]> code.delx.au - gnu-emacs/blob - src/lisp.h
Compute C decls for DEFSYMs automatically
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2015 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #define DECLARE_GDB_SYM(type, id) type const id EXTERNALLY_VISIBLE
48 #ifdef MAIN_PROGRAM
49 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) DECLARE_GDB_SYM (type, id)
50 # define DEFINE_GDB_SYMBOL_END(id) = id;
51 #else
52 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) extern DECLARE_GDB_SYM (type, id)
53 # define DEFINE_GDB_SYMBOL_END(val) ;
54 #endif
55
56 /* The ubiquitous max and min macros. */
57 #undef min
58 #undef max
59 #define max(a, b) ((a) > (b) ? (a) : (b))
60 #define min(a, b) ((a) < (b) ? (a) : (b))
61
62 /* Number of elements in an array. */
63 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
64
65 /* Number of bits in a Lisp_Object tag. */
66 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
67 #define GCTYPEBITS 3
68 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
69
70 /* The number of bits needed in an EMACS_INT over and above the number
71 of bits in a pointer. This is 0 on systems where:
72 1. We can specify multiple-of-8 alignment on static variables.
73 2. We know malloc returns a multiple of 8. */
74 #if (defined alignas \
75 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
76 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
77 || defined CYGWIN))
78 # define NONPOINTER_BITS 0
79 #else
80 # define NONPOINTER_BITS GCTYPEBITS
81 #endif
82
83 /* EMACS_INT - signed integer wide enough to hold an Emacs value
84 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
85 pI - printf length modifier for EMACS_INT
86 EMACS_UINT - unsigned variant of EMACS_INT */
87 #ifndef EMACS_INT_MAX
88 # if INTPTR_MAX <= 0
89 # error "INTPTR_MAX misconfigured"
90 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
91 typedef int EMACS_INT;
92 typedef unsigned int EMACS_UINT;
93 # define EMACS_INT_MAX INT_MAX
94 # define pI ""
95 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
96 typedef long int EMACS_INT;
97 typedef unsigned long EMACS_UINT;
98 # define EMACS_INT_MAX LONG_MAX
99 # define pI "l"
100 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
101 In theory this is not safe, but in practice it seems to be OK. */
102 # elif INTPTR_MAX <= LLONG_MAX
103 typedef long long int EMACS_INT;
104 typedef unsigned long long int EMACS_UINT;
105 # define EMACS_INT_MAX LLONG_MAX
106 # define pI "ll"
107 # else
108 # error "INTPTR_MAX too large"
109 # endif
110 #endif
111
112 /* Number of bits to put in each character in the internal representation
113 of bool vectors. This should not vary across implementations. */
114 enum { BOOL_VECTOR_BITS_PER_CHAR =
115 #define BOOL_VECTOR_BITS_PER_CHAR 8
116 BOOL_VECTOR_BITS_PER_CHAR
117 };
118
119 /* An unsigned integer type representing a fixed-length bit sequence,
120 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
121 for speed, but it is unsigned char on weird platforms. */
122 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
123 typedef size_t bits_word;
124 # define BITS_WORD_MAX SIZE_MAX
125 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
126 #else
127 typedef unsigned char bits_word;
128 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
129 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
130 #endif
131 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
132
133 /* Number of bits in some machine integer types. */
134 enum
135 {
136 BITS_PER_CHAR = CHAR_BIT,
137 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
138 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
139 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
140 };
141
142 /* printmax_t and uprintmax_t are types for printing large integers.
143 These are the widest integers that are supported for printing.
144 pMd etc. are conversions for printing them.
145 On C99 hosts, there's no problem, as even the widest integers work.
146 Fall back on EMACS_INT on pre-C99 hosts. */
147 #ifdef PRIdMAX
148 typedef intmax_t printmax_t;
149 typedef uintmax_t uprintmax_t;
150 # define pMd PRIdMAX
151 # define pMu PRIuMAX
152 #else
153 typedef EMACS_INT printmax_t;
154 typedef EMACS_UINT uprintmax_t;
155 # define pMd pI"d"
156 # define pMu pI"u"
157 #endif
158
159 /* Use pD to format ptrdiff_t values, which suffice for indexes into
160 buffers and strings. Emacs never allocates objects larger than
161 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
162 In C99, pD can always be "t"; configure it here for the sake of
163 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
164 #if PTRDIFF_MAX == INT_MAX
165 # define pD ""
166 #elif PTRDIFF_MAX == LONG_MAX
167 # define pD "l"
168 #elif PTRDIFF_MAX == LLONG_MAX
169 # define pD "ll"
170 #else
171 # define pD "t"
172 #endif
173
174 /* Extra internal type checking? */
175
176 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
177 'assume (COND)'. COND should be free of side effects, as it may or
178 may not be evaluated.
179
180 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
181 defined and suppress_checking is false, and does nothing otherwise.
182 Emacs dies if COND is checked and is false. The suppress_checking
183 variable is initialized to 0 in alloc.c. Set it to 1 using a
184 debugger to temporarily disable aborting on detected internal
185 inconsistencies or error conditions.
186
187 In some cases, a good compiler may be able to optimize away the
188 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
189 uses eassert to test STRINGP (x), but a particular use of XSTRING
190 is invoked only after testing that STRINGP (x) is true, making the
191 test redundant.
192
193 eassume is like eassert except that it also causes the compiler to
194 assume that COND is true afterwards, regardless of whether runtime
195 checking is enabled. This can improve performance in some cases,
196 though it can degrade performance in others. It's often suboptimal
197 for COND to call external functions or access volatile storage. */
198
199 #ifndef ENABLE_CHECKING
200 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
201 # define eassume(cond) assume (cond)
202 #else /* ENABLE_CHECKING */
203
204 extern _Noreturn void die (const char *, const char *, int);
205
206 extern bool suppress_checking EXTERNALLY_VISIBLE;
207
208 # define eassert(cond) \
209 (suppress_checking || (cond) \
210 ? (void) 0 \
211 : die (# cond, __FILE__, __LINE__))
212 # define eassume(cond) \
213 (suppress_checking \
214 ? assume (cond) \
215 : (cond) \
216 ? (void) 0 \
217 : die (# cond, __FILE__, __LINE__))
218 #endif /* ENABLE_CHECKING */
219
220 \f
221 /* Use the configure flag --enable-check-lisp-object-type to make
222 Lisp_Object use a struct type instead of the default int. The flag
223 causes CHECK_LISP_OBJECT_TYPE to be defined. */
224
225 /***** Select the tagging scheme. *****/
226 /* The following option controls the tagging scheme:
227 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
228 always 0, and we can thus use them to hold tag bits, without
229 restricting our addressing space.
230
231 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
232 restricting our possible address range.
233
234 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
235 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
236 on the few static Lisp_Objects used: all the defsubr as well
237 as the two special buffers buffer_defaults and buffer_local_symbols. */
238
239 enum Lisp_Bits
240 {
241 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
242 integer constant, for MSVC. */
243 #define GCALIGNMENT 8
244
245 /* Number of bits in a Lisp_Object value, not counting the tag. */
246 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
247
248 /* Number of bits in a Lisp fixnum tag. */
249 INTTYPEBITS = GCTYPEBITS - 1,
250
251 /* Number of bits in a Lisp fixnum value, not counting the tag. */
252 FIXNUM_BITS = VALBITS + 1
253 };
254
255 #if GCALIGNMENT != 1 << GCTYPEBITS
256 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
257 #endif
258
259 /* The maximum value that can be stored in a EMACS_INT, assuming all
260 bits other than the type bits contribute to a nonnegative signed value.
261 This can be used in #if, e.g., '#if USB_TAG' below expands to an
262 expression involving VAL_MAX. */
263 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
264
265 /* Whether the least-significant bits of an EMACS_INT contain the tag.
266 On hosts where pointers-as-ints do not exceed VAL_MAX / 2, USE_LSB_TAG is:
267 a. unnecessary, because the top bits of an EMACS_INT are unused, and
268 b. slower, because it typically requires extra masking.
269 So, USE_LSB_TAG is true only on hosts where it might be useful. */
270 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
271 #define USE_LSB_TAG (VAL_MAX / 2 < INTPTR_MAX)
272 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
273
274 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
275 # error "USE_LSB_TAG not supported on this platform; please report this." \
276 "Try 'configure --with-wide-int' to work around the problem."
277 error !;
278 #endif
279
280 #ifndef alignas
281 # define alignas(alignment) /* empty */
282 # if USE_LSB_TAG
283 # error "USE_LSB_TAG requires alignas"
284 # endif
285 #endif
286
287 #ifdef HAVE_STRUCT_ATTRIBUTE_ALIGNED
288 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
289 #else
290 # define GCALIGNED /* empty */
291 #endif
292
293 /* Some operations are so commonly executed that they are implemented
294 as macros, not functions, because otherwise runtime performance would
295 suffer too much when compiling with GCC without optimization.
296 There's no need to inline everything, just the operations that
297 would otherwise cause a serious performance problem.
298
299 For each such operation OP, define a macro lisp_h_OP that contains
300 the operation's implementation. That way, OP can be implemented
301 via a macro definition like this:
302
303 #define OP(x) lisp_h_OP (x)
304
305 and/or via a function definition like this:
306
307 LISP_MACRO_DEFUN (OP, Lisp_Object, (Lisp_Object x), (x))
308
309 which macro-expands to this:
310
311 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
312
313 without worrying about the implementations diverging, since
314 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
315 are intended to be private to this include file, and should not be
316 used elsewhere.
317
318 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
319 functions, once most developers have access to GCC 4.8 or later and
320 can use "gcc -Og" to debug. Maybe in the year 2016. See
321 Bug#11935.
322
323 Commentary for these macros can be found near their corresponding
324 functions, below. */
325
326 #if CHECK_LISP_OBJECT_TYPE
327 # define lisp_h_XLI(o) ((o).i)
328 # define lisp_h_XIL(i) ((Lisp_Object) { i })
329 #else
330 # define lisp_h_XLI(o) (o)
331 # define lisp_h_XIL(i) (i)
332 #endif
333 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
334 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
335 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
336 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
337 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
338 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
339 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
340 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
341 #define lisp_h_INTEGERP(x) ((XTYPE (x) & (Lisp_Int0 | ~Lisp_Int1)) == Lisp_Int0)
342 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
343 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
344 #define lisp_h_NILP(x) EQ (x, Qnil)
345 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
346 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
347 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
348 #define lisp_h_SYMBOL_VAL(sym) \
349 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
350 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
351 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
352 #define lisp_h_XCAR(c) XCONS (c)->car
353 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
354 #define lisp_h_XCONS(a) \
355 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
356 #define lisp_h_XHASH(a) XUINT (a)
357 #define lisp_h_XPNTR(a) ((void *) (intptr_t) (XLI (a) & VALMASK))
358 #define lisp_h_XSYMBOL(a) \
359 (eassert (SYMBOLP (a)), (struct Lisp_Symbol *) XUNTAG (a, Lisp_Symbol))
360 #ifndef GC_CHECK_CONS_LIST
361 # define lisp_h_check_cons_list() ((void) 0)
362 #endif
363 #if USE_LSB_TAG
364 # define lisp_h_make_number(n) \
365 XIL ((EMACS_INT) (((EMACS_UINT) (n) << INTTYPEBITS) + Lisp_Int0))
366 # define lisp_h_XFASTINT(a) XINT (a)
367 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
368 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
369 # define lisp_h_XUNTAG(a, type) ((void *) (XLI (a) - (type)))
370 #endif
371
372 /* When compiling via gcc -O0, define the key operations as macros, as
373 Emacs is too slow otherwise. To disable this optimization, compile
374 with -DINLINING=false. */
375 #if (defined __NO_INLINE__ \
376 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
377 && ! (defined INLINING && ! INLINING))
378 # define XLI(o) lisp_h_XLI (o)
379 # define XIL(i) lisp_h_XIL (i)
380 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
381 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
382 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
383 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
384 # define CONSP(x) lisp_h_CONSP (x)
385 # define EQ(x, y) lisp_h_EQ (x, y)
386 # define FLOATP(x) lisp_h_FLOATP (x)
387 # define INTEGERP(x) lisp_h_INTEGERP (x)
388 # define MARKERP(x) lisp_h_MARKERP (x)
389 # define MISCP(x) lisp_h_MISCP (x)
390 # define NILP(x) lisp_h_NILP (x)
391 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
392 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
393 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
394 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
395 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
396 # define XCAR(c) lisp_h_XCAR (c)
397 # define XCDR(c) lisp_h_XCDR (c)
398 # define XCONS(a) lisp_h_XCONS (a)
399 # define XHASH(a) lisp_h_XHASH (a)
400 # define XPNTR(a) lisp_h_XPNTR (a)
401 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
402 # ifndef GC_CHECK_CONS_LIST
403 # define check_cons_list() lisp_h_check_cons_list ()
404 # endif
405 # if USE_LSB_TAG
406 # define make_number(n) lisp_h_make_number (n)
407 # define XFASTINT(a) lisp_h_XFASTINT (a)
408 # define XINT(a) lisp_h_XINT (a)
409 # define XTYPE(a) lisp_h_XTYPE (a)
410 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
411 # endif
412 #endif
413
414 /* Define NAME as a lisp.h inline function that returns TYPE and has
415 arguments declared as ARGDECLS and passed as ARGS. ARGDECLS and
416 ARGS should be parenthesized. Implement the function by calling
417 lisp_h_NAME ARGS. */
418 #define LISP_MACRO_DEFUN(name, type, argdecls, args) \
419 INLINE type (name) argdecls { return lisp_h_##name args; }
420
421 /* like LISP_MACRO_DEFUN, except NAME returns void. */
422 #define LISP_MACRO_DEFUN_VOID(name, argdecls, args) \
423 INLINE void (name) argdecls { lisp_h_##name args; }
424
425
426 /* Define the fundamental Lisp data structures. */
427
428 /* This is the set of Lisp data types. If you want to define a new
429 data type, read the comments after Lisp_Fwd_Type definition
430 below. */
431
432 /* Lisp integers use 2 tags, to give them one extra bit, thus
433 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
434 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
435 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
436
437 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
438 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
439 vociferously about them. */
440 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
441 || (defined __SUNPRO_C && __STDC__))
442 #define ENUM_BF(TYPE) unsigned int
443 #else
444 #define ENUM_BF(TYPE) enum TYPE
445 #endif
446
447
448 enum Lisp_Type
449 {
450 /* Integer. XINT (obj) is the integer value. */
451 Lisp_Int0 = 0,
452 Lisp_Int1 = USE_LSB_TAG ? 1 << INTTYPEBITS : 1,
453
454 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
455 Lisp_Symbol = 2,
456
457 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
458 whose first member indicates the subtype. */
459 Lisp_Misc = 3,
460
461 /* String. XSTRING (object) points to a struct Lisp_String.
462 The length of the string, and its contents, are stored therein. */
463 Lisp_String = USE_LSB_TAG ? 1 : 1 << INTTYPEBITS,
464
465 /* Vector of Lisp objects, or something resembling it.
466 XVECTOR (object) points to a struct Lisp_Vector, which contains
467 the size and contents. The size field also contains the type
468 information, if it's not a real vector object. */
469 Lisp_Vectorlike = 5,
470
471 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
472 Lisp_Cons = 6,
473
474 Lisp_Float = 7
475 };
476
477 /* This is the set of data types that share a common structure.
478 The first member of the structure is a type code from this set.
479 The enum values are arbitrary, but we'll use large numbers to make it
480 more likely that we'll spot the error if a random word in memory is
481 mistakenly interpreted as a Lisp_Misc. */
482 enum Lisp_Misc_Type
483 {
484 Lisp_Misc_Free = 0x5eab,
485 Lisp_Misc_Marker,
486 Lisp_Misc_Overlay,
487 Lisp_Misc_Save_Value,
488 /* Currently floats are not a misc type,
489 but let's define this in case we want to change that. */
490 Lisp_Misc_Float,
491 /* This is not a type code. It is for range checking. */
492 Lisp_Misc_Limit
493 };
494
495 /* These are the types of forwarding objects used in the value slot
496 of symbols for special built-in variables whose value is stored in
497 C variables. */
498 enum Lisp_Fwd_Type
499 {
500 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
501 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
502 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
503 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
504 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
505 };
506
507 /* If you want to define a new Lisp data type, here are some
508 instructions. See the thread at
509 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
510 for more info.
511
512 First, there are already a couple of Lisp types that can be used if
513 your new type does not need to be exposed to Lisp programs nor
514 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
515 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
516 is suitable for temporarily stashing away pointers and integers in
517 a Lisp object. The latter is useful for vector-like Lisp objects
518 that need to be used as part of other objects, but which are never
519 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
520 an example).
521
522 These two types don't look pretty when printed, so they are
523 unsuitable for Lisp objects that can be exposed to users.
524
525 To define a new data type, add one more Lisp_Misc subtype or one
526 more pseudovector subtype. Pseudovectors are more suitable for
527 objects with several slots that need to support fast random access,
528 while Lisp_Misc types are for everything else. A pseudovector object
529 provides one or more slots for Lisp objects, followed by struct
530 members that are accessible only from C. A Lisp_Misc object is a
531 wrapper for a C struct that can contain anything you like.
532
533 Explicit freeing is discouraged for Lisp objects in general. But if
534 you really need to exploit this, use Lisp_Misc (check free_misc in
535 alloc.c to see why). There is no way to free a vectorlike object.
536
537 To add a new pseudovector type, extend the pvec_type enumeration;
538 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
539
540 For a Lisp_Misc, you will also need to add your entry to union
541 Lisp_Misc (but make sure the first word has the same structure as
542 the others, starting with a 16-bit member of the Lisp_Misc_Type
543 enumeration and a 1-bit GC markbit) and make sure the overall size
544 of the union is not increased by your addition.
