]> code.delx.au - gnu-emacs/blob - src/lisp.h
Fix problems with 32-bit wide-int build exposed by MinGW
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2015 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #define DECLARE_GDB_SYM(type, id) type const id EXTERNALLY_VISIBLE
48 #ifdef MAIN_PROGRAM
49 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) DECLARE_GDB_SYM (type, id)
50 # define DEFINE_GDB_SYMBOL_END(id) = id;
51 #else
52 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) extern DECLARE_GDB_SYM (type, id)
53 # define DEFINE_GDB_SYMBOL_END(val) ;
54 #endif
55
56 /* The ubiquitous max and min macros. */
57 #undef min
58 #undef max
59 #define max(a, b) ((a) > (b) ? (a) : (b))
60 #define min(a, b) ((a) < (b) ? (a) : (b))
61
62 /* Number of elements in an array. */
63 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
64
65 /* Number of bits in a Lisp_Object tag. */
66 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
67 #define GCTYPEBITS 3
68 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
69
70 /* The number of bits needed in an EMACS_INT over and above the number
71 of bits in a pointer. This is 0 on systems where:
72 1. We can specify multiple-of-8 alignment on static variables.
73 2. We know malloc returns a multiple of 8. */
74 #if (defined alignas \
75 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
76 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
77 || defined CYGWIN))
78 # define NONPOINTER_BITS 0
79 #else
80 # define NONPOINTER_BITS GCTYPEBITS
81 #endif
82
83 /* EMACS_INT - signed integer wide enough to hold an Emacs value
84 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
85 pI - printf length modifier for EMACS_INT
86 EMACS_UINT - unsigned variant of EMACS_INT */
87 #ifndef EMACS_INT_MAX
88 # if INTPTR_MAX <= 0
89 # error "INTPTR_MAX misconfigured"
90 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
91 typedef int EMACS_INT;
92 typedef unsigned int EMACS_UINT;
93 # define EMACS_INT_MAX INT_MAX
94 # define pI ""
95 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
96 typedef long int EMACS_INT;
97 typedef unsigned long EMACS_UINT;
98 # define EMACS_INT_MAX LONG_MAX
99 # define pI "l"
100 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
101 In theory this is not safe, but in practice it seems to be OK. */
102 # elif INTPTR_MAX <= LLONG_MAX
103 typedef long long int EMACS_INT;
104 typedef unsigned long long int EMACS_UINT;
105 # define EMACS_INT_MAX LLONG_MAX
106 # define pI "ll"
107 # else
108 # error "INTPTR_MAX too large"
109 # endif
110 #endif
111
112 /* Number of bits to put in each character in the internal representation
113 of bool vectors. This should not vary across implementations. */
114 enum { BOOL_VECTOR_BITS_PER_CHAR =
115 #define BOOL_VECTOR_BITS_PER_CHAR 8
116 BOOL_VECTOR_BITS_PER_CHAR
117 };
118
119 /* An unsigned integer type representing a fixed-length bit sequence,
120 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
121 for speed, but it is unsigned char on weird platforms. */
122 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
123 typedef size_t bits_word;
124 # define BITS_WORD_MAX SIZE_MAX
125 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
126 #else
127 typedef unsigned char bits_word;
128 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
129 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
130 #endif
131 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
132
133 /* Number of bits in some machine integer types. */
134 enum
135 {
136 BITS_PER_CHAR = CHAR_BIT,
137 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
138 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
139 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
140 };
141
142 /* printmax_t and uprintmax_t are types for printing large integers.
143 These are the widest integers that are supported for printing.
144 pMd etc. are conversions for printing them.
145 On C99 hosts, there's no problem, as even the widest integers work.
146 Fall back on EMACS_INT on pre-C99 hosts. */
147 #ifdef PRIdMAX
148 typedef intmax_t printmax_t;
149 typedef uintmax_t uprintmax_t;
150 # define pMd PRIdMAX
151 # define pMu PRIuMAX
152 #else
153 typedef EMACS_INT printmax_t;
154 typedef EMACS_UINT uprintmax_t;
155 # define pMd pI"d"
156 # define pMu pI"u"
157 #endif
158
159 /* Use pD to format ptrdiff_t values, which suffice for indexes into
160 buffers and strings. Emacs never allocates objects larger than
161 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
162 In C99, pD can always be "t"; configure it here for the sake of
163 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
164 #if PTRDIFF_MAX == INT_MAX
165 # define pD ""
166 #elif PTRDIFF_MAX == LONG_MAX
167 # define pD "l"
168 #elif PTRDIFF_MAX == LLONG_MAX
169 # define pD "ll"
170 #else
171 # define pD "t"
172 #endif
173
174 /* Extra internal type checking? */
175
176 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
177 'assume (COND)'. COND should be free of side effects, as it may or
178 may not be evaluated.
179
180 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
181 defined and suppress_checking is false, and does nothing otherwise.
182 Emacs dies if COND is checked and is false. The suppress_checking
183 variable is initialized to 0 in alloc.c. Set it to 1 using a
184 debugger to temporarily disable aborting on detected internal
185 inconsistencies or error conditions.
186
187 In some cases, a good compiler may be able to optimize away the
188 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
189 uses eassert to test STRINGP (x), but a particular use of XSTRING
190 is invoked only after testing that STRINGP (x) is true, making the
191 test redundant.
192
193 eassume is like eassert except that it also causes the compiler to
194 assume that COND is true afterwards, regardless of whether runtime
195 checking is enabled. This can improve performance in some cases,
196 though it can degrade performance in others. It's often suboptimal
197 for COND to call external functions or access volatile storage. */
198
199 #ifndef ENABLE_CHECKING
200 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
201 # define eassume(cond) assume (cond)
202 #else /* ENABLE_CHECKING */
203
204 extern _Noreturn void die (const char *, const char *, int);
205
206 extern bool suppress_checking EXTERNALLY_VISIBLE;
207
208 # define eassert(cond) \
209 (suppress_checking || (cond) \
210 ? (void) 0 \
211 : die (# cond, __FILE__, __LINE__))
212 # define eassume(cond) \
213 (suppress_checking \
214 ? assume (cond) \
215 : (cond) \
216 ? (void) 0 \
217 : die (# cond, __FILE__, __LINE__))
218 #endif /* ENABLE_CHECKING */
219
220 \f
221 /* Use the configure flag --enable-check-lisp-object-type to make
222 Lisp_Object use a struct type instead of the default int. The flag
223 causes CHECK_LISP_OBJECT_TYPE to be defined. */
224
225 /***** Select the tagging scheme. *****/
226 /* The following option controls the tagging scheme:
227 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
228 always 0, and we can thus use them to hold tag bits, without
229 restricting our addressing space.
230
231 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
232 restricting our possible address range.
233
234 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
235 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
236 on the few static Lisp_Objects used: lispsym, all the defsubr, and
237 the two special buffers buffer_defaults and buffer_local_symbols. */
238
239 enum Lisp_Bits
240 {
241 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
242 integer constant, for MSVC. */
243 #define GCALIGNMENT 8
244
245 /* Number of bits in a Lisp_Object value, not counting the tag. */
246 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
247
248 /* Number of bits in a Lisp fixnum tag. */
249 INTTYPEBITS = GCTYPEBITS - 1,
250
251 /* Number of bits in a Lisp fixnum value, not counting the tag. */
252 FIXNUM_BITS = VALBITS + 1
253 };
254
255 #if GCALIGNMENT != 1 << GCTYPEBITS
256 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
257 #endif
258
259 /* The maximum value that can be stored in a EMACS_INT, assuming all
260 bits other than the type bits contribute to a nonnegative signed value.
261 This can be used in #if, e.g., '#if USB_TAG' below expands to an
262 expression involving VAL_MAX. */
263 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
264
265 /* Whether the least-significant bits of an EMACS_INT contain the tag.
266 On hosts where pointers-as-ints do not exceed VAL_MAX / 2, USE_LSB_TAG is:
267 a. unnecessary, because the top bits of an EMACS_INT are unused, and
268 b. slower, because it typically requires extra masking.
269 So, USE_LSB_TAG is true only on hosts where it might be useful. */
270 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
271 #define USE_LSB_TAG (VAL_MAX / 2 < INTPTR_MAX)
272 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
273
274 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
275 # error "USE_LSB_TAG not supported on this platform; please report this." \
276 "Try 'configure --with-wide-int' to work around the problem."
277 error !;
278 #endif
279
280 #ifndef alignas
281 # define alignas(alignment) /* empty */
282 # if USE_LSB_TAG
283 # error "USE_LSB_TAG requires alignas"
284 # endif
285 #endif
286
287 #ifdef HAVE_STRUCT_ATTRIBUTE_ALIGNED
288 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
289 #else
290 # define GCALIGNED /* empty */
291 #endif
292
293 /* Some operations are so commonly executed that they are implemented
294 as macros, not functions, because otherwise runtime performance would
295 suffer too much when compiling with GCC without optimization.
296 There's no need to inline everything, just the operations that
297 would otherwise cause a serious performance problem.
298
299 For each such operation OP, define a macro lisp_h_OP that contains
300 the operation's implementation. That way, OP can be implemented
301 via a macro definition like this:
302
303 #define OP(x) lisp_h_OP (x)
304
305 and/or via a function definition like this:
306
307 LISP_MACRO_DEFUN (OP, Lisp_Object, (Lisp_Object x), (x))
308
309 which macro-expands to this:
310
311 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
312
313 without worrying about the implementations diverging, since
314 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
315 are intended to be private to this include file, and should not be
316 used elsewhere.
317
318 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
319 functions, once most developers have access to GCC 4.8 or later and
320 can use "gcc -Og" to debug. Maybe in the year 2016. See
321 Bug#11935.
322
323 Commentary for these macros can be found near their corresponding
324 functions, below. */
325
326 #if CHECK_LISP_OBJECT_TYPE
327 # define lisp_h_XLI(o) ((o).i)
328 # define lisp_h_XIL(i) ((Lisp_Object) { i })
329 #else
330 # define lisp_h_XLI(o) (o)
331 # define lisp_h_XIL(i) (i)
332 #endif
333 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
334 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
335 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
336 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
337 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
338 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
339 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
340 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
341 #define lisp_h_INTEGERP(x) ((XTYPE (x) & (Lisp_Int0 | ~Lisp_Int1)) == Lisp_Int0)
342 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
343 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
344 #define lisp_h_NILP(x) EQ (x, Qnil)
345 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
346 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
347 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
348 #define lisp_h_SYMBOL_VAL(sym) \
349 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
350 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
351 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
352 #define lisp_h_XCAR(c) XCONS (c)->car
353 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
354 #define lisp_h_XCONS(a) \
355 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
356 #define lisp_h_XHASH(a) XUINT (a)
357 #define lisp_h_XPNTR(a) \
358 (SYMBOLP (a) ? XSYMBOL (a) : (void *) ((intptr_t) (XLI (a) & VALMASK)))
359 #ifndef GC_CHECK_CONS_LIST
360 # define lisp_h_check_cons_list() ((void) 0)
361 #endif
362 #if USE_LSB_TAG
363 # define lisp_h_make_number(n) \
364 XIL ((EMACS_INT) (((EMACS_UINT) (n) << INTTYPEBITS) + Lisp_Int0))
365 # define lisp_h_XFASTINT(a) XINT (a)
366 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
367 # define lisp_h_XSYMBOL(a) \
368 (eassert (SYMBOLP (a)), \
369 (struct Lisp_Symbol *) ((uintptr_t) XLI (a) - Lisp_Symbol \
370 + (char *) lispsym))
371 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
372 # define lisp_h_XUNTAG(a, type) ((void *) (intptr_t) (XLI (a) - (type)))
373 #endif
374
375 /* When compiling via gcc -O0, define the key operations as macros, as
376 Emacs is too slow otherwise. To disable this optimization, compile
377 with -DINLINING=false. */
378 #if (defined __NO_INLINE__ \
379 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
380 && ! (defined INLINING && ! INLINING))
381 # define XLI(o) lisp_h_XLI (o)
382 # define XIL(i) lisp_h_XIL (i)
383 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
384 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
385 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
386 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
387 # define CONSP(x) lisp_h_CONSP (x)
388 # define EQ(x, y) lisp_h_EQ (x, y)
389 # define FLOATP(x) lisp_h_FLOATP (x)
390 # define INTEGERP(x) lisp_h_INTEGERP (x)
391 # define MARKERP(x) lisp_h_MARKERP (x)
392 # define MISCP(x) lisp_h_MISCP (x)
393 # define NILP(x) lisp_h_NILP (x)
394 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
395 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
396 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
397 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
398 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
399 # define XCAR(c) lisp_h_XCAR (c)
400 # define XCDR(c) lisp_h_XCDR (c)
401 # define XCONS(a) lisp_h_XCONS (a)
402 # define XHASH(a) lisp_h_XHASH (a)
403 # define XPNTR(a) lisp_h_XPNTR (a)
404 # ifndef GC_CHECK_CONS_LIST
405 # define check_cons_list() lisp_h_check_cons_list ()
406 # endif
407 # if USE_LSB_TAG
408 # define make_number(n) lisp_h_make_number (n)
409 # define XFASTINT(a) lisp_h_XFASTINT (a)
410 # define XINT(a) lisp_h_XINT (a)
411 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
412 # define XTYPE(a) lisp_h_XTYPE (a)
413 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
414 # endif
415 #endif
416
417 /* Define NAME as a lisp.h inline function that returns TYPE and has
418 arguments declared as ARGDECLS and passed as ARGS. ARGDECLS and
419 ARGS should be parenthesized. Implement the function by calling
420 lisp_h_NAME ARGS. */
421 #define LISP_MACRO_DEFUN(name, type, argdecls, args) \
422 INLINE type (name) argdecls { return lisp_h_##name args; }
423
424 /* like LISP_MACRO_DEFUN, except NAME returns void. */
425 #define LISP_MACRO_DEFUN_VOID(name, argdecls, args) \
426 INLINE void (name) argdecls { lisp_h_##name args; }
427
428
429 /* Define the fundamental Lisp data structures. */
430
431 /* This is the set of Lisp data types. If you want to define a new
432 data type, read the comments after Lisp_Fwd_Type definition
433 below. */
434
435 /* Lisp integers use 2 tags, to give them one extra bit, thus
436 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
437 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
438 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
439
440 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
441 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
442 vociferously about them. */
443 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
444 || (defined __SUNPRO_C && __STDC__))
445 #define ENUM_BF(TYPE) unsigned int
446 #else
447 #define ENUM_BF(TYPE) enum TYPE
448 #endif
449
450
451 enum Lisp_Type
452 {
453 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
454 Lisp_Symbol = 0,
455
456 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
457 whose first member indicates the subtype. */
458 Lisp_Misc = 1,
459
460 /* Integer. XINT (obj) is the integer value. */
461 Lisp_Int0 = 2,
462 Lisp_Int1 = USE_LSB_TAG ? 6 : 3,
463
464 /* String. XSTRING (object) points to a struct Lisp_String.
465 The length of the string, and its contents, are stored therein. */
466 Lisp_String = 4,
467
468 /* Vector of Lisp objects, or something resembling it.
469 XVECTOR (object) points to a struct Lisp_Vector, which contains
470 the size and contents. The size field also contains the type
471 information, if it's not a real vector object. */
472 Lisp_Vectorlike = 5,
473
474 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
475 Lisp_Cons = USE_LSB_TAG ? 3 : 6,
476
477 Lisp_Float = 7
478 };
479
480 /* This is the set of data types that share a common structure.
481 The first member of the structure is a type code from this set.
482 The enum values are arbitrary, but we'll use large numbers to make it
483 more likely that we'll spot the error if a random word in memory is
484 mistakenly interpreted as a Lisp_Misc. */
485 enum Lisp_Misc_Type
486 {
487 Lisp_Misc_Free = 0x5eab,
488 Lisp_Misc_Marker,
489 Lisp_Misc_Overlay,
490 Lisp_Misc_Save_Value,
491 /* Currently floats are not a misc type,
492 but let's define this in case we want to change that. */
493 Lisp_Misc_Float,
494 /* This is not a type code. It is for range checking. */
495 Lisp_Misc_Limit
496 };
497
498 /* These are the types of forwarding objects used in the value slot
499 of symbols for special built-in variables whose value is stored in
500 C variables. */
501 enum Lisp_Fwd_Type
502 {
503 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
504 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
505 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
506 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
507 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
508 };
509
510 /* If you want to define a new Lisp data type, here are some
511 instructions. See the thread at
512 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
513 for more info.
514
515 First, there are already a couple of Lisp types that can be used if
516 your new type does not need to be exposed to Lisp programs nor
517 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
518 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
519 is suitable for temporarily stashing away pointers and integers in
520 a Lisp object. The latter is useful for vector-like Lisp objects
521 that need to be used as part of other objects, but which are never
522 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
523 an example).
524
525 These two types don't look pretty when printed, so they are
526 unsuitable for Lisp objects that can be exposed to users.
