]> code.delx.au - gnu-emacs/blob - src/lisp.h
Default to stack objects on non-GNU/Linux, non-DOS_NT platforms.
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2014 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #ifdef MAIN_PROGRAM
48 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) type const id EXTERNALLY_VISIBLE
49 # define DEFINE_GDB_SYMBOL_END(id) = id;
50 #else
51 # define DEFINE_GDB_SYMBOL_BEGIN(type, id)
52 # define DEFINE_GDB_SYMBOL_END(val)
53 #endif
54
55 /* The ubiquitous max and min macros. */
56 #undef min
57 #undef max
58 #define max(a, b) ((a) > (b) ? (a) : (b))
59 #define min(a, b) ((a) < (b) ? (a) : (b))
60
61 /* Number of elements in an array. */
62 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
63
64 /* Number of bits in a Lisp_Object tag. */
65 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
66 #define GCTYPEBITS 3
67 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
68
69 /* The number of bits needed in an EMACS_INT over and above the number
70 of bits in a pointer. This is 0 on systems where:
71 1. We can specify multiple-of-8 alignment on static variables.
72 2. We know malloc returns a multiple of 8. */
73 #if (defined alignas \
74 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
75 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
76 || defined CYGWIN))
77 # define NONPOINTER_BITS 0
78 #else
79 # define NONPOINTER_BITS GCTYPEBITS
80 #endif
81
82 /* EMACS_INT - signed integer wide enough to hold an Emacs value
83 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
84 pI - printf length modifier for EMACS_INT
85 EMACS_UINT - unsigned variant of EMACS_INT */
86 #ifndef EMACS_INT_MAX
87 # if INTPTR_MAX <= 0
88 # error "INTPTR_MAX misconfigured"
89 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
90 typedef int EMACS_INT;
91 typedef unsigned int EMACS_UINT;
92 # define EMACS_INT_MAX INT_MAX
93 # define pI ""
94 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
95 typedef long int EMACS_INT;
96 typedef unsigned long EMACS_UINT;
97 # define EMACS_INT_MAX LONG_MAX
98 # define pI "l"
99 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
100 In theory this is not safe, but in practice it seems to be OK. */
101 # elif INTPTR_MAX <= LLONG_MAX
102 typedef long long int EMACS_INT;
103 typedef unsigned long long int EMACS_UINT;
104 # define EMACS_INT_MAX LLONG_MAX
105 # define pI "ll"
106 # else
107 # error "INTPTR_MAX too large"
108 # endif
109 #endif
110
111 /* Number of bits to put in each character in the internal representation
112 of bool vectors. This should not vary across implementations. */
113 enum { BOOL_VECTOR_BITS_PER_CHAR =
114 #define BOOL_VECTOR_BITS_PER_CHAR 8
115 BOOL_VECTOR_BITS_PER_CHAR
116 };
117
118 /* An unsigned integer type representing a fixed-length bit sequence,
119 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
120 for speed, but it is unsigned char on weird platforms. */
121 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
122 typedef size_t bits_word;
123 # define BITS_WORD_MAX SIZE_MAX
124 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
125 #else
126 typedef unsigned char bits_word;
127 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
128 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
129 #endif
130 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
131
132 /* Number of bits in some machine integer types. */
133 enum
134 {
135 BITS_PER_CHAR = CHAR_BIT,
136 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
137 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
138 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
139 };
140
141 /* printmax_t and uprintmax_t are types for printing large integers.
142 These are the widest integers that are supported for printing.
143 pMd etc. are conversions for printing them.
144 On C99 hosts, there's no problem, as even the widest integers work.
145 Fall back on EMACS_INT on pre-C99 hosts. */
146 #ifdef PRIdMAX
147 typedef intmax_t printmax_t;
148 typedef uintmax_t uprintmax_t;
149 # define pMd PRIdMAX
150 # define pMu PRIuMAX
151 #else
152 typedef EMACS_INT printmax_t;
153 typedef EMACS_UINT uprintmax_t;
154 # define pMd pI"d"
155 # define pMu pI"u"
156 #endif
157
158 /* Use pD to format ptrdiff_t values, which suffice for indexes into
159 buffers and strings. Emacs never allocates objects larger than
160 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
161 In C99, pD can always be "t"; configure it here for the sake of
162 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
163 #if PTRDIFF_MAX == INT_MAX
164 # define pD ""
165 #elif PTRDIFF_MAX == LONG_MAX
166 # define pD "l"
167 #elif PTRDIFF_MAX == LLONG_MAX
168 # define pD "ll"
169 #else
170 # define pD "t"
171 #endif
172
173 /* Extra internal type checking? */
174
175 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
176 'assume (COND)'. COND should be free of side effects, as it may or
177 may not be evaluated.
178
179 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
180 defined and suppress_checking is false, and does nothing otherwise.
181 Emacs dies if COND is checked and is false. The suppress_checking
182 variable is initialized to 0 in alloc.c. Set it to 1 using a
183 debugger to temporarily disable aborting on detected internal
184 inconsistencies or error conditions.
185
186 In some cases, a good compiler may be able to optimize away the
187 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
188 uses eassert to test STRINGP (x), but a particular use of XSTRING
189 is invoked only after testing that STRINGP (x) is true, making the
190 test redundant.
191
192 eassume is like eassert except that it also causes the compiler to
193 assume that COND is true afterwards, regardless of whether runtime
194 checking is enabled. This can improve performance in some cases,
195 though it can degrade performance in others. It's often suboptimal
196 for COND to call external functions or access volatile storage. */
197
198 #ifndef ENABLE_CHECKING
199 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
200 # define eassume(cond) assume (cond)
201 #else /* ENABLE_CHECKING */
202
203 extern _Noreturn void die (const char *, const char *, int);
204
205 extern bool suppress_checking EXTERNALLY_VISIBLE;
206
207 # define eassert(cond) \
208 (suppress_checking || (cond) \
209 ? (void) 0 \
210 : die (# cond, __FILE__, __LINE__))
211 # define eassume(cond) \
212 (suppress_checking \
213 ? assume (cond) \
214 : (cond) \
215 ? (void) 0 \
216 : die (# cond, __FILE__, __LINE__))
217 #endif /* ENABLE_CHECKING */
218
219 \f
220 /* Use the configure flag --enable-check-lisp-object-type to make
221 Lisp_Object use a struct type instead of the default int. The flag
222 causes CHECK_LISP_OBJECT_TYPE to be defined. */
223
224 /***** Select the tagging scheme. *****/
225 /* The following option controls the tagging scheme:
226 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
227 always 0, and we can thus use them to hold tag bits, without
228 restricting our addressing space.
229
230 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
231 restricting our possible address range.
232
233 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
234 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
235 on the few static Lisp_Objects used: all the defsubr as well
236 as the two special buffers buffer_defaults and buffer_local_symbols. */
237
238 enum Lisp_Bits
239 {
240 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
241 integer constant, for MSVC. */
242 #define GCALIGNMENT 8
243
244 /* Number of bits in a Lisp_Object value, not counting the tag. */
245 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
246
247 /* Number of bits in a Lisp fixnum tag. */
248 INTTYPEBITS = GCTYPEBITS - 1,
249
250 /* Number of bits in a Lisp fixnum value, not counting the tag. */
251 FIXNUM_BITS = VALBITS + 1
252 };
253
254 #if GCALIGNMENT != 1 << GCTYPEBITS
255 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
256 #endif
257
258 /* The maximum value that can be stored in a EMACS_INT, assuming all
259 bits other than the type bits contribute to a nonnegative signed value.
260 This can be used in #if, e.g., '#if VAL_MAX < UINTPTR_MAX' below. */
261 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
262
263 /* Whether the least-significant bits of an EMACS_INT contain the tag.
264 On hosts where pointers-as-ints do not exceed VAL_MAX, USE_LSB_TAG is:
265 a. unnecessary, because the top bits of an EMACS_INT are unused, and
266 b. slower, because it typically requires extra masking.
267 So, USE_LSB_TAG is true only on hosts where it might be useful. */
268 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
269 #define USE_LSB_TAG (EMACS_INT_MAX >> GCTYPEBITS < INTPTR_MAX)
270 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
271
272 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
273 # error "USE_LSB_TAG not supported on this platform; please report this." \
274 "Try 'configure --with-wide-int' to work around the problem."
275 error !;
276 #endif
277
278 #ifndef alignas
279 # define alignas(alignment) /* empty */
280 # if USE_LSB_TAG
281 # error "USE_LSB_TAG requires alignas"
282 # endif
283 #endif
284
285 /* This should work with GCC on non-DOS_NT. Clang has known problems; see
286 http://lists.gnu.org/archive/html/emacs-devel/2014-09/msg00506.html.
287 Also http://lists.gnu.org/archive/html/emacs-devel/2014-09/msg00422.html
288 describes an issue with 32-bit MS-Windows. */
289 #ifndef USE_STACK_LISP_OBJECTS
290 # if defined __GNUC__ && !defined __clang__ && !defined DOS_NT
291 # define USE_STACK_LISP_OBJECTS true
292 # else
293 # define USE_STACK_LISP_OBJECTS false
294 # endif
295 #endif
296
297 #if defined HAVE_STRUCT_ATTRIBUTE_ALIGNED && USE_STACK_LISP_OBJECTS
298 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
299 #else
300 # define GCALIGNED /* empty */
301 #endif
302
303 /* Some operations are so commonly executed that they are implemented
304 as macros, not functions, because otherwise runtime performance would
305 suffer too much when compiling with GCC without optimization.
306 There's no need to inline everything, just the operations that
307 would otherwise cause a serious performance problem.
308
309 For each such operation OP, define a macro lisp_h_OP that contains
310 the operation's implementation. That way, OP can be implemented
311 via a macro definition like this:
312
313 #define OP(x) lisp_h_OP (x)
314
315 and/or via a function definition like this:
316
317 LISP_MACRO_DEFUN (OP, Lisp_Object, (Lisp_Object x), (x))
318
319 which macro-expands to this:
320
321 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
322
323 without worrying about the implementations diverging, since
324 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
325 are intended to be private to this include file, and should not be
326 used elsewhere.
327
328 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
329 functions, once most developers have access to GCC 4.8 or later and
330 can use "gcc -Og" to debug. Maybe in the year 2016. See
331 Bug#11935.
332
333 Commentary for these macros can be found near their corresponding
334 functions, below. */
335
336 #if CHECK_LISP_OBJECT_TYPE
337 # define lisp_h_XLI(o) ((o).i)
338 # define lisp_h_XIL(i) ((Lisp_Object) { i })
339 #else
340 # define lisp_h_XLI(o) (o)
341 # define lisp_h_XIL(i) (i)
342 #endif
343 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
344 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
345 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
346 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
347 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
348 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
349 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
350 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
351 #define lisp_h_INTEGERP(x) ((XTYPE (x) & ~Lisp_Int1) == 0)
352 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
353 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
354 #define lisp_h_NILP(x) EQ (x, Qnil)
355 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
356 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
357 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
358 #define lisp_h_SYMBOL_VAL(sym) \
359 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
360 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
361 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
362 #define lisp_h_XCAR(c) XCONS (c)->car
363 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
364 #define lisp_h_XCONS(a) \
365 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
366 #define lisp_h_XHASH(a) XUINT (a)
367 #define lisp_h_XPNTR(a) ((void *) (intptr_t) (XLI (a) & VALMASK))
368 #define lisp_h_XSYMBOL(a) \
369 (eassert (SYMBOLP (a)), (struct Lisp_Symbol *) XUNTAG (a, Lisp_Symbol))
370 #ifndef GC_CHECK_CONS_LIST
371 # define lisp_h_check_cons_list() ((void) 0)
372 #endif
373 #if USE_LSB_TAG
374 # define lisp_h_make_number(n) \
375 XIL ((EMACS_INT) ((EMACS_UINT) (n) << INTTYPEBITS))
376 # define lisp_h_XFASTINT(a) XINT (a)
377 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
378 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
379 # define lisp_h_XUNTAG(a, type) ((void *) (XLI (a) - (type)))
380 #endif
381
382 /* When compiling via gcc -O0, define the key operations as macros, as
383 Emacs is too slow otherwise. To disable this optimization, compile
384 with -DINLINING=false. */
385 #if (defined __NO_INLINE__ \
386 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
387 && ! (defined INLINING && ! INLINING))
388 # define XLI(o) lisp_h_XLI (o)
389 # define XIL(i) lisp_h_XIL (i)
390 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
391 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
392 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
393 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
394 # define CONSP(x) lisp_h_CONSP (x)
395 # define EQ(x, y) lisp_h_EQ (x, y)
396 # define FLOATP(x) lisp_h_FLOATP (x)
397 # define INTEGERP(x) lisp_h_INTEGERP (x)
398 # define MARKERP(x) lisp_h_MARKERP (x)
399 # define MISCP(x) lisp_h_MISCP (x)
400 # define NILP(x) lisp_h_NILP (x)
401 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
402 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
403 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
404 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
405 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
406 # define XCAR(c) lisp_h_XCAR (c)
407 # define XCDR(c) lisp_h_XCDR (c)
408 # define XCONS(a) lisp_h_XCONS (a)
409 # define XHASH(a) lisp_h_XHASH (a)
410 # define XPNTR(a) lisp_h_XPNTR (a)
411 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
412 # ifndef GC_CHECK_CONS_LIST
413 # define check_cons_list() lisp_h_check_cons_list ()
414 # endif
415 # if USE_LSB_TAG
416 # define make_number(n) lisp_h_make_number (n)
417 # define XFASTINT(a) lisp_h_XFASTINT (a)
418 # define XINT(a) lisp_h_XINT (a)
419 # define XTYPE(a) lisp_h_XTYPE (a)
420 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
421 # endif
422 #endif
423
424 /* Define NAME as a lisp.h inline function that returns TYPE and has
425 arguments declared as ARGDECLS and passed as ARGS. ARGDECLS and
426 ARGS should be parenthesized. Implement the function by calling
427 lisp_h_NAME ARGS. */
428 #define LISP_MACRO_DEFUN(name, type, argdecls, args) \
429 INLINE type (name) argdecls { return lisp_h_##name args; }
430
431 /* like LISP_MACRO_DEFUN, except NAME returns void. */
432 #define LISP_MACRO_DEFUN_VOID(name, argdecls, args) \
433 INLINE void (name) argdecls { lisp_h_##name args; }
434
435
436 /* Define the fundamental Lisp data structures. */
437
438 /* This is the set of Lisp data types. If you want to define a new
439 data type, read the comments after Lisp_Fwd_Type definition
440 below. */
441
442 /* Lisp integers use 2 tags, to give them one extra bit, thus
443 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
444 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
445 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
446
447 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
448 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
449 vociferously about them. */
450 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
451 || (defined __SUNPRO_C && __STDC__))
452 #define ENUM_BF(TYPE) unsigned int
453 #else
454 #define ENUM_BF(TYPE) enum TYPE
455 #endif
456
457
458 enum Lisp_Type
459 {
460 /* Integer. XINT (obj) is the integer value. */
461 Lisp_Int0 = 0,
462 Lisp_Int1 = USE_LSB_TAG ? 1 << INTTYPEBITS : 1,
463
464 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
465 Lisp_Symbol = 2,
466
467 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
468 whose first member indicates the subtype. */
469 Lisp_Misc = 3,
470
471 /* String. XSTRING (object) points to a struct Lisp_String.
472 The length of the string, and its contents, are stored therein. */
473 Lisp_String = USE_LSB_TAG ? 1 : 1 << INTTYPEBITS,
474
475 /* Vector of Lisp objects, or something resembling it.
476 XVECTOR (object) points to a struct Lisp_Vector, which contains
477 the size and contents. The size field also contains the type
478 information, if it's not a real vector object. */
479 Lisp_Vectorlike = 5,
480
481 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
482 Lisp_Cons = 6,
483
484 Lisp_Float = 7
485 };
486
487 /* This is the set of data types that share a common structure.
488 The first member of the structure is a type code from this set.
489 The enum values are arbitrary, but we'll use large numbers to make it
490 more likely that we'll spot the error if a random word in memory is
491 mistakenly interpreted as a Lisp_Misc. */
492 enum Lisp_Misc_Type
493 {
494 Lisp_Misc_Free = 0x5eab,
495 Lisp_Misc_Marker,
496 Lisp_Misc_Overlay,
497 Lisp_Misc_Save_Value,
498 /* Currently floats are not a misc type,
499 but let's define this in case we want to change that. */
500 Lisp_Misc_Float,
501 /* This is not a type code. It is for range checking. */
502 Lisp_Misc_Limit
503 };
504
505 /* These are the types of forwarding objects used in the value slot
506 of symbols for special built-in variables whose value is stored in
507 C variables. */
508 enum Lisp_Fwd_Type
509 {
510 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
511 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
512 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
513 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
514 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
515 };
516
517 /* If you want to define a new Lisp data type, here are some
518 instructions. See the thread at
519 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
520 for more info.
521
522 First, there are already a couple of Lisp types that can be used if
523 your new type does not need to be exposed to Lisp programs nor
524 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
525 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
526 is suitable for temporarily stashing away pointers and integers in
527 a Lisp object. The latter is useful for vector-like Lisp objects
528 that need to be used as part of other objects, but which are never
529 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
530 an example).
531
532 These two types don't look pretty when printed, so they are
533 unsuitable for Lisp objects that can be exposed to users.
534
535 To define a new data type, add one more Lisp_Misc subtype or one
536 more pseudovector subtype. Pseudovectors are more suitable for
537 objects with several slots that need to support fast random access,
538 while Lisp_Misc types are for everything else. A pseudovector object
539 provides one or more slots for Lisp objects, followed by struct
540 members that are accessible only from C. A Lisp_Misc object is a
541 wrapper for a C struct that can contain anything you like.
542
543 Explicit freeing is discouraged for Lisp objects in general. But if
544 you really need to exploit this, use Lisp_Misc (check free_misc in
545 alloc.c to see why). There is no way to free a vectorlike object.
546
547 To add a new pseudovector type, extend the pvec_type enumeration;
548 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
549
550 For a Lisp_Misc, you will also need to add your entry to union
551 Lisp_Misc (but make sure the first word has the same structure as
552 the others, starting with a 16-bit member of the Lisp_Misc_Type
553 enumeration and a 1-bit GC markbit) and make sure the overall size
554 of the union is not increased by your addition.
555
556 For a new pseudovector, it's highly desirable to limit the size
557 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
558 Otherwise you will need to change sweep_vectors (also in alloc.c).
559
560 Then you will need to add switch branches in print.c (in
561 print_object, to print your object, and possibly also in
562 print_preprocess) and to alloc.c, to mark your object (in
563 mark_object) and to free it (in gc_sweep). The latter is also the
564 right place to call any code specific to your data type that needs
565 to run when the object is recycled -- e.g., free any additional
566 resources allocated for it that are not Lisp objects. You can even
567 make a pointer to the function that frees the resources a slot in
568 your object -- this way, the same object could be used to represent
569 several disparate C structures. */
570
571 #ifdef CHECK_LISP_OBJECT_TYPE
572
573 typedef struct { EMACS_INT i; } Lisp_Object;
574
575 #define LISP_INITIALLY_ZERO {0}
576
577 #undef CHECK_LISP_OBJECT_TYPE
578 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
579 #else /* CHECK_LISP_OBJECT_TYPE */
580
581 /* If a struct type is not wanted, define Lisp_Object as just a number. */
582
583 typedef EMACS_INT Lisp_Object;
584 #define LISP_INITIALLY_ZERO 0
585 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
586 #endif /* CHECK_LISP_OBJECT_TYPE */
587
588 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
589 At the machine level, these operations are no-ops. */
590 LISP_MACRO_DEFUN (XLI, EMACS_INT, (Lisp_Object o), (o))
591 LISP_MACRO_DEFUN (XIL, Lisp_Object, (EMACS_INT i), (i))
592
593 /* In the size word of a vector, this bit means the vector has been marked. */
594
595 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
596 # define ARRAY_MARK_FLAG PTRDIFF_MIN
597 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
598
599 /* In the size word of a struct Lisp_Vector, this bit means it's really
600 some other vector-like object. */
601 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
602 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
603 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
604
605 /* In a pseudovector, the size field actually contains a word with one
606 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
607 with PVEC_TYPE_MASK to indicate the actual type. */
608 enum pvec_type
609 {
610 PVEC_NORMAL_VECTOR,
611 PVEC_FREE,
612 PVEC_PROCESS,
613 PVEC_FRAME,
614 PVEC_WINDOW,
615 PVEC_BOOL_VECTOR,
616 PVEC_BUFFER,
617 PVEC_HASH_TABLE,
618 PVEC_TERMINAL,
619 PVEC_WINDOW_CONFIGURATION,
620 PVEC_SUBR,
621 PVEC_OTHER,
622 /* These should be last, check internal_equal to see why. */
623 PVEC_COMPILED,
624 PVEC_CHAR_TABLE,
625 PVEC_SUB_CHAR_TABLE,
626 PVEC_FONT /* Should be last because it's used for range checking. */
627 };
628
629 enum More_Lisp_Bits
630 {
631 /* For convenience, we also store the number of elements in these bits.
