems && 0 < item_size);
805 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
806 memory_full (SIZE_MAX);
807 return xrealloc (pa, nitems * item_size);
808 }
809
810
811 /* Grow PA, which points to an array of *NITEMS items, and return the
812 location of the reallocated array, updating *NITEMS to reflect its
813 new size. The new array will contain at least NITEMS_INCR_MIN more
814 items, but will not contain more than NITEMS_MAX items total.
815 ITEM_SIZE is the size of each item, in bytes.
816
817 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
818 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
819 infinity.
820
821 If PA is null, then allocate a new array instead of reallocating
822 the old one.
823
824 Block interrupt input as needed. If memory exhaustion occurs, set
825 *NITEMS to zero if PA is null, and signal an error (i.e., do not
826 return).
827
828 Thus, to grow an array A without saving its old contents, do
829 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
830 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
831 and signals an error, and later this code is reexecuted and
832 attempts to free A. */
833
834 void *
835 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
836 ptrdiff_t nitems_max, ptrdiff_t item_size)
837 {
838 /* The approximate size to use for initial small allocation
839 requests. This is the largest "small" request for the GNU C
840 library malloc. */
841 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
842
843 /* If the array is tiny, grow it to about (but no greater than)
844 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
845 ptrdiff_t n = *nitems;
846 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
847 ptrdiff_t half_again = n >> 1;
848 ptrdiff_t incr_estimate = max (tiny_max, half_again);
849
850 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
851 NITEMS_MAX, and what the C language can represent safely. */
852 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
853 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
854 ? nitems_max : C_language_max);
855 ptrdiff_t nitems_incr_max = n_max - n;
856 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
857
858 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
859 if (! pa)
860 *nitems = 0;
861 if (nitems_incr_max < incr)
862 memory_full (SIZE_MAX);
863 n += incr;
864 pa = xrealloc (pa, n * item_size);
865 *nitems = n;
866 return pa;
867 }
868
869
870 /* Like strdup, but uses xmalloc. */
871
872 char *
873 xstrdup (const char *s)
874 {
875 ptrdiff_t size;
876 eassert (s);
877 size = strlen (s) + 1;
878 return memcpy (xmalloc (size), s, size);
879 }
880
881 /* Like above, but duplicates Lisp string to C string. */
882
883 char *
884 xlispstrdup (Lisp_Object string)
885 {
886 ptrdiff_t size = SBYTES (string) + 1;
887 return memcpy (xmalloc (size), SSDATA (string), size);
888 }
889
890 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
891 pointed to. If STRING is null, assign it without copying anything.
892 Allocate before freeing, to avoid a dangling pointer if allocation
893 fails. */
894
895 void
896 dupstring (char **ptr, char const *string)
897 {
898 char *old = *ptr;
899 *ptr = string ? xstrdup (string) : 0;
900 xfree (old);
901 }
902
903
904 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
905 argument is a const pointer. */
906
907 void
908 xputenv (char const *string)
909 {
910 if (putenv ((char *) string) != 0)
911 memory_full (0);
912 }
913
914 /* Return a newly allocated memory block of SIZE bytes, remembering
915 to free it when unwinding. */
916 void *
917 record_xmalloc (size_t size)
918 {
919 void *p = xmalloc (size);
920 record_unwind_protect_ptr (xfree, p);
921 return p;
922 }
923
924
925 /* Like malloc but used for allocating Lisp data. NBYTES is the
926 number of bytes to allocate, TYPE describes the intended use of the
927 allocated memory block (for strings, for conses, ...). */
928
929 #if ! USE_LSB_TAG
930 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
931 #endif
932
933 static void *
934 lisp_malloc (size_t nbytes, enum mem_type type)
935 {
936 register void *val;
937
938 MALLOC_BLOCK_INPUT;
939
940 #ifdef GC_MALLOC_CHECK
941 allocated_mem_type = type;
942 #endif
943
944 val = malloc (nbytes);
945
946 #if ! USE_LSB_TAG
947 /* If the memory just allocated cannot be addressed thru a Lisp
948 object's pointer, and it needs to be,
949 that's equivalent to running out of memory. */
950 if (val && type != MEM_TYPE_NON_LISP)
951 {
952 Lisp_Object tem;
953 XSETCONS (tem, (char *) val + nbytes - 1);
954 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
955 {
956 lisp_malloc_loser = val;
957 free (val);
958 val = 0;
959 }
960 }
961 #endif
962
963 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
964 if (val && type != MEM_TYPE_NON_LISP)
965 mem_insert (val, (char *) val + nbytes, type);
966 #endif
967
968 MALLOC_UNBLOCK_INPUT;
969 if (!val && nbytes)
970 memory_full (nbytes);
971 MALLOC_PROBE (nbytes);
972 return val;
973 }
974
975 /* Free BLOCK. This must be called to free memory allocated with a
976 call to lisp_malloc. */
977
978 static void
979 lisp_free (void *block)
980 {
981 MALLOC_BLOCK_INPUT;
982 free (block);
983 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
984 mem_delete (mem_find (block));
985 #endif
986 MALLOC_UNBLOCK_INPUT;
987 }
988
989 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
990
991 /* The entry point is lisp_align_malloc which returns blocks of at most
992 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
993
994 /* Use aligned_alloc if it or a simple substitute is available.
995 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
996 clang 3.3 anyway. */
997
998 #if ! ADDRESS_SANITIZER
999 # if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC && !defined HYBRID_MALLOC
1000 # define USE_ALIGNED_ALLOC 1
1001 /* Defined in gmalloc.c. */
1002 void *aligned_alloc (size_t, size_t);
1003 # elif defined HYBRID_MALLOC
1004 # if defined ALIGNED_ALLOC || defined HAVE_POSIX_MEMALIGN
1005 # define USE_ALIGNED_ALLOC 1
1006 # define aligned_alloc hybrid_aligned_alloc
1007 /* Defined in gmalloc.c. */
1008 void *aligned_alloc (size_t, size_t);
1009 # endif
1010 # elif defined HAVE_ALIGNED_ALLOC
1011 # define USE_ALIGNED_ALLOC 1
1012 # elif defined HAVE_POSIX_MEMALIGN
1013 # define USE_ALIGNED_ALLOC 1
1014 static void *
1015 aligned_alloc (size_t alignment, size_t size)
1016 {
1017 void *p;
1018 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1019 }
1020 # endif
1021 #endif
1022
1023 /* BLOCK_ALIGN has to be a power of 2. */
1024 #define BLOCK_ALIGN (1 << 10)
1025
1026 /* Padding to leave at the end of a malloc'd block. This is to give
1027 malloc a chance to minimize the amount of memory wasted to alignment.
1028 It should be tuned to the particular malloc library used.
1029 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1030 aligned_alloc on the other hand would ideally prefer a value of 4
1031 because otherwise, there's 1020 bytes wasted between each ablocks.
1032 In Emacs, testing shows that those 1020 can most of the time be
1033 efficiently used by malloc to place other objects, so a value of 0 can
1034 still preferable unless you have a lot of aligned blocks and virtually
1035 nothing else. */
1036 #define BLOCK_PADDING 0
1037 #define BLOCK_BYTES \
1038 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1039
1040 /* Internal data structures and constants. */
1041
1042 #define ABLOCKS_SIZE 16
1043
1044 /* An aligned block of memory. */
1045 struct ablock
1046 {
1047 union
1048 {
1049 char payload[BLOCK_BYTES];
1050 struct ablock *next_free;
1051 } x;
1052 /* `abase' is the aligned base of the ablocks. */
1053 /* It is overloaded to hold the virtual `busy' field that counts
1054 the number of used ablock in the parent ablocks.
1055 The first ablock has the `busy' field, the others have the `abase'
1056 field. To tell the difference, we assume that pointers will have
1057 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1058 is used to tell whether the real base of the parent ablocks is `abase'
1059 (if not, the word before the first ablock holds a pointer to the
1060 real base). */
1061 struct ablocks *abase;
1062 /* The padding of all but the last ablock is unused. The padding of
1063 the last ablock in an ablocks is not allocated. */
1064 #if BLOCK_PADDING
1065 char padding[BLOCK_PADDING];
1066 #endif
1067 };
1068
1069 /* A bunch of consecutive aligned blocks. */
1070 struct ablocks
1071 {
1072 struct ablock blocks[ABLOCKS_SIZE];
1073 };
1074
1075 /* Size of the block requested from malloc or aligned_alloc. */
1076 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1077
1078 #define ABLOCK_ABASE(block) \
1079 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1080 ? (struct ablocks *)(block) \
1081 : (block)->abase)
1082
1083 /* Virtual `busy' field. */
1084 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1085
1086 /* Pointer to the (not necessarily aligned) malloc block. */
1087 #ifdef USE_ALIGNED_ALLOC
1088 #define ABLOCKS_BASE(abase) (abase)
1089 #else
1090 #define ABLOCKS_BASE(abase) \
1091 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1092 #endif
1093
1094 /* The list of free ablock. */
1095 static struct ablock *free_ablock;
1096
1097 /* Allocate an aligned block of nbytes.
1098 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1099 smaller or equal to BLOCK_BYTES. */
1100 static void *
1101 lisp_align_malloc (size_t nbytes, enum mem_type type)
1102 {
1103 void *base, *val;
1104 struct ablocks *abase;
1105
1106 eassert (nbytes <= BLOCK_BYTES);
1107
1108 MALLOC_BLOCK_INPUT;
1109
1110 #ifdef GC_MALLOC_CHECK
1111 allocated_mem_type = type;
1112 #endif
1113
1114 if (!free_ablock)
1115 {
1116 int i;
1117 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1118
1119 #ifdef DOUG_LEA_MALLOC
1120 if (!mmap_lisp_allowed_p ())
1121 mallopt (M_MMAP_MAX, 0);
1122 #endif
1123
1124 #ifdef USE_ALIGNED_ALLOC
1125 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1126 #else
1127 base = malloc (ABLOCKS_BYTES);
1128 abase = ALIGN (base, BLOCK_ALIGN);
1129 #endif
1130
1131 if (base == 0)
1132 {
1133 MALLOC_UNBLOCK_INPUT;
1134 memory_full (ABLOCKS_BYTES);
1135 }
1136
1137 aligned = (base == abase);
1138 if (!aligned)
1139 ((void **) abase)[-1] = base;
1140
1141 #ifdef DOUG_LEA_MALLOC
1142 if (!mmap_lisp_allowed_p ())
1143 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1144 #endif
1145
1146 #if ! USE_LSB_TAG
1147 /* If the memory just allocated cannot be addressed thru a Lisp
1148 object's pointer, and it needs to be, that's equivalent to
1149 running out of memory. */
1150 if (type != MEM_TYPE_NON_LISP)
1151 {
1152 Lisp_Object tem;
1153 char *end = (char *) base + ABLOCKS_BYTES - 1;
1154 XSETCONS (tem, end);
1155 if ((char *) XCONS (tem) != end)
1156 {
1157 lisp_malloc_loser = base;
1158 free (base);
1159 MALLOC_UNBLOCK_INPUT;
1160 memory_full (SIZE_MAX);
1161 }
1162 }
1163 #endif
1164
1165 /* Initialize the blocks and put them on the free list.
1166 If `base' was not properly aligned, we can't use the last block. */
1167 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1168 {
1169 abase->blocks[i].abase = abase;
1170 abase->blocks[i].x.next_free = free_ablock;
1171 free_ablock = &abase->blocks[i];
1172 }
1173 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1174
1175 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1176 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1177 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1178 eassert (ABLOCKS_BASE (abase) == base);
1179 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1180 }
1181
1182 abase = ABLOCK_ABASE (free_ablock);
1183 ABLOCKS_BUSY (abase)
1184 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1185 val = free_ablock;
1186 free_ablock = free_ablock->x.next_free;
1187
1188 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1189 if (type != MEM_TYPE_NON_LISP)
1190 mem_insert (val, (char *) val + nbytes, type);
1191 #endif
1192
1193 MALLOC_UNBLOCK_INPUT;
1194
1195 MALLOC_PROBE (nbytes);
1196
1197 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1198 return val;
1199 }
1200
1201 static void
1202 lisp_align_free (void *block)
1203 {
1204 struct ablock *ablock = block;
1205 struct ablocks *abase = ABLOCK_ABASE (ablock);
1206
1207 MALLOC_BLOCK_INPUT;
1208 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1209 mem_delete (mem_find (block));
1210 #endif
1211 /* Put on free list. */
1212 ablock->x.next_free = free_ablock;
1213 free_ablock = ablock;
1214 /* Update busy count. */
1215 ABLOCKS_BUSY (abase)
1216 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1217
1218 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1219 { /* All the blocks are free. */
1220 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1221 struct ablock **tem = &free_ablock;
1222 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1223
1224 while (*tem)
1225 {
1226 if (*tem >= (struct ablock *) abase && *tem < atop)
1227 {
1228 i++;
1229 *tem = (*tem)->x.next_free;
1230 }
1231 else
1232 tem = &(*tem)->x.next_free;
1233 }
1234 eassert ((aligned & 1) == aligned);
1235 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1236 #ifdef USE_POSIX_MEMALIGN
1237 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1238 #endif
1239 free (ABLOCKS_BASE (abase));
1240 }
1241 MALLOC_UNBLOCK_INPUT;
1242 }
1243
1244 \f
1245 /***********************************************************************
1246 Interval Allocation
1247 ***********************************************************************/
1248
1249 /* Number of intervals allocated in an interval_block structure.
1250 The 1020 is 1024 minus malloc overhead. */
1251
1252 #define INTERVAL_BLOCK_SIZE \
1253 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1254
1255 /* Intervals are allocated in chunks in the form of an interval_block
1256 structure. */
1257
1258 struct interval_block
1259 {
1260 /* Place `intervals' first, to preserve alignment. */
1261 struct interval intervals[INTERVAL_BLOCK_SIZE];
1262 struct interval_block *next;
1263 };
1264
1265 /* Current interval block. Its `next' pointer points to older
1266 blocks. */
1267
1268 static struct interval_block *interval_block;
1269
1270 /* Index in interval_block above of the next unused interval
1271 structure. */
1272
1273 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1274
1275 /* Number of free and live intervals. */
1276
1277 static EMACS_INT total_free_intervals, total_intervals;
1278
1279 /* List of free intervals. */
1280
1281 static INTERVAL interval_free_list;
1282
1283 /* Return a new interval. */
1284
1285 INTERVAL
1286 make_interval (void)
1287 {
1288 INTERVAL val;
1289
1290 MALLOC_BLOCK_INPUT;
1291
1292 if (interval_free_list)
1293 {
1294 val = interval_free_list;
1295 interval_free_list = INTERVAL_PARENT (interval_free_list);
1296 }
1297 else
1298 {
1299 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1300 {
1301 struct interval_block *newi
1302 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1303
1304 newi->next = interval_block;
1305 interval_block = newi;
1306 interval_block_index = 0;
1307 total_free_intervals += INTERVAL_BLOCK_SIZE;
1308 }
1309 val = &interval_block->intervals[interval_block_index++];
1310 }
1311
1312 MALLOC_UNBLOCK_INPUT;
1313
1314 consing_since_gc += sizeof (struct interval);
1315 intervals_consed++;
1316 total_free_intervals--;
1317 RESET_INTERVAL (val);
1318 val->gcmarkbit = 0;
1319 return val;
1320 }
1321
1322
1323 /* Mark Lisp objects in interval I. */
1324
1325 static void
1326 mark_interval (register INTERVAL i, Lisp_Object dummy)
1327 {
1328 /* Intervals should never be shared. So, if extra internal checking is
1329 enabled, GC aborts if it seems to have visited an interval twice. */
1330 eassert (!i->gcmarkbit);
1331 i->gcmarkbit = 1;
1332 mark_object (i->plist);
1333 }
1334
1335 /* Mark the interval tree rooted in I. */
1336
1337 #define MARK_INTERVAL_TREE(i) \
1338 do { \
1339 if (i && !i->gcmarkbit) \
1340 traverse_intervals_noorder (i, mark_interval, Qnil); \
1341 } while (0)
1342
1343 /***********************************************************************
1344 String Allocation
1345 ***********************************************************************/
1346
1347 /* Lisp_Strings are allocated in string_block structures. When a new
1348 string_block is allocated, all the Lisp_Strings it contains are
1349 added to a free-list string_free_list. When a new Lisp_String is
1350 needed, it is taken from that list. During the sweep phase of GC,
1351 string_blocks that are entirely free are freed, except two which
1352 we keep.
1353
1354 String data is allocated from sblock structures. Strings larger
1355 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1356 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1357
1358 Sblocks consist internally of sdata structures, one for each
1359 Lisp_String. The sdata structure points to the Lisp_String it
1360 belongs to. The Lisp_String points back to the `u.data' member of
1361 its sdata structure.
1362
1363 When a Lisp_String is freed during GC, it is put back on
1364 string_free_list, and its `data' member and its sdata's `string'
1365 pointer is set to null. The size of the string is recorded in the
1366 `n.nbytes' member of the sdata. So, sdata structures that are no
1367 longer used, can be easily recognized, and it's easy to compact the
1368 sblocks of small strings which we do in compact_small_strings. */
1369
1370 /* Size in bytes of an sblock structure used for small strings. This
1371 is 8192 minus malloc overhead. */
1372
1373 #define SBLOCK_SIZE 8188
1374
1375 /* Strings larger than this are considered large strings. String data
1376 for large strings is allocated from individual sblocks. */
1377
1378 #define LARGE_STRING_BYTES 1024
1379
1380 /* The SDATA typedef is a struct or union describing string memory
1381 sub-allocated from an sblock. This is where the contents of Lisp
1382 strings are stored. */
1383
1384 struct sdata
1385 {
1386 /* Back-pointer to the string this sdata belongs to. If null, this
1387 structure is free, and NBYTES (in this structure or in the union below)
1388 contains the string's byte size (the same value that STRING_BYTES
1389 would return if STRING were non-null). If non-null, STRING_BYTES
1390 (STRING) is the size of the data, and DATA contains the string's
1391 contents. */
1392 struct Lisp_String *string;
1393
1394 #ifdef GC_CHECK_STRING_BYTES
1395 ptrdiff_t nbytes;
1396 #endif
1397
1398 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1399 };
1400
1401 #ifdef GC_CHECK_STRING_BYTES
1402
1403 typedef struct sdata sdata;
1404 #define SDATA_NBYTES(S) (S)->nbytes
1405 #define SDATA_DATA(S) (S)->data
1406
1407 #else
1408
1409 typedef union
1410 {
1411 struct Lisp_String *string;
1412
1413 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1414 which has a flexible array member. However, if implemented by
1415 giving this union a member of type 'struct sdata', the union
1416 could not be the last (flexible) member of 'struct sblock',
1417 because C99 prohibits a flexible array member from having a type
1418 that is itself a flexible array. So, comment this member out here,
1419 but remember that the option's there when using this union. */
1420 #if 0
1421 struct sdata u;
1422 #endif
1423
1424 /* When STRING is null. */
1425 struct
1426 {
1427 struct Lisp_String *string;
1428 ptrdiff_t nbytes;
1429 } n;
1430 } sdata;
1431
1432 #define SDATA_NBYTES(S) (S)->n.nbytes
1433 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1434
1435 #endif /* not GC_CHECK_STRING_BYTES */
1436
1437 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1438
1439 /* Structure describing a block of memory which is sub-allocated to
1440 obtain string data memory for strings. Blocks for small strings
1441 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1442 as large as needed. */
1443
1444 struct sblock
1445 {
1446 /* Next in list. */
1447 struct sblock *next;
1448
1449 /* Pointer to the next free sdata block. This points past the end
1450 of the sblock if there isn't any space left in this block. */
1451 sdata *next_free;
1452
1453 /* String data. */
1454 sdata data[FLEXIBLE_ARRAY_MEMBER];
1455 };
1456
1457 /* Number of Lisp strings in a string_block structure. The 1020 is
1458 1024 minus malloc overhead. */
1459
1460 #define STRING_BLOCK_SIZE \
1461 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1462
1463 /* Structure describing a block from which Lisp_String structures
1464 are allocated. */
1465
1466 struct string_block
1467 {
1468 /* Place `strings' first, to preserve alignment. */
1469 struct Lisp_String strings[STRING_BLOCK_SIZE];
1470 struct string_block *next;
1471 };
1472
1473 /* Head and tail of the list of sblock structures holding Lisp string
1474 data. We always allocate from current_sblock. The NEXT pointers
1475 in the sblock structures go from oldest_sblock to current_sblock. */
1476
1477 static struct sblock *oldest_sblock, *current_sblock;
1478
1479 /* List of sblocks for large strings. */
1480
1481 static struct sblock *large_sblocks;
1482
1483 /* List of string_block structures. */
1484
1485 static struct string_block *string_blocks;
1486
1487 /* Free-list of Lisp_Strings. */
1488
1489 static struct Lisp_String *string_free_list;
1490
1491 /* Number of live and free Lisp_Strings. */
1492
1493 static EMACS_INT total_strings, total_free_strings;
1494
1495 /* Number of bytes used by live strings. */
1496
1497 static EMACS_INT total_string_bytes;
1498
1499 /* Given a pointer to a Lisp_String S which is on the free-list
1500 string_free_list, return a pointer to its successor in the
1501 free-list. */
1502
1503 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1504
1505 /* Return a pointer to the sdata structure belonging to Lisp string S.
1506 S must be live, i.e. S->data must not be null. S->data is actually
1507 a pointer to the `u.data' member of its sdata structure; the
1508 structure starts at a constant offset in front of that. */
1509
1510 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1511
1512
1513 #ifdef GC_CHECK_STRING_OVERRUN
1514
1515 /* We check for overrun in string data blocks by appending a small
1516 "cookie" after each allocated string data block, and check for the
1517 presence of this cookie during GC. */
1518
1519 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1520 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1521 { '\xde', '\xad', '\xbe', '\xef' };
1522
1523 #else
1524 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1525 #endif
1526
1527 /* Value is the size of an sdata structure large enough to hold NBYTES
1528 bytes of string data. The value returned includes a terminating
1529 NUL byte, the size of the sdata structure, and padding. */
1530
1531 #ifdef GC_CHECK_STRING_BYTES
1532
1533 #define SDATA_SIZE(NBYTES) \
1534 ((SDATA_DATA_OFFSET \
1535 + (NBYTES) + 1 \
1536 + sizeof (ptrdiff_t) - 1) \
1537 & ~(sizeof (ptrdiff_t) - 1))
1538
1539 #else /* not GC_CHECK_STRING_BYTES */
1540
1541 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1542 less than the size of that member. The 'max' is not needed when
1543 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1544 alignment code reserves enough space. */
1545
1546 #define SDATA_SIZE(NBYTES) \
1547 ((SDATA_DATA_OFFSET \
1548 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1549 ? NBYTES \
1550 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1551 + 1 \
1552 + sizeof (ptrdiff_t) - 1) \
1553 & ~(sizeof (ptrdiff_t) - 1))
1554
1555 #endif /* not GC_CHECK_STRING_BYTES */
1556
1557 /* Extra bytes to allocate for each string. */
1558
1559 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1560
1561 /* Exact bound on the number of bytes in a string, not counting the
1562 terminating null. A string cannot contain more bytes than
1563 STRING_BYTES_BOUND, nor can it be so long that the size_t
1564 arithmetic in allocate_string_data would overflow while it is
1565 calculating a value to be passed to malloc. */
1566 static ptrdiff_t const STRING_BYTES_MAX =
1567 min (STRING_BYTES_BOUND,
1568 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1569 - GC_STRING_EXTRA
1570 - offsetof (struct sblock, data)
1571 - SDATA_DATA_OFFSET)
1572 & ~(sizeof (EMACS_INT) - 1)));
1573
1574 /* Initialize string allocation. Called from init_alloc_once. */
1575
1576 static void
1577 init_strings (void)
1578 {
1579 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1580 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1581 }
1582
1583
1584 #ifdef GC_CHECK_STRING_BYTES
1585
1586 static int check_string_bytes_count;
1587
1588 /* Like STRING_BYTES, but with debugging check. Can be
1589 called during GC, so pay attention to the mark bit. */
1590
1591 ptrdiff_t
1592 string_bytes (struct Lisp_String *s)
1593 {
1594 ptrdiff_t nbytes =
1595 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1596
1597 if (!PURE_POINTER_P (s)
1598 && s->data
1599 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1600 emacs_abort ();
1601 return nbytes;
1602 }
1603
1604 /* Check validity of Lisp strings' string_bytes member in B. */
1605
1606 static void
1607 check_sblock (struct sblock *b)
1608 {
1609 sdata *from, *end, *from_end;
1610
1611 end = b->next_free;
1612
1613 for (from = b->data; from < end; from = from_end)
1614 {
1615 /* Compute the next FROM here because copying below may
1616 overwrite data we need to compute it. */
1617 ptrdiff_t nbytes;
1618
1619 /* Check that the string size recorded in the string is the
1620 same as the one recorded in the sdata structure. */
1621 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1622 : SDATA_NBYTES (from));
1623 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1624 }
1625 }
1626
1627
1628 /* Check validity of Lisp strings' string_bytes member. ALL_P
1629 means check all strings, otherwise check only most
1630 recently allocated strings. Used for hunting a bug. */
1631
1632 static void
1633 check_string_bytes (bool all_p)
1634 {
1635 if (all_p)
1636 {
1637 struct sblock *b;
1638
1639 for (b = large_sblocks; b; b = b->next)
1640 {
1641 struct Lisp_String *s = b->data[0].string;
1642 if (s)
1643 string_bytes (s);
1644 }
1645
1646 for (b = oldest_sblock; b; b = b->next)
1647 check_sblock (b);
1648 }
1649 else if (current_sblock)
1650 check_sblock (current_sblock);
1651 }
1652
1653 #else /* not GC_CHECK_STRING_BYTES */
1654
1655 #define check_string_bytes(all) ((void) 0)
1656
1657 #endif /* GC_CHECK_STRING_BYTES */
1658
1659 #ifdef GC_CHECK_STRING_FREE_LIST
1660
1661 /* Walk through the string free list looking for bogus next pointers.
