]> code.delx.au - gnu-emacs/blob - src/editfns.c
Compute C decls for DEFSYMs automatically
[gnu-emacs] / src / editfns.c
1 /* Lisp functions pertaining to editing.
2
3 Copyright (C) 1985-1987, 1989, 1993-2015 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include <config.h>
22 #include <sys/types.h>
23 #include <stdio.h>
24
25 #ifdef HAVE_PWD_H
26 #include <pwd.h>
27 #include <grp.h>
28 #endif
29
30 #include <unistd.h>
31
32 #ifdef HAVE_SYS_UTSNAME_H
33 #include <sys/utsname.h>
34 #endif
35
36 #include "lisp.h"
37
38 /* systime.h includes <sys/time.h> which, on some systems, is required
39 for <sys/resource.h>; thus systime.h must be included before
40 <sys/resource.h> */
41 #include "systime.h"
42
43 #if defined HAVE_SYS_RESOURCE_H
44 #include <sys/resource.h>
45 #endif
46
47 #include <float.h>
48 #include <limits.h>
49 #include <intprops.h>
50 #include <strftime.h>
51 #include <verify.h>
52
53 #include "intervals.h"
54 #include "character.h"
55 #include "buffer.h"
56 #include "coding.h"
57 #include "frame.h"
58 #include "window.h"
59 #include "blockinput.h"
60
61 #define TM_YEAR_BASE 1900
62
63 #ifdef WINDOWSNT
64 extern Lisp_Object w32_get_internal_run_time (void);
65 #endif
66
67 static struct lisp_time lisp_time_struct (Lisp_Object, int *);
68 static void set_time_zone_rule (char const *);
69 static Lisp_Object format_time_string (char const *, ptrdiff_t, struct timespec,
70 bool, struct tm *);
71 static long int tm_gmtoff (struct tm *);
72 static int tm_diff (struct tm *, struct tm *);
73 static void update_buffer_properties (ptrdiff_t, ptrdiff_t);
74
75 #ifndef HAVE_TM_GMTOFF
76 # define HAVE_TM_GMTOFF false
77 #endif
78
79 /* The startup value of the TZ environment variable; null if unset. */
80 static char const *initial_tz;
81
82 /* A valid but unlikely setting for the TZ environment variable.
83 It is OK (though a bit slower) if the user chooses this value. */
84 static char dump_tz_string[] = "TZ=UtC0";
85
86 /* The cached value of Vsystem_name. This is used only to compare it
87 to Vsystem_name, so it need not be visible to the GC. */
88 static Lisp_Object cached_system_name;
89
90 static void
91 init_and_cache_system_name (void)
92 {
93 init_system_name ();
94 cached_system_name = Vsystem_name;
95 }
96
97 void
98 init_editfns (void)
99 {
100 const char *user_name;
101 register char *p;
102 struct passwd *pw; /* password entry for the current user */
103 Lisp_Object tem;
104
105 /* Set up system_name even when dumping. */
106 init_and_cache_system_name ();
107
108 #ifndef CANNOT_DUMP
109 /* When just dumping out, set the time zone to a known unlikely value
110 and skip the rest of this function. */
111 if (!initialized)
112 {
113 # ifdef HAVE_TZSET
114 xputenv (dump_tz_string);
115 tzset ();
116 # endif
117 return;
118 }
119 #endif
120
121 char *tz = getenv ("TZ");
122 initial_tz = tz;
123
124 #if !defined CANNOT_DUMP && defined HAVE_TZSET
125 /* If the execution TZ happens to be the same as the dump TZ,
126 change it to some other value and then change it back,
127 to force the underlying implementation to reload the TZ info.
128 This is needed on implementations that load TZ info from files,
129 since the TZ file contents may differ between dump and execution. */
130 if (tz && strcmp (tz, &dump_tz_string[sizeof "TZ=" - 1]) == 0)
131 {
132 ++*tz;
133 tzset ();
134 --*tz;
135 }
136 #endif
137
138 /* Call set_time_zone_rule now, so that its call to putenv is done
139 before multiple threads are active. */
140 set_time_zone_rule (tz);
141
142 pw = getpwuid (getuid ());
143 #ifdef MSDOS
144 /* We let the real user name default to "root" because that's quite
145 accurate on MS-DOS and because it lets Emacs find the init file.
146 (The DVX libraries override the Djgpp libraries here.) */
147 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
148 #else
149 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
150 #endif
151
152 /* Get the effective user name, by consulting environment variables,
153 or the effective uid if those are unset. */
154 user_name = getenv ("LOGNAME");
155 if (!user_name)
156 #ifdef WINDOWSNT
157 user_name = getenv ("USERNAME"); /* it's USERNAME on NT */
158 #else /* WINDOWSNT */
159 user_name = getenv ("USER");
160 #endif /* WINDOWSNT */
161 if (!user_name)
162 {
163 pw = getpwuid (geteuid ());
164 user_name = pw ? pw->pw_name : "unknown";
165 }
166 Vuser_login_name = build_string (user_name);
167
168 /* If the user name claimed in the environment vars differs from
169 the real uid, use the claimed name to find the full name. */
170 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
171 if (! NILP (tem))
172 tem = Vuser_login_name;
173 else
174 {
175 uid_t euid = geteuid ();
176 tem = make_fixnum_or_float (euid);
177 }
178 Vuser_full_name = Fuser_full_name (tem);
179
180 p = getenv ("NAME");
181 if (p)
182 Vuser_full_name = build_string (p);
183 else if (NILP (Vuser_full_name))
184 Vuser_full_name = build_string ("unknown");
185
186 #ifdef HAVE_SYS_UTSNAME_H
187 {
188 struct utsname uts;
189 uname (&uts);
190 Voperating_system_release = build_string (uts.release);
191 }
192 #else
193 Voperating_system_release = Qnil;
194 #endif
195 }
196 \f
197 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
198 doc: /* Convert arg CHAR to a string containing that character.
199 usage: (char-to-string CHAR) */)
200 (Lisp_Object character)
201 {
202 int c, len;
203 unsigned char str[MAX_MULTIBYTE_LENGTH];
204
205 CHECK_CHARACTER (character);
206 c = XFASTINT (character);
207
208 len = CHAR_STRING (c, str);
209 return make_string_from_bytes ((char *) str, 1, len);
210 }
211
212 DEFUN ("byte-to-string", Fbyte_to_string, Sbyte_to_string, 1, 1, 0,
213 doc: /* Convert arg BYTE to a unibyte string containing that byte. */)
214 (Lisp_Object byte)
215 {
216 unsigned char b;
217 CHECK_NUMBER (byte);
218 if (XINT (byte) < 0 || XINT (byte) > 255)
219 error ("Invalid byte");
220 b = XINT (byte);
221 return make_string_from_bytes ((char *) &b, 1, 1);
222 }
223
224 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
225 doc: /* Return the first character in STRING. */)
226 (register Lisp_Object string)
227 {
228 register Lisp_Object val;
229 CHECK_STRING (string);
230 if (SCHARS (string))
231 {
232 if (STRING_MULTIBYTE (string))
233 XSETFASTINT (val, STRING_CHAR (SDATA (string)));
234 else
235 XSETFASTINT (val, SREF (string, 0));
236 }
237 else
238 XSETFASTINT (val, 0);
239 return val;
240 }
241
242 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
243 doc: /* Return value of point, as an integer.
244 Beginning of buffer is position (point-min). */)
245 (void)
246 {
247 Lisp_Object temp;
248 XSETFASTINT (temp, PT);
249 return temp;
250 }
251
252 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
253 doc: /* Return value of point, as a marker object. */)
254 (void)
255 {
256 return build_marker (current_buffer, PT, PT_BYTE);
257 }
258
259 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
260 doc: /* Set point to POSITION, a number or marker.
261 Beginning of buffer is position (point-min), end is (point-max).
262
263 The return value is POSITION. */)
264 (register Lisp_Object position)
265 {
266 if (MARKERP (position))
267 set_point_from_marker (position);
268 else if (INTEGERP (position))
269 SET_PT (clip_to_bounds (BEGV, XINT (position), ZV));
270 else
271 wrong_type_argument (Qinteger_or_marker_p, position);
272 return position;
273 }
274
275
276 /* Return the start or end position of the region.
277 BEGINNINGP means return the start.
278 If there is no region active, signal an error. */
279
280 static Lisp_Object
281 region_limit (bool beginningp)
282 {
283 Lisp_Object m;
284
285 if (!NILP (Vtransient_mark_mode)
286 && NILP (Vmark_even_if_inactive)
287 && NILP (BVAR (current_buffer, mark_active)))
288 xsignal0 (Qmark_inactive);
289
290 m = Fmarker_position (BVAR (current_buffer, mark));
291 if (NILP (m))
292 error ("The mark is not set now, so there is no region");
293
294 /* Clip to the current narrowing (bug#11770). */
295 return make_number ((PT < XFASTINT (m)) == beginningp
296 ? PT
297 : clip_to_bounds (BEGV, XFASTINT (m), ZV));
298 }
299
300 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
301 doc: /* Return the integer value of point or mark, whichever is smaller. */)
302 (void)
303 {
304 return region_limit (1);
305 }
306
307 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
308 doc: /* Return the integer value of point or mark, whichever is larger. */)
309 (void)
310 {
311 return region_limit (0);
312 }
313
314 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
315 doc: /* Return this buffer's mark, as a marker object.
316 Watch out! Moving this marker changes the mark position.
317 If you set the marker not to point anywhere, the buffer will have no mark. */)
318 (void)
319 {
320 return BVAR (current_buffer, mark);
321 }
322
323 \f
324 /* Find all the overlays in the current buffer that touch position POS.
325 Return the number found, and store them in a vector in VEC
326 of length LEN. */
327
328 static ptrdiff_t
329 overlays_around (EMACS_INT pos, Lisp_Object *vec, ptrdiff_t len)
330 {
331 Lisp_Object overlay, start, end;
332 struct Lisp_Overlay *tail;
333 ptrdiff_t startpos, endpos;
334 ptrdiff_t idx = 0;
335
336 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
337 {
338 XSETMISC (overlay, tail);
339
340 end = OVERLAY_END (overlay);
341 endpos = OVERLAY_POSITION (end);
342 if (endpos < pos)
343 break;
344 start = OVERLAY_START (overlay);
345 startpos = OVERLAY_POSITION (start);
346 if (startpos <= pos)
347 {
348 if (idx < len)
349 vec[idx] = overlay;
350 /* Keep counting overlays even if we can't return them all. */
351 idx++;
352 }
353 }
354
355 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
356 {
357 XSETMISC (overlay, tail);
358
359 start = OVERLAY_START (overlay);
360 startpos = OVERLAY_POSITION (start);
361 if (pos < startpos)
362 break;
363 end = OVERLAY_END (overlay);
364 endpos = OVERLAY_POSITION (end);
365 if (pos <= endpos)
366 {
367 if (idx < len)
368 vec[idx] = overlay;
369 idx++;
370 }
371 }
372
373 return idx;
374 }
375
376 DEFUN ("get-pos-property", Fget_pos_property, Sget_pos_property, 2, 3, 0,
377 doc: /* Return the value of POSITION's property PROP, in OBJECT.
378 Almost identical to `get-char-property' except for the following difference:
379 Whereas `get-char-property' returns the property of the char at (i.e. right
380 after) POSITION, this pays attention to properties's stickiness and overlays's
381 advancement settings, in order to find the property of POSITION itself,
382 i.e. the property that a char would inherit if it were inserted
383 at POSITION. */)
384 (Lisp_Object position, register Lisp_Object prop, Lisp_Object object)
385 {
386 CHECK_NUMBER_COERCE_MARKER (position);
387
388 if (NILP (object))
389 XSETBUFFER (object, current_buffer);
390 else if (WINDOWP (object))
391 object = XWINDOW (object)->contents;
392
393 if (!BUFFERP (object))
394 /* pos-property only makes sense in buffers right now, since strings
395 have no overlays and no notion of insertion for which stickiness
396 could be obeyed. */
397 return Fget_text_property (position, prop, object);
398 else
399 {
400 EMACS_INT posn = XINT (position);
401 ptrdiff_t noverlays;
402 Lisp_Object *overlay_vec, tem;
403 struct buffer *obuf = current_buffer;
404 USE_SAFE_ALLOCA;
405
406 set_buffer_temp (XBUFFER (object));
407
408 /* First try with room for 40 overlays. */
409 Lisp_Object overlay_vecbuf[40];
410 noverlays = ARRAYELTS (overlay_vecbuf);
411 overlay_vec = overlay_vecbuf;
412 noverlays = overlays_around (posn, overlay_vec, noverlays);
413
414 /* If there are more than 40,
415 make enough space for all, and try again. */
416 if (ARRAYELTS (overlay_vecbuf) < noverlays)
417 {
418 SAFE_ALLOCA_LISP (overlay_vec, noverlays);
419 noverlays = overlays_around (posn, overlay_vec, noverlays);
420 }
421 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
422
423 set_buffer_temp (obuf);
424
425 /* Now check the overlays in order of decreasing priority. */
426 while (--noverlays >= 0)
427 {
428 Lisp_Object ol = overlay_vec[noverlays];
429 tem = Foverlay_get (ol, prop);
430 if (!NILP (tem))
431 {
432 /* Check the overlay is indeed active at point. */
433 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
434 if ((OVERLAY_POSITION (start) == posn
435 && XMARKER (start)->insertion_type == 1)
436 || (OVERLAY_POSITION (finish) == posn
437 && XMARKER (finish)->insertion_type == 0))
438 ; /* The overlay will not cover a char inserted at point. */
439 else
440 {
441 SAFE_FREE ();
442 return tem;
443 }
444 }
445 }
446 SAFE_FREE ();
447
448 { /* Now check the text properties. */
449 int stickiness = text_property_stickiness (prop, position, object);
450 if (stickiness > 0)
451 return Fget_text_property (position, prop, object);
452 else if (stickiness < 0
453 && XINT (position) > BUF_BEGV (XBUFFER (object)))
454 return Fget_text_property (make_number (XINT (position) - 1),
455 prop, object);
456 else
457 return Qnil;
458 }
459 }
460 }
461
462 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
463 the value of point is used instead. If BEG or END is null,
464 means don't store the beginning or end of the field.
465
466 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
467 results; they do not effect boundary behavior.
468
469 If MERGE_AT_BOUNDARY is non-nil, then if POS is at the very first
470 position of a field, then the beginning of the previous field is
471 returned instead of the beginning of POS's field (since the end of a
472 field is actually also the beginning of the next input field, this
473 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
474 non-nil case, if two fields are separated by a field with the special
475 value `boundary', and POS lies within it, then the two separated
476 fields are considered to be adjacent, and POS between them, when
477 finding the beginning and ending of the "merged" field.
478
479 Either BEG or END may be 0, in which case the corresponding value
480 is not stored. */
481
482 static void
483 find_field (Lisp_Object pos, Lisp_Object merge_at_boundary,
484 Lisp_Object beg_limit,
485 ptrdiff_t *beg, Lisp_Object end_limit, ptrdiff_t *end)
486 {
487 /* Fields right before and after the point. */
488 Lisp_Object before_field, after_field;
489 /* True if POS counts as the start of a field. */
490 bool at_field_start = 0;
491 /* True if POS counts as the end of a field. */
492 bool at_field_end = 0;
493
494 if (NILP (pos))
495 XSETFASTINT (pos, PT);
496 else
497 CHECK_NUMBER_COERCE_MARKER (pos);
498
499 after_field
500 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
501 before_field
502 = (XFASTINT (pos) > BEGV
503 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
504 Qfield, Qnil, NULL)
505 /* Using nil here would be a more obvious choice, but it would
506 fail when the buffer starts with a non-sticky field. */
507 : after_field);
508
509 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
510 and POS is at beginning of a field, which can also be interpreted
511 as the end of the previous field. Note that the case where if
512 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
513 more natural one; then we avoid treating the beginning of a field
514 specially. */
515 if (NILP (merge_at_boundary))
516 {
517 Lisp_Object field = Fget_pos_property (pos, Qfield, Qnil);
518 if (!EQ (field, after_field))
519 at_field_end = 1;
520 if (!EQ (field, before_field))
521 at_field_start = 1;
522 if (NILP (field) && at_field_start && at_field_end)
523 /* If an inserted char would have a nil field while the surrounding
524 text is non-nil, we're probably not looking at a
525 zero-length field, but instead at a non-nil field that's
526 not intended for editing (such as comint's prompts). */
527 at_field_end = at_field_start = 0;
528 }
529
530 /* Note about special `boundary' fields:
531
532 Consider the case where the point (`.') is between the fields `x' and `y':
533
534 xxxx.yyyy
535
536 In this situation, if merge_at_boundary is non-nil, consider the
537 `x' and `y' fields as forming one big merged field, and so the end
538 of the field is the end of `y'.
539
540 However, if `x' and `y' are separated by a special `boundary' field
541 (a field with a `field' char-property of 'boundary), then ignore
542 this special field when merging adjacent fields. Here's the same
543 situation, but with a `boundary' field between the `x' and `y' fields:
544
545 xxx.BBBByyyy
546
547 Here, if point is at the end of `x', the beginning of `y', or
548 anywhere in-between (within the `boundary' field), merge all
549 three fields and consider the beginning as being the beginning of
550 the `x' field, and the end as being the end of the `y' field. */
551
552 if (beg)
553 {
554 if (at_field_start)
555 /* POS is at the edge of a field, and we should consider it as
556 the beginning of the following field. */
557 *beg = XFASTINT (pos);
558 else
559 /* Find the previous field boundary. */
560 {
561 Lisp_Object p = pos;
562 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
563 /* Skip a `boundary' field. */
564 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
565 beg_limit);
566
567 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
568 beg_limit);
569 *beg = NILP (p) ? BEGV : XFASTINT (p);
570 }
571 }
572
573 if (end)
574 {
575 if (at_field_end)
576 /* POS is at the edge of a field, and we should consider it as
577 the end of the previous field. */
578 *end = XFASTINT (pos);
579 else
580 /* Find the next field boundary. */
581 {
582 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
583 /* Skip a `boundary' field. */
584 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
585 end_limit);
586
587 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
588 end_limit);
589 *end = NILP (pos) ? ZV : XFASTINT (pos);
590 }
591 }
592 }
593
594 \f
595 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
596 doc: /* Delete the field surrounding POS.
597 A field is a region of text with the same `field' property.
598 If POS is nil, the value of point is used for POS. */)
599 (Lisp_Object pos)
600 {
601 ptrdiff_t beg, end;
602 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
603 if (beg != end)
604 del_range (beg, end);
605 return Qnil;
606 }
607
608 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
609 doc: /* Return the contents of the field surrounding POS as a string.
610 A field is a region of text with the same `field' property.
611 If POS is nil, the value of point is used for POS. */)
612 (Lisp_Object pos)
613 {
614 ptrdiff_t beg, end;
615 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
616 return make_buffer_string (beg, end, 1);
617 }
618
619 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
620 doc: /* Return the contents of the field around POS, without text properties.
621 A field is a region of text with the same `field' property.
622 If POS is nil, the value of point is used for POS. */)
623 (Lisp_Object pos)
624 {
625 ptrdiff_t beg, end;
626 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
627 return make_buffer_string (beg, end, 0);
628 }
629
630 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
631 doc: /* Return the beginning of the field surrounding POS.
632 A field is a region of text with the same `field' property.
633 If POS is nil, the value of point is used for POS.
634 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
635 field, then the beginning of the *previous* field is returned.
636 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
637 is before LIMIT, then LIMIT will be returned instead. */)
638 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
639 {
640 ptrdiff_t beg;
641 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
642 return make_number (beg);
643 }
644
645 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
646 doc: /* Return the end of the field surrounding POS.
647 A field is a region of text with the same `field' property.
648 If POS is nil, the value of point is used for POS.
649 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
650 then the end of the *following* field is returned.
651 If LIMIT is non-nil, it is a buffer position; if the end of the field
652 is after LIMIT, then LIMIT will be returned instead. */)
653 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
654 {
655 ptrdiff_t end;
656 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
657 return make_number (end);
658 }
659
660 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
661 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
662 A field is a region of text with the same `field' property.
663
664 If NEW-POS is nil, then use the current point instead, and move point
665 to the resulting constrained position, in addition to returning that
666 position.
667
668 If OLD-POS is at the boundary of two fields, then the allowable
669 positions for NEW-POS depends on the value of the optional argument
670 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
671 constrained to the field that has the same `field' char-property
672 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
673 is non-nil, NEW-POS is constrained to the union of the two adjacent
674 fields. Additionally, if two fields are separated by another field with
675 the special value `boundary', then any point within this special field is
676 also considered to be `on the boundary'.
677
678 If the optional argument ONLY-IN-LINE is non-nil and constraining
679 NEW-POS would move it to a different line, NEW-POS is returned
680 unconstrained. This is useful for commands that move by line, like
681 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
682 only in the case where they can still move to the right line.
683
684 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
685 a non-nil property of that name, then any field boundaries are ignored.