632 Note that this size is not necessarily the memory-footprint size, but
633 only the number of Lisp_Object fields (that need to be traced by GC).
634 The distinction is used, e.g., by Lisp_Process, which places extra
635 non-Lisp_Object fields at the end of the structure. */
636 PSEUDOVECTOR_SIZE_BITS = 12,
637 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
638
639 /* To calculate the memory footprint of the pseudovector, it's useful
640 to store the size of non-Lisp area in word_size units here. */
641 PSEUDOVECTOR_REST_BITS = 12,
642 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
643 << PSEUDOVECTOR_SIZE_BITS),
644
645 /* Used to extract pseudovector subtype information. */
646 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
647 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
648 };
649 \f
650 /* These functions extract various sorts of values from a Lisp_Object.
651 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
652 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
653 that cons. */
654
655 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
656 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
657 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
658 DEFINE_GDB_SYMBOL_END (VALMASK)
659
660 /* Largest and smallest representable fixnum values. These are the C
661 values. They are macros for use in static initializers. */
662 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
663 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
664
665 /* Extract the pointer hidden within A. */
666 LISP_MACRO_DEFUN (XPNTR, void *, (Lisp_Object a), (a))
667
668 #if USE_LSB_TAG
669
670 LISP_MACRO_DEFUN (make_number, Lisp_Object, (EMACS_INT n), (n))
671 LISP_MACRO_DEFUN (XINT, EMACS_INT, (Lisp_Object a), (a))
672 LISP_MACRO_DEFUN (XFASTINT, EMACS_INT, (Lisp_Object a), (a))
673 LISP_MACRO_DEFUN (XTYPE, enum Lisp_Type, (Lisp_Object a), (a))
674 LISP_MACRO_DEFUN (XUNTAG, void *, (Lisp_Object a, int type), (a, type))
675
676 #else /* ! USE_LSB_TAG */
677
678 /* Although compiled only if ! USE_LSB_TAG, the following functions
679 also work when USE_LSB_TAG; this is to aid future maintenance when
680 the lisp_h_* macros are eventually removed. */
681
682 /* Make a Lisp integer representing the value of the low order
683 bits of N. */
684 INLINE Lisp_Object
685 make_number (EMACS_INT n)
686 {
687 if (USE_LSB_TAG)
688 {
689 EMACS_UINT u = n;
690 n = u << INTTYPEBITS;
691 }
692 else
693 n &= INTMASK;
694 return XIL (n);
695 }
696
697 /* Extract A's value as a signed integer. */
698 INLINE EMACS_INT
699 XINT (Lisp_Object a)
700 {
701 EMACS_INT i = XLI (a);
702 if (! USE_LSB_TAG)
703 {
704 EMACS_UINT u = i;
705 i = u << INTTYPEBITS;
706 }
707 return i >> INTTYPEBITS;
708 }
709
710 /* Like XINT (A), but may be faster. A must be nonnegative.
711 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
712 integers have zero-bits in their tags. */
713 INLINE EMACS_INT
714 XFASTINT (Lisp_Object a)
715 {
716 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a);
717 eassert (0 <= n);
718 return n;
719 }
720
721 /* Extract A's type. */
722 INLINE enum Lisp_Type
723 XTYPE (Lisp_Object a)
724 {
725 EMACS_UINT i = XLI (a);
726 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
727 }
728
729 /* Extract A's pointer value, assuming A's type is TYPE. */
730 INLINE void *
731 XUNTAG (Lisp_Object a, int type)
732 {
733 if (USE_LSB_TAG)
734 {
735 intptr_t i = XLI (a) - type;
736 return (void *) i;
737 }
738 return XPNTR (a);
739 }
740
741 #endif /* ! USE_LSB_TAG */
742
743 /* Extract A's value as an unsigned integer. */
744 INLINE EMACS_UINT
745 XUINT (Lisp_Object a)
746 {
747 EMACS_UINT i = XLI (a);
748 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
749 }
750
751 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
752 right now, but XUINT should only be applied to objects we know are
753 integers. */
754 LISP_MACRO_DEFUN (XHASH, EMACS_INT, (Lisp_Object a), (a))
755
756 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
757 INLINE Lisp_Object
758 make_natnum (EMACS_INT n)
759 {
760 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
761 return USE_LSB_TAG ? make_number (n) : XIL (n);
762 }
763
764 /* Return true if X and Y are the same object. */
765 LISP_MACRO_DEFUN (EQ, bool, (Lisp_Object x, Lisp_Object y), (x, y))
766
767 /* Value is true if I doesn't fit into a Lisp fixnum. It is
768 written this way so that it also works if I is of unsigned
769 type or if I is a NaN. */
770
771 #define FIXNUM_OVERFLOW_P(i) \
772 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
773
774 INLINE ptrdiff_t
775 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
776 {
777 return num < lower ? lower : num <= upper ? num : upper;
778 }
779 \f
780 /* Forward declarations. */
781
782 /* Defined in this file. */
783 union Lisp_Fwd;
784 INLINE bool BOOL_VECTOR_P (Lisp_Object);
785 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
786 INLINE bool BUFFERP (Lisp_Object);
787 INLINE bool CHAR_TABLE_P (Lisp_Object);
788 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
789 INLINE bool (CONSP) (Lisp_Object);
790 INLINE bool (FLOATP) (Lisp_Object);
791 INLINE bool functionp (Lisp_Object);
792 INLINE bool (INTEGERP) (Lisp_Object);
793 INLINE bool (MARKERP) (Lisp_Object);
794 INLINE bool (MISCP) (Lisp_Object);
795 INLINE bool (NILP) (Lisp_Object);
796 INLINE bool OVERLAYP (Lisp_Object);
797 INLINE bool PROCESSP (Lisp_Object);
798 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
799 INLINE bool SAVE_VALUEP (Lisp_Object);
800 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
801 Lisp_Object);
802 INLINE bool STRINGP (Lisp_Object);
803 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
804 INLINE bool SUBRP (Lisp_Object);
805 INLINE bool (SYMBOLP) (Lisp_Object);
806 INLINE bool (VECTORLIKEP) (Lisp_Object);
807 INLINE bool WINDOWP (Lisp_Object);
808 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
809
810 /* Defined in chartab.c. */
811 extern Lisp_Object char_table_ref (Lisp_Object, int);
812 extern void char_table_set (Lisp_Object, int, Lisp_Object);
813
814 /* Defined in data.c. */
815 extern Lisp_Object Qarrayp, Qbufferp, Qbuffer_or_string_p, Qchar_table_p;
816 extern Lisp_Object Qconsp, Qfloatp, Qintegerp, Qlambda, Qlistp, Qmarkerp, Qnil;
817 extern Lisp_Object Qnumberp, Qstringp, Qsymbolp, Qt, Qvectorp;
818 extern Lisp_Object Qbool_vector_p;
819 extern Lisp_Object Qvector_or_char_table_p, Qwholenump;
820 extern Lisp_Object Qwindow;
821 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
822 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
823
824 /* Defined in emacs.c. */
825 extern bool might_dump;
826 /* True means Emacs has already been initialized.
827 Used during startup to detect startup of dumped Emacs. */
828 extern bool initialized;
829
830 /* Defined in eval.c. */
831 extern Lisp_Object Qautoload;
832
833 /* Defined in floatfns.c. */
834 extern double extract_float (Lisp_Object);
835
836 /* Defined in process.c. */
837 extern Lisp_Object Qprocessp;
838
839 /* Defined in window.c. */
840 extern Lisp_Object Qwindowp;
841
842 /* Defined in xdisp.c. */
843 extern Lisp_Object Qimage;
844 \f
845
846 /* Extract a value or address from a Lisp_Object. */
847
848 LISP_MACRO_DEFUN (XCONS, struct Lisp_Cons *, (Lisp_Object a), (a))
849
850 INLINE struct Lisp_Vector *
851 XVECTOR (Lisp_Object a)
852 {
853 eassert (VECTORLIKEP (a));
854 return XUNTAG (a, Lisp_Vectorlike);
855 }
856
857 INLINE struct Lisp_String *
858 XSTRING (Lisp_Object a)
859 {
860 eassert (STRINGP (a));
861 return XUNTAG (a, Lisp_String);
862 }
863
864 LISP_MACRO_DEFUN (XSYMBOL, struct Lisp_Symbol *, (Lisp_Object a), (a))
865
866 INLINE struct Lisp_Float *
867 XFLOAT (Lisp_Object a)
868 {
869 eassert (FLOATP (a));
870 return XUNTAG (a, Lisp_Float);
871 }
872
873 /* Pseudovector types. */
874
875 INLINE struct Lisp_Process *
876 XPROCESS (Lisp_Object a)
877 {
878 eassert (PROCESSP (a));
879 return XUNTAG (a, Lisp_Vectorlike);
880 }
881
882 INLINE struct window *
883 XWINDOW (Lisp_Object a)
884 {
885 eassert (WINDOWP (a));
886 return XUNTAG (a, Lisp_Vectorlike);
887 }
888
889 INLINE struct terminal *
890 XTERMINAL (Lisp_Object a)
891 {
892 return XUNTAG (a, Lisp_Vectorlike);
893 }
894
895 INLINE struct Lisp_Subr *
896 XSUBR (Lisp_Object a)
897 {
898 eassert (SUBRP (a));
899 return XUNTAG (a, Lisp_Vectorlike);
900 }
901
902 INLINE struct buffer *
903 XBUFFER (Lisp_Object a)
904 {
905 eassert (BUFFERP (a));
906 return XUNTAG (a, Lisp_Vectorlike);
907 }
908
909 INLINE struct Lisp_Char_Table *
910 XCHAR_TABLE (Lisp_Object a)
911 {
912 eassert (CHAR_TABLE_P (a));
913 return XUNTAG (a, Lisp_Vectorlike);
914 }
915
916 INLINE struct Lisp_Sub_Char_Table *
917 XSUB_CHAR_TABLE (Lisp_Object a)
918 {
919 eassert (SUB_CHAR_TABLE_P (a));
920 return XUNTAG (a, Lisp_Vectorlike);
921 }
922
923 INLINE struct Lisp_Bool_Vector *
924 XBOOL_VECTOR (Lisp_Object a)
925 {
926 eassert (BOOL_VECTOR_P (a));
927 return XUNTAG (a, Lisp_Vectorlike);
928 }
929
930 /* Construct a Lisp_Object from a value or address. */
931
932 INLINE Lisp_Object
933 make_lisp_ptr (void *ptr, enum Lisp_Type type)
934 {
935 EMACS_UINT utype = type;
936 EMACS_UINT typebits = USE_LSB_TAG ? type : utype << VALBITS;
937 Lisp_Object a = XIL (typebits | (uintptr_t) ptr);
938 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
939 return a;
940 }
941
942 INLINE Lisp_Object
943 make_lisp_proc (struct Lisp_Process *p)
944 {
945 return make_lisp_ptr (p, Lisp_Vectorlike);
946 }
947
948 #define XSETINT(a, b) ((a) = make_number (b))
949 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
950 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
951 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
952 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
953 #define XSETSYMBOL(a, b) ((a) = make_lisp_ptr (b, Lisp_Symbol))
954 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
955 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
956
957 /* Pseudovector types. */
958
959 #define XSETPVECTYPE(v, code) \
960 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
961 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
962 ((v)->header.size = (PSEUDOVECTOR_FLAG \
963 | ((code) << PSEUDOVECTOR_AREA_BITS) \
964 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
965 | (lispsize)))
966
967 /* The cast to struct vectorlike_header * avoids aliasing issues. */
968 #define XSETPSEUDOVECTOR(a, b, code) \
969 XSETTYPED_PSEUDOVECTOR (a, b, \
970 (((struct vectorlike_header *) \
971 XUNTAG (a, Lisp_Vectorlike)) \
972 ->size), \
973 code)
974 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
975 (XSETVECTOR (a, b), \
976 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
977 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
978
979 #define XSETWINDOW_CONFIGURATION(a, b) \
980 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
981 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
982 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
983 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
984 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
985 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
986 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
987 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
988 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
989 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
990
991 /* Type checking. */
992
993 LISP_MACRO_DEFUN_VOID (CHECK_TYPE,
994 (int ok, Lisp_Object predicate, Lisp_Object x),
995 (ok, predicate, x))
996
997 /* Deprecated and will be removed soon. */
998
999 #define INTERNAL_FIELD(field) field ## _
1000
1001 /* See the macros in intervals.h. */
1002
1003 typedef struct interval *INTERVAL;
1004
1005 struct GCALIGNED Lisp_Cons
1006 {
1007 /* Car of this cons cell. */
1008 Lisp_Object car;
1009
1010 union
1011 {
1012 /* Cdr of this cons cell. */
1013 Lisp_Object cdr;
1014
1015 /* Used to chain conses on a free list. */
1016 struct Lisp_Cons *chain;
1017 } u;
1018 };
1019
1020 /* Take the car or cdr of something known to be a cons cell. */
1021 /* The _addr functions shouldn't be used outside of the minimal set
1022 of code that has to know what a cons cell looks like. Other code not
1023 part of the basic lisp implementation should assume that the car and cdr
1024 fields are not accessible. (What if we want to switch to
1025 a copying collector someday? Cached cons cell field addresses may be
1026 invalidated at arbitrary points.) */
1027 INLINE Lisp_Object *
1028 xcar_addr (Lisp_Object c)
1029 {
1030 return &XCONS (c)->car;
1031 }
1032 INLINE Lisp_Object *
1033 xcdr_addr (Lisp_Object c)
1034 {
1035 return &XCONS (c)->u.cdr;
1036 }
1037
1038 /* Use these from normal code. */
1039 LISP_MACRO_DEFUN (XCAR, Lisp_Object, (Lisp_Object c), (c))
1040 LISP_MACRO_DEFUN (XCDR, Lisp_Object, (Lisp_Object c), (c))
1041
1042 /* Use these to set the fields of a cons cell.
1043
1044 Note that both arguments may refer to the same object, so 'n'
1045 should not be read after 'c' is first modified. */
1046 INLINE void
1047 XSETCAR (Lisp_Object c, Lisp_Object n)
1048 {
1049 *xcar_addr (c) = n;
1050 }
1051 INLINE void
1052 XSETCDR (Lisp_Object c, Lisp_Object n)
1053 {
1054 *xcdr_addr (c) = n;
1055 }
1056
1057 /* Take the car or cdr of something whose type is not known. */
1058 INLINE Lisp_Object
1059 CAR (Lisp_Object c)
1060 {
1061 return (CONSP (c) ? XCAR (c)
1062 : NILP (c) ? Qnil
1063 : wrong_type_argument (Qlistp, c));
1064 }
1065 INLINE Lisp_Object
1066 CDR (Lisp_Object c)
1067 {
1068 return (CONSP (c) ? XCDR (c)
1069 : NILP (c) ? Qnil
1070 : wrong_type_argument (Qlistp, c));
1071 }
1072
1073 /* Take the car or cdr of something whose type is not known. */
1074 INLINE Lisp_Object
1075 CAR_SAFE (Lisp_Object c)
1076 {
1077 return CONSP (c) ? XCAR (c) : Qnil;
1078 }
1079 INLINE Lisp_Object
1080 CDR_SAFE (Lisp_Object c)
1081 {
1082 return CONSP (c) ? XCDR (c) : Qnil;
1083 }
1084
1085 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1086
1087 struct Lisp_String
1088 {
1089 ptrdiff_t size;
1090 ptrdiff_t size_byte;
1091 INTERVAL intervals; /* Text properties in this string. */
1092 unsigned char *data;
1093 };
1094
1095 /* True if STR is a multibyte string. */
1096 INLINE bool
1097 STRING_MULTIBYTE (Lisp_Object str)
1098 {
1099 return 0 <= XSTRING (str)->size_byte;
1100 }
1101
1102 /* An upper bound on the number of bytes in a Lisp string, not
1103 counting the terminating null. This a tight enough bound to
1104 prevent integer overflow errors that would otherwise occur during
1105 string size calculations. A string cannot contain more bytes than
1106 a fixnum can represent, nor can it be so long that C pointer
1107 arithmetic stops working on the string plus its terminating null.
1108 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1109 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1110 would expose alloc.c internal details that we'd rather keep
1111 private.
1112
1113 This is a macro for use in static initializers. The cast to
1114 ptrdiff_t ensures that the macro is signed. */
1115 #define STRING_BYTES_BOUND \
1116 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1117
1118 /* Mark STR as a unibyte string. */
1119 #define STRING_SET_UNIBYTE(STR) \
1120 do { \
1121 if (EQ (STR, empty_multibyte_string)) \
1122 (STR) = empty_unibyte_string; \
1123 else \
1124 XSTRING (STR)->size_byte = -1; \
1125 } while (false)
1126
1127 /* Mark STR as a multibyte string. Assure that STR contains only
1128 ASCII characters in advance. */
1129 #define STRING_SET_MULTIBYTE(STR) \
1130 do { \
1131 if (EQ (STR, empty_unibyte_string)) \
1132 (STR) = empty_multibyte_string; \
1133 else \
1134 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1135 } while (false)
1136
1137 /* Convenience functions for dealing with Lisp strings. */
1138
1139 INLINE unsigned char *
1140 SDATA (Lisp_Object string)
1141 {
1142 return XSTRING (string)->data;
1143 }
1144 INLINE char *
1145 SSDATA (Lisp_Object string)
1146 {
1147 /* Avoid "differ in sign" warnings. */
1148 return (char *) SDATA (string);
1149 }
1150 INLINE unsigned char
1151 SREF (Lisp_Object string, ptrdiff_t index)
1152 {
1153 return SDATA (string)[index];
1154 }
1155 INLINE void
1156 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1157 {
1158 SDATA (string)[index] = new;
1159 }
1160 INLINE ptrdiff_t
1161 SCHARS (Lisp_Object string)
1162 {
1163 return XSTRING (string)->size;
1164 }
1165
1166 #ifdef GC_CHECK_STRING_BYTES
1167 extern ptrdiff_t string_bytes (struct Lisp_String *);
1168 #endif
1169 INLINE ptrdiff_t
1170 STRING_BYTES (struct Lisp_String *s)
1171 {
1172 #ifdef GC_CHECK_STRING_BYTES
1173 return string_bytes (s);
1174 #else
1175 return s->size_byte < 0 ? s->size : s->size_byte;
1176 #endif
1177 }
1178
1179 INLINE ptrdiff_t
1180 SBYTES (Lisp_Object string)
1181 {
1182 return STRING_BYTES (XSTRING (string));
1183 }
1184 INLINE void
1185 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1186 {
1187 XSTRING (string)->size = newsize;
1188 }
1189
1190 /* Header of vector-like objects. This documents the layout constraints on
1191 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1192 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1193 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1194 because when two such pointers potentially alias, a compiler won't
1195 incorrectly reorder loads and stores to their size fields. See
1196 Bug#8546. */
1197 struct vectorlike_header
1198 {
1199 /* The only field contains various pieces of information:
1200 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1201 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1202 vector (0) or a pseudovector (1).