527
528 To define a new data type, add one more Lisp_Misc subtype or one
529 more pseudovector subtype. Pseudovectors are more suitable for
530 objects with several slots that need to support fast random access,
531 while Lisp_Misc types are for everything else. A pseudovector object
532 provides one or more slots for Lisp objects, followed by struct
533 members that are accessible only from C. A Lisp_Misc object is a
534 wrapper for a C struct that can contain anything you like.
535
536 Explicit freeing is discouraged for Lisp objects in general. But if
537 you really need to exploit this, use Lisp_Misc (check free_misc in
538 alloc.c to see why). There is no way to free a vectorlike object.
539
540 To add a new pseudovector type, extend the pvec_type enumeration;
541 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
542
543 For a Lisp_Misc, you will also need to add your entry to union
544 Lisp_Misc (but make sure the first word has the same structure as
545 the others, starting with a 16-bit member of the Lisp_Misc_Type
546 enumeration and a 1-bit GC markbit) and make sure the overall size
547 of the union is not increased by your addition.
548
549 For a new pseudovector, it's highly desirable to limit the size
550 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
551 Otherwise you will need to change sweep_vectors (also in alloc.c).
552
553 Then you will need to add switch branches in print.c (in
554 print_object, to print your object, and possibly also in
555 print_preprocess) and to alloc.c, to mark your object (in
556 mark_object) and to free it (in gc_sweep). The latter is also the
557 right place to call any code specific to your data type that needs
558 to run when the object is recycled -- e.g., free any additional
559 resources allocated for it that are not Lisp objects. You can even
560 make a pointer to the function that frees the resources a slot in
561 your object -- this way, the same object could be used to represent
562 several disparate C structures. */
563
564 #ifdef CHECK_LISP_OBJECT_TYPE
565
566 typedef struct { EMACS_INT i; } Lisp_Object;
567
568 #define LISP_INITIALLY(i) {i}
569
570 #undef CHECK_LISP_OBJECT_TYPE
571 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
572 #else /* CHECK_LISP_OBJECT_TYPE */
573
574 /* If a struct type is not wanted, define Lisp_Object as just a number. */
575
576 typedef EMACS_INT Lisp_Object;
577 #define LISP_INITIALLY(i) (i)
578 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
579 #endif /* CHECK_LISP_OBJECT_TYPE */
580
581 #define LISP_INITIALLY_ZERO LISP_INITIALLY (0)
582 \f
583 /* Forward declarations. */
584
585 /* Defined in this file. */
586 union Lisp_Fwd;
587 INLINE bool BOOL_VECTOR_P (Lisp_Object);
588 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
589 INLINE bool BUFFERP (Lisp_Object);
590 INLINE bool CHAR_TABLE_P (Lisp_Object);
591 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
592 INLINE bool (CONSP) (Lisp_Object);
593 INLINE bool (FLOATP) (Lisp_Object);
594 INLINE bool functionp (Lisp_Object);
595 INLINE bool (INTEGERP) (Lisp_Object);
596 INLINE bool (MARKERP) (Lisp_Object);
597 INLINE bool (MISCP) (Lisp_Object);
598 INLINE bool (NILP) (Lisp_Object);
599 INLINE bool OVERLAYP (Lisp_Object);
600 INLINE bool PROCESSP (Lisp_Object);
601 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
602 INLINE bool SAVE_VALUEP (Lisp_Object);
603 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
604 Lisp_Object);
605 INLINE bool STRINGP (Lisp_Object);
606 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
607 INLINE bool SUBRP (Lisp_Object);
608 INLINE bool (SYMBOLP) (Lisp_Object);
609 INLINE bool (VECTORLIKEP) (Lisp_Object);
610 INLINE bool WINDOWP (Lisp_Object);
611 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
612 INLINE struct Lisp_Symbol *(XSYMBOL) (Lisp_Object);
613 INLINE enum Lisp_Type (XTYPE) (Lisp_Object);
614 INLINE void *(XUNTAG) (Lisp_Object, int);
615
616 /* Defined in chartab.c. */
617 extern Lisp_Object char_table_ref (Lisp_Object, int);
618 extern void char_table_set (Lisp_Object, int, Lisp_Object);
619
620 /* Defined in data.c. */
621 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
622 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
623
624 /* Defined in emacs.c. */
625 extern bool might_dump;
626 /* True means Emacs has already been initialized.
627 Used during startup to detect startup of dumped Emacs. */
628 extern bool initialized;
629
630 /* Defined in floatfns.c. */
631 extern double extract_float (Lisp_Object);
632
633 \f
634 /* Interned state of a symbol. */
635
636 enum symbol_interned
637 {
638 SYMBOL_UNINTERNED = 0,
639 SYMBOL_INTERNED = 1,
640 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
641 };
642
643 enum symbol_redirect
644 {
645 SYMBOL_PLAINVAL = 4,
646 SYMBOL_VARALIAS = 1,
647 SYMBOL_LOCALIZED = 2,
648 SYMBOL_FORWARDED = 3
649 };
650
651 struct Lisp_Symbol
652 {
653 bool_bf gcmarkbit : 1;
654
655 /* Indicates where the value can be found:
656 0 : it's a plain var, the value is in the `value' field.
657 1 : it's a varalias, the value is really in the `alias' symbol.
658 2 : it's a localized var, the value is in the `blv' object.
659 3 : it's a forwarding variable, the value is in `forward'. */
660 ENUM_BF (symbol_redirect) redirect : 3;
661
662 /* Non-zero means symbol is constant, i.e. changing its value
663 should signal an error. If the value is 3, then the var
664 can be changed, but only by `defconst'. */
665 unsigned constant : 2;
666
667 /* Interned state of the symbol. This is an enumerator from
668 enum symbol_interned. */
669 unsigned interned : 2;
670
671 /* True means that this variable has been explicitly declared
672 special (with `defvar' etc), and shouldn't be lexically bound. */
673 bool_bf declared_special : 1;
674
675 /* True if pointed to from purespace and hence can't be GC'd. */
676 bool_bf pinned : 1;
677
678 /* The symbol's name, as a Lisp string. */
679 Lisp_Object name;
680
681 /* Value of the symbol or Qunbound if unbound. Which alternative of the
682 union is used depends on the `redirect' field above. */
683 union {
684 Lisp_Object value;
685 struct Lisp_Symbol *alias;
686 struct Lisp_Buffer_Local_Value *blv;
687 union Lisp_Fwd *fwd;
688 } val;
689
690 /* Function value of the symbol or Qnil if not fboundp. */
691 Lisp_Object function;
692
693 /* The symbol's property list. */
694 Lisp_Object plist;
695
696 /* Next symbol in obarray bucket, if the symbol is interned. */
697 struct Lisp_Symbol *next;
698 };
699
700 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
701 meaning as in the DEFUN macro, and is used to construct a prototype. */
702 /* We can use the same trick as in the DEFUN macro to generate the
703 appropriate prototype. */
704 #define EXFUN(fnname, maxargs) \
705 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
706
707 /* Note that the weird token-substitution semantics of ANSI C makes
708 this work for MANY and UNEVALLED. */
709 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
710 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
711 #define DEFUN_ARGS_0 (void)
712 #define DEFUN_ARGS_1 (Lisp_Object)
713 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
714 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
715 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
716 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
717 Lisp_Object)
718 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
719 Lisp_Object, Lisp_Object)
720 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
721 Lisp_Object, Lisp_Object, Lisp_Object)
722 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
723 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
724
725 /* Yield an integer that contains TAG along with PTR. */
726 #define TAG_PTR(tag, ptr) \
727 ((USE_LSB_TAG ? (tag) : (EMACS_UINT) (tag) << VALBITS) + (uintptr_t) (ptr))
728
729 /* Yield an integer that contains a symbol tag along with OFFSET.
730 OFFSET should be the offset in bytes from 'lispsym' to the symbol. */
731 #define TAG_SYMOFFSET(offset) \
732 TAG_PTR (Lisp_Symbol, \
733 ((uintptr_t) (offset) >> (USE_LSB_TAG ? 0 : GCTYPEBITS)))
734
735 /* Declare extern constants for Lisp symbols. These can be helpful
736 when using a debugger like GDB, on older platforms where the debug
737 format does not represent C macros. */
738 #define DEFINE_LISP_SYMBOL_BEGIN(name) \
739 DEFINE_GDB_SYMBOL_BEGIN (Lisp_Object, name)
740 #define DEFINE_LISP_SYMBOL_END(name) \
741 DEFINE_GDB_SYMBOL_END (LISP_INITIALLY (TAG_SYMOFFSET (i##name \
742 * sizeof *lispsym)))
743
744 #include "globals.h"
745
746 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
747 At the machine level, these operations are no-ops. */
748 LISP_MACRO_DEFUN (XLI, EMACS_INT, (Lisp_Object o), (o))
749 LISP_MACRO_DEFUN (XIL, Lisp_Object, (EMACS_INT i), (i))
750
751 /* In the size word of a vector, this bit means the vector has been marked. */
752
753 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
754 # define ARRAY_MARK_FLAG PTRDIFF_MIN
755 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
756
757 /* In the size word of a struct Lisp_Vector, this bit means it's really
758 some other vector-like object. */
759 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
760 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
761 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
762
763 /* In a pseudovector, the size field actually contains a word with one
764 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
765 with PVEC_TYPE_MASK to indicate the actual type. */
766 enum pvec_type
767 {
768 PVEC_NORMAL_VECTOR,
769 PVEC_FREE,
770 PVEC_PROCESS,
771 PVEC_FRAME,
772 PVEC_WINDOW,
773 PVEC_BOOL_VECTOR,
774 PVEC_BUFFER,
775 PVEC_HASH_TABLE,
776 PVEC_TERMINAL,
777 PVEC_WINDOW_CONFIGURATION,
778 PVEC_SUBR,
779 PVEC_OTHER,
780 /* These should be last, check internal_equal to see why. */
781 PVEC_COMPILED,
782 PVEC_CHAR_TABLE,
783 PVEC_SUB_CHAR_TABLE,
784 PVEC_FONT /* Should be last because it's used for range checking. */
785 };
786
787 enum More_Lisp_Bits
788 {
789 /* For convenience, we also store the number of elements in these bits.
790 Note that this size is not necessarily the memory-footprint size, but
791 only the number of Lisp_Object fields (that need to be traced by GC).
792 The distinction is used, e.g., by Lisp_Process, which places extra
793 non-Lisp_Object fields at the end of the structure. */
794 PSEUDOVECTOR_SIZE_BITS = 12,
795 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
796
797 /* To calculate the memory footprint of the pseudovector, it's useful
798 to store the size of non-Lisp area in word_size units here. */
799 PSEUDOVECTOR_REST_BITS = 12,
800 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
801 << PSEUDOVECTOR_SIZE_BITS),
802
803 /* Used to extract pseudovector subtype information. */
804 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
805 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
806 };
807 \f
808 /* These functions extract various sorts of values from a Lisp_Object.
809 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
810 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
811 that cons. */
812
813 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
814 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
815 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
816 DEFINE_GDB_SYMBOL_END (VALMASK)
817
818 /* Largest and smallest representable fixnum values. These are the C
819 values. They are macros for use in static initializers. */
820 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
821 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
822
823 #if USE_LSB_TAG
824
825 LISP_MACRO_DEFUN (make_number, Lisp_Object, (EMACS_INT n), (n))
826 LISP_MACRO_DEFUN (XINT, EMACS_INT, (Lisp_Object a), (a))
827 LISP_MACRO_DEFUN (XFASTINT, EMACS_INT, (Lisp_Object a), (a))
828 LISP_MACRO_DEFUN (XSYMBOL, struct Lisp_Symbol *, (Lisp_Object a), (a))
829 LISP_MACRO_DEFUN (XTYPE, enum Lisp_Type, (Lisp_Object a), (a))
830 LISP_MACRO_DEFUN (XUNTAG, void *, (Lisp_Object a, int type), (a, type))
831
832 #else /* ! USE_LSB_TAG */
833
834 /* Although compiled only if ! USE_LSB_TAG, the following functions
835 also work when USE_LSB_TAG; this is to aid future maintenance when
836 the lisp_h_* macros are eventually removed. */
837
838 /* Make a Lisp integer representing the value of the low order
839 bits of N. */
840 INLINE Lisp_Object
841 make_number (EMACS_INT n)
842 {
843 EMACS_INT int0 = Lisp_Int0;
844 if (USE_LSB_TAG)
845 {
846 EMACS_UINT u = n;
847 n = u << INTTYPEBITS;
848 n += int0;
849 }
850 else
851 {
852 n &= INTMASK;
853 n += (int0 << VALBITS);
854 }
855 return XIL (n);
856 }
857
858 /* Extract A's value as a signed integer. */
859 INLINE EMACS_INT
860 XINT (Lisp_Object a)
861 {
862 EMACS_INT i = XLI (a);
863 if (! USE_LSB_TAG)
864 {
865 EMACS_UINT u = i;
866 i = u << INTTYPEBITS;
867 }
868 return i >> INTTYPEBITS;
869 }
870
871 /* Like XINT (A), but may be faster. A must be nonnegative.
872 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
873 integers have zero-bits in their tags. */
874 INLINE EMACS_INT
875 XFASTINT (Lisp_Object a)
876 {
877 EMACS_INT int0 = Lisp_Int0;
878 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a) - (int0 << VALBITS);
879 eassert (0 <= n);
880 return n;
881 }
882
883 /* Extract A's value as a symbol. */
884 INLINE struct Lisp_Symbol *
885 XSYMBOL (Lisp_Object a)
886 {
887 uintptr_t i = (uintptr_t) XUNTAG (a, Lisp_Symbol);
888 if (! USE_LSB_TAG)
889 i <<= GCTYPEBITS;
890 void *p = (char *) lispsym + i;
891 return p;
892 }
893
894 /* Extract A's type. */
895 INLINE enum Lisp_Type
896 XTYPE (Lisp_Object a)
897 {
898 EMACS_UINT i = XLI (a);
899 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
900 }
901
902 /* Extract A's pointer value, assuming A's type is TYPE. */
903 INLINE void *
904 XUNTAG (Lisp_Object a, int type)
905 {
906 intptr_t i = USE_LSB_TAG ? XLI (a) - type : XLI (a) & VALMASK;
907 return (void *) i;
908 }
909
910 #endif /* ! USE_LSB_TAG */
911
912 /* Extract the pointer hidden within A. */
913 LISP_MACRO_DEFUN (XPNTR, void *, (Lisp_Object a), (a))
914
915 /* Extract A's value as an unsigned integer. */
916 INLINE EMACS_UINT
917 XUINT (Lisp_Object a)
918 {
919 EMACS_UINT i = XLI (a);
920 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
921 }
922
923 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
924 right now, but XUINT should only be applied to objects we know are
925 integers. */
926 LISP_MACRO_DEFUN (XHASH, EMACS_INT, (Lisp_Object a), (a))
927
928 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
929 INLINE Lisp_Object
930 make_natnum (EMACS_INT n)
931 {
932 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
933 EMACS_INT int0 = Lisp_Int0;
934 return USE_LSB_TAG ? make_number (n) : XIL (n + (int0 << VALBITS));
935 }
936
937 /* Return true if X and Y are the same object. */
938 LISP_MACRO_DEFUN (EQ, bool, (Lisp_Object x, Lisp_Object y), (x, y))
939
940 /* Value is true if I doesn't fit into a Lisp fixnum. It is
941 written this way so that it also works if I is of unsigned
942 type or if I is a NaN. */
943
944 #define FIXNUM_OVERFLOW_P(i) \
945 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
946
947 INLINE ptrdiff_t
948 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
949 {
950 return num < lower ? lower : num <= upper ? num : upper;
951 }
952 \f
953
954 /* Extract a value or address from a Lisp_Object. */
955
956 LISP_MACRO_DEFUN (XCONS, struct Lisp_Cons *, (Lisp_Object a), (a))
957
958 INLINE struct Lisp_Vector *
959 XVECTOR (Lisp_Object a)
960 {
961 eassert (VECTORLIKEP (a));
962 return XUNTAG (a, Lisp_Vectorlike);
963 }
964
965 INLINE struct Lisp_String *
966 XSTRING (Lisp_Object a)
967 {
968 eassert (STRINGP (a));
969 return XUNTAG (a, Lisp_String);
970 }
971
972 /* The index of the C-defined Lisp symbol SYM.