1662 This may catch buffer overrun from a previous string. */
1663
1664 static void
1665 check_string_free_list (void)
1666 {
1667 struct Lisp_String *s;
1668
1669 /* Pop a Lisp_String off the free-list. */
1670 s = string_free_list;
1671 while (s != NULL)
1672 {
1673 if ((uintptr_t) s < 1024)
1674 emacs_abort ();
1675 s = NEXT_FREE_LISP_STRING (s);
1676 }
1677 }
1678 #else
1679 #define check_string_free_list()
1680 #endif
1681
1682 /* Return a new Lisp_String. */
1683
1684 static struct Lisp_String *
1685 allocate_string (void)
1686 {
1687 struct Lisp_String *s;
1688
1689 MALLOC_BLOCK_INPUT;
1690
1691 /* If the free-list is empty, allocate a new string_block, and
1692 add all the Lisp_Strings in it to the free-list. */
1693 if (string_free_list == NULL)
1694 {
1695 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1696 int i;
1697
1698 b->next = string_blocks;
1699 string_blocks = b;
1700
1701 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1702 {
1703 s = b->strings + i;
1704 /* Every string on a free list should have NULL data pointer. */
1705 s->data = NULL;
1706 NEXT_FREE_LISP_STRING (s) = string_free_list;
1707 string_free_list = s;
1708 }
1709
1710 total_free_strings += STRING_BLOCK_SIZE;
1711 }
1712
1713 check_string_free_list ();
1714
1715 /* Pop a Lisp_String off the free-list. */
1716 s = string_free_list;
1717 string_free_list = NEXT_FREE_LISP_STRING (s);
1718
1719 MALLOC_UNBLOCK_INPUT;
1720
1721 --total_free_strings;
1722 ++total_strings;
1723 ++strings_consed;
1724 consing_since_gc += sizeof *s;
1725
1726 #ifdef GC_CHECK_STRING_BYTES
1727 if (!noninteractive)
1728 {
1729 if (++check_string_bytes_count == 200)
1730 {
1731 check_string_bytes_count = 0;
1732 check_string_bytes (1);
1733 }
1734 else
1735 check_string_bytes (0);
1736 }
1737 #endif /* GC_CHECK_STRING_BYTES */
1738
1739 return s;
1740 }
1741
1742
1743 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1744 plus a NUL byte at the end. Allocate an sdata structure for S, and
1745 set S->data to its `u.data' member. Store a NUL byte at the end of
1746 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1747 S->data if it was initially non-null. */
1748
1749 void
1750 allocate_string_data (struct Lisp_String *s,
1751 EMACS_INT nchars, EMACS_INT nbytes)
1752 {
1753 sdata *data, *old_data;
1754 struct sblock *b;
1755 ptrdiff_t needed, old_nbytes;
1756
1757 if (STRING_BYTES_MAX < nbytes)
1758 string_overflow ();
1759
1760 /* Determine the number of bytes needed to store NBYTES bytes
1761 of string data. */
1762 needed = SDATA_SIZE (nbytes);
1763 if (s->data)
1764 {
1765 old_data = SDATA_OF_STRING (s);
1766 old_nbytes = STRING_BYTES (s);
1767 }
1768 else
1769 old_data = NULL;
1770
1771 MALLOC_BLOCK_INPUT;
1772
1773 if (nbytes > LARGE_STRING_BYTES)
1774 {
1775 size_t size = offsetof (struct sblock, data) + needed;
1776
1777 #ifdef DOUG_LEA_MALLOC
1778 if (!mmap_lisp_allowed_p ())
1779 mallopt (M_MMAP_MAX, 0);
1780 #endif
1781
1782 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1783
1784 #ifdef DOUG_LEA_MALLOC
1785 if (!mmap_lisp_allowed_p ())
1786 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1787 #endif
1788
1789 b->next_free = b->data;
1790 b->data[0].string = NULL;
1791 b->next = large_sblocks;
1792 large_sblocks = b;
1793 }
1794 else if (current_sblock == NULL
1795 || (((char *) current_sblock + SBLOCK_SIZE
1796 - (char *) current_sblock->next_free)
1797 < (needed + GC_STRING_EXTRA)))
1798 {
1799 /* Not enough room in the current sblock. */
1800 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1801 b->next_free = b->data;
1802 b->data[0].string = NULL;
1803 b->next = NULL;
1804
1805 if (current_sblock)
1806 current_sblock->next = b;
1807 else
1808 oldest_sblock = b;
1809 current_sblock = b;
1810 }
1811 else
1812 b = current_sblock;
1813
1814 data = b->next_free;
1815 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1816
1817 MALLOC_UNBLOCK_INPUT;
1818
1819 data->string = s;
1820 s->data = SDATA_DATA (data);
1821 #ifdef GC_CHECK_STRING_BYTES
1822 SDATA_NBYTES (data) = nbytes;
1823 #endif
1824 s->size = nchars;
1825 s->size_byte = nbytes;
1826 s->data[nbytes] = '\0';
1827 #ifdef GC_CHECK_STRING_OVERRUN
1828 memcpy ((char *) data + needed, string_overrun_cookie,
1829 GC_STRING_OVERRUN_COOKIE_SIZE);
1830 #endif
1831
1832 /* Note that Faset may call to this function when S has already data
1833 assigned. In this case, mark data as free by setting it's string
1834 back-pointer to null, and record the size of the data in it. */
1835 if (old_data)
1836 {
1837 SDATA_NBYTES (old_data) = old_nbytes;
1838 old_data->string = NULL;
1839 }
1840
1841 consing_since_gc += needed;
1842 }
1843
1844
1845 /* Sweep and compact strings. */
1846
1847 NO_INLINE /* For better stack traces */
1848 static void
1849 sweep_strings (void)
1850 {
1851 struct string_block *b, *next;
1852 struct string_block *live_blocks = NULL;
1853
1854 string_free_list = NULL;
1855 total_strings = total_free_strings = 0;
1856 total_string_bytes = 0;
1857
1858 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1859 for (b = string_blocks; b; b = next)
1860 {
1861 int i, nfree = 0;
1862 struct Lisp_String *free_list_before = string_free_list;
1863
1864 next = b->next;
1865
1866 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1867 {
1868 struct Lisp_String *s = b->strings + i;
1869
1870 if (s->data)
1871 {
1872 /* String was not on free-list before. */
1873 if (STRING_MARKED_P (s))
1874 {
1875 /* String is live; unmark it and its intervals. */
1876 UNMARK_STRING (s);
1877
1878 /* Do not use string_(set|get)_intervals here. */
1879 s->intervals = balance_intervals (s->intervals);
1880
1881 ++total_strings;
1882 total_string_bytes += STRING_BYTES (s);
1883 }
1884 else
1885 {
1886 /* String is dead. Put it on the free-list. */
1887 sdata *data = SDATA_OF_STRING (s);
1888
1889 /* Save the size of S in its sdata so that we know
1890 how large that is. Reset the sdata's string
1891 back-pointer so that we know it's free. */
1892 #ifdef GC_CHECK_STRING_BYTES
1893 if (string_bytes (s) != SDATA_NBYTES (data))
1894 emacs_abort ();
1895 #else
1896 data->n.nbytes = STRING_BYTES (s);
1897 #endif
1898 data->string = NULL;
1899
1900 /* Reset the strings's `data' member so that we
1901 know it's free. */
1902 s->data = NULL;
1903
1904 /* Put the string on the free-list. */
1905 NEXT_FREE_LISP_STRING (s) = string_free_list;
1906 string_free_list = s;
1907 ++nfree;
1908 }
1909 }
1910 else
1911 {
1912 /* S was on the free-list before. Put it there again. */
1913 NEXT_FREE_LISP_STRING (s) = string_free_list;
1914 string_free_list = s;
1915 ++nfree;
1916 }
1917 }
1918
1919 /* Free blocks that contain free Lisp_Strings only, except
1920 the first two of them. */
1921 if (nfree == STRING_BLOCK_SIZE
1922 && total_free_strings > STRING_BLOCK_SIZE)
1923 {
1924 lisp_free (b);
1925 string_free_list = free_list_before;
1926 }
1927 else
1928 {
1929 total_free_strings += nfree;
1930 b->next = live_blocks;
1931 live_blocks = b;
1932 }
1933 }
1934
1935 check_string_free_list ();
1936
1937 string_blocks = live_blocks;
1938 free_large_strings ();
1939 compact_small_strings ();
1940
1941 check_string_free_list ();
1942 }
1943
1944
1945 /* Free dead large strings. */
1946
1947 static void
1948 free_large_strings (void)
1949 {
1950 struct sblock *b, *next;
1951 struct sblock *live_blocks = NULL;
1952
1953 for (b = large_sblocks; b; b = next)
1954 {
1955 next = b->next;
1956
1957 if (b->data[0].string == NULL)
1958 lisp_free (b);
1959 else
1960 {
1961 b->next = live_blocks;
1962 live_blocks = b;
1963 }
1964 }
1965
1966 large_sblocks = live_blocks;
1967 }
1968
1969
1970 /* Compact data of small strings. Free sblocks that don't contain
1971 data of live strings after compaction. */
1972
1973 static void
1974 compact_small_strings (void)
1975 {
1976 struct sblock *b, *tb, *next;
1977 sdata *from, *to, *end, *tb_end;
1978 sdata *to_end, *from_end;
1979
1980 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1981 to, and TB_END is the end of TB. */
1982 tb = oldest_sblock;
1983 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1984 to = tb->data;
1985
1986 /* Step through the blocks from the oldest to the youngest. We
1987 expect that old blocks will stabilize over time, so that less
1988 copying will happen this way. */
1989 for (b = oldest_sblock; b; b = b->next)
1990 {
1991 end = b->next_free;
1992 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1993
1994 for (from = b->data; from < end; from = from_end)
1995 {
1996 /* Compute the next FROM here because copying below may
1997 overwrite data we need to compute it. */
1998 ptrdiff_t nbytes;
1999 struct Lisp_String *s = from->string;
2000
2001 #ifdef GC_CHECK_STRING_BYTES
2002 /* Check that the string size recorded in the string is the
2003 same as the one recorded in the sdata structure. */
2004 if (s && string_bytes (s) != SDATA_NBYTES (from))
2005 emacs_abort ();
2006 #endif /* GC_CHECK_STRING_BYTES */
2007
2008 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2009 eassert (nbytes <= LARGE_STRING_BYTES);
2010
2011 nbytes = SDATA_SIZE (nbytes);
2012 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2013
2014 #ifdef GC_CHECK_STRING_OVERRUN
2015 if (memcmp (string_overrun_cookie,
2016 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2017 GC_STRING_OVERRUN_COOKIE_SIZE))
2018 emacs_abort ();
2019 #endif
2020
2021 /* Non-NULL S means it's alive. Copy its data. */
2022 if (s)
2023 {
2024 /* If TB is full, proceed with the next sblock. */
2025 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2026 if (to_end > tb_end)
2027 {
2028 tb->next_free = to;
2029 tb = tb->next;
2030 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2031 to = tb->data;
2032 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2033 }
2034
2035 /* Copy, and update the string's `data' pointer. */
2036 if (from != to)
2037 {
2038 eassert (tb != b || to < from);
2039 memmove (to, from, nbytes + GC_STRING_EXTRA);
2040 to->string->data = SDATA_DATA (to);
2041 }
2042
2043 /* Advance past the sdata we copied to. */
2044 to = to_end;
2045 }
2046 }
2047 }
2048
2049 /* The rest of the sblocks following TB don't contain live data, so
2050 we can free them. */
2051 for (b = tb->next; b; b = next)
2052 {
2053 next = b->next;
2054 lisp_free (b);
2055 }
2056
2057 tb->next_free = to;
2058 tb->next = NULL;
2059 current_sblock = tb;
2060 }
2061
2062 void
2063 string_overflow (void)
2064 {
2065 error ("Maximum string size exceeded");
2066 }
2067
2068 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2069 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2070 LENGTH must be an integer.
2071 INIT must be an integer that represents a character. */)
2072 (Lisp_Object length, Lisp_Object init)
2073 {
2074 register Lisp_Object val;
2075 int c;
2076 EMACS_INT nbytes;
2077
2078 CHECK_NATNUM (length);
2079 CHECK_CHARACTER (init);
2080
2081 c = XFASTINT (init);
2082 if (ASCII_CHAR_P (c))
2083 {
2084 nbytes = XINT (length);
2085 val = make_uninit_string (nbytes);
2086 memset (SDATA (val), c, nbytes);
2087 SDATA (val)[nbytes] = 0;
2088 }
2089 else
2090 {
2091 unsigned char str[MAX_MULTIBYTE_LENGTH];
2092 ptrdiff_t len = CHAR_STRING (c, str);
2093 EMACS_INT string_len = XINT (length);
2094 unsigned char *p, *beg, *end;
2095
2096 if (string_len > STRING_BYTES_MAX / len)
2097 string_overflow ();
2098 nbytes = len * string_len;
2099 val = make_uninit_multibyte_string (string_len, nbytes);
2100 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2101 {
2102 /* First time we just copy `str' to the data of `val'. */
2103 if (p == beg)
2104 memcpy (p, str, len);
2105 else
2106 {
2107 /* Next time we copy largest possible chunk from
2108 initialized to uninitialized part of `val'. */
2109 len = min (p - beg, end - p);
2110 memcpy (p, beg, len);
2111 }
2112 }
2113 *p = 0;
2114 }
2115
2116 return val;
2117 }
2118
2119 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2120 Return A. */
2121
2122 Lisp_Object
2123 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2124 {
2125 EMACS_INT nbits = bool_vector_size (a);
2126 if (0 < nbits)
2127 {
2128 unsigned char *data = bool_vector_uchar_data (a);
2129 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2130 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2131 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2132 memset (data, pattern, nbytes - 1);
2133 data[nbytes - 1] = pattern & last_mask;
2134 }
2135 return a;
2136 }
2137
2138 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2139
2140 Lisp_Object
2141 make_uninit_bool_vector (EMACS_INT nbits)
2142 {
2143 Lisp_Object val;
2144 EMACS_INT words = bool_vector_words (nbits);
2145 EMACS_INT word_bytes = words * sizeof (bits_word);
2146 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2147 + word_size - 1)
2148 / word_size);
2149 struct Lisp_Bool_Vector *p
2150 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2151 XSETVECTOR (val, p);
2152 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2153 p->size = nbits;
2154
2155 /* Clear padding at the end. */
2156 if (words)
2157 p->data[words - 1] = 0;
2158
2159 return val;
2160 }
2161
2162 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2163 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2164 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2165 (Lisp_Object length, Lisp_Object init)
2166 {
2167 Lisp_Object val;
2168
2169 CHECK_NATNUM (length);
2170 val = make_uninit_bool_vector (XFASTINT (length));
2171 return bool_vector_fill (val, init);
2172 }
2173
2174 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2175 doc: /* Return a new bool-vector with specified arguments as elements.
2176 Any number of arguments, even zero arguments, are allowed.
2177 usage: (bool-vector &rest OBJECTS) */)
2178 (ptrdiff_t nargs, Lisp_Object *args)
2179 {
2180 ptrdiff_t i;
2181 Lisp_Object vector;
2182
2183 vector = make_uninit_bool_vector (nargs);
2184 for (i = 0; i < nargs; i++)
2185 bool_vector_set (vector, i, !NILP (args[i]));
2186
2187 return vector;
2188 }
2189
2190 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2191 of characters from the contents. This string may be unibyte or
2192 multibyte, depending on the contents. */
2193
2194 Lisp_Object
2195 make_string (const char *contents, ptrdiff_t nbytes)
2196 {
2197 register Lisp_Object val;
2198 ptrdiff_t nchars, multibyte_nbytes;
2199
2200 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2201 &nchars, &multibyte_nbytes);
2202 if (nbytes == nchars || nbytes != multibyte_nbytes)
2203 /* CONTENTS contains no multibyte sequences or contains an invalid
2204 multibyte sequence. We must make unibyte string. */
2205 val = make_unibyte_string (contents, nbytes);
2206 else
2207 val = make_multibyte_string (contents, nchars, nbytes);
2208 return val;
2209 }
2210
2211 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2212
2213 Lisp_Object
2214 make_unibyte_string (const char *contents, ptrdiff_t length)
2215 {
2216 register Lisp_Object val;
2217 val = make_uninit_string (length);
2218 memcpy (SDATA (val), contents, length);
2219 return val;
2220 }
2221
2222
2223 /* Make a multibyte string from NCHARS characters occupying NBYTES
2224 bytes at CONTENTS. */
2225
2226 Lisp_Object
2227 make_multibyte_string (const char *contents,
2228 ptrdiff_t nchars, ptrdiff_t nbytes)
2229 {
2230 register Lisp_Object val;
2231 val = make_uninit_multibyte_string (nchars, nbytes);
2232 memcpy (SDATA (val), contents, nbytes);
2233 return val;
2234 }
2235
2236
2237 /* Make a string from NCHARS characters occupying NBYTES bytes at
2238 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2239
2240 Lisp_Object
2241 make_string_from_bytes (const char *contents,
2242 ptrdiff_t nchars, ptrdiff_t nbytes)
2243 {
2244 register Lisp_Object val;
2245 val = make_uninit_multibyte_string (nchars, nbytes);
2246 memcpy (SDATA (val), contents, nbytes);
2247 if (SBYTES (val) == SCHARS (val))
2248 STRING_SET_UNIBYTE (val);
2249 return val;
2250 }
2251
2252
2253 /* Make a string from NCHARS characters occupying NBYTES bytes at
2254 CONTENTS. The argument MULTIBYTE controls whether to label the
2255 string as multibyte. If NCHARS is negative, it counts the number of
2256 characters by itself. */
2257
2258 Lisp_Object
2259 make_specified_string (const char *contents,
2260 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2261 {
2262 Lisp_Object val;
2263
2264 if (nchars < 0)
2265 {
2266 if (multibyte)
2267 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2268 nbytes);
2269 else
2270 nchars = nbytes;
2271 }
2272 val = make_uninit_multibyte_string (nchars, nbytes);
2273 memcpy (SDATA (val), contents, nbytes);
2274 if (!multibyte)
2275 STRING_SET_UNIBYTE (val);
2276 return val;
2277 }
2278
2279
2280 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2281 occupying LENGTH bytes. */
2282
2283 Lisp_Object
2284 make_uninit_string (EMACS_INT length)
2285 {
2286 Lisp_Object val;
2287
2288 if (!length)
2289 return empty_unibyte_string;
2290 val = make_uninit_multibyte_string (length, length);
2291 STRING_SET_UNIBYTE (val);
2292 return val;
2293 }
2294
2295
2296 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2297 which occupy NBYTES bytes. */
2298
2299 Lisp_Object
2300 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2301 {
2302 Lisp_Object string;
2303 struct Lisp_String *s;
2304
2305 if (nchars < 0)
2306 emacs_abort ();
2307 if (!nbytes)
2308 return empty_multibyte_string;
2309
2310 s = allocate_string ();
2311 s->intervals = NULL;
2312 allocate_string_data (s, nchars, nbytes);
2313 XSETSTRING (string, s);
2314 string_chars_consed += nbytes;
2315 return string;
2316 }
2317
2318 /* Print arguments to BUF according to a FORMAT, then return
2319 a Lisp_String initialized with the data from BUF. */
2320
2321 Lisp_Object
2322 make_formatted_string (char *buf, const char *format, ...)