686
687 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
688 (Lisp_Object new_pos, Lisp_Object old_pos, Lisp_Object escape_from_edge,
689 Lisp_Object only_in_line, Lisp_Object inhibit_capture_property)
690 {
691 /* If non-zero, then the original point, before re-positioning. */
692 ptrdiff_t orig_point = 0;
693 bool fwd;
694 Lisp_Object prev_old, prev_new;
695
696 if (NILP (new_pos))
697 /* Use the current point, and afterwards, set it. */
698 {
699 orig_point = PT;
700 XSETFASTINT (new_pos, PT);
701 }
702
703 CHECK_NUMBER_COERCE_MARKER (new_pos);
704 CHECK_NUMBER_COERCE_MARKER (old_pos);
705
706 fwd = (XINT (new_pos) > XINT (old_pos));
707
708 prev_old = make_number (XINT (old_pos) - 1);
709 prev_new = make_number (XINT (new_pos) - 1);
710
711 if (NILP (Vinhibit_field_text_motion)
712 && !EQ (new_pos, old_pos)
713 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
714 || !NILP (Fget_char_property (old_pos, Qfield, Qnil))
715 /* To recognize field boundaries, we must also look at the
716 previous positions; we could use `Fget_pos_property'
717 instead, but in itself that would fail inside non-sticky
718 fields (like comint prompts). */
719 || (XFASTINT (new_pos) > BEGV
720 && !NILP (Fget_char_property (prev_new, Qfield, Qnil)))
721 || (XFASTINT (old_pos) > BEGV
722 && !NILP (Fget_char_property (prev_old, Qfield, Qnil))))
723 && (NILP (inhibit_capture_property)
724 /* Field boundaries are again a problem; but now we must
725 decide the case exactly, so we need to call
726 `get_pos_property' as well. */
727 || (NILP (Fget_pos_property (old_pos, inhibit_capture_property, Qnil))
728 && (XFASTINT (old_pos) <= BEGV
729 || NILP (Fget_char_property
730 (old_pos, inhibit_capture_property, Qnil))
731 || NILP (Fget_char_property
732 (prev_old, inhibit_capture_property, Qnil))))))
733 /* It is possible that NEW_POS is not within the same field as
734 OLD_POS; try to move NEW_POS so that it is. */
735 {
736 ptrdiff_t shortage;
737 Lisp_Object field_bound;
738
739 if (fwd)
740 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
741 else
742 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
743
744 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
745 other side of NEW_POS, which would mean that NEW_POS is
746 already acceptable, and it's not necessary to constrain it
747 to FIELD_BOUND. */
748 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
749 /* NEW_POS should be constrained, but only if either
750 ONLY_IN_LINE is nil (in which case any constraint is OK),
751 or NEW_POS and FIELD_BOUND are on the same line (in which
752 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
753 && (NILP (only_in_line)
754 /* This is the ONLY_IN_LINE case, check that NEW_POS and
755 FIELD_BOUND are on the same line by seeing whether
756 there's an intervening newline or not. */
757 || (find_newline (XFASTINT (new_pos), -1,
758 XFASTINT (field_bound), -1,
759 fwd ? -1 : 1, &shortage, NULL, 1),
760 shortage != 0)))
761 /* Constrain NEW_POS to FIELD_BOUND. */
762 new_pos = field_bound;
763
764 if (orig_point && XFASTINT (new_pos) != orig_point)
765 /* The NEW_POS argument was originally nil, so automatically set PT. */
766 SET_PT (XFASTINT (new_pos));
767 }
768
769 return new_pos;
770 }
771
772 \f
773 DEFUN ("line-beginning-position",
774 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
775 doc: /* Return the character position of the first character on the current line.
776 With optional argument N, scan forward N - 1 lines first.
777 If the scan reaches the end of the buffer, return that position.
778
779 This function ignores text display directionality; it returns the
780 position of the first character in logical order, i.e. the smallest
781 character position on the line.
782
783 This function constrains the returned position to the current field
784 unless that position would be on a different line than the original,
785 unconstrained result. If N is nil or 1, and a front-sticky field
786 starts at point, the scan stops as soon as it starts. To ignore field
787 boundaries, bind `inhibit-field-text-motion' to t.
788
789 This function does not move point. */)
790 (Lisp_Object n)
791 {
792 ptrdiff_t charpos, bytepos;
793
794 if (NILP (n))
795 XSETFASTINT (n, 1);
796 else
797 CHECK_NUMBER (n);
798
799 scan_newline_from_point (XINT (n) - 1, &charpos, &bytepos);
800
801 /* Return END constrained to the current input field. */
802 return Fconstrain_to_field (make_number (charpos), make_number (PT),
803 XINT (n) != 1 ? Qt : Qnil,
804 Qt, Qnil);
805 }
806
807 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
808 doc: /* Return the character position of the last character on the current line.
809 With argument N not nil or 1, move forward N - 1 lines first.
810 If scan reaches end of buffer, return that position.
811
812 This function ignores text display directionality; it returns the
813 position of the last character in logical order, i.e. the largest
814 character position on the line.
815
816 This function constrains the returned position to the current field
817 unless that would be on a different line than the original,
818 unconstrained result. If N is nil or 1, and a rear-sticky field ends
819 at point, the scan stops as soon as it starts. To ignore field
820 boundaries bind `inhibit-field-text-motion' to t.
821
822 This function does not move point. */)
823 (Lisp_Object n)
824 {
825 ptrdiff_t clipped_n;
826 ptrdiff_t end_pos;
827 ptrdiff_t orig = PT;
828
829 if (NILP (n))
830 XSETFASTINT (n, 1);
831 else
832 CHECK_NUMBER (n);
833
834 clipped_n = clip_to_bounds (PTRDIFF_MIN + 1, XINT (n), PTRDIFF_MAX);
835 end_pos = find_before_next_newline (orig, 0, clipped_n - (clipped_n <= 0),
836 NULL);
837
838 /* Return END_POS constrained to the current input field. */
839 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
840 Qnil, Qt, Qnil);
841 }
842
843 /* Save current buffer state for `save-excursion' special form.
844 We (ab)use Lisp_Misc_Save_Value to allow explicit free and so
845 offload some work from GC. */
846
847 Lisp_Object
848 save_excursion_save (void)
849 {
850 return make_save_obj_obj_obj_obj
851 (Fpoint_marker (),
852 /* Do not copy the mark if it points to nowhere. */
853 (XMARKER (BVAR (current_buffer, mark))->buffer
854 ? Fcopy_marker (BVAR (current_buffer, mark), Qnil)
855 : Qnil),
856 /* Selected window if current buffer is shown in it, nil otherwise. */
857 (EQ (XWINDOW (selected_window)->contents, Fcurrent_buffer ())
858 ? selected_window : Qnil),
859 BVAR (current_buffer, mark_active));
860 }
861
862 /* Restore saved buffer before leaving `save-excursion' special form. */
863
864 void
865 save_excursion_restore (Lisp_Object info)
866 {
867 Lisp_Object tem, tem1, omark, nmark;
868 struct gcpro gcpro1, gcpro2, gcpro3;
869
870 tem = Fmarker_buffer (XSAVE_OBJECT (info, 0));
871 /* If we're unwinding to top level, saved buffer may be deleted. This
872 means that all of its markers are unchained and so tem is nil. */
873 if (NILP (tem))
874 goto out;
875
876 omark = nmark = Qnil;
877 GCPRO3 (info, omark, nmark);
878
879 Fset_buffer (tem);
880
881 /* Point marker. */
882 tem = XSAVE_OBJECT (info, 0);
883 Fgoto_char (tem);
884 unchain_marker (XMARKER (tem));
885
886 /* Mark marker. */
887 tem = XSAVE_OBJECT (info, 1);
888 omark = Fmarker_position (BVAR (current_buffer, mark));
889 if (NILP (tem))
890 unchain_marker (XMARKER (BVAR (current_buffer, mark)));
891 else
892 {
893 Fset_marker (BVAR (current_buffer, mark), tem, Fcurrent_buffer ());
894 nmark = Fmarker_position (tem);
895 unchain_marker (XMARKER (tem));
896 }
897
898 /* Mark active. */
899 tem = XSAVE_OBJECT (info, 3);
900 tem1 = BVAR (current_buffer, mark_active);
901 bset_mark_active (current_buffer, tem);
902
903 /* If mark is active now, and either was not active
904 or was at a different place, run the activate hook. */
905 if (! NILP (tem))
906 {
907 if (! EQ (omark, nmark))
908 run_hook (intern ("activate-mark-hook"));
909 }
910 /* If mark has ceased to be active, run deactivate hook. */
911 else if (! NILP (tem1))
912 run_hook (intern ("deactivate-mark-hook"));
913
914 /* If buffer was visible in a window, and a different window was
915 selected, and the old selected window is still showing this
916 buffer, restore point in that window. */
917 tem = XSAVE_OBJECT (info, 2);
918 if (WINDOWP (tem)
919 && !EQ (tem, selected_window)
920 && (tem1 = XWINDOW (tem)->contents,
921 (/* Window is live... */
922 BUFFERP (tem1)
923 /* ...and it shows the current buffer. */
924 && XBUFFER (tem1) == current_buffer)))
925 Fset_window_point (tem, make_number (PT));
926
927 UNGCPRO;
928
929 out:
930
931 free_misc (info);
932 }
933
934 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
935 doc: /* Save point, mark, and current buffer; execute BODY; restore those things.
936 Executes BODY just like `progn'.
937 The values of point, mark and the current buffer are restored
938 even in case of abnormal exit (throw or error).
939 The state of activation of the mark is also restored.
940
941 This construct does not save `deactivate-mark', and therefore
942 functions that change the buffer will still cause deactivation
943 of the mark at the end of the command. To prevent that, bind
944 `deactivate-mark' with `let'.
945
946 If you only want to save the current buffer but not point nor mark,
947 then just use `save-current-buffer', or even `with-current-buffer'.
948
949 usage: (save-excursion &rest BODY) */)
950 (Lisp_Object args)
951 {
952 register Lisp_Object val;
953 ptrdiff_t count = SPECPDL_INDEX ();
954
955 record_unwind_protect (save_excursion_restore, save_excursion_save ());
956
957 val = Fprogn (args);
958 return unbind_to (count, val);
959 }
960
961 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
962 doc: /* Record which buffer is current; execute BODY; make that buffer current.
963 BODY is executed just like `progn'.
964 usage: (save-current-buffer &rest BODY) */)
965 (Lisp_Object args)
966 {
967 ptrdiff_t count = SPECPDL_INDEX ();
968
969 record_unwind_current_buffer ();
970 return unbind_to (count, Fprogn (args));
971 }
972 \f
973 DEFUN ("buffer-size", Fbuffer_size, Sbuffer_size, 0, 1, 0,
974 doc: /* Return the number of characters in the current buffer.
975 If BUFFER, return the number of characters in that buffer instead. */)
976 (Lisp_Object buffer)
977 {
978 if (NILP (buffer))
979 return make_number (Z - BEG);
980 else
981 {
982 CHECK_BUFFER (buffer);
983 return make_number (BUF_Z (XBUFFER (buffer))
984 - BUF_BEG (XBUFFER (buffer)));
985 }
986 }
987
988 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
989 doc: /* Return the minimum permissible value of point in the current buffer.
990 This is 1, unless narrowing (a buffer restriction) is in effect. */)
991 (void)
992 {
993 Lisp_Object temp;
994 XSETFASTINT (temp, BEGV);
995 return temp;
996 }
997
998 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
999 doc: /* Return a marker to the minimum permissible value of point in this buffer.
1000 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
1001 (void)
1002 {
1003 return build_marker (current_buffer, BEGV, BEGV_BYTE);
1004 }
1005
1006 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
1007 doc: /* Return the maximum permissible value of point in the current buffer.
1008 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1009 is in effect, in which case it is less. */)
1010 (void)
1011 {
1012 Lisp_Object temp;
1013 XSETFASTINT (temp, ZV);
1014 return temp;
1015 }
1016
1017 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1018 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1019 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1020 is in effect, in which case it is less. */)
1021 (void)
1022 {
1023 return build_marker (current_buffer, ZV, ZV_BYTE);
1024 }
1025
1026 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1027 doc: /* Return the position of the gap, in the current buffer.
1028 See also `gap-size'. */)
1029 (void)
1030 {
1031 Lisp_Object temp;
1032 XSETFASTINT (temp, GPT);
1033 return temp;
1034 }
1035
1036 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1037 doc: /* Return the size of the current buffer's gap.
1038 See also `gap-position'. */)
1039 (void)
1040 {
1041 Lisp_Object temp;
1042 XSETFASTINT (temp, GAP_SIZE);
1043 return temp;
1044 }
1045
1046 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1047 doc: /* Return the byte position for character position POSITION.
1048 If POSITION is out of range, the value is nil. */)
1049 (Lisp_Object position)
1050 {
1051 CHECK_NUMBER_COERCE_MARKER (position);
1052 if (XINT (position) < BEG || XINT (position) > Z)
1053 return Qnil;
1054 return make_number (CHAR_TO_BYTE (XINT (position)));
1055 }
1056
1057 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1058 doc: /* Return the character position for byte position BYTEPOS.
1059 If BYTEPOS is out of range, the value is nil. */)
1060 (Lisp_Object bytepos)
1061 {
1062 CHECK_NUMBER (bytepos);
1063 if (XINT (bytepos) < BEG_BYTE || XINT (bytepos) > Z_BYTE)
1064 return Qnil;
1065 return make_number (BYTE_TO_CHAR (XINT (bytepos)));
1066 }
1067 \f
1068 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1069 doc: /* Return the character following point, as a number.
1070 At the end of the buffer or accessible region, return 0. */)
1071 (void)
1072 {
1073 Lisp_Object temp;
1074 if (PT >= ZV)
1075 XSETFASTINT (temp, 0);
1076 else
1077 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1078 return temp;
1079 }
1080
1081 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1082 doc: /* Return the character preceding point, as a number.
1083 At the beginning of the buffer or accessible region, return 0. */)
1084 (void)
1085 {
1086 Lisp_Object temp;
1087 if (PT <= BEGV)
1088 XSETFASTINT (temp, 0);
1089 else if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1090 {
1091 ptrdiff_t pos = PT_BYTE;
1092 DEC_POS (pos);
1093 XSETFASTINT (temp, FETCH_CHAR (pos));
1094 }
1095 else
1096 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1097 return temp;
1098 }
1099
1100 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1101 doc: /* Return t if point is at the beginning of the buffer.
1102 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1103 (void)
1104 {
1105 if (PT == BEGV)
1106 return Qt;
1107 return Qnil;
1108 }
1109
1110 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1111 doc: /* Return t if point is at the end of the buffer.
1112 If the buffer is narrowed, this means the end of the narrowed part. */)
1113 (void)
1114 {
1115 if (PT == ZV)
1116 return Qt;
1117 return Qnil;
1118 }
1119
1120 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1121 doc: /* Return t if point is at the beginning of a line. */)
1122 (void)
1123 {
1124 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1125 return Qt;
1126 return Qnil;
1127 }
1128
1129 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1130 doc: /* Return t if point is at the end of a line.
1131 `End of a line' includes point being at the end of the buffer. */)
1132 (void)
1133 {
1134 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1135 return Qt;
1136 return Qnil;
1137 }
1138
1139 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1140 doc: /* Return character in current buffer at position POS.
1141 POS is an integer or a marker and defaults to point.
1142 If POS is out of range, the value is nil. */)
1143 (Lisp_Object pos)
1144 {
1145 register ptrdiff_t pos_byte;
1146
1147 if (NILP (pos))
1148 {
1149 pos_byte = PT_BYTE;
1150 XSETFASTINT (pos, PT);
1151 }
1152
1153 if (MARKERP (pos))
1154 {
1155 pos_byte = marker_byte_position (pos);
1156 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1157 return Qnil;
1158 }
1159 else
1160 {
1161 CHECK_NUMBER_COERCE_MARKER (pos);
1162 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1163 return Qnil;
1164
1165 pos_byte = CHAR_TO_BYTE (XINT (pos));
1166 }
1167
1168 return make_number (FETCH_CHAR (pos_byte));
1169 }
1170
1171 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1172 doc: /* Return character in current buffer preceding position POS.
1173 POS is an integer or a marker and defaults to point.
1174 If POS is out of range, the value is nil. */)
1175 (Lisp_Object pos)
1176 {
1177 register Lisp_Object val;
1178 register ptrdiff_t pos_byte;
1179
1180 if (NILP (pos))
1181 {
1182 pos_byte = PT_BYTE;
1183 XSETFASTINT (pos, PT);
1184 }
1185
1186 if (MARKERP (pos))
1187 {
1188 pos_byte = marker_byte_position (pos);
1189
1190 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1191 return Qnil;
1192 }
1193 else
1194 {
1195 CHECK_NUMBER_COERCE_MARKER (pos);
1196
1197 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1198 return Qnil;
1199
1200 pos_byte = CHAR_TO_BYTE (XINT (pos));
1201 }
1202
1203 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1204 {
1205 DEC_POS (pos_byte);
1206 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1207 }
1208 else
1209 {
1210 pos_byte--;
1211 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1212 }
1213 return val;
1214 }
1215 \f
1216 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1217 doc: /* Return the name under which the user logged in, as a string.
1218 This is based on the effective uid, not the real uid.
1219 Also, if the environment variables LOGNAME or USER are set,
1220 that determines the value of this function.
1221
1222 If optional argument UID is an integer or a float, return the login name
1223 of the user with that uid, or nil if there is no such user. */)
1224 (Lisp_Object uid)
1225 {
1226 struct passwd *pw;
1227 uid_t id;
1228
1229 /* Set up the user name info if we didn't do it before.
1230 (That can happen if Emacs is dumpable
1231 but you decide to run `temacs -l loadup' and not dump. */
1232 if (INTEGERP (Vuser_login_name))
1233 init_editfns ();
1234
1235 if (NILP (uid))
1236 return Vuser_login_name;
1237
1238 CONS_TO_INTEGER (uid, uid_t, id);
1239 block_input ();
1240 pw = getpwuid (id);
1241 unblock_input ();
1242 return (pw ? build_string (pw->pw_name) : Qnil);
1243 }
1244
1245 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1246 0, 0, 0,
1247 doc: /* Return the name of the user's real uid, as a string.
1248 This ignores the environment variables LOGNAME and USER, so it differs from
1249 `user-login-name' when running under `su'. */)
1250 (void)
1251 {
1252 /* Set up the user name info if we didn't do it before.
1253 (That can happen if Emacs is dumpable
1254 but you decide to run `temacs -l loadup' and not dump. */
1255 if (INTEGERP (Vuser_login_name))
1256 init_editfns ();
1257 return Vuser_real_login_name;
1258 }
1259
1260 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1261 doc: /* Return the effective uid of Emacs.
1262 Value is an integer or a float, depending on the value. */)
1263 (void)
1264 {
1265 uid_t euid = geteuid ();
1266 return make_fixnum_or_float (euid);
1267 }
1268
1269 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1270 doc: /* Return the real uid of Emacs.
1271 Value is an integer or a float, depending on the value. */)
1272 (void)
1273 {
1274 uid_t uid = getuid ();
1275 return make_fixnum_or_float (uid);
1276 }
1277
1278 DEFUN ("group-gid", Fgroup_gid, Sgroup_gid, 0, 0, 0,
1279 doc: /* Return the effective gid of Emacs.
1280 Value is an integer or a float, depending on the value. */)
1281 (void)
1282 {
1283 gid_t egid = getegid ();
1284 return make_fixnum_or_float (egid);
1285 }
1286
1287 DEFUN ("group-real-gid", Fgroup_real_gid, Sgroup_real_gid, 0, 0, 0,
1288 doc: /* Return the real gid of Emacs.
1289 Value is an integer or a float, depending on the value. */)
1290 (void)
1291 {
1292 gid_t gid = getgid ();
1293 return make_fixnum_or_float (gid);
1294 }
1295
1296 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1297 doc: /* Return the full name of the user logged in, as a string.
1298 If the full name corresponding to Emacs's userid is not known,
1299 return "unknown".
1300
1301 If optional argument UID is an integer or float, return the full name
1302 of the user with that uid, or nil if there is no such user.
1303 If UID is a string, return the full name of the user with that login
1304 name, or nil if there is no such user. */)
1305 (Lisp_Object uid)
1306 {
1307 struct passwd *pw;
1308 register char *p, *q;
1309 Lisp_Object full;
1310
1311 if (NILP (uid))
1312 return Vuser_full_name;
1313 else if (NUMBERP (uid))
1314 {
1315 uid_t u;
1316 CONS_TO_INTEGER (uid, uid_t, u);
1317 block_input ();
1318 pw = getpwuid (u);
1319 unblock_input ();
1320 }
1321 else if (STRINGP (uid))
1322 {
1323 block_input ();
1324 pw = getpwnam (SSDATA (uid));
1325 unblock_input ();
1326 }
1327 else
1328 error ("Invalid UID specification");
1329
1330 if (!pw)
1331 return Qnil;
1332
1333 p = USER_FULL_NAME;
1334 /* Chop off everything after the first comma. */
1335 q = strchr (p, ',');
1336 full = make_string (p, q ? q - p : strlen (p));
1337
1338 #ifdef AMPERSAND_FULL_NAME
1339 p = SSDATA (full);
1340 q = strchr (p, '&');
1341 /* Substitute the login name for the &, upcasing the first character. */
1342 if (q)
1343 {
1344 Lisp_Object login = Fuser_login_name (make_number (pw->pw_uid));
1345 USE_SAFE_ALLOCA;
1346 char *r = SAFE_ALLOCA (strlen (p) + SBYTES (login) + 1);
1347 memcpy (r, p, q - p);
1348 char *s = lispstpcpy (&r[q - p], login);
1349 r[q - p] = upcase ((unsigned char) r[q - p]);
1350 strcpy (s, q + 1);
1351 full = build_string (r);
1352 SAFE_FREE ();
1353 }
1354 #endif /* AMPERSAND_FULL_NAME */
1355
1356 return full;
1357 }
1358
1359 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1360 doc: /* Return the host name of the machine you are running on, as a string. */)
1361 (void)
1362 {
1363 if (EQ (Vsystem_name, cached_system_name))
1364 init_and_cache_system_name ();
1365 return Vsystem_name;
1366 }
1367
1368 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1369 doc: /* Return the process ID of Emacs, as a number. */)
1370 (void)
1371 {
1372 pid_t pid = getpid ();
1373 return make_fixnum_or_float (pid);
1374 }
1375
1376 \f
1377
1378 #ifndef TIME_T_MIN
1379 # define TIME_T_MIN TYPE_MINIMUM (time_t)
1380 #endif
1381 #ifndef TIME_T_MAX
1382 # define TIME_T_MAX TYPE_MAXIMUM (time_t)
1383 #endif
1384
1385 /* Report that a time value is out of range for Emacs. */
1386 void
1387 time_overflow (void)
1388 {
1389 error ("Specified time is not representable");
1390 }
1391
1392 static void
1393 invalid_time (void)
1394 {
1395 error ("Invalid time specification");
1396 }
1397
1398 /* A substitute for mktime_z on platforms that lack it. It's not
1399 thread-safe, but should be good enough for Emacs in typical use. */
1400 #ifndef HAVE_TZALLOC
1401 time_t
1402 mktime_z (timezone_t tz, struct tm *tm)
1403 {
1404 char *oldtz = getenv ("TZ");
1405 USE_SAFE_ALLOCA;
1406 if (oldtz)
1407 {
1408 size_t oldtzsize = strlen (oldtz) + 1;
1409 char *oldtzcopy = SAFE_ALLOCA (oldtzsize);
1410 oldtz = strcpy (oldtzcopy, oldtz);
1411 }
1412 block_input ();
1413 set_time_zone_rule (tz);
1414 time_t t = mktime (tm);
1415 set_time_zone_rule (oldtz);
1416 unblock_input ();
1417 SAFE_FREE ();
1418 return t;
1419 }
1420 #endif
1421
1422 /* Return the upper part of the time T (everything but the bottom 16 bits). */
1423 static EMACS_INT
1424 hi_time (time_t t)
1425 {
1426 time_t hi = t >> LO_TIME_BITS;
1427
1428 /* Check for overflow, helping the compiler for common cases where
1429 no runtime check is needed, and taking care not to convert
1430 negative numbers to unsigned before comparing them. */
1431 if (! ((! TYPE_SIGNED (time_t)
1432 || MOST_NEGATIVE_FIXNUM <= TIME_T_MIN >> LO_TIME_BITS
1433 || MOST_NEGATIVE_FIXNUM <= hi)
1434 && (TIME_T_MAX >> LO_TIME_BITS <= MOST_POSITIVE_FIXNUM
1435 || hi <= MOST_POSITIVE_FIXNUM)))
1436 time_overflow ();
1437
1438 return hi;
1439 }
1440
1441 /* Return the bottom bits of the time T. */
1442 static int
1443 lo_time (time_t t)
1444 {
1445 return t & ((1 << LO_TIME_BITS) - 1);
1446 }
1447
1448 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1449 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1450 The time is returned as a list of integers (HIGH LOW USEC PSEC).