973 This can be used in a static initializer. */
974 #define SYMBOL_INDEX(sym) i##sym
975
976 INLINE struct Lisp_Float *
977 XFLOAT (Lisp_Object a)
978 {
979 eassert (FLOATP (a));
980 return XUNTAG (a, Lisp_Float);
981 }
982
983 /* Pseudovector types. */
984
985 INLINE struct Lisp_Process *
986 XPROCESS (Lisp_Object a)
987 {
988 eassert (PROCESSP (a));
989 return XUNTAG (a, Lisp_Vectorlike);
990 }
991
992 INLINE struct window *
993 XWINDOW (Lisp_Object a)
994 {
995 eassert (WINDOWP (a));
996 return XUNTAG (a, Lisp_Vectorlike);
997 }
998
999 INLINE struct terminal *
1000 XTERMINAL (Lisp_Object a)
1001 {
1002 return XUNTAG (a, Lisp_Vectorlike);
1003 }
1004
1005 INLINE struct Lisp_Subr *
1006 XSUBR (Lisp_Object a)
1007 {
1008 eassert (SUBRP (a));
1009 return XUNTAG (a, Lisp_Vectorlike);
1010 }
1011
1012 INLINE struct buffer *
1013 XBUFFER (Lisp_Object a)
1014 {
1015 eassert (BUFFERP (a));
1016 return XUNTAG (a, Lisp_Vectorlike);
1017 }
1018
1019 INLINE struct Lisp_Char_Table *
1020 XCHAR_TABLE (Lisp_Object a)
1021 {
1022 eassert (CHAR_TABLE_P (a));
1023 return XUNTAG (a, Lisp_Vectorlike);
1024 }
1025
1026 INLINE struct Lisp_Sub_Char_Table *
1027 XSUB_CHAR_TABLE (Lisp_Object a)
1028 {
1029 eassert (SUB_CHAR_TABLE_P (a));
1030 return XUNTAG (a, Lisp_Vectorlike);
1031 }
1032
1033 INLINE struct Lisp_Bool_Vector *
1034 XBOOL_VECTOR (Lisp_Object a)
1035 {
1036 eassert (BOOL_VECTOR_P (a));
1037 return XUNTAG (a, Lisp_Vectorlike);
1038 }
1039
1040 /* Construct a Lisp_Object from a value or address. */
1041
1042 INLINE Lisp_Object
1043 make_lisp_ptr (void *ptr, enum Lisp_Type type)
1044 {
1045 Lisp_Object a = XIL (TAG_PTR (type, ptr));
1046 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
1047 return a;
1048 }
1049
1050 INLINE Lisp_Object
1051 make_lisp_symbol (struct Lisp_Symbol *sym)
1052 {
1053 Lisp_Object a = XIL (TAG_SYMOFFSET ((char *) sym - (char *) lispsym));
1054 eassert (XSYMBOL (a) == sym);
1055 return a;
1056 }
1057
1058 INLINE Lisp_Object
1059 builtin_lisp_symbol (int index)
1060 {
1061 return make_lisp_symbol (lispsym + index);
1062 }
1063
1064 INLINE Lisp_Object
1065 make_lisp_proc (struct Lisp_Process *p)
1066 {
1067 return make_lisp_ptr (p, Lisp_Vectorlike);
1068 }
1069
1070 #define XSETINT(a, b) ((a) = make_number (b))
1071 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
1072 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
1073 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
1074 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
1075 #define XSETSYMBOL(a, b) ((a) = make_lisp_symbol (b))
1076 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
1077 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
1078
1079 /* Pseudovector types. */
1080
1081 #define XSETPVECTYPE(v, code) \
1082 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
1083 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
1084 ((v)->header.size = (PSEUDOVECTOR_FLAG \
1085 | ((code) << PSEUDOVECTOR_AREA_BITS) \
1086 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
1087 | (lispsize)))
1088
1089 /* The cast to struct vectorlike_header * avoids aliasing issues. */
1090 #define XSETPSEUDOVECTOR(a, b, code) \
1091 XSETTYPED_PSEUDOVECTOR (a, b, \
1092 (((struct vectorlike_header *) \
1093 XUNTAG (a, Lisp_Vectorlike)) \
1094 ->size), \
1095 code)
1096 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
1097 (XSETVECTOR (a, b), \
1098 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
1099 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
1100
1101 #define XSETWINDOW_CONFIGURATION(a, b) \
1102 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
1103 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
1104 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
1105 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
1106 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
1107 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
1108 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
1109 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1110 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1111 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1112
1113 /* Efficiently convert a pointer to a Lisp object and back. The
1114 pointer is represented as a Lisp integer, so the garbage collector
1115 does not know about it. The pointer should not have both Lisp_Int1
1116 bits set, which makes this conversion inherently unportable. */
1117
1118 INLINE void *
1119 XINTPTR (Lisp_Object a)
1120 {
1121 return XUNTAG (a, Lisp_Int0);
1122 }
1123
1124 INLINE Lisp_Object
1125 make_pointer_integer (void *p)
1126 {
1127 Lisp_Object a = XIL (TAG_PTR (Lisp_Int0, p));
1128 eassert (INTEGERP (a) && XINTPTR (a) == p);
1129 return a;
1130 }
1131
1132 /* Type checking. */
1133
1134 LISP_MACRO_DEFUN_VOID (CHECK_TYPE,
1135 (int ok, Lisp_Object predicate, Lisp_Object x),
1136 (ok, predicate, x))
1137
1138 /* Deprecated and will be removed soon. */
1139
1140 #define INTERNAL_FIELD(field) field ## _
1141
1142 /* See the macros in intervals.h. */
1143
1144 typedef struct interval *INTERVAL;
1145
1146 struct GCALIGNED Lisp_Cons
1147 {
1148 /* Car of this cons cell. */
1149 Lisp_Object car;
1150
1151 union
1152 {
1153 /* Cdr of this cons cell. */
1154 Lisp_Object cdr;
1155
1156 /* Used to chain conses on a free list. */
1157 struct Lisp_Cons *chain;
1158 } u;
1159 };
1160
1161 /* Take the car or cdr of something known to be a cons cell. */
1162 /* The _addr functions shouldn't be used outside of the minimal set
1163 of code that has to know what a cons cell looks like. Other code not
1164 part of the basic lisp implementation should assume that the car and cdr
1165 fields are not accessible. (What if we want to switch to
1166 a copying collector someday? Cached cons cell field addresses may be
1167 invalidated at arbitrary points.) */
1168 INLINE Lisp_Object *
1169 xcar_addr (Lisp_Object c)
1170 {
1171 return &XCONS (c)->car;
1172 }
1173 INLINE Lisp_Object *
1174 xcdr_addr (Lisp_Object c)
1175 {
1176 return &XCONS (c)->u.cdr;
1177 }
1178
1179 /* Use these from normal code. */
1180 LISP_MACRO_DEFUN (XCAR, Lisp_Object, (Lisp_Object c), (c))
1181 LISP_MACRO_DEFUN (XCDR, Lisp_Object, (Lisp_Object c), (c))
1182
1183 /* Use these to set the fields of a cons cell.
1184
1185 Note that both arguments may refer to the same object, so 'n'
1186 should not be read after 'c' is first modified. */
1187 INLINE void
1188 XSETCAR (Lisp_Object c, Lisp_Object n)
1189 {
1190 *xcar_addr (c) = n;
1191 }
1192 INLINE void
1193 XSETCDR (Lisp_Object c, Lisp_Object n)
1194 {
1195 *xcdr_addr (c) = n;
1196 }
1197
1198 /* Take the car or cdr of something whose type is not known. */
1199 INLINE Lisp_Object
1200 CAR (Lisp_Object c)
1201 {
1202 return (CONSP (c) ? XCAR (c)
1203 : NILP (c) ? Qnil
1204 : wrong_type_argument (Qlistp, c));
1205 }
1206 INLINE Lisp_Object
1207 CDR (Lisp_Object c)
1208 {
1209 return (CONSP (c) ? XCDR (c)
1210 : NILP (c) ? Qnil
1211 : wrong_type_argument (Qlistp, c));
1212 }
1213
1214 /* Take the car or cdr of something whose type is not known. */
1215 INLINE Lisp_Object
1216 CAR_SAFE (Lisp_Object c)
1217 {
1218 return CONSP (c) ? XCAR (c) : Qnil;
1219 }
1220 INLINE Lisp_Object
1221 CDR_SAFE (Lisp_Object c)
1222 {
1223 return CONSP (c) ? XCDR (c) : Qnil;
1224 }
1225
1226 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1227
1228 struct GCALIGNED Lisp_String
1229 {
1230 ptrdiff_t size;
1231 ptrdiff_t size_byte;
1232 INTERVAL intervals; /* Text properties in this string. */
1233 unsigned char *data;
1234 };
1235
1236 /* True if STR is a multibyte string. */
1237 INLINE bool
1238 STRING_MULTIBYTE (Lisp_Object str)
1239 {
1240 return 0 <= XSTRING (str)->size_byte;
1241 }
1242
1243 /* An upper bound on the number of bytes in a Lisp string, not
1244 counting the terminating null. This a tight enough bound to
1245 prevent integer overflow errors that would otherwise occur during
1246 string size calculations. A string cannot contain more bytes than
1247 a fixnum can represent, nor can it be so long that C pointer
1248 arithmetic stops working on the string plus its terminating null.
1249 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1250 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1251 would expose alloc.c internal details that we'd rather keep
1252 private.
1253
1254 This is a macro for use in static initializers. The cast to
1255 ptrdiff_t ensures that the macro is signed. */
1256 #define STRING_BYTES_BOUND \
1257 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1258
1259 /* Mark STR as a unibyte string. */
1260 #define STRING_SET_UNIBYTE(STR) \
1261 do { \
1262 if (EQ (STR, empty_multibyte_string)) \
1263 (STR) = empty_unibyte_string; \
1264 else \
1265 XSTRING (STR)->size_byte = -1; \
1266 } while (false)
1267
1268 /* Mark STR as a multibyte string. Assure that STR contains only
1269 ASCII characters in advance. */
1270 #define STRING_SET_MULTIBYTE(STR) \
1271 do { \
1272 if (EQ (STR, empty_unibyte_string)) \
1273 (STR) = empty_multibyte_string; \
1274 else \
1275 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1276 } while (false)
1277
1278 /* Convenience functions for dealing with Lisp strings. */
1279
1280 INLINE unsigned char *
1281 SDATA (Lisp_Object string)
1282 {
1283 return XSTRING (string)->data;
1284 }
1285 INLINE char *
1286 SSDATA (Lisp_Object string)
1287 {
1288 /* Avoid "differ in sign" warnings. */
1289 return (char *) SDATA (string);
1290 }
1291 INLINE unsigned char
1292 SREF (Lisp_Object string, ptrdiff_t index)
1293 {
1294 return SDATA (string)[index];
1295 }
1296 INLINE void
1297 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1298 {
1299 SDATA (string)[index] = new;
1300 }
1301 INLINE ptrdiff_t
1302 SCHARS (Lisp_Object string)
1303 {
1304 return XSTRING (string)->size;
1305 }
1306
1307 #ifdef GC_CHECK_STRING_BYTES
1308 extern ptrdiff_t string_bytes (struct Lisp_String *);
1309 #endif
1310 INLINE ptrdiff_t
1311 STRING_BYTES (struct Lisp_String *s)
1312 {
1313 #ifdef GC_CHECK_STRING_BYTES
1314 return string_bytes (s);
1315 #else
1316 return s->size_byte < 0 ? s->size : s->size_byte;
1317 #endif
1318 }
1319
1320 INLINE ptrdiff_t
1321 SBYTES (Lisp_Object string)
1322 {
1323 return STRING_BYTES (XSTRING (string));
1324 }
1325 INLINE void
1326 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1327 {
1328 XSTRING (string)->size = newsize;
1329 }
1330
1331 /* Header of vector-like objects. This documents the layout constraints on
1332 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1333 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1334 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1335 because when two such pointers potentially alias, a compiler won't
1336 incorrectly reorder loads and stores to their size fields. See
1337 Bug#8546. */
1338 struct vectorlike_header
1339 {
1340 /* The only field contains various pieces of information:
1341 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1342 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1343 vector (0) or a pseudovector (1).
1344 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1345 of slots) of the vector.
1346 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1347 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1348 - b) number of Lisp_Objects slots at the beginning of the object
1349 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1350 traced by the GC;
1351 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1352 measured in word_size units. Rest fields may also include
1353 Lisp_Objects, but these objects usually needs some special treatment
1354 during GC.
1355 There are some exceptions. For PVEC_FREE, b) is always zero. For
1356 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1357 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1358 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1359 ptrdiff_t size;
1360 };
1361
1362 /* A regular vector is just a header plus an array of Lisp_Objects. */
1363
1364 struct Lisp_Vector
1365 {
1366 struct vectorlike_header header;
1367 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1368 };
1369
1370 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1371 enum
1372 {
1373 ALIGNOF_STRUCT_LISP_VECTOR
1374 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1375 };
1376
1377 /* A boolvector is a kind of vectorlike, with contents like a string. */
1378
1379 struct Lisp_Bool_Vector
1380 {
1381 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1382 just the subtype information. */
1383 struct vectorlike_header header;
1384 /* This is the size in bits. */
1385 EMACS_INT size;
1386 /* The actual bits, packed into bytes.
1387 Zeros fill out the last word if needed.
1388 The bits are in little-endian order in the bytes, and
1389 the bytes are in little-endian order in the words. */
1390 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1391 };
1392
1393 INLINE EMACS_INT
1394 bool_vector_size (Lisp_Object a)
1395 {
1396 EMACS_INT size = XBOOL_VECTOR (a)->size;
1397 eassume (0 <= size);
1398 return size;
1399 }
1400
1401 INLINE bits_word *
1402 bool_vector_data (Lisp_Object a)
1403 {
1404 return XBOOL_VECTOR (a)->data;
1405 }
1406
1407 INLINE unsigned char *
1408 bool_vector_uchar_data (Lisp_Object a)
1409 {
1410 return (unsigned char *) bool_vector_data (a);
1411 }
1412
1413 /* The number of data words and bytes in a bool vector with SIZE bits. */
1414
1415 INLINE EMACS_INT
1416 bool_vector_words (EMACS_INT size)
1417 {
1418 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1419 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1420 }
1421
1422 INLINE EMACS_INT
1423 bool_vector_bytes (EMACS_INT size)
1424 {
1425 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1426 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1427 }
1428
1429 /* True if A's Ith bit is set. */
1430
1431 INLINE bool
1432 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1433 {
1434 eassume (0 <= i && i < bool_vector_size (a));
1435 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1436 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1437 }
1438
1439 INLINE Lisp_Object
1440 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1441 {
1442 return bool_vector_bitref (a, i) ? Qt : Qnil;
1443 }
1444
1445 /* Set A's Ith bit to B. */
1446
1447 INLINE void
1448 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1449 {
1450 unsigned char *addr;
1451
1452 eassume (0 <= i && i < bool_vector_size (a));
1453 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1454
1455 if (b)
1456 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1457 else
1458 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1459 }
1460
1461 /* Some handy constants for calculating sizes
1462 and offsets, mostly of vectorlike objects. */
1463
1464 enum
1465 {
1466 header_size = offsetof (struct Lisp_Vector, contents),
1467 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1468 word_size = sizeof (Lisp_Object)
1469 };
1470
1471 /* Conveniences for dealing with Lisp arrays. */
1472
1473 INLINE Lisp_Object
1474 AREF (Lisp_Object array, ptrdiff_t idx)
1475 {
1476 return XVECTOR (array)->contents[idx];
1477 }
1478
1479 INLINE Lisp_Object *
1480 aref_addr (Lisp_Object array, ptrdiff_t idx)
1481 {
1482 return & XVECTOR (array)->contents[idx];
1483 }
1484
1485 INLINE ptrdiff_t
1486 ASIZE (Lisp_Object array)
1487 {
1488 return XVECTOR (array)->header.size;
1489 }
1490
1491 INLINE void
1492 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1493 {
1494 eassert (0 <= idx && idx < ASIZE (array));
1495 XVECTOR (array)->contents[idx] = val;
1496 }
1497
1498 INLINE void
1499 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1500 {
1501 /* Like ASET, but also can be used in the garbage collector:
1502 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1503 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1504 XVECTOR (array)->contents[idx] = val;
1505 }
1506
1507 /* If a struct is made to look like a vector, this macro returns the length
1508 of the shortest vector that would hold that struct. */
1509
1510 #define VECSIZE(type) \
1511 ((sizeof (type) - header_size + word_size - 1) / word_size)
1512
1513 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1514 at the end and we need to compute the number of Lisp_Object fields (the
1515 ones that the GC needs to trace). */
1516
1517 #define PSEUDOVECSIZE(type, nonlispfield) \
1518 ((offsetof (type, nonlispfield) - header_size) / word_size)
1519
1520 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1521 should be integer expressions. This is not the same as
1522 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1523 returns true. For efficiency, prefer plain unsigned comparison if A
1524 and B's sizes both fit (after integer promotion). */
1525 #define UNSIGNED_CMP(a, op, b) \
1526 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1527 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1528 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1529
1530 /* True iff C is an ASCII character. */
1531 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1532
1533 /* A char-table is a kind of vectorlike, with contents are like a
1534 vector but with a few other slots. For some purposes, it makes
1535 sense to handle a char-table with type struct Lisp_Vector. An
1536 element of a char table can be any Lisp objects, but if it is a sub
1537 char-table, we treat it a table that contains information of a
1538 specific range of characters. A sub char-table is like a vector but
1539 with two integer fields between the header and Lisp data, which means
1540 that it has to be marked with some precautions (see mark_char_table
1541 in alloc.c). A sub char-table appears only in an element of a char-table,
1542 and there's no way to access it directly from Emacs Lisp program. */
1543
1544 enum CHARTAB_SIZE_BITS
1545 {
1546 CHARTAB_SIZE_BITS_0 = 6,
1547 CHARTAB_SIZE_BITS_1 = 4,
1548 CHARTAB_SIZE_BITS_2 = 5,
1549 CHARTAB_SIZE_BITS_3 = 7
1550 };
1551
1552 extern const int chartab_size[4];
1553
1554 struct Lisp_Char_Table
1555 {
1556 /* HEADER.SIZE is the vector's size field, which also holds the
1557 pseudovector type information. It holds the size, too.