2323 {
2324 va_list ap;
2325 int length;
2326
2327 va_start (ap, format);
2328 length = vsprintf (buf, format, ap);
2329 va_end (ap);
2330 return make_string (buf, length);
2331 }
2332
2333 \f
2334 /***********************************************************************
2335 Float Allocation
2336 ***********************************************************************/
2337
2338 /* We store float cells inside of float_blocks, allocating a new
2339 float_block with malloc whenever necessary. Float cells reclaimed
2340 by GC are put on a free list to be reallocated before allocating
2341 any new float cells from the latest float_block. */
2342
2343 #define FLOAT_BLOCK_SIZE \
2344 (((BLOCK_BYTES - sizeof (struct float_block *) \
2345 /* The compiler might add padding at the end. */ \
2346 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2347 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2348
2349 #define GETMARKBIT(block,n) \
2350 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2351 >> ((n) % BITS_PER_BITS_WORD)) \
2352 & 1)
2353
2354 #define SETMARKBIT(block,n) \
2355 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2356 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2357
2358 #define UNSETMARKBIT(block,n) \
2359 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2360 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2361
2362 #define FLOAT_BLOCK(fptr) \
2363 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2364
2365 #define FLOAT_INDEX(fptr) \
2366 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2367
2368 struct float_block
2369 {
2370 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2371 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2372 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2373 struct float_block *next;
2374 };
2375
2376 #define FLOAT_MARKED_P(fptr) \
2377 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2378
2379 #define FLOAT_MARK(fptr) \
2380 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2381
2382 #define FLOAT_UNMARK(fptr) \
2383 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2384
2385 /* Current float_block. */
2386
2387 static struct float_block *float_block;
2388
2389 /* Index of first unused Lisp_Float in the current float_block. */
2390
2391 static int float_block_index = FLOAT_BLOCK_SIZE;
2392
2393 /* Free-list of Lisp_Floats. */
2394
2395 static struct Lisp_Float *float_free_list;
2396
2397 /* Return a new float object with value FLOAT_VALUE. */
2398
2399 Lisp_Object
2400 make_float (double float_value)
2401 {
2402 register Lisp_Object val;
2403
2404 MALLOC_BLOCK_INPUT;
2405
2406 if (float_free_list)
2407 {
2408 /* We use the data field for chaining the free list
2409 so that we won't use the same field that has the mark bit. */
2410 XSETFLOAT (val, float_free_list);
2411 float_free_list = float_free_list->u.chain;
2412 }
2413 else
2414 {
2415 if (float_block_index == FLOAT_BLOCK_SIZE)
2416 {
2417 struct float_block *new
2418 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2419 new->next = float_block;
2420 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2421 float_block = new;
2422 float_block_index = 0;
2423 total_free_floats += FLOAT_BLOCK_SIZE;
2424 }
2425 XSETFLOAT (val, &float_block->floats[float_block_index]);
2426 float_block_index++;
2427 }
2428
2429 MALLOC_UNBLOCK_INPUT;
2430
2431 XFLOAT_INIT (val, float_value);
2432 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2433 consing_since_gc += sizeof (struct Lisp_Float);
2434 floats_consed++;
2435 total_free_floats--;
2436 return val;
2437 }
2438
2439
2440 \f
2441 /***********************************************************************
2442 Cons Allocation
2443 ***********************************************************************/
2444
2445 /* We store cons cells inside of cons_blocks, allocating a new
2446 cons_block with malloc whenever necessary. Cons cells reclaimed by
2447 GC are put on a free list to be reallocated before allocating
2448 any new cons cells from the latest cons_block. */
2449
2450 #define CONS_BLOCK_SIZE \
2451 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2452 /* The compiler might add padding at the end. */ \
2453 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2454 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2455
2456 #define CONS_BLOCK(fptr) \
2457 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2458
2459 #define CONS_INDEX(fptr) \
2460 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2461
2462 struct cons_block
2463 {
2464 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2465 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2466 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2467 struct cons_block *next;
2468 };
2469
2470 #define CONS_MARKED_P(fptr) \
2471 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2472
2473 #define CONS_MARK(fptr) \
2474 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2475
2476 #define CONS_UNMARK(fptr) \
2477 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2478
2479 /* Current cons_block. */
2480
2481 static struct cons_block *cons_block;
2482
2483 /* Index of first unused Lisp_Cons in the current block. */
2484
2485 static int cons_block_index = CONS_BLOCK_SIZE;
2486
2487 /* Free-list of Lisp_Cons structures. */
2488
2489 static struct Lisp_Cons *cons_free_list;
2490
2491 /* Explicitly free a cons cell by putting it on the free-list. */
2492
2493 void
2494 free_cons (struct Lisp_Cons *ptr)
2495 {
2496 ptr->u.chain = cons_free_list;
2497 #if GC_MARK_STACK
2498 ptr->car = Vdead;
2499 #endif
2500 cons_free_list = ptr;
2501 consing_since_gc -= sizeof *ptr;
2502 total_free_conses++;
2503 }
2504
2505 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2506 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2507 (Lisp_Object car, Lisp_Object cdr)
2508 {
2509 register Lisp_Object val;
2510
2511 MALLOC_BLOCK_INPUT;
2512
2513 if (cons_free_list)
2514 {
2515 /* We use the cdr for chaining the free list
2516 so that we won't use the same field that has the mark bit. */
2517 XSETCONS (val, cons_free_list);
2518 cons_free_list = cons_free_list->u.chain;
2519 }
2520 else
2521 {
2522 if (cons_block_index == CONS_BLOCK_SIZE)
2523 {
2524 struct cons_block *new
2525 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2526 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2527 new->next = cons_block;
2528 cons_block = new;
2529 cons_block_index = 0;
2530 total_free_conses += CONS_BLOCK_SIZE;
2531 }
2532 XSETCONS (val, &cons_block->conses[cons_block_index]);
2533 cons_block_index++;
2534 }
2535
2536 MALLOC_UNBLOCK_INPUT;
2537
2538 XSETCAR (val, car);
2539 XSETCDR (val, cdr);
2540 eassert (!CONS_MARKED_P (XCONS (val)));
2541 consing_since_gc += sizeof (struct Lisp_Cons);
2542 total_free_conses--;
2543 cons_cells_consed++;
2544 return val;
2545 }
2546
2547 #ifdef GC_CHECK_CONS_LIST
2548 /* Get an error now if there's any junk in the cons free list. */
2549 void
2550 check_cons_list (void)
2551 {
2552 struct Lisp_Cons *tail = cons_free_list;
2553
2554 while (tail)
2555 tail = tail->u.chain;
2556 }
2557 #endif
2558
2559 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2560
2561 Lisp_Object
2562 list1 (Lisp_Object arg1)
2563 {
2564 return Fcons (arg1, Qnil);
2565 }
2566
2567 Lisp_Object
2568 list2 (Lisp_Object arg1, Lisp_Object arg2)
2569 {
2570 return Fcons (arg1, Fcons (arg2, Qnil));
2571 }
2572
2573
2574 Lisp_Object
2575 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2576 {
2577 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2578 }
2579
2580
2581 Lisp_Object
2582 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2583 {
2584 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2585 }
2586
2587
2588 Lisp_Object
2589 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2590 {
2591 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2592 Fcons (arg5, Qnil)))));
2593 }
2594
2595 /* Make a list of COUNT Lisp_Objects, where ARG is the
2596 first one. Allocate conses from pure space if TYPE
2597 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2598
2599 Lisp_Object
2600 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2601 {
2602 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2603 switch (type)
2604 {
2605 case CONSTYPE_PURE: cons = pure_cons; break;
2606 case CONSTYPE_HEAP: cons = Fcons; break;
2607 default: emacs_abort ();
2608 }
2609
2610 eassume (0 < count);
2611 Lisp_Object val = cons (arg, Qnil);
2612 Lisp_Object tail = val;
2613
2614 va_list ap;
2615 va_start (ap, arg);
2616 for (ptrdiff_t i = 1; i < count; i++)
2617 {
2618 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2619 XSETCDR (tail, elem);
2620 tail = elem;
2621 }
2622 va_end (ap);
2623
2624 return val;
2625 }
2626
2627 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2628 doc: /* Return a newly created list with specified arguments as elements.
2629 Any number of arguments, even zero arguments, are allowed.
2630 usage: (list &rest OBJECTS) */)
2631 (ptrdiff_t nargs, Lisp_Object *args)
2632 {
2633 register Lisp_Object val;
2634 val = Qnil;
2635
2636 while (nargs > 0)
2637 {
2638 nargs--;
2639 val = Fcons (args[nargs], val);
2640 }
2641 return val;
2642 }
2643
2644
2645 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2646 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2647 (register Lisp_Object length, Lisp_Object init)
2648 {
2649 register Lisp_Object val;
2650 register EMACS_INT size;
2651
2652 CHECK_NATNUM (length);
2653 size = XFASTINT (length);
2654
2655 val = Qnil;
2656 while (size > 0)
2657 {
2658 val = Fcons (init, val);
2659 --size;
2660
2661 if (size > 0)
2662 {
2663 val = Fcons (init, val);
2664 --size;
2665
2666 if (size > 0)
2667 {
2668 val = Fcons (init, val);
2669 --size;
2670
2671 if (size > 0)
2672 {
2673 val = Fcons (init, val);
2674 --size;
2675
2676 if (size > 0)
2677 {
2678 val = Fcons (init, val);
2679 --size;
2680 }
2681 }
2682 }
2683 }
2684
2685 QUIT;
2686 }
2687
2688 return val;
2689 }
2690
2691
2692 \f
2693 /***********************************************************************
2694 Vector Allocation
2695 ***********************************************************************/
2696
2697 /* Sometimes a vector's contents are merely a pointer internally used
2698 in vector allocation code. On the rare platforms where a null
2699 pointer cannot be tagged, represent it with a Lisp 0.
2700 Usually you don't want to touch this. */
2701
2702 static struct Lisp_Vector *
2703 next_vector (struct Lisp_Vector *v)
2704 {
2705 return XUNTAG (v->contents[0], Lisp_Int0);
2706 }
2707
2708 static void
2709 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2710 {
2711 v->contents[0] = make_lisp_ptr (p, Lisp_Int0);
2712 }
2713
2714 /* This value is balanced well enough to avoid too much internal overhead
2715 for the most common cases; it's not required to be a power of two, but
2716 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2717
2718 #define VECTOR_BLOCK_SIZE 4096
2719
2720 enum
2721 {
2722 /* Alignment of struct Lisp_Vector objects. */
2723 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2724 USE_LSB_TAG ? GCALIGNMENT : 1),
2725
2726 /* Vector size requests are a multiple of this. */
2727 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2728 };
2729
2730 /* Verify assumptions described above. */
2731 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2732 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2733
2734 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2735 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2736 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2737 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2738
2739 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2740
2741 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2742
2743 /* Size of the minimal vector allocated from block. */
2744
2745 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2746
2747 /* Size of the largest vector allocated from block. */
2748
2749 #define VBLOCK_BYTES_MAX \
2750 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2751
2752 /* We maintain one free list for each possible block-allocated
2753 vector size, and this is the number of free lists we have. */
2754
2755 #define VECTOR_MAX_FREE_LIST_INDEX \
2756 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2757
2758 /* Common shortcut to advance vector pointer over a block data. */
2759
2760 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2761
2762 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2763
2764 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2765
2766 /* Common shortcut to setup vector on a free list. */
2767
2768 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2769 do { \
2770 (tmp) = ((nbytes - header_size) / word_size); \
2771 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2772 eassert ((nbytes) % roundup_size == 0); \
2773 (tmp) = VINDEX (nbytes); \
2774 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2775 set_next_vector (v, vector_free_lists[tmp]); \
2776 vector_free_lists[tmp] = (v); \
2777 total_free_vector_slots += (nbytes) / word_size; \
2778 } while (0)
2779
2780 /* This internal type is used to maintain the list of large vectors
2781 which are allocated at their own, e.g. outside of vector blocks.
2782
2783 struct large_vector itself cannot contain a struct Lisp_Vector, as
2784 the latter contains a flexible array member and C99 does not allow
2785 such structs to be nested. Instead, each struct large_vector
2786 object LV is followed by a struct Lisp_Vector, which is at offset
2787 large_vector_offset from LV, and whose address is therefore
2788 large_vector_vec (&LV). */
2789
2790 struct large_vector
2791 {
2792 struct large_vector *next;
2793 };
2794
2795 enum
2796 {
2797 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2798 };
2799
2800 static struct Lisp_Vector *
2801 large_vector_vec (struct large_vector *p)
2802 {
2803 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2804 }
2805
2806 /* This internal type is used to maintain an underlying storage
2807 for small vectors. */
2808
2809 struct vector_block
2810 {
2811 char data[VECTOR_BLOCK_BYTES];
2812 struct vector_block *next;
2813 };
2814
2815 /* Chain of vector blocks. */
2816
2817 static struct vector_block *vector_blocks;
2818
2819 /* Vector free lists, where NTH item points to a chain of free
2820 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2821
2822 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2823
2824 /* Singly-linked list of large vectors. */
2825
2826 static struct large_vector *large_vectors;
2827
2828 /* The only vector with 0 slots, allocated from pure space. */
2829
2830 Lisp_Object zero_vector;
2831
2832 /* Number of live vectors. */
2833
2834 static EMACS_INT total_vectors;
2835
2836 /* Total size of live and free vectors, in Lisp_Object units. */
2837
2838 static EMACS_INT total_vector_slots, total_free_vector_slots;
2839
2840 /* Get a new vector block. */
2841
2842 static struct vector_block *
2843 allocate_vector_block (void)
2844 {
2845 struct vector_block *block = xmalloc (sizeof *block);
2846
2847 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2848 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2849 MEM_TYPE_VECTOR_BLOCK);
2850 #endif
2851
2852 block->next = vector_blocks;
2853 vector_blocks = block;
2854 return block;
2855 }
2856
2857 /* Called once to initialize vector allocation. */
2858
2859 static void
2860 init_vectors (void)
2861 {
2862 zero_vector = make_pure_vector (0);
2863 }
2864
2865 /* Allocate vector from a vector block. */
2866
2867 static struct Lisp_Vector *
2868 allocate_vector_from_block (size_t nbytes)
2869 {
2870 struct Lisp_Vector *vector;
2871 struct vector_block *block;
2872 size_t index, restbytes;
2873
2874 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2875 eassert (nbytes % roundup_size == 0);
2876
2877 /* First, try to allocate from a free list
2878 containing vectors of the requested size. */
2879 index = VINDEX (nbytes);
2880 if (vector_free_lists[index])
2881 {
2882 vector = vector_free_lists[index];
2883 vector_free_lists[index] = next_vector (vector);
2884 total_free_vector_slots -= nbytes / word_size;
2885 return vector;
2886 }
2887
2888 /* Next, check free lists containing larger vectors. Since
2889 we will split the result, we should have remaining space
2890 large enough to use for one-slot vector at least. */
2891 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2892 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2893 if (vector_free_lists[index])
2894 {
2895 /* This vector is larger than requested. */
2896 vector = vector_free_lists[index];
2897 vector_free_lists[index] = next_vector (vector);
2898 total_free_vector_slots -= nbytes / word_size;
2899
2900 /* Excess bytes are used for the smaller vector,
2901 which should be set on an appropriate free list. */
2902 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2903 eassert (restbytes % roundup_size == 0);
2904 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2905 return vector;
2906 }
2907
2908 /* Finally, need a new vector block. */
2909 block = allocate_vector_block ();
2910
2911 /* New vector will be at the beginning of this block. */
2912 vector = (struct Lisp_Vector *) block->data;
2913
2914 /* If the rest of space from this block is large enough
2915 for one-slot vector at least, set up it on a free list. */
2916 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2917 if (restbytes >= VBLOCK_BYTES_MIN)
2918 {
2919 eassert (restbytes % roundup_size == 0);
2920 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2921 }
2922 return vector;
2923 }
2924
2925 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2926
2927 #define VECTOR_IN_BLOCK(vector, block) \
2928 ((char *) (vector) <= (block)->data \
2929 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2930
2931 /* Return the memory footprint of V in bytes. */
2932
2933 static ptrdiff_t
2934 vector_nbytes (struct Lisp_Vector *v)
2935 {
2936 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2937 ptrdiff_t nwords;
2938
2939 if (size & PSEUDOVECTOR_FLAG)
2940 {
2941 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2942 {
2943 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2944 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
2945 * sizeof (bits_word));
2946 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
2947 verify (header_size <= bool_header_size);
2948 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
2949 }
2950 else
2951 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
2952 + ((size & PSEUDOVECTOR_REST_MASK)
2953 >> PSEUDOVECTOR_SIZE_BITS));
2954 }
2955 else
2956 nwords = size;
2957 return vroundup (header_size + word_size * nwords);
2958 }
2959
2960 /* Release extra resources still in use by VECTOR, which may be any
2961 vector-like object. For now, this is used just to free data in
2962 font objects. */
2963
2964 static void
2965 cleanup_vector (struct Lisp_Vector *vector)
2966 {
2967 detect_suspicious_free (vector);
2968 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
2969 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
2970 == FONT_OBJECT_MAX))
2971 {
2972 struct font_driver *drv = ((struct font *) vector)->driver;
2973
2974 /* The font driver might sometimes be NULL, e.g. if Emacs was
2975 interrupted before it had time to set it up. */
2976 if (drv)
2977 {
2978 /* Attempt to catch subtle bugs like Bug#16140. */
2979 eassert (valid_font_driver (drv));
2980 drv->close ((struct font *) vector);
2981 }
2982 }
2983 }
2984
2985 /* Reclaim space used by unmarked vectors. */
2986
2987 NO_INLINE /* For better stack traces */
2988 static void
2989 sweep_vectors (void)
2990 {
2991 struct vector_block *block, **bprev = &vector_blocks;
2992 struct large_vector *lv, **lvprev = &large_vectors;
2993 struct Lisp_Vector *vector, *next;
2994
2995 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2996 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2997
2998 /* Looking through vector blocks. */
2999
3000 for (block = vector_blocks; block; block = *bprev)
3001 {
3002 bool free_this_block = 0;
3003 ptrdiff_t nbytes;
3004
3005 for (vector = (struct Lisp_Vector *) block->data;
3006 VECTOR_IN_BLOCK (vector, block); vector = next)
3007 {
3008 if (VECTOR_MARKED_P (vector))
3009 {
3010 VECTOR_UNMARK (vector);
3011 total_vectors++;
3012 nbytes = vector_nbytes (vector);
3013 total_vector_slots += nbytes / word_size;
3014 next = ADVANCE (vector, nbytes);
3015 }
3016 else
3017 {
3018 ptrdiff_t total_bytes;
3019
3020 cleanup_vector (vector);
3021 nbytes = vector_nbytes (vector);
3022 total_bytes = nbytes;
3023 next = ADVANCE (vector, nbytes);
3024
3025 /* While NEXT is not marked, try to coalesce with VECTOR,
3026 thus making VECTOR of the largest possible size. */
3027
3028 while (VECTOR_IN_BLOCK (next, block))
3029 {
3030 if (VECTOR_MARKED_P (next))
3031 break;
3032 cleanup_vector (next);
3033 nbytes = vector_nbytes (next);
3034 total_bytes += nbytes;
3035 next = ADVANCE (next, nbytes);
3036 }
3037
3038 eassert (total_bytes % roundup_size == 0);
3039
3040 if (vector == (struct Lisp_Vector *) block->data
3041 && !VECTOR_IN_BLOCK (next, block))
3042 /* This block should be freed because all of its
3043 space was coalesced into the only free vector. */
3044 free_this_block = 1;
3045 else
3046 {
3047 size_t tmp;
3048 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3049 }
3050 }
3051 }
3052
3053 if (free_this_block)
3054 {
3055 *bprev = block->next;
3056 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3057 mem_delete (mem_find (block->data));
3058 #endif
3059 xfree (block);
3060 }
3061 else
3062 bprev = &block->next;
3063 }
3064
3065 /* Sweep large vectors. */
3066
3067 for (lv = large_vectors; lv; lv = *lvprev)
3068 {
3069 vector = large_vector_vec (lv);
3070 if (VECTOR_MARKED_P (vector))
3071 {
3072 VECTOR_UNMARK (vector);
3073 total_vectors++;
3074 if (vector->header.size & PSEUDOVECTOR_FLAG)
3075 {
3076 /* All non-bool pseudovectors are small enough to be allocated
3077 from vector blocks. This code should be redesigned if some
3078 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3079 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3080 total_vector_slots += vector_nbytes (vector) / word_size;
3081 }
3082 else
3083 total_vector_slots
3084 += header_size / word_size + vector->header.size;
3085 lvprev = &lv->next;
3086 }
3087 else
3088 {
3089 *lvprev = lv->next;
3090 lisp_free (lv);
3091 }
3092 }
3093 }
3094
3095 /* Value is a pointer to a newly allocated Lisp_Vector structure
3096 with room for LEN Lisp_Objects. */
3097
3098 static struct Lisp_Vector *
3099 allocate_vectorlike (ptrdiff_t len)
3100 {
3101 struct Lisp_Vector *p;
3102
3103 MALLOC_BLOCK_INPUT;
3104
3105 if (len == 0)
3106 p = XVECTOR (zero_vector);
3107 else
3108 {
3109 size_t nbytes = header_size + len * word_size;
3110
3111 #ifdef DOUG_LEA_MALLOC
3112 if (!mmap_lisp_allowed_p ())
3113 mallopt (M_MMAP_MAX, 0);
3114 #endif
3115
3116 if (nbytes <= VBLOCK_BYTES_MAX)
3117 p = allocate_vector_from_block (vroundup (nbytes));
3118 else
3119 {
3120 struct large_vector *lv
3121 = lisp_malloc ((large_vector_offset + header_size
3122 + len * word_size),
3123 MEM_TYPE_VECTORLIKE);
3124 lv->next = large_vectors;
3125 large_vectors = lv;
3126 p = large_vector_vec (lv);
3127 }
3128
3129 #ifdef DOUG_LEA_MALLOC
3130 if (!mmap_lisp_allowed_p ())
3131 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3132 #endif
3133
3134 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3135 emacs_abort ();
3136
3137 consing_since_gc += nbytes;
3138 vector_cells_consed += len;
3139 }
3140
3141 MALLOC_UNBLOCK_INPUT;
3142
3143 return p;
3144 }
3145
3146
3147 /* Allocate a vector with LEN slots. */
3148
3149 struct Lisp_Vector *
3150 allocate_vector (EMACS_INT len)
3151 {
3152 struct Lisp_Vector *v;
3153 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3154
3155 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3156 memory_full (SIZE_MAX);
3157 v = allocate_vectorlike (len);
3158 v->header.size = len;
3159 return v;
3160 }
3161
3162
3163 /* Allocate other vector-like structures. */
3164
3165 struct Lisp_Vector *
3166 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
3167 {
3168 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3169 int i;
3170
3171 /* Catch bogus values. */
3172 eassert (tag <= PVEC_FONT);
3173 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3174 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3175
3176 /* Only the first lisplen slots will be traced normally by the GC. */
3177 for (i = 0; i < lisplen; ++i)
3178 v->contents[i] = Qnil;
3179
3180 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3181 return v;
3182 }
3183
3184 struct buffer *
3185 allocate_buffer (void)
3186 {
3187 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3188
3189 BUFFER_PVEC_INIT (b);
3190 /* Put B on the chain of all buffers including killed ones. */
3191 b->next = all_buffers;
3192 all_buffers = b;
3193 /* Note that the rest fields of B are not initialized. */
3194 return b;
3195 }
3196
3197 struct Lisp_Hash_Table *
3198 allocate_hash_table (void)
3199 {
3200 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3201 }
3202
3203 struct window *
3204 allocate_window (void)
3205 {
3206 struct window *w;
3207
3208 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3209 /* Users assumes that non-Lisp data is zeroed. */
3210 memset (&w->current_matrix, 0,
3211 sizeof (*w) - offsetof (struct window, current_matrix));
3212 return w;
3213 }
3214
3215 struct terminal *
3216 allocate_terminal (void)
3217 {
3218 struct terminal *t;
3219
3220 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3221 /* Users assumes that non-Lisp data is zeroed. */
3222 memset (&t->next_terminal, 0,
3223 sizeof (*t) - offsetof (struct terminal, next_terminal));
3224 return t;
3225 }
3226
3227 struct frame *
3228 allocate_frame (void)
3229 {
3230 struct frame *f;
3231
3232 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3233 /* Users assumes that non-Lisp data is zeroed. */
3234 memset (&f->face_cache, 0,
3235 sizeof (*f) - offsetof (struct frame, face_cache));
3236 return f;
3237 }
3238
3239 struct Lisp_Process *
3240 allocate_process (void)
3241 {
3242 struct Lisp_Process *p;
3243
3244 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3245 /* Users assumes that non-Lisp data is zeroed. */
3246 memset (&p->pid, 0,
3247 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3248 return p;
3249 }
3250
3251 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3252 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3253 See also the function `vector'. */)
3254 (register Lisp_Object length, Lisp_Object init)
3255 {
3256 Lisp_Object vector;
3257 register ptrdiff_t sizei;
3258 register ptrdiff_t i;
3259 register struct Lisp_Vector *p;
3260
3261 CHECK_NATNUM (length);
3262
3263 p = allocate_vector (XFASTINT (length));
3264 sizei = XFASTINT (length);
3265 for (i = 0; i < sizei; i++)
3266 p->contents[i] = init;
3267
3268 XSETVECTOR (vector, p);
3269 return vector;
3270 }
3271
3272 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3273 doc: /* Return a newly created vector with specified arguments as elements.
3274 Any number of arguments, even zero arguments, are allowed.
3275 usage: (vector &rest OBJECTS) */)
3276 (ptrdiff_t nargs, Lisp_Object *args)
3277 {
3278 ptrdiff_t i;
3279 register Lisp_Object val = make_uninit_vector (nargs);
3280 register struct Lisp_Vector *p = XVECTOR (val);
3281
3282 for (i = 0; i < nargs; i++)
3283 p->contents[i] = args[i];
3284 return val;
3285 }
3286
3287 void
3288 make_byte_code (struct Lisp_Vector *v)
3289 {
3290 /* Don't allow the global zero_vector to become a byte code object. */
3291 eassert (0 < v->header.size);
3292
3293 if (v->header.size > 1 && STRINGP (v->contents[1])
3294 && STRING_MULTIBYTE (v->contents[1]))
3295 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3296 earlier because they produced a raw 8-bit string for byte-code
3297 and now such a byte-code string is loaded as multibyte while
3298 raw 8-bit characters converted to multibyte form. Thus, now we
3299 must convert them back to the original unibyte form. */
3300 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3301 XSETPVECTYPE (v, PVEC_COMPILED);
3302 }
3303
3304 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3305 doc: /* Create a byte-code object with specified arguments as elements.