1451 HIGH has the most significant bits of the seconds, while LOW has the
1452 least significant 16 bits. USEC and PSEC are the microsecond and
1453 picosecond counts. */)
1454 (void)
1455 {
1456 return make_lisp_time (current_timespec ());
1457 }
1458
1459 static struct lisp_time
1460 time_add (struct lisp_time ta, struct lisp_time tb)
1461 {
1462 EMACS_INT hi = ta.hi + tb.hi;
1463 int lo = ta.lo + tb.lo;
1464 int us = ta.us + tb.us;
1465 int ps = ta.ps + tb.ps;
1466 us += (1000000 <= ps);
1467 ps -= (1000000 <= ps) * 1000000;
1468 lo += (1000000 <= us);
1469 us -= (1000000 <= us) * 1000000;
1470 hi += (1 << LO_TIME_BITS <= lo);
1471 lo -= (1 << LO_TIME_BITS <= lo) << LO_TIME_BITS;
1472 return (struct lisp_time) { hi, lo, us, ps };
1473 }
1474
1475 static struct lisp_time
1476 time_subtract (struct lisp_time ta, struct lisp_time tb)
1477 {
1478 EMACS_INT hi = ta.hi - tb.hi;
1479 int lo = ta.lo - tb.lo;
1480 int us = ta.us - tb.us;
1481 int ps = ta.ps - tb.ps;
1482 us -= (ps < 0);
1483 ps += (ps < 0) * 1000000;
1484 lo -= (us < 0);
1485 us += (us < 0) * 1000000;
1486 hi -= (lo < 0);
1487 lo += (lo < 0) << LO_TIME_BITS;
1488 return (struct lisp_time) { hi, lo, us, ps };
1489 }
1490
1491 static Lisp_Object
1492 time_arith (Lisp_Object a, Lisp_Object b,
1493 struct lisp_time (*op) (struct lisp_time, struct lisp_time))
1494 {
1495 int alen, blen;
1496 struct lisp_time ta = lisp_time_struct (a, &alen);
1497 struct lisp_time tb = lisp_time_struct (b, &blen);
1498 struct lisp_time t = op (ta, tb);
1499 if (! (MOST_NEGATIVE_FIXNUM <= t.hi && t.hi <= MOST_POSITIVE_FIXNUM))
1500 time_overflow ();
1501 Lisp_Object val = Qnil;
1502
1503 switch (max (alen, blen))
1504 {
1505 default:
1506 val = Fcons (make_number (t.ps), val);
1507 /* Fall through. */
1508 case 3:
1509 val = Fcons (make_number (t.us), val);
1510 /* Fall through. */
1511 case 2:
1512 val = Fcons (make_number (t.lo), val);
1513 val = Fcons (make_number (t.hi), val);
1514 break;
1515 }
1516
1517 return val;
1518 }
1519
1520 DEFUN ("time-add", Ftime_add, Stime_add, 2, 2, 0,
1521 doc: /* Return the sum of two time values A and B, as a time value. */)
1522 (Lisp_Object a, Lisp_Object b)
1523 {
1524 return time_arith (a, b, time_add);
1525 }
1526
1527 DEFUN ("time-subtract", Ftime_subtract, Stime_subtract, 2, 2, 0,
1528 doc: /* Return the difference between two time values A and B, as a time value. */)
1529 (Lisp_Object a, Lisp_Object b)
1530 {
1531 return time_arith (a, b, time_subtract);
1532 }
1533
1534 DEFUN ("time-less-p", Ftime_less_p, Stime_less_p, 2, 2, 0,
1535 doc: /* Return non-nil if time value T1 is earlier than time value T2. */)
1536 (Lisp_Object t1, Lisp_Object t2)
1537 {
1538 int t1len, t2len;
1539 struct lisp_time a = lisp_time_struct (t1, &t1len);
1540 struct lisp_time b = lisp_time_struct (t2, &t2len);
1541 return ((a.hi != b.hi ? a.hi < b.hi
1542 : a.lo != b.lo ? a.lo < b.lo
1543 : a.us != b.us ? a.us < b.us
1544 : a.ps < b.ps)
1545 ? Qt : Qnil);
1546 }
1547
1548
1549 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1550 0, 0, 0,
1551 doc: /* Return the current run time used by Emacs.
1552 The time is returned as a list (HIGH LOW USEC PSEC), using the same
1553 style as (current-time).
1554
1555 On systems that can't determine the run time, `get-internal-run-time'
1556 does the same thing as `current-time'. */)
1557 (void)
1558 {
1559 #ifdef HAVE_GETRUSAGE
1560 struct rusage usage;
1561 time_t secs;
1562 int usecs;
1563
1564 if (getrusage (RUSAGE_SELF, &usage) < 0)
1565 /* This shouldn't happen. What action is appropriate? */
1566 xsignal0 (Qerror);
1567
1568 /* Sum up user time and system time. */
1569 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1570 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1571 if (usecs >= 1000000)
1572 {
1573 usecs -= 1000000;
1574 secs++;
1575 }
1576 return make_lisp_time (make_timespec (secs, usecs * 1000));
1577 #else /* ! HAVE_GETRUSAGE */
1578 #ifdef WINDOWSNT
1579 return w32_get_internal_run_time ();
1580 #else /* ! WINDOWSNT */
1581 return Fcurrent_time ();
1582 #endif /* WINDOWSNT */
1583 #endif /* HAVE_GETRUSAGE */
1584 }
1585 \f
1586
1587 /* Make a Lisp list that represents the Emacs time T. T may be an
1588 invalid time, with a slightly negative tv_nsec value such as
1589 UNKNOWN_MODTIME_NSECS; in that case, the Lisp list contains a
1590 correspondingly negative picosecond count. */
1591 Lisp_Object
1592 make_lisp_time (struct timespec t)
1593 {
1594 time_t s = t.tv_sec;
1595 int ns = t.tv_nsec;
1596 return list4i (hi_time (s), lo_time (s), ns / 1000, ns % 1000 * 1000);
1597 }
1598
1599 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1600 Set *PHIGH, *PLOW, *PUSEC, *PPSEC to its parts; do not check their values.
1601 Return 2, 3, or 4 to indicate the effective length of SPECIFIED_TIME
1602 if successful, 0 if unsuccessful. */
1603 static int
1604 disassemble_lisp_time (Lisp_Object specified_time, Lisp_Object *phigh,
1605 Lisp_Object *plow, Lisp_Object *pusec,
1606 Lisp_Object *ppsec)
1607 {
1608 Lisp_Object high = make_number (0);
1609 Lisp_Object low = specified_time;
1610 Lisp_Object usec = make_number (0);
1611 Lisp_Object psec = make_number (0);
1612 int len = 4;
1613
1614 if (CONSP (specified_time))
1615 {
1616 high = XCAR (specified_time);
1617 low = XCDR (specified_time);
1618 if (CONSP (low))
1619 {
1620 Lisp_Object low_tail = XCDR (low);
1621 low = XCAR (low);
1622 if (CONSP (low_tail))
1623 {
1624 usec = XCAR (low_tail);
1625 low_tail = XCDR (low_tail);
1626 if (CONSP (low_tail))
1627 psec = XCAR (low_tail);
1628 else
1629 len = 3;
1630 }
1631 else if (!NILP (low_tail))
1632 {
1633 usec = low_tail;
1634 len = 3;
1635 }
1636 else
1637 len = 2;
1638 }
1639 else
1640 len = 2;
1641
1642 /* When combining components, require LOW to be an integer,
1643 as otherwise it would be a pain to add up times. */
1644 if (! INTEGERP (low))
1645 return 0;
1646 }
1647 else if (INTEGERP (specified_time))
1648 len = 2;
1649
1650 *phigh = high;
1651 *plow = low;
1652 *pusec = usec;
1653 *ppsec = psec;
1654 return len;
1655 }
1656
1657 /* Convert T into an Emacs time *RESULT, truncating toward minus infinity.
1658 Return true if T is in range, false otherwise. */
1659 static bool
1660 decode_float_time (double t, struct lisp_time *result)
1661 {
1662 double lo_multiplier = 1 << LO_TIME_BITS;
1663 double emacs_time_min = MOST_NEGATIVE_FIXNUM * lo_multiplier;
1664 if (! (emacs_time_min <= t && t < -emacs_time_min))
1665 return false;
1666
1667 double small_t = t / lo_multiplier;
1668 EMACS_INT hi = small_t;
1669 double t_sans_hi = t - hi * lo_multiplier;
1670 int lo = t_sans_hi;
1671 long double fracps = (t_sans_hi - lo) * 1e12L;
1672 #ifdef INT_FAST64_MAX
1673 int_fast64_t ifracps = fracps;
1674 int us = ifracps / 1000000;
1675 int ps = ifracps % 1000000;
1676 #else
1677 int us = fracps / 1e6L;
1678 int ps = fracps - us * 1e6L;
1679 #endif
1680 us -= (ps < 0);
1681 ps += (ps < 0) * 1000000;
1682 lo -= (us < 0);
1683 us += (us < 0) * 1000000;
1684 hi -= (lo < 0);
1685 lo += (lo < 0) << LO_TIME_BITS;
1686 result->hi = hi;
1687 result->lo = lo;
1688 result->us = us;
1689 result->ps = ps;
1690 return true;
1691 }
1692
1693 /* From the time components HIGH, LOW, USEC and PSEC taken from a Lisp
1694 list, generate the corresponding time value.
1695 If LOW is floating point, the other components should be zero.
1696
1697 If RESULT is not null, store into *RESULT the converted time.
1698 If *DRESULT is not null, store into *DRESULT the number of
1699 seconds since the start of the POSIX Epoch.
1700
1701 Return true if successful, false if the components are of the
1702 wrong type or represent a time out of range. */
1703 bool
1704 decode_time_components (Lisp_Object high, Lisp_Object low, Lisp_Object usec,
1705 Lisp_Object psec,
1706 struct lisp_time *result, double *dresult)
1707 {
1708 EMACS_INT hi, lo, us, ps;
1709 if (! (INTEGERP (high)
1710 && INTEGERP (usec) && INTEGERP (psec)))
1711 return false;
1712 if (! INTEGERP (low))
1713 {
1714 if (FLOATP (low))
1715 {
1716 double t = XFLOAT_DATA (low);
1717 if (result && ! decode_float_time (t, result))
1718 return false;
1719 if (dresult)
1720 *dresult = t;
1721 return true;
1722 }
1723 else if (NILP (low))
1724 {
1725 struct timespec now = current_timespec ();
1726 if (result)
1727 {
1728 result->hi = hi_time (now.tv_sec);
1729 result->lo = lo_time (now.tv_sec);
1730 result->us = now.tv_nsec / 1000;
1731 result->ps = now.tv_nsec % 1000 * 1000;
1732 }
1733 if (dresult)
1734 *dresult = now.tv_sec + now.tv_nsec / 1e9;
1735 return true;
1736 }
1737 else
1738 return false;
1739 }
1740
1741 hi = XINT (high);
1742 lo = XINT (low);
1743 us = XINT (usec);
1744 ps = XINT (psec);
1745
1746 /* Normalize out-of-range lower-order components by carrying
1747 each overflow into the next higher-order component. */
1748 us += ps / 1000000 - (ps % 1000000 < 0);
1749 lo += us / 1000000 - (us % 1000000 < 0);
1750 hi += lo >> LO_TIME_BITS;
1751 ps = ps % 1000000 + 1000000 * (ps % 1000000 < 0);
1752 us = us % 1000000 + 1000000 * (us % 1000000 < 0);
1753 lo &= (1 << LO_TIME_BITS) - 1;
1754
1755 if (result)
1756 {
1757 if (! (MOST_NEGATIVE_FIXNUM <= hi && hi <= MOST_POSITIVE_FIXNUM))
1758 return false;
1759 result->hi = hi;
1760 result->lo = lo;
1761 result->us = us;
1762 result->ps = ps;
1763 }
1764
1765 if (dresult)
1766 {
1767 double dhi = hi;
1768 *dresult = (us * 1e6 + ps) / 1e12 + lo + dhi * (1 << LO_TIME_BITS);
1769 }
1770
1771 return true;
1772 }
1773
1774 struct timespec
1775 lisp_to_timespec (struct lisp_time t)
1776 {
1777 if (! ((TYPE_SIGNED (time_t) ? TIME_T_MIN >> LO_TIME_BITS <= t.hi : 0 <= t.hi)
1778 && t.hi <= TIME_T_MAX >> LO_TIME_BITS))
1779 return invalid_timespec ();
1780 time_t s = (t.hi << LO_TIME_BITS) + t.lo;
1781 int ns = t.us * 1000 + t.ps / 1000;
1782 return make_timespec (s, ns);
1783 }
1784
1785 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1786 Store its effective length into *PLEN.
1787 If SPECIFIED_TIME is nil, use the current time.
1788 Signal an error if SPECIFIED_TIME does not represent a time. */
1789 static struct lisp_time
1790 lisp_time_struct (Lisp_Object specified_time, int *plen)
1791 {
1792 Lisp_Object high, low, usec, psec;
1793 struct lisp_time t;
1794 int len = disassemble_lisp_time (specified_time, &high, &low, &usec, &psec);
1795 if (! (len && decode_time_components (high, low, usec, psec, &t, 0)))
1796 invalid_time ();
1797 *plen = len;
1798 return t;
1799 }
1800
1801 /* Like lisp_time_struct, except return a struct timespec.
1802 Discard any low-order digits. */
1803 struct timespec
1804 lisp_time_argument (Lisp_Object specified_time)
1805 {
1806 int len;
1807 struct lisp_time lt = lisp_time_struct (specified_time, &len);
1808 struct timespec t = lisp_to_timespec (lt);
1809 if (! timespec_valid_p (t))
1810 time_overflow ();
1811 return t;
1812 }
1813
1814 /* Like lisp_time_argument, except decode only the seconds part,
1815 and do not check the subseconds part. */
1816 static time_t
1817 lisp_seconds_argument (Lisp_Object specified_time)
1818 {
1819 Lisp_Object high, low, usec, psec;
1820 struct lisp_time t;
1821 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1822 && decode_time_components (high, low, make_number (0),
1823 make_number (0), &t, 0)))
1824 invalid_time ();
1825 if (! ((TYPE_SIGNED (time_t) ? TIME_T_MIN >> LO_TIME_BITS <= t.hi : 0 <= t.hi)
1826 && t.hi <= TIME_T_MAX >> LO_TIME_BITS))
1827 time_overflow ();
1828 return (t.hi << LO_TIME_BITS) + t.lo;
1829 }
1830
1831 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1832 doc: /* Return the current time, as a float number of seconds since the epoch.
1833 If SPECIFIED-TIME is given, it is the time to convert to float
1834 instead of the current time. The argument should have the form
1835 (HIGH LOW) or (HIGH LOW USEC) or (HIGH LOW USEC PSEC). Thus,
1836 you can use times from `current-time' and from `file-attributes'.
1837 SPECIFIED-TIME can also have the form (HIGH . LOW), but this is
1838 considered obsolete.
1839
1840 WARNING: Since the result is floating point, it may not be exact.
1841 If precise time stamps are required, use either `current-time',
1842 or (if you need time as a string) `format-time-string'. */)
1843 (Lisp_Object specified_time)
1844 {
1845 double t;
1846 Lisp_Object high, low, usec, psec;
1847 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1848 && decode_time_components (high, low, usec, psec, 0, &t)))
1849 invalid_time ();
1850 return make_float (t);
1851 }
1852
1853 /* Write information into buffer S of size MAXSIZE, according to the
1854 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1855 Default to Universal Time if UT, local time otherwise.
1856 Use NS as the number of nanoseconds in the %N directive.
1857 Return the number of bytes written, not including the terminating
1858 '\0'. If S is NULL, nothing will be written anywhere; so to
1859 determine how many bytes would be written, use NULL for S and
1860 ((size_t) -1) for MAXSIZE.
1861
1862 This function behaves like nstrftime, except it allows null
1863 bytes in FORMAT and it does not support nanoseconds. */
1864 static size_t
1865 emacs_nmemftime (char *s, size_t maxsize, const char *format,
1866 size_t format_len, const struct tm *tp, bool ut, int ns)
1867 {
1868 size_t total = 0;
1869
1870 /* Loop through all the null-terminated strings in the format
1871 argument. Normally there's just one null-terminated string, but
1872 there can be arbitrarily many, concatenated together, if the
1873 format contains '\0' bytes. nstrftime stops at the first
1874 '\0' byte so we must invoke it separately for each such string. */
1875 for (;;)
1876 {
1877 size_t len;
1878 size_t result;
1879
1880 if (s)
1881 s[0] = '\1';
1882
1883 result = nstrftime (s, maxsize, format, tp, ut, ns);
1884
1885 if (s)
1886 {
1887 if (result == 0 && s[0] != '\0')
1888 return 0;
1889 s += result + 1;
1890 }
1891
1892 maxsize -= result + 1;
1893 total += result;
1894 len = strlen (format);
1895 if (len == format_len)
1896 return total;
1897 total++;
1898 format += len + 1;
1899 format_len -= len + 1;
1900 }
1901 }
1902
1903 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1904 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1905 TIME is specified as (HIGH LOW USEC PSEC), as returned by
1906 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1907 is also still accepted.
1908 The third, optional, argument UNIVERSAL, if non-nil, means describe TIME
1909 as Universal Time; nil means describe TIME in the local time zone.
1910 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1911 by text that describes the specified date and time in TIME:
1912
1913 %Y is the year, %y within the century, %C the century.
1914 %G is the year corresponding to the ISO week, %g within the century.
1915 %m is the numeric month.
1916 %b and %h are the locale's abbreviated month name, %B the full name.
1917 (%h is not supported on MS-Windows.)
1918 %d is the day of the month, zero-padded, %e is blank-padded.
1919 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1920 %a is the locale's abbreviated name of the day of week, %A the full name.
1921 %U is the week number starting on Sunday, %W starting on Monday,
1922 %V according to ISO 8601.
1923 %j is the day of the year.
1924
1925 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1926 only blank-padded, %l is like %I blank-padded.
1927 %p is the locale's equivalent of either AM or PM.
1928 %M is the minute.
1929 %S is the second.
1930 %N is the nanosecond, %6N the microsecond, %3N the millisecond, etc.
1931 %Z is the time zone name, %z is the numeric form.
1932 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1933
1934 %c is the locale's date and time format.
1935 %x is the locale's "preferred" date format.
1936 %D is like "%m/%d/%y".
1937 %F is the ISO 8601 date format (like "%Y-%m-%d").
1938
1939 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
1940 %X is the locale's "preferred" time format.
1941
1942 Finally, %n is a newline, %t is a tab, %% is a literal %.
1943
1944 Certain flags and modifiers are available with some format controls.
1945 The flags are `_', `-', `^' and `#'. For certain characters X,
1946 %_X is like %X, but padded with blanks; %-X is like %X,
1947 but without padding. %^X is like %X, but with all textual
1948 characters up-cased; %#X is like %X, but with letter-case of
1949 all textual characters reversed.
1950 %NX (where N stands for an integer) is like %X,
1951 but takes up at least N (a number) positions.
1952 The modifiers are `E' and `O'. For certain characters X,
1953 %EX is a locale's alternative version of %X;
1954 %OX is like %X, but uses the locale's number symbols.