1203 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1204 of slots) of the vector.
1205 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1206 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1207 - b) number of Lisp_Objects slots at the beginning of the object
1208 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1209 traced by the GC;
1210 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1211 measured in word_size units. Rest fields may also include
1212 Lisp_Objects, but these objects usually needs some special treatment
1213 during GC.
1214 There are some exceptions. For PVEC_FREE, b) is always zero. For
1215 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1216 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1217 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1218 ptrdiff_t size;
1219 };
1220
1221 /* A regular vector is just a header plus an array of Lisp_Objects. */
1222
1223 struct Lisp_Vector
1224 {
1225 struct vectorlike_header header;
1226 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1227 };
1228
1229 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1230 enum
1231 {
1232 ALIGNOF_STRUCT_LISP_VECTOR
1233 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1234 };
1235
1236 /* A boolvector is a kind of vectorlike, with contents like a string. */
1237
1238 struct Lisp_Bool_Vector
1239 {
1240 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1241 just the subtype information. */
1242 struct vectorlike_header header;
1243 /* This is the size in bits. */
1244 EMACS_INT size;
1245 /* The actual bits, packed into bytes.
1246 Zeros fill out the last word if needed.
1247 The bits are in little-endian order in the bytes, and
1248 the bytes are in little-endian order in the words. */
1249 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1250 };
1251
1252 INLINE EMACS_INT
1253 bool_vector_size (Lisp_Object a)
1254 {
1255 EMACS_INT size = XBOOL_VECTOR (a)->size;
1256 eassume (0 <= size);
1257 return size;
1258 }
1259
1260 INLINE bits_word *
1261 bool_vector_data (Lisp_Object a)
1262 {
1263 return XBOOL_VECTOR (a)->data;
1264 }
1265
1266 INLINE unsigned char *
1267 bool_vector_uchar_data (Lisp_Object a)
1268 {
1269 return (unsigned char *) bool_vector_data (a);
1270 }
1271
1272 /* The number of data words and bytes in a bool vector with SIZE bits. */
1273
1274 INLINE EMACS_INT
1275 bool_vector_words (EMACS_INT size)
1276 {
1277 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1278 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1279 }
1280
1281 INLINE EMACS_INT
1282 bool_vector_bytes (EMACS_INT size)
1283 {
1284 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1285 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1286 }
1287
1288 /* True if A's Ith bit is set. */
1289
1290 INLINE bool
1291 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1292 {
1293 eassume (0 <= i && i < bool_vector_size (a));
1294 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1295 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1296 }
1297
1298 INLINE Lisp_Object
1299 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1300 {
1301 return bool_vector_bitref (a, i) ? Qt : Qnil;
1302 }
1303
1304 /* Set A's Ith bit to B. */
1305
1306 INLINE void
1307 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1308 {
1309 unsigned char *addr;
1310
1311 eassume (0 <= i && i < bool_vector_size (a));
1312 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1313
1314 if (b)
1315 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1316 else
1317 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1318 }
1319
1320 /* Some handy constants for calculating sizes
1321 and offsets, mostly of vectorlike objects. */
1322
1323 enum
1324 {
1325 header_size = offsetof (struct Lisp_Vector, contents),
1326 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1327 word_size = sizeof (Lisp_Object)
1328 };
1329
1330 /* Conveniences for dealing with Lisp arrays. */
1331
1332 INLINE Lisp_Object
1333 AREF (Lisp_Object array, ptrdiff_t idx)
1334 {
1335 return XVECTOR (array)->contents[idx];
1336 }
1337
1338 INLINE Lisp_Object *
1339 aref_addr (Lisp_Object array, ptrdiff_t idx)
1340 {
1341 return & XVECTOR (array)->contents[idx];
1342 }
1343
1344 INLINE ptrdiff_t
1345 ASIZE (Lisp_Object array)
1346 {
1347 return XVECTOR (array)->header.size;
1348 }
1349
1350 INLINE void
1351 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1352 {
1353 eassert (0 <= idx && idx < ASIZE (array));
1354 XVECTOR (array)->contents[idx] = val;
1355 }
1356
1357 INLINE void
1358 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1359 {
1360 /* Like ASET, but also can be used in the garbage collector:
1361 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1362 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1363 XVECTOR (array)->contents[idx] = val;
1364 }
1365
1366 /* If a struct is made to look like a vector, this macro returns the length
1367 of the shortest vector that would hold that struct. */
1368
1369 #define VECSIZE(type) \
1370 ((sizeof (type) - header_size + word_size - 1) / word_size)
1371
1372 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1373 at the end and we need to compute the number of Lisp_Object fields (the
1374 ones that the GC needs to trace). */
1375
1376 #define PSEUDOVECSIZE(type, nonlispfield) \
1377 ((offsetof (type, nonlispfield) - header_size) / word_size)
1378
1379 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1380 should be integer expressions. This is not the same as
1381 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1382 returns true. For efficiency, prefer plain unsigned comparison if A
1383 and B's sizes both fit (after integer promotion). */
1384 #define UNSIGNED_CMP(a, op, b) \
1385 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1386 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1387 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1388
1389 /* True iff C is an ASCII character. */
1390 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1391
1392 /* A char-table is a kind of vectorlike, with contents are like a
1393 vector but with a few other slots. For some purposes, it makes
1394 sense to handle a char-table with type struct Lisp_Vector. An
1395 element of a char table can be any Lisp objects, but if it is a sub
1396 char-table, we treat it a table that contains information of a
1397 specific range of characters. A sub char-table is like a vector but
1398 with two integer fields between the header and Lisp data, which means
1399 that it has to be marked with some precautions (see mark_char_table
1400 in alloc.c). A sub char-table appears only in an element of a char-table,
1401 and there's no way to access it directly from Emacs Lisp program. */
1402
1403 enum CHARTAB_SIZE_BITS
1404 {
1405 CHARTAB_SIZE_BITS_0 = 6,
1406 CHARTAB_SIZE_BITS_1 = 4,
1407 CHARTAB_SIZE_BITS_2 = 5,
1408 CHARTAB_SIZE_BITS_3 = 7
1409 };
1410
1411 extern const int chartab_size[4];
1412
1413 struct Lisp_Char_Table
1414 {
1415 /* HEADER.SIZE is the vector's size field, which also holds the
1416 pseudovector type information. It holds the size, too.
1417 The size counts the defalt, parent, purpose, ascii,
1418 contents, and extras slots. */
1419 struct vectorlike_header header;
1420
1421 /* This holds a default value,
1422 which is used whenever the value for a specific character is nil. */
1423 Lisp_Object defalt;
1424
1425 /* This points to another char table, which we inherit from when the
1426 value for a specific character is nil. The `defalt' slot takes
1427 precedence over this. */
1428 Lisp_Object parent;
1429
1430 /* This is a symbol which says what kind of use this char-table is
1431 meant for. */
1432 Lisp_Object purpose;
1433
1434 /* The bottom sub char-table for characters of the range 0..127. It
1435 is nil if none of ASCII character has a specific value. */
1436 Lisp_Object ascii;
1437
1438 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1439
1440 /* These hold additional data. It is a vector. */
1441 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1442 };
1443
1444 struct Lisp_Sub_Char_Table
1445 {
1446 /* HEADER.SIZE is the vector's size field, which also holds the
1447 pseudovector type information. It holds the size, too. */
1448 struct vectorlike_header header;
1449
1450 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1451 char-table of depth 1 contains 16 elements, and each element
1452 covers 4096 (128*32) characters. A sub char-table of depth 2
1453 contains 32 elements, and each element covers 128 characters. A
1454 sub char-table of depth 3 contains 128 elements, and each element
1455 is for one character. */
1456 int depth;
1457
1458 /* Minimum character covered by the sub char-table. */
1459 int min_char;
1460
1461 /* Use set_sub_char_table_contents to set this. */
1462 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1463 };
1464
1465 INLINE Lisp_Object
1466 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1467 {
1468 struct Lisp_Char_Table *tbl = NULL;
1469 Lisp_Object val;
1470 do
1471 {
1472 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1473 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1474 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1475 if (NILP (val))
1476 val = tbl->defalt;
1477 }
1478 while (NILP (val) && ! NILP (tbl->parent));
1479
1480 return val;
1481 }
1482
1483 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1484 characters. Do not check validity of CT. */
1485 INLINE Lisp_Object
1486 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1487 {
1488 return (ASCII_CHAR_P (idx)
1489 ? CHAR_TABLE_REF_ASCII (ct, idx)
1490 : char_table_ref (ct, idx));
1491 }
1492
1493 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1494 8-bit European characters. Do not check validity of CT. */
1495 INLINE void
1496 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1497 {
1498 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1499 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1500 else
1501 char_table_set (ct, idx, val);
1502 }
1503
1504 /* This structure describes a built-in function.
1505 It is generated by the DEFUN macro only.
1506 defsubr makes it into a Lisp object. */
1507
1508 struct Lisp_Subr
1509 {
1510 struct vectorlike_header header;
1511 union {
1512 Lisp_Object (*a0) (void);
1513 Lisp_Object (*a1) (Lisp_Object);
1514 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1515 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1516 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1517 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1518 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1519 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1520 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1521 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1522 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1523 } function;
1524 short min_args, max_args;
1525 const char *symbol_name;
1526 const char *intspec;
1527 const char *doc;
1528 };
1529
1530 enum char_table_specials
1531 {
1532 /* This is the number of slots that every char table must have. This
1533 counts the ordinary slots and the top, defalt, parent, and purpose
1534 slots. */
1535 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1536
1537 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1538 when the latter is treated as an ordinary Lisp_Vector. */
1539 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1540 };
1541
1542 /* Return the number of "extra" slots in the char table CT. */
1543
1544 INLINE int
1545 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1546 {
1547 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1548 - CHAR_TABLE_STANDARD_SLOTS);
1549 }
1550
1551 /* Make sure that sub char-table contents slot
1552 is aligned on a multiple of Lisp_Objects. */
1553 verify ((offsetof (struct Lisp_Sub_Char_Table, contents)
1554 - offsetof (struct Lisp_Sub_Char_Table, depth)) % word_size == 0);
1555
1556 /***********************************************************************
1557 Symbols
1558 ***********************************************************************/
1559
1560 /* Interned state of a symbol. */
1561
1562 enum symbol_interned
1563 {
1564 SYMBOL_UNINTERNED = 0,
1565 SYMBOL_INTERNED = 1,
1566 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
1567 };
1568
1569 enum symbol_redirect
1570 {
1571 SYMBOL_PLAINVAL = 4,
1572 SYMBOL_VARALIAS = 1,
1573 SYMBOL_LOCALIZED = 2,
1574 SYMBOL_FORWARDED = 3
1575 };
1576
1577 struct Lisp_Symbol
1578 {
1579 bool_bf gcmarkbit : 1;
1580
1581 /* Indicates where the value can be found:
1582 0 : it's a plain var, the value is in the `value' field.
1583 1 : it's a varalias, the value is really in the `alias' symbol.
1584 2 : it's a localized var, the value is in the `blv' object.
1585 3 : it's a forwarding variable, the value is in `forward'. */
1586 ENUM_BF (symbol_redirect) redirect : 3;
1587
1588 /* Non-zero means symbol is constant, i.e. changing its value
1589 should signal an error. If the value is 3, then the var
1590 can be changed, but only by `defconst'. */
1591 unsigned constant : 2;
1592
1593 /* Interned state of the symbol. This is an enumerator from
1594 enum symbol_interned. */
1595 unsigned interned : 2;
1596
1597 /* True means that this variable has been explicitly declared
1598 special (with `defvar' etc), and shouldn't be lexically bound. */
1599 bool_bf declared_special : 1;
1600
1601 /* True if pointed to from purespace and hence can't be GC'd. */
1602 bool_bf pinned : 1;
1603
1604 /* The symbol's name, as a Lisp string. */
1605 Lisp_Object name;
1606
1607 /* Value of the symbol or Qunbound if unbound. Which alternative of the
1608 union is used depends on the `redirect' field above. */
1609 union {
1610 Lisp_Object value;
1611 struct Lisp_Symbol *alias;
1612 struct Lisp_Buffer_Local_Value *blv;
1613 union Lisp_Fwd *fwd;
1614 } val;
1615
1616 /* Function value of the symbol or Qnil if not fboundp. */
1617 Lisp_Object function;
1618
1619 /* The symbol's property list. */
1620 Lisp_Object plist;
1621
1622 /* Next symbol in obarray bucket, if the symbol is interned. */
1623 struct Lisp_Symbol *next;
1624 };
1625
1626 /* Value is name of symbol. */
1627
1628 LISP_MACRO_DEFUN (SYMBOL_VAL, Lisp_Object, (struct Lisp_Symbol *sym), (sym))
1629
1630 INLINE struct Lisp_Symbol *
1631 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1632 {
1633 eassert (sym->redirect == SYMBOL_VARALIAS);
1634 return sym->val.alias;
1635 }
1636 INLINE struct Lisp_Buffer_Local_Value *
1637 SYMBOL_BLV (struct Lisp_Symbol *sym)
1638 {
1639 eassert (sym->redirect == SYMBOL_LOCALIZED);
1640 return sym->val.blv;
1641 }
1642 INLINE union Lisp_Fwd *
1643 SYMBOL_FWD (struct Lisp_Symbol *sym)
1644 {
1645 eassert (sym->redirect == SYMBOL_FORWARDED);
1646 return sym->val.fwd;
1647 }
1648
1649 LISP_MACRO_DEFUN_VOID (SET_SYMBOL_VAL,
1650 (struct Lisp_Symbol *sym, Lisp_Object v), (sym, v))
1651
1652 INLINE void
1653 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1654 {
1655 eassert (sym->redirect == SYMBOL_VARALIAS);
1656 sym->val.alias = v;
1657 }
1658 INLINE void
1659 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1660 {
1661 eassert (sym->redirect == SYMBOL_LOCALIZED);
1662 sym->val.blv = v;
1663 }
1664 INLINE void
1665 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1666 {
1667 eassert (sym->redirect == SYMBOL_FORWARDED);
1668 sym->val.fwd = v;
1669 }
1670
1671 INLINE Lisp_Object
1672 SYMBOL_NAME (Lisp_Object sym)
1673 {
1674 return XSYMBOL (sym)->name;
1675 }
1676
1677 /* Value is true if SYM is an interned symbol. */
1678
1679 INLINE bool
1680 SYMBOL_INTERNED_P (Lisp_Object sym)
1681 {
1682 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1683 }
1684
1685 /* Value is true if SYM is interned in initial_obarray. */
1686
1687 INLINE bool
1688 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1689 {
1690 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1691 }
1692
1693 /* Value is non-zero if symbol is considered a constant, i.e. its
1694 value cannot be changed (there is an exception for keyword symbols,
1695 whose value can be set to the keyword symbol itself). */
1696
1697 LISP_MACRO_DEFUN (SYMBOL_CONSTANT_P, int, (Lisp_Object sym), (sym))
1698
1699 #define DEFSYM(sym, name) \
1700 do { (sym) = intern_c_string ((name)); staticpro (&(sym)); } while (false)
1701
1702 \f
1703 /***********************************************************************
1704 Hash Tables
1705 ***********************************************************************/
1706
1707 /* The structure of a Lisp hash table. */
1708
1709 struct hash_table_test
1710 {
1711 /* Name of the function used to compare keys. */
1712 Lisp_Object name;
1713
1714 /* User-supplied hash function, or nil. */
1715 Lisp_Object user_hash_function;
1716
1717 /* User-supplied key comparison function, or nil. */
1718 Lisp_Object user_cmp_function;
1719
1720 /* C function to compare two keys. */
1721 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1722
1723 /* C function to compute hash code. */
1724 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1725 };
1726
1727 struct Lisp_Hash_Table
1728 {
1729 /* This is for Lisp; the hash table code does not refer to it. */
1730 struct vectorlike_header header;
1731
1732 /* Nil if table is non-weak. Otherwise a symbol describing the
1733 weakness of the table. */
1734 Lisp_Object weak;
1735
1736 /* When the table is resized, and this is an integer, compute the
1737 new size by adding this to the old size. If a float, compute the
1738 new size by multiplying the old size with this factor. */
1739 Lisp_Object rehash_size;
1740
1741 /* Resize hash table when number of entries/ table size is >= this
1742 ratio, a float. */
1743 Lisp_Object rehash_threshold;
1744
1745 /* Vector of hash codes. If hash[I] is nil, this means that the
1746 I-th entry is unused. */
1747 Lisp_Object hash;
1748
1749 /* Vector used to chain entries. If entry I is free, next[I] is the
1750 entry number of the next free item. If entry I is non-free,
1751 next[I] is the index of the next entry in the collision chain. */
1752 Lisp_Object next;
1753
1754 /* Index of first free entry in free list. */
1755 Lisp_Object next_free;
1756
1757 /* Bucket vector. A non-nil entry is the index of the first item in
1758 a collision chain. This vector's size can be larger than the
1759 hash table size to reduce collisions. */
1760 Lisp_Object index;
1761
1762 /* Only the fields above are traced normally by the GC. The ones below
1763 `count' are special and are either ignored by the GC or traced in
1764 a special way (e.g. because of weakness). */
1765
1766 /* Number of key/value entries in the table. */
1767 ptrdiff_t count;
1768
1769 /* Vector of keys and values. The key of item I is found at index
1770 2 * I, the value is found at index 2 * I + 1.
1771 This is gc_marked specially if the table is weak. */
1772 Lisp_Object key_and_value;
1773
1774 /* The comparison and hash functions. */
1775 struct hash_table_test test;
1776
1777 /* Next weak hash table if this is a weak hash table. The head
1778 of the list is in weak_hash_tables. */
1779 struct Lisp_Hash_Table *next_weak;
1780 };
1781
1782
1783 INLINE struct Lisp_Hash_Table *
1784 XHASH_TABLE (Lisp_Object a)
1785 {
1786 return XUNTAG (a, Lisp_Vectorlike);
1787 }
1788
1789 #define XSET_HASH_TABLE(VAR, PTR) \
1790 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1791
1792 INLINE bool
1793 HASH_TABLE_P (Lisp_Object a)
1794 {
1795 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1796 }
1797
1798 /* Value is the key part of entry IDX in hash table H. */
1799 INLINE Lisp_Object
1800 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1801 {
1802 return AREF (h->key_and_value, 2 * idx);
1803 }
1804
1805 /* Value is the value part of entry IDX in hash table H. */
1806 INLINE Lisp_Object
1807 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1808 {
1809 return AREF (h->key_and_value, 2 * idx + 1);
1810 }
1811
1812 /* Value is the index of the next entry following the one at IDX
1813 in hash table H. */
1814 INLINE Lisp_Object
1815 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1816 {
1817 return AREF (h->next, idx);
1818 }
1819
1820 /* Value is the hash code computed for entry IDX in hash table H. */
1821 INLINE Lisp_Object
1822 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1823 {
1824 return AREF (h->hash, idx);
1825 }
1826
1827 /* Value is the index of the element in hash table H that is the
1828 start of the collision list at index IDX in the index vector of H. */
1829 INLINE Lisp_Object
1830 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1831 {
1832 return AREF (h->index, idx);
1833 }
1834
1835 /* Value is the size of hash table H. */
1836 INLINE ptrdiff_t
1837 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1838 {
1839 return ASIZE (h->next);
1840 }
1841
1842 /* Default size for hash tables if not specified. */
1843
1844 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1845
1846 /* Default threshold specifying when to resize a hash table. The
1847 value gives the ratio of current entries in the hash table and the
1848 size of the hash table. */
1849
1850 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
1851
1852 /* Default factor by which to increase the size of a hash table. */
1853
1854 static double const DEFAULT_REHASH_SIZE = 1.5;
1855
1856 /* Combine two integers X and Y for hashing. The result might not fit
1857 into a Lisp integer. */
1858
1859 INLINE EMACS_UINT
1860 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
1861 {
1862 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
1863 }
1864
1865 /* Hash X, returning a value that fits into a fixnum. */
1866
1867 INLINE EMACS_UINT
1868 SXHASH_REDUCE (EMACS_UINT x)
1869 {
1870 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
1871 }
1872
1873 /* These structures are used for various misc types. */
1874
1875 struct Lisp_Misc_Any /* Supertype of all Misc types. */
1876 {
1877 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
1878 bool_bf gcmarkbit : 1;
1879 unsigned spacer : 15;
1880 };
1881
1882 struct Lisp_Marker
1883 {
1884 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
1885 bool_bf gcmarkbit : 1;
1886 unsigned spacer : 13;
1887 /* This flag is temporarily used in the functions
1888 decode/encode_coding_object to record that the marker position
1889 must be adjusted after the conversion. */
1890 bool_bf need_adjustment : 1;
1891 /* True means normal insertion at the marker's position
1892 leaves the marker after the inserted text. */
1893 bool_bf insertion_type : 1;
1894 /* This is the buffer that the marker points into, or 0 if it points nowhere.