3306 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3307 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3308 and (optional) INTERACTIVE-SPEC.
3309 The first four arguments are required; at most six have any
3310 significance.
3311 The ARGLIST can be either like the one of `lambda', in which case the arguments
3312 will be dynamically bound before executing the byte code, or it can be an
3313 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3314 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3315 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3316 argument to catch the left-over arguments. If such an integer is used, the
3317 arguments will not be dynamically bound but will be instead pushed on the
3318 stack before executing the byte-code.
3319 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3320 (ptrdiff_t nargs, Lisp_Object *args)
3321 {
3322 ptrdiff_t i;
3323 register Lisp_Object val = make_uninit_vector (nargs);
3324 register struct Lisp_Vector *p = XVECTOR (val);
3325
3326 /* We used to purecopy everything here, if purify-flag was set. This worked
3327 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3328 dangerous, since make-byte-code is used during execution to build
3329 closures, so any closure built during the preload phase would end up
3330 copied into pure space, including its free variables, which is sometimes
3331 just wasteful and other times plainly wrong (e.g. those free vars may want
3332 to be setcar'd). */
3333
3334 for (i = 0; i < nargs; i++)
3335 p->contents[i] = args[i];
3336 make_byte_code (p);
3337 XSETCOMPILED (val, p);
3338 return val;
3339 }
3340
3341
3342 \f
3343 /***********************************************************************
3344 Symbol Allocation
3345 ***********************************************************************/
3346
3347 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3348 of the required alignment if LSB tags are used. */
3349
3350 union aligned_Lisp_Symbol
3351 {
3352 struct Lisp_Symbol s;
3353 #if USE_LSB_TAG
3354 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3355 & -GCALIGNMENT];
3356 #endif
3357 };
3358
3359 /* Each symbol_block is just under 1020 bytes long, since malloc
3360 really allocates in units of powers of two and uses 4 bytes for its
3361 own overhead. */
3362
3363 #define SYMBOL_BLOCK_SIZE \
3364 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3365
3366 struct symbol_block
3367 {
3368 /* Place `symbols' first, to preserve alignment. */
3369 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3370 struct symbol_block *next;
3371 };
3372
3373 /* Current symbol block and index of first unused Lisp_Symbol
3374 structure in it. */
3375
3376 static struct symbol_block *symbol_block;
3377 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3378 /* Pointer to the first symbol_block that contains pinned symbols.
3379 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3380 10K of which are pinned (and all but 250 of them are interned in obarray),
3381 whereas a "typical session" has in the order of 30K symbols.
3382 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3383 than 30K to find the 10K symbols we need to mark. */
3384 static struct symbol_block *symbol_block_pinned;
3385
3386 /* List of free symbols. */
3387
3388 static struct Lisp_Symbol *symbol_free_list;
3389
3390 static void
3391 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3392 {
3393 XSYMBOL (sym)->name = name;
3394 }
3395
3396 void
3397 init_symbol (Lisp_Object val, Lisp_Object name)
3398 {
3399 struct Lisp_Symbol *p = XSYMBOL (val);
3400 set_symbol_name (val, name);
3401 set_symbol_plist (val, Qnil);
3402 p->redirect = SYMBOL_PLAINVAL;
3403 SET_SYMBOL_VAL (p, Qunbound);
3404 set_symbol_function (val, Qnil);
3405 set_symbol_next (val, NULL);
3406 p->gcmarkbit = false;
3407 p->interned = SYMBOL_UNINTERNED;
3408 p->constant = 0;
3409 p->declared_special = false;
3410 p->pinned = false;
3411 }
3412
3413 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3414 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3415 Its value is void, and its function definition and property list are nil. */)
3416 (Lisp_Object name)
3417 {
3418 Lisp_Object val;
3419
3420 CHECK_STRING (name);
3421
3422 MALLOC_BLOCK_INPUT;
3423
3424 if (symbol_free_list)
3425 {
3426 XSETSYMBOL (val, symbol_free_list);
3427 symbol_free_list = symbol_free_list->next;
3428 }
3429 else
3430 {
3431 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3432 {
3433 struct symbol_block *new
3434 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3435 new->next = symbol_block;
3436 symbol_block = new;
3437 symbol_block_index = 0;
3438 total_free_symbols += SYMBOL_BLOCK_SIZE;
3439 }
3440 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3441 symbol_block_index++;
3442 }
3443
3444 MALLOC_UNBLOCK_INPUT;
3445
3446 init_symbol (val, name);
3447 consing_since_gc += sizeof (struct Lisp_Symbol);
3448 symbols_consed++;
3449 total_free_symbols--;
3450 return val;
3451 }
3452
3453
3454 \f
3455 /***********************************************************************
3456 Marker (Misc) Allocation
3457 ***********************************************************************/
3458
3459 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3460 the required alignment when LSB tags are used. */
3461
3462 union aligned_Lisp_Misc
3463 {
3464 union Lisp_Misc m;
3465 #if USE_LSB_TAG
3466 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3467 & -GCALIGNMENT];
3468 #endif
3469 };
3470
3471 /* Allocation of markers and other objects that share that structure.
3472 Works like allocation of conses. */
3473
3474 #define MARKER_BLOCK_SIZE \
3475 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3476
3477 struct marker_block
3478 {
3479 /* Place `markers' first, to preserve alignment. */
3480 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3481 struct marker_block *next;
3482 };
3483
3484 static struct marker_block *marker_block;
3485 static int marker_block_index = MARKER_BLOCK_SIZE;
3486
3487 static union Lisp_Misc *marker_free_list;
3488
3489 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3490
3491 static Lisp_Object
3492 allocate_misc (enum Lisp_Misc_Type type)
3493 {
3494 Lisp_Object val;
3495
3496 MALLOC_BLOCK_INPUT;
3497
3498 if (marker_free_list)
3499 {
3500 XSETMISC (val, marker_free_list);
3501 marker_free_list = marker_free_list->u_free.chain;
3502 }
3503 else
3504 {
3505 if (marker_block_index == MARKER_BLOCK_SIZE)
3506 {
3507 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3508 new->next = marker_block;
3509 marker_block = new;
3510 marker_block_index = 0;
3511 total_free_markers += MARKER_BLOCK_SIZE;
3512 }
3513 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3514 marker_block_index++;
3515 }
3516
3517 MALLOC_UNBLOCK_INPUT;
3518
3519 --total_free_markers;
3520 consing_since_gc += sizeof (union Lisp_Misc);
3521 misc_objects_consed++;
3522 XMISCANY (val)->type = type;
3523 XMISCANY (val)->gcmarkbit = 0;
3524 return val;
3525 }
3526
3527 /* Free a Lisp_Misc object. */
3528
3529 void
3530 free_misc (Lisp_Object misc)
3531 {
3532 XMISCANY (misc)->type = Lisp_Misc_Free;
3533 XMISC (misc)->u_free.chain = marker_free_list;
3534 marker_free_list = XMISC (misc);
3535 consing_since_gc -= sizeof (union Lisp_Misc);
3536 total_free_markers++;
3537 }
3538
3539 /* Verify properties of Lisp_Save_Value's representation
3540 that are assumed here and elsewhere. */
3541
3542 verify (SAVE_UNUSED == 0);
3543 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3544 >> SAVE_SLOT_BITS)
3545 == 0);
3546
3547 /* Return Lisp_Save_Value objects for the various combinations
3548 that callers need. */
3549
3550 Lisp_Object
3551 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3552 {
3553 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3554 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3555 p->save_type = SAVE_TYPE_INT_INT_INT;
3556 p->data[0].integer = a;
3557 p->data[1].integer = b;
3558 p->data[2].integer = c;
3559 return val;
3560 }
3561
3562 Lisp_Object
3563 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3564 Lisp_Object d)
3565 {
3566 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3567 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3568 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3569 p->data[0].object = a;
3570 p->data[1].object = b;
3571 p->data[2].object = c;
3572 p->data[3].object = d;
3573 return val;
3574 }
3575
3576 Lisp_Object
3577 make_save_ptr (void *a)
3578 {
3579 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3580 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3581 p->save_type = SAVE_POINTER;
3582 p->data[0].pointer = a;
3583 return val;
3584 }
3585
3586 Lisp_Object
3587 make_save_ptr_int (void *a, ptrdiff_t b)
3588 {
3589 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3590 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3591 p->save_type = SAVE_TYPE_PTR_INT;
3592 p->data[0].pointer = a;
3593 p->data[1].integer = b;
3594 return val;
3595 }
3596
3597 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3598 Lisp_Object
3599 make_save_ptr_ptr (void *a, void *b)
3600 {
3601 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3602 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3603 p->save_type = SAVE_TYPE_PTR_PTR;
3604 p->data[0].pointer = a;
3605 p->data[1].pointer = b;
3606 return val;
3607 }
3608 #endif
3609
3610 Lisp_Object
3611 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3612 {
3613 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3614 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3615 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3616 p->data[0].funcpointer = a;
3617 p->data[1].pointer = b;
3618 p->data[2].object = c;
3619 return val;
3620 }
3621
3622 /* Return a Lisp_Save_Value object that represents an array A
3623 of N Lisp objects. */
3624
3625 Lisp_Object
3626 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3627 {
3628 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3629 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3630 p->save_type = SAVE_TYPE_MEMORY;
3631 p->data[0].pointer = a;
3632 p->data[1].integer = n;
3633 return val;
3634 }
3635
3636 /* Free a Lisp_Save_Value object. Do not use this function
3637 if SAVE contains pointer other than returned by xmalloc. */
3638
3639 void
3640 free_save_value (Lisp_Object save)
3641 {
3642 xfree (XSAVE_POINTER (save, 0));
3643 free_misc (save);
3644 }
3645
3646 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3647
3648 Lisp_Object
3649 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3650 {
3651 register Lisp_Object overlay;
3652
3653 overlay = allocate_misc (Lisp_Misc_Overlay);
3654 OVERLAY_START (overlay) = start;
3655 OVERLAY_END (overlay) = end;
3656 set_overlay_plist (overlay, plist);
3657 XOVERLAY (overlay)->next = NULL;
3658 return overlay;
3659 }
3660
3661 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3662 doc: /* Return a newly allocated marker which does not point at any place. */)
3663 (void)
3664 {
3665 register Lisp_Object val;
3666 register struct Lisp_Marker *p;
3667
3668 val = allocate_misc (Lisp_Misc_Marker);
3669 p = XMARKER (val);
3670 p->buffer = 0;
3671 p->bytepos = 0;
3672 p->charpos = 0;
3673 p->next = NULL;
3674 p->insertion_type = 0;
3675 p->need_adjustment = 0;
3676 return val;
3677 }
3678
3679 /* Return a newly allocated marker which points into BUF
3680 at character position CHARPOS and byte position BYTEPOS. */
3681
3682 Lisp_Object
3683 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3684 {
3685 Lisp_Object obj;
3686 struct Lisp_Marker *m;
3687
3688 /* No dead buffers here. */
3689 eassert (BUFFER_LIVE_P (buf));
3690
3691 /* Every character is at least one byte. */
3692 eassert (charpos <= bytepos);
3693
3694 obj = allocate_misc (Lisp_Misc_Marker);
3695 m = XMARKER (obj);
3696 m->buffer = buf;
3697 m->charpos = charpos;
3698 m->bytepos = bytepos;
3699 m->insertion_type = 0;
3700 m->need_adjustment = 0;
3701 m->next = BUF_MARKERS (buf);
3702 BUF_MARKERS (buf) = m;
3703 return obj;
3704 }
3705
3706 /* Put MARKER back on the free list after using it temporarily. */
3707
3708 void
3709 free_marker (Lisp_Object marker)
3710 {
3711 unchain_marker (XMARKER (marker));
3712 free_misc (marker);
3713 }
3714
3715 \f
3716 /* Return a newly created vector or string with specified arguments as
3717 elements. If all the arguments are characters that can fit
3718 in a string of events, make a string; otherwise, make a vector.
3719
3720 Any number of arguments, even zero arguments, are allowed. */
3721
3722 Lisp_Object
3723 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3724 {
3725 ptrdiff_t i;
3726
3727 for (i = 0; i < nargs; i++)
3728 /* The things that fit in a string
3729 are characters that are in 0...127,
3730 after discarding the meta bit and all the bits above it. */
3731 if (!INTEGERP (args[i])
3732 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3733 return Fvector (nargs, args);
3734
3735 /* Since the loop exited, we know that all the things in it are
3736 characters, so we can make a string. */
3737 {
3738 Lisp_Object result;
3739
3740 result = Fmake_string (make_number (nargs), make_number (0));
3741 for (i = 0; i < nargs; i++)
3742 {
3743 SSET (result, i, XINT (args[i]));
3744 /* Move the meta bit to the right place for a string char. */
3745 if (XINT (args[i]) & CHAR_META)
3746 SSET (result, i, SREF (result, i) | 0x80);
3747 }
3748
3749 return result;
3750 }
3751 }
3752
3753
3754 \f
3755 /************************************************************************
3756 Memory Full Handling
3757 ************************************************************************/
3758
3759
3760 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3761 there may have been size_t overflow so that malloc was never
3762 called, or perhaps malloc was invoked successfully but the
3763 resulting pointer had problems fitting into a tagged EMACS_INT. In
3764 either case this counts as memory being full even though malloc did
3765 not fail. */
3766
3767 void
3768 memory_full (size_t nbytes)
3769 {
3770 /* Do not go into hysterics merely because a large request failed. */
3771 bool enough_free_memory = 0;
3772 if (SPARE_MEMORY < nbytes)
3773 {
3774 void *p;
3775
3776 MALLOC_BLOCK_INPUT;
3777 p = malloc (SPARE_MEMORY);
3778 if (p)
3779 {
3780 free (p);
3781 enough_free_memory = 1;
3782 }
3783 MALLOC_UNBLOCK_INPUT;
3784 }
3785
3786 if (! enough_free_memory)
3787 {
3788 int i;
3789
3790 Vmemory_full = Qt;
3791
3792 memory_full_cons_threshold = sizeof (struct cons_block);
3793
3794 /* The first time we get here, free the spare memory. */
3795 for (i = 0; i < ARRAYELTS (spare_memory); i++)
3796 if (spare_memory[i])
3797 {
3798 if (i == 0)
3799 free (spare_memory[i]);
3800 else if (i >= 1 && i <= 4)
3801 lisp_align_free (spare_memory[i]);
3802 else
3803 lisp_free (spare_memory[i]);
3804 spare_memory[i] = 0;
3805 }
3806 }
3807
3808 /* This used to call error, but if we've run out of memory, we could
3809 get infinite recursion trying to build the string. */
3810 xsignal (Qnil, Vmemory_signal_data);
3811 }
3812
3813 /* If we released our reserve (due to running out of memory),
3814 and we have a fair amount free once again,
3815 try to set aside another reserve in case we run out once more.
3816
3817 This is called when a relocatable block is freed in ralloc.c,
3818 and also directly from this file, in case we're not using ralloc.c. */
3819
3820 void
3821 refill_memory_reserve (void)
3822 {
3823 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3824 if (spare_memory[0] == 0)
3825 spare_memory[0] = malloc (SPARE_MEMORY);
3826 if (spare_memory[1] == 0)
3827 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3828 MEM_TYPE_SPARE);
3829 if (spare_memory[2] == 0)
3830 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3831 MEM_TYPE_SPARE);
3832 if (spare_memory[3] == 0)
3833 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3834 MEM_TYPE_SPARE);
3835 if (spare_memory[4] == 0)
3836 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3837 MEM_TYPE_SPARE);
3838 if (spare_memory[5] == 0)
3839 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3840 MEM_TYPE_SPARE);
3841 if (spare_memory[6] == 0)
3842 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3843 MEM_TYPE_SPARE);
3844 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3845 Vmemory_full = Qnil;
3846 #endif
3847 }
3848 \f
3849 /************************************************************************
3850 C Stack Marking
3851 ************************************************************************/
3852
3853 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3854
3855 /* Conservative C stack marking requires a method to identify possibly
3856 live Lisp objects given a pointer value. We do this by keeping
3857 track of blocks of Lisp data that are allocated in a red-black tree
3858 (see also the comment of mem_node which is the type of nodes in
3859 that tree). Function lisp_malloc adds information for an allocated
3860 block to the red-black tree with calls to mem_insert, and function
3861 lisp_free removes it with mem_delete. Functions live_string_p etc
3862 call mem_find to lookup information about a given pointer in the
3863 tree, and use that to determine if the pointer points to a Lisp
3864 object or not. */
3865
3866 /* Initialize this part of alloc.c. */
3867
3868 static void
3869 mem_init (void)
3870 {
3871 mem_z.left = mem_z.right = MEM_NIL;
3872 mem_z.parent = NULL;
3873 mem_z.color = MEM_BLACK;
3874 mem_z.start = mem_z.end = NULL;
3875 mem_root = MEM_NIL;
3876 }
3877
3878
3879 /* Value is a pointer to the mem_node containing START. Value is
3880 MEM_NIL if there is no node in the tree containing START. */
3881
3882 static struct mem_node *
3883 mem_find (void *start)
3884 {
3885 struct mem_node *p;
3886
3887 if (start < min_heap_address || start > max_heap_address)
3888 return MEM_NIL;
3889
3890 /* Make the search always successful to speed up the loop below. */
3891 mem_z.start = start;
3892 mem_z.end = (char *) start + 1;
3893
3894 p = mem_root;
3895 while (start < p->start || start >= p->end)
3896 p = start < p->start ? p->left : p->right;
3897 return p;
3898 }
3899
3900
3901 /* Insert a new node into the tree for a block of memory with start
3902 address START, end address END, and type TYPE. Value is a
3903 pointer to the node that was inserted. */
3904
3905 static struct mem_node *
3906 mem_insert (void *start, void *end, enum mem_type type)
3907 {
3908 struct mem_node *c, *parent, *x;
3909
3910 if (min_heap_address == NULL || start < min_heap_address)
3911 min_heap_address = start;
3912 if (max_heap_address == NULL || end > max_heap_address)
3913 max_heap_address = end;
3914
3915 /* See where in the tree a node for START belongs. In this
3916 particular application, it shouldn't happen that a node is already
3917 present. For debugging purposes, let's check that. */
3918 c = mem_root;
3919 parent = NULL;
3920
3921 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3922
3923 while (c != MEM_NIL)
3924 {
3925 if (start >= c->start && start < c->end)
3926 emacs_abort ();
3927 parent = c;
3928 c = start < c->start ? c->left : c->right;
3929 }
3930
3931 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3932
3933 while (c != MEM_NIL)
3934 {
3935 parent = c;
3936 c = start < c->start ? c->left : c->right;
3937 }
3938
3939 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3940
3941 /* Create a new node. */
3942 #ifdef GC_MALLOC_CHECK
3943 x = malloc (sizeof *x);
3944 if (x == NULL)
3945 emacs_abort ();
3946 #else
3947 x = xmalloc (sizeof *x);
3948 #endif
3949 x->start = start;
3950 x->end = end;
3951 x->type = type;
3952 x->parent = parent;
3953 x->left = x->right = MEM_NIL;
3954 x->color = MEM_RED;
3955
3956 /* Insert it as child of PARENT or install it as root. */
3957 if (parent)
3958 {
3959 if (start < parent->start)
3960 parent->left = x;
3961 else
3962 parent->right = x;
3963 }
3964 else
3965 mem_root = x;
3966
3967 /* Re-establish red-black tree properties. */
3968 mem_insert_fixup (x);
3969
3970 return x;
3971 }
3972
3973
3974 /* Re-establish the red-black properties of the tree, and thereby
3975 balance the tree, after node X has been inserted; X is always red. */
3976
3977 static void
3978 mem_insert_fixup (struct mem_node *x)
3979 {
3980 while (x != mem_root && x->parent->color == MEM_RED)
3981 {
3982 /* X is red and its parent is red. This is a violation of
3983 red-black tree property #3. */
3984
3985 if (x->parent == x->parent->parent->left)
3986 {
3987 /* We're on the left side of our grandparent, and Y is our
3988 "uncle". */
3989 struct mem_node *y = x->parent->parent->right;
3990
3991 if (y->color == MEM_RED)
3992 {
3993 /* Uncle and parent are red but should be black because
3994 X is red. Change the colors accordingly and proceed
3995 with the grandparent. */
3996 x->parent->color = MEM_BLACK;
3997 y->color = MEM_BLACK;
3998 x->parent->parent->color = MEM_RED;
3999 x = x->parent->parent;
4000 }
4001 else
4002 {
4003 /* Parent and uncle have different colors; parent is
4004 red, uncle is black. */
4005 if (x == x->parent->right)
4006 {
4007 x = x->parent;
4008 mem_rotate_left (x);
4009 }
4010
4011 x->parent->color = MEM_BLACK;
4012 x->parent->parent->color = MEM_RED;
4013 mem_rotate_right (x->parent->parent);
4014 }
4015 }
4016 else
4017 {
4018 /* This is the symmetrical case of above. */
4019 struct mem_node *y = x->parent->parent->left;
4020
4021 if (y->color == MEM_RED)
4022 {
4023 x->parent->color = MEM_BLACK;
4024 y->color = MEM_BLACK;
4025 x->parent->parent->color = MEM_RED;
4026 x = x->parent->parent;
4027 }
4028 else
4029 {
4030 if (x == x->parent->left)
4031 {
4032 x = x->parent;
4033 mem_rotate_right (x);
4034 }
4035
4036 x->parent->color = MEM_BLACK;
4037 x->parent->parent->color = MEM_RED;
4038 mem_rotate_left (x->parent->parent);
4039 }
4040 }
4041 }
4042
4043 /* The root may have been changed to red due to the algorithm. Set
4044 it to black so that property #5 is satisfied. */
4045 mem_root->color = MEM_BLACK;
4046 }
4047
4048
4049 /* (x) (y)
4050 / \ / \
4051 a (y) ===> (x) c
4052 / \ / \
4053 b c a b */
4054
4055 static void
4056 mem_rotate_left (struct mem_node *x)
4057 {
4058 struct mem_node *y;
4059
4060 /* Turn y's left sub-tree into x's right sub-tree. */
4061 y = x->right;
4062 x->right = y->left;
4063 if (y->left != MEM_NIL)
4064 y->left->parent = x;
4065
4066 /* Y's parent was x's parent. */
4067 if (y != MEM_NIL)
4068 y->parent = x->parent;
4069
4070 /* Get the parent to point to y instead of x. */
4071 if (x->parent)
4072 {
4073 if (x == x->parent->left)
4074 x->parent->left = y;
4075 else
4076 x->parent->right = y;
4077 }
4078 else
4079 mem_root = y;
4080
4081 /* Put x on y's left. */
4082 y->left = x;
4083 if (x != MEM_NIL)
4084 x->parent = y;
4085 }
4086
4087
4088 /* (x) (Y)
4089 / \ / \
4090 (y) c ===> a (x)
4091 / \ / \
4092 a b b c */
4093
4094 static void
4095 mem_rotate_right (struct mem_node *x)
4096 {
4097 struct mem_node *y = x->left;
4098
4099 x->left = y->right;
4100 if (y->right != MEM_NIL)
4101 y->right->parent = x;
4102
4103 if (y != MEM_NIL)
4104 y->parent = x->parent;
4105 if (x->parent)
4106 {
4107 if (x == x->parent->right)
4108 x->parent->right = y;
4109 else
4110 x->parent->left = y;
4111 }
4112 else
4113 mem_root = y;
4114
4115 y->right = x;
4116 if (x != MEM_NIL)
4117 x->parent = y;
4118 }
4119
4120
4121 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4122
4123 static void
4124 mem_delete (struct mem_node *z)
4125 {
4126 struct mem_node *x, *y;
4127
4128 if (!z || z == MEM_NIL)
4129 return;
4130
4131 if (z->left == MEM_NIL || z->right == MEM_NIL)
4132 y = z;
4133 else
4134 {
4135 y = z->right;
4136 while (y->left != MEM_NIL)
4137 y = y->left;
4138 }
4139
4140 if (y->left != MEM_NIL)
4141 x = y->left;
4142 else
4143 x = y->right;
4144
4145 x->parent = y->parent;
4146 if (y->parent)
4147 {
4148 if (y == y->parent->left)
4149 y->parent->left = x;
4150 else
4151 y->parent->right = x;
4152 }
4153 else
4154 mem_root = x;
4155
4156 if (y != z)
4157 {
4158 z->start = y->start;
4159 z->end = y->end;
4160 z->type = y->type;
4161 }
4162
4163 if (y->color == MEM_BLACK)
4164 mem_delete_fixup (x);
4165
4166 #ifdef GC_MALLOC_CHECK
4167 free (y);
4168 #else
4169 xfree (y);
4170 #endif
4171 }
4172
4173
4174 /* Re-establish the red-black properties of the tree, after a
4175 deletion. */
4176
4177 static void
4178 mem_delete_fixup (struct mem_node *x)
4179 {
4180 while (x != mem_root && x->color == MEM_BLACK)
4181 {
4182 if (x == x->parent->left)
4183 {
4184 struct mem_node *w = x->parent->right;
4185
4186 if (w->color == MEM_RED)
4187 {
4188 w->color = MEM_BLACK;
4189 x->parent->color = MEM_RED;
4190 mem_rotate_left (x->parent);
4191 w = x->parent->right;
4192 }
4193
4194 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4195 {
4196 w->color = MEM_RED;
4197 x = x->parent;
4198 }
4199 else
4200 {
4201 if (w->right->color == MEM_BLACK)
4202 {
4203 w->left->color = MEM_BLACK;
4204 w->color = MEM_RED;
4205 mem_rotate_right (w);
4206 w = x->parent->right;
4207 }
4208 w->color = x->parent->color;
4209 x->parent->color = MEM_BLACK;
4210 w->right->color = MEM_BLACK;
4211 mem_rotate_left (x->parent);
4212 x = mem_root;
4213 }
4214 }
4215 else
4216 {
4217 struct mem_node *w = x->parent->left;
4218
4219 if (w->color == MEM_RED)
4220 {
4221 w->color = MEM_BLACK;
4222 x->parent->color = MEM_RED;
4223 mem_rotate_right (x->parent);
4224 w = x->parent->left;
4225 }
4226
4227 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4228 {
4229 w->color = MEM_RED;
4230 x = x->parent;
4231 }
4232 else
4233 {
4234 if (w->left->color == MEM_BLACK)
4235 {
4236 w->right->color = MEM_BLACK;
4237 w->color = MEM_RED;
4238 mem_rotate_left (w);
4239 w = x->parent->left;
4240 }
4241
4242 w->color = x->parent->color;
4243 x->parent->color = MEM_BLACK;
4244 w->left->color = MEM_BLACK;
4245 mem_rotate_right (x->parent);
4246 x = mem_root;
4247 }
4248 }
4249 }
4250
4251 x->color = MEM_BLACK;
4252 }
4253
4254
4255 /* Value is non-zero if P is a pointer to a live Lisp string on
4256 the heap. M is a pointer to the mem_block for P. */
4257
4258 static bool
4259 live_string_p (struct mem_node *m, void *p)
4260 {
4261 if (m->type == MEM_TYPE_STRING)
4262 {
4263 struct string_block *b = m->start;
4264 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4265
4266 /* P must point to the start of a Lisp_String structure, and it
4267 must not be on the free-list. */
4268 return (offset >= 0
4269 && offset % sizeof b->strings[0] == 0
4270 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4271 && ((struct Lisp_String *) p)->data != NULL);
4272 }
4273 else
4274 return 0;
4275 }
4276
4277
4278 /* Value is non-zero if P is a pointer to a live Lisp cons on
4279 the heap. M is a pointer to the mem_block for P. */
4280
4281 static bool
4282 live_cons_p (struct mem_node *m, void *p)
4283 {
4284 if (m->type == MEM_TYPE_CONS)
4285 {
4286 struct cons_block *b = m->start;
4287 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4288
4289 /* P must point to the start of a Lisp_Cons, not be
4290 one of the unused cells in the current cons block,
4291 and not be on the free-list. */
4292 return (offset >= 0
4293 && offset % sizeof b->conses[0] == 0
4294 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4295 && (b != cons_block
4296 || offset / sizeof b->conses[0] < cons_block_index)
4297 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4298 }
4299 else
4300 return 0;
4301 }
4302
4303
4304 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4305 the heap. M is a pointer to the mem_block for P. */
4306
4307 static bool
4308 live_symbol_p (struct mem_node *m, void *p)
4309 {
4310 if (m->type == MEM_TYPE_SYMBOL)
4311 {
4312 struct symbol_block *b = m->start;
4313 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4314
4315 /* P must point to the start of a Lisp_Symbol, not be
4316 one of the unused cells in the current symbol block,
4317 and not be on the free-list. */
4318 return (offset >= 0
4319 && offset % sizeof b->symbols[0] == 0
4320 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4321 && (b != symbol_block
4322 || offset / sizeof b->symbols[0] < symbol_block_index)
4323 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4324 }
4325 else
4326 return 0;
4327 }
4328
4329
4330 /* Value is non-zero if P is a pointer to a live Lisp float on
4331 the heap. M is a pointer to the mem_block for P. */
4332
4333 static bool
4334 live_float_p (struct mem_node *m, void *p)
4335 {
4336 if (m->type == MEM_TYPE_FLOAT)
4337 {
4338 struct float_block *b = m->start;
4339 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4340
4341 /* P must point to the start of a Lisp_Float and not be
4342 one of the unused cells in the current float block. */
4343 return (offset >= 0
4344 && offset % sizeof b->floats[0] == 0
4345 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4346 && (b != float_block
4347 || offset / sizeof b->floats[0] < float_block_index));
4348 }
4349 else
4350 return 0;
4351 }
4352
4353
4354 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4355 the heap. M is a pointer to the mem_block for P. */
4356
4357 static bool
4358 live_misc_p (struct mem_node *m, void *p)
4359 {
4360 if (m->type == MEM_TYPE_MISC)
4361 {
4362 struct marker_block *b = m->start;
4363 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4364
4365 /* P must point to the start of a Lisp_Misc, not be
4366 one of the unused cells in the current misc block,
4367 and not be on the free-list. */
4368 return (offset >= 0
4369 && offset % sizeof b->markers[0] == 0
4370 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4371 && (b != marker_block
4372 || offset / sizeof b->markers[0] < marker_block_index)
4373 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4374 }
4375 else
4376 return 0;
4377 }
4378
4379
4380 /* Value is non-zero if P is a pointer to a live vector-like object.