1558 The size counts the defalt, parent, purpose, ascii,
1559 contents, and extras slots. */
1560 struct vectorlike_header header;
1561
1562 /* This holds a default value,
1563 which is used whenever the value for a specific character is nil. */
1564 Lisp_Object defalt;
1565
1566 /* This points to another char table, which we inherit from when the
1567 value for a specific character is nil. The `defalt' slot takes
1568 precedence over this. */
1569 Lisp_Object parent;
1570
1571 /* This is a symbol which says what kind of use this char-table is
1572 meant for. */
1573 Lisp_Object purpose;
1574
1575 /* The bottom sub char-table for characters of the range 0..127. It
1576 is nil if none of ASCII character has a specific value. */
1577 Lisp_Object ascii;
1578
1579 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1580
1581 /* These hold additional data. It is a vector. */
1582 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1583 };
1584
1585 struct Lisp_Sub_Char_Table
1586 {
1587 /* HEADER.SIZE is the vector's size field, which also holds the
1588 pseudovector type information. It holds the size, too. */
1589 struct vectorlike_header header;
1590
1591 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1592 char-table of depth 1 contains 16 elements, and each element
1593 covers 4096 (128*32) characters. A sub char-table of depth 2
1594 contains 32 elements, and each element covers 128 characters. A
1595 sub char-table of depth 3 contains 128 elements, and each element
1596 is for one character. */
1597 int depth;
1598
1599 /* Minimum character covered by the sub char-table. */
1600 int min_char;
1601
1602 /* Use set_sub_char_table_contents to set this. */
1603 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1604 };
1605
1606 INLINE Lisp_Object
1607 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1608 {
1609 struct Lisp_Char_Table *tbl = NULL;
1610 Lisp_Object val;
1611 do
1612 {
1613 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1614 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1615 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1616 if (NILP (val))
1617 val = tbl->defalt;
1618 }
1619 while (NILP (val) && ! NILP (tbl->parent));
1620
1621 return val;
1622 }
1623
1624 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1625 characters. Do not check validity of CT. */
1626 INLINE Lisp_Object
1627 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1628 {
1629 return (ASCII_CHAR_P (idx)
1630 ? CHAR_TABLE_REF_ASCII (ct, idx)
1631 : char_table_ref (ct, idx));
1632 }
1633
1634 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1635 8-bit European characters. Do not check validity of CT. */
1636 INLINE void
1637 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1638 {
1639 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1640 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1641 else
1642 char_table_set (ct, idx, val);
1643 }
1644
1645 /* This structure describes a built-in function.
1646 It is generated by the DEFUN macro only.
1647 defsubr makes it into a Lisp object. */
1648
1649 struct Lisp_Subr
1650 {
1651 struct vectorlike_header header;
1652 union {
1653 Lisp_Object (*a0) (void);
1654 Lisp_Object (*a1) (Lisp_Object);
1655 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1656 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1657 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1658 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1659 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1660 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1661 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1662 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1663 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1664 } function;
1665 short min_args, max_args;
1666 const char *symbol_name;
1667 const char *intspec;
1668 const char *doc;
1669 };
1670
1671 enum char_table_specials
1672 {
1673 /* This is the number of slots that every char table must have. This
1674 counts the ordinary slots and the top, defalt, parent, and purpose
1675 slots. */
1676 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1677
1678 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1679 when the latter is treated as an ordinary Lisp_Vector. */
1680 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1681 };
1682
1683 /* Return the number of "extra" slots in the char table CT. */
1684
1685 INLINE int
1686 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1687 {
1688 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1689 - CHAR_TABLE_STANDARD_SLOTS);
1690 }
1691
1692 /* Make sure that sub char-table contents slot is where we think it is. */
1693 verify (offsetof (struct Lisp_Sub_Char_Table, contents)
1694 == offsetof (struct Lisp_Vector, contents[SUB_CHAR_TABLE_OFFSET]));
1695
1696 /***********************************************************************
1697 Symbols
1698 ***********************************************************************/
1699
1700 /* Value is name of symbol. */
1701
1702 LISP_MACRO_DEFUN (SYMBOL_VAL, Lisp_Object, (struct Lisp_Symbol *sym), (sym))
1703
1704 INLINE struct Lisp_Symbol *
1705 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1706 {
1707 eassert (sym->redirect == SYMBOL_VARALIAS);
1708 return sym->val.alias;
1709 }
1710 INLINE struct Lisp_Buffer_Local_Value *
1711 SYMBOL_BLV (struct Lisp_Symbol *sym)
1712 {
1713 eassert (sym->redirect == SYMBOL_LOCALIZED);
1714 return sym->val.blv;
1715 }
1716 INLINE union Lisp_Fwd *
1717 SYMBOL_FWD (struct Lisp_Symbol *sym)
1718 {
1719 eassert (sym->redirect == SYMBOL_FORWARDED);
1720 return sym->val.fwd;
1721 }
1722
1723 LISP_MACRO_DEFUN_VOID (SET_SYMBOL_VAL,
1724 (struct Lisp_Symbol *sym, Lisp_Object v), (sym, v))
1725
1726 INLINE void
1727 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1728 {
1729 eassert (sym->redirect == SYMBOL_VARALIAS);
1730 sym->val.alias = v;
1731 }
1732 INLINE void
1733 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1734 {
1735 eassert (sym->redirect == SYMBOL_LOCALIZED);
1736 sym->val.blv = v;
1737 }
1738 INLINE void
1739 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1740 {
1741 eassert (sym->redirect == SYMBOL_FORWARDED);
1742 sym->val.fwd = v;
1743 }
1744
1745 INLINE Lisp_Object
1746 SYMBOL_NAME (Lisp_Object sym)
1747 {
1748 return XSYMBOL (sym)->name;
1749 }
1750
1751 /* Value is true if SYM is an interned symbol. */
1752
1753 INLINE bool
1754 SYMBOL_INTERNED_P (Lisp_Object sym)
1755 {
1756 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1757 }
1758
1759 /* Value is true if SYM is interned in initial_obarray. */
1760
1761 INLINE bool
1762 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1763 {
1764 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1765 }
1766
1767 /* Value is non-zero if symbol is considered a constant, i.e. its
1768 value cannot be changed (there is an exception for keyword symbols,
1769 whose value can be set to the keyword symbol itself). */
1770
1771 LISP_MACRO_DEFUN (SYMBOL_CONSTANT_P, int, (Lisp_Object sym), (sym))
1772
1773 /* Placeholder for make-docfile to process. The actual symbol
1774 definition is done by lread.c's defsym. */
1775 #define DEFSYM(sym, name) /* empty */
1776
1777 \f
1778 /***********************************************************************
1779 Hash Tables
1780 ***********************************************************************/
1781
1782 /* The structure of a Lisp hash table. */
1783
1784 struct hash_table_test
1785 {
1786 /* Name of the function used to compare keys. */
1787 Lisp_Object name;
1788
1789 /* User-supplied hash function, or nil. */
1790 Lisp_Object user_hash_function;
1791
1792 /* User-supplied key comparison function, or nil. */
1793 Lisp_Object user_cmp_function;
1794
1795 /* C function to compare two keys. */
1796 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1797
1798 /* C function to compute hash code. */
1799 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1800 };
1801
1802 struct Lisp_Hash_Table
1803 {
1804 /* This is for Lisp; the hash table code does not refer to it. */
1805 struct vectorlike_header header;
1806
1807 /* Nil if table is non-weak. Otherwise a symbol describing the
1808 weakness of the table. */
1809 Lisp_Object weak;
1810
1811 /* When the table is resized, and this is an integer, compute the
1812 new size by adding this to the old size. If a float, compute the
1813 new size by multiplying the old size with this factor. */
1814 Lisp_Object rehash_size;
1815
1816 /* Resize hash table when number of entries/ table size is >= this
1817 ratio, a float. */
1818 Lisp_Object rehash_threshold;
1819
1820 /* Vector of hash codes. If hash[I] is nil, this means that the
1821 I-th entry is unused. */
1822 Lisp_Object hash;
1823
1824 /* Vector used to chain entries. If entry I is free, next[I] is the
1825 entry number of the next free item. If entry I is non-free,
1826 next[I] is the index of the next entry in the collision chain. */
1827 Lisp_Object next;
1828
1829 /* Index of first free entry in free list. */
1830 Lisp_Object next_free;
1831
1832 /* Bucket vector. A non-nil entry is the index of the first item in
1833 a collision chain. This vector's size can be larger than the
1834 hash table size to reduce collisions. */
1835 Lisp_Object index;
1836
1837 /* Only the fields above are traced normally by the GC. The ones below
1838 `count' are special and are either ignored by the GC or traced in
1839 a special way (e.g. because of weakness). */
1840
1841 /* Number of key/value entries in the table. */
1842 ptrdiff_t count;
1843
1844 /* Vector of keys and values. The key of item I is found at index
1845 2 * I, the value is found at index 2 * I + 1.
1846 This is gc_marked specially if the table is weak. */
1847 Lisp_Object key_and_value;
1848
1849 /* The comparison and hash functions. */
1850 struct hash_table_test test;
1851
1852 /* Next weak hash table if this is a weak hash table. The head
1853 of the list is in weak_hash_tables. */
1854 struct Lisp_Hash_Table *next_weak;
1855 };
1856
1857
1858 INLINE struct Lisp_Hash_Table *
1859 XHASH_TABLE (Lisp_Object a)
1860 {
1861 return XUNTAG (a, Lisp_Vectorlike);
1862 }
1863
1864 #define XSET_HASH_TABLE(VAR, PTR) \
1865 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1866
1867 INLINE bool
1868 HASH_TABLE_P (Lisp_Object a)
1869 {
1870 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1871 }
1872
1873 /* Value is the key part of entry IDX in hash table H. */
1874 INLINE Lisp_Object
1875 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1876 {
1877 return AREF (h->key_and_value, 2 * idx);
1878 }
1879
1880 /* Value is the value part of entry IDX in hash table H. */
1881 INLINE Lisp_Object
1882 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1883 {
1884 return AREF (h->key_and_value, 2 * idx + 1);
1885 }
1886
1887 /* Value is the index of the next entry following the one at IDX
1888 in hash table H. */
1889 INLINE Lisp_Object
1890 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1891 {
1892 return AREF (h->next, idx);
1893 }
1894
1895 /* Value is the hash code computed for entry IDX in hash table H. */
1896 INLINE Lisp_Object
1897 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1898 {
1899 return AREF (h->hash, idx);
1900 }
1901
1902 /* Value is the index of the element in hash table H that is the
1903 start of the collision list at index IDX in the index vector of H. */
1904 INLINE Lisp_Object
1905 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1906 {
1907 return AREF (h->index, idx);
1908 }
1909
1910 /* Value is the size of hash table H. */
1911 INLINE ptrdiff_t
1912 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1913 {
1914 return ASIZE (h->next);
1915 }
1916
1917 /* Default size for hash tables if not specified. */
1918
1919 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1920
1921 /* Default threshold specifying when to resize a hash table. The
1922 value gives the ratio of current entries in the hash table and the
1923 size of the hash table. */
1924
1925 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
1926
1927 /* Default factor by which to increase the size of a hash table. */
1928
1929 static double const DEFAULT_REHASH_SIZE = 1.5;
1930
1931 /* Combine two integers X and Y for hashing. The result might not fit
1932 into a Lisp integer. */
1933
1934 INLINE EMACS_UINT
1935 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
1936 {
1937 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
1938 }
1939
1940 /* Hash X, returning a value that fits into a fixnum. */
1941
1942 INLINE EMACS_UINT
1943 SXHASH_REDUCE (EMACS_UINT x)
1944 {
1945 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
1946 }
1947
1948 /* These structures are used for various misc types. */
1949
1950 struct Lisp_Misc_Any /* Supertype of all Misc types. */
1951 {
1952 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
1953 bool_bf gcmarkbit : 1;
1954 unsigned spacer : 15;
1955 };
1956
1957 struct Lisp_Marker
1958 {
1959 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
1960 bool_bf gcmarkbit : 1;
1961 unsigned spacer : 13;
1962 /* This flag is temporarily used in the functions
1963 decode/encode_coding_object to record that the marker position
1964 must be adjusted after the conversion. */
1965 bool_bf need_adjustment : 1;
1966 /* True means normal insertion at the marker's position
1967 leaves the marker after the inserted text. */
1968 bool_bf insertion_type : 1;
1969 /* This is the buffer that the marker points into, or 0 if it points nowhere.
1970 Note: a chain of markers can contain markers pointing into different
1971 buffers (the chain is per buffer_text rather than per buffer, so it's
1972 shared between indirect buffers). */
1973 /* This is used for (other than NULL-checking):
1974 - Fmarker_buffer
1975 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
1976 - unchain_marker: to find the list from which to unchain.
1977 - Fkill_buffer: to only unchain the markers of current indirect buffer.
1978 */
1979 struct buffer *buffer;
1980
1981 /* The remaining fields are meaningless in a marker that
1982 does not point anywhere. */
1983
1984 /* For markers that point somewhere,
1985 this is used to chain of all the markers in a given buffer. */
1986 /* We could remove it and use an array in buffer_text instead.
1987 That would also allow to preserve it ordered. */
1988 struct Lisp_Marker *next;
1989 /* This is the char position where the marker points. */
1990 ptrdiff_t charpos;
1991 /* This is the byte position.
1992 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
1993 used to implement the functionality of markers, but rather to (ab)use
1994 markers as a cache for char<->byte mappings). */
1995 ptrdiff_t bytepos;
1996 };
1997
1998 /* START and END are markers in the overlay's buffer, and
1999 PLIST is the overlay's property list. */
2000 struct Lisp_Overlay
2001 /* An overlay's real data content is:
2002 - plist
2003 - buffer (really there are two buffer pointers, one per marker,
2004 and both points to the same buffer)
2005 - insertion type of both ends (per-marker fields)
2006 - start & start byte (of start marker)
2007 - end & end byte (of end marker)
2008 - next (singly linked list of overlays)
2009 - next fields of start and end markers (singly linked list of markers).
2010 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
2011 */
2012 {
2013 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
2014 bool_bf gcmarkbit : 1;
2015 unsigned spacer : 15;
2016 struct Lisp_Overlay *next;
2017 Lisp_Object start;
2018 Lisp_Object end;
2019 Lisp_Object plist;
2020 };
2021
2022 /* Types of data which may be saved in a Lisp_Save_Value. */
2023
2024 enum
2025 {
2026 SAVE_UNUSED,
2027 SAVE_INTEGER,
2028 SAVE_FUNCPOINTER,
2029 SAVE_POINTER,
2030 SAVE_OBJECT
2031 };
2032
2033 /* Number of bits needed to store one of the above values. */
2034 enum { SAVE_SLOT_BITS = 3 };
2035
2036 /* Number of slots in a save value where save_type is nonzero. */
2037 enum { SAVE_VALUE_SLOTS = 4 };
2038
2039 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
2040
2041 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
2042
2043 enum Lisp_Save_Type
2044 {
2045 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2046 SAVE_TYPE_INT_INT_INT
2047 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
2048 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
2049 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
2050 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
2051 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
2052 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2053 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
2054 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
2055 SAVE_TYPE_FUNCPTR_PTR_OBJ
2056 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
2057
2058 /* This has an extra bit indicating it's raw memory. */
2059 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
2060 };
2061
2062 /* Special object used to hold a different values for later use.
2063
2064 This is mostly used to package C integers and pointers to call
2065 record_unwind_protect when two or more values need to be saved.
2066 For example:
2067
2068 ...
2069 struct my_data *md = get_my_data ();
2070 ptrdiff_t mi = get_my_integer ();
2071 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2072 ...
2073
2074 Lisp_Object my_unwind (Lisp_Object arg)
2075 {
2076 struct my_data *md = XSAVE_POINTER (arg, 0);
2077 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2078 ...
2079 }
2080
2081 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2082 saved objects and raise eassert if type of the saved object doesn't match
2083 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2084 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2085 slot 0 is a pointer. */
2086
2087 typedef void (*voidfuncptr) (void);
2088
2089 struct Lisp_Save_Value
2090 {
2091 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2092 bool_bf gcmarkbit : 1;
2093 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2094
2095 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2096 V's data entries are determined by V->save_type. E.g., if
2097 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2098 V->data[1] is an integer, and V's other data entries are unused.