545
546 For a new pseudovector, it's highly desirable to limit the size
547 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
548 Otherwise you will need to change sweep_vectors (also in alloc.c).
549
550 Then you will need to add switch branches in print.c (in
551 print_object, to print your object, and possibly also in
552 print_preprocess) and to alloc.c, to mark your object (in
553 mark_object) and to free it (in gc_sweep). The latter is also the
554 right place to call any code specific to your data type that needs
555 to run when the object is recycled -- e.g., free any additional
556 resources allocated for it that are not Lisp objects. You can even
557 make a pointer to the function that frees the resources a slot in
558 your object -- this way, the same object could be used to represent
559 several disparate C structures. */
560
561 #ifdef CHECK_LISP_OBJECT_TYPE
562
563 typedef struct { EMACS_INT i; } Lisp_Object;
564
565 #define LISP_INITIALLY(i) {i}
566
567 #undef CHECK_LISP_OBJECT_TYPE
568 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
569 #else /* CHECK_LISP_OBJECT_TYPE */
570
571 /* If a struct type is not wanted, define Lisp_Object as just a number. */
572
573 typedef EMACS_INT Lisp_Object;
574 #define LISP_INITIALLY(i) (i)
575 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
576 #endif /* CHECK_LISP_OBJECT_TYPE */
577
578 #define LISP_INITIALLY_ZERO LISP_INITIALLY (0)
579 \f
580 /* Forward declarations. */
581
582 /* Defined in this file. */
583 union Lisp_Fwd;
584 INLINE bool BOOL_VECTOR_P (Lisp_Object);
585 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
586 INLINE bool BUFFERP (Lisp_Object);
587 INLINE bool CHAR_TABLE_P (Lisp_Object);
588 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
589 INLINE bool (CONSP) (Lisp_Object);
590 INLINE bool (FLOATP) (Lisp_Object);
591 INLINE bool functionp (Lisp_Object);
592 INLINE bool (INTEGERP) (Lisp_Object);
593 INLINE bool (MARKERP) (Lisp_Object);
594 INLINE bool (MISCP) (Lisp_Object);
595 INLINE bool (NILP) (Lisp_Object);
596 INLINE bool OVERLAYP (Lisp_Object);
597 INLINE bool PROCESSP (Lisp_Object);
598 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
599 INLINE bool SAVE_VALUEP (Lisp_Object);
600 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
601 Lisp_Object);
602 INLINE bool STRINGP (Lisp_Object);
603 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
604 INLINE bool SUBRP (Lisp_Object);
605 INLINE bool (SYMBOLP) (Lisp_Object);
606 INLINE bool (VECTORLIKEP) (Lisp_Object);
607 INLINE bool WINDOWP (Lisp_Object);
608 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
609
610 /* Defined in chartab.c. */
611 extern Lisp_Object char_table_ref (Lisp_Object, int);
612 extern void char_table_set (Lisp_Object, int, Lisp_Object);
613
614 /* Defined in data.c. */
615 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
616 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
617
618 /* Defined in emacs.c. */
619 extern bool might_dump;
620 /* True means Emacs has already been initialized.
621 Used during startup to detect startup of dumped Emacs. */
622 extern bool initialized;
623
624 /* Defined in floatfns.c. */
625 extern double extract_float (Lisp_Object);
626
627 \f
628 /* Interned state of a symbol. */
629
630 enum symbol_interned
631 {
632 SYMBOL_UNINTERNED = 0,
633 SYMBOL_INTERNED = 1,
634 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
635 };
636
637 enum symbol_redirect
638 {
639 SYMBOL_PLAINVAL = 4,
640 SYMBOL_VARALIAS = 1,
641 SYMBOL_LOCALIZED = 2,
642 SYMBOL_FORWARDED = 3
643 };
644
645 struct Lisp_Symbol
646 {
647 bool_bf gcmarkbit : 1;
648
649 /* Indicates where the value can be found:
650 0 : it's a plain var, the value is in the `value' field.
651 1 : it's a varalias, the value is really in the `alias' symbol.
652 2 : it's a localized var, the value is in the `blv' object.
653 3 : it's a forwarding variable, the value is in `forward'. */
654 ENUM_BF (symbol_redirect) redirect : 3;
655
656 /* Non-zero means symbol is constant, i.e. changing its value
657 should signal an error. If the value is 3, then the var
658 can be changed, but only by `defconst'. */
659 unsigned constant : 2;
660
661 /* Interned state of the symbol. This is an enumerator from
662 enum symbol_interned. */
663 unsigned interned : 2;
664
665 /* True means that this variable has been explicitly declared
666 special (with `defvar' etc), and shouldn't be lexically bound. */
667 bool_bf declared_special : 1;
668
669 /* True if pointed to from purespace and hence can't be GC'd. */
670 bool_bf pinned : 1;
671
672 /* The symbol's name, as a Lisp string. */
673 Lisp_Object name;
674
675 /* Value of the symbol or Qunbound if unbound. Which alternative of the
676 union is used depends on the `redirect' field above. */
677 union {
678 Lisp_Object value;
679 struct Lisp_Symbol *alias;
680 struct Lisp_Buffer_Local_Value *blv;
681 union Lisp_Fwd *fwd;
682 } val;
683
684 /* Function value of the symbol or Qnil if not fboundp. */
685 Lisp_Object function;
686
687 /* The symbol's property list. */
688 Lisp_Object plist;
689
690 /* Next symbol in obarray bucket, if the symbol is interned. */
691 struct Lisp_Symbol *next;
692 };
693
694 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
695 meaning as in the DEFUN macro, and is used to construct a prototype. */
696 /* We can use the same trick as in the DEFUN macro to generate the
697 appropriate prototype. */
698 #define EXFUN(fnname, maxargs) \
699 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
700
701 /* Note that the weird token-substitution semantics of ANSI C makes
702 this work for MANY and UNEVALLED. */
703 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
704 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
705 #define DEFUN_ARGS_0 (void)
706 #define DEFUN_ARGS_1 (Lisp_Object)
707 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
708 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
709 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
710 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
711 Lisp_Object)
712 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
713 Lisp_Object, Lisp_Object)
714 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
715 Lisp_Object, Lisp_Object, Lisp_Object)
716 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
717 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
718
719 /* Yield an integer that contains TAG along with PTR. */
720 #define TAG_PTR(tag, ptr) \
721 ((USE_LSB_TAG ? (tag) : (EMACS_UINT) (tag) << VALBITS) + (uintptr_t) (ptr))
722
723 /* Declare extern constants for Lisp symbols. These can be helpful
724 when using a debugger like GDB, on older platforms where the debug
725 format does not represent C macros. Athough these symbols are
726 useless on modern platforms, they don't hurt performance all that much. */
727 #define DEFINE_LISP_SYMBOL_BEGIN(name) \
728 DEFINE_GDB_SYMBOL_BEGIN (Lisp_Object, name)
729 #define DEFINE_LISP_SYMBOL_END(name) \
730 DEFINE_GDB_SYMBOL_END (LISP_INITIALLY (TAG_PTR (Lisp_Symbol, name)))
731
732 #include "globals.h"
733
734 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
735 At the machine level, these operations are no-ops. */
736 LISP_MACRO_DEFUN (XLI, EMACS_INT, (Lisp_Object o), (o))
737 LISP_MACRO_DEFUN (XIL, Lisp_Object, (EMACS_INT i), (i))
738
739 /* In the size word of a vector, this bit means the vector has been marked. */
740
741 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
742 # define ARRAY_MARK_FLAG PTRDIFF_MIN
743 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
744
745 /* In the size word of a struct Lisp_Vector, this bit means it's really
746 some other vector-like object. */
747 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
748 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
749 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
750
751 /* In a pseudovector, the size field actually contains a word with one
752 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
753 with PVEC_TYPE_MASK to indicate the actual type. */
754 enum pvec_type
755 {
756 PVEC_NORMAL_VECTOR,
757 PVEC_FREE,
758 PVEC_PROCESS,
759 PVEC_FRAME,
760 PVEC_WINDOW,
761 PVEC_BOOL_VECTOR,
762 PVEC_BUFFER,
763 PVEC_HASH_TABLE,
764 PVEC_TERMINAL,
765 PVEC_WINDOW_CONFIGURATION,
766 PVEC_SUBR,
767 PVEC_OTHER,
768 /* These should be last, check internal_equal to see why. */
769 PVEC_COMPILED,
770 PVEC_CHAR_TABLE,
771 PVEC_SUB_CHAR_TABLE,
772 PVEC_FONT /* Should be last because it's used for range checking. */
773 };
774
775 enum More_Lisp_Bits
776 {
777 /* For convenience, we also store the number of elements in these bits.
778 Note that this size is not necessarily the memory-footprint size, but
779 only the number of Lisp_Object fields (that need to be traced by GC).
780 The distinction is used, e.g., by Lisp_Process, which places extra
781 non-Lisp_Object fields at the end of the structure. */
782 PSEUDOVECTOR_SIZE_BITS = 12,
783 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
784
785 /* To calculate the memory footprint of the pseudovector, it's useful
786 to store the size of non-Lisp area in word_size units here. */
787 PSEUDOVECTOR_REST_BITS = 12,
788 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
789 << PSEUDOVECTOR_SIZE_BITS),
790
791 /* Used to extract pseudovector subtype information. */
792 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
793 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
794 };
795 \f
796 /* These functions extract various sorts of values from a Lisp_Object.
797 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
798 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
799 that cons. */
800
801 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
802 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
803 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
804 DEFINE_GDB_SYMBOL_END (VALMASK)
805
806 /* Largest and smallest representable fixnum values. These are the C
807 values. They are macros for use in static initializers. */
808 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
809 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
810
811 /* Extract the pointer hidden within A. */
812 LISP_MACRO_DEFUN (XPNTR, void *, (Lisp_Object a), (a))
813
814 #if USE_LSB_TAG
815
816 LISP_MACRO_DEFUN (make_number, Lisp_Object, (EMACS_INT n), (n))
817 LISP_MACRO_DEFUN (XINT, EMACS_INT, (Lisp_Object a), (a))
818 LISP_MACRO_DEFUN (XFASTINT, EMACS_INT, (Lisp_Object a), (a))
819 LISP_MACRO_DEFUN (XTYPE, enum Lisp_Type, (Lisp_Object a), (a))
820 LISP_MACRO_DEFUN (XUNTAG, void *, (Lisp_Object a, int type), (a, type))
821
822 #else /* ! USE_LSB_TAG */
823
824 /* Although compiled only if ! USE_LSB_TAG, the following functions
825 also work when USE_LSB_TAG; this is to aid future maintenance when
826 the lisp_h_* macros are eventually removed. */
827
828 /* Make a Lisp integer representing the value of the low order
829 bits of N. */
830 INLINE Lisp_Object
831 make_number (EMACS_INT n)
832 {
833 EMACS_INT int0 = Lisp_Int0;
834 if (USE_LSB_TAG)
835 {
836 EMACS_UINT u = n;
837 n = u << INTTYPEBITS;
838 n += int0;
839 }
840 else
841 {
842 n &= INTMASK;
843 n += (int0 << VALBITS);
844 }
845 return XIL (n);
846 }
847
848 /* Extract A's value as a signed integer. */
849 INLINE EMACS_INT
850 XINT (Lisp_Object a)
851 {
852 EMACS_INT i = XLI (a);
853 if (! USE_LSB_TAG)
854 {
855 EMACS_UINT u = i;
856 i = u << INTTYPEBITS;
857 }
858 return i >> INTTYPEBITS;
859 }
860
861 /* Like XINT (A), but may be faster. A must be nonnegative.
862 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
863 integers have zero-bits in their tags. */
864 INLINE EMACS_INT
865 XFASTINT (Lisp_Object a)
866 {
867 EMACS_INT int0 = Lisp_Int0;
868 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a) - (int0 << VALBITS);
869 eassert (0 <= n);
870 return n;
871 }
872
873 /* Extract A's type. */
874 INLINE enum Lisp_Type
875 XTYPE (Lisp_Object a)
876 {
877 EMACS_UINT i = XLI (a);
878 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
879 }
880
881 /* Extract A's pointer value, assuming A's type is TYPE. */
882 INLINE void *
883 XUNTAG (Lisp_Object a, int type)
884 {
885 if (USE_LSB_TAG)
886 {
887 intptr_t i = XLI (a) - type;
888 return (void *) i;
889 }
890 return XPNTR (a);
891 }
892
893 #endif /* ! USE_LSB_TAG */
894
895 /* Extract A's value as an unsigned integer. */
896 INLINE EMACS_UINT
897 XUINT (Lisp_Object a)
898 {
899 EMACS_UINT i = XLI (a);
900 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
901 }
902
903 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
904 right now, but XUINT should only be applied to objects we know are
905 integers. */
906 LISP_MACRO_DEFUN (XHASH, EMACS_INT, (Lisp_Object a), (a))
907
908 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
909 INLINE Lisp_Object
910 make_natnum (EMACS_INT n)
911 {
912 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
913 EMACS_INT int0 = Lisp_Int0;
914 return USE_LSB_TAG ? make_number (n) : XIL (n + (int0 << VALBITS));
915 }
916
917 /* Return true if X and Y are the same object. */
918 LISP_MACRO_DEFUN (EQ, bool, (Lisp_Object x, Lisp_Object y), (x, y))
919
920 /* Value is true if I doesn't fit into a Lisp fixnum. It is
921 written this way so that it also works if I is of unsigned
922 type or if I is a NaN. */
923
924 #define FIXNUM_OVERFLOW_P(i) \
925 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
926
927 INLINE ptrdiff_t
928 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
929 {
930 return num < lower ? lower : num <= upper ? num : upper;
931 }
932 \f
933
934 /* Extract a value or address from a Lisp_Object. */
935
936 LISP_MACRO_DEFUN (XCONS, struct Lisp_Cons *, (Lisp_Object a), (a))
937
938 INLINE struct Lisp_Vector *
939 XVECTOR (Lisp_Object a)
940 {
941 eassert (VECTORLIKEP (a));
942 return XUNTAG (a, Lisp_Vectorlike);
943 }
944
945 INLINE struct Lisp_String *
946 XSTRING (Lisp_Object a)
947 {
948 eassert (STRINGP (a));
949 return XUNTAG (a, Lisp_String);
950 }
951
952 LISP_MACRO_DEFUN (XSYMBOL, struct Lisp_Symbol *, (Lisp_Object a), (a))
953
954 /* XSYMBOL_INIT (Qfoo) is like XSYMBOL (Qfoo), except it is valid in
955 static initializers, and SYM must be a C-defined symbol. */
956 #define XSYMBOL_INIT(sym) a##sym
957
958 INLINE struct Lisp_Float *
959 XFLOAT (Lisp_Object a)
960 {
961 eassert (FLOATP (a));
962 return XUNTAG (a, Lisp_Float);
963 }
964
965 /* Pseudovector types. */
966
967 INLINE struct Lisp_Process *
968 XPROCESS (Lisp_Object a)
969 {
970 eassert (PROCESSP (a));
971 return XUNTAG (a, Lisp_Vectorlike);
972 }
973
974 INLINE struct window *
975 XWINDOW (Lisp_Object a)
976 {
977 eassert (WINDOWP (a));
978 return XUNTAG (a, Lisp_Vectorlike);
979 }
980
981 INLINE struct terminal *
982 XTERMINAL (Lisp_Object a)
983 {
984 return XUNTAG (a, Lisp_Vectorlike);
985 }
986
987 INLINE struct Lisp_Subr *
988 XSUBR (Lisp_Object a)
989 {
990 eassert (SUBRP (a));
991 return XUNTAG (a, Lisp_Vectorlike);
992 }
993
994 INLINE struct buffer *
995 XBUFFER (Lisp_Object a)
996 {
997 eassert (BUFFERP (a));
998 return XUNTAG (a, Lisp_Vectorlike);
999 }
1000
1001 INLINE struct Lisp_Char_Table *
1002 XCHAR_TABLE (Lisp_Object a)
1003 {
1004 eassert (CHAR_TABLE_P (a));
1005 return XUNTAG (a, Lisp_Vectorlike);
1006 }
1007
1008 INLINE struct Lisp_Sub_Char_Table *
1009 XSUB_CHAR_TABLE (Lisp_Object a)
1010 {
1011 eassert (SUB_CHAR_TABLE_P (a));
1012 return XUNTAG (a, Lisp_Vectorlike);
1013 }
1014
1015 INLINE struct Lisp_Bool_Vector *
1016 XBOOL_VECTOR (Lisp_Object a)
1017 {
1018 eassert (BOOL_VECTOR_P (a));
1019 return XUNTAG (a, Lisp_Vectorlike);
1020 }
1021
1022 /* Construct a Lisp_Object from a value or address. */
1023
1024 INLINE Lisp_Object
1025 make_lisp_ptr (void *ptr, enum Lisp_Type type)
1026 {
1027 Lisp_Object a = XIL (TAG_PTR (type, ptr));
1028 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
1029 return a;
1030 }
1031
1032 INLINE Lisp_Object
1033 make_lisp_symbol (struct Lisp_Symbol *sym)
1034 {
1035 return make_lisp_ptr (sym, Lisp_Symbol);
1036 }
1037
1038 INLINE Lisp_Object
1039 make_lisp_proc (struct Lisp_Process *p)
1040 {
1041 return make_lisp_ptr (p, Lisp_Vectorlike);
1042 }
1043
1044 #define XSETINT(a, b) ((a) = make_number (b))
1045 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
1046 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
1047 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
1048 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
1049 #define XSETSYMBOL(a, b) ((a) = make_lisp_symbol (b))
1050 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
1051 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
1052
1053 /* Pseudovector types. */
1054
1055 #define XSETPVECTYPE(v, code) \
1056 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
1057 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
1058 ((v)->header.size = (PSEUDOVECTOR_FLAG \
1059 | ((code) << PSEUDOVECTOR_AREA_BITS) \
1060 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
1061 | (lispsize)))
1062
1063 /* The cast to struct vectorlike_header * avoids aliasing issues. */
1064 #define XSETPSEUDOVECTOR(a, b, code) \
1065 XSETTYPED_PSEUDOVECTOR (a, b, \
1066 (((struct vectorlike_header *) \
1067 XUNTAG (a, Lisp_Vectorlike)) \
1068 ->size), \
1069 code)
1070 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
1071 (XSETVECTOR (a, b), \
1072 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
1073 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
1074
1075 #define XSETWINDOW_CONFIGURATION(a, b) \
1076 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
1077 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
1078 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
1079 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
1080 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
1081 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
1082 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
1083 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1084 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1085 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1086
1087 /* Type checking. */
1088
1089 LISP_MACRO_DEFUN_VOID (CHECK_TYPE,
1090 (int ok, Lisp_Object predicate, Lisp_Object x),
1091 (ok, predicate, x))
1092
1093 /* Deprecated and will be removed soon. */
1094
1095 #define INTERNAL_FIELD(field) field ## _
1096
1097 /* See the macros in intervals.h. */
1098
1099 typedef struct interval *INTERVAL;
1100
1101 struct GCALIGNED Lisp_Cons
1102 {
1103 /* Car of this cons cell. */
1104 Lisp_Object car;
1105
1106 union
1107 {
1108 /* Cdr of this cons cell. */
1109 Lisp_Object cdr;
1110
1111 /* Used to chain conses on a free list. */
1112 struct Lisp_Cons *chain;
1113 } u;
1114 };
1115
1116 /* Take the car or cdr of something known to be a cons cell. */
1117 /* The _addr functions shouldn't be used outside of the minimal set
1118 of code that has to know what a cons cell looks like. Other code not
1119 part of the basic lisp implementation should assume that the car and cdr
1120 fields are not accessible. (What if we want to switch to
1121 a copying collector someday? Cached cons cell field addresses may be
1122 invalidated at arbitrary points.) */
1123 INLINE Lisp_Object *
1124 xcar_addr (Lisp_Object c)
1125 {
1126 return &XCONS (c)->car;
1127 }
1128 INLINE Lisp_Object *
1129 xcdr_addr (Lisp_Object c)
1130 {
1131 return &XCONS (c)->u.cdr;
1132 }
1133
1134 /* Use these from normal code. */
1135 LISP_MACRO_DEFUN (XCAR, Lisp_Object, (Lisp_Object c), (c))
1136 LISP_MACRO_DEFUN (XCDR, Lisp_Object, (Lisp_Object c), (c))
1137
1138 /* Use these to set the fields of a cons cell.