4381 M is a pointer to the mem_block for P. */
4382
4383 static bool
4384 live_vector_p (struct mem_node *m, void *p)
4385 {
4386 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4387 {
4388 /* This memory node corresponds to a vector block. */
4389 struct vector_block *block = m->start;
4390 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4391
4392 /* P is in the block's allocation range. Scan the block
4393 up to P and see whether P points to the start of some
4394 vector which is not on a free list. FIXME: check whether
4395 some allocation patterns (probably a lot of short vectors)
4396 may cause a substantial overhead of this loop. */
4397 while (VECTOR_IN_BLOCK (vector, block)
4398 && vector <= (struct Lisp_Vector *) p)
4399 {
4400 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4401 return 1;
4402 else
4403 vector = ADVANCE (vector, vector_nbytes (vector));
4404 }
4405 }
4406 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4407 /* This memory node corresponds to a large vector. */
4408 return 1;
4409 return 0;
4410 }
4411
4412
4413 /* Value is non-zero if P is a pointer to a live buffer. M is a
4414 pointer to the mem_block for P. */
4415
4416 static bool
4417 live_buffer_p (struct mem_node *m, void *p)
4418 {
4419 /* P must point to the start of the block, and the buffer
4420 must not have been killed. */
4421 return (m->type == MEM_TYPE_BUFFER
4422 && p == m->start
4423 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4424 }
4425
4426 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4427
4428 #if GC_MARK_STACK
4429
4430 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4431
4432 /* Currently not used, but may be called from gdb. */
4433
4434 void dump_zombies (void) EXTERNALLY_VISIBLE;
4435
4436 /* Array of objects that are kept alive because the C stack contains
4437 a pattern that looks like a reference to them. */
4438
4439 #define MAX_ZOMBIES 10
4440 static Lisp_Object zombies[MAX_ZOMBIES];
4441
4442 /* Number of zombie objects. */
4443
4444 static EMACS_INT nzombies;
4445
4446 /* Number of garbage collections. */
4447
4448 static EMACS_INT ngcs;
4449
4450 /* Average percentage of zombies per collection. */
4451
4452 static double avg_zombies;
4453
4454 /* Max. number of live and zombie objects. */
4455
4456 static EMACS_INT max_live, max_zombies;
4457
4458 /* Average number of live objects per GC. */
4459
4460 static double avg_live;
4461
4462 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4463 doc: /* Show information about live and zombie objects. */)
4464 (void)
4465 {
4466 Lisp_Object args[8], zombie_list = Qnil;
4467 EMACS_INT i;
4468 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4469 zombie_list = Fcons (zombies[i], zombie_list);
4470 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4471 args[1] = make_number (ngcs);
4472 args[2] = make_float (avg_live);
4473 args[3] = make_float (avg_zombies);
4474 args[4] = make_float (avg_zombies / avg_live / 100);
4475 args[5] = make_number (max_live);
4476 args[6] = make_number (max_zombies);
4477 args[7] = zombie_list;
4478 return Fmessage (8, args);
4479 }
4480
4481 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4482
4483
4484 /* Mark OBJ if we can prove it's a Lisp_Object. */
4485
4486 static void
4487 mark_maybe_object (Lisp_Object obj)
4488 {
4489 void *po;
4490 struct mem_node *m;
4491
4492 #if USE_VALGRIND
4493 if (valgrind_p)
4494 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4495 #endif
4496
4497 if (INTEGERP (obj))
4498 return;
4499
4500 po = (void *) XPNTR (obj);
4501 m = mem_find (po);
4502
4503 if (m != MEM_NIL)
4504 {
4505 bool mark_p = 0;
4506
4507 switch (XTYPE (obj))
4508 {
4509 case Lisp_String:
4510 mark_p = (live_string_p (m, po)
4511 && !STRING_MARKED_P ((struct Lisp_String *) po));
4512 break;
4513
4514 case Lisp_Cons:
4515 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4516 break;
4517
4518 case Lisp_Symbol:
4519 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4520 break;
4521
4522 case Lisp_Float:
4523 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4524 break;
4525
4526 case Lisp_Vectorlike:
4527 /* Note: can't check BUFFERP before we know it's a
4528 buffer because checking that dereferences the pointer
4529 PO which might point anywhere. */
4530 if (live_vector_p (m, po))
4531 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4532 else if (live_buffer_p (m, po))
4533 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4534 break;
4535
4536 case Lisp_Misc:
4537 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4538 break;
4539
4540 default:
4541 break;
4542 }
4543
4544 if (mark_p)
4545 {
4546 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4547 if (nzombies < MAX_ZOMBIES)
4548 zombies[nzombies] = obj;
4549 ++nzombies;
4550 #endif
4551 mark_object (obj);
4552 }
4553 }
4554 }
4555
4556 /* Return true if P can point to Lisp data, and false otherwise.
4557 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4558 Otherwise, assume that Lisp data is aligned on even addresses. */
4559
4560 static bool
4561 maybe_lisp_pointer (void *p)
4562 {
4563 return !((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2));
4564 }
4565
4566 /* If P points to Lisp data, mark that as live if it isn't already
4567 marked. */
4568
4569 static void
4570 mark_maybe_pointer (void *p)
4571 {
4572 struct mem_node *m;
4573
4574 #if USE_VALGRIND
4575 if (valgrind_p)
4576 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4577 #endif
4578
4579 if (!maybe_lisp_pointer (p))
4580 return;
4581
4582 m = mem_find (p);
4583 if (m != MEM_NIL)
4584 {
4585 Lisp_Object obj = Qnil;
4586
4587 switch (m->type)
4588 {
4589 case MEM_TYPE_NON_LISP:
4590 case MEM_TYPE_SPARE:
4591 /* Nothing to do; not a pointer to Lisp memory. */
4592 break;
4593
4594 case MEM_TYPE_BUFFER:
4595 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4596 XSETVECTOR (obj, p);
4597 break;
4598
4599 case MEM_TYPE_CONS:
4600 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4601 XSETCONS (obj, p);
4602 break;
4603
4604 case MEM_TYPE_STRING:
4605 if (live_string_p (m, p)
4606 && !STRING_MARKED_P ((struct Lisp_String *) p))
4607 XSETSTRING (obj, p);
4608 break;
4609
4610 case MEM_TYPE_MISC:
4611 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4612 XSETMISC (obj, p);
4613 break;
4614
4615 case MEM_TYPE_SYMBOL:
4616 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4617 XSETSYMBOL (obj, p);
4618 break;
4619
4620 case MEM_TYPE_FLOAT:
4621 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4622 XSETFLOAT (obj, p);
4623 break;
4624
4625 case MEM_TYPE_VECTORLIKE:
4626 case MEM_TYPE_VECTOR_BLOCK:
4627 if (live_vector_p (m, p))
4628 {
4629 Lisp_Object tem;
4630 XSETVECTOR (tem, p);
4631 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4632 obj = tem;
4633 }
4634 break;
4635
4636 default:
4637 emacs_abort ();
4638 }
4639
4640 if (!NILP (obj))
4641 mark_object (obj);
4642 }
4643 }
4644
4645
4646 /* Alignment of pointer values. Use alignof, as it sometimes returns
4647 a smaller alignment than GCC's __alignof__ and mark_memory might
4648 miss objects if __alignof__ were used. */
4649 #define GC_POINTER_ALIGNMENT alignof (void *)
4650
4651 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4652 not suffice, which is the typical case. A host where a Lisp_Object is
4653 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4654 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4655 suffice to widen it to to a Lisp_Object and check it that way. */
4656 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4657 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4658 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4659 nor mark_maybe_object can follow the pointers. This should not occur on
4660 any practical porting target. */
4661 # error "MSB type bits straddle pointer-word boundaries"
4662 # endif
4663 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4664 pointer words that hold pointers ORed with type bits. */
4665 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4666 #else
4667 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4668 words that hold unmodified pointers. */
4669 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4670 #endif
4671
4672 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4673 or END+OFFSET..START. */
4674
4675 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4676 mark_memory (void *start, void *end)
4677 {
4678 void **pp;
4679 int i;
4680
4681 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4682 nzombies = 0;
4683 #endif
4684
4685 /* Make START the pointer to the start of the memory region,
4686 if it isn't already. */
4687 if (end < start)
4688 {
4689 void *tem = start;
4690 start = end;
4691 end = tem;
4692 }
4693
4694 /* Mark Lisp data pointed to. This is necessary because, in some
4695 situations, the C compiler optimizes Lisp objects away, so that
4696 only a pointer to them remains. Example:
4697
4698 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4699 ()
4700 {
4701 Lisp_Object obj = build_string ("test");
4702 struct Lisp_String *s = XSTRING (obj);
4703 Fgarbage_collect ();
4704 fprintf (stderr, "test `%s'\n", s->data);
4705 return Qnil;
4706 }
4707
4708 Here, `obj' isn't really used, and the compiler optimizes it
4709 away. The only reference to the life string is through the
4710 pointer `s'. */
4711
4712 for (pp = start; (void *) pp < end; pp++)
4713 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4714 {
4715 void *p = *(void **) ((char *) pp + i);
4716 mark_maybe_pointer (p);
4717 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4718 mark_maybe_object (XIL ((intptr_t) p));
4719 }
4720 }
4721
4722 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4723
4724 static bool setjmp_tested_p;
4725 static int longjmps_done;
4726
4727 #define SETJMP_WILL_LIKELY_WORK "\
4728 \n\
4729 Emacs garbage collector has been changed to use conservative stack\n\
4730 marking. Emacs has determined that the method it uses to do the\n\
4731 marking will likely work on your system, but this isn't sure.\n\
4732 \n\
4733 If you are a system-programmer, or can get the help of a local wizard\n\
4734 who is, please take a look at the function mark_stack in alloc.c, and\n\
4735 verify that the methods used are appropriate for your system.\n\
4736 \n\
4737 Please mail the result to <emacs-devel@gnu.org>.\n\
4738 "
4739
4740 #define SETJMP_WILL_NOT_WORK "\
4741 \n\
4742 Emacs garbage collector has been changed to use conservative stack\n\
4743 marking. Emacs has determined that the default method it uses to do the\n\
4744 marking will not work on your system. We will need a system-dependent\n\
4745 solution for your system.\n\
4746 \n\
4747 Please take a look at the function mark_stack in alloc.c, and\n\
4748 try to find a way to make it work on your system.\n\
4749 \n\
4750 Note that you may get false negatives, depending on the compiler.\n\
4751 In particular, you need to use -O with GCC for this test.\n\
4752 \n\
4753 Please mail the result to <emacs-devel@gnu.org>.\n\
4754 "
4755
4756
4757 /* Perform a quick check if it looks like setjmp saves registers in a
4758 jmp_buf. Print a message to stderr saying so. When this test
4759 succeeds, this is _not_ a proof that setjmp is sufficient for
4760 conservative stack marking. Only the sources or a disassembly
4761 can prove that. */
4762
4763 static void
4764 test_setjmp (void)
4765 {
4766 char buf[10];
4767 register int x;
4768 sys_jmp_buf jbuf;
4769
4770 /* Arrange for X to be put in a register. */
4771 sprintf (buf, "1");
4772 x = strlen (buf);
4773 x = 2 * x - 1;
4774
4775 sys_setjmp (jbuf);
4776 if (longjmps_done == 1)
4777 {
4778 /* Came here after the longjmp at the end of the function.
4779
4780 If x == 1, the longjmp has restored the register to its
4781 value before the setjmp, and we can hope that setjmp
4782 saves all such registers in the jmp_buf, although that
4783 isn't sure.
4784
4785 For other values of X, either something really strange is
4786 taking place, or the setjmp just didn't save the register. */
4787
4788 if (x == 1)
4789 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4790 else
4791 {
4792 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4793 exit (1);
4794 }
4795 }
4796
4797 ++longjmps_done;
4798 x = 2;
4799 if (longjmps_done == 1)
4800 sys_longjmp (jbuf, 1);
4801 }
4802
4803 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4804
4805
4806 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4807
4808 /* Abort if anything GCPRO'd doesn't survive the GC. */
4809
4810 static void
4811 check_gcpros (void)
4812 {
4813 struct gcpro *p;
4814 ptrdiff_t i;
4815
4816 for (p = gcprolist; p; p = p->next)
4817 for (i = 0; i < p->nvars; ++i)
4818 if (!survives_gc_p (p->var[i]))
4819 /* FIXME: It's not necessarily a bug. It might just be that the
4820 GCPRO is unnecessary or should release the object sooner. */
4821 emacs_abort ();
4822 }
4823
4824 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4825
4826 void
4827 dump_zombies (void)
4828 {
4829 int i;
4830
4831 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4832 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4833 {
4834 fprintf (stderr, " %d = ", i);
4835 debug_print (zombies[i]);
4836 }
4837 }
4838
4839 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4840
4841
4842 /* Mark live Lisp objects on the C stack.
4843
4844 There are several system-dependent problems to consider when
4845 porting this to new architectures:
4846
4847 Processor Registers
4848
4849 We have to mark Lisp objects in CPU registers that can hold local
4850 variables or are used to pass parameters.
4851
4852 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4853 something that either saves relevant registers on the stack, or
4854 calls mark_maybe_object passing it each register's contents.
4855
4856 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4857 implementation assumes that calling setjmp saves registers we need
4858 to see in a jmp_buf which itself lies on the stack. This doesn't
4859 have to be true! It must be verified for each system, possibly
4860 by taking a look at the source code of setjmp.
4861
4862 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4863 can use it as a machine independent method to store all registers
4864 to the stack. In this case the macros described in the previous
4865 two paragraphs are not used.
4866
4867 Stack Layout
4868
4869 Architectures differ in the way their processor stack is organized.
4870 For example, the stack might look like this
4871
4872 +----------------+
4873 | Lisp_Object | size = 4
4874 +----------------+
4875 | something else | size = 2
4876 +----------------+
4877 | Lisp_Object | size = 4
4878 +----------------+
4879 | ... |
4880
4881 In such a case, not every Lisp_Object will be aligned equally. To
4882 find all Lisp_Object on the stack it won't be sufficient to walk
4883 the stack in steps of 4 bytes. Instead, two passes will be
4884 necessary, one starting at the start of the stack, and a second
4885 pass starting at the start of the stack + 2. Likewise, if the
4886 minimal alignment of Lisp_Objects on the stack is 1, four passes
4887 would be necessary, each one starting with one byte more offset
4888 from the stack start. */
4889
4890 static void
4891 mark_stack (void *end)
4892 {
4893
4894 /* This assumes that the stack is a contiguous region in memory. If
4895 that's not the case, something has to be done here to iterate
4896 over the stack segments. */
4897 mark_memory (stack_base, end);
4898
4899 /* Allow for marking a secondary stack, like the register stack on the
4900 ia64. */
4901 #ifdef GC_MARK_SECONDARY_STACK
4902 GC_MARK_SECONDARY_STACK ();
4903 #endif
4904
4905 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4906 check_gcpros ();
4907 #endif
4908 }
4909
4910 #else /* GC_MARK_STACK == 0 */
4911
4912 #define mark_maybe_object(obj) emacs_abort ()
4913
4914 #endif /* GC_MARK_STACK != 0 */
4915
4916 static bool
4917 c_symbol_p (struct Lisp_Symbol *sym)
4918 {
4919 char *lispsym_ptr = (char *) lispsym;
4920 char *sym_ptr = (char *) sym;
4921 ptrdiff_t lispsym_offset = sym_ptr - lispsym_ptr;
4922 return 0 <= lispsym_offset && lispsym_offset < sizeof lispsym;
4923 }
4924
4925 /* Determine whether it is safe to access memory at address P. */
4926 static int
4927 valid_pointer_p (void *p)
4928 {
4929 #ifdef WINDOWSNT
4930 return w32_valid_pointer_p (p, 16);
4931 #else
4932
4933 if (ADDRESS_SANITIZER)
4934 return p ? -1 : 0;
4935
4936 int fd[2];
4937
4938 /* Obviously, we cannot just access it (we would SEGV trying), so we
4939 trick the o/s to tell us whether p is a valid pointer.
4940 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4941 not validate p in that case. */
4942
4943 if (emacs_pipe (fd) == 0)
4944 {
4945 bool valid = emacs_write (fd[1], p, 16) == 16;
4946 emacs_close (fd[1]);
4947 emacs_close (fd[0]);
4948 return valid;
4949 }
4950
4951 return -1;
4952 #endif
4953 }
4954
4955 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4956 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4957 cannot validate OBJ. This function can be quite slow, so its primary
4958 use is the manual debugging. The only exception is print_object, where
4959 we use it to check whether the memory referenced by the pointer of
4960 Lisp_Save_Value object contains valid objects. */
4961
4962 int
4963 valid_lisp_object_p (Lisp_Object obj)
4964 {
4965 void *p;
4966 #if GC_MARK_STACK
4967 struct mem_node *m;
4968 #endif
4969
4970 if (INTEGERP (obj))
4971 return 1;
4972
4973 p = (void *) XPNTR (obj);
4974 if (PURE_POINTER_P (p))
4975 return 1;
4976
4977 if (SYMBOLP (obj) && c_symbol_p (p))
4978 return ((char *) p - (char *) lispsym) % sizeof lispsym[0] == 0;
4979
4980 if (p == &buffer_defaults || p == &buffer_local_symbols)
4981 return 2;
4982
4983 #if !GC_MARK_STACK
4984 return valid_pointer_p (p);
4985 #else
4986
4987 m = mem_find (p);
4988
4989 if (m == MEM_NIL)
4990 {
4991 int valid = valid_pointer_p (p);
4992 if (valid <= 0)
4993 return valid;
4994
4995 if (SUBRP (obj))
4996 return 1;
4997
4998 return 0;
4999 }
5000
5001 switch (m->type)
5002 {
5003 case MEM_TYPE_NON_LISP:
5004 case MEM_TYPE_SPARE:
5005 return 0;
5006
5007 case MEM_TYPE_BUFFER:
5008 return live_buffer_p (m, p) ? 1 : 2;
5009
5010 case MEM_TYPE_CONS:
5011 return live_cons_p (m, p);
5012
5013 case MEM_TYPE_STRING:
5014 return live_string_p (m, p);
5015
5016 case MEM_TYPE_MISC:
5017 return live_misc_p (m, p);
5018
5019 case MEM_TYPE_SYMBOL:
5020 return live_symbol_p (m, p);
5021
5022 case MEM_TYPE_FLOAT:
5023 return live_float_p (m, p);
5024
5025 case MEM_TYPE_VECTORLIKE:
5026 case MEM_TYPE_VECTOR_BLOCK:
5027 return live_vector_p (m, p);
5028
5029 default:
5030 break;
5031 }
5032
5033 return 0;
5034 #endif
5035 }
5036
5037 /* If GC_MARK_STACK, return 1 if STR is a relocatable data of Lisp_String
5038 (i.e. there is a non-pure Lisp_Object X so that SDATA (X) == STR) and 0
5039 if not. Otherwise we can't rely on valid_lisp_object_p and return -1.