2099
2100 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2101 a memory area containing V->data[1].integer potential Lisp_Objects. */
2102 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2103 union {
2104 void *pointer;
2105 voidfuncptr funcpointer;
2106 ptrdiff_t integer;
2107 Lisp_Object object;
2108 } data[SAVE_VALUE_SLOTS];
2109 };
2110
2111 /* Return the type of V's Nth saved value. */
2112 INLINE int
2113 save_type (struct Lisp_Save_Value *v, int n)
2114 {
2115 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2116 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2117 }
2118
2119 /* Get and set the Nth saved pointer. */
2120
2121 INLINE void *
2122 XSAVE_POINTER (Lisp_Object obj, int n)
2123 {
2124 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2125 return XSAVE_VALUE (obj)->data[n].pointer;
2126 }
2127 INLINE void
2128 set_save_pointer (Lisp_Object obj, int n, void *val)
2129 {
2130 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2131 XSAVE_VALUE (obj)->data[n].pointer = val;
2132 }
2133 INLINE voidfuncptr
2134 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2135 {
2136 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2137 return XSAVE_VALUE (obj)->data[n].funcpointer;
2138 }
2139
2140 /* Likewise for the saved integer. */
2141
2142 INLINE ptrdiff_t
2143 XSAVE_INTEGER (Lisp_Object obj, int n)
2144 {
2145 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2146 return XSAVE_VALUE (obj)->data[n].integer;
2147 }
2148 INLINE void
2149 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2150 {
2151 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2152 XSAVE_VALUE (obj)->data[n].integer = val;
2153 }
2154
2155 /* Extract Nth saved object. */
2156
2157 INLINE Lisp_Object
2158 XSAVE_OBJECT (Lisp_Object obj, int n)
2159 {
2160 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2161 return XSAVE_VALUE (obj)->data[n].object;
2162 }
2163
2164 /* A miscellaneous object, when it's on the free list. */
2165 struct Lisp_Free
2166 {
2167 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2168 bool_bf gcmarkbit : 1;
2169 unsigned spacer : 15;
2170 union Lisp_Misc *chain;
2171 };
2172
2173 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2174 It uses one of these struct subtypes to get the type field. */
2175
2176 union Lisp_Misc
2177 {
2178 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2179 struct Lisp_Free u_free;
2180 struct Lisp_Marker u_marker;
2181 struct Lisp_Overlay u_overlay;
2182 struct Lisp_Save_Value u_save_value;
2183 };
2184
2185 INLINE union Lisp_Misc *
2186 XMISC (Lisp_Object a)
2187 {
2188 return XUNTAG (a, Lisp_Misc);
2189 }
2190
2191 INLINE struct Lisp_Misc_Any *
2192 XMISCANY (Lisp_Object a)
2193 {
2194 eassert (MISCP (a));
2195 return & XMISC (a)->u_any;
2196 }
2197
2198 INLINE enum Lisp_Misc_Type
2199 XMISCTYPE (Lisp_Object a)
2200 {
2201 return XMISCANY (a)->type;
2202 }
2203
2204 INLINE struct Lisp_Marker *
2205 XMARKER (Lisp_Object a)
2206 {
2207 eassert (MARKERP (a));
2208 return & XMISC (a)->u_marker;
2209 }
2210
2211 INLINE struct Lisp_Overlay *
2212 XOVERLAY (Lisp_Object a)
2213 {
2214 eassert (OVERLAYP (a));
2215 return & XMISC (a)->u_overlay;
2216 }
2217
2218 INLINE struct Lisp_Save_Value *
2219 XSAVE_VALUE (Lisp_Object a)
2220 {
2221 eassert (SAVE_VALUEP (a));
2222 return & XMISC (a)->u_save_value;
2223 }
2224 \f
2225 /* Forwarding pointer to an int variable.
2226 This is allowed only in the value cell of a symbol,
2227 and it means that the symbol's value really lives in the
2228 specified int variable. */
2229 struct Lisp_Intfwd
2230 {
2231 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2232 EMACS_INT *intvar;
2233 };
2234
2235 /* Boolean forwarding pointer to an int variable.
2236 This is like Lisp_Intfwd except that the ostensible
2237 "value" of the symbol is t if the bool variable is true,
2238 nil if it is false. */
2239 struct Lisp_Boolfwd
2240 {
2241 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2242 bool *boolvar;
2243 };
2244
2245 /* Forwarding pointer to a Lisp_Object variable.
2246 This is allowed only in the value cell of a symbol,
2247 and it means that the symbol's value really lives in the
2248 specified variable. */
2249 struct Lisp_Objfwd
2250 {
2251 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2252 Lisp_Object *objvar;
2253 };
2254
2255 /* Like Lisp_Objfwd except that value lives in a slot in the
2256 current buffer. Value is byte index of slot within buffer. */
2257 struct Lisp_Buffer_Objfwd
2258 {
2259 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2260 int offset;
2261 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2262 Lisp_Object predicate;
2263 };
2264
2265 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2266 the symbol has buffer-local or frame-local bindings. (Exception:
2267 some buffer-local variables are built-in, with their values stored
2268 in the buffer structure itself. They are handled differently,
2269 using struct Lisp_Buffer_Objfwd.)
2270
2271 The `realvalue' slot holds the variable's current value, or a
2272 forwarding pointer to where that value is kept. This value is the
2273 one that corresponds to the loaded binding. To read or set the
2274 variable, you must first make sure the right binding is loaded;
2275 then you can access the value in (or through) `realvalue'.
2276
2277 `buffer' and `frame' are the buffer and frame for which the loaded
2278 binding was found. If those have changed, to make sure the right
2279 binding is loaded it is necessary to find which binding goes with
2280 the current buffer and selected frame, then load it. To load it,
2281 first unload the previous binding, then copy the value of the new
2282 binding into `realvalue' (or through it). Also update
2283 LOADED-BINDING to point to the newly loaded binding.
2284
2285 `local_if_set' indicates that merely setting the variable creates a
2286 local binding for the current buffer. Otherwise the latter, setting
2287 the variable does not do that; only make-local-variable does that. */
2288
2289 struct Lisp_Buffer_Local_Value
2290 {
2291 /* True means that merely setting the variable creates a local
2292 binding for the current buffer. */
2293 bool_bf local_if_set : 1;
2294 /* True means this variable can have frame-local bindings, otherwise, it is
2295 can have buffer-local bindings. The two cannot be combined. */
2296 bool_bf frame_local : 1;
2297 /* True means that the binding now loaded was found.
2298 Presumably equivalent to (defcell!=valcell). */
2299 bool_bf found : 1;
2300 /* If non-NULL, a forwarding to the C var where it should also be set. */
2301 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2302 /* The buffer or frame for which the loaded binding was found. */
2303 Lisp_Object where;
2304 /* A cons cell that holds the default value. It has the form
2305 (SYMBOL . DEFAULT-VALUE). */
2306 Lisp_Object defcell;
2307 /* The cons cell from `where's parameter alist.
2308 It always has the form (SYMBOL . VALUE)
2309 Note that if `forward' is non-nil, VALUE may be out of date.
2310 Also if the currently loaded binding is the default binding, then
2311 this is `eq'ual to defcell. */
2312 Lisp_Object valcell;
2313 };
2314
2315 /* Like Lisp_Objfwd except that value lives in a slot in the
2316 current kboard. */
2317 struct Lisp_Kboard_Objfwd
2318 {
2319 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2320 int offset;
2321 };
2322
2323 union Lisp_Fwd
2324 {
2325 struct Lisp_Intfwd u_intfwd;
2326 struct Lisp_Boolfwd u_boolfwd;
2327 struct Lisp_Objfwd u_objfwd;
2328 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2329 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2330 };
2331
2332 INLINE enum Lisp_Fwd_Type
2333 XFWDTYPE (union Lisp_Fwd *a)
2334 {
2335 return a->u_intfwd.type;
2336 }
2337
2338 INLINE struct Lisp_Buffer_Objfwd *
2339 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2340 {
2341 eassert (BUFFER_OBJFWDP (a));
2342 return &a->u_buffer_objfwd;
2343 }
2344 \f
2345 /* Lisp floating point type. */
2346 struct Lisp_Float
2347 {
2348 union
2349 {
2350 double data;
2351 struct Lisp_Float *chain;
2352 } u;
2353 };
2354
2355 INLINE double
2356 XFLOAT_DATA (Lisp_Object f)
2357 {
2358 return XFLOAT (f)->u.data;
2359 }
2360
2361 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2362 representations, have infinities and NaNs, and do not trap on
2363 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2364 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2365 wanted here, but is not quite right because Emacs does not require
2366 all the features of C11 Annex F (and does not require C11 at all,
2367 for that matter). */
2368 enum
2369 {
2370 IEEE_FLOATING_POINT
2371 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2372 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2373 };
2374
2375 /* A character, declared with the following typedef, is a member
2376 of some character set associated with the current buffer. */
2377 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2378 #define _UCHAR_T
2379 typedef unsigned char UCHAR;
2380 #endif
2381
2382 /* Meanings of slots in a Lisp_Compiled: */
2383
2384 enum Lisp_Compiled
2385 {
2386 COMPILED_ARGLIST = 0,
2387 COMPILED_BYTECODE = 1,
2388 COMPILED_CONSTANTS = 2,
2389 COMPILED_STACK_DEPTH = 3,
2390 COMPILED_DOC_STRING = 4,
2391 COMPILED_INTERACTIVE = 5
2392 };
2393
2394 /* Flag bits in a character. These also get used in termhooks.h.
2395 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2396 (MUlti-Lingual Emacs) might need 22 bits for the character value
2397 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2398 enum char_bits
2399 {
2400 CHAR_ALT = 0x0400000,
2401 CHAR_SUPER = 0x0800000,
2402 CHAR_HYPER = 0x1000000,
2403 CHAR_SHIFT = 0x2000000,
2404 CHAR_CTL = 0x4000000,
2405 CHAR_META = 0x8000000,
2406
2407 CHAR_MODIFIER_MASK =
2408 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2409
2410 /* Actually, the current Emacs uses 22 bits for the character value
2411 itself. */
2412 CHARACTERBITS = 22
2413 };
2414 \f
2415 /* Data type checking. */
2416
2417 LISP_MACRO_DEFUN (NILP, bool, (Lisp_Object x), (x))
2418
2419 INLINE bool
2420 NUMBERP (Lisp_Object x)
2421 {
2422 return INTEGERP (x) || FLOATP (x);
2423 }
2424 INLINE bool
2425 NATNUMP (Lisp_Object x)
2426 {
2427 return INTEGERP (x) && 0 <= XINT (x);
2428 }
2429
2430 INLINE bool
2431 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2432 {
2433 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2434 }
2435
2436 #define TYPE_RANGED_INTEGERP(type, x) \
2437 (INTEGERP (x) \
2438 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2439 && XINT (x) <= TYPE_MAXIMUM (type))
2440
2441 LISP_MACRO_DEFUN (CONSP, bool, (Lisp_Object x), (x))
2442 LISP_MACRO_DEFUN (FLOATP, bool, (Lisp_Object x), (x))
2443 LISP_MACRO_DEFUN (MISCP, bool, (Lisp_Object x), (x))
2444 LISP_MACRO_DEFUN (SYMBOLP, bool, (Lisp_Object x), (x))
2445 LISP_MACRO_DEFUN (INTEGERP, bool, (Lisp_Object x), (x))
2446 LISP_MACRO_DEFUN (VECTORLIKEP, bool, (Lisp_Object x), (x))
2447 LISP_MACRO_DEFUN (MARKERP, bool, (Lisp_Object x), (x))
2448
2449 INLINE bool
2450 STRINGP (Lisp_Object x)
2451 {
2452 return XTYPE (x) == Lisp_String;
2453 }
2454 INLINE bool
2455 VECTORP (Lisp_Object x)
2456 {
2457 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2458 }
2459 INLINE bool
2460 OVERLAYP (Lisp_Object x)
2461 {
2462 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2463 }
2464 INLINE bool
2465 SAVE_VALUEP (Lisp_Object x)
2466 {
2467 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2468 }
2469
2470 INLINE bool
2471 AUTOLOADP (Lisp_Object x)
2472 {
2473 return CONSP (x) && EQ (Qautoload, XCAR (x));
2474 }
2475
2476 INLINE bool
2477 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2478 {
2479 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2480 }
2481
2482 INLINE bool
2483 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2484 {
2485 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2486 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2487 }
2488
2489 /* True if A is a pseudovector whose code is CODE. */
2490 INLINE bool
2491 PSEUDOVECTORP (Lisp_Object a, int code)
2492 {
2493 if (! VECTORLIKEP (a))
2494 return false;
2495 else
2496 {
2497 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2498 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2499 return PSEUDOVECTOR_TYPEP (h, code);
2500 }
2501 }
2502
2503
2504 /* Test for specific pseudovector types. */
2505
2506 INLINE bool
2507 WINDOW_CONFIGURATIONP (Lisp_Object a)
2508 {
2509 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2510 }
2511
2512 INLINE bool
2513 PROCESSP (Lisp_Object a)
2514 {
2515 return PSEUDOVECTORP (a, PVEC_PROCESS);
2516 }
2517
2518 INLINE bool
2519 WINDOWP (Lisp_Object a)
2520 {
2521 return PSEUDOVECTORP (a, PVEC_WINDOW);
2522 }
2523
2524 INLINE bool
2525 TERMINALP (Lisp_Object a)
2526 {
2527 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2528 }
2529
2530 INLINE bool
2531 SUBRP (Lisp_Object a)
2532 {
2533 return PSEUDOVECTORP (a, PVEC_SUBR);
2534 }
2535
2536 INLINE bool
2537 COMPILEDP (Lisp_Object a)
2538 {
2539 return PSEUDOVECTORP (a, PVEC_COMPILED);
2540 }
2541
2542 INLINE bool
2543 BUFFERP (Lisp_Object a)
2544 {
2545 return PSEUDOVECTORP (a, PVEC_BUFFER);
2546 }
2547
2548 INLINE bool
2549 CHAR_TABLE_P (Lisp_Object a)
2550 {
2551 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2552 }
2553
2554 INLINE bool
2555 SUB_CHAR_TABLE_P (Lisp_Object a)
2556 {
2557 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2558 }
2559
2560 INLINE bool
2561 BOOL_VECTOR_P (Lisp_Object a)
2562 {
2563 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2564 }
2565
2566 INLINE bool
2567 FRAMEP (Lisp_Object a)
2568 {
2569 return PSEUDOVECTORP (a, PVEC_FRAME);
2570 }
2571
2572 /* Test for image (image . spec) */
2573 INLINE bool
2574 IMAGEP (Lisp_Object x)
2575 {
2576 return CONSP (x) && EQ (XCAR (x), Qimage);
2577 }
2578
2579 /* Array types. */
2580 INLINE bool
2581 ARRAYP (Lisp_Object x)
2582 {
2583 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2584 }
2585 \f
2586 INLINE void
2587 CHECK_LIST (Lisp_Object x)
2588 {
2589 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2590 }
2591
2592 LISP_MACRO_DEFUN_VOID (CHECK_LIST_CONS, (Lisp_Object x, Lisp_Object y), (x, y))
2593 LISP_MACRO_DEFUN_VOID (CHECK_SYMBOL, (Lisp_Object x), (x))
2594 LISP_MACRO_DEFUN_VOID (CHECK_NUMBER, (Lisp_Object x), (x))
2595
2596 INLINE void
2597 CHECK_STRING (Lisp_Object x)
2598 {
2599 CHECK_TYPE (STRINGP (x), Qstringp, x);
2600 }
2601 INLINE void
2602 CHECK_STRING_CAR (Lisp_Object x)
2603 {
2604 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2605 }
2606 INLINE void
2607 CHECK_CONS (Lisp_Object x)
2608 {
2609 CHECK_TYPE (CONSP (x), Qconsp, x);
2610 }
2611 INLINE void
2612 CHECK_VECTOR (Lisp_Object x)
2613 {
2614 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2615 }
2616 INLINE void
2617 CHECK_BOOL_VECTOR (Lisp_Object x)
2618 {
2619 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2620 }
2621 /* This is a bit special because we always need size afterwards. */
2622 INLINE ptrdiff_t
2623 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2624 {
2625 if (VECTORP (x))
2626 return ASIZE (x);
2627 if (STRINGP (x))
2628 return SCHARS (x);
2629 wrong_type_argument (Qarrayp, x);
2630 }
2631 INLINE void
2632 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2633 {
2634 CHECK_TYPE (ARRAYP (x), predicate, x);
2635 }
2636 INLINE void
2637 CHECK_BUFFER (Lisp_Object x)
2638 {
2639 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2640 }
2641 INLINE void
2642 CHECK_WINDOW (Lisp_Object x)
2643 {
2644 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2645 }
2646 #ifdef subprocesses
2647 INLINE void
2648 CHECK_PROCESS (Lisp_Object x)
2649 {
2650 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2651 }
2652 #endif
2653 INLINE void
2654 CHECK_NATNUM (Lisp_Object x)
2655 {
2656 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2657 }
2658
2659 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2660 do { \
2661 CHECK_NUMBER (x); \
2662 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2663 args_out_of_range_3 \
2664 (x, \
2665 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2666 ? MOST_NEGATIVE_FIXNUM \
2667 : (lo)), \
2668 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2669 } while (false)
2670 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2671 do { \
2672 if (TYPE_SIGNED (type)) \
2673 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2674 else \
2675 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2676 } while (false)
2677
2678 #define CHECK_NUMBER_COERCE_MARKER(x) \
2679 do { \
2680 if (MARKERP ((x))) \
2681 XSETFASTINT (x, marker_position (x)); \
2682 else \
2683 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2684 } while (false)
2685
2686 INLINE double
2687 XFLOATINT (Lisp_Object n)
2688 {
2689 return extract_float (n);
2690 }
2691
2692 INLINE void
2693 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2694 {
2695 CHECK_TYPE (FLOATP (x) || INTEGERP (x), Qnumberp, x);
2696 }
2697
2698 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2699 do { \
2700 if (MARKERP (x)) \
2701 XSETFASTINT (x, marker_position (x)); \
2702 else \
2703 CHECK_TYPE (INTEGERP (x) || FLOATP (x), Qnumber_or_marker_p, x); \
2704 } while (false)
2705
2706 /* Since we can't assign directly to the CAR or CDR fields of a cons
2707 cell, use these when checking that those fields contain numbers. */
2708 INLINE void
2709 CHECK_NUMBER_CAR (Lisp_Object x)
2710 {
2711 Lisp_Object tmp = XCAR (x);
2712 CHECK_NUMBER (tmp);
2713 XSETCAR (x, tmp);
2714 }
2715
2716 INLINE void
2717 CHECK_NUMBER_CDR (Lisp_Object x)
2718 {
2719 Lisp_Object tmp = XCDR (x);
2720 CHECK_NUMBER (tmp);
2721 XSETCDR (x, tmp);
2722 }
2723 \f
2724 /* Define a built-in function for calling from Lisp.