1139
1140 Note that both arguments may refer to the same object, so 'n'
1141 should not be read after 'c' is first modified. */
1142 INLINE void
1143 XSETCAR (Lisp_Object c, Lisp_Object n)
1144 {
1145 *xcar_addr (c) = n;
1146 }
1147 INLINE void
1148 XSETCDR (Lisp_Object c, Lisp_Object n)
1149 {
1150 *xcdr_addr (c) = n;
1151 }
1152
1153 /* Take the car or cdr of something whose type is not known. */
1154 INLINE Lisp_Object
1155 CAR (Lisp_Object c)
1156 {
1157 return (CONSP (c) ? XCAR (c)
1158 : NILP (c) ? Qnil
1159 : wrong_type_argument (Qlistp, c));
1160 }
1161 INLINE Lisp_Object
1162 CDR (Lisp_Object c)
1163 {
1164 return (CONSP (c) ? XCDR (c)
1165 : NILP (c) ? Qnil
1166 : wrong_type_argument (Qlistp, c));
1167 }
1168
1169 /* Take the car or cdr of something whose type is not known. */
1170 INLINE Lisp_Object
1171 CAR_SAFE (Lisp_Object c)
1172 {
1173 return CONSP (c) ? XCAR (c) : Qnil;
1174 }
1175 INLINE Lisp_Object
1176 CDR_SAFE (Lisp_Object c)
1177 {
1178 return CONSP (c) ? XCDR (c) : Qnil;
1179 }
1180
1181 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1182
1183 struct GCALIGNED Lisp_String
1184 {
1185 ptrdiff_t size;
1186 ptrdiff_t size_byte;
1187 INTERVAL intervals; /* Text properties in this string. */
1188 unsigned char *data;
1189 };
1190
1191 /* True if STR is a multibyte string. */
1192 INLINE bool
1193 STRING_MULTIBYTE (Lisp_Object str)
1194 {
1195 return 0 <= XSTRING (str)->size_byte;
1196 }
1197
1198 /* An upper bound on the number of bytes in a Lisp string, not
1199 counting the terminating null. This a tight enough bound to
1200 prevent integer overflow errors that would otherwise occur during
1201 string size calculations. A string cannot contain more bytes than
1202 a fixnum can represent, nor can it be so long that C pointer
1203 arithmetic stops working on the string plus its terminating null.
1204 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1205 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1206 would expose alloc.c internal details that we'd rather keep
1207 private.
1208
1209 This is a macro for use in static initializers. The cast to
1210 ptrdiff_t ensures that the macro is signed. */
1211 #define STRING_BYTES_BOUND \
1212 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1213
1214 /* Mark STR as a unibyte string. */
1215 #define STRING_SET_UNIBYTE(STR) \
1216 do { \
1217 if (EQ (STR, empty_multibyte_string)) \
1218 (STR) = empty_unibyte_string; \
1219 else \
1220 XSTRING (STR)->size_byte = -1; \
1221 } while (false)
1222
1223 /* Mark STR as a multibyte string. Assure that STR contains only
1224 ASCII characters in advance. */
1225 #define STRING_SET_MULTIBYTE(STR) \
1226 do { \
1227 if (EQ (STR, empty_unibyte_string)) \
1228 (STR) = empty_multibyte_string; \
1229 else \
1230 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1231 } while (false)
1232
1233 /* Convenience functions for dealing with Lisp strings. */
1234
1235 INLINE unsigned char *
1236 SDATA (Lisp_Object string)
1237 {
1238 return XSTRING (string)->data;
1239 }
1240 INLINE char *
1241 SSDATA (Lisp_Object string)
1242 {
1243 /* Avoid "differ in sign" warnings. */
1244 return (char *) SDATA (string);
1245 }
1246 INLINE unsigned char
1247 SREF (Lisp_Object string, ptrdiff_t index)
1248 {
1249 return SDATA (string)[index];
1250 }
1251 INLINE void
1252 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1253 {
1254 SDATA (string)[index] = new;
1255 }
1256 INLINE ptrdiff_t
1257 SCHARS (Lisp_Object string)
1258 {
1259 return XSTRING (string)->size;
1260 }
1261
1262 #ifdef GC_CHECK_STRING_BYTES
1263 extern ptrdiff_t string_bytes (struct Lisp_String *);
1264 #endif
1265 INLINE ptrdiff_t
1266 STRING_BYTES (struct Lisp_String *s)
1267 {
1268 #ifdef GC_CHECK_STRING_BYTES
1269 return string_bytes (s);
1270 #else
1271 return s->size_byte < 0 ? s->size : s->size_byte;
1272 #endif
1273 }
1274
1275 INLINE ptrdiff_t
1276 SBYTES (Lisp_Object string)
1277 {
1278 return STRING_BYTES (XSTRING (string));
1279 }
1280 INLINE void
1281 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1282 {
1283 XSTRING (string)->size = newsize;
1284 }
1285
1286 /* Header of vector-like objects. This documents the layout constraints on
1287 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1288 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1289 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1290 because when two such pointers potentially alias, a compiler won't
1291 incorrectly reorder loads and stores to their size fields. See
1292 Bug#8546. */
1293 struct vectorlike_header
1294 {
1295 /* The only field contains various pieces of information:
1296 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1297 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1298 vector (0) or a pseudovector (1).
1299 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1300 of slots) of the vector.
1301 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1302 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1303 - b) number of Lisp_Objects slots at the beginning of the object
1304 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1305 traced by the GC;
1306 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1307 measured in word_size units. Rest fields may also include
1308 Lisp_Objects, but these objects usually needs some special treatment
1309 during GC.
1310 There are some exceptions. For PVEC_FREE, b) is always zero. For
1311 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1312 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1313 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1314 ptrdiff_t size;
1315 };
1316
1317 /* A regular vector is just a header plus an array of Lisp_Objects. */
1318
1319 struct Lisp_Vector
1320 {
1321 struct vectorlike_header header;
1322 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1323 };
1324
1325 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1326 enum
1327 {
1328 ALIGNOF_STRUCT_LISP_VECTOR
1329 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1330 };
1331
1332 /* A boolvector is a kind of vectorlike, with contents like a string. */
1333
1334 struct Lisp_Bool_Vector
1335 {
1336 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1337 just the subtype information. */
1338 struct vectorlike_header header;
1339 /* This is the size in bits. */
1340 EMACS_INT size;
1341 /* The actual bits, packed into bytes.
1342 Zeros fill out the last word if needed.
1343 The bits are in little-endian order in the bytes, and
1344 the bytes are in little-endian order in the words. */
1345 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1346 };
1347
1348 INLINE EMACS_INT
1349 bool_vector_size (Lisp_Object a)
1350 {
1351 EMACS_INT size = XBOOL_VECTOR (a)->size;
1352 eassume (0 <= size);
1353 return size;
1354 }
1355
1356 INLINE bits_word *
1357 bool_vector_data (Lisp_Object a)
1358 {
1359 return XBOOL_VECTOR (a)->data;
1360 }
1361
1362 INLINE unsigned char *
1363 bool_vector_uchar_data (Lisp_Object a)
1364 {
1365 return (unsigned char *) bool_vector_data (a);
1366 }
1367
1368 /* The number of data words and bytes in a bool vector with SIZE bits. */
1369
1370 INLINE EMACS_INT
1371 bool_vector_words (EMACS_INT size)
1372 {
1373 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1374 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1375 }
1376
1377 INLINE EMACS_INT
1378 bool_vector_bytes (EMACS_INT size)
1379 {
1380 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1381 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1382 }
1383
1384 /* True if A's Ith bit is set. */
1385
1386 INLINE bool
1387 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1388 {
1389 eassume (0 <= i && i < bool_vector_size (a));
1390 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1391 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1392 }
1393
1394 INLINE Lisp_Object
1395 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1396 {
1397 return bool_vector_bitref (a, i) ? Qt : Qnil;
1398 }
1399
1400 /* Set A's Ith bit to B. */
1401
1402 INLINE void
1403 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1404 {
1405 unsigned char *addr;
1406
1407 eassume (0 <= i && i < bool_vector_size (a));
1408 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1409
1410 if (b)
1411 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1412 else
1413 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1414 }
1415
1416 /* Some handy constants for calculating sizes
1417 and offsets, mostly of vectorlike objects. */
1418
1419 enum
1420 {
1421 header_size = offsetof (struct Lisp_Vector, contents),
1422 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1423 word_size = sizeof (Lisp_Object)
1424 };
1425
1426 /* Conveniences for dealing with Lisp arrays. */
1427
1428 INLINE Lisp_Object
1429 AREF (Lisp_Object array, ptrdiff_t idx)
1430 {
1431 return XVECTOR (array)->contents[idx];
1432 }
1433
1434 INLINE Lisp_Object *
1435 aref_addr (Lisp_Object array, ptrdiff_t idx)
1436 {
1437 return & XVECTOR (array)->contents[idx];
1438 }
1439
1440 INLINE ptrdiff_t
1441 ASIZE (Lisp_Object array)
1442 {
1443 return XVECTOR (array)->header.size;
1444 }
1445
1446 INLINE void
1447 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1448 {
1449 eassert (0 <= idx && idx < ASIZE (array));
1450 XVECTOR (array)->contents[idx] = val;
1451 }
1452
1453 INLINE void
1454 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1455 {
1456 /* Like ASET, but also can be used in the garbage collector:
1457 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1458 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1459 XVECTOR (array)->contents[idx] = val;
1460 }
1461
1462 /* If a struct is made to look like a vector, this macro returns the length
1463 of the shortest vector that would hold that struct. */
1464
1465 #define VECSIZE(type) \
1466 ((sizeof (type) - header_size + word_size - 1) / word_size)
1467
1468 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1469 at the end and we need to compute the number of Lisp_Object fields (the
1470 ones that the GC needs to trace). */
1471
1472 #define PSEUDOVECSIZE(type, nonlispfield) \
1473 ((offsetof (type, nonlispfield) - header_size) / word_size)
1474
1475 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1476 should be integer expressions. This is not the same as
1477 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1478 returns true. For efficiency, prefer plain unsigned comparison if A
1479 and B's sizes both fit (after integer promotion). */
1480 #define UNSIGNED_CMP(a, op, b) \
1481 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1482 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1483 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1484
1485 /* True iff C is an ASCII character. */
1486 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1487
1488 /* A char-table is a kind of vectorlike, with contents are like a
1489 vector but with a few other slots. For some purposes, it makes
1490 sense to handle a char-table with type struct Lisp_Vector. An
1491 element of a char table can be any Lisp objects, but if it is a sub
1492 char-table, we treat it a table that contains information of a
1493 specific range of characters. A sub char-table is like a vector but
1494 with two integer fields between the header and Lisp data, which means
1495 that it has to be marked with some precautions (see mark_char_table
1496 in alloc.c). A sub char-table appears only in an element of a char-table,
1497 and there's no way to access it directly from Emacs Lisp program. */
1498
1499 enum CHARTAB_SIZE_BITS
1500 {
1501 CHARTAB_SIZE_BITS_0 = 6,
1502 CHARTAB_SIZE_BITS_1 = 4,
1503 CHARTAB_SIZE_BITS_2 = 5,
1504 CHARTAB_SIZE_BITS_3 = 7
1505 };
1506
1507 extern const int chartab_size[4];
1508
1509 struct Lisp_Char_Table
1510 {
1511 /* HEADER.SIZE is the vector's size field, which also holds the
1512 pseudovector type information. It holds the size, too.
1513 The size counts the defalt, parent, purpose, ascii,
1514 contents, and extras slots. */
1515 struct vectorlike_header header;
1516
1517 /* This holds a default value,
1518 which is used whenever the value for a specific character is nil. */
1519 Lisp_Object defalt;
1520
1521 /* This points to another char table, which we inherit from when the
1522 value for a specific character is nil. The `defalt' slot takes
1523 precedence over this. */
1524 Lisp_Object parent;
1525
1526 /* This is a symbol which says what kind of use this char-table is
1527 meant for. */
1528 Lisp_Object purpose;
1529
1530 /* The bottom sub char-table for characters of the range 0..127. It
1531 is nil if none of ASCII character has a specific value. */
1532 Lisp_Object ascii;
1533
1534 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1535
1536 /* These hold additional data. It is a vector. */
1537 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1538 };
1539
1540 struct Lisp_Sub_Char_Table
1541 {
1542 /* HEADER.SIZE is the vector's size field, which also holds the
1543 pseudovector type information. It holds the size, too. */
1544 struct vectorlike_header header;
1545
1546 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1547 char-table of depth 1 contains 16 elements, and each element
1548 covers 4096 (128*32) characters. A sub char-table of depth 2
1549 contains 32 elements, and each element covers 128 characters. A
1550 sub char-table of depth 3 contains 128 elements, and each element
1551 is for one character. */
1552 int depth;
1553
1554 /* Minimum character covered by the sub char-table. */
1555 int min_char;
1556
1557 /* Use set_sub_char_table_contents to set this. */
1558 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1559 };
1560
1561 INLINE Lisp_Object
1562 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1563 {
1564 struct Lisp_Char_Table *tbl = NULL;
1565 Lisp_Object val;
1566 do
1567 {
1568 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1569 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1570 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1571 if (NILP (val))
1572 val = tbl->defalt;
1573 }
1574 while (NILP (val) && ! NILP (tbl->parent));
1575
1576 return val;
1577 }
1578
1579 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1580 characters. Do not check validity of CT. */
1581 INLINE Lisp_Object
1582 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1583 {
1584 return (ASCII_CHAR_P (idx)
1585 ? CHAR_TABLE_REF_ASCII (ct, idx)
1586 : char_table_ref (ct, idx));
1587 }
1588
1589 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1590 8-bit European characters. Do not check validity of CT. */
1591 INLINE void
1592 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1593 {
1594 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1595 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1596 else
1597 char_table_set (ct, idx, val);
1598 }
1599
1600 /* This structure describes a built-in function.
1601 It is generated by the DEFUN macro only.
1602 defsubr makes it into a Lisp object. */
1603
1604 struct Lisp_Subr
1605 {
1606 struct vectorlike_header header;
1607 union {
1608 Lisp_Object (*a0) (void);
1609 Lisp_Object (*a1) (Lisp_Object);
1610 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1611 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1612 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1613 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1614 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1615 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1616 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1617 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1618 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1619 } function;
1620 short min_args, max_args;
1621 const char *symbol_name;
1622 const char *intspec;
1623 const char *doc;
1624 };
1625
1626 enum char_table_specials
1627 {
1628 /* This is the number of slots that every char table must have. This
1629 counts the ordinary slots and the top, defalt, parent, and purpose
1630 slots. */
1631 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1632
1633 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1634 when the latter is treated as an ordinary Lisp_Vector. */
1635 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1636 };
1637
1638 /* Return the number of "extra" slots in the char table CT. */
1639
1640 INLINE int
1641 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1642 {
1643 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1644 - CHAR_TABLE_STANDARD_SLOTS);
1645 }
1646
1647 /* Make sure that sub char-table contents slot
1648 is aligned on a multiple of Lisp_Objects. */
1649 verify ((offsetof (struct Lisp_Sub_Char_Table, contents)
1650 - offsetof (struct Lisp_Sub_Char_Table, depth)) % word_size == 0);
1651
1652 /***********************************************************************
1653 Symbols
1654 ***********************************************************************/
1655
1656 /* Value is name of symbol. */
1657
1658 LISP_MACRO_DEFUN (SYMBOL_VAL, Lisp_Object, (struct Lisp_Symbol *sym), (sym))
1659
1660 INLINE struct Lisp_Symbol *
1661 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1662 {
1663 eassert (sym->redirect == SYMBOL_VARALIAS);
1664 return sym->val.alias;
1665 }
1666 INLINE struct Lisp_Buffer_Local_Value *
1667 SYMBOL_BLV (struct Lisp_Symbol *sym)
1668 {
1669 eassert (sym->redirect == SYMBOL_LOCALIZED);
1670 return sym->val.blv;
1671 }
1672 INLINE union Lisp_Fwd *
1673 SYMBOL_FWD (struct Lisp_Symbol *sym)
1674 {
1675 eassert (sym->redirect == SYMBOL_FORWARDED);
1676 return sym->val.fwd;
1677 }
1678
1679 LISP_MACRO_DEFUN_VOID (SET_SYMBOL_VAL,
1680 (struct Lisp_Symbol *sym, Lisp_Object v), (sym, v))
1681
1682 INLINE void
1683 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1684 {
1685 eassert (sym->redirect == SYMBOL_VARALIAS);
1686 sym->val.alias = v;
1687 }
1688 INLINE void
1689 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1690 {
1691 eassert (sym->redirect == SYMBOL_LOCALIZED);
1692 sym->val.blv = v;
1693 }
1694 INLINE void
1695 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1696 {
1697 eassert (sym->redirect == SYMBOL_FORWARDED);
1698 sym->val.fwd = v;
1699 }
1700
1701 INLINE Lisp_Object
1702 SYMBOL_NAME (Lisp_Object sym)
1703 {
1704 return XSYMBOL (sym)->name;
1705 }
1706
1707 /* Value is true if SYM is an interned symbol. */
1708
1709 INLINE bool
1710 SYMBOL_INTERNED_P (Lisp_Object sym)
1711 {
1712 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1713 }
1714
1715 /* Value is true if SYM is interned in initial_obarray. */
1716
1717 INLINE bool
1718 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1719 {
1720 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1721 }
1722
1723 /* Value is non-zero if symbol is considered a constant, i.e. its
1724 value cannot be changed (there is an exception for keyword symbols,
1725 whose value can be set to the keyword symbol itself). */
1726
1727 LISP_MACRO_DEFUN (SYMBOL_CONSTANT_P, int, (Lisp_Object sym), (sym))
1728
1729 /* Placeholder for make-docfile to process. The actual symbol
1730 definition is done by lread.c's defsym. */
1731 #define DEFSYM(sym, name) /* empty */
1732
1733 \f
1734 /***********************************************************************
1735 Hash Tables
1736 ***********************************************************************/
1737
1738 /* The structure of a Lisp hash table. */
1739
1740 struct hash_table_test
1741 {
1742 /* Name of the function used to compare keys. */
1743 Lisp_Object name;
1744
1745 /* User-supplied hash function, or nil. */
1746 Lisp_Object user_hash_function;
1747
1748 /* User-supplied key comparison function, or nil. */
1749 Lisp_Object user_cmp_function;
1750
1751 /* C function to compare two keys. */
1752 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1753
1754 /* C function to compute hash code. */
1755 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1756 };
1757
1758 struct Lisp_Hash_Table
1759 {
1760 /* This is for Lisp; the hash table code does not refer to it. */
1761 struct vectorlike_header header;
1762
1763 /* Nil if table is non-weak. Otherwise a symbol describing the
1764 weakness of the table. */
1765 Lisp_Object weak;
1766
1767 /* When the table is resized, and this is an integer, compute the
1768 new size by adding this to the old size. If a float, compute the
1769 new size by multiplying the old size with this factor. */
1770 Lisp_Object rehash_size;
1771
1772 /* Resize hash table when number of entries/ table size is >= this
1773 ratio, a float. */
1774 Lisp_Object rehash_threshold;
1775
1776 /* Vector of hash codes. If hash[I] is nil, this means that the
1777 I-th entry is unused. */
1778 Lisp_Object hash;
1779
1780 /* Vector used to chain entries. If entry I is free, next[I] is the
1781 entry number of the next free item. If entry I is non-free,
1782 next[I] is the index of the next entry in the collision chain. */
1783 Lisp_Object next;
1784
1785 /* Index of first free entry in free list. */
1786 Lisp_Object next_free;
1787
1788 /* Bucket vector. A non-nil entry is the index of the first item in
1789 a collision chain. This vector's size can be larger than the
1790 hash table size to reduce collisions. */
1791 Lisp_Object index;
1792
1793 /* Only the fields above are traced normally by the GC. The ones below
1794 `count' are special and are either ignored by the GC or traced in
1795 a special way (e.g. because of weakness). */
1796
1797 /* Number of key/value entries in the table. */
1798 ptrdiff_t count;
1799
1800 /* Vector of keys and values. The key of item I is found at index
1801 2 * I, the value is found at index 2 * I + 1.