5040 This function is slow and should be used for debugging purposes. */
5041
5042 int
5043 relocatable_string_data_p (const char *str)
5044 {
5045 if (PURE_POINTER_P (str))
5046 return 0;
5047 #if GC_MARK_STACK
5048 if (str)
5049 {
5050 struct sdata *sdata
5051 = (struct sdata *) (str - offsetof (struct sdata, data));
5052
5053 if (0 < valid_pointer_p (sdata)
5054 && 0 < valid_pointer_p (sdata->string)
5055 && maybe_lisp_pointer (sdata->string))
5056 return (valid_lisp_object_p
5057 (make_lisp_ptr (sdata->string, Lisp_String))
5058 && (const char *) sdata->string->data == str);
5059 }
5060 return 0;
5061 #endif /* GC_MARK_STACK */
5062 return -1;
5063 }
5064
5065 /***********************************************************************
5066 Pure Storage Management
5067 ***********************************************************************/
5068
5069 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5070 pointer to it. TYPE is the Lisp type for which the memory is
5071 allocated. TYPE < 0 means it's not used for a Lisp object. */
5072
5073 static void *
5074 pure_alloc (size_t size, int type)
5075 {
5076 void *result;
5077 #if USE_LSB_TAG
5078 size_t alignment = GCALIGNMENT;
5079 #else
5080 size_t alignment = alignof (EMACS_INT);
5081
5082 /* Give Lisp_Floats an extra alignment. */
5083 if (type == Lisp_Float)
5084 alignment = alignof (struct Lisp_Float);
5085 #endif
5086
5087 again:
5088 if (type >= 0)
5089 {
5090 /* Allocate space for a Lisp object from the beginning of the free
5091 space with taking account of alignment. */
5092 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5093 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5094 }
5095 else
5096 {
5097 /* Allocate space for a non-Lisp object from the end of the free
5098 space. */
5099 pure_bytes_used_non_lisp += size;
5100 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5101 }
5102 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5103
5104 if (pure_bytes_used <= pure_size)
5105 return result;
5106
5107 /* Don't allocate a large amount here,
5108 because it might get mmap'd and then its address
5109 might not be usable. */
5110 purebeg = xmalloc (10000);
5111 pure_size = 10000;
5112 pure_bytes_used_before_overflow += pure_bytes_used - size;
5113 pure_bytes_used = 0;
5114 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5115 goto again;
5116 }
5117
5118
5119 /* Print a warning if PURESIZE is too small. */
5120
5121 void
5122 check_pure_size (void)
5123 {
5124 if (pure_bytes_used_before_overflow)
5125 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5126 " bytes needed)"),
5127 pure_bytes_used + pure_bytes_used_before_overflow);
5128 }
5129
5130
5131 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5132 the non-Lisp data pool of the pure storage, and return its start
5133 address. Return NULL if not found. */
5134
5135 static char *
5136 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5137 {
5138 int i;
5139 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5140 const unsigned char *p;
5141 char *non_lisp_beg;
5142
5143 if (pure_bytes_used_non_lisp <= nbytes)
5144 return NULL;
5145
5146 /* Set up the Boyer-Moore table. */
5147 skip = nbytes + 1;
5148 for (i = 0; i < 256; i++)
5149 bm_skip[i] = skip;
5150
5151 p = (const unsigned char *) data;
5152 while (--skip > 0)
5153 bm_skip[*p++] = skip;
5154
5155 last_char_skip = bm_skip['\0'];
5156
5157 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5158 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5159
5160 /* See the comments in the function `boyer_moore' (search.c) for the
5161 use of `infinity'. */
5162 infinity = pure_bytes_used_non_lisp + 1;
5163 bm_skip['\0'] = infinity;
5164
5165 p = (const unsigned char *) non_lisp_beg + nbytes;
5166 start = 0;
5167 do
5168 {
5169 /* Check the last character (== '\0'). */
5170 do
5171 {
5172 start += bm_skip[*(p + start)];
5173 }
5174 while (start <= start_max);
5175
5176 if (start < infinity)
5177 /* Couldn't find the last character. */
5178 return NULL;
5179
5180 /* No less than `infinity' means we could find the last
5181 character at `p[start - infinity]'. */
5182 start -= infinity;
5183
5184 /* Check the remaining characters. */
5185 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5186 /* Found. */
5187 return non_lisp_beg + start;
5188
5189 start += last_char_skip;
5190 }
5191 while (start <= start_max);
5192
5193 return NULL;
5194 }
5195
5196
5197 /* Return a string allocated in pure space. DATA is a buffer holding
5198 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5199 means make the result string multibyte.
5200
5201 Must get an error if pure storage is full, since if it cannot hold
5202 a large string it may be able to hold conses that point to that
5203 string; then the string is not protected from gc. */
5204
5205 Lisp_Object
5206 make_pure_string (const char *data,
5207 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5208 {
5209 Lisp_Object string;
5210 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5211 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5212 if (s->data == NULL)
5213 {
5214 s->data = pure_alloc (nbytes + 1, -1);
5215 memcpy (s->data, data, nbytes);
5216 s->data[nbytes] = '\0';
5217 }
5218 s->size = nchars;
5219 s->size_byte = multibyte ? nbytes : -1;
5220 s->intervals = NULL;
5221 XSETSTRING (string, s);
5222 return string;
5223 }
5224
5225 /* Return a string allocated in pure space. Do not
5226 allocate the string data, just point to DATA. */
5227
5228 Lisp_Object
5229 make_pure_c_string (const char *data, ptrdiff_t nchars)
5230 {
5231 Lisp_Object string;
5232 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5233 s->size = nchars;
5234 s->size_byte = -1;
5235 s->data = (unsigned char *) data;
5236 s->intervals = NULL;
5237 XSETSTRING (string, s);
5238 return string;
5239 }
5240
5241 static Lisp_Object purecopy (Lisp_Object obj);
5242
5243 /* Return a cons allocated from pure space. Give it pure copies
5244 of CAR as car and CDR as cdr. */
5245
5246 Lisp_Object
5247 pure_cons (Lisp_Object car, Lisp_Object cdr)
5248 {
5249 Lisp_Object new;
5250 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5251 XSETCONS (new, p);
5252 XSETCAR (new, purecopy (car));
5253 XSETCDR (new, purecopy (cdr));
5254 return new;
5255 }
5256
5257
5258 /* Value is a float object with value NUM allocated from pure space. */
5259
5260 static Lisp_Object
5261 make_pure_float (double num)
5262 {
5263 Lisp_Object new;
5264 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5265 XSETFLOAT (new, p);
5266 XFLOAT_INIT (new, num);
5267 return new;
5268 }
5269
5270
5271 /* Return a vector with room for LEN Lisp_Objects allocated from
5272 pure space. */
5273
5274 static Lisp_Object
5275 make_pure_vector (ptrdiff_t len)
5276 {
5277 Lisp_Object new;
5278 size_t size = header_size + len * word_size;
5279 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5280 XSETVECTOR (new, p);
5281 XVECTOR (new)->header.size = len;
5282 return new;
5283 }
5284
5285
5286 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5287 doc: /* Make a copy of object OBJ in pure storage.
5288 Recursively copies contents of vectors and cons cells.
5289 Does not copy symbols. Copies strings without text properties. */)
5290 (register Lisp_Object obj)
5291 {
5292 if (NILP (Vpurify_flag))
5293 return obj;
5294 else if (MARKERP (obj) || OVERLAYP (obj)
5295 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5296 /* Can't purify those. */
5297 return obj;
5298 else
5299 return purecopy (obj);
5300 }
5301
5302 static Lisp_Object
5303 purecopy (Lisp_Object obj)
5304 {
5305 if (PURE_POINTER_P (XPNTR (obj)) || INTEGERP (obj) || SUBRP (obj))
5306 return obj; /* Already pure. */
5307
5308 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5309 {
5310 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5311 if (!NILP (tmp))
5312 return tmp;
5313 }
5314
5315 if (CONSP (obj))
5316 obj = pure_cons (XCAR (obj), XCDR (obj));
5317 else if (FLOATP (obj))
5318 obj = make_pure_float (XFLOAT_DATA (obj));
5319 else if (STRINGP (obj))
5320 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5321 SBYTES (obj),
5322 STRING_MULTIBYTE (obj));
5323 else if (COMPILEDP (obj) || VECTORP (obj))
5324 {
5325 register struct Lisp_Vector *vec;
5326 register ptrdiff_t i;
5327 ptrdiff_t size;
5328
5329 size = ASIZE (obj);
5330 if (size & PSEUDOVECTOR_FLAG)
5331 size &= PSEUDOVECTOR_SIZE_MASK;
5332 vec = XVECTOR (make_pure_vector (size));
5333 for (i = 0; i < size; i++)
5334 vec->contents[i] = purecopy (AREF (obj, i));
5335 if (COMPILEDP (obj))
5336 {
5337 XSETPVECTYPE (vec, PVEC_COMPILED);
5338 XSETCOMPILED (obj, vec);
5339 }
5340 else
5341 XSETVECTOR (obj, vec);
5342 }
5343 else if (SYMBOLP (obj))
5344 {
5345 if (!XSYMBOL (obj)->pinned && !c_symbol_p (XSYMBOL (obj)))
5346 { /* We can't purify them, but they appear in many pure objects.
5347 Mark them as `pinned' so we know to mark them at every GC cycle. */
5348 XSYMBOL (obj)->pinned = true;
5349 symbol_block_pinned = symbol_block;
5350 }
5351 return obj;
5352 }
5353 else
5354 {
5355 Lisp_Object args[2];
5356 args[0] = build_pure_c_string ("Don't know how to purify: %S");
5357 args[1] = obj;
5358 Fsignal (Qerror, (Fcons (Fformat (2, args), Qnil)));
5359 }
5360
5361 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5362 Fputhash (obj, obj, Vpurify_flag);
5363
5364 return obj;
5365 }
5366
5367
5368 \f
5369 /***********************************************************************
5370 Protection from GC
5371 ***********************************************************************/
5372
5373 /* Put an entry in staticvec, pointing at the variable with address
5374 VARADDRESS. */
5375
5376 void
5377 staticpro (Lisp_Object *varaddress)
5378 {
5379 if (staticidx >= NSTATICS)
5380 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5381 staticvec[staticidx++] = varaddress;
5382 }
5383
5384 \f
5385 /***********************************************************************
5386 Protection from GC
5387 ***********************************************************************/
5388
5389 /* Temporarily prevent garbage collection. */
5390
5391 ptrdiff_t
5392 inhibit_garbage_collection (void)
5393 {
5394 ptrdiff_t count = SPECPDL_INDEX ();
5395
5396 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5397 return count;
5398 }
5399
5400 /* Used to avoid possible overflows when
5401 converting from C to Lisp integers. */
5402
5403 static Lisp_Object
5404 bounded_number (EMACS_INT number)
5405 {
5406 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5407 }
5408
5409 /* Calculate total bytes of live objects. */
5410
5411 static size_t
5412 total_bytes_of_live_objects (void)
5413 {
5414 size_t tot = 0;
5415 tot += total_conses * sizeof (struct Lisp_Cons);
5416 tot += total_symbols * sizeof (struct Lisp_Symbol);
5417 tot += total_markers * sizeof (union Lisp_Misc);
5418 tot += total_string_bytes;
5419 tot += total_vector_slots * word_size;
5420 tot += total_floats * sizeof (struct Lisp_Float);
5421 tot += total_intervals * sizeof (struct interval);
5422 tot += total_strings * sizeof (struct Lisp_String);
5423 return tot;
5424 }
5425
5426 #ifdef HAVE_WINDOW_SYSTEM
5427
5428 /* This code has a few issues on MS-Windows, see Bug#15876 and Bug#16140. */
5429
5430 #if !defined (HAVE_NTGUI)
5431
5432 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5433 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5434
5435 static Lisp_Object
5436 compact_font_cache_entry (Lisp_Object entry)
5437 {
5438 Lisp_Object tail, *prev = &entry;
5439
5440 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5441 {
5442 bool drop = 0;
5443 Lisp_Object obj = XCAR (tail);
5444
5445 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5446 if (CONSP (obj) && FONT_SPEC_P (XCAR (obj))
5447 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj)))
5448 && VECTORP (XCDR (obj)))
5449 {
5450 ptrdiff_t i, size = ASIZE (XCDR (obj)) & ~ARRAY_MARK_FLAG;
5451
5452 /* If font-spec is not marked, most likely all font-entities
5453 are not marked too. But we must be sure that nothing is
5454 marked within OBJ before we really drop it. */
5455 for (i = 0; i < size; i++)
5456 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj), i))))
5457 break;
5458
5459 if (i == size)
5460 drop = 1;
5461 }
5462 if (drop)
5463 *prev = XCDR (tail);
5464 else
5465 prev = xcdr_addr (tail);
5466 }
5467 return entry;
5468 }
5469
5470 #endif /* not HAVE_NTGUI */
5471
5472 /* Compact font caches on all terminals and mark
5473 everything which is still here after compaction. */
5474
5475 static void
5476 compact_font_caches (void)
5477 {
5478 struct terminal *t;
5479
5480 for (t = terminal_list; t; t = t->next_terminal)
5481 {
5482 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5483 #if !defined (HAVE_NTGUI)
5484 if (CONSP (cache))
5485 {
5486 Lisp_Object entry;
5487
5488 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5489 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5490 }
5491 #endif /* not HAVE_NTGUI */
5492 mark_object (cache);
5493 }
5494 }
5495
5496 #else /* not HAVE_WINDOW_SYSTEM */
5497
5498 #define compact_font_caches() (void)(0)
5499
5500 #endif /* HAVE_WINDOW_SYSTEM */
5501
5502 /* Remove (MARKER . DATA) entries with unmarked MARKER
5503 from buffer undo LIST and return changed list. */
5504
5505 static Lisp_Object
5506 compact_undo_list (Lisp_Object list)
5507 {
5508 Lisp_Object tail, *prev = &list;
5509
5510 for (tail = list; CONSP (tail); tail = XCDR (tail))
5511 {
5512 if (CONSP (XCAR (tail))
5513 && MARKERP (XCAR (XCAR (tail)))
5514 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5515 *prev = XCDR (tail);
5516 else
5517 prev = xcdr_addr (tail);
5518 }
5519 return list;
5520 }
5521
5522 static void
5523 mark_pinned_symbols (void)
5524 {
5525 struct symbol_block *sblk;
5526 int lim = (symbol_block_pinned == symbol_block
5527 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5528
5529 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5530 {
5531 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5532 for (; sym < end; ++sym)
5533 if (sym->s.pinned)
5534 mark_object (make_lisp_symbol (&sym->s));
5535
5536 lim = SYMBOL_BLOCK_SIZE;
5537 }
5538 }
5539
5540 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5541 separate function so that we could limit mark_stack in searching
5542 the stack frames below this function, thus avoiding the rare cases
5543 where mark_stack finds values that look like live Lisp objects on
5544 portions of stack that couldn't possibly contain such live objects.
5545 For more details of this, see the discussion at
5546 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5547 static Lisp_Object
5548 garbage_collect_1 (void *end)
5549 {
5550 struct buffer *nextb;
5551 char stack_top_variable;
5552 ptrdiff_t i;
5553 bool message_p;
5554 ptrdiff_t count = SPECPDL_INDEX ();
5555 struct timespec start;
5556 Lisp_Object retval = Qnil;
5557 size_t tot_before = 0;
5558
5559 if (abort_on_gc)
5560 emacs_abort ();
5561
5562 /* Can't GC if pure storage overflowed because we can't determine
5563 if something is a pure object or not. */
5564 if (pure_bytes_used_before_overflow)
5565 return Qnil;
5566
5567 /* Record this function, so it appears on the profiler's backtraces. */
5568 record_in_backtrace (Qautomatic_gc, 0, 0);
5569
5570 check_cons_list ();
5571
5572 /* Don't keep undo information around forever.
5573 Do this early on, so it is no problem if the user quits. */
5574 FOR_EACH_BUFFER (nextb)
5575 compact_buffer (nextb);
5576
5577 if (profiler_memory_running)
5578 tot_before = total_bytes_of_live_objects ();
5579
5580 start = current_timespec ();
5581
5582 /* In case user calls debug_print during GC,
5583 don't let that cause a recursive GC. */
5584 consing_since_gc = 0;
5585
5586 /* Save what's currently displayed in the echo area. */
5587 message_p = push_message ();
5588 record_unwind_protect_void (pop_message_unwind);
5589
5590 /* Save a copy of the contents of the stack, for debugging. */
5591 #if MAX_SAVE_STACK > 0
5592 if (NILP (Vpurify_flag))
5593 {
5594 char *stack;
5595 ptrdiff_t stack_size;
5596 if (&stack_top_variable < stack_bottom)
5597 {
5598 stack = &stack_top_variable;
5599 stack_size = stack_bottom - &stack_top_variable;
5600 }
5601 else
5602 {
5603 stack = stack_bottom;
5604 stack_size = &stack_top_variable - stack_bottom;
5605 }
5606 if (stack_size <= MAX_SAVE_STACK)
5607 {
5608 if (stack_copy_size < stack_size)
5609 {
5610 stack_copy = xrealloc (stack_copy, stack_size);
5611 stack_copy_size = stack_size;
5612 }
5613 no_sanitize_memcpy (stack_copy, stack, stack_size);
5614 }
5615 }
5616 #endif /* MAX_SAVE_STACK > 0 */
5617
5618 if (garbage_collection_messages)
5619 message1_nolog ("Garbage collecting...");
5620
5621 block_input ();
5622
5623 shrink_regexp_cache ();
5624
5625 gc_in_progress = 1;
5626
5627 /* Mark all the special slots that serve as the roots of accessibility. */
5628
5629 mark_buffer (&buffer_defaults);
5630 mark_buffer (&buffer_local_symbols);
5631
5632 for (i = 0; i < ARRAYELTS (lispsym); i++)
5633 mark_object (make_lisp_symbol (&lispsym[i]));
5634
5635 for (i = 0; i < staticidx; i++)
5636 mark_object (*staticvec[i]);
5637
5638 mark_pinned_symbols ();
5639 mark_specpdl ();
5640 mark_terminals ();
5641 mark_kboards ();
5642
5643 #ifdef USE_GTK
5644 xg_mark_data ();
5645 #endif
5646
5647 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5648 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5649 mark_stack (end);
5650 #else
5651 {
5652 register struct gcpro *tail;
5653 for (tail = gcprolist; tail; tail = tail->next)
5654 for (i = 0; i < tail->nvars; i++)
5655 mark_object (tail->var[i]);
5656 }
5657 mark_byte_stack ();
5658 #endif
5659 {
5660 struct handler *handler;
5661 for (handler = handlerlist; handler; handler = handler->next)
5662 {
5663 mark_object (handler->tag_or_ch);
5664 mark_object (handler->val);
5665 }
5666 }
5667 #ifdef HAVE_WINDOW_SYSTEM
5668 mark_fringe_data ();
5669 #endif
5670
5671 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5672 mark_stack (end);
5673 #endif
5674
5675 /* Everything is now marked, except for the data in font caches
5676 and undo lists. They're compacted by removing an items which
5677 aren't reachable otherwise. */
5678
5679 compact_font_caches ();
5680
5681 FOR_EACH_BUFFER (nextb)
5682 {
5683 if (!EQ (BVAR (nextb, undo_list), Qt))
5684 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5685 /* Now that we have stripped the elements that need not be
5686 in the undo_list any more, we can finally mark the list. */
5687 mark_object (BVAR (nextb, undo_list));
5688 }
5689
5690 gc_sweep ();
5691
5692 /* Clear the mark bits that we set in certain root slots. */
5693
5694 unmark_byte_stack ();
5695 VECTOR_UNMARK (&buffer_defaults);
5696 VECTOR_UNMARK (&buffer_local_symbols);
5697
5698 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5699 dump_zombies ();
5700 #endif
5701
5702 check_cons_list ();
5703
5704 gc_in_progress = 0;
5705
5706 unblock_input ();
5707
5708 consing_since_gc = 0;
5709 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5710 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5711
5712 gc_relative_threshold = 0;
5713 if (FLOATP (Vgc_cons_percentage))
5714 { /* Set gc_cons_combined_threshold. */
5715 double tot = total_bytes_of_live_objects ();
5716
5717 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5718 if (0 < tot)
5719 {
5720 if (tot < TYPE_MAXIMUM (EMACS_INT))
5721 gc_relative_threshold = tot;
5722 else
5723 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5724 }
5725 }
5726
5727 if (garbage_collection_messages)
5728 {
5729 if (message_p || minibuf_level > 0)
5730 restore_message ();
5731 else
5732 message1_nolog ("Garbage collecting...done");
5733 }
5734
5735 unbind_to (count, Qnil);
5736 {
5737 Lisp_Object total[11];
5738 int total_size = 10;
5739
5740 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5741 bounded_number (total_conses),
5742 bounded_number (total_free_conses));
5743
5744 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5745 bounded_number (total_symbols),
5746 bounded_number (total_free_symbols));
5747
5748 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5749 bounded_number (total_markers),
5750 bounded_number (total_free_markers));
5751
5752 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5753 bounded_number (total_strings),
5754 bounded_number (total_free_strings));
5755
5756 total[4] = list3 (Qstring_bytes, make_number (1),
5757 bounded_number (total_string_bytes));
5758
5759 total[5] = list3 (Qvectors,
5760 make_number (header_size + sizeof (Lisp_Object)),
5761 bounded_number (total_vectors));
5762
5763 total[6] = list4 (Qvector_slots, make_number (word_size),
5764 bounded_number (total_vector_slots),
5765 bounded_number (total_free_vector_slots));
5766
5767 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5768 bounded_number (total_floats),
5769 bounded_number (total_free_floats));
5770
5771 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5772 bounded_number (total_intervals),
5773 bounded_number (total_free_intervals));
5774
5775 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5776 bounded_number (total_buffers));
5777
5778 #ifdef DOUG_LEA_MALLOC
5779 total_size++;
5780 total[10] = list4 (Qheap, make_number (1024),
5781 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5782 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5783 #endif
5784 retval = Flist (total_size, total);
5785 }
5786
5787 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5788 {
5789 /* Compute average percentage of zombies. */
5790 double nlive
5791 = (total_conses + total_symbols + total_markers + total_strings
5792 + total_vectors + total_floats + total_intervals + total_buffers);
5793
5794 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5795 max_live = max (nlive, max_live);
5796 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5797 max_zombies = max (nzombies, max_zombies);
5798 ++ngcs;
5799 }
5800 #endif
5801
5802 if (!NILP (Vpost_gc_hook))
5803 {
5804 ptrdiff_t gc_count = inhibit_garbage_collection ();
5805 safe_run_hooks (Qpost_gc_hook);
5806 unbind_to (gc_count, Qnil);
5807 }
5808
5809 /* Accumulate statistics. */
5810 if (FLOATP (Vgc_elapsed))
5811 {
5812 struct timespec since_start = timespec_sub (current_timespec (), start);
5813 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5814 + timespectod (since_start));
5815 }
5816
5817 gcs_done++;
5818
5819 /* Collect profiling data. */
5820 if (profiler_memory_running)
5821 {
5822 size_t swept = 0;
5823 size_t tot_after = total_bytes_of_live_objects ();
5824 if (tot_before > tot_after)
5825 swept = tot_before - tot_after;
5826 malloc_probe (swept);
5827 }
5828
5829 return retval;
5830 }
5831
5832 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5833 doc: /* Reclaim storage for Lisp objects no longer needed.