1895 Note: a chain of markers can contain markers pointing into different
1896 buffers (the chain is per buffer_text rather than per buffer, so it's
1897 shared between indirect buffers). */
1898 /* This is used for (other than NULL-checking):
1899 - Fmarker_buffer
1900 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
1901 - unchain_marker: to find the list from which to unchain.
1902 - Fkill_buffer: to only unchain the markers of current indirect buffer.
1903 */
1904 struct buffer *buffer;
1905
1906 /* The remaining fields are meaningless in a marker that
1907 does not point anywhere. */
1908
1909 /* For markers that point somewhere,
1910 this is used to chain of all the markers in a given buffer. */
1911 /* We could remove it and use an array in buffer_text instead.
1912 That would also allow to preserve it ordered. */
1913 struct Lisp_Marker *next;
1914 /* This is the char position where the marker points. */
1915 ptrdiff_t charpos;
1916 /* This is the byte position.
1917 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
1918 used to implement the functionality of markers, but rather to (ab)use
1919 markers as a cache for char<->byte mappings). */
1920 ptrdiff_t bytepos;
1921 };
1922
1923 /* START and END are markers in the overlay's buffer, and
1924 PLIST is the overlay's property list. */
1925 struct Lisp_Overlay
1926 /* An overlay's real data content is:
1927 - plist
1928 - buffer (really there are two buffer pointers, one per marker,
1929 and both points to the same buffer)
1930 - insertion type of both ends (per-marker fields)
1931 - start & start byte (of start marker)
1932 - end & end byte (of end marker)
1933 - next (singly linked list of overlays)
1934 - next fields of start and end markers (singly linked list of markers).
1935 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
1936 */
1937 {
1938 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
1939 bool_bf gcmarkbit : 1;
1940 unsigned spacer : 15;
1941 struct Lisp_Overlay *next;
1942 Lisp_Object start;
1943 Lisp_Object end;
1944 Lisp_Object plist;
1945 };
1946
1947 /* Types of data which may be saved in a Lisp_Save_Value. */
1948
1949 enum
1950 {
1951 SAVE_UNUSED,
1952 SAVE_INTEGER,
1953 SAVE_FUNCPOINTER,
1954 SAVE_POINTER,
1955 SAVE_OBJECT
1956 };
1957
1958 /* Number of bits needed to store one of the above values. */
1959 enum { SAVE_SLOT_BITS = 3 };
1960
1961 /* Number of slots in a save value where save_type is nonzero. */
1962 enum { SAVE_VALUE_SLOTS = 4 };
1963
1964 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
1965
1966 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
1967
1968 enum Lisp_Save_Type
1969 {
1970 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
1971 SAVE_TYPE_INT_INT_INT
1972 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
1973 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
1974 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
1975 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
1976 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
1977 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
1978 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
1979 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
1980 SAVE_TYPE_FUNCPTR_PTR_OBJ
1981 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
1982
1983 /* This has an extra bit indicating it's raw memory. */
1984 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
1985 };
1986
1987 /* Special object used to hold a different values for later use.
1988
1989 This is mostly used to package C integers and pointers to call
1990 record_unwind_protect when two or more values need to be saved.
1991 For example:
1992
1993 ...
1994 struct my_data *md = get_my_data ();
1995 ptrdiff_t mi = get_my_integer ();
1996 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
1997 ...
1998
1999 Lisp_Object my_unwind (Lisp_Object arg)
2000 {
2001 struct my_data *md = XSAVE_POINTER (arg, 0);
2002 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2003 ...
2004 }
2005
2006 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2007 saved objects and raise eassert if type of the saved object doesn't match
2008 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2009 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2010 slot 0 is a pointer. */
2011
2012 typedef void (*voidfuncptr) (void);
2013
2014 struct Lisp_Save_Value
2015 {
2016 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2017 bool_bf gcmarkbit : 1;
2018 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2019
2020 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2021 V's data entries are determined by V->save_type. E.g., if
2022 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2023 V->data[1] is an integer, and V's other data entries are unused.
2024
2025 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2026 a memory area containing V->data[1].integer potential Lisp_Objects. */
2027 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2028 union {
2029 void *pointer;
2030 voidfuncptr funcpointer;
2031 ptrdiff_t integer;
2032 Lisp_Object object;
2033 } data[SAVE_VALUE_SLOTS];
2034 };
2035
2036 /* Return the type of V's Nth saved value. */
2037 INLINE int
2038 save_type (struct Lisp_Save_Value *v, int n)
2039 {
2040 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2041 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2042 }
2043
2044 /* Get and set the Nth saved pointer. */
2045
2046 INLINE void *
2047 XSAVE_POINTER (Lisp_Object obj, int n)
2048 {
2049 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2050 return XSAVE_VALUE (obj)->data[n].pointer;
2051 }
2052 INLINE void
2053 set_save_pointer (Lisp_Object obj, int n, void *val)
2054 {
2055 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2056 XSAVE_VALUE (obj)->data[n].pointer = val;
2057 }
2058 INLINE voidfuncptr
2059 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2060 {
2061 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2062 return XSAVE_VALUE (obj)->data[n].funcpointer;
2063 }
2064
2065 /* Likewise for the saved integer. */
2066
2067 INLINE ptrdiff_t
2068 XSAVE_INTEGER (Lisp_Object obj, int n)
2069 {
2070 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2071 return XSAVE_VALUE (obj)->data[n].integer;
2072 }
2073 INLINE void
2074 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2075 {
2076 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2077 XSAVE_VALUE (obj)->data[n].integer = val;
2078 }
2079
2080 /* Extract Nth saved object. */
2081
2082 INLINE Lisp_Object
2083 XSAVE_OBJECT (Lisp_Object obj, int n)
2084 {
2085 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2086 return XSAVE_VALUE (obj)->data[n].object;
2087 }
2088
2089 /* A miscellaneous object, when it's on the free list. */
2090 struct Lisp_Free
2091 {
2092 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2093 bool_bf gcmarkbit : 1;
2094 unsigned spacer : 15;
2095 union Lisp_Misc *chain;
2096 };
2097
2098 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2099 It uses one of these struct subtypes to get the type field. */
2100
2101 union Lisp_Misc
2102 {
2103 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2104 struct Lisp_Free u_free;
2105 struct Lisp_Marker u_marker;
2106 struct Lisp_Overlay u_overlay;
2107 struct Lisp_Save_Value u_save_value;
2108 };
2109
2110 INLINE union Lisp_Misc *
2111 XMISC (Lisp_Object a)
2112 {
2113 return XUNTAG (a, Lisp_Misc);
2114 }
2115
2116 INLINE struct Lisp_Misc_Any *
2117 XMISCANY (Lisp_Object a)
2118 {
2119 eassert (MISCP (a));
2120 return & XMISC (a)->u_any;
2121 }
2122
2123 INLINE enum Lisp_Misc_Type
2124 XMISCTYPE (Lisp_Object a)
2125 {
2126 return XMISCANY (a)->type;
2127 }
2128
2129 INLINE struct Lisp_Marker *
2130 XMARKER (Lisp_Object a)
2131 {
2132 eassert (MARKERP (a));
2133 return & XMISC (a)->u_marker;
2134 }
2135
2136 INLINE struct Lisp_Overlay *
2137 XOVERLAY (Lisp_Object a)
2138 {
2139 eassert (OVERLAYP (a));
2140 return & XMISC (a)->u_overlay;
2141 }
2142
2143 INLINE struct Lisp_Save_Value *
2144 XSAVE_VALUE (Lisp_Object a)
2145 {
2146 eassert (SAVE_VALUEP (a));
2147 return & XMISC (a)->u_save_value;
2148 }
2149 \f
2150 /* Forwarding pointer to an int variable.
2151 This is allowed only in the value cell of a symbol,
2152 and it means that the symbol's value really lives in the
2153 specified int variable. */
2154 struct Lisp_Intfwd
2155 {
2156 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2157 EMACS_INT *intvar;
2158 };
2159
2160 /* Boolean forwarding pointer to an int variable.
2161 This is like Lisp_Intfwd except that the ostensible
2162 "value" of the symbol is t if the bool variable is true,
2163 nil if it is false. */
2164 struct Lisp_Boolfwd
2165 {
2166 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2167 bool *boolvar;
2168 };
2169
2170 /* Forwarding pointer to a Lisp_Object variable.
2171 This is allowed only in the value cell of a symbol,
2172 and it means that the symbol's value really lives in the
2173 specified variable. */
2174 struct Lisp_Objfwd
2175 {
2176 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2177 Lisp_Object *objvar;
2178 };
2179
2180 /* Like Lisp_Objfwd except that value lives in a slot in the
2181 current buffer. Value is byte index of slot within buffer. */
2182 struct Lisp_Buffer_Objfwd
2183 {
2184 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2185 int offset;
2186 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2187 Lisp_Object predicate;
2188 };
2189
2190 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2191 the symbol has buffer-local or frame-local bindings. (Exception:
2192 some buffer-local variables are built-in, with their values stored
2193 in the buffer structure itself. They are handled differently,
2194 using struct Lisp_Buffer_Objfwd.)
2195
2196 The `realvalue' slot holds the variable's current value, or a
2197 forwarding pointer to where that value is kept. This value is the
2198 one that corresponds to the loaded binding. To read or set the
2199 variable, you must first make sure the right binding is loaded;
2200 then you can access the value in (or through) `realvalue'.
2201
2202 `buffer' and `frame' are the buffer and frame for which the loaded
2203 binding was found. If those have changed, to make sure the right
2204 binding is loaded it is necessary to find which binding goes with
2205 the current buffer and selected frame, then load it. To load it,
2206 first unload the previous binding, then copy the value of the new
2207 binding into `realvalue' (or through it). Also update
2208 LOADED-BINDING to point to the newly loaded binding.
2209
2210 `local_if_set' indicates that merely setting the variable creates a
2211 local binding for the current buffer. Otherwise the latter, setting
2212 the variable does not do that; only make-local-variable does that. */
2213
2214 struct Lisp_Buffer_Local_Value
2215 {
2216 /* True means that merely setting the variable creates a local
2217 binding for the current buffer. */
2218 bool_bf local_if_set : 1;
2219 /* True means this variable can have frame-local bindings, otherwise, it is
2220 can have buffer-local bindings. The two cannot be combined. */
2221 bool_bf frame_local : 1;
2222 /* True means that the binding now loaded was found.
2223 Presumably equivalent to (defcell!=valcell). */
2224 bool_bf found : 1;
2225 /* If non-NULL, a forwarding to the C var where it should also be set. */
2226 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2227 /* The buffer or frame for which the loaded binding was found. */
2228 Lisp_Object where;
2229 /* A cons cell that holds the default value. It has the form
2230 (SYMBOL . DEFAULT-VALUE). */
2231 Lisp_Object defcell;
2232 /* The cons cell from `where's parameter alist.
2233 It always has the form (SYMBOL . VALUE)
2234 Note that if `forward' is non-nil, VALUE may be out of date.
2235 Also if the currently loaded binding is the default binding, then
2236 this is `eq'ual to defcell. */
2237 Lisp_Object valcell;
2238 };
2239
2240 /* Like Lisp_Objfwd except that value lives in a slot in the
2241 current kboard. */
2242 struct Lisp_Kboard_Objfwd
2243 {
2244 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2245 int offset;
2246 };
2247
2248 union Lisp_Fwd
2249 {
2250 struct Lisp_Intfwd u_intfwd;
2251 struct Lisp_Boolfwd u_boolfwd;
2252 struct Lisp_Objfwd u_objfwd;
2253 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2254 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2255 };
2256
2257 INLINE enum Lisp_Fwd_Type
2258 XFWDTYPE (union Lisp_Fwd *a)
2259 {
2260 return a->u_intfwd.type;
2261 }
2262
2263 INLINE struct Lisp_Buffer_Objfwd *
2264 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2265 {
2266 eassert (BUFFER_OBJFWDP (a));
2267 return &a->u_buffer_objfwd;
2268 }
2269 \f
2270 /* Lisp floating point type. */
2271 struct Lisp_Float
2272 {
2273 union
2274 {
2275 double data;
2276 struct Lisp_Float *chain;
2277 } u;
2278 };
2279
2280 INLINE double
2281 XFLOAT_DATA (Lisp_Object f)
2282 {
2283 return XFLOAT (f)->u.data;
2284 }
2285
2286 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2287 representations, have infinities and NaNs, and do not trap on
2288 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2289 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2290 wanted here, but is not quite right because Emacs does not require
2291 all the features of C11 Annex F (and does not require C11 at all,
2292 for that matter). */
2293 enum
2294 {
2295 IEEE_FLOATING_POINT
2296 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2297 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2298 };
2299
2300 /* A character, declared with the following typedef, is a member
2301 of some character set associated with the current buffer. */
2302 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2303 #define _UCHAR_T
2304 typedef unsigned char UCHAR;
2305 #endif
2306
2307 /* Meanings of slots in a Lisp_Compiled: */
2308
2309 enum Lisp_Compiled
2310 {
2311 COMPILED_ARGLIST = 0,
2312 COMPILED_BYTECODE = 1,
2313 COMPILED_CONSTANTS = 2,
2314 COMPILED_STACK_DEPTH = 3,
2315 COMPILED_DOC_STRING = 4,
2316 COMPILED_INTERACTIVE = 5
2317 };
2318
2319 /* Flag bits in a character. These also get used in termhooks.h.
2320 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2321 (MUlti-Lingual Emacs) might need 22 bits for the character value
2322 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2323 enum char_bits
2324 {
2325 CHAR_ALT = 0x0400000,
2326 CHAR_SUPER = 0x0800000,
2327 CHAR_HYPER = 0x1000000,
2328 CHAR_SHIFT = 0x2000000,
2329 CHAR_CTL = 0x4000000,
2330 CHAR_META = 0x8000000,
2331
2332 CHAR_MODIFIER_MASK =
2333 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2334
2335 /* Actually, the current Emacs uses 22 bits for the character value
2336 itself. */
2337 CHARACTERBITS = 22
2338 };
2339 \f
2340 /* Data type checking. */
2341
2342 LISP_MACRO_DEFUN (NILP, bool, (Lisp_Object x), (x))
2343
2344 INLINE bool
2345 NUMBERP (Lisp_Object x)
2346 {
2347 return INTEGERP (x) || FLOATP (x);
2348 }
2349 INLINE bool
2350 NATNUMP (Lisp_Object x)
2351 {
2352 return INTEGERP (x) && 0 <= XINT (x);
2353 }
2354
2355 INLINE bool
2356 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2357 {
2358 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2359 }
2360
2361 #define TYPE_RANGED_INTEGERP(type, x) \
2362 (INTEGERP (x) \
2363 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2364 && XINT (x) <= TYPE_MAXIMUM (type))
2365
2366 LISP_MACRO_DEFUN (CONSP, bool, (Lisp_Object x), (x))
2367 LISP_MACRO_DEFUN (FLOATP, bool, (Lisp_Object x), (x))
2368 LISP_MACRO_DEFUN (MISCP, bool, (Lisp_Object x), (x))
2369 LISP_MACRO_DEFUN (SYMBOLP, bool, (Lisp_Object x), (x))
2370 LISP_MACRO_DEFUN (INTEGERP, bool, (Lisp_Object x), (x))
2371 LISP_MACRO_DEFUN (VECTORLIKEP, bool, (Lisp_Object x), (x))
2372 LISP_MACRO_DEFUN (MARKERP, bool, (Lisp_Object x), (x))
2373
2374 INLINE bool
2375 STRINGP (Lisp_Object x)
2376 {
2377 return XTYPE (x) == Lisp_String;
2378 }
2379 INLINE bool
2380 VECTORP (Lisp_Object x)
2381 {
2382 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2383 }
2384 INLINE bool
2385 OVERLAYP (Lisp_Object x)
2386 {
2387 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2388 }
2389 INLINE bool
2390 SAVE_VALUEP (Lisp_Object x)
2391 {
2392 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2393 }
2394
2395 INLINE bool
2396 AUTOLOADP (Lisp_Object x)
2397 {
2398 return CONSP (x) && EQ (Qautoload, XCAR (x));
2399 }
2400
2401 INLINE bool
2402 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2403 {
2404 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2405 }
2406
2407 INLINE bool
2408 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2409 {
2410 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2411 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2412 }
2413
2414 /* True if A is a pseudovector whose code is CODE. */
2415 INLINE bool
2416 PSEUDOVECTORP (Lisp_Object a, int code)
2417 {
2418 if (! VECTORLIKEP (a))
2419 return false;
2420 else
2421 {
2422 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2423 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2424 return PSEUDOVECTOR_TYPEP (h, code);
2425 }
2426 }
2427
2428
2429 /* Test for specific pseudovector types. */
2430
2431 INLINE bool
2432 WINDOW_CONFIGURATIONP (Lisp_Object a)
2433 {
2434 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2435 }
2436
2437 INLINE bool
2438 PROCESSP (Lisp_Object a)
2439 {
2440 return PSEUDOVECTORP (a, PVEC_PROCESS);
2441 }
2442
2443 INLINE bool
2444 WINDOWP (Lisp_Object a)
2445 {
2446 return PSEUDOVECTORP (a, PVEC_WINDOW);
2447 }
2448
2449 INLINE bool
2450 TERMINALP (Lisp_Object a)
2451 {
2452 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2453 }
2454
2455 INLINE bool
2456 SUBRP (Lisp_Object a)
2457 {
2458 return PSEUDOVECTORP (a, PVEC_SUBR);
2459 }
2460
2461 INLINE bool
2462 COMPILEDP (Lisp_Object a)
2463 {
2464 return PSEUDOVECTORP (a, PVEC_COMPILED);
2465 }
2466
2467 INLINE bool
2468 BUFFERP (Lisp_Object a)
2469 {
2470 return PSEUDOVECTORP (a, PVEC_BUFFER);
2471 }
2472
2473 INLINE bool
2474 CHAR_TABLE_P (Lisp_Object a)
2475 {
2476 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2477 }
2478
2479 INLINE bool
2480 SUB_CHAR_TABLE_P (Lisp_Object a)
2481 {
2482 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2483 }
2484
2485 INLINE bool
2486 BOOL_VECTOR_P (Lisp_Object a)
2487 {
2488 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2489 }
2490
2491 INLINE bool
2492 FRAMEP (Lisp_Object a)
2493 {
2494 return PSEUDOVECTORP (a, PVEC_FRAME);
2495 }
2496
2497 /* Test for image (image . spec) */
2498 INLINE bool
2499 IMAGEP (Lisp_Object x)
2500 {
2501 return CONSP (x) && EQ (XCAR (x), Qimage);
2502 }
2503
2504 /* Array types. */
2505 INLINE bool
2506 ARRAYP (Lisp_Object x)
2507 {
2508 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2509 }
2510 \f
2511 INLINE void
2512 CHECK_LIST (Lisp_Object x)
2513 {
2514 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2515 }
2516
2517 LISP_MACRO_DEFUN_VOID (CHECK_LIST_CONS, (Lisp_Object x, Lisp_Object y), (x, y))
2518 LISP_MACRO_DEFUN_VOID (CHECK_SYMBOL, (Lisp_Object x), (x))
2519 LISP_MACRO_DEFUN_VOID (CHECK_NUMBER, (Lisp_Object x), (x))
2520
2521 INLINE void
2522 CHECK_STRING (Lisp_Object x)
2523 {
2524 CHECK_TYPE (STRINGP (x), Qstringp, x);
2525 }
2526 INLINE void
2527 CHECK_STRING_CAR (Lisp_Object x)
2528 {
2529 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2530 }
2531 INLINE void
2532 CHECK_CONS (Lisp_Object x)
2533 {
2534 CHECK_TYPE (CONSP (x), Qconsp, x);
2535 }
2536 INLINE void
2537 CHECK_VECTOR (Lisp_Object x)
2538 {
2539 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2540 }
2541 INLINE void
2542 CHECK_BOOL_VECTOR (Lisp_Object x)
2543 {
2544 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2545 }
2546 /* This is a bit special because we always need size afterwards. */
2547 INLINE ptrdiff_t
2548 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2549 {
2550 if (VECTORP (x))
2551 return ASIZE (x);
2552 if (STRINGP (x))
2553 return SCHARS (x);
2554 wrong_type_argument (Qarrayp, x);
2555 }
2556 INLINE void
2557 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2558 {
2559 CHECK_TYPE (ARRAYP (x), predicate, x);
2560 }
2561 INLINE void
2562 CHECK_BUFFER (Lisp_Object x)
2563 {
2564 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2565 }
2566 INLINE void
2567 CHECK_WINDOW (Lisp_Object x)
2568 {
2569 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2570 }
2571 #ifdef subprocesses
2572 INLINE void
2573 CHECK_PROCESS (Lisp_Object x)
2574 {
2575 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2576 }
2577 #endif
2578 INLINE void
2579 CHECK_NATNUM (Lisp_Object x)
2580 {
2581 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2582 }
2583
2584 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2585 do { \
2586 CHECK_NUMBER (x); \
2587 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2588 args_out_of_range_3 \
2589 (x, \
2590 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2591 ? MOST_NEGATIVE_FIXNUM \
2592 : (lo)), \
2593 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2594 } while (false)
2595 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2596 do { \
2597 if (TYPE_SIGNED (type)) \
2598 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2599 else \
2600 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2601 } while (false)
2602
2603 #define CHECK_NUMBER_COERCE_MARKER(x) \
2604 do { \
2605 if (MARKERP ((x))) \
2606 XSETFASTINT (x, marker_position (x)); \
2607 else \
2608 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2609 } while (false)
2610
2611 INLINE double
2612 XFLOATINT (Lisp_Object n)
2613 {
2614 return extract_float (n);
2615 }
2616
2617 INLINE void
2618 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2619 {
2620 CHECK_TYPE (FLOATP (x) || INTEGERP (x), Qnumberp, x);
2621 }
2622
2623 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2624 do { \
2625 if (MARKERP (x)) \
2626 XSETFASTINT (x, marker_position (x)); \
2627 else \
2628 CHECK_TYPE (INTEGERP (x) || FLOATP (x), Qnumber_or_marker_p, x); \
2629 } while (false)
2630
2631 /* Since we can't assign directly to the CAR or CDR fields of a cons
2632 cell, use these when checking that those fields contain numbers. */
2633 INLINE void
2634 CHECK_NUMBER_CAR (Lisp_Object x)
2635 {
2636 Lisp_Object tmp = XCAR (x);
2637 CHECK_NUMBER (tmp);
2638 XSETCAR (x, tmp);
2639 }
2640
2641 INLINE void
2642 CHECK_NUMBER_CDR (Lisp_Object x)
2643 {
2644 Lisp_Object tmp = XCDR (x);
2645 CHECK_NUMBER (tmp);
2646 XSETCDR (x, tmp);
2647 }
2648 \f
2649 /* Define a built-in function for calling from Lisp.