1802 This is gc_marked specially if the table is weak. */
1803 Lisp_Object key_and_value;
1804
1805 /* The comparison and hash functions. */
1806 struct hash_table_test test;
1807
1808 /* Next weak hash table if this is a weak hash table. The head
1809 of the list is in weak_hash_tables. */
1810 struct Lisp_Hash_Table *next_weak;
1811 };
1812
1813
1814 INLINE struct Lisp_Hash_Table *
1815 XHASH_TABLE (Lisp_Object a)
1816 {
1817 return XUNTAG (a, Lisp_Vectorlike);
1818 }
1819
1820 #define XSET_HASH_TABLE(VAR, PTR) \
1821 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1822
1823 INLINE bool
1824 HASH_TABLE_P (Lisp_Object a)
1825 {
1826 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1827 }
1828
1829 /* Value is the key part of entry IDX in hash table H. */
1830 INLINE Lisp_Object
1831 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1832 {
1833 return AREF (h->key_and_value, 2 * idx);
1834 }
1835
1836 /* Value is the value part of entry IDX in hash table H. */
1837 INLINE Lisp_Object
1838 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1839 {
1840 return AREF (h->key_and_value, 2 * idx + 1);
1841 }
1842
1843 /* Value is the index of the next entry following the one at IDX
1844 in hash table H. */
1845 INLINE Lisp_Object
1846 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1847 {
1848 return AREF (h->next, idx);
1849 }
1850
1851 /* Value is the hash code computed for entry IDX in hash table H. */
1852 INLINE Lisp_Object
1853 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1854 {
1855 return AREF (h->hash, idx);
1856 }
1857
1858 /* Value is the index of the element in hash table H that is the
1859 start of the collision list at index IDX in the index vector of H. */
1860 INLINE Lisp_Object
1861 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1862 {
1863 return AREF (h->index, idx);
1864 }
1865
1866 /* Value is the size of hash table H. */
1867 INLINE ptrdiff_t
1868 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1869 {
1870 return ASIZE (h->next);
1871 }
1872
1873 /* Default size for hash tables if not specified. */
1874
1875 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1876
1877 /* Default threshold specifying when to resize a hash table. The
1878 value gives the ratio of current entries in the hash table and the
1879 size of the hash table. */
1880
1881 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
1882
1883 /* Default factor by which to increase the size of a hash table. */
1884
1885 static double const DEFAULT_REHASH_SIZE = 1.5;
1886
1887 /* Combine two integers X and Y for hashing. The result might not fit
1888 into a Lisp integer. */
1889
1890 INLINE EMACS_UINT
1891 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
1892 {
1893 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
1894 }
1895
1896 /* Hash X, returning a value that fits into a fixnum. */
1897
1898 INLINE EMACS_UINT
1899 SXHASH_REDUCE (EMACS_UINT x)
1900 {
1901 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
1902 }
1903
1904 /* These structures are used for various misc types. */
1905
1906 struct Lisp_Misc_Any /* Supertype of all Misc types. */
1907 {
1908 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
1909 bool_bf gcmarkbit : 1;
1910 unsigned spacer : 15;
1911 };
1912
1913 struct Lisp_Marker
1914 {
1915 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
1916 bool_bf gcmarkbit : 1;
1917 unsigned spacer : 13;
1918 /* This flag is temporarily used in the functions
1919 decode/encode_coding_object to record that the marker position
1920 must be adjusted after the conversion. */
1921 bool_bf need_adjustment : 1;
1922 /* True means normal insertion at the marker's position
1923 leaves the marker after the inserted text. */
1924 bool_bf insertion_type : 1;
1925 /* This is the buffer that the marker points into, or 0 if it points nowhere.
1926 Note: a chain of markers can contain markers pointing into different
1927 buffers (the chain is per buffer_text rather than per buffer, so it's
1928 shared between indirect buffers). */
1929 /* This is used for (other than NULL-checking):
1930 - Fmarker_buffer
1931 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
1932 - unchain_marker: to find the list from which to unchain.
1933 - Fkill_buffer: to only unchain the markers of current indirect buffer.
1934 */
1935 struct buffer *buffer;
1936
1937 /* The remaining fields are meaningless in a marker that
1938 does not point anywhere. */
1939
1940 /* For markers that point somewhere,
1941 this is used to chain of all the markers in a given buffer. */
1942 /* We could remove it and use an array in buffer_text instead.
1943 That would also allow to preserve it ordered. */
1944 struct Lisp_Marker *next;
1945 /* This is the char position where the marker points. */
1946 ptrdiff_t charpos;
1947 /* This is the byte position.
1948 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
1949 used to implement the functionality of markers, but rather to (ab)use
1950 markers as a cache for char<->byte mappings). */
1951 ptrdiff_t bytepos;
1952 };
1953
1954 /* START and END are markers in the overlay's buffer, and
1955 PLIST is the overlay's property list. */
1956 struct Lisp_Overlay
1957 /* An overlay's real data content is:
1958 - plist
1959 - buffer (really there are two buffer pointers, one per marker,
1960 and both points to the same buffer)
1961 - insertion type of both ends (per-marker fields)
1962 - start & start byte (of start marker)
1963 - end & end byte (of end marker)
1964 - next (singly linked list of overlays)
1965 - next fields of start and end markers (singly linked list of markers).
1966 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
1967 */
1968 {
1969 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
1970 bool_bf gcmarkbit : 1;
1971 unsigned spacer : 15;
1972 struct Lisp_Overlay *next;
1973 Lisp_Object start;
1974 Lisp_Object end;
1975 Lisp_Object plist;
1976 };
1977
1978 /* Types of data which may be saved in a Lisp_Save_Value. */
1979
1980 enum
1981 {
1982 SAVE_UNUSED,
1983 SAVE_INTEGER,
1984 SAVE_FUNCPOINTER,
1985 SAVE_POINTER,
1986 SAVE_OBJECT
1987 };
1988
1989 /* Number of bits needed to store one of the above values. */
1990 enum { SAVE_SLOT_BITS = 3 };
1991
1992 /* Number of slots in a save value where save_type is nonzero. */
1993 enum { SAVE_VALUE_SLOTS = 4 };
1994
1995 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
1996
1997 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
1998
1999 enum Lisp_Save_Type
2000 {
2001 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2002 SAVE_TYPE_INT_INT_INT
2003 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
2004 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
2005 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
2006 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
2007 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
2008 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2009 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
2010 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
2011 SAVE_TYPE_FUNCPTR_PTR_OBJ
2012 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
2013
2014 /* This has an extra bit indicating it's raw memory. */
2015 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
2016 };
2017
2018 /* Special object used to hold a different values for later use.
2019
2020 This is mostly used to package C integers and pointers to call
2021 record_unwind_protect when two or more values need to be saved.
2022 For example:
2023
2024 ...
2025 struct my_data *md = get_my_data ();
2026 ptrdiff_t mi = get_my_integer ();
2027 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2028 ...
2029
2030 Lisp_Object my_unwind (Lisp_Object arg)
2031 {
2032 struct my_data *md = XSAVE_POINTER (arg, 0);
2033 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2034 ...
2035 }
2036
2037 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2038 saved objects and raise eassert if type of the saved object doesn't match
2039 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2040 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2041 slot 0 is a pointer. */
2042
2043 typedef void (*voidfuncptr) (void);
2044
2045 struct Lisp_Save_Value
2046 {
2047 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2048 bool_bf gcmarkbit : 1;
2049 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2050
2051 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2052 V's data entries are determined by V->save_type. E.g., if
2053 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2054 V->data[1] is an integer, and V's other data entries are unused.
2055
2056 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2057 a memory area containing V->data[1].integer potential Lisp_Objects. */
2058 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2059 union {
2060 void *pointer;
2061 voidfuncptr funcpointer;
2062 ptrdiff_t integer;
2063 Lisp_Object object;
2064 } data[SAVE_VALUE_SLOTS];
2065 };
2066
2067 /* Return the type of V's Nth saved value. */
2068 INLINE int
2069 save_type (struct Lisp_Save_Value *v, int n)
2070 {
2071 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2072 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2073 }
2074
2075 /* Get and set the Nth saved pointer. */
2076
2077 INLINE void *
2078 XSAVE_POINTER (Lisp_Object obj, int n)
2079 {
2080 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2081 return XSAVE_VALUE (obj)->data[n].pointer;
2082 }
2083 INLINE void
2084 set_save_pointer (Lisp_Object obj, int n, void *val)
2085 {
2086 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2087 XSAVE_VALUE (obj)->data[n].pointer = val;
2088 }
2089 INLINE voidfuncptr
2090 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2091 {
2092 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2093 return XSAVE_VALUE (obj)->data[n].funcpointer;
2094 }
2095
2096 /* Likewise for the saved integer. */
2097
2098 INLINE ptrdiff_t
2099 XSAVE_INTEGER (Lisp_Object obj, int n)
2100 {
2101 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2102 return XSAVE_VALUE (obj)->data[n].integer;
2103 }
2104 INLINE void
2105 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2106 {
2107 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2108 XSAVE_VALUE (obj)->data[n].integer = val;
2109 }
2110
2111 /* Extract Nth saved object. */
2112
2113 INLINE Lisp_Object
2114 XSAVE_OBJECT (Lisp_Object obj, int n)
2115 {
2116 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2117 return XSAVE_VALUE (obj)->data[n].object;
2118 }
2119
2120 /* A miscellaneous object, when it's on the free list. */
2121 struct Lisp_Free
2122 {
2123 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2124 bool_bf gcmarkbit : 1;
2125 unsigned spacer : 15;
2126 union Lisp_Misc *chain;
2127 };
2128
2129 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2130 It uses one of these struct subtypes to get the type field. */
2131
2132 union Lisp_Misc
2133 {
2134 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2135 struct Lisp_Free u_free;
2136 struct Lisp_Marker u_marker;
2137 struct Lisp_Overlay u_overlay;
2138 struct Lisp_Save_Value u_save_value;
2139 };
2140
2141 INLINE union Lisp_Misc *
2142 XMISC (Lisp_Object a)
2143 {
2144 return XUNTAG (a, Lisp_Misc);
2145 }
2146
2147 INLINE struct Lisp_Misc_Any *
2148 XMISCANY (Lisp_Object a)
2149 {
2150 eassert (MISCP (a));
2151 return & XMISC (a)->u_any;
2152 }
2153
2154 INLINE enum Lisp_Misc_Type
2155 XMISCTYPE (Lisp_Object a)
2156 {
2157 return XMISCANY (a)->type;
2158 }
2159
2160 INLINE struct Lisp_Marker *
2161 XMARKER (Lisp_Object a)
2162 {
2163 eassert (MARKERP (a));
2164 return & XMISC (a)->u_marker;
2165 }
2166
2167 INLINE struct Lisp_Overlay *
2168 XOVERLAY (Lisp_Object a)
2169 {
2170 eassert (OVERLAYP (a));
2171 return & XMISC (a)->u_overlay;
2172 }
2173
2174 INLINE struct Lisp_Save_Value *
2175 XSAVE_VALUE (Lisp_Object a)
2176 {
2177 eassert (SAVE_VALUEP (a));
2178 return & XMISC (a)->u_save_value;
2179 }
2180 \f
2181 /* Forwarding pointer to an int variable.
2182 This is allowed only in the value cell of a symbol,
2183 and it means that the symbol's value really lives in the
2184 specified int variable. */
2185 struct Lisp_Intfwd
2186 {
2187 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2188 EMACS_INT *intvar;
2189 };
2190
2191 /* Boolean forwarding pointer to an int variable.
2192 This is like Lisp_Intfwd except that the ostensible
2193 "value" of the symbol is t if the bool variable is true,
2194 nil if it is false. */
2195 struct Lisp_Boolfwd
2196 {
2197 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2198 bool *boolvar;
2199 };
2200
2201 /* Forwarding pointer to a Lisp_Object variable.
2202 This is allowed only in the value cell of a symbol,
2203 and it means that the symbol's value really lives in the
2204 specified variable. */
2205 struct Lisp_Objfwd
2206 {
2207 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2208 Lisp_Object *objvar;
2209 };
2210
2211 /* Like Lisp_Objfwd except that value lives in a slot in the
2212 current buffer. Value is byte index of slot within buffer. */
2213 struct Lisp_Buffer_Objfwd
2214 {
2215 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2216 int offset;
2217 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2218 Lisp_Object predicate;
2219 };
2220
2221 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2222 the symbol has buffer-local or frame-local bindings. (Exception:
2223 some buffer-local variables are built-in, with their values stored
2224 in the buffer structure itself. They are handled differently,
2225 using struct Lisp_Buffer_Objfwd.)
2226
2227 The `realvalue' slot holds the variable's current value, or a
2228 forwarding pointer to where that value is kept. This value is the
2229 one that corresponds to the loaded binding. To read or set the
2230 variable, you must first make sure the right binding is loaded;
2231 then you can access the value in (or through) `realvalue'.
2232
2233 `buffer' and `frame' are the buffer and frame for which the loaded
2234 binding was found. If those have changed, to make sure the right
2235 binding is loaded it is necessary to find which binding goes with
2236 the current buffer and selected frame, then load it. To load it,
2237 first unload the previous binding, then copy the value of the new
2238 binding into `realvalue' (or through it). Also update
2239 LOADED-BINDING to point to the newly loaded binding.
2240
2241 `local_if_set' indicates that merely setting the variable creates a
2242 local binding for the current buffer. Otherwise the latter, setting
2243 the variable does not do that; only make-local-variable does that. */
2244
2245 struct Lisp_Buffer_Local_Value
2246 {
2247 /* True means that merely setting the variable creates a local
2248 binding for the current buffer. */
2249 bool_bf local_if_set : 1;
2250 /* True means this variable can have frame-local bindings, otherwise, it is
2251 can have buffer-local bindings. The two cannot be combined. */
2252 bool_bf frame_local : 1;
2253 /* True means that the binding now loaded was found.
2254 Presumably equivalent to (defcell!=valcell). */
2255 bool_bf found : 1;
2256 /* If non-NULL, a forwarding to the C var where it should also be set. */
2257 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2258 /* The buffer or frame for which the loaded binding was found. */
2259 Lisp_Object where;
2260 /* A cons cell that holds the default value. It has the form
2261 (SYMBOL . DEFAULT-VALUE). */
2262 Lisp_Object defcell;
2263 /* The cons cell from `where's parameter alist.
2264 It always has the form (SYMBOL . VALUE)
2265 Note that if `forward' is non-nil, VALUE may be out of date.
2266 Also if the currently loaded binding is the default binding, then
2267 this is `eq'ual to defcell. */
2268 Lisp_Object valcell;
2269 };
2270
2271 /* Like Lisp_Objfwd except that value lives in a slot in the
2272 current kboard. */
2273 struct Lisp_Kboard_Objfwd
2274 {
2275 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2276 int offset;
2277 };
2278
2279 union Lisp_Fwd
2280 {
2281 struct Lisp_Intfwd u_intfwd;
2282 struct Lisp_Boolfwd u_boolfwd;
2283 struct Lisp_Objfwd u_objfwd;
2284 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2285 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2286 };
2287
2288 INLINE enum Lisp_Fwd_Type
2289 XFWDTYPE (union Lisp_Fwd *a)
2290 {
2291 return a->u_intfwd.type;
2292 }
2293
2294 INLINE struct Lisp_Buffer_Objfwd *
2295 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2296 {
2297 eassert (BUFFER_OBJFWDP (a));
2298 return &a->u_buffer_objfwd;
2299 }
2300 \f
2301 /* Lisp floating point type. */
2302 struct Lisp_Float
2303 {
2304 union
2305 {
2306 double data;
2307 struct Lisp_Float *chain;
2308 } u;
2309 };
2310
2311 INLINE double
2312 XFLOAT_DATA (Lisp_Object f)
2313 {
2314 return XFLOAT (f)->u.data;
2315 }
2316
2317 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2318 representations, have infinities and NaNs, and do not trap on
2319 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2320 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2321 wanted here, but is not quite right because Emacs does not require
2322 all the features of C11 Annex F (and does not require C11 at all,
2323 for that matter). */
2324 enum
2325 {
2326 IEEE_FLOATING_POINT
2327 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2328 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2329 };
2330
2331 /* A character, declared with the following typedef, is a member
2332 of some character set associated with the current buffer. */
2333 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2334 #define _UCHAR_T
2335 typedef unsigned char UCHAR;
2336 #endif
2337
2338 /* Meanings of slots in a Lisp_Compiled: */
2339
2340 enum Lisp_Compiled
2341 {
2342 COMPILED_ARGLIST = 0,
2343 COMPILED_BYTECODE = 1,
2344 COMPILED_CONSTANTS = 2,
2345 COMPILED_STACK_DEPTH = 3,
2346 COMPILED_DOC_STRING = 4,
2347 COMPILED_INTERACTIVE = 5
2348 };
2349
2350 /* Flag bits in a character. These also get used in termhooks.h.