2725 `lname' should be the name to give the function in Lisp,
2726 as a null-terminated C string.
2727 `fnname' should be the name of the function in C.
2728 By convention, it starts with F.
2729 `sname' should be the name for the C constant structure
2730 that records information on this function for internal use.
2731 By convention, it should be the same as `fnname' but with S instead of F.
2732 It's too bad that C macros can't compute this from `fnname'.
2733 `minargs' should be a number, the minimum number of arguments allowed.
2734 `maxargs' should be a number, the maximum number of arguments allowed,
2735 or else MANY or UNEVALLED.
2736 MANY means pass a vector of evaluated arguments,
2737 in the form of an integer number-of-arguments
2738 followed by the address of a vector of Lisp_Objects
2739 which contains the argument values.
2740 UNEVALLED means pass the list of unevaluated arguments
2741 `intspec' says how interactive arguments are to be fetched.
2742 If the string starts with a `(', `intspec' is evaluated and the resulting
2743 list is the list of arguments.
2744 If it's a string that doesn't start with `(', the value should follow
2745 the one of the doc string for `interactive'.
2746 A null string means call interactively with no arguments.
2747 `doc' is documentation for the user. */
2748
2749 /* This version of DEFUN declares a function prototype with the right
2750 arguments, so we can catch errors with maxargs at compile-time. */
2751 #ifdef _MSC_VER
2752 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2753 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2754 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2755 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2756 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2757 { (Lisp_Object (__cdecl *)(void))fnname }, \
2758 minargs, maxargs, lname, intspec, 0}; \
2759 Lisp_Object fnname
2760 #else /* not _MSC_VER */
2761 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2762 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2763 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2764 { .a ## maxargs = fnname }, \
2765 minargs, maxargs, lname, intspec, 0}; \
2766 Lisp_Object fnname
2767 #endif
2768
2769 /* True if OBJ is a Lisp function. */
2770 INLINE bool
2771 FUNCTIONP (Lisp_Object obj)
2772 {
2773 return functionp (obj);
2774 }
2775
2776 /* defsubr (Sname);
2777 is how we define the symbol for function `name' at start-up time. */
2778 extern void defsubr (struct Lisp_Subr *);
2779
2780 enum maxargs
2781 {
2782 MANY = -2,
2783 UNEVALLED = -1
2784 };
2785
2786 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2787 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2788 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2789 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2790 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2791
2792 /* Macros we use to define forwarded Lisp variables.
2793 These are used in the syms_of_FILENAME functions.
2794
2795 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2796 lisp variable is actually a field in `struct emacs_globals'. The
2797 field's name begins with "f_", which is a convention enforced by
2798 these macros. Each such global has a corresponding #define in
2799 globals.h; the plain name should be used in the code.
2800
2801 E.g., the global "cons_cells_consed" is declared as "int
2802 f_cons_cells_consed" in globals.h, but there is a define:
2803
2804 #define cons_cells_consed globals.f_cons_cells_consed
2805
2806 All C code uses the `cons_cells_consed' name. This is all done
2807 this way to support indirection for multi-threaded Emacs. */
2808
2809 #define DEFVAR_LISP(lname, vname, doc) \
2810 do { \
2811 static struct Lisp_Objfwd o_fwd; \
2812 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
2813 } while (false)
2814 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
2815 do { \
2816 static struct Lisp_Objfwd o_fwd; \
2817 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
2818 } while (false)
2819 #define DEFVAR_BOOL(lname, vname, doc) \
2820 do { \
2821 static struct Lisp_Boolfwd b_fwd; \
2822 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
2823 } while (false)
2824 #define DEFVAR_INT(lname, vname, doc) \
2825 do { \
2826 static struct Lisp_Intfwd i_fwd; \
2827 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
2828 } while (false)
2829
2830 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
2831 do { \
2832 static struct Lisp_Objfwd o_fwd; \
2833 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
2834 } while (false)
2835
2836 #define DEFVAR_KBOARD(lname, vname, doc) \
2837 do { \
2838 static struct Lisp_Kboard_Objfwd ko_fwd; \
2839 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
2840 } while (false)
2841 \f
2842 /* Save and restore the instruction and environment pointers,
2843 without affecting the signal mask. */
2844
2845 #ifdef HAVE__SETJMP
2846 typedef jmp_buf sys_jmp_buf;
2847 # define sys_setjmp(j) _setjmp (j)
2848 # define sys_longjmp(j, v) _longjmp (j, v)
2849 #elif defined HAVE_SIGSETJMP
2850 typedef sigjmp_buf sys_jmp_buf;
2851 # define sys_setjmp(j) sigsetjmp (j, 0)
2852 # define sys_longjmp(j, v) siglongjmp (j, v)
2853 #else
2854 /* A platform that uses neither _longjmp nor siglongjmp; assume
2855 longjmp does not affect the sigmask. */
2856 typedef jmp_buf sys_jmp_buf;
2857 # define sys_setjmp(j) setjmp (j)
2858 # define sys_longjmp(j, v) longjmp (j, v)
2859 #endif
2860
2861 \f
2862 /* Elisp uses several stacks:
2863 - the C stack.
2864 - the bytecode stack: used internally by the bytecode interpreter.
2865 Allocated from the C stack.
2866 - The specpdl stack: keeps track of active unwind-protect and
2867 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
2868 managed stack.
2869 - The handler stack: keeps track of active catch tags and condition-case
2870 handlers. Allocated in a manually managed stack implemented by a
2871 doubly-linked list allocated via xmalloc and never freed. */
2872
2873 /* Structure for recording Lisp call stack for backtrace purposes. */
2874
2875 /* The special binding stack holds the outer values of variables while
2876 they are bound by a function application or a let form, stores the
2877 code to be executed for unwind-protect forms.
2878
2879 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
2880 used all over the place, needs to be fast, and needs to know the size of
2881 union specbinding. But only eval.c should access it. */
2882
2883 enum specbind_tag {
2884 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
2885 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
2886 SPECPDL_UNWIND_INT, /* Likewise, on int. */
2887 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
2888 SPECPDL_BACKTRACE, /* An element of the backtrace. */
2889 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
2890 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
2891 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
2892 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
2893 };
2894
2895 union specbinding
2896 {
2897 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2898 struct {
2899 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2900 void (*func) (Lisp_Object);
2901 Lisp_Object arg;
2902 } unwind;
2903 struct {
2904 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2905 void (*func) (void *);
2906 void *arg;
2907 } unwind_ptr;
2908 struct {
2909 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2910 void (*func) (int);
2911 int arg;
2912 } unwind_int;
2913 struct {
2914 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2915 void (*func) (void);
2916 } unwind_void;
2917 struct {
2918 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2919 /* `where' is not used in the case of SPECPDL_LET. */
2920 Lisp_Object symbol, old_value, where;
2921 } let;
2922 struct {
2923 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2924 bool_bf debug_on_exit : 1;
2925 Lisp_Object function;
2926 Lisp_Object *args;
2927 ptrdiff_t nargs;
2928 } bt;
2929 };
2930
2931 extern union specbinding *specpdl;
2932 extern union specbinding *specpdl_ptr;
2933 extern ptrdiff_t specpdl_size;
2934
2935 INLINE ptrdiff_t
2936 SPECPDL_INDEX (void)
2937 {
2938 return specpdl_ptr - specpdl;
2939 }
2940
2941 /* This structure helps implement the `catch/throw' and `condition-case/signal'
2942 control structures. A struct handler contains all the information needed to
2943 restore the state of the interpreter after a non-local jump.
2944
2945 handler structures are chained together in a doubly linked list; the `next'
2946 member points to the next outer catchtag and the `nextfree' member points in
2947 the other direction to the next inner element (which is typically the next
2948 free element since we mostly use it on the deepest handler).
2949
2950 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
2951 member is TAG, and then unbinds to it. The `val' member is used to
2952 hold VAL while the stack is unwound; `val' is returned as the value
2953 of the catch form.
2954
2955 All the other members are concerned with restoring the interpreter
2956 state.
2957
2958 Members are volatile if their values need to survive _longjmp when
2959 a 'struct handler' is a local variable. */
2960
2961 enum handlertype { CATCHER, CONDITION_CASE };
2962
2963 struct handler
2964 {
2965 enum handlertype type;
2966 Lisp_Object tag_or_ch;
2967 Lisp_Object val;
2968 struct handler *next;
2969 struct handler *nextfree;
2970
2971 /* The bytecode interpreter can have several handlers active at the same
2972 time, so when we longjmp to one of them, it needs to know which handler
2973 this was and what was the corresponding internal state. This is stored
2974 here, and when we longjmp we make sure that handlerlist points to the
2975 proper handler. */
2976 Lisp_Object *bytecode_top;
2977 int bytecode_dest;
2978
2979 /* Most global vars are reset to their value via the specpdl mechanism,
2980 but a few others are handled by storing their value here. */
2981 #if true /* GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS, but defined later. */
2982 struct gcpro *gcpro;
2983 #endif
2984 sys_jmp_buf jmp;
2985 EMACS_INT lisp_eval_depth;
2986 ptrdiff_t pdlcount;
2987 int poll_suppress_count;
2988 int interrupt_input_blocked;
2989 struct byte_stack *byte_stack;
2990 };
2991
2992 /* Fill in the components of c, and put it on the list. */
2993 #define PUSH_HANDLER(c, tag_ch_val, handlertype) \
2994 if (handlerlist->nextfree) \
2995 (c) = handlerlist->nextfree; \
2996 else \
2997 { \
2998 (c) = xmalloc (sizeof (struct handler)); \
2999 (c)->nextfree = NULL; \
3000 handlerlist->nextfree = (c); \
3001 } \
3002 (c)->type = (handlertype); \
3003 (c)->tag_or_ch = (tag_ch_val); \
3004 (c)->val = Qnil; \
3005 (c)->next = handlerlist; \
3006 (c)->lisp_eval_depth = lisp_eval_depth; \
3007 (c)->pdlcount = SPECPDL_INDEX (); \
3008 (c)->poll_suppress_count = poll_suppress_count; \
3009 (c)->interrupt_input_blocked = interrupt_input_blocked;\
3010 (c)->gcpro = gcprolist; \
3011 (c)->byte_stack = byte_stack_list; \
3012 handlerlist = (c);
3013
3014
3015 extern Lisp_Object memory_signal_data;
3016
3017 /* An address near the bottom of the stack.
3018 Tells GC how to save a copy of the stack. */
3019 extern char *stack_bottom;
3020
3021 /* Check quit-flag and quit if it is non-nil.
3022 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
3023 So the program needs to do QUIT at times when it is safe to quit.
3024 Every loop that might run for a long time or might not exit
3025 ought to do QUIT at least once, at a safe place.
3026 Unless that is impossible, of course.
3027 But it is very desirable to avoid creating loops where QUIT is impossible.
3028
3029 Exception: if you set immediate_quit to true,
3030 then the handler that responds to the C-g does the quit itself.
3031 This is a good thing to do around a loop that has no side effects
3032 and (in particular) cannot call arbitrary Lisp code.
3033
3034 If quit-flag is set to `kill-emacs' the SIGINT handler has received
3035 a request to exit Emacs when it is safe to do. */
3036
3037 extern void process_pending_signals (void);
3038 extern bool volatile pending_signals;
3039
3040 extern void process_quit_flag (void);
3041 #define QUIT \
3042 do { \
3043 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
3044 process_quit_flag (); \
3045 else if (pending_signals) \
3046 process_pending_signals (); \
3047 } while (false)
3048
3049
3050 /* True if ought to quit now. */
3051
3052 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3053 \f
3054 extern Lisp_Object Vascii_downcase_table;
3055 extern Lisp_Object Vascii_canon_table;
3056 \f
3057 /* Structure for recording stack slots that need marking. */
3058
3059 /* This is a chain of structures, each of which points at a Lisp_Object
3060 variable whose value should be marked in garbage collection.
3061 Normally every link of the chain is an automatic variable of a function,
3062 and its `val' points to some argument or local variable of the function.
3063 On exit to the function, the chain is set back to the value it had on entry.
3064 This way, no link remains in the chain when the stack frame containing the
3065 link disappears.
3066
3067 Every function that can call Feval must protect in this fashion all
3068 Lisp_Object variables whose contents will be used again. */
3069
3070 extern struct gcpro *gcprolist;
3071
3072 struct gcpro
3073 {
3074 struct gcpro *next;
3075
3076 /* Address of first protected variable. */
3077 volatile Lisp_Object *var;
3078
3079 /* Number of consecutive protected variables. */
3080 ptrdiff_t nvars;
3081
3082 #ifdef DEBUG_GCPRO
3083 /* File name where this record is used. */
3084 const char *name;
3085
3086 /* Line number in this file. */
3087 int lineno;
3088
3089 /* Index in the local chain of records. */
3090 int idx;
3091
3092 /* Nesting level. */
3093 int level;
3094 #endif
3095 };
3096
3097 /* Values of GC_MARK_STACK during compilation:
3098
3099 0 Use GCPRO as before
3100 1 Do the real thing, make GCPROs and UNGCPRO no-ops.
3101 2 Mark the stack, and check that everything GCPRO'd is
3102 marked.
3103 3 Mark using GCPRO's, mark stack last, and count how many
3104 dead objects are kept alive.
3105
3106 Formerly, method 0 was used. Currently, method 1 is used unless
3107 otherwise specified by hand when building, e.g.,
3108 "make CPPFLAGS='-DGC_MARK_STACK=GC_USE_GCPROS_AS_BEFORE'".