1955
1956 For example, to produce full ISO 8601 format, use "%FT%T%z".
1957
1958 usage: (format-time-string FORMAT-STRING &optional TIME UNIVERSAL) */)
1959 (Lisp_Object format_string, Lisp_Object timeval, Lisp_Object universal)
1960 {
1961 struct timespec t = lisp_time_argument (timeval);
1962 struct tm tm;
1963
1964 CHECK_STRING (format_string);
1965 format_string = code_convert_string_norecord (format_string,
1966 Vlocale_coding_system, 1);
1967 return format_time_string (SSDATA (format_string), SBYTES (format_string),
1968 t, ! NILP (universal), &tm);
1969 }
1970
1971 static Lisp_Object
1972 format_time_string (char const *format, ptrdiff_t formatlen,
1973 struct timespec t, bool ut, struct tm *tmp)
1974 {
1975 char buffer[4000];
1976 char *buf = buffer;
1977 ptrdiff_t size = sizeof buffer;
1978 size_t len;
1979 Lisp_Object bufstring;
1980 int ns = t.tv_nsec;
1981 USE_SAFE_ALLOCA;
1982
1983 tmp = ut ? gmtime_r (&t.tv_sec, tmp) : localtime_r (&t.tv_sec, tmp);
1984 if (! tmp)
1985 time_overflow ();
1986 synchronize_system_time_locale ();
1987
1988 while (true)
1989 {
1990 buf[0] = '\1';
1991 len = emacs_nmemftime (buf, size, format, formatlen, tmp, ut, ns);
1992 if ((0 < len && len < size) || (len == 0 && buf[0] == '\0'))
1993 break;
1994
1995 /* Buffer was too small, so make it bigger and try again. */
1996 len = emacs_nmemftime (NULL, SIZE_MAX, format, formatlen, tmp, ut, ns);
1997 if (STRING_BYTES_BOUND <= len)
1998 string_overflow ();
1999 size = len + 1;
2000 buf = SAFE_ALLOCA (size);
2001 }
2002
2003 bufstring = make_unibyte_string (buf, len);
2004 SAFE_FREE ();
2005 return code_convert_string_norecord (bufstring, Vlocale_coding_system, 0);
2006 }
2007
2008 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 1, 0,
2009 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST ZONE).
2010 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
2011 as from `current-time' and `file-attributes', or nil to use the
2012 current time. The obsolete form (HIGH . LOW) is also still accepted.
2013 The list has the following nine members: SEC is an integer between 0
2014 and 60; SEC is 60 for a leap second, which only some operating systems
2015 support. MINUTE is an integer between 0 and 59. HOUR is an integer
2016 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
2017 integer between 1 and 12. YEAR is an integer indicating the
2018 four-digit year. DOW is the day of week, an integer between 0 and 6,
2019 where 0 is Sunday. DST is t if daylight saving time is in effect,
2020 otherwise nil. ZONE is an integer indicating the number of seconds
2021 east of Greenwich. (Note that Common Lisp has different meanings for
2022 DOW and ZONE.) */)
2023 (Lisp_Object specified_time)
2024 {
2025 time_t time_spec = lisp_seconds_argument (specified_time);
2026 struct tm local_tm, gmt_tm;
2027
2028 if (! (localtime_r (&time_spec, &local_tm)
2029 && MOST_NEGATIVE_FIXNUM - TM_YEAR_BASE <= local_tm.tm_year
2030 && local_tm.tm_year <= MOST_POSITIVE_FIXNUM - TM_YEAR_BASE))
2031 time_overflow ();
2032
2033 /* Avoid overflow when INT_MAX < EMACS_INT_MAX. */
2034 EMACS_INT tm_year_base = TM_YEAR_BASE;
2035
2036 return Flist (9, ((Lisp_Object [])
2037 {make_number (local_tm.tm_sec),
2038 make_number (local_tm.tm_min),
2039 make_number (local_tm.tm_hour),
2040 make_number (local_tm.tm_mday),
2041 make_number (local_tm.tm_mon + 1),
2042 make_number (local_tm.tm_year + tm_year_base),
2043 make_number (local_tm.tm_wday),
2044 local_tm.tm_isdst ? Qt : Qnil,
2045 (HAVE_TM_GMTOFF
2046 ? make_number (tm_gmtoff (&local_tm))
2047 : gmtime_r (&time_spec, &gmt_tm)
2048 ? make_number (tm_diff (&local_tm, &gmt_tm))
2049 : Qnil)}));
2050 }
2051
2052 /* Return OBJ - OFFSET, checking that OBJ is a valid fixnum and that
2053 the result is representable as an int. Assume OFFSET is small and
2054 nonnegative. */
2055 static int
2056 check_tm_member (Lisp_Object obj, int offset)
2057 {
2058 EMACS_INT n;
2059 CHECK_NUMBER (obj);
2060 n = XINT (obj);
2061 if (! (INT_MIN + offset <= n && n - offset <= INT_MAX))
2062 time_overflow ();
2063 return n - offset;
2064 }
2065
2066 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
2067 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
2068 This is the reverse operation of `decode-time', which see.
2069 ZONE defaults to the current time zone rule. This can
2070 be a string or t (as from `set-time-zone-rule'), or it can be a list
2071 \(as from `current-time-zone') or an integer (as from `decode-time')
2072 applied without consideration for daylight saving time.
2073
2074 You can pass more than 7 arguments; then the first six arguments
2075 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
2076 The intervening arguments are ignored.
2077 This feature lets (apply 'encode-time (decode-time ...)) work.
2078
2079 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
2080 for example, a DAY of 0 means the day preceding the given month.
2081 Year numbers less than 100 are treated just like other year numbers.
2082 If you want them to stand for years in this century, you must do that yourself.
2083
2084 Years before 1970 are not guaranteed to work. On some systems,
2085 year values as low as 1901 do work.
2086
2087 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
2088 (ptrdiff_t nargs, Lisp_Object *args)
2089 {
2090 time_t value;
2091 struct tm tm;
2092 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
2093
2094 tm.tm_sec = check_tm_member (args[0], 0);
2095 tm.tm_min = check_tm_member (args[1], 0);
2096 tm.tm_hour = check_tm_member (args[2], 0);
2097 tm.tm_mday = check_tm_member (args[3], 0);
2098 tm.tm_mon = check_tm_member (args[4], 1);
2099 tm.tm_year = check_tm_member (args[5], TM_YEAR_BASE);
2100 tm.tm_isdst = -1;
2101
2102 if (CONSP (zone))
2103 zone = XCAR (zone);
2104 if (NILP (zone))
2105 value = mktime (&tm);
2106 else
2107 {
2108 static char const tzbuf_format[] = "XXX%s%"pI"d:%02d:%02d";
2109 char tzbuf[sizeof tzbuf_format + INT_STRLEN_BOUND (EMACS_INT)];
2110 const char *tzstring;
2111
2112 if (EQ (zone, Qt))
2113 tzstring = "UTC0";
2114 else if (STRINGP (zone))
2115 tzstring = SSDATA (zone);
2116 else if (INTEGERP (zone))
2117 {
2118 EMACS_INT abszone = eabs (XINT (zone));
2119 EMACS_INT zone_hr = abszone / (60*60);
2120 int zone_min = (abszone/60) % 60;
2121 int zone_sec = abszone % 60;
2122 sprintf (tzbuf, tzbuf_format, &"-"[XINT (zone) < 0],
2123 zone_hr, zone_min, zone_sec);
2124 tzstring = tzbuf;
2125 }
2126 else
2127 tzstring = 0;
2128
2129 timezone_t tz = tzstring ? tzalloc (tzstring) : 0;
2130 if (! tz)
2131 error ("Invalid time zone specification");
2132 value = mktime_z (tz, &tm);
2133 tzfree (tz);
2134 }
2135
2136 if (value == (time_t) -1)
2137 time_overflow ();
2138
2139 return list2i (hi_time (value), lo_time (value));
2140 }
2141
2142 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, 0, 1, 0,
2143 doc: /* Return the current local time, as a human-readable string.
2144 Programs can use this function to decode a time,
2145 since the number of columns in each field is fixed
2146 if the year is in the range 1000-9999.
2147 The format is `Sun Sep 16 01:03:52 1973'.
2148 However, see also the functions `decode-time' and `format-time-string'
2149 which provide a much more powerful and general facility.
2150
2151 If SPECIFIED-TIME is given, it is a time to format instead of the
2152 current time. The argument should have the form (HIGH LOW . IGNORED).
2153 Thus, you can use times obtained from `current-time' and from
2154 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
2155 but this is considered obsolete. */)
2156 (Lisp_Object specified_time)
2157 {
2158 time_t value = lisp_seconds_argument (specified_time);
2159
2160 /* Convert to a string in ctime format, except without the trailing
2161 newline, and without the 4-digit year limit. Don't use asctime
2162 or ctime, as they might dump core if the year is outside the
2163 range -999 .. 9999. */
2164 struct tm tm;
2165 if (! localtime_r (&value, &tm))
2166 time_overflow ();
2167
2168 static char const wday_name[][4] =
2169 { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
2170 static char const mon_name[][4] =
2171 { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
2172 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
2173 printmax_t year_base = TM_YEAR_BASE;
2174 char buf[sizeof "Mon Apr 30 12:49:17 " + INT_STRLEN_BOUND (int) + 1];
2175 int len = sprintf (buf, "%s %s%3d %02d:%02d:%02d %"pMd,
2176 wday_name[tm.tm_wday], mon_name[tm.tm_mon], tm.tm_mday,
2177 tm.tm_hour, tm.tm_min, tm.tm_sec,
2178 tm.tm_year + year_base);
2179
2180 return make_unibyte_string (buf, len);
2181 }
2182
2183 /* Yield A - B, measured in seconds.
2184 This function is copied from the GNU C Library. */
2185 static int
2186 tm_diff (struct tm *a, struct tm *b)
2187 {
2188 /* Compute intervening leap days correctly even if year is negative.
2189 Take care to avoid int overflow in leap day calculations,
2190 but it's OK to assume that A and B are close to each other. */
2191 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
2192 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
2193 int a100 = a4 / 25 - (a4 % 25 < 0);
2194 int b100 = b4 / 25 - (b4 % 25 < 0);
2195 int a400 = a100 >> 2;
2196 int b400 = b100 >> 2;
2197 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
2198 int years = a->tm_year - b->tm_year;
2199 int days = (365 * years + intervening_leap_days
2200 + (a->tm_yday - b->tm_yday));
2201 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
2202 + (a->tm_min - b->tm_min))
2203 + (a->tm_sec - b->tm_sec));
2204 }
2205
2206 /* Yield A's UTC offset, or an unspecified value if unknown. */
2207 static long int
2208 tm_gmtoff (struct tm *a)
2209 {
2210 #if HAVE_TM_GMTOFF
2211 return a->tm_gmtoff;
2212 #else
2213 return 0;
2214 #endif
2215 }
2216
2217 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 1, 0,
2218 doc: /* Return the offset and name for the local time zone.
2219 This returns a list of the form (OFFSET NAME).
2220 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
2221 A negative value means west of Greenwich.
2222 NAME is a string giving the name of the time zone.
2223 If SPECIFIED-TIME is given, the time zone offset is determined from it
2224 instead of using the current time. The argument should have the form
2225 (HIGH LOW . IGNORED). Thus, you can use times obtained from
2226 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
2227 have the form (HIGH . LOW), but this is considered obsolete.
2228
2229 Some operating systems cannot provide all this information to Emacs;
2230 in this case, `current-time-zone' returns a list containing nil for
2231 the data it can't find. */)
2232 (Lisp_Object specified_time)
2233 {
2234 struct timespec value;
2235 struct tm local_tm, gmt_tm;
2236 Lisp_Object zone_offset, zone_name;
2237
2238 zone_offset = Qnil;
2239 value = make_timespec (lisp_seconds_argument (specified_time), 0);
2240 zone_name = format_time_string ("%Z", sizeof "%Z" - 1, value, 0, &local_tm);
2241
2242 if (HAVE_TM_GMTOFF || gmtime_r (&value.tv_sec, &gmt_tm))
2243 {
2244 long int offset = (HAVE_TM_GMTOFF
2245 ? tm_gmtoff (&local_tm)
2246 : tm_diff (&local_tm, &gmt_tm));
2247 zone_offset = make_number (offset);
2248 if (SCHARS (zone_name) == 0)
2249 {
2250 /* No local time zone name is available; use "+-NNNN" instead. */
2251 long int m = offset / 60;
2252 long int am = offset < 0 ? - m : m;
2253 long int hour = am / 60;
2254 int min = am % 60;
2255 char buf[sizeof "+00" + INT_STRLEN_BOUND (long int)];
2256 zone_name = make_formatted_string (buf, "%c%02ld%02d",
2257 (offset < 0 ? '-' : '+'),
2258 hour, min);
2259 }
2260 }
2261
2262 return list2 (zone_offset, zone_name);
2263 }
2264
2265 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
2266 doc: /* Set the local time zone using TZ, a string specifying a time zone rule.
2267 If TZ is nil, use implementation-defined default time zone information.
2268 If TZ is t, use Universal Time.
2269
2270 Instead of calling this function, you typically want (setenv "TZ" TZ).
2271 That changes both the environment of the Emacs process and the
2272 variable `process-environment', whereas `set-time-zone-rule' affects
2273 only the former. */)
2274 (Lisp_Object tz)
2275 {
2276 const char *tzstring;
2277
2278 if (! (NILP (tz) || EQ (tz, Qt)))
2279 CHECK_STRING (tz);
2280
2281 if (NILP (tz))
2282 tzstring = initial_tz;
2283 else if (EQ (tz, Qt))
2284 tzstring = "UTC0";
2285 else
2286 tzstring = SSDATA (tz);
2287
2288 block_input ();
2289 set_time_zone_rule (tzstring);
2290 unblock_input ();
2291
2292 return Qnil;
2293 }
2294
2295 /* Set the local time zone rule to TZSTRING.
2296
2297 This function is not thread-safe, in theory because putenv is not,
2298 but mostly because of the static storage it updates. Other threads
2299 that invoke localtime etc. may be adversely affected while this
2300 function is executing. */
2301
2302 static void
2303 set_time_zone_rule (const char *tzstring)
2304 {
2305 /* A buffer holding a string of the form "TZ=value", intended
2306 to be part of the environment. */
2307 static char *tzvalbuf;
2308 static ptrdiff_t tzvalbufsize;
2309
2310 int tzeqlen = sizeof "TZ=" - 1;
2311 ptrdiff_t tzstringlen = tzstring ? strlen (tzstring) : 0;
2312 char *tzval = tzvalbuf;
2313 bool new_tzvalbuf = tzvalbufsize <= tzeqlen + tzstringlen;
2314
2315 if (new_tzvalbuf)
2316 {
2317 /* Do not attempt to free the old tzvalbuf, since another thread
2318 may be using it. In practice, the first allocation is large
2319 enough and memory does not leak. */
2320 tzval = xpalloc (NULL, &tzvalbufsize,
2321 tzeqlen + tzstringlen - tzvalbufsize + 1, -1, 1);
2322 tzvalbuf = tzval;
2323 tzval[1] = 'Z';
2324 tzval[2] = '=';
2325 }
2326
2327 if (tzstring)
2328 {
2329 /* Modify TZVAL in place. Although this is dicey in a
2330 multithreaded environment, we know of no portable alternative.
2331 Calling putenv or setenv could crash some other thread. */
2332 tzval[0] = 'T';
2333 strcpy (tzval + tzeqlen, tzstring);
2334 }
2335 else
2336 {
2337 /* Turn 'TZ=whatever' into an empty environment variable 'tZ='.
2338 Although this is also dicey, calling unsetenv here can crash Emacs.
2339 See Bug#8705. */
2340 tzval[0] = 't';
2341 tzval[tzeqlen] = 0;
2342 }
2343
2344 if (new_tzvalbuf)
2345 {
2346 /* Although this is not thread-safe, in practice this runs only
2347 on startup when there is only one thread. */
2348 xputenv (tzval);
2349 }
2350
2351 #ifdef HAVE_TZSET
2352 tzset ();
2353 #endif
2354 }
2355 \f
2356 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2357 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2358 type of object is Lisp_String). INHERIT is passed to
2359 INSERT_FROM_STRING_FUNC as the last argument. */
2360
2361 static void
2362 general_insert_function (void (*insert_func)
2363 (const char *, ptrdiff_t),
2364 void (*insert_from_string_func)
2365 (Lisp_Object, ptrdiff_t, ptrdiff_t,
2366 ptrdiff_t, ptrdiff_t, bool),
2367 bool inherit, ptrdiff_t nargs, Lisp_Object *args)
2368 {
2369 ptrdiff_t argnum;
2370 Lisp_Object val;
2371
2372 for (argnum = 0; argnum < nargs; argnum++)
2373 {
2374 val = args[argnum];
2375 if (CHARACTERP (val))
2376 {
2377 int c = XFASTINT (val);
2378 unsigned char str[MAX_MULTIBYTE_LENGTH];
2379 int len;
2380
2381 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2382 len = CHAR_STRING (c, str);
2383 else
2384 {
2385 str[0] = CHAR_TO_BYTE8 (c);
2386 len = 1;
2387 }
2388 (*insert_func) ((char *) str, len);
2389 }
2390 else if (STRINGP (val))
2391 {
2392 (*insert_from_string_func) (val, 0, 0,
2393 SCHARS (val),
2394 SBYTES (val),
2395 inherit);
2396 }
2397 else
2398 wrong_type_argument (Qchar_or_string_p, val);
2399 }
2400 }
2401
2402 void
2403 insert1 (Lisp_Object arg)
2404 {
2405 Finsert (1, &arg);
2406 }
2407
2408
2409 /* Callers passing one argument to Finsert need not gcpro the
2410 argument "array", since the only element of the array will
2411 not be used after calling insert or insert_from_string, so
2412 we don't care if it gets trashed. */
2413
2414 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2415 doc: /* Insert the arguments, either strings or characters, at point.
2416 Point and before-insertion markers move forward to end up
2417 after the inserted text.
2418 Any other markers at the point of insertion remain before the text.
2419
2420 If the current buffer is multibyte, unibyte strings are converted
2421 to multibyte for insertion (see `string-make-multibyte').
2422 If the current buffer is unibyte, multibyte strings are converted
2423 to unibyte for insertion (see `string-make-unibyte').
2424
2425 When operating on binary data, it may be necessary to preserve the
2426 original bytes of a unibyte string when inserting it into a multibyte
2427 buffer; to accomplish this, apply `string-as-multibyte' to the string
2428 and insert the result.
2429
2430 usage: (insert &rest ARGS) */)
2431 (ptrdiff_t nargs, Lisp_Object *args)
2432 {
2433 general_insert_function (insert, insert_from_string, 0, nargs, args);
2434 return Qnil;
2435 }
2436
2437 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2438 0, MANY, 0,
2439 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2440 Point and before-insertion markers move forward to end up
2441 after the inserted text.
2442 Any other markers at the point of insertion remain before the text.
2443
2444 If the current buffer is multibyte, unibyte strings are converted
2445 to multibyte for insertion (see `unibyte-char-to-multibyte').
2446 If the current buffer is unibyte, multibyte strings are converted
2447 to unibyte for insertion.
2448
2449 usage: (insert-and-inherit &rest ARGS) */)
2450 (ptrdiff_t nargs, Lisp_Object *args)
2451 {
2452 general_insert_function (insert_and_inherit, insert_from_string, 1,
2453 nargs, args);
2454 return Qnil;
2455 }
2456
2457 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2458 doc: /* Insert strings or characters at point, relocating markers after the text.
2459 Point and markers move forward to end up after the inserted text.
2460
2461 If the current buffer is multibyte, unibyte strings are converted
2462 to multibyte for insertion (see `unibyte-char-to-multibyte').
2463 If the current buffer is unibyte, multibyte strings are converted
2464 to unibyte for insertion.
2465
2466 If an overlay begins at the insertion point, the inserted text falls
2467 outside the overlay; if a nonempty overlay ends at the insertion
2468 point, the inserted text falls inside that overlay.
2469
2470 usage: (insert-before-markers &rest ARGS) */)
2471 (ptrdiff_t nargs, Lisp_Object *args)
2472 {
2473 general_insert_function (insert_before_markers,
2474 insert_from_string_before_markers, 0,
2475 nargs, args);
2476 return Qnil;
2477 }
2478
2479 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2480 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2481 doc: /* Insert text at point, relocating markers and inheriting properties.
2482 Point and markers move forward to end up after the inserted text.
2483
2484 If the current buffer is multibyte, unibyte strings are converted
2485 to multibyte for insertion (see `unibyte-char-to-multibyte').
2486 If the current buffer is unibyte, multibyte strings are converted
2487 to unibyte for insertion.
2488
2489 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2490 (ptrdiff_t nargs, Lisp_Object *args)
2491 {
2492 general_insert_function (insert_before_markers_and_inherit,
2493 insert_from_string_before_markers, 1,
2494 nargs, args);
2495 return Qnil;
2496 }
2497 \f
2498 DEFUN ("insert-char", Finsert_char, Sinsert_char, 1, 3,
2499 "(list (read-char-by-name \"Insert character (Unicode name or hex): \")\
2500 (prefix-numeric-value current-prefix-arg)\
2501 t))",
2502 doc: /* Insert COUNT copies of CHARACTER.
2503 Interactively, prompt for CHARACTER. You can specify CHARACTER in one
2504 of these ways:
2505
2506 - As its Unicode character name, e.g. \"LATIN SMALL LETTER A\".
2507 Completion is available; if you type a substring of the name
2508 preceded by an asterisk `*', Emacs shows all names which include
2509 that substring, not necessarily at the beginning of the name.
2510
2511 - As a hexadecimal code point, e.g. 263A. Note that code points in
2512 Emacs are equivalent to Unicode up to 10FFFF (which is the limit of
2513 the Unicode code space).
2514
2515 - As a code point with a radix specified with #, e.g. #o21430
2516 (octal), #x2318 (hex), or #10r8984 (decimal).
2517
2518 If called interactively, COUNT is given by the prefix argument. If
2519 omitted or nil, it defaults to 1.
2520
2521 Inserting the character(s) relocates point and before-insertion
2522 markers in the same ways as the function `insert'.