2351 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2352 (MUlti-Lingual Emacs) might need 22 bits for the character value
2353 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2354 enum char_bits
2355 {
2356 CHAR_ALT = 0x0400000,
2357 CHAR_SUPER = 0x0800000,
2358 CHAR_HYPER = 0x1000000,
2359 CHAR_SHIFT = 0x2000000,
2360 CHAR_CTL = 0x4000000,
2361 CHAR_META = 0x8000000,
2362
2363 CHAR_MODIFIER_MASK =
2364 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2365
2366 /* Actually, the current Emacs uses 22 bits for the character value
2367 itself. */
2368 CHARACTERBITS = 22
2369 };
2370 \f
2371 /* Data type checking. */
2372
2373 LISP_MACRO_DEFUN (NILP, bool, (Lisp_Object x), (x))
2374
2375 INLINE bool
2376 NUMBERP (Lisp_Object x)
2377 {
2378 return INTEGERP (x) || FLOATP (x);
2379 }
2380 INLINE bool
2381 NATNUMP (Lisp_Object x)
2382 {
2383 return INTEGERP (x) && 0 <= XINT (x);
2384 }
2385
2386 INLINE bool
2387 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2388 {
2389 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2390 }
2391
2392 #define TYPE_RANGED_INTEGERP(type, x) \
2393 (INTEGERP (x) \
2394 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2395 && XINT (x) <= TYPE_MAXIMUM (type))
2396
2397 LISP_MACRO_DEFUN (CONSP, bool, (Lisp_Object x), (x))
2398 LISP_MACRO_DEFUN (FLOATP, bool, (Lisp_Object x), (x))
2399 LISP_MACRO_DEFUN (MISCP, bool, (Lisp_Object x), (x))
2400 LISP_MACRO_DEFUN (SYMBOLP, bool, (Lisp_Object x), (x))
2401 LISP_MACRO_DEFUN (INTEGERP, bool, (Lisp_Object x), (x))
2402 LISP_MACRO_DEFUN (VECTORLIKEP, bool, (Lisp_Object x), (x))
2403 LISP_MACRO_DEFUN (MARKERP, bool, (Lisp_Object x), (x))
2404
2405 INLINE bool
2406 STRINGP (Lisp_Object x)
2407 {
2408 return XTYPE (x) == Lisp_String;
2409 }
2410 INLINE bool
2411 VECTORP (Lisp_Object x)
2412 {
2413 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2414 }
2415 INLINE bool
2416 OVERLAYP (Lisp_Object x)
2417 {
2418 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2419 }
2420 INLINE bool
2421 SAVE_VALUEP (Lisp_Object x)
2422 {
2423 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2424 }
2425
2426 INLINE bool
2427 AUTOLOADP (Lisp_Object x)
2428 {
2429 return CONSP (x) && EQ (Qautoload, XCAR (x));
2430 }
2431
2432 INLINE bool
2433 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2434 {
2435 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2436 }
2437
2438 INLINE bool
2439 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2440 {
2441 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2442 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2443 }
2444
2445 /* True if A is a pseudovector whose code is CODE. */
2446 INLINE bool
2447 PSEUDOVECTORP (Lisp_Object a, int code)
2448 {
2449 if (! VECTORLIKEP (a))
2450 return false;
2451 else
2452 {
2453 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2454 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2455 return PSEUDOVECTOR_TYPEP (h, code);
2456 }
2457 }
2458
2459
2460 /* Test for specific pseudovector types. */
2461
2462 INLINE bool
2463 WINDOW_CONFIGURATIONP (Lisp_Object a)
2464 {
2465 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2466 }
2467
2468 INLINE bool
2469 PROCESSP (Lisp_Object a)
2470 {
2471 return PSEUDOVECTORP (a, PVEC_PROCESS);
2472 }
2473
2474 INLINE bool
2475 WINDOWP (Lisp_Object a)
2476 {
2477 return PSEUDOVECTORP (a, PVEC_WINDOW);
2478 }
2479
2480 INLINE bool
2481 TERMINALP (Lisp_Object a)
2482 {
2483 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2484 }
2485
2486 INLINE bool
2487 SUBRP (Lisp_Object a)
2488 {
2489 return PSEUDOVECTORP (a, PVEC_SUBR);
2490 }
2491
2492 INLINE bool
2493 COMPILEDP (Lisp_Object a)
2494 {
2495 return PSEUDOVECTORP (a, PVEC_COMPILED);
2496 }
2497
2498 INLINE bool
2499 BUFFERP (Lisp_Object a)
2500 {
2501 return PSEUDOVECTORP (a, PVEC_BUFFER);
2502 }
2503
2504 INLINE bool
2505 CHAR_TABLE_P (Lisp_Object a)
2506 {
2507 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2508 }
2509
2510 INLINE bool
2511 SUB_CHAR_TABLE_P (Lisp_Object a)
2512 {
2513 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2514 }
2515
2516 INLINE bool
2517 BOOL_VECTOR_P (Lisp_Object a)
2518 {
2519 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2520 }
2521
2522 INLINE bool
2523 FRAMEP (Lisp_Object a)
2524 {
2525 return PSEUDOVECTORP (a, PVEC_FRAME);
2526 }
2527
2528 /* Test for image (image . spec) */
2529 INLINE bool
2530 IMAGEP (Lisp_Object x)
2531 {
2532 return CONSP (x) && EQ (XCAR (x), Qimage);
2533 }
2534
2535 /* Array types. */
2536 INLINE bool
2537 ARRAYP (Lisp_Object x)
2538 {
2539 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2540 }
2541 \f
2542 INLINE void
2543 CHECK_LIST (Lisp_Object x)
2544 {
2545 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2546 }
2547
2548 LISP_MACRO_DEFUN_VOID (CHECK_LIST_CONS, (Lisp_Object x, Lisp_Object y), (x, y))
2549 LISP_MACRO_DEFUN_VOID (CHECK_SYMBOL, (Lisp_Object x), (x))
2550 LISP_MACRO_DEFUN_VOID (CHECK_NUMBER, (Lisp_Object x), (x))
2551
2552 INLINE void
2553 CHECK_STRING (Lisp_Object x)
2554 {
2555 CHECK_TYPE (STRINGP (x), Qstringp, x);
2556 }
2557 INLINE void
2558 CHECK_STRING_CAR (Lisp_Object x)
2559 {
2560 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2561 }
2562 INLINE void
2563 CHECK_CONS (Lisp_Object x)
2564 {
2565 CHECK_TYPE (CONSP (x), Qconsp, x);
2566 }
2567 INLINE void
2568 CHECK_VECTOR (Lisp_Object x)
2569 {
2570 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2571 }
2572 INLINE void
2573 CHECK_BOOL_VECTOR (Lisp_Object x)
2574 {
2575 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2576 }
2577 /* This is a bit special because we always need size afterwards. */
2578 INLINE ptrdiff_t
2579 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2580 {
2581 if (VECTORP (x))
2582 return ASIZE (x);
2583 if (STRINGP (x))
2584 return SCHARS (x);
2585 wrong_type_argument (Qarrayp, x);
2586 }
2587 INLINE void
2588 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2589 {
2590 CHECK_TYPE (ARRAYP (x), predicate, x);
2591 }
2592 INLINE void
2593 CHECK_BUFFER (Lisp_Object x)
2594 {
2595 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2596 }
2597 INLINE void
2598 CHECK_WINDOW (Lisp_Object x)
2599 {
2600 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2601 }
2602 #ifdef subprocesses
2603 INLINE void
2604 CHECK_PROCESS (Lisp_Object x)
2605 {
2606 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2607 }
2608 #endif
2609 INLINE void
2610 CHECK_NATNUM (Lisp_Object x)
2611 {
2612 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2613 }
2614
2615 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2616 do { \
2617 CHECK_NUMBER (x); \
2618 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2619 args_out_of_range_3 \
2620 (x, \
2621 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2622 ? MOST_NEGATIVE_FIXNUM \
2623 : (lo)), \
2624 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2625 } while (false)
2626 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2627 do { \
2628 if (TYPE_SIGNED (type)) \
2629 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2630 else \
2631 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2632 } while (false)
2633
2634 #define CHECK_NUMBER_COERCE_MARKER(x) \
2635 do { \
2636 if (MARKERP ((x))) \
2637 XSETFASTINT (x, marker_position (x)); \
2638 else \
2639 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2640 } while (false)
2641
2642 INLINE double
2643 XFLOATINT (Lisp_Object n)
2644 {
2645 return extract_float (n);
2646 }
2647
2648 INLINE void
2649 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2650 {
2651 CHECK_TYPE (FLOATP (x) || INTEGERP (x), Qnumberp, x);
2652 }
2653
2654 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2655 do { \
2656 if (MARKERP (x)) \
2657 XSETFASTINT (x, marker_position (x)); \
2658 else \
2659 CHECK_TYPE (INTEGERP (x) || FLOATP (x), Qnumber_or_marker_p, x); \
2660 } while (false)
2661
2662 /* Since we can't assign directly to the CAR or CDR fields of a cons
2663 cell, use these when checking that those fields contain numbers. */
2664 INLINE void
2665 CHECK_NUMBER_CAR (Lisp_Object x)
2666 {
2667 Lisp_Object tmp = XCAR (x);
2668 CHECK_NUMBER (tmp);
2669 XSETCAR (x, tmp);
2670 }
2671
2672 INLINE void
2673 CHECK_NUMBER_CDR (Lisp_Object x)
2674 {
2675 Lisp_Object tmp = XCDR (x);
2676 CHECK_NUMBER (tmp);
2677 XSETCDR (x, tmp);
2678 }
2679 \f
2680 /* Define a built-in function for calling from Lisp.
2681 `lname' should be the name to give the function in Lisp,
2682 as a null-terminated C string.
2683 `fnname' should be the name of the function in C.
2684 By convention, it starts with F.
2685 `sname' should be the name for the C constant structure
2686 that records information on this function for internal use.
2687 By convention, it should be the same as `fnname' but with S instead of F.
2688 It's too bad that C macros can't compute this from `fnname'.
2689 `minargs' should be a number, the minimum number of arguments allowed.
2690 `maxargs' should be a number, the maximum number of arguments allowed,
2691 or else MANY or UNEVALLED.
2692 MANY means pass a vector of evaluated arguments,
2693 in the form of an integer number-of-arguments
2694 followed by the address of a vector of Lisp_Objects
2695 which contains the argument values.
2696 UNEVALLED means pass the list of unevaluated arguments
2697 `intspec' says how interactive arguments are to be fetched.
2698 If the string starts with a `(', `intspec' is evaluated and the resulting
2699 list is the list of arguments.
2700 If it's a string that doesn't start with `(', the value should follow
2701 the one of the doc string for `interactive'.
2702 A null string means call interactively with no arguments.
2703 `doc' is documentation for the user. */
2704
2705 /* This version of DEFUN declares a function prototype with the right
2706 arguments, so we can catch errors with maxargs at compile-time. */
2707 #ifdef _MSC_VER
2708 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2709 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2710 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2711 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2712 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2713 { (Lisp_Object (__cdecl *)(void))fnname }, \
2714 minargs, maxargs, lname, intspec, 0}; \
2715 Lisp_Object fnname
2716 #else /* not _MSC_VER */
2717 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2718 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2719 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2720 { .a ## maxargs = fnname }, \
2721 minargs, maxargs, lname, intspec, 0}; \
2722 Lisp_Object fnname
2723 #endif
2724
2725 /* True if OBJ is a Lisp function. */
2726 INLINE bool
2727 FUNCTIONP (Lisp_Object obj)
2728 {
2729 return functionp (obj);
2730 }
2731
2732 /* defsubr (Sname);
2733 is how we define the symbol for function `name' at start-up time. */
2734 extern void defsubr (struct Lisp_Subr *);
2735
2736 enum maxargs
2737 {
2738 MANY = -2,
2739 UNEVALLED = -1
2740 };
2741
2742 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2743 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2744 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2745 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2746 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2747
2748 /* Macros we use to define forwarded Lisp variables.
2749 These are used in the syms_of_FILENAME functions.
2750
2751 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2752 lisp variable is actually a field in `struct emacs_globals'. The
2753 field's name begins with "f_", which is a convention enforced by
2754 these macros. Each such global has a corresponding #define in
2755 globals.h; the plain name should be used in the code.
2756
2757 E.g., the global "cons_cells_consed" is declared as "int
2758 f_cons_cells_consed" in globals.h, but there is a define:
2759
2760 #define cons_cells_consed globals.f_cons_cells_consed
2761
2762 All C code uses the `cons_cells_consed' name. This is all done
2763 this way to support indirection for multi-threaded Emacs. */
2764
2765 #define DEFVAR_LISP(lname, vname, doc) \
2766 do { \
2767 static struct Lisp_Objfwd o_fwd; \
2768 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
2769 } while (false)
2770 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
2771 do { \
2772 static struct Lisp_Objfwd o_fwd; \
2773 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
2774 } while (false)
2775 #define DEFVAR_BOOL(lname, vname, doc) \
2776 do { \
2777 static struct Lisp_Boolfwd b_fwd; \
2778 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
2779 } while (false)
2780 #define DEFVAR_INT(lname, vname, doc) \
2781 do { \
2782 static struct Lisp_Intfwd i_fwd; \
2783 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
2784 } while (false)
2785
2786 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
2787 do { \
2788 static struct Lisp_Objfwd o_fwd; \
2789 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
2790 } while (false)
2791
2792 #define DEFVAR_KBOARD(lname, vname, doc) \
2793 do { \
2794 static struct Lisp_Kboard_Objfwd ko_fwd; \
2795 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
2796 } while (false)
2797 \f
2798 /* Save and restore the instruction and environment pointers,
2799 without affecting the signal mask. */
2800
2801 #ifdef HAVE__SETJMP
2802 typedef jmp_buf sys_jmp_buf;
2803 # define sys_setjmp(j) _setjmp (j)
2804 # define sys_longjmp(j, v) _longjmp (j, v)
2805 #elif defined HAVE_SIGSETJMP
2806 typedef sigjmp_buf sys_jmp_buf;
2807 # define sys_setjmp(j) sigsetjmp (j, 0)
2808 # define sys_longjmp(j, v) siglongjmp (j, v)
2809 #else
2810 /* A platform that uses neither _longjmp nor siglongjmp; assume
2811 longjmp does not affect the sigmask. */
2812 typedef jmp_buf sys_jmp_buf;
2813 # define sys_setjmp(j) setjmp (j)
2814 # define sys_longjmp(j, v) longjmp (j, v)
2815 #endif
2816
2817 \f
2818 /* Elisp uses several stacks:
2819 - the C stack.
2820 - the bytecode stack: used internally by the bytecode interpreter.
2821 Allocated from the C stack.
2822 - The specpdl stack: keeps track of active unwind-protect and
2823 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
2824 managed stack.
2825 - The handler stack: keeps track of active catch tags and condition-case
2826 handlers. Allocated in a manually managed stack implemented by a
2827 doubly-linked list allocated via xmalloc and never freed. */
2828
2829 /* Structure for recording Lisp call stack for backtrace purposes. */
2830
2831 /* The special binding stack holds the outer values of variables while
2832 they are bound by a function application or a let form, stores the
2833 code to be executed for unwind-protect forms.
2834
2835 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
2836 used all over the place, needs to be fast, and needs to know the size of
2837 union specbinding. But only eval.c should access it. */
2838
2839 enum specbind_tag {
2840 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
2841 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
2842 SPECPDL_UNWIND_INT, /* Likewise, on int. */
2843 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
2844 SPECPDL_BACKTRACE, /* An element of the backtrace. */
2845 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
2846 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
2847 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
2848 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
2849 };
2850
2851 union specbinding
2852 {
2853 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2854 struct {
2855 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2856 void (*func) (Lisp_Object);
2857 Lisp_Object arg;
2858 } unwind;
2859 struct {
2860 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2861 void (*func) (void *);
2862 void *arg;
2863 } unwind_ptr;
2864 struct {
2865 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2866 void (*func) (int);
2867 int arg;
2868 } unwind_int;
2869 struct {
2870 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2871 void (*func) (void);
2872 } unwind_void;
2873 struct {
2874 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2875 /* `where' is not used in the case of SPECPDL_LET. */
2876 Lisp_Object symbol, old_value, where;
2877 } let;
2878 struct {
2879 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2880 bool_bf debug_on_exit : 1;
2881 Lisp_Object function;
2882 Lisp_Object *args;
2883 ptrdiff_t nargs;
2884 } bt;
2885 };
2886
2887 extern union specbinding *specpdl;
2888 extern union specbinding *specpdl_ptr;
2889 extern ptrdiff_t specpdl_size;
2890
2891 INLINE ptrdiff_t
2892 SPECPDL_INDEX (void)
2893 {
2894 return specpdl_ptr - specpdl;
2895 }
2896
2897 /* This structure helps implement the `catch/throw' and `condition-case/signal'
2898 control structures. A struct handler contains all the information needed to
2899 restore the state of the interpreter after a non-local jump.
2900
2901 handler structures are chained together in a doubly linked list; the `next'
2902 member points to the next outer catchtag and the `nextfree' member points in
2903 the other direction to the next inner element (which is typically the next
2904 free element since we mostly use it on the deepest handler).
2905
2906 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
2907 member is TAG, and then unbinds to it. The `val' member is used to
2908 hold VAL while the stack is unwound; `val' is returned as the value
2909 of the catch form.
2910
2911 All the other members are concerned with restoring the interpreter
2912 state.
2913
2914 Members are volatile if their values need to survive _longjmp when
2915 a 'struct handler' is a local variable. */
2916
2917 enum handlertype { CATCHER, CONDITION_CASE };
2918
2919 struct handler
2920 {
2921 enum handlertype type;
2922 Lisp_Object tag_or_ch;
2923 Lisp_Object val;
2924 struct handler *next;
2925 struct handler *nextfree;
2926
2927 /* The bytecode interpreter can have several handlers active at the same
2928 time, so when we longjmp to one of them, it needs to know which handler
2929 this was and what was the corresponding internal state. This is stored
2930 here, and when we longjmp we make sure that handlerlist points to the
2931 proper handler. */
2932 Lisp_Object *bytecode_top;
2933 int bytecode_dest;
2934
2935 /* Most global vars are reset to their value via the specpdl mechanism,
2936 but a few others are handled by storing their value here. */
2937 #if true /* GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS, but defined later. */
2938 struct gcpro *gcpro;
2939 #endif
2940 sys_jmp_buf jmp;
2941 EMACS_INT lisp_eval_depth;
2942 ptrdiff_t pdlcount;
2943 int poll_suppress_count;
2944 int interrupt_input_blocked;
2945 struct byte_stack *byte_stack;
2946 };
2947
2948 /* Fill in the components of c, and put it on the list. */
2949 #define PUSH_HANDLER(c, tag_ch_val, handlertype) \
2950 if (handlerlist->nextfree) \
2951 (c) = handlerlist->nextfree; \
2952 else \
2953 { \
2954 (c) = xmalloc (sizeof (struct handler)); \
2955 (c)->nextfree = NULL; \
2956 handlerlist->nextfree = (c); \
2957 } \
2958 (c)->type = (handlertype); \
2959 (c)->tag_or_ch = (tag_ch_val); \
2960 (c)->val = Qnil; \
2961 (c)->next = handlerlist; \
2962 (c)->lisp_eval_depth = lisp_eval_depth; \
2963 (c)->pdlcount = SPECPDL_INDEX (); \
2964 (c)->poll_suppress_count = poll_suppress_count; \
2965 (c)->interrupt_input_blocked = interrupt_input_blocked;\
2966 (c)->gcpro = gcprolist; \
2967 (c)->byte_stack = byte_stack_list; \
2968 handlerlist = (c);
2969
2970
2971 extern Lisp_Object memory_signal_data;
2972
2973 /* An address near the bottom of the stack.