3109 Methods 2 and 3 are present mainly to debug the transition from 0 to 1. */
3110
3111 #define GC_USE_GCPROS_AS_BEFORE 0
3112 #define GC_MAKE_GCPROS_NOOPS 1
3113 #define GC_MARK_STACK_CHECK_GCPROS 2
3114 #define GC_USE_GCPROS_CHECK_ZOMBIES 3
3115
3116 #ifndef GC_MARK_STACK
3117 #define GC_MARK_STACK GC_MAKE_GCPROS_NOOPS
3118 #endif
3119
3120 /* Whether we do the stack marking manually. */
3121 #define BYTE_MARK_STACK !(GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
3122 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
3123
3124
3125 #if GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS
3126
3127 /* Do something silly with gcproN vars just so gcc shuts up. */
3128 /* You get warnings from MIPSPro... */
3129
3130 #define GCPRO1(varname) ((void) gcpro1)
3131 #define GCPRO2(varname1, varname2) ((void) gcpro2, (void) gcpro1)
3132 #define GCPRO3(varname1, varname2, varname3) \
3133 ((void) gcpro3, (void) gcpro2, (void) gcpro1)
3134 #define GCPRO4(varname1, varname2, varname3, varname4) \
3135 ((void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3136 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3137 ((void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3138 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3139 ((void) gcpro6, (void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, \
3140 (void) gcpro1)
3141 #define GCPRO7(a, b, c, d, e, f, g) (GCPRO6 (a, b, c, d, e, f), (void) gcpro7)
3142 #define UNGCPRO ((void) 0)
3143
3144 #else /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3145
3146 #ifndef DEBUG_GCPRO
3147
3148 #define GCPRO1(a) \
3149 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3150 gcprolist = &gcpro1; }
3151
3152 #define GCPRO2(a, b) \
3153 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3154 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3155 gcprolist = &gcpro2; }
3156
3157 #define GCPRO3(a, b, c) \
3158 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3159 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3160 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3161 gcprolist = &gcpro3; }
3162
3163 #define GCPRO4(a, b, c, d) \
3164 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3165 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3166 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3167 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3168 gcprolist = &gcpro4; }
3169
3170 #define GCPRO5(a, b, c, d, e) \
3171 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3172 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3173 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3174 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3175 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3176 gcprolist = &gcpro5; }
3177
3178 #define GCPRO6(a, b, c, d, e, f) \
3179 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3180 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3181 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3182 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3183 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3184 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3185 gcprolist = &gcpro6; }
3186
3187 #define GCPRO7(a, b, c, d, e, f, g) \
3188 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3189 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3190 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3191 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3192 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3193 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3194 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3195 gcprolist = &gcpro7; }
3196
3197 #define UNGCPRO (gcprolist = gcpro1.next)
3198
3199 #else /* !DEBUG_GCPRO */
3200
3201 extern int gcpro_level;
3202
3203 #define GCPRO1(a) \
3204 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3205 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3206 gcpro1.level = gcpro_level++; \
3207 gcprolist = &gcpro1; }
3208
3209 #define GCPRO2(a, b) \
3210 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3211 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3212 gcpro1.level = gcpro_level; \
3213 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3214 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3215 gcpro2.level = gcpro_level++; \
3216 gcprolist = &gcpro2; }
3217
3218 #define GCPRO3(a, b, c) \
3219 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3220 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3221 gcpro1.level = gcpro_level; \
3222 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3223 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3224 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3225 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3226 gcpro3.level = gcpro_level++; \
3227 gcprolist = &gcpro3; }
3228
3229 #define GCPRO4(a, b, c, d) \
3230 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3231 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3232 gcpro1.level = gcpro_level; \
3233 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3234 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3235 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3236 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3237 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3238 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3239 gcpro4.level = gcpro_level++; \
3240 gcprolist = &gcpro4; }
3241
3242 #define GCPRO5(a, b, c, d, e) \
3243 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3244 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3245 gcpro1.level = gcpro_level; \
3246 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3247 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3248 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3249 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3250 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3251 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3252 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3253 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3254 gcpro5.level = gcpro_level++; \
3255 gcprolist = &gcpro5; }
3256
3257 #define GCPRO6(a, b, c, d, e, f) \
3258 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3259 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3260 gcpro1.level = gcpro_level; \
3261 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3262 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3263 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3264 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3265 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3266 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3267 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3268 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3269 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3270 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3271 gcpro6.level = gcpro_level++; \
3272 gcprolist = &gcpro6; }
3273
3274 #define GCPRO7(a, b, c, d, e, f, g) \
3275 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3276 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3277 gcpro1.level = gcpro_level; \
3278 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3279 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3280 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3281 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3282 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3283 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3284 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3285 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3286 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3287 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3288 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3289 gcpro7.name = __FILE__; gcpro7.lineno = __LINE__; gcpro7.idx = 7; \
3290 gcpro7.level = gcpro_level++; \
3291 gcprolist = &gcpro7; }
3292
3293 #define UNGCPRO \
3294 (--gcpro_level != gcpro1.level \
3295 ? emacs_abort () \
3296 : (void) (gcprolist = gcpro1.next))
3297
3298 #endif /* DEBUG_GCPRO */
3299 #endif /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3300
3301
3302 /* Evaluate expr, UNGCPRO, and then return the value of expr. */
3303 #define RETURN_UNGCPRO(expr) \
3304 do \
3305 { \
3306 Lisp_Object ret_ungc_val; \
3307 ret_ungc_val = (expr); \
3308 UNGCPRO; \
3309 return ret_ungc_val; \
3310 } \
3311 while (false)
3312
3313 /* Call staticpro (&var) to protect static variable `var'. */
3314
3315 void staticpro (Lisp_Object *);
3316 \f
3317 /* Forward declarations for prototypes. */
3318 struct window;
3319 struct frame;
3320
3321 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3322
3323 INLINE void
3324 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3325 {
3326 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3327 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3328 }
3329
3330 /* Functions to modify hash tables. */
3331
3332 INLINE void
3333 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3334 {
3335 gc_aset (h->key_and_value, 2 * idx, val);
3336 }
3337
3338 INLINE void
3339 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3340 {
3341 gc_aset (h->key_and_value, 2 * idx + 1, val);
3342 }
3343
3344 /* Use these functions to set Lisp_Object
3345 or pointer slots of struct Lisp_Symbol. */
3346
3347 INLINE void
3348 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3349 {
3350 XSYMBOL (sym)->function = function;
3351 }
3352
3353 INLINE void
3354 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3355 {
3356 XSYMBOL (sym)->plist = plist;
3357 }
3358
3359 INLINE void
3360 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3361 {
3362 XSYMBOL (sym)->next = next;
3363 }
3364
3365 /* Buffer-local (also frame-local) variable access functions. */
3366
3367 INLINE int
3368 blv_found (struct Lisp_Buffer_Local_Value *blv)
3369 {
3370 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3371 return blv->found;
3372 }
3373
3374 /* Set overlay's property list. */
3375
3376 INLINE void
3377 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3378 {
3379 XOVERLAY (overlay)->plist = plist;
3380 }
3381
3382 /* Get text properties of S. */
3383
3384 INLINE INTERVAL
3385 string_intervals (Lisp_Object s)
3386 {
3387 return XSTRING (s)->intervals;
3388 }
3389
3390 /* Set text properties of S to I. */
3391
3392 INLINE void
3393 set_string_intervals (Lisp_Object s, INTERVAL i)
3394 {
3395 XSTRING (s)->intervals = i;
3396 }
3397
3398 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3399 of setting slots directly. */
3400
3401 INLINE void
3402 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3403 {
3404 XCHAR_TABLE (table)->defalt = val;
3405 }
3406 INLINE void
3407 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3408 {
3409 XCHAR_TABLE (table)->purpose = val;
3410 }
3411
3412 /* Set different slots in (sub)character tables. */
3413
3414 INLINE void
3415 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3416 {
3417 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3418 XCHAR_TABLE (table)->extras[idx] = val;
3419 }
3420
3421 INLINE void
3422 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3423 {
3424 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3425 XCHAR_TABLE (table)->contents[idx] = val;
3426 }
3427
3428 INLINE void
3429 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3430 {
3431 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3432 }
3433
3434 /* Defined in data.c. */
3435 extern Lisp_Object indirect_function (Lisp_Object);
3436 extern Lisp_Object find_symbol_value (Lisp_Object);
3437 enum Arith_Comparison {
3438 ARITH_EQUAL,
3439 ARITH_NOTEQUAL,
3440 ARITH_LESS,
3441 ARITH_GRTR,
3442 ARITH_LESS_OR_EQUAL,
3443 ARITH_GRTR_OR_EQUAL
3444 };
3445 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3446 enum Arith_Comparison comparison);
3447
3448 /* Convert the integer I to an Emacs representation, either the integer
3449 itself, or a cons of two or three integers, or if all else fails a float.
3450 I should not have side effects. */
3451 #define INTEGER_TO_CONS(i) \
3452 (! FIXNUM_OVERFLOW_P (i) \
3453 ? make_number (i) \
3454 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16) \
3455 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16)) \
3456 && FIXNUM_OVERFLOW_P ((i) >> 16)) \
3457 ? Fcons (make_number ((i) >> 16), make_number ((i) & 0xffff)) \
3458 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16 >> 24) \
3459 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16 >> 24)) \
3460 && FIXNUM_OVERFLOW_P ((i) >> 16 >> 24)) \
3461 ? Fcons (make_number ((i) >> 16 >> 24), \
3462 Fcons (make_number ((i) >> 16 & 0xffffff), \
3463 make_number ((i) & 0xffff))) \
3464 : make_float (i))
3465
3466 /* Convert the Emacs representation CONS back to an integer of type
3467 TYPE, storing the result the variable VAR. Signal an error if CONS
3468 is not a valid representation or is out of range for TYPE. */
3469 #define CONS_TO_INTEGER(cons, type, var) \
3470 (TYPE_SIGNED (type) \
3471 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3472 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3473 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3474 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3475
3476 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3477 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3478 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3479 Lisp_Object);
3480 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3481 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3482 extern void syms_of_data (void);
3483 extern void swap_in_global_binding (struct Lisp_Symbol *);
3484
3485 /* Defined in cmds.c */
3486 extern void syms_of_cmds (void);
3487 extern void keys_of_cmds (void);
3488
3489 /* Defined in coding.c. */
3490 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3491 ptrdiff_t, bool, bool, Lisp_Object);
3492 extern void init_coding (void);
3493 extern void init_coding_once (void);
3494 extern void syms_of_coding (void);
3495
3496 /* Defined in character.c. */
3497 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3498 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3499 extern void syms_of_character (void);
3500
3501 /* Defined in charset.c. */
3502 extern void init_charset (void);
3503 extern void init_charset_once (void);
3504 extern void syms_of_charset (void);
3505 /* Structure forward declarations. */
3506 struct charset;
3507
3508 /* Defined in syntax.c. */
3509 extern void init_syntax_once (void);
3510 extern void syms_of_syntax (void);
3511
3512 /* Defined in fns.c. */
3513 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3514 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3515 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3516 extern void sweep_weak_hash_tables (void);
3517 EMACS_UINT hash_string (char const *, ptrdiff_t);
3518 EMACS_UINT sxhash (Lisp_Object, int);
3519 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3520 Lisp_Object, Lisp_Object);
3521 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3522 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3523 EMACS_UINT);
3524 extern struct hash_table_test hashtest_eql, hashtest_equal;
3525 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3526 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3527 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3528 ptrdiff_t, ptrdiff_t);
3529 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3530 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3531 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3532 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3533 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3534 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3535 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3536 extern void clear_string_char_byte_cache (void);
3537 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3538 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3539 extern Lisp_Object string_to_multibyte (Lisp_Object);
3540 extern Lisp_Object string_make_unibyte (Lisp_Object);
3541 extern void syms_of_fns (void);
3542
3543 /* Defined in floatfns.c. */
3544 extern void syms_of_floatfns (void);
3545 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3546
3547 /* Defined in fringe.c. */
3548 extern void syms_of_fringe (void);
3549 extern void init_fringe (void);
3550 #ifdef HAVE_WINDOW_SYSTEM
3551 extern void mark_fringe_data (void);
3552 extern void init_fringe_once (void);
3553 #endif /* HAVE_WINDOW_SYSTEM */
3554
3555 /* Defined in image.c. */
3556 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3557 extern void reset_image_types (void);
3558 extern void syms_of_image (void);
3559
3560 /* Defined in insdel.c. */
3561 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3562 extern _Noreturn void buffer_overflow (void);
3563 extern void make_gap (ptrdiff_t);
3564 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3565 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3566 ptrdiff_t, bool, bool);
3567 extern int count_combining_before (const unsigned char *,
3568 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3569 extern int count_combining_after (const unsigned char *,
3570 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3571 extern void insert (const char *, ptrdiff_t);
3572 extern void insert_and_inherit (const char *, ptrdiff_t);
3573 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3574 bool, bool, bool);
3575 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3576 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3577 ptrdiff_t, ptrdiff_t, bool);
3578 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3579 extern void insert_char (int);
3580 extern void insert_string (const char *);
3581 extern void insert_before_markers (const char *, ptrdiff_t);
3582 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3583 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3584 ptrdiff_t, ptrdiff_t,
3585 ptrdiff_t, bool);
3586 extern void del_range (ptrdiff_t, ptrdiff_t);
3587 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3588 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3589 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3590 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3591 ptrdiff_t, ptrdiff_t, bool);
3592 extern void modify_text (ptrdiff_t, ptrdiff_t);
3593 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3594 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3595 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3596 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3597 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3598 ptrdiff_t, ptrdiff_t);
3599 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3600 ptrdiff_t, ptrdiff_t);
3601 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3602 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3603 const char *, ptrdiff_t, ptrdiff_t, bool);
3604 extern void syms_of_insdel (void);
3605
3606 /* Defined in dispnew.c. */
3607 #if (defined PROFILING \
3608 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3609 _Noreturn void __executable_start (void);
3610 #endif
3611 extern Lisp_Object Vwindow_system;
3612 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3613
3614 /* Defined in xdisp.c. */
3615 extern bool noninteractive_need_newline;
3616 extern Lisp_Object echo_area_buffer[2];
3617 extern void add_to_log (const char *, Lisp_Object, Lisp_Object);
3618 extern void check_message_stack (void);
3619 extern void setup_echo_area_for_printing (int);
3620 extern bool push_message (void);
3621 extern void pop_message_unwind (void);
3622 extern Lisp_Object restore_message_unwind (Lisp_Object);
3623 extern void restore_message (void);
3624 extern Lisp_Object current_message (void);
3625 extern void clear_message (bool, bool);
3626 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3627 extern void message1 (const char *);
3628 extern void message1_nolog (const char *);
3629 extern void message3 (Lisp_Object);
3630 extern void message3_nolog (Lisp_Object);
3631 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3632 extern void message_with_string (const char *, Lisp_Object, int);
3633 extern void message_log_maybe_newline (void);
3634 extern void update_echo_area (void);
3635 extern void truncate_echo_area (ptrdiff_t);
3636 extern void redisplay (void);
3637
3638 void set_frame_cursor_types (struct frame *, Lisp_Object);
3639 extern void syms_of_xdisp (void);
3640 extern void init_xdisp (void);
3641 extern Lisp_Object safe_eval (Lisp_Object);
3642 extern int pos_visible_p (struct window *, ptrdiff_t, int *,
3643 int *, int *, int *, int *, int *);
3644
3645 /* Defined in xsettings.c. */
3646 extern void syms_of_xsettings (void);
3647
3648 /* Defined in vm-limit.c. */
3649 extern void memory_warnings (void *, void (*warnfun) (const char *));
3650
3651 /* Defined in character.c. */
3652 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3653 ptrdiff_t *, ptrdiff_t *);
3654
3655 /* Defined in alloc.c. */
3656 extern void check_pure_size (void);
3657 extern void free_misc (Lisp_Object);
3658 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3659 extern void malloc_warning (const char *);
3660 extern _Noreturn void memory_full (size_t);
3661 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3662 extern bool survives_gc_p (Lisp_Object);
3663 extern void mark_object (Lisp_Object);
3664 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3665 extern void refill_memory_reserve (void);
3666 #endif
3667 extern const char *pending_malloc_warning;
3668 extern Lisp_Object zero_vector;
3669 extern Lisp_Object *stack_base;
3670 extern EMACS_INT consing_since_gc;
3671 extern EMACS_INT gc_relative_threshold;
3672 extern EMACS_INT memory_full_cons_threshold;
3673 extern Lisp_Object list1 (Lisp_Object);
3674 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3675 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3676 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3677 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3678 Lisp_Object);
3679 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3680 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3681
3682 /* Build a frequently used 2/3/4-integer lists. */
3683
3684 INLINE Lisp_Object
3685 list2i (EMACS_INT x, EMACS_INT y)
3686 {
3687 return list2 (make_number (x), make_number (y));
3688 }
3689
3690 INLINE Lisp_Object
3691 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3692 {
3693 return list3 (make_number (x), make_number (y), make_number (w));
3694 }
3695
3696 INLINE Lisp_Object
3697 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3698 {
3699 return list4 (make_number (x), make_number (y),
3700 make_number (w), make_number (h));
3701 }
3702
3703 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3704 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3705 extern _Noreturn void string_overflow (void);
3706 extern Lisp_Object make_string (const char *, ptrdiff_t);
3707 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3708 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3709 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3710
3711 /* Make unibyte string from C string when the length isn't known. */
3712
3713 INLINE Lisp_Object
3714 build_unibyte_string (const char *str)
3715 {
3716 return make_unibyte_string (str, strlen (str));
3717 }
3718
3719 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3720 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3721 extern Lisp_Object make_uninit_string (EMACS_INT);
3722 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3723 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3724 extern Lisp_Object make_specified_string (const char *,
3725 ptrdiff_t, ptrdiff_t, bool);
3726 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3727 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3728
3729 /* Make a string allocated in pure space, use STR as string data. */
3730
3731 INLINE Lisp_Object
3732 build_pure_c_string (const char *str)
3733 {
3734 return make_pure_c_string (str, strlen (str));
3735 }
3736
3737 /* Make a string from the data at STR, treating it as multibyte if the
3738 data warrants. */
3739
3740 INLINE Lisp_Object
3741 build_string (const char *str)
3742 {
3743 return make_string (str, strlen (str));
3744 }
3745
3746 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3747 extern void make_byte_code (struct Lisp_Vector *);
3748 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3749
3750 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3751 be sure that GC cannot happen until the vector is completely
3752 initialized. E.g. the following code is likely to crash:
3753
3754 v = make_uninit_vector (3);
3755 ASET (v, 0, obj0);
3756 ASET (v, 1, Ffunction_can_gc ());
3757 ASET (v, 2, obj1); */
3758
3759 INLINE Lisp_Object
3760 make_uninit_vector (ptrdiff_t size)
3761 {
3762 Lisp_Object v;
3763 struct Lisp_Vector *p;
3764
3765 p = allocate_vector (size);
3766 XSETVECTOR (v, p);
3767 return v;
3768 }
3769
3770 /* Like above, but special for sub char-tables. */
3771
3772 INLINE Lisp_Object
3773 make_uninit_sub_char_table (int depth, int min_char)
3774 {
3775 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3776 Lisp_Object v = make_uninit_vector (slots);
3777
3778 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3779 XSUB_CHAR_TABLE (v)->depth = depth;
3780 XSUB_CHAR_TABLE (v)->min_char = min_char;
3781 return v;
3782 }
3783
3784 extern struct Lisp_Vector *allocate_pseudovector (int, int, enum pvec_type);
3785 #define ALLOCATE_PSEUDOVECTOR(typ,field,tag) \
3786 ((typ*) \
3787 allocate_pseudovector \
3788 (VECSIZE (typ), PSEUDOVECSIZE (typ, field), tag))
3789 extern struct Lisp_Hash_Table *allocate_hash_table (void);
3790 extern struct window *allocate_window (void);
3791 extern struct frame *allocate_frame (void);
3792 extern struct Lisp_Process *allocate_process (void);
3793 extern struct terminal *allocate_terminal (void);
3794 extern bool gc_in_progress;
3795 extern bool abort_on_gc;
3796 extern Lisp_Object make_float (double);
3797 extern void display_malloc_warning (void);
3798 extern ptrdiff_t inhibit_garbage_collection (void);
3799 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3800 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3801 Lisp_Object, Lisp_Object);
3802 extern Lisp_Object make_save_ptr (void *);
3803 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3804 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3805 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3806 Lisp_Object);
3807 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3808 extern void free_save_value (Lisp_Object);
3809 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3810 extern void free_marker (Lisp_Object);
3811 extern void free_cons (struct Lisp_Cons *);
3812 extern void init_alloc_once (void);
3813 extern void init_alloc (void);
3814 extern void syms_of_alloc (void);
3815 extern struct buffer * allocate_buffer (void);
3816 extern int valid_lisp_object_p (Lisp_Object);
3817 extern int relocatable_string_data_p (const char *);
3818 #ifdef GC_CHECK_CONS_LIST
3819 extern void check_cons_list (void);
3820 #else
3821 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3822 #endif
3823
3824 #ifdef REL_ALLOC
3825 /* Defined in ralloc.c. */
3826 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3827 extern void r_alloc_free (void **);
3828 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3829 extern void r_alloc_reset_variable (void **, void **);
3830 extern void r_alloc_inhibit_buffer_relocation (int);
3831 #endif
3832
3833 /* Defined in chartab.c. */
3834 extern Lisp_Object copy_char_table (Lisp_Object);
3835 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3836 int *, int *);
3837 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3838 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3839 Lisp_Object),
3840 Lisp_Object, Lisp_Object, Lisp_Object);
3841 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3842 Lisp_Object, Lisp_Object,
3843 Lisp_Object, struct charset *,
3844 unsigned, unsigned);
3845 extern Lisp_Object uniprop_table (Lisp_Object);
3846 extern void syms_of_chartab (void);
3847
3848 /* Defined in print.c. */
3849 extern Lisp_Object Vprin1_to_string_buffer;
3850 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3851 extern void temp_output_buffer_setup (const char *);
3852 extern int print_level;
3853 extern void write_string (const char *, int);
3854 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3855 Lisp_Object);
3856 extern Lisp_Object internal_with_output_to_temp_buffer
3857 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3858 #define FLOAT_TO_STRING_BUFSIZE 350
3859 extern int float_to_string (char *, double);
3860 extern void init_print_once (void);
3861 extern void syms_of_print (void);
3862
3863 /* Defined in doprnt.c. */
3864 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3865 va_list);
3866 extern ptrdiff_t esprintf (char *, char const *, ...)