2650 `lname' should be the name to give the function in Lisp,
2651 as a null-terminated C string.
2652 `fnname' should be the name of the function in C.
2653 By convention, it starts with F.
2654 `sname' should be the name for the C constant structure
2655 that records information on this function for internal use.
2656 By convention, it should be the same as `fnname' but with S instead of F.
2657 It's too bad that C macros can't compute this from `fnname'.
2658 `minargs' should be a number, the minimum number of arguments allowed.
2659 `maxargs' should be a number, the maximum number of arguments allowed,
2660 or else MANY or UNEVALLED.
2661 MANY means pass a vector of evaluated arguments,
2662 in the form of an integer number-of-arguments
2663 followed by the address of a vector of Lisp_Objects
2664 which contains the argument values.
2665 UNEVALLED means pass the list of unevaluated arguments
2666 `intspec' says how interactive arguments are to be fetched.
2667 If the string starts with a `(', `intspec' is evaluated and the resulting
2668 list is the list of arguments.
2669 If it's a string that doesn't start with `(', the value should follow
2670 the one of the doc string for `interactive'.
2671 A null string means call interactively with no arguments.
2672 `doc' is documentation for the user. */
2673
2674 /* This version of DEFUN declares a function prototype with the right
2675 arguments, so we can catch errors with maxargs at compile-time. */
2676 #ifdef _MSC_VER
2677 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2678 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2679 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2680 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2681 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2682 { (Lisp_Object (__cdecl *)(void))fnname }, \
2683 minargs, maxargs, lname, intspec, 0}; \
2684 Lisp_Object fnname
2685 #else /* not _MSC_VER */
2686 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2687 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2688 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2689 { .a ## maxargs = fnname }, \
2690 minargs, maxargs, lname, intspec, 0}; \
2691 Lisp_Object fnname
2692 #endif
2693
2694 /* Note that the weird token-substitution semantics of ANSI C makes
2695 this work for MANY and UNEVALLED. */
2696 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
2697 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
2698 #define DEFUN_ARGS_0 (void)
2699 #define DEFUN_ARGS_1 (Lisp_Object)
2700 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
2701 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
2702 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
2703 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2704 Lisp_Object)
2705 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2706 Lisp_Object, Lisp_Object)
2707 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2708 Lisp_Object, Lisp_Object, Lisp_Object)
2709 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2710 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
2711
2712 /* True if OBJ is a Lisp function. */
2713 INLINE bool
2714 FUNCTIONP (Lisp_Object obj)
2715 {
2716 return functionp (obj);
2717 }
2718
2719 /* defsubr (Sname);
2720 is how we define the symbol for function `name' at start-up time. */
2721 extern void defsubr (struct Lisp_Subr *);
2722
2723 enum maxargs
2724 {
2725 MANY = -2,
2726 UNEVALLED = -1
2727 };
2728
2729 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2730 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2731 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2732 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2733 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2734
2735 /* Macros we use to define forwarded Lisp variables.
2736 These are used in the syms_of_FILENAME functions.
2737
2738 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2739 lisp variable is actually a field in `struct emacs_globals'. The
2740 field's name begins with "f_", which is a convention enforced by
2741 these macros. Each such global has a corresponding #define in
2742 globals.h; the plain name should be used in the code.
2743
2744 E.g., the global "cons_cells_consed" is declared as "int
2745 f_cons_cells_consed" in globals.h, but there is a define:
2746
2747 #define cons_cells_consed globals.f_cons_cells_consed
2748
2749 All C code uses the `cons_cells_consed' name. This is all done
2750 this way to support indirection for multi-threaded Emacs. */
2751
2752 #define DEFVAR_LISP(lname, vname, doc) \
2753 do { \
2754 static struct Lisp_Objfwd o_fwd; \
2755 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
2756 } while (false)
2757 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
2758 do { \
2759 static struct Lisp_Objfwd o_fwd; \
2760 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
2761 } while (false)
2762 #define DEFVAR_BOOL(lname, vname, doc) \
2763 do { \
2764 static struct Lisp_Boolfwd b_fwd; \
2765 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
2766 } while (false)
2767 #define DEFVAR_INT(lname, vname, doc) \
2768 do { \
2769 static struct Lisp_Intfwd i_fwd; \
2770 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
2771 } while (false)
2772
2773 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
2774 do { \
2775 static struct Lisp_Objfwd o_fwd; \
2776 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
2777 } while (false)
2778
2779 #define DEFVAR_KBOARD(lname, vname, doc) \
2780 do { \
2781 static struct Lisp_Kboard_Objfwd ko_fwd; \
2782 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
2783 } while (false)
2784 \f
2785 /* Save and restore the instruction and environment pointers,
2786 without affecting the signal mask. */
2787
2788 #ifdef HAVE__SETJMP
2789 typedef jmp_buf sys_jmp_buf;
2790 # define sys_setjmp(j) _setjmp (j)
2791 # define sys_longjmp(j, v) _longjmp (j, v)
2792 #elif defined HAVE_SIGSETJMP
2793 typedef sigjmp_buf sys_jmp_buf;
2794 # define sys_setjmp(j) sigsetjmp (j, 0)
2795 # define sys_longjmp(j, v) siglongjmp (j, v)
2796 #else
2797 /* A platform that uses neither _longjmp nor siglongjmp; assume
2798 longjmp does not affect the sigmask. */
2799 typedef jmp_buf sys_jmp_buf;
2800 # define sys_setjmp(j) setjmp (j)
2801 # define sys_longjmp(j, v) longjmp (j, v)
2802 #endif
2803
2804 \f
2805 /* Elisp uses several stacks:
2806 - the C stack.
2807 - the bytecode stack: used internally by the bytecode interpreter.
2808 Allocated from the C stack.
2809 - The specpdl stack: keeps track of active unwind-protect and
2810 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
2811 managed stack.
2812 - The handler stack: keeps track of active catch tags and condition-case
2813 handlers. Allocated in a manually managed stack implemented by a
2814 doubly-linked list allocated via xmalloc and never freed. */
2815
2816 /* Structure for recording Lisp call stack for backtrace purposes. */
2817
2818 /* The special binding stack holds the outer values of variables while
2819 they are bound by a function application or a let form, stores the
2820 code to be executed for unwind-protect forms.
2821
2822 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
2823 used all over the place, needs to be fast, and needs to know the size of
2824 union specbinding. But only eval.c should access it. */
2825
2826 enum specbind_tag {
2827 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
2828 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
2829 SPECPDL_UNWIND_INT, /* Likewise, on int. */
2830 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
2831 SPECPDL_BACKTRACE, /* An element of the backtrace. */
2832 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
2833 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
2834 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
2835 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
2836 };
2837
2838 union specbinding
2839 {
2840 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2841 struct {
2842 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2843 void (*func) (Lisp_Object);
2844 Lisp_Object arg;
2845 } unwind;
2846 struct {
2847 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2848 void (*func) (void *);
2849 void *arg;
2850 } unwind_ptr;
2851 struct {
2852 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2853 void (*func) (int);
2854 int arg;
2855 } unwind_int;
2856 struct {
2857 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2858 void (*func) (void);
2859 } unwind_void;
2860 struct {
2861 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2862 /* `where' is not used in the case of SPECPDL_LET. */
2863 Lisp_Object symbol, old_value, where;
2864 } let;
2865 struct {
2866 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2867 bool_bf debug_on_exit : 1;
2868 Lisp_Object function;
2869 Lisp_Object *args;
2870 ptrdiff_t nargs;
2871 } bt;
2872 };
2873
2874 extern union specbinding *specpdl;
2875 extern union specbinding *specpdl_ptr;
2876 extern ptrdiff_t specpdl_size;
2877
2878 INLINE ptrdiff_t
2879 SPECPDL_INDEX (void)
2880 {
2881 return specpdl_ptr - specpdl;
2882 }
2883
2884 /* This structure helps implement the `catch/throw' and `condition-case/signal'
2885 control structures. A struct handler contains all the information needed to
2886 restore the state of the interpreter after a non-local jump.
2887
2888 handler structures are chained together in a doubly linked list; the `next'
2889 member points to the next outer catchtag and the `nextfree' member points in
2890 the other direction to the next inner element (which is typically the next
2891 free element since we mostly use it on the deepest handler).
2892
2893 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
2894 member is TAG, and then unbinds to it. The `val' member is used to
2895 hold VAL while the stack is unwound; `val' is returned as the value
2896 of the catch form.
2897
2898 All the other members are concerned with restoring the interpreter
2899 state.
2900
2901 Members are volatile if their values need to survive _longjmp when
2902 a 'struct handler' is a local variable. */
2903
2904 enum handlertype { CATCHER, CONDITION_CASE };
2905
2906 struct handler
2907 {
2908 enum handlertype type;
2909 Lisp_Object tag_or_ch;
2910 Lisp_Object val;
2911 struct handler *next;
2912 struct handler *nextfree;
2913
2914 /* The bytecode interpreter can have several handlers active at the same
2915 time, so when we longjmp to one of them, it needs to know which handler
2916 this was and what was the corresponding internal state. This is stored
2917 here, and when we longjmp we make sure that handlerlist points to the
2918 proper handler. */
2919 Lisp_Object *bytecode_top;
2920 int bytecode_dest;
2921
2922 /* Most global vars are reset to their value via the specpdl mechanism,
2923 but a few others are handled by storing their value here. */
2924 #if true /* GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS, but defined later. */
2925 struct gcpro *gcpro;
2926 #endif
2927 sys_jmp_buf jmp;
2928 EMACS_INT lisp_eval_depth;
2929 ptrdiff_t pdlcount;
2930 int poll_suppress_count;
2931 int interrupt_input_blocked;
2932 struct byte_stack *byte_stack;
2933 };
2934
2935 /* Fill in the components of c, and put it on the list. */
2936 #define PUSH_HANDLER(c, tag_ch_val, handlertype) \
2937 if (handlerlist->nextfree) \
2938 (c) = handlerlist->nextfree; \
2939 else \
2940 { \
2941 (c) = xmalloc (sizeof (struct handler)); \
2942 (c)->nextfree = NULL; \
2943 handlerlist->nextfree = (c); \
2944 } \
2945 (c)->type = (handlertype); \
2946 (c)->tag_or_ch = (tag_ch_val); \
2947 (c)->val = Qnil; \
2948 (c)->next = handlerlist; \
2949 (c)->lisp_eval_depth = lisp_eval_depth; \
2950 (c)->pdlcount = SPECPDL_INDEX (); \
2951 (c)->poll_suppress_count = poll_suppress_count; \
2952 (c)->interrupt_input_blocked = interrupt_input_blocked;\
2953 (c)->gcpro = gcprolist; \
2954 (c)->byte_stack = byte_stack_list; \
2955 handlerlist = (c);
2956
2957
2958 extern Lisp_Object memory_signal_data;
2959
2960 /* An address near the bottom of the stack.
2961 Tells GC how to save a copy of the stack. */
2962 extern char *stack_bottom;
2963
2964 /* Check quit-flag and quit if it is non-nil.
2965 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
2966 So the program needs to do QUIT at times when it is safe to quit.
2967 Every loop that might run for a long time or might not exit
2968 ought to do QUIT at least once, at a safe place.
2969 Unless that is impossible, of course.
2970 But it is very desirable to avoid creating loops where QUIT is impossible.
2971
2972 Exception: if you set immediate_quit to true,
2973 then the handler that responds to the C-g does the quit itself.
2974 This is a good thing to do around a loop that has no side effects
2975 and (in particular) cannot call arbitrary Lisp code.
2976
2977 If quit-flag is set to `kill-emacs' the SIGINT handler has received
2978 a request to exit Emacs when it is safe to do. */
2979
2980 extern void process_pending_signals (void);
2981 extern bool volatile pending_signals;
2982
2983 extern void process_quit_flag (void);
2984 #define QUIT \
2985 do { \
2986 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
2987 process_quit_flag (); \
2988 else if (pending_signals) \
2989 process_pending_signals (); \
2990 } while (false)
2991
2992
2993 /* True if ought to quit now. */
2994
2995 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
2996 \f
2997 extern Lisp_Object Vascii_downcase_table;
2998 extern Lisp_Object Vascii_canon_table;
2999 \f
3000 /* Structure for recording stack slots that need marking. */
3001
3002 /* This is a chain of structures, each of which points at a Lisp_Object
3003 variable whose value should be marked in garbage collection.
3004 Normally every link of the chain is an automatic variable of a function,
3005 and its `val' points to some argument or local variable of the function.
3006 On exit to the function, the chain is set back to the value it had on entry.
3007 This way, no link remains in the chain when the stack frame containing the
3008 link disappears.
3009
3010 Every function that can call Feval must protect in this fashion all
3011 Lisp_Object variables whose contents will be used again. */
3012
3013 extern struct gcpro *gcprolist;
3014
3015 struct gcpro
3016 {
3017 struct gcpro *next;
3018
3019 /* Address of first protected variable. */
3020 volatile Lisp_Object *var;
3021
3022 /* Number of consecutive protected variables. */
3023 ptrdiff_t nvars;
3024
3025 #ifdef DEBUG_GCPRO
3026 /* File name where this record is used. */
3027 const char *name;
3028
3029 /* Line number in this file. */
3030 int lineno;
3031
3032 /* Index in the local chain of records. */
3033 int idx;
3034
3035 /* Nesting level. */
3036 int level;
3037 #endif
3038 };
3039
3040 /* Values of GC_MARK_STACK during compilation:
3041
3042 0 Use GCPRO as before
3043 1 Do the real thing, make GCPROs and UNGCPRO no-ops.
3044 2 Mark the stack, and check that everything GCPRO'd is
3045 marked.
3046 3 Mark using GCPRO's, mark stack last, and count how many
3047 dead objects are kept alive.
3048
3049 Formerly, method 0 was used. Currently, method 1 is used unless
3050 otherwise specified by hand when building, e.g.,
3051 "make CPPFLAGS='-DGC_MARK_STACK=GC_USE_GCPROS_AS_BEFORE'".