2974 Tells GC how to save a copy of the stack. */
2975 extern char *stack_bottom;
2976
2977 /* Check quit-flag and quit if it is non-nil.
2978 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
2979 So the program needs to do QUIT at times when it is safe to quit.
2980 Every loop that might run for a long time or might not exit
2981 ought to do QUIT at least once, at a safe place.
2982 Unless that is impossible, of course.
2983 But it is very desirable to avoid creating loops where QUIT is impossible.
2984
2985 Exception: if you set immediate_quit to true,
2986 then the handler that responds to the C-g does the quit itself.
2987 This is a good thing to do around a loop that has no side effects
2988 and (in particular) cannot call arbitrary Lisp code.
2989
2990 If quit-flag is set to `kill-emacs' the SIGINT handler has received
2991 a request to exit Emacs when it is safe to do. */
2992
2993 extern void process_pending_signals (void);
2994 extern bool volatile pending_signals;
2995
2996 extern void process_quit_flag (void);
2997 #define QUIT \
2998 do { \
2999 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
3000 process_quit_flag (); \
3001 else if (pending_signals) \
3002 process_pending_signals (); \
3003 } while (false)
3004
3005
3006 /* True if ought to quit now. */
3007
3008 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3009 \f
3010 extern Lisp_Object Vascii_downcase_table;
3011 extern Lisp_Object Vascii_canon_table;
3012 \f
3013 /* Structure for recording stack slots that need marking. */
3014
3015 /* This is a chain of structures, each of which points at a Lisp_Object
3016 variable whose value should be marked in garbage collection.
3017 Normally every link of the chain is an automatic variable of a function,
3018 and its `val' points to some argument or local variable of the function.
3019 On exit to the function, the chain is set back to the value it had on entry.
3020 This way, no link remains in the chain when the stack frame containing the
3021 link disappears.
3022
3023 Every function that can call Feval must protect in this fashion all
3024 Lisp_Object variables whose contents will be used again. */
3025
3026 extern struct gcpro *gcprolist;
3027
3028 struct gcpro
3029 {
3030 struct gcpro *next;
3031
3032 /* Address of first protected variable. */
3033 volatile Lisp_Object *var;
3034
3035 /* Number of consecutive protected variables. */
3036 ptrdiff_t nvars;
3037
3038 #ifdef DEBUG_GCPRO
3039 /* File name where this record is used. */
3040 const char *name;
3041
3042 /* Line number in this file. */
3043 int lineno;
3044
3045 /* Index in the local chain of records. */
3046 int idx;
3047
3048 /* Nesting level. */
3049 int level;
3050 #endif
3051 };
3052
3053 /* Values of GC_MARK_STACK during compilation:
3054
3055 0 Use GCPRO as before
3056 1 Do the real thing, make GCPROs and UNGCPRO no-ops.
3057 2 Mark the stack, and check that everything GCPRO'd is
3058 marked.
3059 3 Mark using GCPRO's, mark stack last, and count how many
3060 dead objects are kept alive.
3061
3062 Formerly, method 0 was used. Currently, method 1 is used unless
3063 otherwise specified by hand when building, e.g.,
3064 "make CPPFLAGS='-DGC_MARK_STACK=GC_USE_GCPROS_AS_BEFORE'".
3065 Methods 2 and 3 are present mainly to debug the transition from 0 to 1. */
3066
3067 #define GC_USE_GCPROS_AS_BEFORE 0
3068 #define GC_MAKE_GCPROS_NOOPS 1
3069 #define GC_MARK_STACK_CHECK_GCPROS 2
3070 #define GC_USE_GCPROS_CHECK_ZOMBIES 3
3071
3072 #ifndef GC_MARK_STACK
3073 #define GC_MARK_STACK GC_MAKE_GCPROS_NOOPS
3074 #endif
3075
3076 /* Whether we do the stack marking manually. */
3077 #define BYTE_MARK_STACK !(GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
3078 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
3079
3080
3081 #if GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS
3082
3083 /* Do something silly with gcproN vars just so gcc shuts up. */
3084 /* You get warnings from MIPSPro... */
3085
3086 #define GCPRO1(varname) ((void) gcpro1)
3087 #define GCPRO2(varname1, varname2) ((void) gcpro2, (void) gcpro1)
3088 #define GCPRO3(varname1, varname2, varname3) \
3089 ((void) gcpro3, (void) gcpro2, (void) gcpro1)
3090 #define GCPRO4(varname1, varname2, varname3, varname4) \
3091 ((void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3092 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3093 ((void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3094 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3095 ((void) gcpro6, (void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, \
3096 (void) gcpro1)
3097 #define GCPRO7(a, b, c, d, e, f, g) (GCPRO6 (a, b, c, d, e, f), (void) gcpro7)
3098 #define UNGCPRO ((void) 0)
3099
3100 #else /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3101
3102 #ifndef DEBUG_GCPRO
3103
3104 #define GCPRO1(a) \
3105 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3106 gcprolist = &gcpro1; }
3107
3108 #define GCPRO2(a, b) \
3109 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3110 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3111 gcprolist = &gcpro2; }
3112
3113 #define GCPRO3(a, b, c) \
3114 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3115 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3116 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3117 gcprolist = &gcpro3; }
3118
3119 #define GCPRO4(a, b, c, d) \
3120 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3121 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3122 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3123 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3124 gcprolist = &gcpro4; }
3125
3126 #define GCPRO5(a, b, c, d, e) \
3127 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3128 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3129 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3130 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3131 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3132 gcprolist = &gcpro5; }
3133
3134 #define GCPRO6(a, b, c, d, e, f) \
3135 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3136 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3137 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3138 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3139 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3140 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3141 gcprolist = &gcpro6; }
3142
3143 #define GCPRO7(a, b, c, d, e, f, g) \
3144 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3145 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3146 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3147 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3148 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3149 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3150 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3151 gcprolist = &gcpro7; }
3152
3153 #define UNGCPRO (gcprolist = gcpro1.next)
3154
3155 #else /* !DEBUG_GCPRO */
3156
3157 extern int gcpro_level;
3158
3159 #define GCPRO1(a) \
3160 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3161 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3162 gcpro1.level = gcpro_level++; \
3163 gcprolist = &gcpro1; }
3164
3165 #define GCPRO2(a, b) \
3166 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3167 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3168 gcpro1.level = gcpro_level; \
3169 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3170 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3171 gcpro2.level = gcpro_level++; \
3172 gcprolist = &gcpro2; }
3173
3174 #define GCPRO3(a, b, c) \
3175 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3176 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3177 gcpro1.level = gcpro_level; \
3178 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3179 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3180 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3181 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3182 gcpro3.level = gcpro_level++; \
3183 gcprolist = &gcpro3; }
3184
3185 #define GCPRO4(a, b, c, d) \
3186 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3187 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3188 gcpro1.level = gcpro_level; \
3189 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3190 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3191 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3192 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3193 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3194 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3195 gcpro4.level = gcpro_level++; \
3196 gcprolist = &gcpro4; }
3197
3198 #define GCPRO5(a, b, c, d, e) \
3199 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3200 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3201 gcpro1.level = gcpro_level; \
3202 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3203 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3204 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3205 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3206 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3207 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3208 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3209 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3210 gcpro5.level = gcpro_level++; \
3211 gcprolist = &gcpro5; }
3212
3213 #define GCPRO6(a, b, c, d, e, f) \
3214 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3215 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3216 gcpro1.level = gcpro_level; \
3217 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3218 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3219 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3220 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3221 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3222 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3223 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3224 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3225 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3226 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3227 gcpro6.level = gcpro_level++; \
3228 gcprolist = &gcpro6; }
3229
3230 #define GCPRO7(a, b, c, d, e, f, g) \
3231 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3232 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3233 gcpro1.level = gcpro_level; \
3234 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3235 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3236 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3237 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3238 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3239 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3240 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3241 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3242 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3243 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3244 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3245 gcpro7.name = __FILE__; gcpro7.lineno = __LINE__; gcpro7.idx = 7; \
3246 gcpro7.level = gcpro_level++; \
3247 gcprolist = &gcpro7; }
3248
3249 #define UNGCPRO \
3250 (--gcpro_level != gcpro1.level \
3251 ? emacs_abort () \
3252 : (void) (gcprolist = gcpro1.next))
3253
3254 #endif /* DEBUG_GCPRO */
3255 #endif /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3256
3257
3258 /* Evaluate expr, UNGCPRO, and then return the value of expr. */
3259 #define RETURN_UNGCPRO(expr) \
3260 do \
3261 { \
3262 Lisp_Object ret_ungc_val; \
3263 ret_ungc_val = (expr); \
3264 UNGCPRO; \
3265 return ret_ungc_val; \
3266 } \
3267 while (false)
3268
3269 /* Call staticpro (&var) to protect static variable `var'. */
3270
3271 void staticpro (Lisp_Object *);
3272 \f
3273 /* Forward declarations for prototypes. */
3274 struct window;
3275 struct frame;
3276
3277 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3278
3279 INLINE void
3280 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3281 {
3282 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3283 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3284 }
3285
3286 /* Functions to modify hash tables. */
3287
3288 INLINE void
3289 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3290 {
3291 gc_aset (h->key_and_value, 2 * idx, val);
3292 }
3293
3294 INLINE void
3295 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3296 {
3297 gc_aset (h->key_and_value, 2 * idx + 1, val);
3298 }
3299
3300 /* Use these functions to set Lisp_Object
3301 or pointer slots of struct Lisp_Symbol. */
3302
3303 INLINE void
3304 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3305 {
3306 XSYMBOL (sym)->function = function;
3307 }
3308
3309 INLINE void
3310 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3311 {
3312 XSYMBOL (sym)->plist = plist;
3313 }
3314
3315 INLINE void
3316 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3317 {
3318 XSYMBOL (sym)->next = next;
3319 }
3320
3321 /* Buffer-local (also frame-local) variable access functions. */
3322
3323 INLINE int
3324 blv_found (struct Lisp_Buffer_Local_Value *blv)
3325 {
3326 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3327 return blv->found;
3328 }
3329
3330 /* Set overlay's property list. */
3331
3332 INLINE void
3333 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3334 {
3335 XOVERLAY (overlay)->plist = plist;
3336 }
3337
3338 /* Get text properties of S. */
3339
3340 INLINE INTERVAL
3341 string_intervals (Lisp_Object s)
3342 {
3343 return XSTRING (s)->intervals;
3344 }
3345
3346 /* Set text properties of S to I. */
3347
3348 INLINE void
3349 set_string_intervals (Lisp_Object s, INTERVAL i)
3350 {
3351 XSTRING (s)->intervals = i;
3352 }
3353
3354 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3355 of setting slots directly. */
3356
3357 INLINE void
3358 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3359 {
3360 XCHAR_TABLE (table)->defalt = val;
3361 }
3362 INLINE void
3363 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3364 {
3365 XCHAR_TABLE (table)->purpose = val;
3366 }
3367
3368 /* Set different slots in (sub)character tables. */
3369
3370 INLINE void
3371 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3372 {
3373 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3374 XCHAR_TABLE (table)->extras[idx] = val;
3375 }
3376
3377 INLINE void
3378 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3379 {
3380 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3381 XCHAR_TABLE (table)->contents[idx] = val;
3382 }
3383
3384 INLINE void
3385 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3386 {
3387 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3388 }
3389
3390 /* Defined in data.c. */
3391 extern Lisp_Object indirect_function (Lisp_Object);
3392 extern Lisp_Object find_symbol_value (Lisp_Object);
3393 enum Arith_Comparison {
3394 ARITH_EQUAL,
3395 ARITH_NOTEQUAL,
3396 ARITH_LESS,
3397 ARITH_GRTR,
3398 ARITH_LESS_OR_EQUAL,
3399 ARITH_GRTR_OR_EQUAL
3400 };
3401 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3402 enum Arith_Comparison comparison);
3403
3404 /* Convert the integer I to an Emacs representation, either the integer
3405 itself, or a cons of two or three integers, or if all else fails a float.
3406 I should not have side effects. */
3407 #define INTEGER_TO_CONS(i) \
3408 (! FIXNUM_OVERFLOW_P (i) \
3409 ? make_number (i) \
3410 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16) \
3411 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16)) \
3412 && FIXNUM_OVERFLOW_P ((i) >> 16)) \
3413 ? Fcons (make_number ((i) >> 16), make_number ((i) & 0xffff)) \
3414 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16 >> 24) \
3415 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16 >> 24)) \
3416 && FIXNUM_OVERFLOW_P ((i) >> 16 >> 24)) \
3417 ? Fcons (make_number ((i) >> 16 >> 24), \
3418 Fcons (make_number ((i) >> 16 & 0xffffff), \
3419 make_number ((i) & 0xffff))) \
3420 : make_float (i))
3421
3422 /* Convert the Emacs representation CONS back to an integer of type
3423 TYPE, storing the result the variable VAR. Signal an error if CONS
3424 is not a valid representation or is out of range for TYPE. */
3425 #define CONS_TO_INTEGER(cons, type, var) \
3426 (TYPE_SIGNED (type) \
3427 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3428 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3429 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3430 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3431
3432 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3433 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3434 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3435 Lisp_Object);
3436 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3437 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3438 extern void syms_of_data (void);
3439 extern void swap_in_global_binding (struct Lisp_Symbol *);
3440
3441 /* Defined in cmds.c */
3442 extern void syms_of_cmds (void);
3443 extern void keys_of_cmds (void);
3444
3445 /* Defined in coding.c. */
3446 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3447 ptrdiff_t, bool, bool, Lisp_Object);
3448 extern void init_coding (void);
3449 extern void init_coding_once (void);
3450 extern void syms_of_coding (void);
3451
3452 /* Defined in character.c. */
3453 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3454 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3455 extern void syms_of_character (void);
3456
3457 /* Defined in charset.c. */
3458 extern void init_charset (void);
3459 extern void init_charset_once (void);
3460 extern void syms_of_charset (void);
3461 /* Structure forward declarations. */
3462 struct charset;
3463
3464 /* Defined in syntax.c. */
3465 extern void init_syntax_once (void);
3466 extern void syms_of_syntax (void);
3467
3468 /* Defined in fns.c. */
3469 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3470 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3471 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3472 extern void sweep_weak_hash_tables (void);
3473 EMACS_UINT hash_string (char const *, ptrdiff_t);
3474 EMACS_UINT sxhash (Lisp_Object, int);
3475 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3476 Lisp_Object, Lisp_Object);
3477 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3478 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3479 EMACS_UINT);
3480 extern struct hash_table_test hashtest_eql, hashtest_equal;
3481 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3482 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3483 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3484 ptrdiff_t, ptrdiff_t);
3485 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3486 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3487 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3488 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3489 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3490 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3491 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3492 extern void clear_string_char_byte_cache (void);
3493 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3494 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3495 extern Lisp_Object string_to_multibyte (Lisp_Object);
3496 extern Lisp_Object string_make_unibyte (Lisp_Object);
3497 extern void syms_of_fns (void);
3498
3499 /* Defined in floatfns.c. */
3500 extern void syms_of_floatfns (void);
3501 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3502
3503 /* Defined in fringe.c. */
3504 extern void syms_of_fringe (void);
3505 extern void init_fringe (void);
3506 #ifdef HAVE_WINDOW_SYSTEM
3507 extern void mark_fringe_data (void);
3508 extern void init_fringe_once (void);
3509 #endif /* HAVE_WINDOW_SYSTEM */
3510
3511 /* Defined in image.c. */
3512 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3513 extern void reset_image_types (void);
3514 extern void syms_of_image (void);
3515
3516 /* Defined in insdel.c. */
3517 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3518 extern _Noreturn void buffer_overflow (void);
3519 extern void make_gap (ptrdiff_t);
3520 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3521 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3522 ptrdiff_t, bool, bool);
3523 extern int count_combining_before (const unsigned char *,
3524 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3525 extern int count_combining_after (const unsigned char *,
3526 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3527 extern void insert (const char *, ptrdiff_t);
3528 extern void insert_and_inherit (const char *, ptrdiff_t);
3529 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3530 bool, bool, bool);
3531 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3532 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3533 ptrdiff_t, ptrdiff_t, bool);
3534 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3535 extern void insert_char (int);
3536 extern void insert_string (const char *);
3537 extern void insert_before_markers (const char *, ptrdiff_t);
3538 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3539 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3540 ptrdiff_t, ptrdiff_t,
3541 ptrdiff_t, bool);
3542 extern void del_range (ptrdiff_t, ptrdiff_t);
3543 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3544 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3545 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3546 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3547 ptrdiff_t, ptrdiff_t, bool);
3548 extern void modify_text (ptrdiff_t, ptrdiff_t);
3549 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3550 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3551 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3552 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3553 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3554 ptrdiff_t, ptrdiff_t);
3555 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3556 ptrdiff_t, ptrdiff_t);
3557 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3558 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3559 const char *, ptrdiff_t, ptrdiff_t, bool);
3560 extern void syms_of_insdel (void);
3561
3562 /* Defined in dispnew.c. */
3563 #if (defined PROFILING \
3564 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3565 _Noreturn void __executable_start (void);
3566 #endif
3567 extern Lisp_Object Vwindow_system;
3568 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3569
3570 /* Defined in xdisp.c. */
3571 extern bool noninteractive_need_newline;
3572 extern Lisp_Object echo_area_buffer[2];
3573 extern void add_to_log (const char *, Lisp_Object, Lisp_Object);
3574 extern void check_message_stack (void);
3575 extern void setup_echo_area_for_printing (int);
3576 extern bool push_message (void);
3577 extern void pop_message_unwind (void);
3578 extern Lisp_Object restore_message_unwind (Lisp_Object);
3579 extern void restore_message (void);
3580 extern Lisp_Object current_message (void);
3581 extern void clear_message (bool, bool);
3582 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3583 extern void message1 (const char *);
3584 extern void message1_nolog (const char *);
3585 extern void message3 (Lisp_Object);
3586 extern void message3_nolog (Lisp_Object);
3587 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3588 extern void message_with_string (const char *, Lisp_Object, int);
3589 extern void message_log_maybe_newline (void);
3590 extern void update_echo_area (void);
3591 extern void truncate_echo_area (ptrdiff_t);
3592 extern void redisplay (void);
3593
3594 void set_frame_cursor_types (struct frame *, Lisp_Object);
3595 extern void syms_of_xdisp (void);
3596 extern void init_xdisp (void);
3597 extern Lisp_Object safe_eval (Lisp_Object);
3598 extern int pos_visible_p (struct window *, ptrdiff_t, int *,
3599 int *, int *, int *, int *, int *);
3600
3601 /* Defined in xsettings.c. */
3602 extern void syms_of_xsettings (void);
3603
3604 /* Defined in vm-limit.c. */
3605 extern void memory_warnings (void *, void (*warnfun) (const char *));
3606
3607 /* Defined in character.c. */
3608 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3609 ptrdiff_t *, ptrdiff_t *);
3610
3611 /* Defined in alloc.c. */
3612 extern void check_pure_size (void);
3613 extern void free_misc (Lisp_Object);
3614 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3615 extern void malloc_warning (const char *);
3616 extern _Noreturn void memory_full (size_t);
3617 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3618 extern bool survives_gc_p (Lisp_Object);
3619 extern void mark_object (Lisp_Object);
3620 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3621 extern void refill_memory_reserve (void);
3622 #endif
3623 extern const char *pending_malloc_warning;
3624 extern Lisp_Object zero_vector;
3625 extern Lisp_Object *stack_base;
3626 extern EMACS_INT consing_since_gc;
3627 extern EMACS_INT gc_relative_threshold;
3628 extern EMACS_INT memory_full_cons_threshold;
3629 extern Lisp_Object list1 (Lisp_Object);
3630 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3631 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3632 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3633 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3634 Lisp_Object);