5834 Garbage collection happens automatically if you cons more than
5835 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5836 `garbage-collect' normally returns a list with info on amount of space in use,
5837 where each entry has the form (NAME SIZE USED FREE), where:
5838 - NAME is a symbol describing the kind of objects this entry represents,
5839 - SIZE is the number of bytes used by each one,
5840 - USED is the number of those objects that were found live in the heap,
5841 - FREE is the number of those objects that are not live but that Emacs
5842 keeps around for future allocations (maybe because it does not know how
5843 to return them to the OS).
5844 However, if there was overflow in pure space, `garbage-collect'
5845 returns nil, because real GC can't be done.
5846 See Info node `(elisp)Garbage Collection'. */)
5847 (void)
5848 {
5849 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5850 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS \
5851 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
5852 void *end;
5853
5854 #ifdef HAVE___BUILTIN_UNWIND_INIT
5855 /* Force callee-saved registers and register windows onto the stack.
5856 This is the preferred method if available, obviating the need for
5857 machine dependent methods. */
5858 __builtin_unwind_init ();
5859 end = &end;
5860 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5861 #ifndef GC_SAVE_REGISTERS_ON_STACK
5862 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5863 union aligned_jmpbuf {
5864 Lisp_Object o;
5865 sys_jmp_buf j;
5866 } j;
5867 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
5868 #endif
5869 /* This trick flushes the register windows so that all the state of
5870 the process is contained in the stack. */
5871 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5872 needed on ia64 too. See mach_dep.c, where it also says inline
5873 assembler doesn't work with relevant proprietary compilers. */
5874 #ifdef __sparc__
5875 #if defined (__sparc64__) && defined (__FreeBSD__)
5876 /* FreeBSD does not have a ta 3 handler. */
5877 asm ("flushw");
5878 #else
5879 asm ("ta 3");
5880 #endif
5881 #endif
5882
5883 /* Save registers that we need to see on the stack. We need to see
5884 registers used to hold register variables and registers used to
5885 pass parameters. */
5886 #ifdef GC_SAVE_REGISTERS_ON_STACK
5887 GC_SAVE_REGISTERS_ON_STACK (end);
5888 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5889
5890 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5891 setjmp will definitely work, test it
5892 and print a message with the result
5893 of the test. */
5894 if (!setjmp_tested_p)
5895 {
5896 setjmp_tested_p = 1;
5897 test_setjmp ();
5898 }
5899 #endif /* GC_SETJMP_WORKS */
5900
5901 sys_setjmp (j.j);
5902 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
5903 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5904 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5905 return garbage_collect_1 (end);
5906 #elif (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE)
5907 /* Old GCPROs-based method without stack marking. */
5908 return garbage_collect_1 (NULL);
5909 #else
5910 emacs_abort ();
5911 #endif /* GC_MARK_STACK */
5912 }
5913
5914 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5915 only interesting objects referenced from glyphs are strings. */
5916
5917 static void
5918 mark_glyph_matrix (struct glyph_matrix *matrix)
5919 {
5920 struct glyph_row *row = matrix->rows;
5921 struct glyph_row *end = row + matrix->nrows;
5922
5923 for (; row < end; ++row)
5924 if (row->enabled_p)
5925 {
5926 int area;
5927 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5928 {
5929 struct glyph *glyph = row->glyphs[area];
5930 struct glyph *end_glyph = glyph + row->used[area];
5931
5932 for (; glyph < end_glyph; ++glyph)
5933 if (STRINGP (glyph->object)
5934 && !STRING_MARKED_P (XSTRING (glyph->object)))
5935 mark_object (glyph->object);
5936 }
5937 }
5938 }
5939
5940 /* Mark reference to a Lisp_Object.
5941 If the object referred to has not been seen yet, recursively mark
5942 all the references contained in it. */
5943
5944 #define LAST_MARKED_SIZE 500
5945 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5946 static int last_marked_index;
5947
5948 /* For debugging--call abort when we cdr down this many
5949 links of a list, in mark_object. In debugging,
5950 the call to abort will hit a breakpoint.
5951 Normally this is zero and the check never goes off. */
5952 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5953
5954 static void
5955 mark_vectorlike (struct Lisp_Vector *ptr)
5956 {
5957 ptrdiff_t size = ptr->header.size;
5958 ptrdiff_t i;
5959
5960 eassert (!VECTOR_MARKED_P (ptr));
5961 VECTOR_MARK (ptr); /* Else mark it. */
5962 if (size & PSEUDOVECTOR_FLAG)
5963 size &= PSEUDOVECTOR_SIZE_MASK;
5964
5965 /* Note that this size is not the memory-footprint size, but only
5966 the number of Lisp_Object fields that we should trace.
5967 The distinction is used e.g. by Lisp_Process which places extra
5968 non-Lisp_Object fields at the end of the structure... */
5969 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5970 mark_object (ptr->contents[i]);
5971 }
5972
5973 /* Like mark_vectorlike but optimized for char-tables (and
5974 sub-char-tables) assuming that the contents are mostly integers or
5975 symbols. */
5976
5977 static void
5978 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
5979 {
5980 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5981 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
5982 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
5983
5984 eassert (!VECTOR_MARKED_P (ptr));
5985 VECTOR_MARK (ptr);
5986 for (i = idx; i < size; i++)
5987 {
5988 Lisp_Object val = ptr->contents[i];
5989
5990 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5991 continue;
5992 if (SUB_CHAR_TABLE_P (val))
5993 {
5994 if (! VECTOR_MARKED_P (XVECTOR (val)))
5995 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
5996 }
5997 else
5998 mark_object (val);
5999 }
6000 }
6001
6002 NO_INLINE /* To reduce stack depth in mark_object. */
6003 static Lisp_Object
6004 mark_compiled (struct Lisp_Vector *ptr)
6005 {
6006 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6007
6008 VECTOR_MARK (ptr);
6009 for (i = 0; i < size; i++)
6010 if (i != COMPILED_CONSTANTS)
6011 mark_object (ptr->contents[i]);
6012 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
6013 }
6014
6015 /* Mark the chain of overlays starting at PTR. */
6016
6017 static void
6018 mark_overlay (struct Lisp_Overlay *ptr)
6019 {
6020 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
6021 {
6022 ptr->gcmarkbit = 1;
6023 /* These two are always markers and can be marked fast. */
6024 XMARKER (ptr->start)->gcmarkbit = 1;
6025 XMARKER (ptr->end)->gcmarkbit = 1;
6026 mark_object (ptr->plist);
6027 }
6028 }
6029
6030 /* Mark Lisp_Objects and special pointers in BUFFER. */
6031
6032 static void
6033 mark_buffer (struct buffer *buffer)
6034 {
6035 /* This is handled much like other pseudovectors... */
6036 mark_vectorlike ((struct Lisp_Vector *) buffer);
6037
6038 /* ...but there are some buffer-specific things. */
6039
6040 MARK_INTERVAL_TREE (buffer_intervals (buffer));
6041
6042 /* For now, we just don't mark the undo_list. It's done later in
6043 a special way just before the sweep phase, and after stripping
6044 some of its elements that are not needed any more. */
6045
6046 mark_overlay (buffer->overlays_before);
6047 mark_overlay (buffer->overlays_after);
6048
6049 /* If this is an indirect buffer, mark its base buffer. */
6050 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6051 mark_buffer (buffer->base_buffer);
6052 }
6053
6054 /* Mark Lisp faces in the face cache C. */
6055
6056 NO_INLINE /* To reduce stack depth in mark_object. */
6057 static void
6058 mark_face_cache (struct face_cache *c)
6059 {
6060 if (c)
6061 {
6062 int i, j;
6063 for (i = 0; i < c->used; ++i)
6064 {
6065 struct face *face = FACE_FROM_ID (c->f, i);
6066
6067 if (face)
6068 {
6069 if (face->font && !VECTOR_MARKED_P (face->font))
6070 mark_vectorlike ((struct Lisp_Vector *) face->font);
6071
6072 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6073 mark_object (face->lface[j]);
6074 }
6075 }
6076 }
6077 }
6078
6079 NO_INLINE /* To reduce stack depth in mark_object. */
6080 static void
6081 mark_localized_symbol (struct Lisp_Symbol *ptr)
6082 {
6083 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6084 Lisp_Object where = blv->where;
6085 /* If the value is set up for a killed buffer or deleted
6086 frame, restore its global binding. If the value is
6087 forwarded to a C variable, either it's not a Lisp_Object
6088 var, or it's staticpro'd already. */
6089 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6090 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6091 swap_in_global_binding (ptr);
6092 mark_object (blv->where);
6093 mark_object (blv->valcell);
6094 mark_object (blv->defcell);
6095 }
6096
6097 NO_INLINE /* To reduce stack depth in mark_object. */
6098 static void
6099 mark_save_value (struct Lisp_Save_Value *ptr)
6100 {
6101 /* If `save_type' is zero, `data[0].pointer' is the address
6102 of a memory area containing `data[1].integer' potential
6103 Lisp_Objects. */
6104 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6105 {
6106 Lisp_Object *p = ptr->data[0].pointer;
6107 ptrdiff_t nelt;
6108 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6109 mark_maybe_object (*p);
6110 }
6111 else
6112 {
6113 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6114 int i;
6115 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6116 if (save_type (ptr, i) == SAVE_OBJECT)
6117 mark_object (ptr->data[i].object);
6118 }
6119 }
6120
6121 /* Remove killed buffers or items whose car is a killed buffer from
6122 LIST, and mark other items. Return changed LIST, which is marked. */
6123
6124 static Lisp_Object
6125 mark_discard_killed_buffers (Lisp_Object list)
6126 {
6127 Lisp_Object tail, *prev = &list;
6128
6129 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6130 tail = XCDR (tail))
6131 {
6132 Lisp_Object tem = XCAR (tail);
6133 if (CONSP (tem))
6134 tem = XCAR (tem);
6135 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6136 *prev = XCDR (tail);
6137 else
6138 {
6139 CONS_MARK (XCONS (tail));
6140 mark_object (XCAR (tail));
6141 prev = xcdr_addr (tail);
6142 }
6143 }
6144 mark_object (tail);
6145 return list;
6146 }
6147
6148 /* Determine type of generic Lisp_Object and mark it accordingly.
6149
6150 This function implements a straightforward depth-first marking
6151 algorithm and so the recursion depth may be very high (a few
6152 tens of thousands is not uncommon). To minimize stack usage,
6153 a few cold paths are moved out to NO_INLINE functions above.
6154 In general, inlining them doesn't help you to gain more speed. */
6155
6156 void
6157 mark_object (Lisp_Object arg)
6158 {
6159 register Lisp_Object obj = arg;
6160 void *po;
6161 #ifdef GC_CHECK_MARKED_OBJECTS
6162 struct mem_node *m;
6163 #endif
6164 ptrdiff_t cdr_count = 0;
6165
6166 loop:
6167
6168 po = XPNTR (obj);
6169 if (PURE_POINTER_P (po))
6170 return;
6171
6172 last_marked[last_marked_index++] = obj;
6173 if (last_marked_index == LAST_MARKED_SIZE)
6174 last_marked_index = 0;
6175
6176 /* Perform some sanity checks on the objects marked here. Abort if
6177 we encounter an object we know is bogus. This increases GC time
6178 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
6179 #ifdef GC_CHECK_MARKED_OBJECTS
6180
6181 /* Check that the object pointed to by PO is known to be a Lisp
6182 structure allocated from the heap. */
6183 #define CHECK_ALLOCATED() \
6184 do { \
6185 m = mem_find (po); \
6186 if (m == MEM_NIL) \
6187 emacs_abort (); \
6188 } while (0)
6189
6190 /* Check that the object pointed to by PO is live, using predicate
6191 function LIVEP. */
6192 #define CHECK_LIVE(LIVEP) \
6193 do { \
6194 if (!LIVEP (m, po)) \
6195 emacs_abort (); \
6196 } while (0)
6197
6198 /* Check both of the above conditions, for non-symbols. */
6199 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6200 do { \
6201 CHECK_ALLOCATED (); \
6202 CHECK_LIVE (LIVEP); \
6203 } while (0) \
6204
6205 /* Check both of the above conditions, for symbols. */
6206 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6207 do { \
6208 if (!c_symbol_p (ptr)) \
6209 { \
6210 CHECK_ALLOCATED (); \
6211 CHECK_LIVE (live_symbol_p); \
6212 } \
6213 } while (0) \
6214
6215 #else /* not GC_CHECK_MARKED_OBJECTS */
6216
6217 #define CHECK_LIVE(LIVEP) ((void) 0)
6218 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6219 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6220
6221 #endif /* not GC_CHECK_MARKED_OBJECTS */
6222
6223 switch (XTYPE (obj))
6224 {
6225 case Lisp_String:
6226 {
6227 register struct Lisp_String *ptr = XSTRING (obj);
6228 if (STRING_MARKED_P (ptr))
6229 break;
6230 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6231 MARK_STRING (ptr);
6232 MARK_INTERVAL_TREE (ptr->intervals);
6233 #ifdef GC_CHECK_STRING_BYTES
6234 /* Check that the string size recorded in the string is the
6235 same as the one recorded in the sdata structure. */
6236 string_bytes (ptr);
6237 #endif /* GC_CHECK_STRING_BYTES */
6238 }
6239 break;
6240
6241 case Lisp_Vectorlike:
6242 {
6243 register struct Lisp_Vector *ptr = XVECTOR (obj);
6244 register ptrdiff_t pvectype;
6245
6246 if (VECTOR_MARKED_P (ptr))
6247 break;
6248
6249 #ifdef GC_CHECK_MARKED_OBJECTS
6250 m = mem_find (po);
6251 if (m == MEM_NIL && !SUBRP (obj))
6252 emacs_abort ();
6253 #endif /* GC_CHECK_MARKED_OBJECTS */
6254
6255 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6256 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6257 >> PSEUDOVECTOR_AREA_BITS);
6258 else
6259 pvectype = PVEC_NORMAL_VECTOR;
6260
6261 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6262 CHECK_LIVE (live_vector_p);
6263
6264 switch (pvectype)
6265 {
6266 case PVEC_BUFFER:
6267 #ifdef GC_CHECK_MARKED_OBJECTS
6268 {
6269 struct buffer *b;
6270 FOR_EACH_BUFFER (b)
6271 if (b == po)
6272 break;
6273 if (b == NULL)
6274 emacs_abort ();
6275 }
6276 #endif /* GC_CHECK_MARKED_OBJECTS */
6277 mark_buffer ((struct buffer *) ptr);
6278 break;
6279
6280 case PVEC_COMPILED:
6281 /* Although we could treat this just like a vector, mark_compiled
6282 returns the COMPILED_CONSTANTS element, which is marked at the
6283 next iteration of goto-loop here. This is done to avoid a few
6284 recursive calls to mark_object. */
6285 obj = mark_compiled (ptr);
6286 if (!NILP (obj))
6287 goto loop;
6288 break;
6289
6290 case PVEC_FRAME:
6291 {
6292 struct frame *f = (struct frame *) ptr;
6293
6294 mark_vectorlike (ptr);
6295 mark_face_cache (f->face_cache);
6296 #ifdef HAVE_WINDOW_SYSTEM
6297 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6298 {
6299 struct font *font = FRAME_FONT (f);
6300
6301 if (font && !VECTOR_MARKED_P (font))
6302 mark_vectorlike ((struct Lisp_Vector *) font);
6303 }
6304 #endif
6305 }
6306 break;
6307
6308 case PVEC_WINDOW:
6309 {
6310 struct window *w = (struct window *) ptr;
6311
6312 mark_vectorlike (ptr);
6313
6314 /* Mark glyph matrices, if any. Marking window
6315 matrices is sufficient because frame matrices
6316 use the same glyph memory. */
6317 if (w->current_matrix)
6318 {
6319 mark_glyph_matrix (w->current_matrix);
6320 mark_glyph_matrix (w->desired_matrix);
6321 }
6322
6323 /* Filter out killed buffers from both buffer lists
6324 in attempt to help GC to reclaim killed buffers faster.
6325 We can do it elsewhere for live windows, but this is the
6326 best place to do it for dead windows. */
6327 wset_prev_buffers
6328 (w, mark_discard_killed_buffers (w->prev_buffers));
6329 wset_next_buffers
6330 (w, mark_discard_killed_buffers (w->next_buffers));
6331 }
6332 break;
6333
6334 case PVEC_HASH_TABLE:
6335 {
6336 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6337
6338 mark_vectorlike (ptr);
6339 mark_object (h->test.name);
6340 mark_object (h->test.user_hash_function);
6341 mark_object (h->test.user_cmp_function);
6342 /* If hash table is not weak, mark all keys and values.
6343 For weak tables, mark only the vector. */
6344 if (NILP (h->weak))
6345 mark_object (h->key_and_value);
6346 else
6347 VECTOR_MARK (XVECTOR (h->key_and_value));
6348 }
6349 break;
6350
6351 case PVEC_CHAR_TABLE:
6352 case PVEC_SUB_CHAR_TABLE:
6353 mark_char_table (ptr, (enum pvec_type) pvectype);
6354 break;
6355
6356 case PVEC_BOOL_VECTOR:
6357 /* No Lisp_Objects to mark in a bool vector. */
6358 VECTOR_MARK (ptr);
6359 break;
6360
6361 case PVEC_SUBR:
6362 break;
6363
6364 case PVEC_FREE:
6365 emacs_abort ();
6366
6367 default:
6368 mark_vectorlike (ptr);
6369 }
6370 }
6371 break;
6372
6373 case Lisp_Symbol:
6374 {
6375 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6376 nextsym:
6377 if (ptr->gcmarkbit)
6378 break;
6379 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6380 ptr->gcmarkbit = 1;
6381 /* Attempt to catch bogus objects. */
6382 eassert (valid_lisp_object_p (ptr->function));
6383 mark_object (ptr->function);
6384 mark_object (ptr->plist);
6385 switch (ptr->redirect)
6386 {
6387 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6388 case SYMBOL_VARALIAS:
6389 {
6390 Lisp_Object tem;
6391 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6392 mark_object (tem);
6393 break;
6394 }
6395 case SYMBOL_LOCALIZED:
6396 mark_localized_symbol (ptr);
6397 break;
6398 case SYMBOL_FORWARDED:
6399 /* If the value is forwarded to a buffer or keyboard field,
6400 these are marked when we see the corresponding object.
6401 And if it's forwarded to a C variable, either it's not
6402 a Lisp_Object var, or it's staticpro'd already. */
6403 break;
6404 default: emacs_abort ();
6405 }
6406 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6407 MARK_STRING (XSTRING (ptr->name));
6408 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6409 /* Inner loop to mark next symbol in this bucket, if any. */
6410 ptr = ptr->next;
6411 if (ptr)
6412 goto nextsym;
6413 }
6414 break;
6415
6416 case Lisp_Misc:
6417 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6418
6419 if (XMISCANY (obj)->gcmarkbit)
6420 break;
6421
6422 switch (XMISCTYPE (obj))
6423 {
6424 case Lisp_Misc_Marker:
6425 /* DO NOT mark thru the marker's chain.
6426 The buffer's markers chain does not preserve markers from gc;
6427 instead, markers are removed from the chain when freed by gc. */
6428 XMISCANY (obj)->gcmarkbit = 1;
6429 break;
6430
6431 case Lisp_Misc_Save_Value:
6432 XMISCANY (obj)->gcmarkbit = 1;
6433 mark_save_value (XSAVE_VALUE (obj));
6434 break;
6435
6436 case Lisp_Misc_Overlay:
6437 mark_overlay (XOVERLAY (obj));
6438 break;
6439
6440 default:
6441 emacs_abort ();
6442 }
6443 break;
6444
6445 case Lisp_Cons:
6446 {
6447 register struct Lisp_Cons *ptr = XCONS (obj);
6448 if (CONS_MARKED_P (ptr))
6449 break;
6450 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6451 CONS_MARK (ptr);
6452 /* If the cdr is nil, avoid recursion for the car. */
6453 if (EQ (ptr->u.cdr, Qnil))
6454 {
6455 obj = ptr->car;
6456 cdr_count = 0;
6457 goto loop;
6458 }
6459 mark_object (ptr->car);
6460 obj = ptr->u.cdr;
6461 cdr_count++;
6462 if (cdr_count == mark_object_loop_halt)
6463 emacs_abort ();
6464 goto loop;
6465 }
6466
6467 case Lisp_Float:
6468 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6469 FLOAT_MARK (XFLOAT (obj));
6470 break;
6471
6472 case_Lisp_Int:
6473 break;
6474
6475 default:
6476 emacs_abort ();
6477 }
6478
6479 #undef CHECK_LIVE
6480 #undef CHECK_ALLOCATED
6481 #undef CHECK_ALLOCATED_AND_LIVE
6482 }
6483 /* Mark the Lisp pointers in the terminal objects.
6484 Called by Fgarbage_collect. */
6485
6486 static void
6487 mark_terminals (void)
6488 {
6489 struct terminal *t;
6490 for (t = terminal_list; t; t = t->next_terminal)
6491 {
6492 eassert (t->name != NULL);
6493 #ifdef HAVE_WINDOW_SYSTEM
6494 /* If a terminal object is reachable from a stacpro'ed object,
6495 it might have been marked already. Make sure the image cache
6496 gets marked. */
6497 mark_image_cache (t->image_cache);
6498 #endif /* HAVE_WINDOW_SYSTEM */
6499 if (!VECTOR_MARKED_P (t))
6500 mark_vectorlike ((struct Lisp_Vector *)t);
6501 }
6502 }
6503
6504
6505
6506 /* Value is non-zero if OBJ will survive the current GC because it's
6507 either marked or does not need to be marked to survive. */
6508
6509 bool
6510 survives_gc_p (Lisp_Object obj)
6511 {
6512 bool survives_p;
6513
6514 switch (XTYPE (obj))
6515 {
6516 case_Lisp_Int:
6517 survives_p = 1;
6518 break;
6519
6520 case Lisp_Symbol:
6521 survives_p = XSYMBOL (obj)->gcmarkbit;
6522 break;
6523
6524 case Lisp_Misc:
6525 survives_p = XMISCANY (obj)->gcmarkbit;
6526 break;
6527
6528 case Lisp_String:
6529 survives_p = STRING_MARKED_P (XSTRING (obj));
6530 break;
6531
6532 case Lisp_Vectorlike:
6533 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6534 break;
6535
6536 case Lisp_Cons:
6537 survives_p = CONS_MARKED_P (XCONS (obj));
6538 break;
6539
6540 case Lisp_Float:
6541 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6542 break;
6543
6544 default:
6545 emacs_abort ();
6546 }
6547
6548 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6549 }
6550
6551
6552 \f
6553
6554 NO_INLINE /* For better stack traces */
6555 static void
6556 sweep_conses (void)
6557 {
6558 struct cons_block *cblk;
6559 struct cons_block **cprev = &cons_block;
6560 int lim = cons_block_index;
6561 EMACS_INT num_free = 0, num_used = 0;
6562
6563 cons_free_list = 0;
6564
6565 for (cblk = cons_block; cblk; cblk = *cprev)
6566 {
6567 int i = 0;
6568 int this_free = 0;
6569 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6570
6571 /* Scan the mark bits an int at a time. */
6572 for (i = 0; i < ilim; i++)
6573 {
6574 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6575 {
6576 /* Fast path - all cons cells for this int are marked. */
6577 cblk->gcmarkbits[i] = 0;
6578 num_used += BITS_PER_BITS_WORD;
6579 }
6580 else
6581 {
6582 /* Some cons cells for this int are not marked.