2523
2524 The optional third argument INHERIT, if non-nil, says to inherit text
2525 properties from adjoining text, if those properties are sticky. If
2526 called interactively, INHERIT is t. */)
2527 (Lisp_Object character, Lisp_Object count, Lisp_Object inherit)
2528 {
2529 int i, stringlen;
2530 register ptrdiff_t n;
2531 int c, len;
2532 unsigned char str[MAX_MULTIBYTE_LENGTH];
2533 char string[4000];
2534
2535 CHECK_CHARACTER (character);
2536 if (NILP (count))
2537 XSETFASTINT (count, 1);
2538 CHECK_NUMBER (count);
2539 c = XFASTINT (character);
2540
2541 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2542 len = CHAR_STRING (c, str);
2543 else
2544 str[0] = c, len = 1;
2545 if (XINT (count) <= 0)
2546 return Qnil;
2547 if (BUF_BYTES_MAX / len < XINT (count))
2548 buffer_overflow ();
2549 n = XINT (count) * len;
2550 stringlen = min (n, sizeof string - sizeof string % len);
2551 for (i = 0; i < stringlen; i++)
2552 string[i] = str[i % len];
2553 while (n > stringlen)
2554 {
2555 QUIT;
2556 if (!NILP (inherit))
2557 insert_and_inherit (string, stringlen);
2558 else
2559 insert (string, stringlen);
2560 n -= stringlen;
2561 }
2562 if (!NILP (inherit))
2563 insert_and_inherit (string, n);
2564 else
2565 insert (string, n);
2566 return Qnil;
2567 }
2568
2569 DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0,
2570 doc: /* Insert COUNT (second arg) copies of BYTE (first arg).
2571 Both arguments are required.
2572 BYTE is a number of the range 0..255.
2573
2574 If BYTE is 128..255 and the current buffer is multibyte, the
2575 corresponding eight-bit character is inserted.
2576
2577 Point, and before-insertion markers, are relocated as in the function `insert'.
2578 The optional third arg INHERIT, if non-nil, says to inherit text properties
2579 from adjoining text, if those properties are sticky. */)
2580 (Lisp_Object byte, Lisp_Object count, Lisp_Object inherit)
2581 {
2582 CHECK_NUMBER (byte);
2583 if (XINT (byte) < 0 || XINT (byte) > 255)
2584 args_out_of_range_3 (byte, make_number (0), make_number (255));
2585 if (XINT (byte) >= 128
2586 && ! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2587 XSETFASTINT (byte, BYTE8_TO_CHAR (XINT (byte)));
2588 return Finsert_char (byte, count, inherit);
2589 }
2590
2591 \f
2592 /* Making strings from buffer contents. */
2593
2594 /* Return a Lisp_String containing the text of the current buffer from
2595 START to END. If text properties are in use and the current buffer
2596 has properties in the range specified, the resulting string will also
2597 have them, if PROPS is true.
2598
2599 We don't want to use plain old make_string here, because it calls
2600 make_uninit_string, which can cause the buffer arena to be
2601 compacted. make_string has no way of knowing that the data has
2602 been moved, and thus copies the wrong data into the string. This
2603 doesn't effect most of the other users of make_string, so it should
2604 be left as is. But we should use this function when conjuring
2605 buffer substrings. */
2606
2607 Lisp_Object
2608 make_buffer_string (ptrdiff_t start, ptrdiff_t end, bool props)
2609 {
2610 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
2611 ptrdiff_t end_byte = CHAR_TO_BYTE (end);
2612
2613 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2614 }
2615
2616 /* Return a Lisp_String containing the text of the current buffer from
2617 START / START_BYTE to END / END_BYTE.
2618
2619 If text properties are in use and the current buffer
2620 has properties in the range specified, the resulting string will also
2621 have them, if PROPS is true.
2622
2623 We don't want to use plain old make_string here, because it calls
2624 make_uninit_string, which can cause the buffer arena to be
2625 compacted. make_string has no way of knowing that the data has
2626 been moved, and thus copies the wrong data into the string. This
2627 doesn't effect most of the other users of make_string, so it should
2628 be left as is. But we should use this function when conjuring
2629 buffer substrings. */
2630
2631 Lisp_Object
2632 make_buffer_string_both (ptrdiff_t start, ptrdiff_t start_byte,
2633 ptrdiff_t end, ptrdiff_t end_byte, bool props)
2634 {
2635 Lisp_Object result, tem, tem1;
2636
2637 if (start < GPT && GPT < end)
2638 move_gap_both (start, start_byte);
2639
2640 if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2641 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2642 else
2643 result = make_uninit_string (end - start);
2644 memcpy (SDATA (result), BYTE_POS_ADDR (start_byte), end_byte - start_byte);
2645
2646 /* If desired, update and copy the text properties. */
2647 if (props)
2648 {
2649 update_buffer_properties (start, end);
2650
2651 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2652 tem1 = Ftext_properties_at (make_number (start), Qnil);
2653
2654 if (XINT (tem) != end || !NILP (tem1))
2655 copy_intervals_to_string (result, current_buffer, start,
2656 end - start);
2657 }
2658
2659 return result;
2660 }
2661
2662 /* Call Vbuffer_access_fontify_functions for the range START ... END
2663 in the current buffer, if necessary. */
2664
2665 static void
2666 update_buffer_properties (ptrdiff_t start, ptrdiff_t end)
2667 {
2668 /* If this buffer has some access functions,
2669 call them, specifying the range of the buffer being accessed. */
2670 if (!NILP (Vbuffer_access_fontify_functions))
2671 {
2672 Lisp_Object args[3];
2673 Lisp_Object tem;
2674
2675 args[0] = Qbuffer_access_fontify_functions;
2676 XSETINT (args[1], start);
2677 XSETINT (args[2], end);
2678
2679 /* But don't call them if we can tell that the work
2680 has already been done. */
2681 if (!NILP (Vbuffer_access_fontified_property))
2682 {
2683 tem = Ftext_property_any (args[1], args[2],
2684 Vbuffer_access_fontified_property,
2685 Qnil, Qnil);
2686 if (! NILP (tem))
2687 Frun_hook_with_args (3, args);
2688 }
2689 else
2690 Frun_hook_with_args (3, args);
2691 }
2692 }
2693
2694 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2695 doc: /* Return the contents of part of the current buffer as a string.
2696 The two arguments START and END are character positions;
2697 they can be in either order.
2698 The string returned is multibyte if the buffer is multibyte.
2699
2700 This function copies the text properties of that part of the buffer
2701 into the result string; if you don't want the text properties,
2702 use `buffer-substring-no-properties' instead. */)
2703 (Lisp_Object start, Lisp_Object end)
2704 {
2705 register ptrdiff_t b, e;
2706
2707 validate_region (&start, &end);
2708 b = XINT (start);
2709 e = XINT (end);
2710
2711 return make_buffer_string (b, e, 1);
2712 }
2713
2714 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2715 Sbuffer_substring_no_properties, 2, 2, 0,
2716 doc: /* Return the characters of part of the buffer, without the text properties.
2717 The two arguments START and END are character positions;
2718 they can be in either order. */)
2719 (Lisp_Object start, Lisp_Object end)
2720 {
2721 register ptrdiff_t b, e;
2722
2723 validate_region (&start, &end);
2724 b = XINT (start);
2725 e = XINT (end);
2726
2727 return make_buffer_string (b, e, 0);
2728 }
2729
2730 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2731 doc: /* Return the contents of the current buffer as a string.
2732 If narrowing is in effect, this function returns only the visible part
2733 of the buffer. */)
2734 (void)
2735 {
2736 return make_buffer_string_both (BEGV, BEGV_BYTE, ZV, ZV_BYTE, 1);
2737 }
2738
2739 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2740 1, 3, 0,
2741 doc: /* Insert before point a substring of the contents of BUFFER.
2742 BUFFER may be a buffer or a buffer name.
2743 Arguments START and END are character positions specifying the substring.
2744 They default to the values of (point-min) and (point-max) in BUFFER. */)
2745 (Lisp_Object buffer, Lisp_Object start, Lisp_Object end)
2746 {
2747 register EMACS_INT b, e, temp;
2748 register struct buffer *bp, *obuf;
2749 Lisp_Object buf;
2750
2751 buf = Fget_buffer (buffer);
2752 if (NILP (buf))
2753 nsberror (buffer);
2754 bp = XBUFFER (buf);
2755 if (!BUFFER_LIVE_P (bp))
2756 error ("Selecting deleted buffer");
2757
2758 if (NILP (start))
2759 b = BUF_BEGV (bp);
2760 else
2761 {
2762 CHECK_NUMBER_COERCE_MARKER (start);
2763 b = XINT (start);
2764 }
2765 if (NILP (end))
2766 e = BUF_ZV (bp);
2767 else
2768 {
2769 CHECK_NUMBER_COERCE_MARKER (end);
2770 e = XINT (end);
2771 }
2772
2773 if (b > e)
2774 temp = b, b = e, e = temp;
2775
2776 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2777 args_out_of_range (start, end);
2778
2779 obuf = current_buffer;
2780 set_buffer_internal_1 (bp);
2781 update_buffer_properties (b, e);
2782 set_buffer_internal_1 (obuf);
2783
2784 insert_from_buffer (bp, b, e - b, 0);
2785 return Qnil;
2786 }
2787
2788 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2789 6, 6, 0,
2790 doc: /* Compare two substrings of two buffers; return result as number.
2791 Return -N if first string is less after N-1 chars, +N if first string is
2792 greater after N-1 chars, or 0 if strings match. Each substring is
2793 represented as three arguments: BUFFER, START and END. That makes six
2794 args in all, three for each substring.
2795
2796 The value of `case-fold-search' in the current buffer
2797 determines whether case is significant or ignored. */)
2798 (Lisp_Object buffer1, Lisp_Object start1, Lisp_Object end1, Lisp_Object buffer2, Lisp_Object start2, Lisp_Object end2)
2799 {
2800 register EMACS_INT begp1, endp1, begp2, endp2, temp;
2801 register struct buffer *bp1, *bp2;
2802 register Lisp_Object trt
2803 = (!NILP (BVAR (current_buffer, case_fold_search))
2804 ? BVAR (current_buffer, case_canon_table) : Qnil);
2805 ptrdiff_t chars = 0;
2806 ptrdiff_t i1, i2, i1_byte, i2_byte;
2807
2808 /* Find the first buffer and its substring. */
2809
2810 if (NILP (buffer1))
2811 bp1 = current_buffer;
2812 else
2813 {
2814 Lisp_Object buf1;
2815 buf1 = Fget_buffer (buffer1);
2816 if (NILP (buf1))
2817 nsberror (buffer1);
2818 bp1 = XBUFFER (buf1);
2819 if (!BUFFER_LIVE_P (bp1))
2820 error ("Selecting deleted buffer");
2821 }
2822
2823 if (NILP (start1))
2824 begp1 = BUF_BEGV (bp1);
2825 else
2826 {
2827 CHECK_NUMBER_COERCE_MARKER (start1);
2828 begp1 = XINT (start1);
2829 }
2830 if (NILP (end1))
2831 endp1 = BUF_ZV (bp1);
2832 else
2833 {
2834 CHECK_NUMBER_COERCE_MARKER (end1);
2835 endp1 = XINT (end1);
2836 }
2837
2838 if (begp1 > endp1)
2839 temp = begp1, begp1 = endp1, endp1 = temp;
2840
2841 if (!(BUF_BEGV (bp1) <= begp1
2842 && begp1 <= endp1
2843 && endp1 <= BUF_ZV (bp1)))
2844 args_out_of_range (start1, end1);
2845
2846 /* Likewise for second substring. */
2847
2848 if (NILP (buffer2))
2849 bp2 = current_buffer;
2850 else
2851 {
2852 Lisp_Object buf2;
2853 buf2 = Fget_buffer (buffer2);
2854 if (NILP (buf2))
2855 nsberror (buffer2);
2856 bp2 = XBUFFER (buf2);
2857 if (!BUFFER_LIVE_P (bp2))
2858 error ("Selecting deleted buffer");
2859 }
2860
2861 if (NILP (start2))
2862 begp2 = BUF_BEGV (bp2);
2863 else
2864 {
2865 CHECK_NUMBER_COERCE_MARKER (start2);
2866 begp2 = XINT (start2);
2867 }
2868 if (NILP (end2))
2869 endp2 = BUF_ZV (bp2);
2870 else
2871 {
2872 CHECK_NUMBER_COERCE_MARKER (end2);
2873 endp2 = XINT (end2);
2874 }
2875
2876 if (begp2 > endp2)
2877 temp = begp2, begp2 = endp2, endp2 = temp;
2878
2879 if (!(BUF_BEGV (bp2) <= begp2
2880 && begp2 <= endp2
2881 && endp2 <= BUF_ZV (bp2)))
2882 args_out_of_range (start2, end2);
2883
2884 i1 = begp1;
2885 i2 = begp2;
2886 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2887 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2888
2889 while (i1 < endp1 && i2 < endp2)
2890 {
2891 /* When we find a mismatch, we must compare the
2892 characters, not just the bytes. */
2893 int c1, c2;
2894
2895 QUIT;
2896
2897 if (! NILP (BVAR (bp1, enable_multibyte_characters)))
2898 {
2899 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2900 BUF_INC_POS (bp1, i1_byte);
2901 i1++;
2902 }
2903 else
2904 {
2905 c1 = BUF_FETCH_BYTE (bp1, i1);
2906 MAKE_CHAR_MULTIBYTE (c1);
2907 i1++;
2908 }
2909
2910 if (! NILP (BVAR (bp2, enable_multibyte_characters)))
2911 {
2912 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
2913 BUF_INC_POS (bp2, i2_byte);
2914 i2++;
2915 }
2916 else
2917 {
2918 c2 = BUF_FETCH_BYTE (bp2, i2);
2919 MAKE_CHAR_MULTIBYTE (c2);
2920 i2++;
2921 }
2922
2923 if (!NILP (trt))
2924 {
2925 c1 = char_table_translate (trt, c1);
2926 c2 = char_table_translate (trt, c2);
2927 }
2928 if (c1 < c2)
2929 return make_number (- 1 - chars);
2930 if (c1 > c2)
2931 return make_number (chars + 1);
2932
2933 chars++;
2934 }
2935
2936 /* The strings match as far as they go.
2937 If one is shorter, that one is less. */
2938 if (chars < endp1 - begp1)
2939 return make_number (chars + 1);
2940 else if (chars < endp2 - begp2)
2941 return make_number (- chars - 1);
2942
2943 /* Same length too => they are equal. */
2944 return make_number (0);
2945 }
2946 \f
2947 static void
2948 subst_char_in_region_unwind (Lisp_Object arg)
2949 {
2950 bset_undo_list (current_buffer, arg);
2951 }
2952
2953 static void
2954 subst_char_in_region_unwind_1 (Lisp_Object arg)
2955 {
2956 bset_filename (current_buffer, arg);
2957 }
2958
2959 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
2960 Ssubst_char_in_region, 4, 5, 0,
2961 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
2962 If optional arg NOUNDO is non-nil, don't record this change for undo
2963 and don't mark the buffer as really changed.
2964 Both characters must have the same length of multi-byte form. */)
2965 (Lisp_Object start, Lisp_Object end, Lisp_Object fromchar, Lisp_Object tochar, Lisp_Object noundo)
2966 {
2967 register ptrdiff_t pos, pos_byte, stop, i, len, end_byte;
2968 /* Keep track of the first change in the buffer:
2969 if 0 we haven't found it yet.
2970 if < 0 we've found it and we've run the before-change-function.
2971 if > 0 we've actually performed it and the value is its position. */
2972 ptrdiff_t changed = 0;
2973 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
2974 unsigned char *p;
2975 ptrdiff_t count = SPECPDL_INDEX ();
2976 #define COMBINING_NO 0
2977 #define COMBINING_BEFORE 1
2978 #define COMBINING_AFTER 2
2979 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
2980 int maybe_byte_combining = COMBINING_NO;
2981 ptrdiff_t last_changed = 0;
2982 bool multibyte_p
2983 = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2984 int fromc, toc;
2985
2986 restart:
2987
2988 validate_region (&start, &end);
2989 CHECK_CHARACTER (fromchar);
2990 CHECK_CHARACTER (tochar);
2991 fromc = XFASTINT (fromchar);
2992 toc = XFASTINT (tochar);
2993
2994 if (multibyte_p)
2995 {
2996 len = CHAR_STRING (fromc, fromstr);
2997 if (CHAR_STRING (toc, tostr) != len)
2998 error ("Characters in `subst-char-in-region' have different byte-lengths");
2999 if (!ASCII_CHAR_P (*tostr))
3000 {
3001 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
3002 complete multibyte character, it may be combined with the
3003 after bytes. If it is in the range 0xA0..0xFF, it may be
3004 combined with the before and after bytes. */
3005 if (!CHAR_HEAD_P (*tostr))
3006 maybe_byte_combining = COMBINING_BOTH;
3007 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
3008 maybe_byte_combining = COMBINING_AFTER;
3009 }
3010 }
3011 else
3012 {
3013 len = 1;
3014 fromstr[0] = fromc;
3015 tostr[0] = toc;
3016 }
3017
3018 pos = XINT (start);
3019 pos_byte = CHAR_TO_BYTE (pos);
3020 stop = CHAR_TO_BYTE (XINT (end));
3021 end_byte = stop;
3022
3023 /* If we don't want undo, turn off putting stuff on the list.
3024 That's faster than getting rid of things,
3025 and it prevents even the entry for a first change.
3026 Also inhibit locking the file. */
3027 if (!changed && !NILP (noundo))
3028 {
3029 record_unwind_protect (subst_char_in_region_unwind,
3030 BVAR (current_buffer, undo_list));
3031 bset_undo_list (current_buffer, Qt);
3032 /* Don't do file-locking. */
3033 record_unwind_protect (subst_char_in_region_unwind_1,
3034 BVAR (current_buffer, filename));
3035 bset_filename (current_buffer, Qnil);
3036 }
3037
3038 if (pos_byte < GPT_BYTE)
3039 stop = min (stop, GPT_BYTE);
3040 while (1)
3041 {
3042 ptrdiff_t pos_byte_next = pos_byte;
3043
3044 if (pos_byte >= stop)
3045 {
3046 if (pos_byte >= end_byte) break;
3047 stop = end_byte;
3048 }
3049 p = BYTE_POS_ADDR (pos_byte);
3050 if (multibyte_p)
3051 INC_POS (pos_byte_next);
3052 else
3053 ++pos_byte_next;
3054 if (pos_byte_next - pos_byte == len
3055 && p[0] == fromstr[0]
3056 && (len == 1
3057 || (p[1] == fromstr[1]
3058 && (len == 2 || (p[2] == fromstr[2]
3059 && (len == 3 || p[3] == fromstr[3]))))))
3060 {
3061 if (changed < 0)
3062 /* We've already seen this and run the before-change-function;
3063 this time we only need to record the actual position. */
3064 changed = pos;
3065 else if (!changed)
3066 {
3067 changed = -1;
3068 modify_text (pos, XINT (end));
3069
3070 if (! NILP (noundo))
3071 {
3072 if (MODIFF - 1 == SAVE_MODIFF)
3073 SAVE_MODIFF++;
3074 if (MODIFF - 1 == BUF_AUTOSAVE_MODIFF (current_buffer))
3075 BUF_AUTOSAVE_MODIFF (current_buffer)++;
3076 }
3077
3078 /* The before-change-function may have moved the gap
3079 or even modified the buffer so we should start over. */
3080 goto restart;
3081 }
3082
3083 /* Take care of the case where the new character
3084 combines with neighboring bytes. */
3085 if (maybe_byte_combining
3086 && (maybe_byte_combining == COMBINING_AFTER
3087 ? (pos_byte_next < Z_BYTE
3088 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
3089 : ((pos_byte_next < Z_BYTE
3090 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
3091 || (pos_byte > BEG_BYTE
3092 && ! ASCII_CHAR_P (FETCH_BYTE (pos_byte - 1))))))
3093 {
3094 Lisp_Object tem, string;
3095
3096 struct gcpro gcpro1;
3097
3098 tem = BVAR (current_buffer, undo_list);
3099 GCPRO1 (tem);
3100
3101 /* Make a multibyte string containing this single character. */
3102 string = make_multibyte_string ((char *) tostr, 1, len);
3103 /* replace_range is less efficient, because it moves the gap,
3104 but it handles combining correctly. */
3105 replace_range (pos, pos + 1, string,
3106 0, 0, 1);
3107 pos_byte_next = CHAR_TO_BYTE (pos);
3108 if (pos_byte_next > pos_byte)
3109 /* Before combining happened. We should not increment
3110 POS. So, to cancel the later increment of POS,
3111 decrease it now. */
3112 pos--;
3113 else
3114 INC_POS (pos_byte_next);
3115
3116 if (! NILP (noundo))
3117 bset_undo_list (current_buffer, tem);
3118
3119 UNGCPRO;
3120 }
3121 else
3122 {
3123 if (NILP (noundo))
3124 record_change (pos, 1);
3125 for (i = 0; i < len; i++) *p++ = tostr[i];
3126 }
3127 last_changed = pos + 1;
3128 }
3129 pos_byte = pos_byte_next;
3130 pos++;
3131 }
3132
3133 if (changed > 0)
3134 {
3135 signal_after_change (changed,
3136 last_changed - changed, last_changed - changed);
3137 update_compositions (changed, last_changed, CHECK_ALL);
3138 }
3139
3140 unbind_to (count, Qnil);
3141 return Qnil;
3142 }
3143
3144
3145 static Lisp_Object check_translation (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3146 Lisp_Object);
3147
3148 /* Helper function for Ftranslate_region_internal.