3635 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3636 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3637
3638 /* Build a frequently used 2/3/4-integer lists. */
3639
3640 INLINE Lisp_Object
3641 list2i (EMACS_INT x, EMACS_INT y)
3642 {
3643 return list2 (make_number (x), make_number (y));
3644 }
3645
3646 INLINE Lisp_Object
3647 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3648 {
3649 return list3 (make_number (x), make_number (y), make_number (w));
3650 }
3651
3652 INLINE Lisp_Object
3653 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3654 {
3655 return list4 (make_number (x), make_number (y),
3656 make_number (w), make_number (h));
3657 }
3658
3659 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3660 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3661 extern _Noreturn void string_overflow (void);
3662 extern Lisp_Object make_string (const char *, ptrdiff_t);
3663 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3664 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3665 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3666
3667 /* Make unibyte string from C string when the length isn't known. */
3668
3669 INLINE Lisp_Object
3670 build_unibyte_string (const char *str)
3671 {
3672 return make_unibyte_string (str, strlen (str));
3673 }
3674
3675 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3676 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3677 extern Lisp_Object make_uninit_string (EMACS_INT);
3678 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3679 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3680 extern Lisp_Object make_specified_string (const char *,
3681 ptrdiff_t, ptrdiff_t, bool);
3682 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3683 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3684
3685 /* Make a string allocated in pure space, use STR as string data. */
3686
3687 INLINE Lisp_Object
3688 build_pure_c_string (const char *str)
3689 {
3690 return make_pure_c_string (str, strlen (str));
3691 }
3692
3693 /* Make a string from the data at STR, treating it as multibyte if the
3694 data warrants. */
3695
3696 INLINE Lisp_Object
3697 build_string (const char *str)
3698 {
3699 return make_string (str, strlen (str));
3700 }
3701
3702 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3703 extern void make_byte_code (struct Lisp_Vector *);
3704 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3705
3706 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3707 be sure that GC cannot happen until the vector is completely
3708 initialized. E.g. the following code is likely to crash:
3709
3710 v = make_uninit_vector (3);
3711 ASET (v, 0, obj0);
3712 ASET (v, 1, Ffunction_can_gc ());
3713 ASET (v, 2, obj1); */
3714
3715 INLINE Lisp_Object
3716 make_uninit_vector (ptrdiff_t size)
3717 {
3718 Lisp_Object v;
3719 struct Lisp_Vector *p;
3720
3721 p = allocate_vector (size);
3722 XSETVECTOR (v, p);
3723 return v;
3724 }
3725
3726 /* Like above, but special for sub char-tables. */
3727
3728 INLINE Lisp_Object
3729 make_uninit_sub_char_table (int depth, int min_char)
3730 {
3731 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3732 Lisp_Object v = make_uninit_vector (slots);
3733
3734 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3735 XSUB_CHAR_TABLE (v)->depth = depth;
3736 XSUB_CHAR_TABLE (v)->min_char = min_char;
3737 return v;
3738 }
3739
3740 extern struct Lisp_Vector *allocate_pseudovector (int, int, enum pvec_type);
3741 #define ALLOCATE_PSEUDOVECTOR(typ,field,tag) \
3742 ((typ*) \
3743 allocate_pseudovector \
3744 (VECSIZE (typ), PSEUDOVECSIZE (typ, field), tag))
3745 extern struct Lisp_Hash_Table *allocate_hash_table (void);
3746 extern struct window *allocate_window (void);
3747 extern struct frame *allocate_frame (void);
3748 extern struct Lisp_Process *allocate_process (void);
3749 extern struct terminal *allocate_terminal (void);
3750 extern bool gc_in_progress;
3751 extern bool abort_on_gc;
3752 extern Lisp_Object make_float (double);
3753 extern void display_malloc_warning (void);
3754 extern ptrdiff_t inhibit_garbage_collection (void);
3755 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3756 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3757 Lisp_Object, Lisp_Object);
3758 extern Lisp_Object make_save_ptr (void *);
3759 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3760 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3761 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3762 Lisp_Object);
3763 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3764 extern void free_save_value (Lisp_Object);
3765 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3766 extern void free_marker (Lisp_Object);
3767 extern void free_cons (struct Lisp_Cons *);
3768 extern void init_alloc_once (void);
3769 extern void init_alloc (void);
3770 extern void syms_of_alloc (void);
3771 extern struct buffer * allocate_buffer (void);
3772 extern int valid_lisp_object_p (Lisp_Object);
3773 extern int relocatable_string_data_p (const char *);
3774 #ifdef GC_CHECK_CONS_LIST
3775 extern void check_cons_list (void);
3776 #else
3777 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3778 #endif
3779
3780 #ifdef REL_ALLOC
3781 /* Defined in ralloc.c. */
3782 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3783 extern void r_alloc_free (void **);
3784 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3785 extern void r_alloc_reset_variable (void **, void **);
3786 extern void r_alloc_inhibit_buffer_relocation (int);
3787 #endif
3788
3789 /* Defined in chartab.c. */
3790 extern Lisp_Object copy_char_table (Lisp_Object);
3791 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3792 int *, int *);
3793 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3794 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3795 Lisp_Object),
3796 Lisp_Object, Lisp_Object, Lisp_Object);
3797 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3798 Lisp_Object, Lisp_Object,
3799 Lisp_Object, struct charset *,
3800 unsigned, unsigned);
3801 extern Lisp_Object uniprop_table (Lisp_Object);
3802 extern void syms_of_chartab (void);
3803
3804 /* Defined in print.c. */
3805 extern Lisp_Object Vprin1_to_string_buffer;
3806 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3807 extern void temp_output_buffer_setup (const char *);
3808 extern int print_level;
3809 extern void write_string (const char *, int);
3810 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3811 Lisp_Object);
3812 extern Lisp_Object internal_with_output_to_temp_buffer
3813 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3814 #define FLOAT_TO_STRING_BUFSIZE 350
3815 extern int float_to_string (char *, double);
3816 extern void init_print_once (void);
3817 extern void syms_of_print (void);
3818
3819 /* Defined in doprnt.c. */
3820 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3821 va_list);
3822 extern ptrdiff_t esprintf (char *, char const *, ...)
3823 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3824 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3825 char const *, ...)
3826 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3827 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3828 char const *, va_list)
3829 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3830
3831 /* Defined in lread.c. */
3832 extern Lisp_Object check_obarray (Lisp_Object);
3833 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3834 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3835 extern Lisp_Object intern_driver (Lisp_Object, Lisp_Object, Lisp_Object);
3836 extern void init_symbol (Lisp_Object, Lisp_Object);
3837 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3838 INLINE void
3839 LOADHIST_ATTACH (Lisp_Object x)
3840 {
3841 if (initialized)
3842 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3843 }
3844 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3845 Lisp_Object *, Lisp_Object, bool);
3846 extern Lisp_Object string_to_number (char const *, int, bool);
3847 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3848 Lisp_Object);
3849 extern void dir_warning (const char *, Lisp_Object);
3850 extern void init_obarray (void);
3851 extern void init_lread (void);
3852 extern void syms_of_lread (void);
3853
3854 INLINE Lisp_Object
3855 intern (const char *str)
3856 {
3857 return intern_1 (str, strlen (str));
3858 }
3859
3860 INLINE Lisp_Object
3861 intern_c_string (const char *str)
3862 {
3863 return intern_c_string_1 (str, strlen (str));
3864 }
3865
3866 /* Defined in eval.c. */
3867 extern EMACS_INT lisp_eval_depth;
3868 extern Lisp_Object Vautoload_queue;
3869 extern Lisp_Object Vrun_hooks;
3870 extern Lisp_Object Vsignaling_function;
3871 extern Lisp_Object inhibit_lisp_code;
3872 extern struct handler *handlerlist;
3873
3874 /* To run a normal hook, use the appropriate function from the list below.
3875 The calling convention:
3876
3877 if (!NILP (Vrun_hooks))
3878 call1 (Vrun_hooks, Qmy_funny_hook);
3879
3880 should no longer be used. */
3881 extern void run_hook (Lisp_Object);
3882 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3883 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3884 Lisp_Object (*funcall)
3885 (ptrdiff_t nargs, Lisp_Object *args));
3886 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3887 extern _Noreturn void xsignal0 (Lisp_Object);
3888 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3889 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3890 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3891 Lisp_Object);
3892 extern _Noreturn void signal_error (const char *, Lisp_Object);
3893 extern Lisp_Object eval_sub (Lisp_Object form);
3894 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3895 extern Lisp_Object call0 (Lisp_Object);
3896 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3897 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3898 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3899 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3900 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3901 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3902 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3903 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3904 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3905 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3906 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3907 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3908 extern Lisp_Object internal_condition_case_n
3909 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3910 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3911 extern void specbind (Lisp_Object, Lisp_Object);
3912 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3913 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3914 extern void record_unwind_protect_int (void (*) (int), int);
3915 extern void record_unwind_protect_void (void (*) (void));
3916 extern void record_unwind_protect_nothing (void);
3917 extern void clear_unwind_protect (ptrdiff_t);
3918 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3919 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3920 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3921 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3922 extern _Noreturn void verror (const char *, va_list)
3923 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3924 extern void un_autoload (Lisp_Object);
3925 extern Lisp_Object call_debugger (Lisp_Object arg);
3926 extern void init_eval_once (void);
3927 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3928 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
3929 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3930 extern void init_eval (void);
3931 extern void syms_of_eval (void);
3932 extern void unwind_body (Lisp_Object);
3933 extern ptrdiff_t record_in_backtrace (Lisp_Object, Lisp_Object *, ptrdiff_t);
3934 extern void mark_specpdl (void);
3935 extern void get_backtrace (Lisp_Object array);
3936 Lisp_Object backtrace_top_function (void);
3937 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
3938 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
3939
3940
3941 /* Defined in editfns.c. */
3942 extern void insert1 (Lisp_Object);
3943 extern Lisp_Object format2 (const char *, Lisp_Object, Lisp_Object);
3944 extern Lisp_Object save_excursion_save (void);
3945 extern Lisp_Object save_restriction_save (void);
3946 extern void save_excursion_restore (Lisp_Object);
3947 extern void save_restriction_restore (Lisp_Object);
3948 extern _Noreturn void time_overflow (void);
3949 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
3950 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3951 ptrdiff_t, bool);
3952 extern void init_editfns (void);
3953 extern void syms_of_editfns (void);
3954
3955 /* Defined in buffer.c. */
3956 extern bool mouse_face_overlay_overlaps (Lisp_Object);
3957 extern _Noreturn void nsberror (Lisp_Object);
3958 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
3959 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
3960 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
3961 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
3962 Lisp_Object, Lisp_Object, Lisp_Object);
3963 extern bool overlay_touches_p (ptrdiff_t);
3964 extern Lisp_Object other_buffer_safely (Lisp_Object);
3965 extern Lisp_Object get_truename_buffer (Lisp_Object);
3966 extern void init_buffer_once (void);
3967 extern void init_buffer (int);
3968 extern void syms_of_buffer (void);
3969 extern void keys_of_buffer (void);
3970
3971 /* Defined in marker.c. */
3972
3973 extern ptrdiff_t marker_position (Lisp_Object);
3974 extern ptrdiff_t marker_byte_position (Lisp_Object);
3975 extern void clear_charpos_cache (struct buffer *);
3976 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
3977 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
3978 extern void unchain_marker (struct Lisp_Marker *marker);
3979 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
3980 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
3981 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
3982 ptrdiff_t, ptrdiff_t);
3983 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
3984 extern void syms_of_marker (void);
3985
3986 /* Defined in fileio.c. */
3987
3988 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
3989 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
3990 Lisp_Object, Lisp_Object, Lisp_Object,
3991 Lisp_Object, int);
3992 extern void close_file_unwind (int);
3993 extern void fclose_unwind (void *);
3994 extern void restore_point_unwind (Lisp_Object);
3995 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
3996 extern _Noreturn void report_file_error (const char *, Lisp_Object);
3997 extern bool internal_delete_file (Lisp_Object);
3998 extern Lisp_Object emacs_readlinkat (int, const char *);
3999 extern bool file_directory_p (const char *);
4000 extern bool file_accessible_directory_p (Lisp_Object);
4001 extern void init_fileio (void);
4002 extern void syms_of_fileio (void);
4003 extern Lisp_Object make_temp_name (Lisp_Object, bool);
4004
4005 /* Defined in search.c. */
4006 extern void shrink_regexp_cache (void);
4007 extern void restore_search_regs (void);
4008 extern void record_unwind_save_match_data (void);
4009 struct re_registers;
4010 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4011 struct re_registers *,
4012 Lisp_Object, bool, bool);
4013 extern ptrdiff_t fast_string_match (Lisp_Object, Lisp_Object);
4014 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4015 ptrdiff_t);
4016 extern ptrdiff_t fast_string_match_ignore_case (Lisp_Object, Lisp_Object);
4017 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4018 ptrdiff_t, ptrdiff_t, Lisp_Object);
4019 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4020 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4021 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4022 ptrdiff_t, bool);
4023 extern ptrdiff_t scan_newline_from_point (ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
4024 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4025 ptrdiff_t, ptrdiff_t *);
4026 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4027 ptrdiff_t, ptrdiff_t *);
4028 extern void syms_of_search (void);
4029 extern void clear_regexp_cache (void);
4030
4031 /* Defined in minibuf.c. */
4032
4033 extern Lisp_Object Vminibuffer_list;
4034 extern Lisp_Object last_minibuf_string;
4035 extern Lisp_Object get_minibuffer (EMACS_INT);
4036 extern void init_minibuf_once (void);
4037 extern void syms_of_minibuf (void);
4038
4039 /* Defined in callint.c. */
4040
4041 extern void syms_of_callint (void);
4042
4043 /* Defined in casefiddle.c. */
4044
4045 extern void syms_of_casefiddle (void);
4046 extern void keys_of_casefiddle (void);
4047
4048 /* Defined in casetab.c. */
4049
4050 extern void init_casetab_once (void);
4051 extern void syms_of_casetab (void);
4052
4053 /* Defined in keyboard.c. */
4054
4055 extern Lisp_Object echo_message_buffer;
4056 extern struct kboard *echo_kboard;
4057 extern void cancel_echoing (void);
4058 extern Lisp_Object last_undo_boundary;
4059 extern bool input_pending;
4060 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4061 extern sigjmp_buf return_to_command_loop;
4062 #endif
4063 extern Lisp_Object menu_bar_items (Lisp_Object);
4064 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4065 extern void discard_mouse_events (void);
4066 #ifdef USABLE_SIGIO
4067 void handle_input_available_signal (int);
4068 #endif
4069 extern Lisp_Object pending_funcalls;
4070 extern bool detect_input_pending (void);
4071 extern bool detect_input_pending_ignore_squeezables (void);
4072 extern bool detect_input_pending_run_timers (bool);
4073 extern void safe_run_hooks (Lisp_Object);
4074 extern void cmd_error_internal (Lisp_Object, const char *);
4075 extern Lisp_Object command_loop_1 (void);
4076 extern Lisp_Object read_menu_command (void);
4077 extern Lisp_Object recursive_edit_1 (void);
4078 extern void record_auto_save (void);
4079 extern void force_auto_save_soon (void);
4080 extern void init_keyboard (void);
4081 extern void syms_of_keyboard (void);
4082 extern void keys_of_keyboard (void);
4083
4084 /* Defined in indent.c. */
4085 extern ptrdiff_t current_column (void);
4086 extern void invalidate_current_column (void);
4087 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4088 extern void syms_of_indent (void);
4089
4090 /* Defined in frame.c. */
4091 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4092 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4093 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4094 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4095 extern void frames_discard_buffer (Lisp_Object);
4096 extern void syms_of_frame (void);
4097
4098 /* Defined in emacs.c. */
4099 extern char **initial_argv;
4100 extern int initial_argc;
4101 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4102 extern bool display_arg;
4103 #endif
4104 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4105 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4106 extern _Noreturn void terminate_due_to_signal (int, int);
4107 #ifdef WINDOWSNT
4108 extern Lisp_Object Vlibrary_cache;
4109 #endif
4110 #if HAVE_SETLOCALE
4111 void fixup_locale (void);
4112 void synchronize_system_messages_locale (void);
4113 void synchronize_system_time_locale (void);
4114 #else
4115 INLINE void fixup_locale (void) {}
4116 INLINE void synchronize_system_messages_locale (void) {}
4117 INLINE void synchronize_system_time_locale (void) {}
4118 #endif
4119 extern void shut_down_emacs (int, Lisp_Object);
4120
4121 /* True means don't do interactive redisplay and don't change tty modes. */
4122 extern bool noninteractive;
4123
4124 /* True means remove site-lisp directories from load-path. */
4125 extern bool no_site_lisp;
4126
4127 /* Pipe used to send exit notification to the daemon parent at
4128 startup. */
4129 extern int daemon_pipe[2];
4130 #define IS_DAEMON (daemon_pipe[1] != 0)
4131
4132 /* True if handling a fatal error already. */
4133 extern bool fatal_error_in_progress;
4134
4135 /* True means don't do use window-system-specific display code. */
4136 extern bool inhibit_window_system;
4137 /* True means that a filter or a sentinel is running. */
4138 extern bool running_asynch_code;
4139
4140 /* Defined in process.c. */
4141 extern void kill_buffer_processes (Lisp_Object);
4142 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4143 struct Lisp_Process *, int);
4144 /* Max value for the first argument of wait_reading_process_output. */
4145 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4146 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4147 The bug merely causes a bogus warning, but the warning is annoying. */
4148 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4149 #else
4150 # define WAIT_READING_MAX INTMAX_MAX
4151 #endif
4152 #ifdef HAVE_TIMERFD
4153 extern void add_timer_wait_descriptor (int);
4154 #endif
4155 extern void add_keyboard_wait_descriptor (int);
4156 extern void delete_keyboard_wait_descriptor (int);
4157 #ifdef HAVE_GPM
4158 extern void add_gpm_wait_descriptor (int);
4159 extern void delete_gpm_wait_descriptor (int);
4160 #endif
4161 extern void init_process_emacs (void);
4162 extern void syms_of_process (void);
4163 extern void setup_process_coding_systems (Lisp_Object);
4164
4165 /* Defined in callproc.c. */
4166 #ifndef DOS_NT
4167 _Noreturn
4168 #endif
4169 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4170 extern void init_callproc_1 (void);
4171 extern void init_callproc (void);
4172 extern void set_initial_environment (void);
4173 extern void syms_of_callproc (void);
4174
4175 /* Defined in doc.c. */
4176 extern Lisp_Object read_doc_string (Lisp_Object);
4177 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4178 extern void syms_of_doc (void);
4179 extern int read_bytecode_char (bool);
4180
4181 /* Defined in bytecode.c. */
4182 extern void syms_of_bytecode (void);
4183 extern struct byte_stack *byte_stack_list;
4184 #if BYTE_MARK_STACK
4185 extern void mark_byte_stack (void);
4186 #endif
4187 extern void unmark_byte_stack (void);
4188 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4189 Lisp_Object, ptrdiff_t, Lisp_Object *);
4190
4191 /* Defined in macros.c. */
4192 extern void init_macros (void);
4193 extern void syms_of_macros (void);
4194
4195 /* Defined in undo.c. */
4196 extern void truncate_undo_list (struct buffer *);
4197 extern void record_insert (ptrdiff_t, ptrdiff_t);
4198 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4199 extern void record_first_change (void);
4200 extern void record_change (ptrdiff_t, ptrdiff_t);
4201 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4202 Lisp_Object, Lisp_Object,
4203 Lisp_Object);
4204 extern void syms_of_undo (void);
4205
4206 /* Defined in textprop.c. */
4207 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4208
4209 /* Defined in menu.c. */
4210 extern void syms_of_menu (void);
4211
4212 /* Defined in xmenu.c. */
4213 extern void syms_of_xmenu (void);
4214
4215 /* Defined in termchar.h. */
4216 struct tty_display_info;
4217
4218 /* Defined in termhooks.h. */
4219 struct terminal;
4220
4221 /* Defined in sysdep.c. */
4222 #ifndef HAVE_GET_CURRENT_DIR_NAME
4223 extern char *get_current_dir_name (void);
4224 #endif
4225 extern void stuff_char (char c);
4226 extern void init_foreground_group (void);
4227 extern void sys_subshell (void);
4228 extern void sys_suspend (void);
4229 extern void discard_tty_input (void);
4230 extern void init_sys_modes (struct tty_display_info *);
4231 extern void reset_sys_modes (struct tty_display_info *);
4232 extern void init_all_sys_modes (void);
4233 extern void reset_all_sys_modes (void);
4234 extern void child_setup_tty (int);
4235 extern void setup_pty (int);
4236 extern int set_window_size (int, int, int);
4237 extern EMACS_INT get_random (void);
4238 extern void seed_random (void *, ptrdiff_t);
4239 extern void init_random (void);
4240 extern void emacs_backtrace (int);
4241 extern _Noreturn void emacs_abort (void) NO_INLINE;
4242 extern int emacs_open (const char *, int, int);
4243 extern int emacs_pipe (int[2]);
4244 extern int emacs_close (int);
4245 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4246 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4247 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4248 extern void emacs_perror (char const *);
4249
4250 extern void unlock_all_files (void);
4251 extern void lock_file (Lisp_Object);
4252 extern void unlock_file (Lisp_Object);
4253 extern void unlock_buffer (struct buffer *);
4254 extern void syms_of_filelock (void);
4255 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4256
4257 /* Defined in sound.c. */
4258 extern void syms_of_sound (void);
4259
4260 /* Defined in category.c. */
4261 extern void init_category_once (void);
4262 extern Lisp_Object char_category_set (int);
4263 extern void syms_of_category (void);
4264
4265 /* Defined in ccl.c. */
4266 extern void syms_of_ccl (void);
4267
4268 /* Defined in dired.c. */
4269 extern void syms_of_dired (void);
4270 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4271 Lisp_Object, Lisp_Object,
4272 bool, Lisp_Object);
4273
4274 /* Defined in term.c. */
4275 extern int *char_ins_del_vector;
4276 extern void syms_of_term (void);
4277 extern _Noreturn void fatal (const char *msgid, ...)