3052 Methods 2 and 3 are present mainly to debug the transition from 0 to 1. */
3053
3054 #define GC_USE_GCPROS_AS_BEFORE 0
3055 #define GC_MAKE_GCPROS_NOOPS 1
3056 #define GC_MARK_STACK_CHECK_GCPROS 2
3057 #define GC_USE_GCPROS_CHECK_ZOMBIES 3
3058
3059 #ifndef GC_MARK_STACK
3060 #define GC_MARK_STACK GC_MAKE_GCPROS_NOOPS
3061 #endif
3062
3063 /* Whether we do the stack marking manually. */
3064 #define BYTE_MARK_STACK !(GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
3065 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
3066
3067
3068 #if GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS
3069
3070 /* Do something silly with gcproN vars just so gcc shuts up. */
3071 /* You get warnings from MIPSPro... */
3072
3073 #define GCPRO1(varname) ((void) gcpro1)
3074 #define GCPRO2(varname1, varname2) ((void) gcpro2, (void) gcpro1)
3075 #define GCPRO3(varname1, varname2, varname3) \
3076 ((void) gcpro3, (void) gcpro2, (void) gcpro1)
3077 #define GCPRO4(varname1, varname2, varname3, varname4) \
3078 ((void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3079 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3080 ((void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3081 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3082 ((void) gcpro6, (void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, \
3083 (void) gcpro1)
3084 #define GCPRO7(a, b, c, d, e, f, g) (GCPRO6 (a, b, c, d, e, f), (void) gcpro7)
3085 #define UNGCPRO ((void) 0)
3086
3087 #else /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3088
3089 #ifndef DEBUG_GCPRO
3090
3091 #define GCPRO1(a) \
3092 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3093 gcprolist = &gcpro1; }
3094
3095 #define GCPRO2(a, b) \
3096 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3097 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3098 gcprolist = &gcpro2; }
3099
3100 #define GCPRO3(a, b, c) \
3101 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3102 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3103 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3104 gcprolist = &gcpro3; }
3105
3106 #define GCPRO4(a, b, c, d) \
3107 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3108 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3109 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3110 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3111 gcprolist = &gcpro4; }
3112
3113 #define GCPRO5(a, b, c, d, e) \
3114 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3115 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3116 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3117 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3118 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3119 gcprolist = &gcpro5; }
3120
3121 #define GCPRO6(a, b, c, d, e, f) \
3122 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3123 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3124 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3125 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3126 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3127 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3128 gcprolist = &gcpro6; }
3129
3130 #define GCPRO7(a, b, c, d, e, f, g) \
3131 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3132 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3133 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3134 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3135 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3136 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3137 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3138 gcprolist = &gcpro7; }
3139
3140 #define UNGCPRO (gcprolist = gcpro1.next)
3141
3142 #else /* !DEBUG_GCPRO */
3143
3144 extern int gcpro_level;
3145
3146 #define GCPRO1(a) \
3147 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3148 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3149 gcpro1.level = gcpro_level++; \
3150 gcprolist = &gcpro1; }
3151
3152 #define GCPRO2(a, b) \
3153 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3154 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3155 gcpro1.level = gcpro_level; \
3156 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3157 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3158 gcpro2.level = gcpro_level++; \
3159 gcprolist = &gcpro2; }
3160
3161 #define GCPRO3(a, b, c) \
3162 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3163 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3164 gcpro1.level = gcpro_level; \
3165 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3166 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3167 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3168 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3169 gcpro3.level = gcpro_level++; \
3170 gcprolist = &gcpro3; }
3171
3172 #define GCPRO4(a, b, c, d) \
3173 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3174 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3175 gcpro1.level = gcpro_level; \
3176 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3177 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3178 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3179 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3180 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3181 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3182 gcpro4.level = gcpro_level++; \
3183 gcprolist = &gcpro4; }
3184
3185 #define GCPRO5(a, b, c, d, e) \
3186 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3187 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3188 gcpro1.level = gcpro_level; \
3189 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3190 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3191 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3192 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3193 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3194 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3195 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3196 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3197 gcpro5.level = gcpro_level++; \
3198 gcprolist = &gcpro5; }
3199
3200 #define GCPRO6(a, b, c, d, e, f) \
3201 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3202 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3203 gcpro1.level = gcpro_level; \
3204 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3205 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3206 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3207 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3208 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3209 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3210 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3211 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3212 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3213 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3214 gcpro6.level = gcpro_level++; \
3215 gcprolist = &gcpro6; }
3216
3217 #define GCPRO7(a, b, c, d, e, f, g) \
3218 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3219 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3220 gcpro1.level = gcpro_level; \
3221 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3222 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3223 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3224 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3225 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3226 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3227 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3228 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3229 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3230 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3231 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3232 gcpro7.name = __FILE__; gcpro7.lineno = __LINE__; gcpro7.idx = 7; \
3233 gcpro7.level = gcpro_level++; \
3234 gcprolist = &gcpro7; }
3235
3236 #define UNGCPRO \
3237 (--gcpro_level != gcpro1.level \
3238 ? emacs_abort () \
3239 : (void) (gcprolist = gcpro1.next))
3240
3241 #endif /* DEBUG_GCPRO */
3242 #endif /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3243
3244
3245 /* Evaluate expr, UNGCPRO, and then return the value of expr. */
3246 #define RETURN_UNGCPRO(expr) \
3247 do \
3248 { \
3249 Lisp_Object ret_ungc_val; \
3250 ret_ungc_val = (expr); \
3251 UNGCPRO; \
3252 return ret_ungc_val; \
3253 } \
3254 while (false)
3255
3256 /* Call staticpro (&var) to protect static variable `var'. */
3257
3258 void staticpro (Lisp_Object *);
3259 \f
3260 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
3261 meaning as in the DEFUN macro, and is used to construct a prototype. */
3262 /* We can use the same trick as in the DEFUN macro to generate the
3263 appropriate prototype. */
3264 #define EXFUN(fnname, maxargs) \
3265 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
3266
3267 #include "globals.h"
3268
3269 /* Forward declarations for prototypes. */
3270 struct window;
3271 struct frame;
3272
3273 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3274
3275 INLINE void
3276 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3277 {
3278 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3279 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3280 }
3281
3282 /* Functions to modify hash tables. */
3283
3284 INLINE void
3285 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3286 {
3287 gc_aset (h->key_and_value, 2 * idx, val);
3288 }
3289
3290 INLINE void
3291 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3292 {
3293 gc_aset (h->key_and_value, 2 * idx + 1, val);
3294 }
3295
3296 /* Use these functions to set Lisp_Object
3297 or pointer slots of struct Lisp_Symbol. */
3298
3299 INLINE void
3300 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3301 {
3302 XSYMBOL (sym)->function = function;
3303 }
3304
3305 INLINE void
3306 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3307 {
3308 XSYMBOL (sym)->plist = plist;
3309 }
3310
3311 INLINE void
3312 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3313 {
3314 XSYMBOL (sym)->next = next;
3315 }
3316
3317 /* Buffer-local (also frame-local) variable access functions. */
3318
3319 INLINE int
3320 blv_found (struct Lisp_Buffer_Local_Value *blv)
3321 {
3322 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3323 return blv->found;
3324 }
3325
3326 /* Set overlay's property list. */
3327
3328 INLINE void
3329 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3330 {
3331 XOVERLAY (overlay)->plist = plist;
3332 }
3333
3334 /* Get text properties of S. */
3335
3336 INLINE INTERVAL
3337 string_intervals (Lisp_Object s)
3338 {
3339 return XSTRING (s)->intervals;
3340 }
3341
3342 /* Set text properties of S to I. */
3343
3344 INLINE void
3345 set_string_intervals (Lisp_Object s, INTERVAL i)
3346 {
3347 XSTRING (s)->intervals = i;
3348 }
3349
3350 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3351 of setting slots directly. */
3352
3353 INLINE void
3354 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3355 {
3356 XCHAR_TABLE (table)->defalt = val;
3357 }
3358 INLINE void
3359 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3360 {
3361 XCHAR_TABLE (table)->purpose = val;
3362 }
3363
3364 /* Set different slots in (sub)character tables. */
3365
3366 INLINE void
3367 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3368 {
3369 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3370 XCHAR_TABLE (table)->extras[idx] = val;
3371 }
3372
3373 INLINE void
3374 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3375 {
3376 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3377 XCHAR_TABLE (table)->contents[idx] = val;
3378 }
3379
3380 INLINE void
3381 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3382 {
3383 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3384 }
3385
3386 /* Defined in data.c. */
3387 extern Lisp_Object Qquote, Qunbound;
3388 extern Lisp_Object Qerror_conditions, Qerror_message, Qtop_level;
3389 extern Lisp_Object Qerror, Qquit, Qargs_out_of_range;
3390 extern Lisp_Object Qvoid_variable, Qvoid_function;
3391 extern Lisp_Object Qinvalid_read_syntax;
3392 extern Lisp_Object Qinvalid_function, Qwrong_number_of_arguments, Qno_catch;
3393 extern Lisp_Object Quser_error, Qend_of_file, Qarith_error, Qmark_inactive;
3394 extern Lisp_Object Qbeginning_of_buffer, Qend_of_buffer, Qbuffer_read_only;
3395 extern Lisp_Object Qtext_read_only;
3396 extern Lisp_Object Qinteractive_form;
3397 extern Lisp_Object Qcircular_list;
3398 extern Lisp_Object Qsequencep;
3399 extern Lisp_Object Qchar_or_string_p, Qinteger_or_marker_p;
3400 extern Lisp_Object Qfboundp;
3401
3402 extern Lisp_Object Qcdr;
3403
3404 extern Lisp_Object Qrange_error, Qoverflow_error;
3405
3406 extern Lisp_Object Qnumber_or_marker_p;
3407
3408 extern Lisp_Object Qbuffer, Qinteger, Qsymbol;
3409
3410 /* Defined in data.c. */
3411 extern Lisp_Object indirect_function (Lisp_Object);
3412 extern Lisp_Object find_symbol_value (Lisp_Object);
3413 enum Arith_Comparison {
3414 ARITH_EQUAL,
3415 ARITH_NOTEQUAL,
3416 ARITH_LESS,
3417 ARITH_GRTR,
3418 ARITH_LESS_OR_EQUAL,
3419 ARITH_GRTR_OR_EQUAL
3420 };
3421 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3422 enum Arith_Comparison comparison);
3423
3424 /* Convert the integer I to an Emacs representation, either the integer
3425 itself, or a cons of two or three integers, or if all else fails a float.
3426 I should not have side effects. */
3427 #define INTEGER_TO_CONS(i) \
3428 (! FIXNUM_OVERFLOW_P (i) \
3429 ? make_number (i) \
3430 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16) \
3431 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16)) \
3432 && FIXNUM_OVERFLOW_P ((i) >> 16)) \
3433 ? Fcons (make_number ((i) >> 16), make_number ((i) & 0xffff)) \
3434 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16 >> 24) \
3435 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16 >> 24)) \
3436 && FIXNUM_OVERFLOW_P ((i) >> 16 >> 24)) \
3437 ? Fcons (make_number ((i) >> 16 >> 24), \
3438 Fcons (make_number ((i) >> 16 & 0xffffff), \
3439 make_number ((i) & 0xffff))) \
3440 : make_float (i))
3441
3442 /* Convert the Emacs representation CONS back to an integer of type
3443 TYPE, storing the result the variable VAR. Signal an error if CONS
3444 is not a valid representation or is out of range for TYPE. */
3445 #define CONS_TO_INTEGER(cons, type, var) \
3446 (TYPE_SIGNED (type) \
3447 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3448 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3449 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3450 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3451
3452 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3453 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3454 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3455 Lisp_Object);
3456 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3457 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3458 extern void syms_of_data (void);
3459 extern void swap_in_global_binding (struct Lisp_Symbol *);
3460
3461 /* Defined in cmds.c */
3462 extern void syms_of_cmds (void);
3463 extern void keys_of_cmds (void);
3464
3465 /* Defined in coding.c. */
3466 extern Lisp_Object Qcharset;
3467 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3468 ptrdiff_t, bool, bool, Lisp_Object);
3469 extern void init_coding (void);
3470 extern void init_coding_once (void);
3471 extern void syms_of_coding (void);
3472
3473 /* Defined in character.c. */
3474 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3475 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3476 extern void syms_of_character (void);
3477
3478 /* Defined in charset.c. */
3479 extern void init_charset (void);
3480 extern void init_charset_once (void);
3481 extern void syms_of_charset (void);
3482 /* Structure forward declarations. */
3483 struct charset;
3484
3485 /* Defined in syntax.c. */
3486 extern void init_syntax_once (void);
3487 extern void syms_of_syntax (void);
3488
3489 /* Defined in fns.c. */
3490 extern Lisp_Object QCrehash_size, QCrehash_threshold;
3491 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3492 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3493 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3494 extern void sweep_weak_hash_tables (void);
3495 extern Lisp_Object Qcursor_in_echo_area;
3496 extern Lisp_Object Qstring_lessp;
3497 extern Lisp_Object QCsize, QCtest, QCweakness, Qequal, Qeq;
3498 EMACS_UINT hash_string (char const *, ptrdiff_t);
3499 EMACS_UINT sxhash (Lisp_Object, int);
3500 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3501 Lisp_Object, Lisp_Object);
3502 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3503 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3504 EMACS_UINT);
3505 extern struct hash_table_test hashtest_eql, hashtest_equal;
3506 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3507 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3508 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3509 ptrdiff_t, ptrdiff_t);
3510 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3511 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3512 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3513 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3514 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3515 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3516 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3517 extern void clear_string_char_byte_cache (void);
3518 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3519 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3520 extern Lisp_Object string_to_multibyte (Lisp_Object);
3521 extern Lisp_Object string_make_unibyte (Lisp_Object);
3522 extern void syms_of_fns (void);
3523
3524 /* Defined in floatfns.c. */
3525 extern void syms_of_floatfns (void);
3526 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3527
3528 /* Defined in fringe.c. */
3529 extern void syms_of_fringe (void);
3530 extern void init_fringe (void);
3531 #ifdef HAVE_WINDOW_SYSTEM
3532 extern void mark_fringe_data (void);
3533 extern void init_fringe_once (void);
3534 #endif /* HAVE_WINDOW_SYSTEM */
3535
3536 /* Defined in image.c. */
3537 extern Lisp_Object QCascent, QCmargin, QCrelief;
3538 extern Lisp_Object QCconversion;
3539 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3540 extern void reset_image_types (void);
3541 extern void syms_of_image (void);
3542
3543 /* Defined in insdel.c. */
3544 extern Lisp_Object Qinhibit_modification_hooks;
3545 extern Lisp_Object Qregion_extract_function;
3546 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3547 extern _Noreturn void buffer_overflow (void);
3548 extern void make_gap (ptrdiff_t);
3549 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3550 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3551 ptrdiff_t, bool, bool);
3552 extern int count_combining_before (const unsigned char *,
3553 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3554 extern int count_combining_after (const unsigned char *,
3555 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3556 extern void insert (const char *, ptrdiff_t);
3557 extern void insert_and_inherit (const char *, ptrdiff_t);
3558 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3559 bool, bool, bool);
3560 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3561 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3562 ptrdiff_t, ptrdiff_t, bool);
3563 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3564 extern void insert_char (int);
3565 extern void insert_string (const char *);
3566 extern void insert_before_markers (const char *, ptrdiff_t);
3567 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3568 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3569 ptrdiff_t, ptrdiff_t,
3570 ptrdiff_t, bool);
3571 extern void del_range (ptrdiff_t, ptrdiff_t);
3572 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3573 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3574 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3575 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3576 ptrdiff_t, ptrdiff_t, bool);
3577 extern void modify_text (ptrdiff_t, ptrdiff_t);
3578 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3579 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3580 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3581 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3582 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3583 ptrdiff_t, ptrdiff_t);
3584 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3585 ptrdiff_t, ptrdiff_t);
3586 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3587 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3588 const char *, ptrdiff_t, ptrdiff_t, bool);
3589 extern void syms_of_insdel (void);
3590
3591 /* Defined in dispnew.c. */
3592 #if (defined PROFILING \
3593 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3594 _Noreturn void __executable_start (void);
3595 #endif
3596 extern Lisp_Object Vwindow_system;
3597 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3598
3599 /* Defined in xdisp.c. */
3600 extern Lisp_Object Qinhibit_point_motion_hooks;
3601 extern Lisp_Object Qinhibit_redisplay;
3602 extern Lisp_Object Qmenu_bar_update_hook;
3603 extern Lisp_Object Qwindow_scroll_functions;
3604 extern Lisp_Object Qoverriding_local_map, Qoverriding_terminal_local_map;
3605 extern Lisp_Object Qtext, Qboth, Qboth_horiz, Qtext_image_horiz;
3606 extern Lisp_Object Qspace, Qcenter, QCalign_to;
3607 extern Lisp_Object Qbar, Qhbar, Qhollow;
3608 extern Lisp_Object Qleft_margin, Qright_margin;
3609 extern Lisp_Object QCdata, QCfile;
3610 extern Lisp_Object QCmap;
3611 extern Lisp_Object Qrisky_local_variable;
3612 extern bool noninteractive_need_newline;
3613 extern Lisp_Object echo_area_buffer[2];
3614 extern void add_to_log (const char *, Lisp_Object, Lisp_Object);
3615 extern void check_message_stack (void);
3616 extern void setup_echo_area_for_printing (int);
3617 extern bool push_message (void);
3618 extern void pop_message_unwind (void);
3619 extern Lisp_Object restore_message_unwind (Lisp_Object);
3620 extern void restore_message (void);
3621 extern Lisp_Object current_message (void);
3622 extern void clear_message (bool, bool);
3623 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3624 extern void message1 (const char *);
3625 extern void message1_nolog (const char *);
3626 extern void message3 (Lisp_Object);
3627 extern void message3_nolog (Lisp_Object);
3628 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3629 extern void message_with_string (const char *, Lisp_Object, int);
3630 extern void message_log_maybe_newline (void);
3631 extern void update_echo_area (void);
3632 extern void truncate_echo_area (ptrdiff_t);
3633 extern void redisplay (void);
3634
3635 void set_frame_cursor_types (struct frame *, Lisp_Object);
3636 extern void syms_of_xdisp (void);
3637 extern void init_xdisp (void);
3638 extern Lisp_Object safe_eval (Lisp_Object);
3639 extern int pos_visible_p (struct window *, ptrdiff_t, int *,
3640 int *, int *, int *, int *, int *);
3641
3642 /* Defined in xsettings.c. */
3643 extern void syms_of_xsettings (void);
3644
3645 /* Defined in vm-limit.c. */
3646 extern void memory_warnings (void *, void (*warnfun) (const char *));
3647
3648 /* Defined in character.c. */
3649 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3650 ptrdiff_t *, ptrdiff_t *);
3651
3652 /* Defined in alloc.c. */
3653 extern void check_pure_size (void);
3654 extern void free_misc (Lisp_Object);
3655 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3656 extern void malloc_warning (const char *);
3657 extern _Noreturn void memory_full (size_t);
3658 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3659 extern bool survives_gc_p (Lisp_Object);
3660 extern void mark_object (Lisp_Object);
3661 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3662 extern void refill_memory_reserve (void);
3663 #endif
3664 extern const char *pending_malloc_warning;
3665 extern Lisp_Object zero_vector;
3666 extern Lisp_Object *stack_base;
3667 extern EMACS_INT consing_since_gc;
3668 extern EMACS_INT gc_relative_threshold;
3669 extern EMACS_INT memory_full_cons_threshold;
3670 extern Lisp_Object list1 (Lisp_Object);
3671 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3672 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3673 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3674 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3675 Lisp_Object);
3676 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3677 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3678
3679 /* Build a frequently used 2/3/4-integer lists. */
3680
3681 INLINE Lisp_Object
3682 list2i (EMACS_INT x, EMACS_INT y)
3683 {
3684 return list2 (make_number (x), make_number (y));
3685 }
3686
3687 INLINE Lisp_Object
3688 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3689 {
3690 return list3 (make_number (x), make_number (y), make_number (w));
3691 }
3692
3693 INLINE Lisp_Object
3694 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3695 {
3696 return list4 (make_number (x), make_number (y),
3697 make_number (w), make_number (h));
3698 }
3699
3700 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3701 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3702 extern _Noreturn void string_overflow (void);
3703 extern Lisp_Object make_string (const char *, ptrdiff_t);
3704 extern Lisp_Object local_string_init (struct Lisp_String *, char const *,
3705 ptrdiff_t);
3706 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3707 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3708 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3709
3710 /* Make unibyte string from C string when the length isn't known. */
3711
3712 INLINE Lisp_Object
3713 build_unibyte_string (const char *str)
3714 {
3715 return make_unibyte_string (str, strlen (str));
3716 }
3717
3718 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3719 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3720 extern Lisp_Object make_uninit_string (EMACS_INT);
3721 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3722 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3723 extern Lisp_Object make_specified_string (const char *,
3724 ptrdiff_t, ptrdiff_t, bool);
3725 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3726 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3727
3728 /* Make a string allocated in pure space, use STR as string data. */
3729
3730 INLINE Lisp_Object
3731 build_pure_c_string (const char *str)
3732 {
3733 return make_pure_c_string (str, strlen (str));
3734 }
3735
3736 /* Make a string from the data at STR, treating it as multibyte if the
3737 data warrants. */
3738
3739 INLINE Lisp_Object
3740 build_string (const char *str)
3741 {
3742 return make_string (str, strlen (str));
3743 }
3744
3745 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3746 extern void make_byte_code (struct Lisp_Vector *);
3747 extern Lisp_Object Qautomatic_gc;
3748 extern Lisp_Object Qchar_table_extra_slots;
3749 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3750
3751 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3752 be sure that GC cannot happen until the vector is completely
3753 initialized. E.g. the following code is likely to crash:
3754
3755 v = make_uninit_vector (3);
3756 ASET (v, 0, obj0);
3757 ASET (v, 1, Ffunction_can_gc ());
3758 ASET (v, 2, obj1); */
3759
3760 INLINE Lisp_Object
3761 make_uninit_vector (ptrdiff_t size)
3762 {
3763 Lisp_Object v;
3764 struct Lisp_Vector *p;
3765
3766 p = allocate_vector (size);
3767 XSETVECTOR (v, p);
3768 return v;
3769 }
3770
3771 /* Like above, but special for sub char-tables. */
3772
3773 INLINE Lisp_Object
3774 make_uninit_sub_char_table (int depth, int min_char)
3775 {
3776 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3777 Lisp_Object v = make_uninit_vector (slots);
3778
3779 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3780 XSUB_CHAR_TABLE (v)->depth = depth;
3781 XSUB_CHAR_TABLE (v)->min_char = min_char;
3782 return v;
3783 }
3784
3785 extern struct Lisp_Vector *allocate_pseudovector (int, int, enum pvec_type);
3786 #define ALLOCATE_PSEUDOVECTOR(typ,field,tag) \
3787 ((typ*) \
3788 allocate_pseudovector \
3789 (VECSIZE (typ), PSEUDOVECSIZE (typ, field), tag))
3790 extern struct Lisp_Hash_Table *allocate_hash_table (void);
3791 extern struct window *allocate_window (void);
3792 extern struct frame *allocate_frame (void);
3793 extern struct Lisp_Process *allocate_process (void);
3794 extern Lisp_Object local_vector_init (struct Lisp_Vector *, ptrdiff_t,
3795 Lisp_Object);
3796 extern struct terminal *allocate_terminal (void);
3797 extern bool gc_in_progress;
3798 extern bool abort_on_gc;
3799 extern Lisp_Object make_float (double);
3800 extern void display_malloc_warning (void);
3801 extern ptrdiff_t inhibit_garbage_collection (void);
3802 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3803 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3804 Lisp_Object, Lisp_Object);
3805 extern Lisp_Object make_save_ptr (void *);
3806 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3807 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3808 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3809 Lisp_Object);
3810 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3811 extern void free_save_value (Lisp_Object);
3812 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3813 extern void free_marker (Lisp_Object);
3814 extern void free_cons (struct Lisp_Cons *);
3815 extern void init_alloc_once (void);
3816 extern void init_alloc (void);
3817 extern void syms_of_alloc (void);
3818 extern struct buffer * allocate_buffer (void);
3819 extern int valid_lisp_object_p (Lisp_Object);
3820 extern int relocatable_string_data_p (const char *);
3821 #ifdef GC_CHECK_CONS_LIST
3822 extern void check_cons_list (void);
3823 #else
3824 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3825 #endif
3826
3827 #ifdef REL_ALLOC
3828 /* Defined in ralloc.c. */
3829 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3830 extern void r_alloc_free (void **);
3831 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3832 extern void r_alloc_reset_variable (void **, void **);
3833 extern void r_alloc_inhibit_buffer_relocation (int);
3834 #endif
3835
3836 /* Defined in chartab.c. */
3837 extern Lisp_Object copy_char_table (Lisp_Object);
3838 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3839 int *, int *);
3840 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3841 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3842 Lisp_Object),
3843 Lisp_Object, Lisp_Object, Lisp_Object);
3844 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3845 Lisp_Object, Lisp_Object,
3846 Lisp_Object, struct charset *,
3847 unsigned, unsigned);
3848 extern Lisp_Object uniprop_table (Lisp_Object);
3849 extern void syms_of_chartab (void);
3850
3851 /* Defined in print.c. */
3852 extern Lisp_Object Vprin1_to_string_buffer;
3853 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3854 extern Lisp_Object Qstandard_output;
3855 extern Lisp_Object Qexternal_debugging_output;
3856 extern void temp_output_buffer_setup (const char *);
3857 extern int print_level;
3858 extern Lisp_Object Qprint_escape_newlines;
3859 extern void write_string (const char *, int);
3860 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3861 Lisp_Object);
3862 extern Lisp_Object internal_with_output_to_temp_buffer
3863 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3864 #define FLOAT_TO_STRING_BUFSIZE 350
3865 extern int float_to_string (char *, double);
3866 extern void init_print_once (void);
3867 extern void syms_of_print (void);
3868
3869 /* Defined in doprnt.c. */
3870 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3871 va_list);
3872 extern ptrdiff_t esprintf (char *, char const *, ...)