6583 Find which ones, and free them. */
6584 int start, pos, stop;
6585
6586 start = i * BITS_PER_BITS_WORD;
6587 stop = lim - start;
6588 if (stop > BITS_PER_BITS_WORD)
6589 stop = BITS_PER_BITS_WORD;
6590 stop += start;
6591
6592 for (pos = start; pos < stop; pos++)
6593 {
6594 if (!CONS_MARKED_P (&cblk->conses[pos]))
6595 {
6596 this_free++;
6597 cblk->conses[pos].u.chain = cons_free_list;
6598 cons_free_list = &cblk->conses[pos];
6599 #if GC_MARK_STACK
6600 cons_free_list->car = Vdead;
6601 #endif
6602 }
6603 else
6604 {
6605 num_used++;
6606 CONS_UNMARK (&cblk->conses[pos]);
6607 }
6608 }
6609 }
6610 }
6611
6612 lim = CONS_BLOCK_SIZE;
6613 /* If this block contains only free conses and we have already
6614 seen more than two blocks worth of free conses then deallocate
6615 this block. */
6616 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6617 {
6618 *cprev = cblk->next;
6619 /* Unhook from the free list. */
6620 cons_free_list = cblk->conses[0].u.chain;
6621 lisp_align_free (cblk);
6622 }
6623 else
6624 {
6625 num_free += this_free;
6626 cprev = &cblk->next;
6627 }
6628 }
6629 total_conses = num_used;
6630 total_free_conses = num_free;
6631 }
6632
6633 NO_INLINE /* For better stack traces */
6634 static void
6635 sweep_floats (void)
6636 {
6637 register struct float_block *fblk;
6638 struct float_block **fprev = &float_block;
6639 register int lim = float_block_index;
6640 EMACS_INT num_free = 0, num_used = 0;
6641
6642 float_free_list = 0;
6643
6644 for (fblk = float_block; fblk; fblk = *fprev)
6645 {
6646 register int i;
6647 int this_free = 0;
6648 for (i = 0; i < lim; i++)
6649 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6650 {
6651 this_free++;
6652 fblk->floats[i].u.chain = float_free_list;
6653 float_free_list = &fblk->floats[i];
6654 }
6655 else
6656 {
6657 num_used++;
6658 FLOAT_UNMARK (&fblk->floats[i]);
6659 }
6660 lim = FLOAT_BLOCK_SIZE;
6661 /* If this block contains only free floats and we have already
6662 seen more than two blocks worth of free floats then deallocate
6663 this block. */
6664 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6665 {
6666 *fprev = fblk->next;
6667 /* Unhook from the free list. */
6668 float_free_list = fblk->floats[0].u.chain;
6669 lisp_align_free (fblk);
6670 }
6671 else
6672 {
6673 num_free += this_free;
6674 fprev = &fblk->next;
6675 }
6676 }
6677 total_floats = num_used;
6678 total_free_floats = num_free;
6679 }
6680
6681 NO_INLINE /* For better stack traces */
6682 static void
6683 sweep_intervals (void)
6684 {
6685 register struct interval_block *iblk;
6686 struct interval_block **iprev = &interval_block;
6687 register int lim = interval_block_index;
6688 EMACS_INT num_free = 0, num_used = 0;
6689
6690 interval_free_list = 0;
6691
6692 for (iblk = interval_block; iblk; iblk = *iprev)
6693 {
6694 register int i;
6695 int this_free = 0;
6696
6697 for (i = 0; i < lim; i++)
6698 {
6699 if (!iblk->intervals[i].gcmarkbit)
6700 {
6701 set_interval_parent (&iblk->intervals[i], interval_free_list);
6702 interval_free_list = &iblk->intervals[i];
6703 this_free++;
6704 }
6705 else
6706 {
6707 num_used++;
6708 iblk->intervals[i].gcmarkbit = 0;
6709 }
6710 }
6711 lim = INTERVAL_BLOCK_SIZE;
6712 /* If this block contains only free intervals and we have already
6713 seen more than two blocks worth of free intervals then
6714 deallocate this block. */
6715 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6716 {
6717 *iprev = iblk->next;
6718 /* Unhook from the free list. */
6719 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6720 lisp_free (iblk);
6721 }
6722 else
6723 {
6724 num_free += this_free;
6725 iprev = &iblk->next;
6726 }
6727 }
6728 total_intervals = num_used;
6729 total_free_intervals = num_free;
6730 }
6731
6732 NO_INLINE /* For better stack traces */
6733 static void
6734 sweep_symbols (void)
6735 {
6736 struct symbol_block *sblk;
6737 struct symbol_block **sprev = &symbol_block;
6738 int lim = symbol_block_index;
6739 EMACS_INT num_free = 0, num_used = ARRAYELTS (lispsym);
6740
6741 symbol_free_list = NULL;
6742
6743 for (int i = 0; i < ARRAYELTS (lispsym); i++)
6744 lispsym[i].gcmarkbit = 0;
6745
6746 for (sblk = symbol_block; sblk; sblk = *sprev)
6747 {
6748 int this_free = 0;
6749 union aligned_Lisp_Symbol *sym = sblk->symbols;
6750 union aligned_Lisp_Symbol *end = sym + lim;
6751
6752 for (; sym < end; ++sym)
6753 {
6754 if (!sym->s.gcmarkbit)
6755 {
6756 if (sym->s.redirect == SYMBOL_LOCALIZED)
6757 xfree (SYMBOL_BLV (&sym->s));
6758 sym->s.next = symbol_free_list;
6759 symbol_free_list = &sym->s;
6760 #if GC_MARK_STACK
6761 symbol_free_list->function = Vdead;
6762 #endif
6763 ++this_free;
6764 }
6765 else
6766 {
6767 ++num_used;
6768 sym->s.gcmarkbit = 0;
6769 /* Attempt to catch bogus objects. */
6770 eassert (valid_lisp_object_p (sym->s.function));
6771 }
6772 }
6773
6774 lim = SYMBOL_BLOCK_SIZE;
6775 /* If this block contains only free symbols and we have already
6776 seen more than two blocks worth of free symbols then deallocate
6777 this block. */
6778 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6779 {
6780 *sprev = sblk->next;
6781 /* Unhook from the free list. */
6782 symbol_free_list = sblk->symbols[0].s.next;
6783 lisp_free (sblk);
6784 }
6785 else
6786 {
6787 num_free += this_free;
6788 sprev = &sblk->next;
6789 }
6790 }
6791 total_symbols = num_used;
6792 total_free_symbols = num_free;
6793 }
6794
6795 NO_INLINE /* For better stack traces */
6796 static void
6797 sweep_misc (void)
6798 {
6799 register struct marker_block *mblk;
6800 struct marker_block **mprev = &marker_block;
6801 register int lim = marker_block_index;
6802 EMACS_INT num_free = 0, num_used = 0;
6803
6804 /* Put all unmarked misc's on free list. For a marker, first
6805 unchain it from the buffer it points into. */
6806
6807 marker_free_list = 0;
6808
6809 for (mblk = marker_block; mblk; mblk = *mprev)
6810 {
6811 register int i;
6812 int this_free = 0;
6813
6814 for (i = 0; i < lim; i++)
6815 {
6816 if (!mblk->markers[i].m.u_any.gcmarkbit)
6817 {
6818 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6819 unchain_marker (&mblk->markers[i].m.u_marker);
6820 /* Set the type of the freed object to Lisp_Misc_Free.
6821 We could leave the type alone, since nobody checks it,
6822 but this might catch bugs faster. */
6823 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6824 mblk->markers[i].m.u_free.chain = marker_free_list;
6825 marker_free_list = &mblk->markers[i].m;
6826 this_free++;
6827 }
6828 else
6829 {
6830 num_used++;
6831 mblk->markers[i].m.u_any.gcmarkbit = 0;
6832 }
6833 }
6834 lim = MARKER_BLOCK_SIZE;
6835 /* If this block contains only free markers and we have already
6836 seen more than two blocks worth of free markers then deallocate
6837 this block. */
6838 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6839 {
6840 *mprev = mblk->next;
6841 /* Unhook from the free list. */
6842 marker_free_list = mblk->markers[0].m.u_free.chain;
6843 lisp_free (mblk);
6844 }
6845 else
6846 {
6847 num_free += this_free;
6848 mprev = &mblk->next;
6849 }
6850 }
6851
6852 total_markers = num_used;
6853 total_free_markers = num_free;
6854 }
6855
6856 NO_INLINE /* For better stack traces */
6857 static void
6858 sweep_buffers (void)
6859 {
6860 register struct buffer *buffer, **bprev = &all_buffers;
6861
6862 total_buffers = 0;
6863 for (buffer = all_buffers; buffer; buffer = *bprev)
6864 if (!VECTOR_MARKED_P (buffer))
6865 {
6866 *bprev = buffer->next;
6867 lisp_free (buffer);
6868 }
6869 else
6870 {
6871 VECTOR_UNMARK (buffer);
6872 /* Do not use buffer_(set|get)_intervals here. */
6873 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6874 total_buffers++;
6875 bprev = &buffer->next;
6876 }
6877 }
6878
6879 /* Sweep: find all structures not marked, and free them. */
6880 static void
6881 gc_sweep (void)
6882 {
6883 /* Remove or mark entries in weak hash tables.
6884 This must be done before any object is unmarked. */
6885 sweep_weak_hash_tables ();
6886
6887 sweep_strings ();
6888 check_string_bytes (!noninteractive);
6889 sweep_conses ();
6890 sweep_floats ();
6891 sweep_intervals ();
6892 sweep_symbols ();
6893 sweep_misc ();
6894 sweep_buffers ();
6895 sweep_vectors ();
6896 check_string_bytes (!noninteractive);
6897 }
6898
6899 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
6900 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
6901 All values are in Kbytes. If there is no swap space,
6902 last two values are zero. If the system is not supported
6903 or memory information can't be obtained, return nil. */)
6904 (void)
6905 {
6906 #if defined HAVE_LINUX_SYSINFO
6907 struct sysinfo si;
6908 uintmax_t units;
6909
6910 if (sysinfo (&si))
6911 return Qnil;
6912 #ifdef LINUX_SYSINFO_UNIT
6913 units = si.mem_unit;
6914 #else
6915 units = 1;
6916 #endif
6917 return list4i ((uintmax_t) si.totalram * units / 1024,
6918 (uintmax_t) si.freeram * units / 1024,
6919 (uintmax_t) si.totalswap * units / 1024,
6920 (uintmax_t) si.freeswap * units / 1024);
6921 #elif defined WINDOWSNT
6922 unsigned long long totalram, freeram, totalswap, freeswap;
6923
6924 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6925 return list4i ((uintmax_t) totalram / 1024,
6926 (uintmax_t) freeram / 1024,
6927 (uintmax_t) totalswap / 1024,
6928 (uintmax_t) freeswap / 1024);
6929 else
6930 return Qnil;
6931 #elif defined MSDOS
6932 unsigned long totalram, freeram, totalswap, freeswap;
6933
6934 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6935 return list4i ((uintmax_t) totalram / 1024,
6936 (uintmax_t) freeram / 1024,
6937 (uintmax_t) totalswap / 1024,
6938 (uintmax_t) freeswap / 1024);
6939 else
6940 return Qnil;
6941 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6942 /* FIXME: add more systems. */
6943 return Qnil;
6944 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6945 }
6946
6947 /* Debugging aids. */
6948
6949 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6950 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6951 This may be helpful in debugging Emacs's memory usage.
6952 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6953 (void)
6954 {
6955 Lisp_Object end;
6956
6957 #ifdef HAVE_NS
6958 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6959 XSETINT (end, 0);
6960 #else
6961 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6962 #endif
6963
6964 return end;
6965 }
6966
6967 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6968 doc: /* Return a list of counters that measure how much consing there has been.
6969 Each of these counters increments for a certain kind of object.
6970 The counters wrap around from the largest positive integer to zero.
6971 Garbage collection does not decrease them.
6972 The elements of the value are as follows:
6973 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6974 All are in units of 1 = one object consed
6975 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6976 objects consed.
6977 MISCS include overlays, markers, and some internal types.
6978 Frames, windows, buffers, and subprocesses count as vectors
6979 (but the contents of a buffer's text do not count here). */)
6980 (void)
6981 {
6982 return listn (CONSTYPE_HEAP, 8,
6983 bounded_number (cons_cells_consed),
6984 bounded_number (floats_consed),
6985 bounded_number (vector_cells_consed),
6986 bounded_number (symbols_consed),
6987 bounded_number (string_chars_consed),
6988 bounded_number (misc_objects_consed),
6989 bounded_number (intervals_consed),
6990 bounded_number (strings_consed));
6991 }
6992
6993 static bool
6994 symbol_uses_obj (Lisp_Object symbol, Lisp_Object obj)
6995 {
6996 struct Lisp_Symbol *sym = XSYMBOL (symbol);
6997 Lisp_Object val = find_symbol_value (symbol);
6998 return (EQ (val, obj)
6999 || EQ (sym->function, obj)
7000 || (!NILP (sym->function)
7001 && COMPILEDP (sym->function)
7002 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
7003 || (!NILP (val)
7004 && COMPILEDP (val)
7005 && EQ (AREF (val, COMPILED_BYTECODE), obj)));
7006 }
7007
7008 /* Find at most FIND_MAX symbols which have OBJ as their value or
7009 function. This is used in gdbinit's `xwhichsymbols' command. */
7010
7011 Lisp_Object
7012 which_symbols (Lisp_Object obj, EMACS_INT find_max)
7013 {
7014 struct symbol_block *sblk;
7015 ptrdiff_t gc_count = inhibit_garbage_collection ();
7016 Lisp_Object found = Qnil;
7017
7018 if (! DEADP (obj))
7019 {
7020 for (int i = 0; i < ARRAYELTS (lispsym); i++)
7021 {
7022 Lisp_Object sym = make_lisp_symbol (&lispsym[i]);
7023 if (symbol_uses_obj (sym, obj))
7024 {
7025 found = Fcons (sym, found);
7026 if (--find_max == 0)
7027 goto out;
7028 }
7029 }
7030
7031 for (sblk = symbol_block; sblk; sblk = sblk->next)
7032 {
7033 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
7034 int bn;
7035
7036 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
7037 {
7038 if (sblk == symbol_block && bn >= symbol_block_index)
7039 break;
7040
7041 Lisp_Object sym = make_lisp_symbol (&aligned_sym->s);
7042 if (symbol_uses_obj (sym, obj))
7043 {
7044 found = Fcons (sym, found);
7045 if (--find_max == 0)
7046 goto out;
7047 }
7048 }
7049 }
7050 }
7051
7052 out:
7053 unbind_to (gc_count, Qnil);
7054 return found;
7055 }
7056
7057 #ifdef SUSPICIOUS_OBJECT_CHECKING
7058
7059 static void *
7060 find_suspicious_object_in_range (void *begin, void *end)
7061 {
7062 char *begin_a = begin;
7063 char *end_a = end;
7064 int i;
7065
7066 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7067 {
7068 char *suspicious_object = suspicious_objects[i];
7069 if (begin_a <= suspicious_object && suspicious_object < end_a)
7070 return suspicious_object;
7071 }
7072
7073 return NULL;
7074 }
7075
7076 static void
7077 note_suspicious_free (void* ptr)
7078 {
7079 struct suspicious_free_record* rec;
7080
7081 rec = &suspicious_free_history[suspicious_free_history_index++];
7082 if (suspicious_free_history_index ==
7083 ARRAYELTS (suspicious_free_history))
7084 {
7085 suspicious_free_history_index = 0;
7086 }
7087
7088 memset (rec, 0, sizeof (*rec));
7089 rec->suspicious_object = ptr;
7090 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
7091 }
7092
7093 static void
7094 detect_suspicious_free (void* ptr)
7095 {
7096 int i;
7097
7098 eassert (ptr != NULL);
7099
7100 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7101 if (suspicious_objects[i] == ptr)
7102 {
7103 note_suspicious_free (ptr);
7104 suspicious_objects[i] = NULL;
7105 }
7106 }
7107
7108 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7109
7110 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7111 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7112 If Emacs is compiled with suspicious object checking, capture
7113 a stack trace when OBJ is freed in order to help track down
7114 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7115 (Lisp_Object obj)
7116 {
7117 #ifdef SUSPICIOUS_OBJECT_CHECKING
7118 /* Right now, we care only about vectors. */
7119 if (VECTORLIKEP (obj))
7120 {
7121 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7122 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7123 suspicious_object_index = 0;
7124 }
7125 #endif
7126 return obj;
7127 }
7128
7129 #ifdef ENABLE_CHECKING
7130
7131 bool suppress_checking;
7132
7133 void
7134 die (const char *msg, const char *file, int line)
7135 {
7136 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7137 file, line, msg);
7138 terminate_due_to_signal (SIGABRT, INT_MAX);
7139 }
7140
7141 #endif /* ENABLE_CHECKING */
7142
7143 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7144
7145 /* Debugging check whether STR is ASCII-only. */
7146
7147 const char *
7148 verify_ascii (const char *str)
7149 {
7150 const unsigned char *ptr = (unsigned char *) str, *end = ptr + strlen (str);
7151 while (ptr < end)
7152 {
7153 int c = STRING_CHAR_ADVANCE (ptr);
7154 if (!ASCII_CHAR_P (c))
7155 emacs_abort ();
7156 }
7157 return str;
7158 }
7159
7160 /* Stress alloca with inconveniently sized requests and check
7161 whether all allocated areas may be used for Lisp_Object. */
7162
7163 NO_INLINE static void
7164 verify_alloca (void)
7165 {
7166 int i;
7167 enum { ALLOCA_CHECK_MAX = 256 };
7168 /* Start from size of the smallest Lisp object. */
7169 for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
7170 {
7171 void *ptr = alloca (i);
7172 make_lisp_ptr (ptr, Lisp_Cons);
7173 }
7174 }
7175
7176 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7177
7178 #define verify_alloca() ((void) 0)
7179
7180 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7181
7182 /* Initialization. */
7183
7184 void
7185 init_alloc_once (void)
7186 {
7187 /* Even though Qt's contents are not set up, its address is known. */
7188 Vpurify_flag = Qt;
7189
7190 purebeg = PUREBEG;
7191 pure_size = PURESIZE;
7192
7193 verify_alloca ();
7194
7195 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
7196 mem_init ();
7197 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7198 #endif
7199
7200 #ifdef DOUG_LEA_MALLOC
7201 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7202 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7203 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7204 #endif
7205 init_strings ();
7206 init_vectors ();
7207
7208 refill_memory_reserve ();
7209 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7210 }
7211
7212 void
7213 init_alloc (void)
7214 {
7215 gcprolist = 0;
7216 byte_stack_list = 0;
7217 #if GC_MARK_STACK
7218 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7219 setjmp_tested_p = longjmps_done = 0;
7220 #endif
7221 #endif
7222 Vgc_elapsed = make_float (0.0);
7223 gcs_done = 0;
7224
7225 #if USE_VALGRIND
7226 valgrind_p = RUNNING_ON_VALGRIND != 0;
7227 #endif
7228 }
7229
7230 void
7231 syms_of_alloc (void)
7232 {
7233 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7234 doc: /* Number of bytes of consing between garbage collections.
7235 Garbage collection can happen automatically once this many bytes have been
7236 allocated since the last garbage collection. All data types count.
7237
7238 Garbage collection happens automatically only when `eval' is called.
7239
7240 By binding this temporarily to a large number, you can effectively
7241 prevent garbage collection during a part of the program.
7242 See also `gc-cons-percentage'. */);
7243
7244 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7245 doc: /* Portion of the heap used for allocation.
7246 Garbage collection can happen automatically once this portion of the heap
7247 has been allocated since the last garbage collection.
7248 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7249 Vgc_cons_percentage = make_float (0.1);
7250
7251 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7252 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7253
7254 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7255 doc: /* Number of cons cells that have been consed so far. */);
7256
7257 DEFVAR_INT ("floats-consed", floats_consed,
7258 doc: /* Number of floats that have been consed so far. */);
7259
7260 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7261 doc: /* Number of vector cells that have been consed so far. */);
7262
7263 DEFVAR_INT ("symbols-consed", symbols_consed,
7264 doc: /* Number of symbols that have been consed so far. */);
7265 symbols_consed += ARRAYELTS (lispsym);
7266
7267 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7268 doc: /* Number of string characters that have been consed so far. */);
7269
7270 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7271 doc: /* Number of miscellaneous objects that have been consed so far.
7272 These include markers and overlays, plus certain objects not visible
7273 to users. */);
7274
7275 DEFVAR_INT ("intervals-consed", intervals_consed,
7276 doc: /* Number of intervals that have been consed so far. */);
7277
7278 DEFVAR_INT ("strings-consed", strings_consed,
7279 doc: /* Number of strings that have been consed so far. */);
7280
7281 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7282 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7283 This means that certain objects should be allocated in shared (pure) space.
7284 It can also be set to a hash-table, in which case this table is used to
7285 do hash-consing of the objects allocated to pure space. */);
7286
7287 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7288 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7289 garbage_collection_messages = 0;
7290
7291 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7292 doc: /* Hook run after garbage collection has finished. */);
7293 Vpost_gc_hook = Qnil;
7294 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7295
7296 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7297 doc: /* Precomputed `signal' argument for memory-full error. */);
7298 /* We build this in advance because if we wait until we need it, we might
7299 not be able to allocate the memory to hold it. */
7300 Vmemory_signal_data
7301 = listn (CONSTYPE_PURE, 2, Qerror,
7302 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7303
7304 DEFVAR_LISP ("memory-full", Vmemory_full,
7305 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7306 Vmemory_full = Qnil;
7307
7308 DEFSYM (Qconses, "conses");
7309 DEFSYM (Qsymbols, "symbols");
7310 DEFSYM (Qmiscs, "miscs");
7311 DEFSYM (Qstrings, "strings");
7312 DEFSYM (Qvectors, "vectors");
7313 DEFSYM (Qfloats, "floats");
7314 DEFSYM (Qintervals, "intervals");
7315 DEFSYM (Qbuffers, "buffers");
7316 DEFSYM (Qstring_bytes, "string-bytes");
7317 DEFSYM (Qvector_slots, "vector-slots");
7318 DEFSYM (Qheap, "heap");
7319 DEFSYM (Qautomatic_gc, "Automatic GC");
7320
7321 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7322 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7323
7324 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7325 doc: /* Accumulated time elapsed in garbage collections.
7326 The time is in seconds as a floating point value. */);
7327 DEFVAR_INT ("gcs-done", gcs_done,
7328 doc: /* Accumulated number of garbage collections done. */);
7329
7330 defsubr (&Scons);
7331 defsubr (&Slist);
7332 defsubr (&Svector);
7333 defsubr (&Sbool_vector);
7334 defsubr (&Smake_byte_code);
7335 defsubr (&Smake_list);
7336 defsubr (&Smake_vector);
7337 defsubr (&Smake_string);
7338 defsubr (&Smake_bool_vector);
7339 defsubr (&Smake_symbol);
7340 defsubr (&Smake_marker);
7341 defsubr (&Spurecopy);
7342 defsubr (&Sgarbage_collect);
7343 defsubr (&Smemory_limit);
7344 defsubr (&Smemory_info);
7345 defsubr (&Smemory_use_counts);
7346 defsubr (&Ssuspicious_object);
7347
7348 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7349 defsubr (&Sgc_status);
7350 #endif
7351 }
7352
7353 /* When compiled with GCC, GDB might say "No enum type named
7354 pvec_type" if we don't have at least one symbol with that type, and
7355 then xbacktrace could fail. Similarly for the other enums and
7356 their values. Some non-GCC compilers don't like these constructs. */
7357 #ifdef __GNUC__
7358 union
7359 {
7360 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7361 enum char_table_specials char_table_specials;
7362 enum char_bits char_bits;
7363 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7364 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7365 enum Lisp_Bits Lisp_Bits;
7366 enum Lisp_Compiled Lisp_Compiled;
7367 enum maxargs maxargs;
7368 enum MAX_ALLOCA MAX_ALLOCA;
7369 enum More_Lisp_Bits More_Lisp_Bits;
7370 enum pvec_type pvec_type;
7371 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7372 #endif /* __GNUC__ */