4278 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4279
4280 /* Defined in terminal.c. */
4281 extern void syms_of_terminal (void);
4282
4283 /* Defined in font.c. */
4284 extern void syms_of_font (void);
4285 extern void init_font (void);
4286
4287 #ifdef HAVE_WINDOW_SYSTEM
4288 /* Defined in fontset.c. */
4289 extern void syms_of_fontset (void);
4290 #endif
4291
4292 /* Defined in gfilenotify.c */
4293 #ifdef HAVE_GFILENOTIFY
4294 extern void globals_of_gfilenotify (void);
4295 extern void syms_of_gfilenotify (void);
4296 #endif
4297
4298 /* Defined in inotify.c */
4299 #ifdef HAVE_INOTIFY
4300 extern void syms_of_inotify (void);
4301 #endif
4302
4303 #ifdef HAVE_W32NOTIFY
4304 /* Defined on w32notify.c. */
4305 extern void syms_of_w32notify (void);
4306 #endif
4307
4308 /* Defined in xfaces.c. */
4309 extern Lisp_Object Vface_alternative_font_family_alist;
4310 extern Lisp_Object Vface_alternative_font_registry_alist;
4311 extern void syms_of_xfaces (void);
4312
4313 #ifdef HAVE_X_WINDOWS
4314 /* Defined in xfns.c. */
4315 extern void syms_of_xfns (void);
4316
4317 /* Defined in xsmfns.c. */
4318 extern void syms_of_xsmfns (void);
4319
4320 /* Defined in xselect.c. */
4321 extern void syms_of_xselect (void);
4322
4323 /* Defined in xterm.c. */
4324 extern void init_xterm (void);
4325 extern void syms_of_xterm (void);
4326 #endif /* HAVE_X_WINDOWS */
4327
4328 #ifdef HAVE_WINDOW_SYSTEM
4329 /* Defined in xterm.c, nsterm.m, w32term.c. */
4330 extern char *x_get_keysym_name (int);
4331 #endif /* HAVE_WINDOW_SYSTEM */
4332
4333 #ifdef HAVE_LIBXML2
4334 /* Defined in xml.c. */
4335 extern void syms_of_xml (void);
4336 extern void xml_cleanup_parser (void);
4337 #endif
4338
4339 #ifdef HAVE_ZLIB
4340 /* Defined in decompress.c. */
4341 extern void syms_of_decompress (void);
4342 #endif
4343
4344 #ifdef HAVE_DBUS
4345 /* Defined in dbusbind.c. */
4346 void init_dbusbind (void);
4347 void syms_of_dbusbind (void);
4348 #endif
4349
4350
4351 /* Defined in profiler.c. */
4352 extern bool profiler_memory_running;
4353 extern void malloc_probe (size_t);
4354 extern void syms_of_profiler (void);
4355
4356
4357 #ifdef DOS_NT
4358 /* Defined in msdos.c, w32.c. */
4359 extern char *emacs_root_dir (void);
4360 #endif /* DOS_NT */
4361
4362 /* Defined in lastfile.c. */
4363 extern char my_edata[];
4364 extern char my_endbss[];
4365 extern char *my_endbss_static;
4366
4367 /* True means ^G can quit instantly. */
4368 extern bool immediate_quit;
4369
4370 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4371 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4372 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4373 extern void xfree (void *);
4374 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4375 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4376 ATTRIBUTE_ALLOC_SIZE ((2,3));
4377 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4378
4379 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4380 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4381 extern void dupstring (char **, char const *);
4382
4383 /* Make DEST a copy of STRING's data. Return a pointer to DEST's terminating
4384 null byte. This is like stpcpy, except the source is a Lisp string. */
4385
4386 INLINE char *
4387 lispstpcpy (char *dest, Lisp_Object string)
4388 {
4389 ptrdiff_t len = SBYTES (string);
4390 memcpy (dest, SDATA (string), len + 1);
4391 return dest + len;
4392 }
4393
4394 extern void xputenv (const char *);
4395
4396 extern char *egetenv_internal (const char *, ptrdiff_t);
4397
4398 INLINE char *
4399 egetenv (const char *var)
4400 {
4401 /* When VAR is a string literal, strlen can be optimized away. */
4402 return egetenv_internal (var, strlen (var));
4403 }
4404
4405 /* Set up the name of the machine we're running on. */
4406 extern void init_system_name (void);
4407
4408 /* Return the absolute value of X. X should be a signed integer
4409 expression without side effects, and X's absolute value should not
4410 exceed the maximum for its promoted type. This is called 'eabs'
4411 because 'abs' is reserved by the C standard. */
4412 #define eabs(x) ((x) < 0 ? -(x) : (x))
4413
4414 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4415 fixnum. */
4416
4417 #define make_fixnum_or_float(val) \
4418 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4419
4420 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4421 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4422
4423 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4424
4425 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4426
4427 #define USE_SAFE_ALLOCA \
4428 ptrdiff_t sa_avail = MAX_ALLOCA; \
4429 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4430
4431 #define AVAIL_ALLOCA(size) (sa_avail -= (size), alloca (size))
4432
4433 /* SAFE_ALLOCA allocates a simple buffer. */
4434
4435 #define SAFE_ALLOCA(size) ((size) <= sa_avail \
4436 ? AVAIL_ALLOCA (size) \
4437 : (sa_must_free = true, record_xmalloc (size)))
4438
4439 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4440 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4441 positive. The code is tuned for MULTIPLIER being a constant. */
4442
4443 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4444 do { \
4445 if ((nitems) <= sa_avail / sizeof *(buf) / (multiplier)) \
4446 (buf) = AVAIL_ALLOCA (sizeof *(buf) * (multiplier) * (nitems)); \
4447 else \
4448 { \
4449 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4450 sa_must_free = true; \
4451 record_unwind_protect_ptr (xfree, buf); \
4452 } \
4453 } while (false)
4454
4455 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4456
4457 #define SAFE_ALLOCA_STRING(ptr, string) \
4458 do { \
4459 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4460 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4461 } while (false)
4462
4463 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4464
4465 #define SAFE_FREE() \
4466 do { \
4467 if (sa_must_free) { \
4468 sa_must_free = false; \
4469 unbind_to (sa_count, Qnil); \
4470 } \
4471 } while (false)
4472
4473
4474 /* Return floor (NBYTES / WORD_SIZE). */
4475
4476 INLINE ptrdiff_t
4477 lisp_word_count (ptrdiff_t nbytes)
4478 {
4479 if (-1 >> 1 == -1)
4480 switch (word_size)
4481 {
4482 case 2: return nbytes >> 1;
4483 case 4: return nbytes >> 2;
4484 case 8: return nbytes >> 3;
4485 case 16: return nbytes >> 4;
4486 }
4487 return nbytes / word_size - (nbytes % word_size < 0);
4488 }
4489
4490 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4491
4492 #define SAFE_ALLOCA_LISP(buf, nelt) \
4493 do { \
4494 if ((nelt) <= lisp_word_count (sa_avail)) \
4495 (buf) = AVAIL_ALLOCA ((nelt) * word_size); \
4496 else if ((nelt) <= min (PTRDIFF_MAX, SIZE_MAX) / word_size) \
4497 { \
4498 Lisp_Object arg_; \
4499 (buf) = xmalloc ((nelt) * word_size); \
4500 arg_ = make_save_memory (buf, nelt); \
4501 sa_must_free = true; \
4502 record_unwind_protect (free_save_value, arg_); \
4503 } \
4504 else \
4505 memory_full (SIZE_MAX); \
4506 } while (false)
4507
4508
4509 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that allocate
4510 block-scoped conses and strings. These objects are not
4511 managed by the garbage collector, so they are dangerous: passing them
4512 out of their scope (e.g., to user code) results in undefined behavior.
4513 Conversely, they have better performance because GC is not involved.
4514
4515 This feature is experimental and requires careful debugging.
4516 Build with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS=0' to disable it. */
4517
4518 #ifndef USE_STACK_LISP_OBJECTS
4519 # define USE_STACK_LISP_OBJECTS true
4520 #endif
4521
4522 /* USE_STACK_LISP_OBJECTS requires GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS. */
4523
4524 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
4525 # undef USE_STACK_LISP_OBJECTS
4526 # define USE_STACK_LISP_OBJECTS false
4527 #endif
4528
4529 #ifdef GC_CHECK_STRING_BYTES
4530 enum { defined_GC_CHECK_STRING_BYTES = true };
4531 #else
4532 enum { defined_GC_CHECK_STRING_BYTES = false };
4533 #endif
4534
4535 /* Struct inside unions that are typically no larger and aligned enough. */
4536
4537 union Aligned_Cons
4538 {
4539 struct Lisp_Cons s;
4540 double d; intmax_t i; void *p;
4541 };
4542
4543 union Aligned_String
4544 {
4545 struct Lisp_String s;
4546 double d; intmax_t i; void *p;
4547 };
4548
4549 /* True for stack-based cons and string implementations, respectively.
4550 Use stack-based strings only if stack-based cons also works.
4551 Otherwise, STACK_CONS would create heap-based cons cells that
4552 could point to stack-based strings, which is a no-no. */
4553
4554 enum
4555 {
4556 USE_STACK_CONS = (USE_STACK_LISP_OBJECTS
4557 && alignof (union Aligned_Cons) % GCALIGNMENT == 0),
4558 USE_STACK_STRING = (USE_STACK_CONS
4559 && !defined_GC_CHECK_STRING_BYTES
4560 && alignof (union Aligned_String) % GCALIGNMENT == 0)
4561 };
4562
4563 /* Auxiliary macros used for auto allocation of Lisp objects. Please
4564 use these only in macros like AUTO_CONS that declare a local
4565 variable whose lifetime will be clear to the programmer. */
4566 #define STACK_CONS(a, b) \
4567 make_lisp_ptr (&(union Aligned_Cons) { { a, { b } } }.s, Lisp_Cons)
4568 #define AUTO_CONS_EXPR(a, b) \
4569 (USE_STACK_CONS ? STACK_CONS (a, b) : Fcons (a, b))
4570
4571 /* Declare NAME as an auto Lisp cons or short list if possible, a
4572 GC-based one otherwise. This is in the sense of the C keyword
4573 'auto'; i.e., the object has the lifetime of the containing block.
4574 The resulting object should not be made visible to user Lisp code. */
4575
4576 #define AUTO_CONS(name, a, b) Lisp_Object name = AUTO_CONS_EXPR (a, b)
4577 #define AUTO_LIST1(name, a) \
4578 Lisp_Object name = (USE_STACK_CONS ? STACK_CONS (a, Qnil) : list1 (a))
4579 #define AUTO_LIST2(name, a, b) \
4580 Lisp_Object name = (USE_STACK_CONS \
4581 ? STACK_CONS (a, STACK_CONS (b, Qnil)) \
4582 : list2 (a, b))
4583 #define AUTO_LIST3(name, a, b, c) \
4584 Lisp_Object name = (USE_STACK_CONS \
4585 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, Qnil))) \
4586 : list3 (a, b, c))
4587 #define AUTO_LIST4(name, a, b, c, d) \
4588 Lisp_Object name \
4589 = (USE_STACK_CONS \
4590 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, \
4591 STACK_CONS (d, Qnil)))) \
4592 : list4 (a, b, c, d))
4593
4594 /* Check whether stack-allocated strings are ASCII-only. */
4595
4596 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
4597 extern const char *verify_ascii (const char *);
4598 #else
4599 # define verify_ascii(str) (str)
4600 #endif
4601
4602 /* Declare NAME as an auto Lisp string if possible, a GC-based one if not.
4603 Take its value from STR. STR is not necessarily copied and should
4604 contain only ASCII characters. The resulting Lisp string should
4605 not be modified or made visible to user code. */
4606
4607 #define AUTO_STRING(name, str) \
4608 Lisp_Object name = \
4609 (USE_STACK_STRING \
4610 ? (make_lisp_ptr \
4611 ((&(union Aligned_String) \
4612 {{strlen (str), -1, 0, (unsigned char *) verify_ascii (str)}}.s), \
4613 Lisp_String)) \
4614 : build_string (verify_ascii (str)))
4615
4616 /* Loop over all tails of a list, checking for cycles.
4617 FIXME: Make tortoise and n internal declarations.
4618 FIXME: Unroll the loop body so we don't need `n'. */
4619 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4620 for ((tortoise) = (hare) = (list), (n) = true; \
4621 CONSP (hare); \
4622 (hare = XCDR (hare), (n) = !(n), \
4623 ((n) \
4624 ? (EQ (hare, tortoise) \
4625 ? xsignal1 (Qcircular_list, list) \
4626 : (void) 0) \
4627 /* Move tortoise before the next iteration, in case */ \
4628 /* the next iteration does an Fsetcdr. */ \
4629 : (void) ((tortoise) = XCDR (tortoise)))))
4630
4631 /* Do a `for' loop over alist values. */
4632
4633 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4634 for ((list_var) = (head_var); \
4635 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4636 (list_var) = XCDR (list_var))
4637
4638 /* Check whether it's time for GC, and run it if so. */
4639
4640 INLINE void
4641 maybe_gc (void)
4642 {
4643 if ((consing_since_gc > gc_cons_threshold
4644 && consing_since_gc > gc_relative_threshold)
4645 || (!NILP (Vmemory_full)
4646 && consing_since_gc > memory_full_cons_threshold))
4647 Fgarbage_collect ();
4648 }
4649
4650 INLINE bool
4651 functionp (Lisp_Object object)
4652 {
4653 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4654 {
4655 object = Findirect_function (object, Qt);
4656
4657 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4658 {
4659 /* Autoloaded symbols are functions, except if they load
4660 macros or keymaps. */
4661 int i;
4662 for (i = 0; i < 4 && CONSP (object); i++)
4663 object = XCDR (object);
4664
4665 return ! (CONSP (object) && !NILP (XCAR (object)));
4666 }
4667 }
4668
4669 if (SUBRP (object))
4670 return XSUBR (object)->max_args != UNEVALLED;
4671 else if (COMPILEDP (object))
4672 return true;
4673 else if (CONSP (object))
4674 {
4675 Lisp_Object car = XCAR (object);
4676 return EQ (car, Qlambda) || EQ (car, Qclosure);
4677 }
4678 else
4679 return false;
4680 }
4681
4682 INLINE_HEADER_END
4683
4684 #endif /* EMACS_LISP_H */