3149
3150 Check if a character sequence at POS (POS_BYTE) matches an element
3151 of VAL. VAL is a list (([FROM-CHAR ...] . TO) ...). If a matching
3152 element is found, return it. Otherwise return Qnil. */
3153
3154 static Lisp_Object
3155 check_translation (ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t end,
3156 Lisp_Object val)
3157 {
3158 int initial_buf[16];
3159 int *buf = initial_buf;
3160 ptrdiff_t buf_size = ARRAYELTS (initial_buf);
3161 int *bufalloc = 0;
3162 ptrdiff_t buf_used = 0;
3163 Lisp_Object result = Qnil;
3164
3165 for (; CONSP (val); val = XCDR (val))
3166 {
3167 Lisp_Object elt;
3168 ptrdiff_t len, i;
3169
3170 elt = XCAR (val);
3171 if (! CONSP (elt))
3172 continue;
3173 elt = XCAR (elt);
3174 if (! VECTORP (elt))
3175 continue;
3176 len = ASIZE (elt);
3177 if (len <= end - pos)
3178 {
3179 for (i = 0; i < len; i++)
3180 {
3181 if (buf_used <= i)
3182 {
3183 unsigned char *p = BYTE_POS_ADDR (pos_byte);
3184 int len1;
3185
3186 if (buf_used == buf_size)
3187 {
3188 bufalloc = xpalloc (bufalloc, &buf_size, 1, -1,
3189 sizeof *bufalloc);
3190 if (buf == initial_buf)
3191 memcpy (bufalloc, buf, sizeof initial_buf);
3192 buf = bufalloc;
3193 }
3194 buf[buf_used++] = STRING_CHAR_AND_LENGTH (p, len1);
3195 pos_byte += len1;
3196 }
3197 if (XINT (AREF (elt, i)) != buf[i])
3198 break;
3199 }
3200 if (i == len)
3201 {
3202 result = XCAR (val);
3203 break;
3204 }
3205 }
3206 }
3207
3208 xfree (bufalloc);
3209 return result;
3210 }
3211
3212
3213 DEFUN ("translate-region-internal", Ftranslate_region_internal,
3214 Stranslate_region_internal, 3, 3, 0,
3215 doc: /* Internal use only.
3216 From START to END, translate characters according to TABLE.
3217 TABLE is a string or a char-table; the Nth character in it is the
3218 mapping for the character with code N.
3219 It returns the number of characters changed. */)
3220 (Lisp_Object start, Lisp_Object end, register Lisp_Object table)
3221 {
3222 register unsigned char *tt; /* Trans table. */
3223 register int nc; /* New character. */
3224 int cnt; /* Number of changes made. */
3225 ptrdiff_t size; /* Size of translate table. */
3226 ptrdiff_t pos, pos_byte, end_pos;
3227 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3228 bool string_multibyte IF_LINT (= 0);
3229
3230 validate_region (&start, &end);
3231 if (CHAR_TABLE_P (table))
3232 {
3233 if (! EQ (XCHAR_TABLE (table)->purpose, Qtranslation_table))
3234 error ("Not a translation table");
3235 size = MAX_CHAR;
3236 tt = NULL;
3237 }
3238 else
3239 {
3240 CHECK_STRING (table);
3241
3242 if (! multibyte && (SCHARS (table) < SBYTES (table)))
3243 table = string_make_unibyte (table);
3244 string_multibyte = SCHARS (table) < SBYTES (table);
3245 size = SBYTES (table);
3246 tt = SDATA (table);
3247 }
3248
3249 pos = XINT (start);
3250 pos_byte = CHAR_TO_BYTE (pos);
3251 end_pos = XINT (end);
3252 modify_text (pos, end_pos);
3253
3254 cnt = 0;
3255 for (; pos < end_pos; )
3256 {
3257 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
3258 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
3259 int len, str_len;
3260 int oc;
3261 Lisp_Object val;
3262
3263 if (multibyte)
3264 oc = STRING_CHAR_AND_LENGTH (p, len);
3265 else
3266 oc = *p, len = 1;
3267 if (oc < size)
3268 {
3269 if (tt)
3270 {
3271 /* Reload as signal_after_change in last iteration may GC. */
3272 tt = SDATA (table);
3273 if (string_multibyte)
3274 {
3275 str = tt + string_char_to_byte (table, oc);
3276 nc = STRING_CHAR_AND_LENGTH (str, str_len);
3277 }
3278 else
3279 {
3280 nc = tt[oc];
3281 if (! ASCII_CHAR_P (nc) && multibyte)
3282 {
3283 str_len = BYTE8_STRING (nc, buf);
3284 str = buf;
3285 }
3286 else
3287 {
3288 str_len = 1;
3289 str = tt + oc;
3290 }
3291 }
3292 }
3293 else
3294 {
3295 nc = oc;
3296 val = CHAR_TABLE_REF (table, oc);
3297 if (CHARACTERP (val))
3298 {
3299 nc = XFASTINT (val);
3300 str_len = CHAR_STRING (nc, buf);
3301 str = buf;
3302 }
3303 else if (VECTORP (val) || (CONSP (val)))
3304 {
3305 /* VAL is [TO_CHAR ...] or (([FROM-CHAR ...] . TO) ...)
3306 where TO is TO-CHAR or [TO-CHAR ...]. */
3307 nc = -1;
3308 }
3309 }
3310
3311 if (nc != oc && nc >= 0)
3312 {
3313 /* Simple one char to one char translation. */
3314 if (len != str_len)
3315 {
3316 Lisp_Object string;
3317
3318 /* This is less efficient, because it moves the gap,
3319 but it should handle multibyte characters correctly. */
3320 string = make_multibyte_string ((char *) str, 1, str_len);
3321 replace_range (pos, pos + 1, string, 1, 0, 1);
3322 len = str_len;
3323 }
3324 else
3325 {
3326 record_change (pos, 1);
3327 while (str_len-- > 0)
3328 *p++ = *str++;
3329 signal_after_change (pos, 1, 1);
3330 update_compositions (pos, pos + 1, CHECK_BORDER);
3331 }
3332 ++cnt;
3333 }
3334 else if (nc < 0)
3335 {
3336 Lisp_Object string;
3337
3338 if (CONSP (val))
3339 {
3340 val = check_translation (pos, pos_byte, end_pos, val);
3341 if (NILP (val))
3342 {
3343 pos_byte += len;
3344 pos++;
3345 continue;
3346 }
3347 /* VAL is ([FROM-CHAR ...] . TO). */
3348 len = ASIZE (XCAR (val));
3349 val = XCDR (val);
3350 }
3351 else
3352 len = 1;
3353
3354 if (VECTORP (val))
3355 {
3356 string = Fconcat (1, &val);
3357 }
3358 else
3359 {
3360 string = Fmake_string (make_number (1), val);
3361 }
3362 replace_range (pos, pos + len, string, 1, 0, 1);
3363 pos_byte += SBYTES (string);
3364 pos += SCHARS (string);
3365 cnt += SCHARS (string);
3366 end_pos += SCHARS (string) - len;
3367 continue;
3368 }
3369 }
3370 pos_byte += len;
3371 pos++;
3372 }
3373
3374 return make_number (cnt);
3375 }
3376
3377 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
3378 doc: /* Delete the text between START and END.
3379 If called interactively, delete the region between point and mark.
3380 This command deletes buffer text without modifying the kill ring. */)
3381 (Lisp_Object start, Lisp_Object end)
3382 {
3383 validate_region (&start, &end);
3384 del_range (XINT (start), XINT (end));
3385 return Qnil;
3386 }
3387
3388 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
3389 Sdelete_and_extract_region, 2, 2, 0,
3390 doc: /* Delete the text between START and END and return it. */)
3391 (Lisp_Object start, Lisp_Object end)
3392 {
3393 validate_region (&start, &end);
3394 if (XINT (start) == XINT (end))
3395 return empty_unibyte_string;
3396 return del_range_1 (XINT (start), XINT (end), 1, 1);
3397 }
3398 \f
3399 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3400 doc: /* Remove restrictions (narrowing) from current buffer.
3401 This allows the buffer's full text to be seen and edited. */)
3402 (void)
3403 {
3404 if (BEG != BEGV || Z != ZV)
3405 current_buffer->clip_changed = 1;
3406 BEGV = BEG;
3407 BEGV_BYTE = BEG_BYTE;
3408 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3409 /* Changing the buffer bounds invalidates any recorded current column. */
3410 invalidate_current_column ();
3411 return Qnil;
3412 }
3413
3414 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3415 doc: /* Restrict editing in this buffer to the current region.
3416 The rest of the text becomes temporarily invisible and untouchable
3417 but is not deleted; if you save the buffer in a file, the invisible
3418 text is included in the file. \\[widen] makes all visible again.
3419 See also `save-restriction'.
3420
3421 When calling from a program, pass two arguments; positions (integers
3422 or markers) bounding the text that should remain visible. */)
3423 (register Lisp_Object start, Lisp_Object end)
3424 {
3425 CHECK_NUMBER_COERCE_MARKER (start);
3426 CHECK_NUMBER_COERCE_MARKER (end);
3427
3428 if (XINT (start) > XINT (end))
3429 {
3430 Lisp_Object tem;
3431 tem = start; start = end; end = tem;
3432 }
3433
3434 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3435 args_out_of_range (start, end);
3436
3437 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3438 current_buffer->clip_changed = 1;
3439
3440 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3441 SET_BUF_ZV (current_buffer, XFASTINT (end));
3442 if (PT < XFASTINT (start))
3443 SET_PT (XFASTINT (start));
3444 if (PT > XFASTINT (end))
3445 SET_PT (XFASTINT (end));
3446 /* Changing the buffer bounds invalidates any recorded current column. */
3447 invalidate_current_column ();
3448 return Qnil;
3449 }
3450
3451 Lisp_Object
3452 save_restriction_save (void)
3453 {
3454 if (BEGV == BEG && ZV == Z)
3455 /* The common case that the buffer isn't narrowed.
3456 We return just the buffer object, which save_restriction_restore
3457 recognizes as meaning `no restriction'. */
3458 return Fcurrent_buffer ();
3459 else
3460 /* We have to save a restriction, so return a pair of markers, one
3461 for the beginning and one for the end. */
3462 {
3463 Lisp_Object beg, end;
3464
3465 beg = build_marker (current_buffer, BEGV, BEGV_BYTE);
3466 end = build_marker (current_buffer, ZV, ZV_BYTE);
3467
3468 /* END must move forward if text is inserted at its exact location. */
3469 XMARKER (end)->insertion_type = 1;
3470
3471 return Fcons (beg, end);
3472 }
3473 }
3474
3475 void
3476 save_restriction_restore (Lisp_Object data)
3477 {
3478 struct buffer *cur = NULL;
3479 struct buffer *buf = (CONSP (data)
3480 ? XMARKER (XCAR (data))->buffer
3481 : XBUFFER (data));
3482
3483 if (buf && buf != current_buffer && !NILP (BVAR (buf, pt_marker)))
3484 { /* If `buf' uses markers to keep track of PT, BEGV, and ZV (as
3485 is the case if it is or has an indirect buffer), then make
3486 sure it is current before we update BEGV, so
3487 set_buffer_internal takes care of managing those markers. */
3488 cur = current_buffer;
3489 set_buffer_internal (buf);
3490 }
3491
3492 if (CONSP (data))
3493 /* A pair of marks bounding a saved restriction. */
3494 {
3495 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3496 struct Lisp_Marker *end = XMARKER (XCDR (data));
3497 eassert (buf == end->buffer);
3498
3499 if (buf /* Verify marker still points to a buffer. */
3500 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3501 /* The restriction has changed from the saved one, so restore
3502 the saved restriction. */
3503 {
3504 ptrdiff_t pt = BUF_PT (buf);
3505
3506 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3507 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3508
3509 if (pt < beg->charpos || pt > end->charpos)
3510 /* The point is outside the new visible range, move it inside. */
3511 SET_BUF_PT_BOTH (buf,
3512 clip_to_bounds (beg->charpos, pt, end->charpos),
3513 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3514 end->bytepos));
3515
3516 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3517 }
3518 /* These aren't needed anymore, so don't wait for GC. */
3519 free_marker (XCAR (data));
3520 free_marker (XCDR (data));
3521 free_cons (XCONS (data));
3522 }
3523 else
3524 /* A buffer, which means that there was no old restriction. */
3525 {
3526 if (buf /* Verify marker still points to a buffer. */
3527 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3528 /* The buffer has been narrowed, get rid of the narrowing. */
3529 {
3530 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3531 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3532
3533 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3534 }
3535 }
3536
3537 /* Changing the buffer bounds invalidates any recorded current column. */
3538 invalidate_current_column ();
3539
3540 if (cur)
3541 set_buffer_internal (cur);
3542 }
3543
3544 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3545 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3546 The buffer's restrictions make parts of the beginning and end invisible.
3547 \(They are set up with `narrow-to-region' and eliminated with `widen'.)
3548 This special form, `save-restriction', saves the current buffer's restrictions
3549 when it is entered, and restores them when it is exited.
3550 So any `narrow-to-region' within BODY lasts only until the end of the form.
3551 The old restrictions settings are restored
3552 even in case of abnormal exit (throw or error).
3553
3554 The value returned is the value of the last form in BODY.
3555
3556 Note: if you are using both `save-excursion' and `save-restriction',
3557 use `save-excursion' outermost:
3558 (save-excursion (save-restriction ...))
3559
3560 usage: (save-restriction &rest BODY) */)
3561 (Lisp_Object body)
3562 {
3563 register Lisp_Object val;
3564 ptrdiff_t count = SPECPDL_INDEX ();
3565
3566 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3567 val = Fprogn (body);
3568 return unbind_to (count, val);
3569 }
3570 \f
3571 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3572 doc: /* Display a message at the bottom of the screen.
3573 The message also goes into the `*Messages*' buffer, if `message-log-max'
3574 is non-nil. (In keyboard macros, that's all it does.)
3575 Return the message.
3576
3577 In batch mode, the message is printed to the standard error stream,
3578 followed by a newline.
3579
3580 The first argument is a format control string, and the rest are data
3581 to be formatted under control of the string. See `format' for details.
3582
3583 Note: Use (message "%s" VALUE) to print the value of expressions and
3584 variables to avoid accidentally interpreting `%' as format specifiers.
3585
3586 If the first argument is nil or the empty string, the function clears
3587 any existing message; this lets the minibuffer contents show. See
3588 also `current-message'.
3589
3590 usage: (message FORMAT-STRING &rest ARGS) */)
3591 (ptrdiff_t nargs, Lisp_Object *args)
3592 {
3593 if (NILP (args[0])
3594 || (STRINGP (args[0])
3595 && SBYTES (args[0]) == 0))
3596 {
3597 message1 (0);
3598 return args[0];
3599 }
3600 else
3601 {
3602 register Lisp_Object val;
3603 val = Fformat (nargs, args);
3604 message3 (val);
3605 return val;
3606 }
3607 }
3608
3609 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3610 doc: /* Display a message, in a dialog box if possible.
3611 If a dialog box is not available, use the echo area.
3612 The first argument is a format control string, and the rest are data
3613 to be formatted under control of the string. See `format' for details.
3614
3615 If the first argument is nil or the empty string, clear any existing
3616 message; let the minibuffer contents show.
3617
3618 usage: (message-box FORMAT-STRING &rest ARGS) */)
3619 (ptrdiff_t nargs, Lisp_Object *args)
3620 {
3621 if (NILP (args[0]))
3622 {
3623 message1 (0);
3624 return Qnil;
3625 }
3626 else
3627 {
3628 Lisp_Object val = Fformat (nargs, args);
3629 Lisp_Object pane, menu;
3630 struct gcpro gcpro1;
3631
3632 pane = list1 (Fcons (build_string ("OK"), Qt));
3633 GCPRO1 (pane);
3634 menu = Fcons (val, pane);
3635 Fx_popup_dialog (Qt, menu, Qt);
3636 UNGCPRO;
3637 return val;
3638 }
3639 }
3640
3641 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3642 doc: /* Display a message in a dialog box or in the echo area.
3643 If this command was invoked with the mouse, use a dialog box if
3644 `use-dialog-box' is non-nil.
3645 Otherwise, use the echo area.
3646 The first argument is a format control string, and the rest are data
3647 to be formatted under control of the string. See `format' for details.
3648
3649 If the first argument is nil or the empty string, clear any existing
3650 message; let the minibuffer contents show.
3651
3652 usage: (message-or-box FORMAT-STRING &rest ARGS) */)
3653 (ptrdiff_t nargs, Lisp_Object *args)
3654 {
3655 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3656 && use_dialog_box)
3657 return Fmessage_box (nargs, args);
3658 return Fmessage (nargs, args);
3659 }
3660
3661 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3662 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3663 (void)
3664 {
3665 return current_message ();
3666 }
3667
3668
3669 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3670 doc: /* Return a copy of STRING with text properties added.
3671 First argument is the string to copy.
3672 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3673 properties to add to the result.
3674 usage: (propertize STRING &rest PROPERTIES) */)
3675 (ptrdiff_t nargs, Lisp_Object *args)
3676 {
3677 Lisp_Object properties, string;
3678 struct gcpro gcpro1, gcpro2;
3679 ptrdiff_t i;
3680
3681 /* Number of args must be odd. */
3682 if ((nargs & 1) == 0)
3683 error ("Wrong number of arguments");
3684
3685 properties = string = Qnil;
3686 GCPRO2 (properties, string);
3687
3688 /* First argument must be a string. */
3689 CHECK_STRING (args[0]);
3690 string = Fcopy_sequence (args[0]);
3691
3692 for (i = 1; i < nargs; i += 2)
3693 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3694
3695 Fadd_text_properties (make_number (0),
3696 make_number (SCHARS (string)),
3697 properties, string);
3698 RETURN_UNGCPRO (string);
3699 }
3700
3701 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3702 doc: /* Format a string out of a format-string and arguments.
3703 The first argument is a format control string.
3704 The other arguments are substituted into it to make the result, a string.
3705
3706 The format control string may contain %-sequences meaning to substitute
3707 the next available argument:
3708
3709 %s means print a string argument. Actually, prints any object, with `princ'.
3710 %d means print as number in decimal (%o octal, %x hex).
3711 %X is like %x, but uses upper case.
3712 %e means print a number in exponential notation.
3713 %f means print a number in decimal-point notation.
3714 %g means print a number in exponential notation
3715 or decimal-point notation, whichever uses fewer characters.
3716 %c means print a number as a single character.
3717 %S means print any object as an s-expression (using `prin1').
3718
3719 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3720 Use %% to put a single % into the output.
3721
3722 A %-sequence may contain optional flag, width, and precision
3723 specifiers, as follows:
3724
3725 %<flags><width><precision>character
3726
3727 where flags is [+ #-0]+, width is [0-9]+, and precision is .[0-9]+
3728
3729 The + flag character inserts a + before any positive number, while a
3730 space inserts a space before any positive number; these flags only
3731 affect %d, %e, %f, and %g sequences, and the + flag takes precedence.
3732 The - and 0 flags affect the width specifier, as described below.
3733
3734 The # flag means to use an alternate display form for %o, %x, %X, %e,
3735 %f, and %g sequences: for %o, it ensures that the result begins with
3736 \"0\"; for %x and %X, it prefixes the result with \"0x\" or \"0X\";
3737 for %e, %f, and %g, it causes a decimal point to be included even if
3738 the precision is zero.
3739
3740 The width specifier supplies a lower limit for the length of the
3741 printed representation. The padding, if any, normally goes on the
3742 left, but it goes on the right if the - flag is present. The padding
3743 character is normally a space, but it is 0 if the 0 flag is present.
3744 The 0 flag is ignored if the - flag is present, or the format sequence
3745 is something other than %d, %e, %f, and %g.
3746
3747 For %e, %f, and %g sequences, the number after the "." in the
3748 precision specifier says how many decimal places to show; if zero, the
3749 decimal point itself is omitted. For %s and %S, the precision
3750 specifier truncates the string to the given width.
3751
3752 usage: (format STRING &rest OBJECTS) */)
3753 (ptrdiff_t nargs, Lisp_Object *args)
3754 {
3755 ptrdiff_t n; /* The number of the next arg to substitute. */
3756 char initial_buffer[4000];
3757 char *buf = initial_buffer;
3758 ptrdiff_t bufsize = sizeof initial_buffer;
3759 ptrdiff_t max_bufsize = STRING_BYTES_BOUND + 1;
3760 char *p;
3761 ptrdiff_t buf_save_value_index IF_LINT (= 0);
3762 char *format, *end, *format_start;
3763 ptrdiff_t formatlen, nchars;
3764 /* True if the format is multibyte. */
3765 bool multibyte_format = 0;
3766 /* True if the output should be a multibyte string,
3767 which is true if any of the inputs is one. */
3768 bool multibyte = 0;
3769 /* When we make a multibyte string, we must pay attention to the
3770 byte combining problem, i.e., a byte may be combined with a
3771 multibyte character of the previous string. This flag tells if we
3772 must consider such a situation or not. */
3773 bool maybe_combine_byte;
3774 Lisp_Object val;
3775 bool arg_intervals = 0;
3776 USE_SAFE_ALLOCA;
3777
3778 /* discarded[I] is 1 if byte I of the format
3779 string was not copied into the output.
3780 It is 2 if byte I was not the first byte of its character. */
3781 char *discarded;
3782
3783 /* Each element records, for one argument,
3784 the start and end bytepos in the output string,
3785 whether the argument has been converted to string (e.g., due to "%S"),
3786 and whether the argument is a string with intervals.
3787 info[0] is unused. Unused elements have -1 for start. */
3788 struct info
3789 {
3790 ptrdiff_t start, end;
3791 bool_bf converted_to_string : 1;
3792 bool_bf intervals : 1;
3793 } *info = 0;
3794
3795 /* It should not be necessary to GCPRO ARGS, because
3796 the caller in the interpreter should take care of that. */
3797
3798 CHECK_STRING (args[0]);
3799 format_start = SSDATA (args[0]);
3800 formatlen = SBYTES (args[0]);
3801
3802 /* Allocate the info and discarded tables. */
3803 {
3804 ptrdiff_t i;
3805 if ((SIZE_MAX - formatlen) / sizeof (struct info) <= nargs)
3806 memory_full (SIZE_MAX);
3807 info = SAFE_ALLOCA ((nargs + 1) * sizeof *info + formatlen);
3808 discarded = (char *) &info[nargs + 1];
3809 for (i = 0; i < nargs + 1; i++)
3810 {
3811 info[i].start = -1;
3812 info[i].intervals = info[i].converted_to_string = 0;
3813 }
3814 memset (discarded, 0, formatlen);
3815 }
3816
3817 /* Try to determine whether the result should be multibyte.