3873 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3874 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3875 char const *, ...)
3876 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3877 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3878 char const *, va_list)
3879 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3880
3881 /* Defined in lread.c. */
3882 extern Lisp_Object Qvariable_documentation, Qstandard_input;
3883 extern Lisp_Object Qbackquote, Qcomma, Qcomma_at, Qcomma_dot, Qfunction;
3884 extern Lisp_Object Qlexical_binding;
3885 extern Lisp_Object check_obarray (Lisp_Object);
3886 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3887 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3888 extern Lisp_Object intern_driver (Lisp_Object, Lisp_Object, ptrdiff_t);
3889 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3890 INLINE void
3891 LOADHIST_ATTACH (Lisp_Object x)
3892 {
3893 if (initialized)
3894 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3895 }
3896 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3897 Lisp_Object *, Lisp_Object, bool);
3898 extern Lisp_Object string_to_number (char const *, int, bool);
3899 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3900 Lisp_Object);
3901 extern void dir_warning (const char *, Lisp_Object);
3902 extern void init_obarray (void);
3903 extern void init_lread (void);
3904 extern void syms_of_lread (void);
3905
3906 INLINE Lisp_Object
3907 intern (const char *str)
3908 {
3909 return intern_1 (str, strlen (str));
3910 }
3911
3912 INLINE Lisp_Object
3913 intern_c_string (const char *str)
3914 {
3915 return intern_c_string_1 (str, strlen (str));
3916 }
3917
3918 /* Defined in eval.c. */
3919 extern EMACS_INT lisp_eval_depth;
3920 extern Lisp_Object Qexit, Qinteractive, Qcommandp, Qmacro;
3921 extern Lisp_Object Qinhibit_quit, Qinternal_interpreter_environment, Qclosure;
3922 extern Lisp_Object Qand_rest;
3923 extern Lisp_Object Vautoload_queue;
3924 extern Lisp_Object Vsignaling_function;
3925 extern Lisp_Object inhibit_lisp_code;
3926 extern struct handler *handlerlist;
3927
3928 /* To run a normal hook, use the appropriate function from the list below.
3929 The calling convention:
3930
3931 if (!NILP (Vrun_hooks))
3932 call1 (Vrun_hooks, Qmy_funny_hook);
3933
3934 should no longer be used. */
3935 extern Lisp_Object Vrun_hooks;
3936 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3937 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3938 Lisp_Object (*funcall)
3939 (ptrdiff_t nargs, Lisp_Object *args));
3940 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3941 extern _Noreturn void xsignal0 (Lisp_Object);
3942 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3943 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3944 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3945 Lisp_Object);
3946 extern _Noreturn void signal_error (const char *, Lisp_Object);
3947 extern Lisp_Object eval_sub (Lisp_Object form);
3948 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3949 extern Lisp_Object call0 (Lisp_Object);
3950 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3951 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3952 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3953 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3954 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3955 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3956 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3957 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3958 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3959 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3960 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3961 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3962 extern Lisp_Object internal_condition_case_n
3963 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3964 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3965 extern void specbind (Lisp_Object, Lisp_Object);
3966 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3967 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3968 extern void record_unwind_protect_int (void (*) (int), int);
3969 extern void record_unwind_protect_void (void (*) (void));
3970 extern void record_unwind_protect_nothing (void);
3971 extern void clear_unwind_protect (ptrdiff_t);
3972 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3973 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3974 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3975 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3976 extern _Noreturn void verror (const char *, va_list)
3977 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3978 extern void un_autoload (Lisp_Object);
3979 extern Lisp_Object call_debugger (Lisp_Object arg);
3980 extern void init_eval_once (void);
3981 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3982 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
3983 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3984 extern void init_eval (void);
3985 extern void syms_of_eval (void);
3986 extern void unwind_body (Lisp_Object);
3987 extern ptrdiff_t record_in_backtrace (Lisp_Object, Lisp_Object *, ptrdiff_t);
3988 extern void mark_specpdl (void);
3989 extern void get_backtrace (Lisp_Object array);
3990 Lisp_Object backtrace_top_function (void);
3991 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
3992 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
3993
3994
3995 /* Defined in editfns.c. */
3996 extern Lisp_Object Qfield;
3997 extern void insert1 (Lisp_Object);
3998 extern Lisp_Object format2 (const char *, Lisp_Object, Lisp_Object);
3999 extern Lisp_Object save_excursion_save (void);
4000 extern Lisp_Object save_restriction_save (void);
4001 extern void save_excursion_restore (Lisp_Object);
4002 extern void save_restriction_restore (Lisp_Object);
4003 extern _Noreturn void time_overflow (void);
4004 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
4005 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
4006 ptrdiff_t, bool);
4007 extern void init_editfns (void);
4008 extern void syms_of_editfns (void);
4009 extern void set_time_zone_rule (const char *);
4010
4011 /* Defined in buffer.c. */
4012 extern bool mouse_face_overlay_overlaps (Lisp_Object);
4013 extern _Noreturn void nsberror (Lisp_Object);
4014 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
4015 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
4016 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
4017 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
4018 Lisp_Object, Lisp_Object, Lisp_Object);
4019 extern bool overlay_touches_p (ptrdiff_t);
4020 extern Lisp_Object other_buffer_safely (Lisp_Object);
4021 extern Lisp_Object get_truename_buffer (Lisp_Object);
4022 extern void init_buffer_once (void);
4023 extern void init_buffer (int);
4024 extern void syms_of_buffer (void);
4025 extern void keys_of_buffer (void);
4026
4027 /* Defined in marker.c. */
4028
4029 extern ptrdiff_t marker_position (Lisp_Object);
4030 extern ptrdiff_t marker_byte_position (Lisp_Object);
4031 extern void clear_charpos_cache (struct buffer *);
4032 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
4033 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
4034 extern void unchain_marker (struct Lisp_Marker *marker);
4035 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
4036 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
4037 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
4038 ptrdiff_t, ptrdiff_t);
4039 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
4040 extern void syms_of_marker (void);
4041
4042 /* Defined in fileio.c. */
4043
4044 extern Lisp_Object Qfile_error;
4045 extern Lisp_Object Qfile_notify_error;
4046 extern Lisp_Object Qfile_exists_p;
4047 extern Lisp_Object Qfile_directory_p;
4048 extern Lisp_Object Qinsert_file_contents;
4049 extern Lisp_Object Qfile_name_history;
4050 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
4051 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
4052 Lisp_Object, Lisp_Object, Lisp_Object,
4053 Lisp_Object, int);
4054 extern void close_file_unwind (int);
4055 extern void fclose_unwind (void *);
4056 extern void restore_point_unwind (Lisp_Object);
4057 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
4058 extern _Noreturn void report_file_error (const char *, Lisp_Object);
4059 extern bool internal_delete_file (Lisp_Object);
4060 extern Lisp_Object emacs_readlinkat (int, const char *);
4061 extern bool file_directory_p (const char *);
4062 extern bool file_accessible_directory_p (Lisp_Object);
4063 extern void init_fileio (void);
4064 extern void syms_of_fileio (void);
4065 extern Lisp_Object make_temp_name (Lisp_Object, bool);
4066 extern Lisp_Object Qdelete_file;
4067
4068 /* Defined in search.c. */
4069 extern void shrink_regexp_cache (void);
4070 extern void restore_search_regs (void);
4071 extern void record_unwind_save_match_data (void);
4072 struct re_registers;
4073 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4074 struct re_registers *,
4075 Lisp_Object, bool, bool);
4076 extern ptrdiff_t fast_string_match (Lisp_Object, Lisp_Object);
4077 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4078 ptrdiff_t);
4079 extern ptrdiff_t fast_string_match_ignore_case (Lisp_Object, Lisp_Object);
4080 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4081 ptrdiff_t, ptrdiff_t, Lisp_Object);
4082 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4083 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4084 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4085 ptrdiff_t, bool);
4086 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4087 ptrdiff_t, ptrdiff_t *);
4088 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4089 ptrdiff_t, ptrdiff_t *);
4090 extern void syms_of_search (void);
4091 extern void clear_regexp_cache (void);
4092
4093 /* Defined in minibuf.c. */
4094
4095 extern Lisp_Object Qcompletion_ignore_case;
4096 extern Lisp_Object Vminibuffer_list;
4097 extern Lisp_Object last_minibuf_string;
4098 extern Lisp_Object get_minibuffer (EMACS_INT);
4099 extern void init_minibuf_once (void);
4100 extern void syms_of_minibuf (void);
4101
4102 /* Defined in callint.c. */
4103
4104 extern Lisp_Object Qminus, Qplus;
4105 extern Lisp_Object Qprogn;
4106 extern Lisp_Object Qwhen;
4107 extern Lisp_Object Qmouse_leave_buffer_hook;
4108 extern void syms_of_callint (void);
4109
4110 /* Defined in casefiddle.c. */
4111
4112 extern Lisp_Object Qidentity;
4113 extern void syms_of_casefiddle (void);
4114 extern void keys_of_casefiddle (void);
4115
4116 /* Defined in casetab.c. */
4117
4118 extern void init_casetab_once (void);
4119 extern void syms_of_casetab (void);
4120
4121 /* Defined in keyboard.c. */
4122
4123 extern Lisp_Object echo_message_buffer;
4124 extern struct kboard *echo_kboard;
4125 extern void cancel_echoing (void);
4126 extern Lisp_Object Qdisabled, QCfilter;
4127 extern Lisp_Object Qup, Qdown;
4128 extern Lisp_Object last_undo_boundary;
4129 extern bool input_pending;
4130 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4131 extern sigjmp_buf return_to_command_loop;
4132 #endif
4133 extern Lisp_Object menu_bar_items (Lisp_Object);
4134 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4135 extern void discard_mouse_events (void);
4136 #ifdef USABLE_SIGIO
4137 void handle_input_available_signal (int);
4138 #endif
4139 extern Lisp_Object pending_funcalls;
4140 extern bool detect_input_pending (void);
4141 extern bool detect_input_pending_ignore_squeezables (void);
4142 extern bool detect_input_pending_run_timers (bool);
4143 extern void safe_run_hooks (Lisp_Object);
4144 extern void cmd_error_internal (Lisp_Object, const char *);
4145 extern Lisp_Object command_loop_1 (void);
4146 extern Lisp_Object read_menu_command (void);
4147 extern Lisp_Object recursive_edit_1 (void);
4148 extern void record_auto_save (void);
4149 extern void force_auto_save_soon (void);
4150 extern void init_keyboard (void);
4151 extern void syms_of_keyboard (void);
4152 extern void keys_of_keyboard (void);
4153
4154 /* Defined in indent.c. */
4155 extern ptrdiff_t current_column (void);
4156 extern void invalidate_current_column (void);
4157 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4158 extern void syms_of_indent (void);
4159
4160 /* Defined in frame.c. */
4161 extern Lisp_Object Qonly, Qnone;
4162 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4163 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4164 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4165 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4166 extern void frames_discard_buffer (Lisp_Object);
4167 extern void syms_of_frame (void);
4168
4169 /* Defined in emacs.c. */
4170 extern char **initial_argv;
4171 extern int initial_argc;
4172 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4173 extern bool display_arg;
4174 #endif
4175 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4176 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4177 extern Lisp_Object Qfile_name_handler_alist;
4178 extern _Noreturn void terminate_due_to_signal (int, int);
4179 extern Lisp_Object Qkill_emacs;
4180 #ifdef WINDOWSNT
4181 extern Lisp_Object Vlibrary_cache;
4182 #endif
4183 #if HAVE_SETLOCALE
4184 void fixup_locale (void);
4185 void synchronize_system_messages_locale (void);
4186 void synchronize_system_time_locale (void);
4187 #else
4188 INLINE void fixup_locale (void) {}
4189 INLINE void synchronize_system_messages_locale (void) {}
4190 INLINE void synchronize_system_time_locale (void) {}
4191 #endif
4192 extern void shut_down_emacs (int, Lisp_Object);
4193
4194 /* True means don't do interactive redisplay and don't change tty modes. */
4195 extern bool noninteractive;
4196
4197 /* True means remove site-lisp directories from load-path. */
4198 extern bool no_site_lisp;
4199
4200 /* Pipe used to send exit notification to the daemon parent at
4201 startup. */
4202 extern int daemon_pipe[2];
4203 #define IS_DAEMON (daemon_pipe[1] != 0)
4204
4205 /* True if handling a fatal error already. */
4206 extern bool fatal_error_in_progress;
4207
4208 /* True means don't do use window-system-specific display code. */
4209 extern bool inhibit_window_system;
4210 /* True means that a filter or a sentinel is running. */
4211 extern bool running_asynch_code;
4212
4213 /* Defined in process.c. */
4214 extern Lisp_Object QCtype, Qlocal;
4215 extern void kill_buffer_processes (Lisp_Object);
4216 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4217 struct Lisp_Process *, int);
4218 /* Max value for the first argument of wait_reading_process_output. */
4219 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4220 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4221 The bug merely causes a bogus warning, but the warning is annoying. */
4222 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4223 #else
4224 # define WAIT_READING_MAX INTMAX_MAX
4225 #endif
4226 #ifdef HAVE_TIMERFD
4227 extern void add_timer_wait_descriptor (int);
4228 #endif
4229 extern void add_keyboard_wait_descriptor (int);
4230 extern void delete_keyboard_wait_descriptor (int);
4231 #ifdef HAVE_GPM
4232 extern void add_gpm_wait_descriptor (int);
4233 extern void delete_gpm_wait_descriptor (int);
4234 #endif
4235 extern void init_process_emacs (void);
4236 extern void syms_of_process (void);
4237 extern void setup_process_coding_systems (Lisp_Object);
4238
4239 /* Defined in callproc.c. */
4240 #ifndef DOS_NT
4241 _Noreturn
4242 #endif
4243 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4244 extern void init_callproc_1 (void);
4245 extern void init_callproc (void);
4246 extern void set_initial_environment (void);
4247 extern void syms_of_callproc (void);
4248
4249 /* Defined in doc.c. */
4250 extern Lisp_Object Qfunction_documentation;
4251 extern Lisp_Object read_doc_string (Lisp_Object);
4252 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4253 extern void syms_of_doc (void);
4254 extern int read_bytecode_char (bool);
4255
4256 /* Defined in bytecode.c. */
4257 extern void syms_of_bytecode (void);
4258 extern struct byte_stack *byte_stack_list;
4259 #if BYTE_MARK_STACK
4260 extern void mark_byte_stack (void);
4261 #endif
4262 extern void unmark_byte_stack (void);
4263 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4264 Lisp_Object, ptrdiff_t, Lisp_Object *);
4265
4266 /* Defined in macros.c. */
4267 extern void init_macros (void);
4268 extern void syms_of_macros (void);
4269
4270 /* Defined in undo.c. */
4271 extern Lisp_Object Qapply;
4272 extern Lisp_Object Qinhibit_read_only;
4273 extern void truncate_undo_list (struct buffer *);
4274 extern void record_insert (ptrdiff_t, ptrdiff_t);
4275 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4276 extern void record_first_change (void);
4277 extern void record_change (ptrdiff_t, ptrdiff_t);
4278 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4279 Lisp_Object, Lisp_Object,
4280 Lisp_Object);
4281 extern void syms_of_undo (void);
4282 /* Defined in textprop.c. */
4283 extern Lisp_Object Qmouse_face;
4284 extern Lisp_Object Qinsert_in_front_hooks, Qinsert_behind_hooks;
4285 extern Lisp_Object Qminibuffer_prompt;
4286
4287 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4288
4289 /* Defined in menu.c. */
4290 extern void syms_of_menu (void);
4291
4292 /* Defined in xmenu.c. */
4293 extern void syms_of_xmenu (void);
4294
4295 /* Defined in termchar.h. */
4296 struct tty_display_info;
4297
4298 /* Defined in termhooks.h. */
4299 struct terminal;
4300
4301 /* Defined in sysdep.c. */
4302 #ifndef HAVE_GET_CURRENT_DIR_NAME
4303 extern char *get_current_dir_name (void);
4304 #endif
4305 extern void stuff_char (char c);
4306 extern void init_foreground_group (void);
4307 extern void sys_subshell (void);
4308 extern void sys_suspend (void);
4309 extern void discard_tty_input (void);
4310 extern void init_sys_modes (struct tty_display_info *);
4311 extern void reset_sys_modes (struct tty_display_info *);
4312 extern void init_all_sys_modes (void);
4313 extern void reset_all_sys_modes (void);
4314 extern void child_setup_tty (int);
4315 extern void setup_pty (int);
4316 extern int set_window_size (int, int, int);
4317 extern EMACS_INT get_random (void);
4318 extern void seed_random (void *, ptrdiff_t);
4319 extern void init_random (void);
4320 extern void emacs_backtrace (int);
4321 extern _Noreturn void emacs_abort (void) NO_INLINE;
4322 extern int emacs_open (const char *, int, int);
4323 extern int emacs_pipe (int[2]);
4324 extern int emacs_close (int);
4325 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4326 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4327 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4328 extern void emacs_perror (char const *);
4329
4330 extern void unlock_all_files (void);
4331 extern void lock_file (Lisp_Object);
4332 extern void unlock_file (Lisp_Object);
4333 extern void unlock_buffer (struct buffer *);
4334 extern void syms_of_filelock (void);
4335 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4336
4337 /* Defined in sound.c. */
4338 extern void syms_of_sound (void);
4339
4340 /* Defined in category.c. */
4341 extern void init_category_once (void);
4342 extern Lisp_Object char_category_set (int);
4343 extern void syms_of_category (void);
4344
4345 /* Defined in ccl.c. */
4346 extern void syms_of_ccl (void);
4347
4348 /* Defined in dired.c. */
4349 extern void syms_of_dired (void);
4350 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4351 Lisp_Object, Lisp_Object,
4352 bool, Lisp_Object);
4353
4354 /* Defined in term.c. */
4355 extern int *char_ins_del_vector;
4356 extern void syms_of_term (void);
4357 extern _Noreturn void fatal (const char *msgid, ...)