3818 This is not always right; sometimes the result needs to be multibyte
3819 because of an object that we will pass through prin1,
3820 and in that case, we won't know it here. */
3821 multibyte_format = STRING_MULTIBYTE (args[0]);
3822 multibyte = multibyte_format;
3823 for (n = 1; !multibyte && n < nargs; n++)
3824 if (STRINGP (args[n]) && STRING_MULTIBYTE (args[n]))
3825 multibyte = 1;
3826
3827 /* If we start out planning a unibyte result,
3828 then discover it has to be multibyte, we jump back to retry. */
3829 retry:
3830
3831 p = buf;
3832 nchars = 0;
3833 n = 0;
3834
3835 /* Scan the format and store result in BUF. */
3836 format = format_start;
3837 end = format + formatlen;
3838 maybe_combine_byte = 0;
3839
3840 while (format != end)
3841 {
3842 /* The values of N and FORMAT when the loop body is entered. */
3843 ptrdiff_t n0 = n;
3844 char *format0 = format;
3845
3846 /* Bytes needed to represent the output of this conversion. */
3847 ptrdiff_t convbytes;
3848
3849 if (*format == '%')
3850 {
3851 /* General format specifications look like
3852
3853 '%' [flags] [field-width] [precision] format
3854
3855 where
3856
3857 flags ::= [-+0# ]+
3858 field-width ::= [0-9]+
3859 precision ::= '.' [0-9]*
3860
3861 If a field-width is specified, it specifies to which width
3862 the output should be padded with blanks, if the output
3863 string is shorter than field-width.
3864
3865 If precision is specified, it specifies the number of
3866 digits to print after the '.' for floats, or the max.
3867 number of chars to print from a string. */
3868
3869 bool minus_flag = 0;
3870 bool plus_flag = 0;
3871 bool space_flag = 0;
3872 bool sharp_flag = 0;
3873 bool zero_flag = 0;
3874 ptrdiff_t field_width;
3875 bool precision_given;
3876 uintmax_t precision = UINTMAX_MAX;
3877 char *num_end;
3878 char conversion;
3879
3880 while (1)
3881 {
3882 switch (*++format)
3883 {
3884 case '-': minus_flag = 1; continue;
3885 case '+': plus_flag = 1; continue;
3886 case ' ': space_flag = 1; continue;
3887 case '#': sharp_flag = 1; continue;
3888 case '0': zero_flag = 1; continue;
3889 }
3890 break;
3891 }
3892
3893 /* Ignore flags when sprintf ignores them. */
3894 space_flag &= ~ plus_flag;
3895 zero_flag &= ~ minus_flag;
3896
3897 {
3898 uintmax_t w = strtoumax (format, &num_end, 10);
3899 if (max_bufsize <= w)
3900 string_overflow ();
3901 field_width = w;
3902 }
3903 precision_given = *num_end == '.';
3904 if (precision_given)
3905 precision = strtoumax (num_end + 1, &num_end, 10);
3906 format = num_end;
3907
3908 if (format == end)
3909 error ("Format string ends in middle of format specifier");
3910
3911 memset (&discarded[format0 - format_start], 1, format - format0);
3912 conversion = *format;
3913 if (conversion == '%')
3914 goto copy_char;
3915 discarded[format - format_start] = 1;
3916 format++;
3917
3918 ++n;
3919 if (! (n < nargs))
3920 error ("Not enough arguments for format string");
3921
3922 /* For 'S', prin1 the argument, and then treat like 's'.
3923 For 's', princ any argument that is not a string or
3924 symbol. But don't do this conversion twice, which might
3925 happen after retrying. */
3926 if ((conversion == 'S'
3927 || (conversion == 's'
3928 && ! STRINGP (args[n]) && ! SYMBOLP (args[n]))))
3929 {
3930 if (! info[n].converted_to_string)
3931 {
3932 Lisp_Object noescape = conversion == 'S' ? Qnil : Qt;
3933 args[n] = Fprin1_to_string (args[n], noescape);
3934 info[n].converted_to_string = 1;
3935 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3936 {
3937 multibyte = 1;
3938 goto retry;
3939 }
3940 }
3941 conversion = 's';
3942 }
3943 else if (conversion == 'c')
3944 {
3945 if (FLOATP (args[n]))
3946 {
3947 double d = XFLOAT_DATA (args[n]);
3948 args[n] = make_number (FIXNUM_OVERFLOW_P (d) ? -1 : d);
3949 }
3950
3951 if (INTEGERP (args[n]) && ! ASCII_CHAR_P (XINT (args[n])))
3952 {
3953 if (!multibyte)
3954 {
3955 multibyte = 1;
3956 goto retry;
3957 }
3958 args[n] = Fchar_to_string (args[n]);
3959 info[n].converted_to_string = 1;
3960 }
3961
3962 if (info[n].converted_to_string)
3963 conversion = 's';
3964 zero_flag = 0;
3965 }
3966
3967 if (SYMBOLP (args[n]))
3968 {
3969 args[n] = SYMBOL_NAME (args[n]);
3970 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3971 {
3972 multibyte = 1;
3973 goto retry;
3974 }
3975 }
3976
3977 if (conversion == 's')
3978 {
3979 /* handle case (precision[n] >= 0) */
3980
3981 ptrdiff_t width, padding, nbytes;
3982 ptrdiff_t nchars_string;
3983
3984 ptrdiff_t prec = -1;
3985 if (precision_given && precision <= TYPE_MAXIMUM (ptrdiff_t))
3986 prec = precision;
3987
3988 /* lisp_string_width ignores a precision of 0, but GNU
3989 libc functions print 0 characters when the precision
3990 is 0. Imitate libc behavior here. Changing
3991 lisp_string_width is the right thing, and will be
3992 done, but meanwhile we work with it. */
3993
3994 if (prec == 0)
3995 width = nchars_string = nbytes = 0;
3996 else
3997 {
3998 ptrdiff_t nch, nby;
3999 width = lisp_string_width (args[n], prec, &nch, &nby);
4000 if (prec < 0)
4001 {
4002 nchars_string = SCHARS (args[n]);
4003 nbytes = SBYTES (args[n]);
4004 }
4005 else
4006 {
4007 nchars_string = nch;
4008 nbytes = nby;
4009 }
4010 }
4011
4012 convbytes = nbytes;
4013 if (convbytes && multibyte && ! STRING_MULTIBYTE (args[n]))
4014 convbytes = count_size_as_multibyte (SDATA (args[n]), nbytes);
4015
4016 padding = width < field_width ? field_width - width : 0;
4017
4018 if (max_bufsize - padding <= convbytes)
4019 string_overflow ();
4020 convbytes += padding;
4021 if (convbytes <= buf + bufsize - p)
4022 {
4023 if (! minus_flag)
4024 {
4025 memset (p, ' ', padding);
4026 p += padding;
4027 nchars += padding;
4028 }
4029
4030 if (p > buf
4031 && multibyte
4032 && !ASCII_CHAR_P (*((unsigned char *) p - 1))
4033 && STRING_MULTIBYTE (args[n])
4034 && !CHAR_HEAD_P (SREF (args[n], 0)))
4035 maybe_combine_byte = 1;
4036
4037 p += copy_text (SDATA (args[n]), (unsigned char *) p,
4038 nbytes,
4039 STRING_MULTIBYTE (args[n]), multibyte);
4040
4041 info[n].start = nchars;
4042 nchars += nchars_string;
4043 info[n].end = nchars;
4044
4045 if (minus_flag)
4046 {
4047 memset (p, ' ', padding);
4048 p += padding;
4049 nchars += padding;
4050 }
4051
4052 /* If this argument has text properties, record where
4053 in the result string it appears. */
4054 if (string_intervals (args[n]))
4055 info[n].intervals = arg_intervals = 1;
4056
4057 continue;
4058 }
4059 }
4060 else if (! (conversion == 'c' || conversion == 'd'
4061 || conversion == 'e' || conversion == 'f'
4062 || conversion == 'g' || conversion == 'i'
4063 || conversion == 'o' || conversion == 'x'
4064 || conversion == 'X'))
4065 error ("Invalid format operation %%%c",
4066 STRING_CHAR ((unsigned char *) format - 1));
4067 else if (! (INTEGERP (args[n]) || FLOATP (args[n])))
4068 error ("Format specifier doesn't match argument type");
4069 else
4070 {
4071 enum
4072 {
4073 /* Maximum precision for a %f conversion such that the
4074 trailing output digit might be nonzero. Any precision
4075 larger than this will not yield useful information. */
4076 USEFUL_PRECISION_MAX =
4077 ((1 - DBL_MIN_EXP)
4078 * (FLT_RADIX == 2 || FLT_RADIX == 10 ? 1
4079 : FLT_RADIX == 16 ? 4
4080 : -1)),
4081
4082 /* Maximum number of bytes generated by any format, if
4083 precision is no more than USEFUL_PRECISION_MAX.
4084 On all practical hosts, %f is the worst case. */
4085 SPRINTF_BUFSIZE =
4086 sizeof "-." + (DBL_MAX_10_EXP + 1) + USEFUL_PRECISION_MAX,
4087
4088 /* Length of pM (that is, of pMd without the
4089 trailing "d"). */
4090 pMlen = sizeof pMd - 2
4091 };
4092 verify (USEFUL_PRECISION_MAX > 0);
4093
4094 int prec;
4095 ptrdiff_t padding, sprintf_bytes;
4096 uintmax_t excess_precision, numwidth;
4097 uintmax_t leading_zeros = 0, trailing_zeros = 0;
4098
4099 char sprintf_buf[SPRINTF_BUFSIZE];
4100
4101 /* Copy of conversion specification, modified somewhat.
4102 At most three flags F can be specified at once. */
4103 char convspec[sizeof "%FFF.*d" + pMlen];
4104
4105 /* Avoid undefined behavior in underlying sprintf. */
4106 if (conversion == 'd' || conversion == 'i')
4107 sharp_flag = 0;
4108
4109 /* Create the copy of the conversion specification, with
4110 any width and precision removed, with ".*" inserted,
4111 and with pM inserted for integer formats. */
4112 {
4113 char *f = convspec;
4114 *f++ = '%';
4115 *f = '-'; f += minus_flag;
4116 *f = '+'; f += plus_flag;
4117 *f = ' '; f += space_flag;
4118 *f = '#'; f += sharp_flag;
4119 *f = '0'; f += zero_flag;
4120 *f++ = '.';
4121 *f++ = '*';
4122 if (conversion == 'd' || conversion == 'i'
4123 || conversion == 'o' || conversion == 'x'
4124 || conversion == 'X')
4125 {
4126 memcpy (f, pMd, pMlen);
4127 f += pMlen;
4128 zero_flag &= ~ precision_given;
4129 }
4130 *f++ = conversion;
4131 *f = '\0';
4132 }
4133
4134 prec = -1;
4135 if (precision_given)
4136 prec = min (precision, USEFUL_PRECISION_MAX);
4137
4138 /* Use sprintf to format this number into sprintf_buf. Omit
4139 padding and excess precision, though, because sprintf limits
4140 output length to INT_MAX.
4141
4142 There are four types of conversion: double, unsigned
4143 char (passed as int), wide signed int, and wide
4144 unsigned int. Treat them separately because the
4145 sprintf ABI is sensitive to which type is passed. Be
4146 careful about integer overflow, NaNs, infinities, and
4147 conversions; for example, the min and max macros are
4148 not suitable here. */
4149 if (conversion == 'e' || conversion == 'f' || conversion == 'g')
4150 {
4151 double x = (INTEGERP (args[n])
4152 ? XINT (args[n])
4153 : XFLOAT_DATA (args[n]));
4154 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4155 }
4156 else if (conversion == 'c')
4157 {
4158 /* Don't use sprintf here, as it might mishandle prec. */
4159 sprintf_buf[0] = XINT (args[n]);
4160 sprintf_bytes = prec != 0;
4161 }
4162 else if (conversion == 'd')
4163 {
4164 /* For float, maybe we should use "%1.0f"
4165 instead so it also works for values outside
4166 the integer range. */
4167 printmax_t x;
4168 if (INTEGERP (args[n]))
4169 x = XINT (args[n]);
4170 else
4171 {
4172 double d = XFLOAT_DATA (args[n]);
4173 if (d < 0)
4174 {
4175 x = TYPE_MINIMUM (printmax_t);
4176 if (x < d)
4177 x = d;
4178 }
4179 else
4180 {
4181 x = TYPE_MAXIMUM (printmax_t);
4182 if (d < x)
4183 x = d;
4184 }
4185 }
4186 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4187 }
4188 else
4189 {
4190 /* Don't sign-extend for octal or hex printing. */
4191 uprintmax_t x;
4192 if (INTEGERP (args[n]))
4193 x = XUINT (args[n]);
4194 else
4195 {
4196 double d = XFLOAT_DATA (args[n]);
4197 if (d < 0)
4198 x = 0;
4199 else
4200 {
4201 x = TYPE_MAXIMUM (uprintmax_t);
4202 if (d < x)
4203 x = d;
4204 }
4205 }
4206 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4207 }
4208
4209 /* Now the length of the formatted item is known, except it omits
4210 padding and excess precision. Deal with excess precision
4211 first. This happens only when the format specifies
4212 ridiculously large precision. */
4213 excess_precision = precision - prec;
4214 if (excess_precision)
4215 {
4216 if (conversion == 'e' || conversion == 'f'
4217 || conversion == 'g')
4218 {
4219 if ((conversion == 'g' && ! sharp_flag)
4220 || ! ('0' <= sprintf_buf[sprintf_bytes - 1]
4221 && sprintf_buf[sprintf_bytes - 1] <= '9'))
4222 excess_precision = 0;
4223 else
4224 {
4225 if (conversion == 'g')
4226 {
4227 char *dot = strchr (sprintf_buf, '.');
4228 if (!dot)
4229 excess_precision = 0;
4230 }
4231 }
4232 trailing_zeros = excess_precision;
4233 }
4234 else
4235 leading_zeros = excess_precision;
4236 }
4237
4238 /* Compute the total bytes needed for this item, including
4239 excess precision and padding. */
4240 numwidth = sprintf_bytes + excess_precision;
4241 padding = numwidth < field_width ? field_width - numwidth : 0;
4242 if (max_bufsize - sprintf_bytes <= excess_precision
4243 || max_bufsize - padding <= numwidth)
4244 string_overflow ();
4245 convbytes = numwidth + padding;
4246
4247 if (convbytes <= buf + bufsize - p)
4248 {
4249 /* Copy the formatted item from sprintf_buf into buf,
4250 inserting padding and excess-precision zeros. */
4251
4252 char *src = sprintf_buf;
4253 char src0 = src[0];
4254 int exponent_bytes = 0;
4255 bool signedp = src0 == '-' || src0 == '+' || src0 == ' ';
4256 int significand_bytes;
4257 if (zero_flag
4258 && ((src[signedp] >= '0' && src[signedp] <= '9')
4259 || (src[signedp] >= 'a' && src[signedp] <= 'f')
4260 || (src[signedp] >= 'A' && src[signedp] <= 'F')))
4261 {
4262 leading_zeros += padding;
4263 padding = 0;
4264 }
4265
4266 if (excess_precision
4267 && (conversion == 'e' || conversion == 'g'))
4268 {
4269 char *e = strchr (src, 'e');
4270 if (e)
4271 exponent_bytes = src + sprintf_bytes - e;
4272 }
4273
4274 if (! minus_flag)
4275 {
4276 memset (p, ' ', padding);
4277 p += padding;
4278 nchars += padding;
4279 }
4280
4281 *p = src0;
4282 src += signedp;
4283 p += signedp;
4284 memset (p, '0', leading_zeros);
4285 p += leading_zeros;
4286 significand_bytes = sprintf_bytes - signedp - exponent_bytes;
4287 memcpy (p, src, significand_bytes);
4288 p += significand_bytes;
4289 src += significand_bytes;
4290 memset (p, '0', trailing_zeros);
4291 p += trailing_zeros;
4292 memcpy (p, src, exponent_bytes);
4293 p += exponent_bytes;
4294
4295 info[n].start = nchars;
4296 nchars += leading_zeros + sprintf_bytes + trailing_zeros;
4297 info[n].end = nchars;
4298
4299 if (minus_flag)
4300 {
4301 memset (p, ' ', padding);
4302 p += padding;
4303 nchars += padding;
4304 }
4305
4306 continue;
4307 }
4308 }
4309 }
4310 else
4311 copy_char:
4312 {
4313 /* Copy a single character from format to buf. */
4314
4315 char *src = format;
4316 unsigned char str[MAX_MULTIBYTE_LENGTH];
4317
4318 if (multibyte_format)
4319 {
4320 /* Copy a whole multibyte character. */
4321 if (p > buf
4322 && !ASCII_CHAR_P (*((unsigned char *) p - 1))
4323 && !CHAR_HEAD_P (*format))
4324 maybe_combine_byte = 1;
4325
4326 do
4327 format++;
4328 while (! CHAR_HEAD_P (*format));
4329
4330 convbytes = format - src;
4331 memset (&discarded[src + 1 - format_start], 2, convbytes - 1);
4332 }
4333 else
4334 {
4335 unsigned char uc = *format++;
4336 if (! multibyte || ASCII_CHAR_P (uc))
4337 convbytes = 1;
4338 else
4339 {
4340 int c = BYTE8_TO_CHAR (uc);
4341 convbytes = CHAR_STRING (c, str);
4342 src = (char *) str;
4343 }
4344 }
4345
4346 if (convbytes <= buf + bufsize - p)
4347 {
4348 memcpy (p, src, convbytes);
4349 p += convbytes;
4350 nchars++;
4351 continue;
4352 }
4353 }
4354
4355 /* There wasn't enough room to store this conversion or single
4356 character. CONVBYTES says how much room is needed. Allocate
4357 enough room (and then some) and do it again. */
4358 {
4359 ptrdiff_t used = p - buf;
4360
4361 if (max_bufsize - used < convbytes)
4362 string_overflow ();
4363 bufsize = used + convbytes;
4364 bufsize = bufsize < max_bufsize / 2 ? bufsize * 2 : max_bufsize;
4365
4366 if (buf == initial_buffer)
4367 {
4368 buf = xmalloc (bufsize);
4369 sa_must_free = true;
4370 buf_save_value_index = SPECPDL_INDEX ();
4371 record_unwind_protect_ptr (xfree, buf);
4372 memcpy (buf, initial_buffer, used);
4373 }
4374 else
4375 {
4376 buf = xrealloc (buf, bufsize);
4377 set_unwind_protect_ptr (buf_save_value_index, xfree, buf);
4378 }
4379
4380 p = buf + used;
4381 }
4382
4383 format = format0;
4384 n = n0;
4385 }
4386
4387 if (bufsize < p - buf)
4388 emacs_abort ();
4389
4390 if (maybe_combine_byte)
4391 nchars = multibyte_chars_in_text ((unsigned char *) buf, p - buf);
4392 val = make_specified_string (buf, nchars, p - buf, multibyte);
4393
4394 /* If we allocated BUF with malloc, free it too. */
4395 SAFE_FREE ();
4396
4397 /* If the format string has text properties, or any of the string
4398 arguments has text properties, set up text properties of the
4399 result string. */
4400
4401 if (string_intervals (args[0]) || arg_intervals)
4402 {
4403 Lisp_Object len, new_len, props;
4404 struct gcpro gcpro1;
4405
4406 /* Add text properties from the format string. */
4407 len = make_number (SCHARS (args[0]));
4408 props = text_property_list (args[0], make_number (0), len, Qnil);
4409 GCPRO1 (props);
4410
4411 if (CONSP (props))
4412 {
4413 ptrdiff_t bytepos = 0, position = 0, translated = 0;
4414 ptrdiff_t argn = 1;
4415 Lisp_Object list;
4416
4417 /* Adjust the bounds of each text property
4418 to the proper start and end in the output string. */
4419
4420 /* Put the positions in PROPS in increasing order, so that
4421 we can do (effectively) one scan through the position
4422 space of the format string. */
4423 props = Fnreverse (props);
4424
4425 /* BYTEPOS is the byte position in the format string,
4426 POSITION is the untranslated char position in it,
4427 TRANSLATED is the translated char position in BUF,
4428 and ARGN is the number of the next arg we will come to. */
4429 for (list = props; CONSP (list); list = XCDR (list))
4430 {
4431 Lisp_Object item;
4432 ptrdiff_t pos;
4433
4434 item = XCAR (list);
4435
4436 /* First adjust the property start position. */
4437 pos = XINT (XCAR (item));
4438
4439 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
4440 up to this position. */
4441 for (; position < pos; bytepos++)
4442 {
4443 if (! discarded[bytepos])
4444 position++, translated++;
4445 else if (discarded[bytepos] == 1)
4446 {
4447 position++;
4448 if (translated == info[argn].start)
4449 {
4450 translated += info[argn].end - info[argn].start;
4451 argn++;
4452 }
4453 }
4454 }
4455
4456 XSETCAR (item, make_number (translated));
4457
4458 /* Likewise adjust the property end position. */
4459 pos = XINT (XCAR (XCDR (item)));
4460
4461 for (; position < pos; bytepos++)
4462 {
4463 if (! discarded[bytepos])
4464 position++, translated++;
4465 else if (discarded[bytepos] == 1)
4466 {
4467 position++;
4468 if (translated == info[argn].start)
4469 {
4470 translated += info[argn].end - info[argn].start;
4471 argn++;
4472 }
4473 }
4474 }
4475
4476 XSETCAR (XCDR (item), make_number (translated));
4477 }
4478
4479 add_text_properties_from_list (val, props, make_number (0));
4480 }
4481
4482 /* Add text properties from arguments. */
4483 if (arg_intervals)
4484 for (n = 1; n < nargs; ++n)
4485 if (info[n].intervals)
4486 {
4487 len = make_number (SCHARS (args[n]));
4488 new_len = make_number (info[n].end - info[n].start);
4489 props = text_property_list (args[n], make_number (0), len, Qnil);
4490 props = extend_property_ranges (props, new_len);
4491 /* If successive arguments have properties, be sure that
4492 the value of `composition' property be the copy. */
4493 if (n > 1 && info[n - 1].end)
4494 make_composition_value_copy (props);
4495 add_text_properties_from_list (val, props,
4496 make_number (info[n].start));
4497 }
4498
4499 UNGCPRO;
4500 }
4501
4502 return val;
4503 }
4504
4505 Lisp_Object
4506 format2 (const char *string1, Lisp_Object arg0, Lisp_Object arg1)
4507 {
4508 AUTO_STRING (format, string1);
4509 return Fformat (3, (Lisp_Object []) {format, arg0, arg1});
4510 }
4511 \f
4512 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
4513 doc: /* Return t if two characters match, optionally ignoring case.
4514 Both arguments must be characters (i.e. integers).
4515 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
4516 (register Lisp_Object c1, Lisp_Object c2)
4517 {
4518 int i1, i2;
4519 /* Check they're chars, not just integers, otherwise we could get array
4520 bounds violations in downcase. */
4521 CHECK_CHARACTER (c1);
4522 CHECK_CHARACTER (c2);
4523
4524 if (XINT (c1) == XINT (c2))
4525 return Qt;
4526 if (NILP (BVAR (current_buffer, case_fold_search)))
4527 return Qnil;
4528
4529 i1 = XFASTINT (c1);
4530 i2 = XFASTINT (c2);
4531
4532 /* FIXME: It is possible to compare multibyte characters even when
4533 the current buffer is unibyte. Unfortunately this is ambiguous
4534 for characters between 128 and 255, as they could be either
4535 eight-bit raw bytes or Latin-1 characters. Assume the former for
4536 now. See Bug#17011, and also see casefiddle.c's casify_object,
4537 which has a similar problem. */
4538 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4539 {
4540 if (SINGLE_BYTE_CHAR_P (i1))
4541 i1 = UNIBYTE_TO_CHAR (i1);
4542 if (SINGLE_BYTE_CHAR_P (i2))
4543 i2 = UNIBYTE_TO_CHAR (i2);
4544 }
4545
4546 return (downcase (i1) == downcase (i2) ? Qt : Qnil);
4547 }
4548 \f
4549 /* Transpose the markers in two regions of the current buffer, and
4550 adjust the ones between them if necessary (i.e.: if the regions
4551 differ in size).
4552
4553 START1, END1 are the character positions of the first region.
4554 START1_BYTE, END1_BYTE are the byte positions.
4555 START2, END2 are the character positions of the second region.
4556 START2_BYTE, END2_BYTE are the byte positions.
4557
4558 Traverses the entire marker list of the buffer to do so, adding an
4559 appropriate amount to some, subtracting from some, and leaving the
4560 rest untouched. Most of this is copied from adjust_markers in insdel.c.
4561
4562 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
4563
4564 static void
4565 transpose_markers (ptrdiff_t start1, ptrdiff_t end1,
4566 ptrdiff_t start2, ptrdiff_t end2,
4567 ptrdiff_t start1_byte, ptrdiff_t end1_byte,
4568 ptrdiff_t start2_byte, ptrdiff_t end2_byte)
4569 {
4570 register ptrdiff_t amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
4571 register struct Lisp_Marker *marker;
4572
4573 /* Update point as if it were a marker. */
4574 if (PT < start1)
4575 ;
4576 else if (PT < end1)
4577 TEMP_SET_PT_BOTH (PT + (end2 - end1),
4578 PT_BYTE + (end2_byte - end1_byte));
4579 else if (PT < start2)
4580 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
4581 (PT_BYTE + (end2_byte - start2_byte)
4582 - (end1_byte - start1_byte)));
4583 else if (PT < end2)
4584 TEMP_SET_PT_BOTH (PT - (start2 - start1),
4585 PT_BYTE - (start2_byte - start1_byte));
4586
4587 /* We used to adjust the endpoints here to account for the gap, but that
4588 isn't good enough. Even if we assume the caller has tried to move the
4589 gap out of our way, it might still be at start1 exactly, for example;
4590 and that places it `inside' the interval, for our purposes. The amount
4591 of adjustment is nontrivial if there's a `denormalized' marker whose
4592 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4593 the dirty work to Fmarker_position, below. */
4594
4595 /* The difference between the region's lengths */
4596 diff = (end2 - start2) - (end1 - start1);
4597 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4598
4599 /* For shifting each marker in a region by the length of the other
4600 region plus the distance between the regions. */
4601 amt1 = (end2 - start2) + (start2 - end1);
4602 amt2 = (end1 - start1) + (start2 - end1);
4603 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4604 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4605
4606 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4607 {
4608 mpos = marker->bytepos;
4609 if (mpos >= start1_byte && mpos < end2_byte)
4610 {
4611 if (mpos < end1_byte)
4612 mpos += amt1_byte;
4613 else if (mpos < start2_byte)
4614 mpos += diff_byte;
4615 else
4616 mpos -= amt2_byte;
4617 marker->bytepos = mpos;
4618 }
4619 mpos = marker->charpos;
4620 if (mpos >= start1 && mpos < end2)
4621 {
4622 if (mpos < end1)
4623 mpos += amt1;
4624 else if (mpos < start2)
4625 mpos += diff;
4626 else
4627 mpos -= amt2;
4628 }
4629 marker->charpos = mpos;
4630 }
4631 }
4632
4633 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4634 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
4635 The regions should not be overlapping, because the size of the buffer is
4636 never changed in a transposition.
4637
4638 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
4639 any markers that happen to be located in the regions.
4640
4641 Transposing beyond buffer boundaries is an error. */)
4642 (Lisp_Object startr1, Lisp_Object endr1, Lisp_Object startr2, Lisp_Object endr2, Lisp_Object leave_markers)
4643 {
4644 register ptrdiff_t start1, end1, start2, end2;
4645 ptrdiff_t start1_byte, start2_byte, len1_byte, len2_byte, end2_byte;
4646 ptrdiff_t gap, len1, len_mid, len2;
4647 unsigned char *start1_addr, *start2_addr, *temp;
4648
4649 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2, tmp_interval3;
4650 Lisp_Object buf;
4651
4652 XSETBUFFER (buf, current_buffer);
4653 cur_intv = buffer_intervals (current_buffer);
4654
4655 validate_region (&startr1, &endr1);
4656 validate_region (&startr2, &endr2);
4657
4658 start1 = XFASTINT (startr1);
4659 end1 = XFASTINT (endr1);
4660 start2 = XFASTINT (startr2);
4661 end2 = XFASTINT (endr2);
4662 gap = GPT;
4663
4664 /* Swap the regions if they're reversed. */
4665 if (start2 < end1)
4666 {
4667 register ptrdiff_t glumph = start1;
4668 start1 = start2;
4669 start2 = glumph;
4670 glumph = end1;
4671 end1 = end2;
4672 end2 = glumph;
4673 }
4674
4675 len1 = end1 - start1;
4676 len2 = end2 - start2;
4677
4678 if (start2 < end1)
4679 error ("Transposed regions overlap");
4680 /* Nothing to change for adjacent regions with one being empty */
4681 else if ((start1 == end1 || start2 == end2) && end1 == start2)
4682 return Qnil;
4683
4684 /* The possibilities are:
4685 1. Adjacent (contiguous) regions, or separate but equal regions
4686 (no, really equal, in this case!), or
4687 2. Separate regions of unequal size.
4688
4689 The worst case is usually No. 2. It means that (aside from
4690 potential need for getting the gap out of the way), there also
4691 needs to be a shifting of the text between the two regions. So
4692 if they are spread far apart, we are that much slower... sigh. */
4693
4694 /* It must be pointed out that the really studly thing to do would
4695 be not to move the gap at all, but to leave it in place and work
4696 around it if necessary. This would be extremely efficient,
4697 especially considering that people are likely to do
4698 transpositions near where they are working interactively, which
4699 is exactly where the gap would be found. However, such code
4700 would be much harder to write and to read. So, if you are
4701 reading this comment and are feeling squirrely, by all means have
4702 a go! I just didn't feel like doing it, so I will simply move
4703 the gap the minimum distance to get it out of the way, and then
4704 deal with an unbroken array. */
4705
4706 start1_byte = CHAR_TO_BYTE (start1);
4707 end2_byte = CHAR_TO_BYTE (end2);
4708
4709 /* Make sure the gap won't interfere, by moving it out of the text
4710 we will operate on. */
4711 if (start1 < gap && gap < end2)
4712 {
4713 if (gap - start1 < end2 - gap)
4714 move_gap_both (start1, start1_byte);
4715 else
4716 move_gap_both (end2, end2_byte);
4717 }
4718
4719 start2_byte = CHAR_TO_BYTE (start2);
4720 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4721 len2_byte = end2_byte - start2_byte;
4722
4723 #ifdef BYTE_COMBINING_DEBUG
4724 if (end1 == start2)
4725 {
4726 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4727 len2_byte, start1, start1_byte)
4728 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4729 len1_byte, end2, start2_byte + len2_byte)
4730 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4731 len1_byte, end2, start2_byte + len2_byte))
4732 emacs_abort ();
4733 }
4734 else
4735 {
4736 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4737 len2_byte, start1, start1_byte)
4738 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4739 len1_byte, start2, start2_byte)
4740 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4741 len2_byte, end1, start1_byte + len1_byte)
4742 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4743 len1_byte, end2, start2_byte + len2_byte))
4744 emacs_abort ();
4745 }
4746 #endif
4747
4748 /* Hmmm... how about checking to see if the gap is large
4749 enough to use as the temporary storage? That would avoid an
4750 allocation... interesting. Later, don't fool with it now. */
4751
4752 /* Working without memmove, for portability (sigh), so must be
4753 careful of overlapping subsections of the array... */
4754
4755 if (end1 == start2) /* adjacent regions */
4756 {
4757 modify_text (start1, end2);
4758 record_change (start1, len1 + len2);
4759
4760 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4761 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4762 /* Don't use Fset_text_properties: that can cause GC, which can
4763 clobber objects stored in the tmp_intervals. */
4764 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4765 if (tmp_interval3)
4766 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4767
4768 USE_SAFE_ALLOCA;
4769
4770 /* First region smaller than second. */
4771 if (len1_byte < len2_byte)
4772 {
4773 temp = SAFE_ALLOCA (len2_byte);
4774
4775 /* Don't precompute these addresses. We have to compute them
4776 at the last minute, because the relocating allocator might
4777 have moved the buffer around during the xmalloc. */
4778 start1_addr = BYTE_POS_ADDR (start1_byte);
4779 start2_addr = BYTE_POS_ADDR (start2_byte);
4780
4781 memcpy (temp, start2_addr, len2_byte);
4782 memcpy (start1_addr + len2_byte, start1_addr, len1_byte);
4783 memcpy (start1_addr, temp, len2_byte);
4784 }
4785 else
4786 /* First region not smaller than second. */
4787 {
4788 temp = SAFE_ALLOCA (len1_byte);
4789 start1_addr = BYTE_POS_ADDR (start1_byte);
4790 start2_addr = BYTE_POS_ADDR (start2_byte);
4791 memcpy (temp, start1_addr, len1_byte);
4792 memcpy (start1_addr, start2_addr, len2_byte);
4793 memcpy (start1_addr + len2_byte, temp, len1_byte);
4794 }
4795
4796 SAFE_FREE ();
4797 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4798 len1, current_buffer, 0);
4799 graft_intervals_into_buffer (tmp_interval2, start1,
4800 len2, current_buffer, 0);
4801 update_compositions (start1, start1 + len2, CHECK_BORDER);
4802 update_compositions (start1 + len2, end2, CHECK_TAIL);
4803 }
4804 /* Non-adjacent regions, because end1 != start2, bleagh... */
4805 else
4806 {
4807 len_mid = start2_byte - (start1_byte + len1_byte);
4808
4809 if (len1_byte == len2_byte)
4810 /* Regions are same size, though, how nice. */
4811 {
4812 USE_SAFE_ALLOCA;
4813
4814 modify_text (start1, end1);
4815 modify_text (start2, end2);
4816 record_change (start1, len1);
4817 record_change (start2, len2);
4818 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4819 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4820
4821 tmp_interval3 = validate_interval_range (buf, &startr1, &endr1, 0);
4822 if (tmp_interval3)
4823 set_text_properties_1 (startr1, endr1, Qnil, buf, tmp_interval3);
4824
4825 tmp_interval3 = validate_interval_range (buf, &startr2, &endr2, 0);
4826 if (tmp_interval3)
4827 set_text_properties_1 (startr2, endr2, Qnil, buf, tmp_interval3);
4828
4829 temp = SAFE_ALLOCA (len1_byte);
4830 start1_addr = BYTE_POS_ADDR (start1_byte);
4831 start2_addr = BYTE_POS_ADDR (start2_byte);
4832 memcpy (temp, start1_addr, len1_byte);
4833 memcpy (start1_addr, start2_addr, len2_byte);
4834 memcpy (start2_addr, temp, len1_byte);
4835 SAFE_FREE ();
4836
4837 graft_intervals_into_buffer (tmp_interval1, start2,
4838 len1, current_buffer, 0);
4839 graft_intervals_into_buffer (tmp_interval2, start1,
4840 len2, current_buffer, 0);
4841 }
4842
4843 else if (len1_byte < len2_byte) /* Second region larger than first */
4844 /* Non-adjacent & unequal size, area between must also be shifted. */
4845 {
4846 USE_SAFE_ALLOCA;
4847
4848 modify_text (start1, end2);
4849 record_change (start1, (end2 - start1));
4850 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4851 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4852 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4853
4854 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4855 if (tmp_interval3)
4856 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4857
4858 /* holds region 2 */
4859 temp = SAFE_ALLOCA (len2_byte);
4860 start1_addr = BYTE_POS_ADDR (start1_byte);
4861 start2_addr = BYTE_POS_ADDR (start2_byte);
4862 memcpy (temp, start2_addr, len2_byte);
4863 memcpy (start1_addr + len_mid + len2_byte, start1_addr, len1_byte);
4864 memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4865 memcpy (start1_addr, temp, len2_byte);
4866 SAFE_FREE ();
4867
4868 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4869 len1, current_buffer, 0);
4870 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4871 len_mid, current_buffer, 0);
4872 graft_intervals_into_buffer (tmp_interval2, start1,
4873 len2, current_buffer, 0);
4874 }
4875 else
4876 /* Second region smaller than first. */
4877 {
4878 USE_SAFE_ALLOCA;
4879
4880 record_change (start1, (end2 - start1));
4881 modify_text (start1, end2);
4882
4883 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4884 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4885 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4886
4887 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4888 if (tmp_interval3)
4889 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4890
4891 /* holds region 1 */
4892 temp = SAFE_ALLOCA (len1_byte);
4893 start1_addr = BYTE_POS_ADDR (start1_byte);
4894 start2_addr = BYTE_POS_ADDR (start2_byte);
4895 memcpy (temp, start1_addr, len1_byte);
4896 memcpy (start1_addr, start2_addr, len2_byte);
4897 memcpy (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4898 memcpy (start1_addr + len2_byte + len_mid, temp, len1_byte);
4899 SAFE_FREE ();
4900
4901 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4902 len1, current_buffer, 0);
4903 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4904 len_mid, current_buffer, 0);
4905 graft_intervals_into_buffer (tmp_interval2, start1,
4906 len2, current_buffer, 0);
4907 }
4908
4909 update_compositions (start1, start1 + len2, CHECK_BORDER);
4910 update_compositions (end2 - len1, end2, CHECK_BORDER);
4911 }
4912
4913 /* When doing multiple transpositions, it might be nice
4914 to optimize this. Perhaps the markers in any one buffer
4915 should be organized in some sorted data tree. */
4916 if (NILP (leave_markers))
4917 {
4918 transpose_markers (start1, end1, start2, end2,
4919 start1_byte, start1_byte + len1_byte,
4920 start2_byte, start2_byte + len2_byte);
4921 fix_start_end_in_overlays (start1, end2);
4922 }
4923
4924 signal_after_change (start1, end2 - start1, end2 - start1);
4925 return Qnil;
4926 }
4927
4928 \f
4929 void
4930 syms_of_editfns (void)
4931 {
4932 DEFSYM (Qbuffer_access_fontify_functions, "buffer-access-fontify-functions");
4933
4934 DEFVAR_LISP ("inhibit-field-text-motion", Vinhibit_field_text_motion,
4935 doc: /* Non-nil means text motion commands don't notice fields. */);
4936 Vinhibit_field_text_motion = Qnil;
4937
4938 DEFVAR_LISP ("buffer-access-fontify-functions",
4939 Vbuffer_access_fontify_functions,
4940 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
4941 Each function is called with two arguments which specify the range
4942 of the buffer being accessed. */);
4943 Vbuffer_access_fontify_functions = Qnil;
4944
4945 {
4946 Lisp_Object obuf;
4947 obuf = Fcurrent_buffer ();
4948 /* Do this here, because init_buffer_once is too early--it won't work. */
4949 Fset_buffer (Vprin1_to_string_buffer);
4950 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
4951 Fset (Fmake_local_variable (intern_c_string ("buffer-access-fontify-functions")),
4952 Qnil);
4953 Fset_buffer (obuf);
4954 }
4955
4956 DEFVAR_LISP ("buffer-access-fontified-property",
4957 Vbuffer_access_fontified_property,
4958 doc: /* Property which (if non-nil) indicates text has been fontified.
4959 `buffer-substring' need not call the `buffer-access-fontify-functions'
4960 functions if all the text being accessed has this property. */);
4961 Vbuffer_access_fontified_property = Qnil;
4962
4963 DEFVAR_LISP ("system-name", Vsystem_name,
4964 doc: /* The host name of the machine Emacs is running on. */);
4965 Vsystem_name = cached_system_name = Qnil;
4966
4967 DEFVAR_LISP ("user-full-name", Vuser_full_name,
4968 doc: /* The full name of the user logged in. */);
4969
4970 DEFVAR_LISP ("user-login-name", Vuser_login_name,
4971 doc: /* The user's name, taken from environment variables if possible. */);
4972
4973 DEFVAR_LISP ("user-real-login-name", Vuser_real_login_name,
4974 doc: /* The user's name, based upon the real uid only. */);
4975
4976 DEFVAR_LISP ("operating-system-release", Voperating_system_release,
4977 doc: /* The release of the operating system Emacs is running on. */);
4978
4979 defsubr (&Spropertize);
4980 defsubr (&Schar_equal);
4981 defsubr (&Sgoto_char);
4982 defsubr (&Sstring_to_char);
4983 defsubr (&Schar_to_string);
4984 defsubr (&Sbyte_to_string);
4985 defsubr (&Sbuffer_substring);
4986 defsubr (&Sbuffer_substring_no_properties);
4987 defsubr (&Sbuffer_string);
4988 defsubr (&Sget_pos_property);
4989
4990 defsubr (&Spoint_marker);
4991 defsubr (&Smark_marker);
4992 defsubr (&Spoint);
4993 defsubr (&Sregion_beginning);
4994 defsubr (&Sregion_end);
4995
4996 /* Symbol for the text property used to mark fields. */
4997 DEFSYM (Qfield, "field");
4998
4999 /* A special value for Qfield properties. */
5000 DEFSYM (Qboundary, "boundary");
5001
5002 defsubr (&Sfield_beginning);
5003 defsubr (&Sfield_end);
5004 defsubr (&Sfield_string);
5005 defsubr (&Sfield_string_no_properties);
5006 defsubr (&Sdelete_field);
5007 defsubr (&Sconstrain_to_field);
5008
5009 defsubr (&Sline_beginning_position);
5010 defsubr (&Sline_end_position);
5011
5012 defsubr (&Ssave_excursion);
5013 defsubr (&Ssave_current_buffer);
5014
5015 defsubr (&Sbuffer_size);
5016 defsubr (&Spoint_max);
5017 defsubr (&Spoint_min);
5018 defsubr (&Spoint_min_marker);
5019 defsubr (&Spoint_max_marker);
5020 defsubr (&Sgap_position);
5021 defsubr (&Sgap_size);
5022 defsubr (&Sposition_bytes);
5023 defsubr (&Sbyte_to_position);
5024
5025 defsubr (&Sbobp);
5026 defsubr (&Seobp);
5027 defsubr (&Sbolp);
5028 defsubr (&Seolp);
5029 defsubr (&Sfollowing_char);
5030 defsubr (&Sprevious_char);
5031 defsubr (&Schar_after);
5032 defsubr (&Schar_before);
5033 defsubr (&Sinsert);
5034 defsubr (&Sinsert_before_markers);
5035 defsubr (&Sinsert_and_inherit);
5036 defsubr (&Sinsert_and_inherit_before_markers);
5037 defsubr (&Sinsert_char);
5038 defsubr (&Sinsert_byte);
5039
5040 defsubr (&Suser_login_name);
5041 defsubr (&Suser_real_login_name);
5042 defsubr (&Suser_uid);
5043 defsubr (&Suser_real_uid);
5044 defsubr (&Sgroup_gid);
5045 defsubr (&Sgroup_real_gid);
5046 defsubr (&Suser_full_name);
5047 defsubr (&Semacs_pid);
5048 defsubr (&Scurrent_time);
5049 defsubr (&Stime_add);
5050 defsubr (&Stime_subtract);
5051 defsubr (&Stime_less_p);
5052 defsubr (&Sget_internal_run_time);
5053 defsubr (&Sformat_time_string);
5054 defsubr (&Sfloat_time);
5055 defsubr (&Sdecode_time);
5056 defsubr (&Sencode_time);
5057 defsubr (&Scurrent_time_string);
5058 defsubr (&Scurrent_time_zone);
5059 defsubr (&Sset_time_zone_rule);
5060 defsubr (&Ssystem_name);
5061 defsubr (&Smessage);
5062 defsubr (&Smessage_box);
5063 defsubr (&Smessage_or_box);
5064 defsubr (&Scurrent_message);
5065 defsubr (&Sformat);
5066
5067 defsubr (&Sinsert_buffer_substring);
5068 defsubr (&Scompare_buffer_substrings);
5069 defsubr (&Ssubst_char_in_region);
5070 defsubr (&Stranslate_region_internal);
5071 defsubr (&Sdelete_region);
5072 defsubr (&Sdelete_and_extract_region);
5073 defsubr (&Swiden);
5074 defsubr (&Snarrow_to_region);
5075 defsubr (&Ssave_restriction);
5076 defsubr (&Stranspose_regions);
5077 }