4358 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4359
4360 /* Defined in terminal.c. */
4361 extern void syms_of_terminal (void);
4362
4363 /* Defined in font.c. */
4364 extern void syms_of_font (void);
4365 extern void init_font (void);
4366
4367 #ifdef HAVE_WINDOW_SYSTEM
4368 /* Defined in fontset.c. */
4369 extern void syms_of_fontset (void);
4370
4371 /* Defined in xfns.c, w32fns.c, or macfns.c. */
4372 extern Lisp_Object Qfont_param;
4373 #endif
4374
4375 /* Defined in gfilenotify.c */
4376 #ifdef HAVE_GFILENOTIFY
4377 extern void globals_of_gfilenotify (void);
4378 extern void syms_of_gfilenotify (void);
4379 #endif
4380
4381 /* Defined in inotify.c */
4382 #ifdef HAVE_INOTIFY
4383 extern void syms_of_inotify (void);
4384 #endif
4385
4386 #ifdef HAVE_W32NOTIFY
4387 /* Defined on w32notify.c. */
4388 extern void syms_of_w32notify (void);
4389 #endif
4390
4391 /* Defined in xfaces.c. */
4392 extern Lisp_Object Qdefault, Qfringe;
4393 extern Lisp_Object Qscroll_bar, Qcursor;
4394 extern Lisp_Object Qmode_line_inactive;
4395 extern Lisp_Object Qface;
4396 extern Lisp_Object Qnormal;
4397 extern Lisp_Object QCfamily, QCweight, QCslant;
4398 extern Lisp_Object QCheight, QCname, QCwidth, QCforeground, QCbackground;
4399 extern Lisp_Object Qextra_light, Qlight, Qsemi_light, Qsemi_bold;
4400 extern Lisp_Object Qbold, Qextra_bold, Qultra_bold;
4401 extern Lisp_Object Qoblique, Qitalic;
4402 extern Lisp_Object Vface_alternative_font_family_alist;
4403 extern Lisp_Object Vface_alternative_font_registry_alist;
4404 extern void syms_of_xfaces (void);
4405
4406 #ifdef HAVE_X_WINDOWS
4407 /* Defined in xfns.c. */
4408 extern void syms_of_xfns (void);
4409
4410 /* Defined in xsmfns.c. */
4411 extern void syms_of_xsmfns (void);
4412
4413 /* Defined in xselect.c. */
4414 extern void syms_of_xselect (void);
4415
4416 /* Defined in xterm.c. */
4417 extern void syms_of_xterm (void);
4418 #endif /* HAVE_X_WINDOWS */
4419
4420 #ifdef HAVE_WINDOW_SYSTEM
4421 /* Defined in xterm.c, nsterm.m, w32term.c. */
4422 extern char *x_get_keysym_name (int);
4423 #endif /* HAVE_WINDOW_SYSTEM */
4424
4425 #ifdef HAVE_LIBXML2
4426 /* Defined in xml.c. */
4427 extern void syms_of_xml (void);
4428 extern void xml_cleanup_parser (void);
4429 #endif
4430
4431 #ifdef HAVE_ZLIB
4432 /* Defined in decompress.c. */
4433 extern void syms_of_decompress (void);
4434 #endif
4435
4436 #ifdef HAVE_DBUS
4437 /* Defined in dbusbind.c. */
4438 void syms_of_dbusbind (void);
4439 #endif
4440
4441
4442 /* Defined in profiler.c. */
4443 extern bool profiler_memory_running;
4444 extern void malloc_probe (size_t);
4445 extern void syms_of_profiler (void);
4446
4447
4448 #ifdef DOS_NT
4449 /* Defined in msdos.c, w32.c. */
4450 extern char *emacs_root_dir (void);
4451 #endif /* DOS_NT */
4452
4453 /* Defined in lastfile.c. */
4454 extern char my_edata[];
4455 extern char my_endbss[];
4456 extern char *my_endbss_static;
4457
4458 /* True means ^G can quit instantly. */
4459 extern bool immediate_quit;
4460
4461 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4462 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4463 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4464 extern void xfree (void *);
4465 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4466 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4467 ATTRIBUTE_ALLOC_SIZE ((2,3));
4468 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4469
4470 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4471 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4472 extern void dupstring (char **, char const *);
4473
4474 /* Make DEST a copy of STRING's data. Return a pointer to DEST's terminating
4475 null byte. This is like stpcpy, except the source is a Lisp string. */
4476
4477 INLINE char *
4478 lispstpcpy (char *dest, Lisp_Object string)
4479 {
4480 ptrdiff_t len = SBYTES (string);
4481 memcpy (dest, SDATA (string), len + 1);
4482 return dest + len;
4483 }
4484
4485 extern void xputenv (const char *);
4486
4487 extern char *egetenv_internal (const char *, ptrdiff_t);
4488
4489 INLINE char *
4490 egetenv (const char *var)
4491 {
4492 /* When VAR is a string literal, strlen can be optimized away. */
4493 return egetenv_internal (var, strlen (var));
4494 }
4495
4496 /* Set up the name of the machine we're running on. */
4497 extern void init_system_name (void);
4498
4499 /* Return the absolute value of X. X should be a signed integer
4500 expression without side effects, and X's absolute value should not
4501 exceed the maximum for its promoted type. This is called 'eabs'
4502 because 'abs' is reserved by the C standard. */
4503 #define eabs(x) ((x) < 0 ? -(x) : (x))
4504
4505 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4506 fixnum. */
4507
4508 #define make_fixnum_or_float(val) \
4509 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4510
4511 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4512 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4513
4514 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4515
4516 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4517
4518 #define USE_SAFE_ALLOCA \
4519 ptrdiff_t sa_avail = MAX_ALLOCA; \
4520 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4521
4522 #define AVAIL_ALLOCA(size) (sa_avail -= (size), alloca (size))
4523
4524 /* SAFE_ALLOCA allocates a simple buffer. */
4525
4526 #define SAFE_ALLOCA(size) ((size) <= sa_avail \
4527 ? AVAIL_ALLOCA (size) \
4528 : (sa_must_free = true, record_xmalloc (size)))
4529
4530 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4531 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4532 positive. The code is tuned for MULTIPLIER being a constant. */
4533
4534 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4535 do { \
4536 if ((nitems) <= sa_avail / sizeof *(buf) / (multiplier)) \
4537 (buf) = AVAIL_ALLOCA (sizeof *(buf) * (multiplier) * (nitems)); \
4538 else \
4539 { \
4540 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4541 sa_must_free = true; \
4542 record_unwind_protect_ptr (xfree, buf); \
4543 } \
4544 } while (false)
4545
4546 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4547
4548 #define SAFE_ALLOCA_STRING(ptr, string) \
4549 do { \
4550 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4551 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4552 } while (false)
4553
4554 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4555
4556 #define SAFE_FREE() \
4557 do { \
4558 if (sa_must_free) { \
4559 sa_must_free = false; \
4560 unbind_to (sa_count, Qnil); \
4561 } \
4562 } while (false)
4563
4564
4565 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4566
4567 #define SAFE_ALLOCA_LISP(buf, nelt) \
4568 do { \
4569 if ((nelt) <= sa_avail / word_size) \
4570 (buf) = AVAIL_ALLOCA ((nelt) * word_size); \
4571 else if ((nelt) <= min (PTRDIFF_MAX, SIZE_MAX) / word_size) \
4572 { \
4573 Lisp_Object arg_; \
4574 (buf) = xmalloc ((nelt) * word_size); \
4575 arg_ = make_save_memory (buf, nelt); \
4576 sa_must_free = true; \
4577 record_unwind_protect (free_save_value, arg_); \
4578 } \
4579 else \
4580 memory_full (SIZE_MAX); \
4581 } while (false)
4582
4583
4584 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that
4585 allocate block-scoped conses and function-scoped vectors and
4586 strings. These objects are not managed by the garbage collector,
4587 so they are dangerous: passing them out of their scope (e.g., to
4588 user code) results in undefined behavior. Conversely, they have
4589 better performance because GC is not involved.
4590
4591 This feature is experimental and requires careful debugging.
4592 It's enabled by default on GNU/Linux with GCC. On other systems,
4593 brave users can compile with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS'
4594 to get into the game. Also note that this feature requires
4595 GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS. */
4596
4597 /* A struct Lisp_Cons inside a union that is no larger and may be
4598 better-aligned. */
4599
4600 union Aligned_Cons
4601 {
4602 struct Lisp_Cons s;
4603 double d; intmax_t i; void *p;
4604 };
4605 verify (sizeof (struct Lisp_Cons) == sizeof (union Aligned_Cons));
4606
4607 /* Allocate a block-scoped cons. */
4608
4609 #define scoped_cons(car, cdr) \
4610 ((USE_STACK_LISP_OBJECTS \
4611 && alignof (union Aligned_Cons) % GCALIGNMENT == 0) \
4612 ? make_lisp_ptr (&((union Aligned_Cons) {{car, {cdr}}}).s, Lisp_Cons) \
4613 : Fcons (car, cdr))
4614
4615 /* Convenient utility macros similar to listX functions. */
4616
4617 #if USE_STACK_LISP_OBJECTS
4618 # define scoped_list1(a) scoped_cons (a, Qnil)
4619 # define scoped_list2(a, b) scoped_cons (a, scoped_list1 (b))
4620 # define scoped_list3(a, b, c) scoped_cons (a, scoped_list2 (b, c))
4621 # define scoped_list4(a, b, c, d) scoped_cons (a, scoped_list3 (b, c, d))
4622 #else
4623 # define scoped_list1(a) list1 (a)
4624 # define scoped_list2(a, b) list2 (a, b)
4625 # define scoped_list3(a, b, c) list3 (a, b, c)
4626 # define scoped_list4(a, b, c, d) list4 (a, b, c, d)
4627 #endif
4628
4629 /* Local allocators require both statement expressions and a
4630 GCALIGNMENT-aligned alloca. clang's alloca isn't properly aligned
4631 in some cases. In the absence of solid information, play it safe
4632 for other non-GCC compilers. */
4633 #if (USE_STACK_LISP_OBJECTS && HAVE_STATEMENT_EXPRESSIONS \
4634 && __GNUC__ && !__clang__)
4635 # define USE_LOCAL_ALLOCATORS
4636 #endif
4637
4638 #ifdef USE_LOCAL_ALLOCATORS
4639
4640 /* Return a function-scoped cons whose car is X and cdr is Y. */
4641
4642 # define local_cons(x, y) \
4643 ({ \
4644 struct Lisp_Cons *c_ = alloca (sizeof (struct Lisp_Cons)); \
4645 c_->car = (x); \
4646 c_->u.cdr = (y); \
4647 make_lisp_ptr (c_, Lisp_Cons); \
4648 })
4649
4650 # define local_list1(a) local_cons (a, Qnil)
4651 # define local_list2(a, b) local_cons (a, local_list1 (b))
4652 # define local_list3(a, b, c) local_cons (a, local_list2 (b, c))
4653 # define local_list4(a, b, c, d) local_cons (a, local_list3 (b, c, d))
4654
4655 /* Return a function-scoped vector of length SIZE, with each element
4656 being INIT. */
4657
4658 # define make_local_vector(size, init) \
4659 ({ \
4660 ptrdiff_t size_ = size; \
4661 Lisp_Object init_ = init; \
4662 Lisp_Object vec_; \
4663 if (size_ <= (MAX_ALLOCA - header_size) / word_size) \
4664 { \
4665 void *ptr_ = alloca (size_ * word_size + header_size); \
4666 vec_ = local_vector_init (ptr_, size_, init_); \
4667 } \
4668 else \
4669 vec_ = Fmake_vector (make_number (size_), init_); \
4670 vec_; \
4671 })
4672
4673 /* Return a function-scoped string with contents DATA and length NBYTES. */
4674
4675 # define make_local_string(data, nbytes) \
4676 ({ \
4677 char const *data_ = data; \
4678 ptrdiff_t nbytes_ = nbytes; \
4679 Lisp_Object string_; \
4680 if (nbytes_ <= MAX_ALLOCA - sizeof (struct Lisp_String) - 1) \
4681 { \
4682 struct Lisp_String *ptr_ \
4683 = alloca (sizeof (struct Lisp_String) + 1 + nbytes_); \
4684 string_ = local_string_init (ptr_, data_, nbytes_); \
4685 } \
4686 else \
4687 string_ = make_string (data_, nbytes_); \
4688 string_; \
4689 })
4690
4691 /* Return a function-scoped string with contents DATA. */
4692
4693 # define build_local_string(data) \
4694 ({ char const *data1_ = (data); \
4695 make_local_string (data1_, strlen (data1_)); })
4696
4697 #else
4698
4699 /* Safer but slower implementations. */
4700 INLINE Lisp_Object
4701 local_cons (Lisp_Object car, Lisp_Object cdr)
4702 {
4703 return Fcons (car, cdr);
4704 }
4705 INLINE Lisp_Object
4706 local_list1 (Lisp_Object a)
4707 {
4708 return list1 (a);
4709 }
4710 INLINE Lisp_Object
4711 local_list2 (Lisp_Object a, Lisp_Object b)
4712 {
4713 return list2 (a, b);
4714 }
4715 INLINE Lisp_Object
4716 local_list3 (Lisp_Object a, Lisp_Object b, Lisp_Object c)
4717 {
4718 return list3 (a, b, c);
4719 }
4720 INLINE Lisp_Object
4721 local_list4 (Lisp_Object a, Lisp_Object b, Lisp_Object c, Lisp_Object d)
4722 {
4723 return list4 (a, b, c, d);
4724 }
4725 INLINE Lisp_Object
4726 make_local_vector (ptrdiff_t size, Lisp_Object init)
4727 {
4728 return Fmake_vector (make_number (size), init);
4729 }
4730 INLINE Lisp_Object
4731 make_local_string (char const *str, ptrdiff_t nbytes)
4732 {
4733 return make_string (str, nbytes);
4734 }
4735 INLINE Lisp_Object
4736 build_local_string (const char *str)
4737 {
4738 return build_string (str);
4739 }
4740 #endif
4741
4742
4743 /* Loop over all tails of a list, checking for cycles.
4744 FIXME: Make tortoise and n internal declarations.
4745 FIXME: Unroll the loop body so we don't need `n'. */
4746 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4747 for ((tortoise) = (hare) = (list), (n) = true; \
4748 CONSP (hare); \
4749 (hare = XCDR (hare), (n) = !(n), \
4750 ((n) \
4751 ? (EQ (hare, tortoise) \
4752 ? xsignal1 (Qcircular_list, list) \
4753 : (void) 0) \
4754 /* Move tortoise before the next iteration, in case */ \
4755 /* the next iteration does an Fsetcdr. */ \
4756 : (void) ((tortoise) = XCDR (tortoise)))))
4757
4758 /* Do a `for' loop over alist values. */
4759
4760 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4761 for ((list_var) = (head_var); \
4762 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4763 (list_var) = XCDR (list_var))
4764
4765 /* Check whether it's time for GC, and run it if so. */
4766
4767 INLINE void
4768 maybe_gc (void)
4769 {
4770 if ((consing_since_gc > gc_cons_threshold
4771 && consing_since_gc > gc_relative_threshold)
4772 || (!NILP (Vmemory_full)
4773 && consing_since_gc > memory_full_cons_threshold))
4774 Fgarbage_collect ();
4775 }
4776
4777 INLINE bool
4778 functionp (Lisp_Object object)
4779 {
4780 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4781 {
4782 object = Findirect_function (object, Qt);
4783
4784 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4785 {
4786 /* Autoloaded symbols are functions, except if they load
4787 macros or keymaps. */
4788 int i;
4789 for (i = 0; i < 4 && CONSP (object); i++)
4790 object = XCDR (object);
4791
4792 return ! (CONSP (object) && !NILP (XCAR (object)));
4793 }
4794 }
4795
4796 if (SUBRP (object))
4797 return XSUBR (object)->max_args != UNEVALLED;
4798 else if (COMPILEDP (object))
4799 return true;
4800 else if (CONSP (object))
4801 {
4802 Lisp_Object car = XCAR (object);
4803 return EQ (car, Qlambda) || EQ (car, Qclosure);
4804 }
4805 else
4806 return false;
4807 }
4808
4809 INLINE_HEADER_END
4810
4811 #endif /* EMACS_LISP_H */