3867 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3868 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3869 char const *, ...)
3870 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3871 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3872 char const *, va_list)
3873 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3874
3875 /* Defined in lread.c. */
3876 extern Lisp_Object check_obarray (Lisp_Object);
3877 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3878 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3879 extern Lisp_Object intern_driver (Lisp_Object, Lisp_Object, Lisp_Object);
3880 extern void init_symbol (Lisp_Object, Lisp_Object);
3881 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3882 INLINE void
3883 LOADHIST_ATTACH (Lisp_Object x)
3884 {
3885 if (initialized)
3886 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3887 }
3888 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3889 Lisp_Object *, Lisp_Object, bool);
3890 extern Lisp_Object string_to_number (char const *, int, bool);
3891 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3892 Lisp_Object);
3893 extern void dir_warning (const char *, Lisp_Object);
3894 extern void init_obarray (void);
3895 extern void init_lread (void);
3896 extern void syms_of_lread (void);
3897
3898 INLINE Lisp_Object
3899 intern (const char *str)
3900 {
3901 return intern_1 (str, strlen (str));
3902 }
3903
3904 INLINE Lisp_Object
3905 intern_c_string (const char *str)
3906 {
3907 return intern_c_string_1 (str, strlen (str));
3908 }
3909
3910 /* Defined in eval.c. */
3911 extern EMACS_INT lisp_eval_depth;
3912 extern Lisp_Object Vautoload_queue;
3913 extern Lisp_Object Vrun_hooks;
3914 extern Lisp_Object Vsignaling_function;
3915 extern Lisp_Object inhibit_lisp_code;
3916 extern struct handler *handlerlist;
3917
3918 /* To run a normal hook, use the appropriate function from the list below.
3919 The calling convention:
3920
3921 if (!NILP (Vrun_hooks))
3922 call1 (Vrun_hooks, Qmy_funny_hook);
3923
3924 should no longer be used. */
3925 extern void run_hook (Lisp_Object);
3926 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3927 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3928 Lisp_Object (*funcall)
3929 (ptrdiff_t nargs, Lisp_Object *args));
3930 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3931 extern _Noreturn void xsignal0 (Lisp_Object);
3932 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3933 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3934 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3935 Lisp_Object);
3936 extern _Noreturn void signal_error (const char *, Lisp_Object);
3937 extern Lisp_Object eval_sub (Lisp_Object form);
3938 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3939 extern Lisp_Object call0 (Lisp_Object);
3940 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3941 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3942 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3943 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3944 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3945 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3946 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3947 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3948 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3949 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3950 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3951 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3952 extern Lisp_Object internal_condition_case_n
3953 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3954 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3955 extern void specbind (Lisp_Object, Lisp_Object);
3956 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3957 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3958 extern void record_unwind_protect_int (void (*) (int), int);
3959 extern void record_unwind_protect_void (void (*) (void));
3960 extern void record_unwind_protect_nothing (void);
3961 extern void clear_unwind_protect (ptrdiff_t);
3962 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3963 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3964 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3965 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3966 extern _Noreturn void verror (const char *, va_list)
3967 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3968 extern void un_autoload (Lisp_Object);
3969 extern Lisp_Object call_debugger (Lisp_Object arg);
3970 extern void init_eval_once (void);
3971 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3972 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
3973 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3974 extern void init_eval (void);
3975 extern void syms_of_eval (void);
3976 extern void unwind_body (Lisp_Object);
3977 extern ptrdiff_t record_in_backtrace (Lisp_Object, Lisp_Object *, ptrdiff_t);
3978 extern void mark_specpdl (void);
3979 extern void get_backtrace (Lisp_Object array);
3980 Lisp_Object backtrace_top_function (void);
3981 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
3982 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
3983
3984
3985 /* Defined in editfns.c. */
3986 extern void insert1 (Lisp_Object);
3987 extern Lisp_Object format2 (const char *, Lisp_Object, Lisp_Object);
3988 extern Lisp_Object save_excursion_save (void);
3989 extern Lisp_Object save_restriction_save (void);
3990 extern void save_excursion_restore (Lisp_Object);
3991 extern void save_restriction_restore (Lisp_Object);
3992 extern _Noreturn void time_overflow (void);
3993 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
3994 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3995 ptrdiff_t, bool);
3996 extern void init_editfns (void);
3997 extern void syms_of_editfns (void);
3998
3999 /* Defined in buffer.c. */
4000 extern bool mouse_face_overlay_overlaps (Lisp_Object);
4001 extern _Noreturn void nsberror (Lisp_Object);
4002 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
4003 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
4004 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
4005 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
4006 Lisp_Object, Lisp_Object, Lisp_Object);
4007 extern bool overlay_touches_p (ptrdiff_t);
4008 extern Lisp_Object other_buffer_safely (Lisp_Object);
4009 extern Lisp_Object get_truename_buffer (Lisp_Object);
4010 extern void init_buffer_once (void);
4011 extern void init_buffer (int);
4012 extern void syms_of_buffer (void);
4013 extern void keys_of_buffer (void);
4014
4015 /* Defined in marker.c. */
4016
4017 extern ptrdiff_t marker_position (Lisp_Object);
4018 extern ptrdiff_t marker_byte_position (Lisp_Object);
4019 extern void clear_charpos_cache (struct buffer *);
4020 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
4021 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
4022 extern void unchain_marker (struct Lisp_Marker *marker);
4023 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
4024 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
4025 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
4026 ptrdiff_t, ptrdiff_t);
4027 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
4028 extern void syms_of_marker (void);
4029
4030 /* Defined in fileio.c. */
4031
4032 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
4033 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
4034 Lisp_Object, Lisp_Object, Lisp_Object,
4035 Lisp_Object, int);
4036 extern void close_file_unwind (int);
4037 extern void fclose_unwind (void *);
4038 extern void restore_point_unwind (Lisp_Object);
4039 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
4040 extern _Noreturn void report_file_error (const char *, Lisp_Object);
4041 extern bool internal_delete_file (Lisp_Object);
4042 extern Lisp_Object emacs_readlinkat (int, const char *);
4043 extern bool file_directory_p (const char *);
4044 extern bool file_accessible_directory_p (Lisp_Object);
4045 extern void init_fileio (void);
4046 extern void syms_of_fileio (void);
4047 extern Lisp_Object make_temp_name (Lisp_Object, bool);
4048
4049 /* Defined in search.c. */
4050 extern void shrink_regexp_cache (void);
4051 extern void restore_search_regs (void);
4052 extern void record_unwind_save_match_data (void);
4053 struct re_registers;
4054 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4055 struct re_registers *,
4056 Lisp_Object, bool, bool);
4057 extern ptrdiff_t fast_string_match_internal (Lisp_Object, Lisp_Object,
4058 Lisp_Object);
4059
4060 INLINE ptrdiff_t
4061 fast_string_match (Lisp_Object regexp, Lisp_Object string)
4062 {
4063 return fast_string_match_internal (regexp, string, Qnil);
4064 }
4065
4066 INLINE ptrdiff_t
4067 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
4068 {
4069 return fast_string_match_internal (regexp, string, Vascii_canon_table);
4070 }
4071
4072 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4073 ptrdiff_t);
4074 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4075 ptrdiff_t, ptrdiff_t, Lisp_Object);
4076 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4077 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4078 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4079 ptrdiff_t, bool);
4080 extern ptrdiff_t scan_newline_from_point (ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
4081 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4082 ptrdiff_t, ptrdiff_t *);
4083 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4084 ptrdiff_t, ptrdiff_t *);
4085 extern void syms_of_search (void);
4086 extern void clear_regexp_cache (void);
4087
4088 /* Defined in minibuf.c. */
4089
4090 extern Lisp_Object Vminibuffer_list;
4091 extern Lisp_Object last_minibuf_string;
4092 extern Lisp_Object get_minibuffer (EMACS_INT);
4093 extern void init_minibuf_once (void);
4094 extern void syms_of_minibuf (void);
4095
4096 /* Defined in callint.c. */
4097
4098 extern void syms_of_callint (void);
4099
4100 /* Defined in casefiddle.c. */
4101
4102 extern void syms_of_casefiddle (void);
4103 extern void keys_of_casefiddle (void);
4104
4105 /* Defined in casetab.c. */
4106
4107 extern void init_casetab_once (void);
4108 extern void syms_of_casetab (void);
4109
4110 /* Defined in keyboard.c. */
4111
4112 extern Lisp_Object echo_message_buffer;
4113 extern struct kboard *echo_kboard;
4114 extern void cancel_echoing (void);
4115 extern Lisp_Object last_undo_boundary;
4116 extern bool input_pending;
4117 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4118 extern sigjmp_buf return_to_command_loop;
4119 #endif
4120 extern Lisp_Object menu_bar_items (Lisp_Object);
4121 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4122 extern void discard_mouse_events (void);
4123 #ifdef USABLE_SIGIO
4124 void handle_input_available_signal (int);
4125 #endif
4126 extern Lisp_Object pending_funcalls;
4127 extern bool detect_input_pending (void);
4128 extern bool detect_input_pending_ignore_squeezables (void);
4129 extern bool detect_input_pending_run_timers (bool);
4130 extern void safe_run_hooks (Lisp_Object);
4131 extern void cmd_error_internal (Lisp_Object, const char *);
4132 extern Lisp_Object command_loop_1 (void);
4133 extern Lisp_Object read_menu_command (void);
4134 extern Lisp_Object recursive_edit_1 (void);
4135 extern void record_auto_save (void);
4136 extern void force_auto_save_soon (void);
4137 extern void init_keyboard (void);
4138 extern void syms_of_keyboard (void);
4139 extern void keys_of_keyboard (void);
4140
4141 /* Defined in indent.c. */
4142 extern ptrdiff_t current_column (void);
4143 extern void invalidate_current_column (void);
4144 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4145 extern void syms_of_indent (void);
4146
4147 /* Defined in frame.c. */
4148 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4149 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4150 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4151 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4152 extern void frames_discard_buffer (Lisp_Object);
4153 extern void syms_of_frame (void);
4154
4155 /* Defined in emacs.c. */
4156 extern char **initial_argv;
4157 extern int initial_argc;
4158 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4159 extern bool display_arg;
4160 #endif
4161 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4162 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4163 extern _Noreturn void terminate_due_to_signal (int, int);
4164 #ifdef WINDOWSNT
4165 extern Lisp_Object Vlibrary_cache;
4166 #endif
4167 #if HAVE_SETLOCALE
4168 void fixup_locale (void);
4169 void synchronize_system_messages_locale (void);
4170 void synchronize_system_time_locale (void);
4171 #else
4172 INLINE void fixup_locale (void) {}
4173 INLINE void synchronize_system_messages_locale (void) {}
4174 INLINE void synchronize_system_time_locale (void) {}
4175 #endif
4176 extern void shut_down_emacs (int, Lisp_Object);
4177
4178 /* True means don't do interactive redisplay and don't change tty modes. */
4179 extern bool noninteractive;
4180
4181 /* True means remove site-lisp directories from load-path. */
4182 extern bool no_site_lisp;
4183
4184 /* Pipe used to send exit notification to the daemon parent at
4185 startup. */
4186 extern int daemon_pipe[2];
4187 #define IS_DAEMON (daemon_pipe[1] != 0)
4188
4189 /* True if handling a fatal error already. */
4190 extern bool fatal_error_in_progress;
4191
4192 /* True means don't do use window-system-specific display code. */
4193 extern bool inhibit_window_system;
4194 /* True means that a filter or a sentinel is running. */
4195 extern bool running_asynch_code;
4196
4197 /* Defined in process.c. */
4198 extern void kill_buffer_processes (Lisp_Object);
4199 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4200 struct Lisp_Process *, int);
4201 /* Max value for the first argument of wait_reading_process_output. */
4202 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4203 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4204 The bug merely causes a bogus warning, but the warning is annoying. */
4205 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4206 #else
4207 # define WAIT_READING_MAX INTMAX_MAX
4208 #endif
4209 #ifdef HAVE_TIMERFD
4210 extern void add_timer_wait_descriptor (int);
4211 #endif
4212 extern void add_keyboard_wait_descriptor (int);
4213 extern void delete_keyboard_wait_descriptor (int);
4214 #ifdef HAVE_GPM
4215 extern void add_gpm_wait_descriptor (int);
4216 extern void delete_gpm_wait_descriptor (int);
4217 #endif
4218 extern void init_process_emacs (void);
4219 extern void syms_of_process (void);
4220 extern void setup_process_coding_systems (Lisp_Object);
4221
4222 /* Defined in callproc.c. */
4223 #ifndef DOS_NT
4224 _Noreturn
4225 #endif
4226 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4227 extern void init_callproc_1 (void);
4228 extern void init_callproc (void);
4229 extern void set_initial_environment (void);
4230 extern void syms_of_callproc (void);
4231
4232 /* Defined in doc.c. */
4233 extern Lisp_Object read_doc_string (Lisp_Object);
4234 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4235 extern void syms_of_doc (void);
4236 extern int read_bytecode_char (bool);
4237
4238 /* Defined in bytecode.c. */
4239 extern void syms_of_bytecode (void);
4240 extern struct byte_stack *byte_stack_list;
4241 #if BYTE_MARK_STACK
4242 extern void mark_byte_stack (void);
4243 #endif
4244 extern void unmark_byte_stack (void);
4245 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4246 Lisp_Object, ptrdiff_t, Lisp_Object *);
4247
4248 /* Defined in macros.c. */
4249 extern void init_macros (void);
4250 extern void syms_of_macros (void);
4251
4252 /* Defined in undo.c. */
4253 extern void truncate_undo_list (struct buffer *);
4254 extern void record_insert (ptrdiff_t, ptrdiff_t);
4255 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4256 extern void record_first_change (void);
4257 extern void record_change (ptrdiff_t, ptrdiff_t);
4258 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4259 Lisp_Object, Lisp_Object,
4260 Lisp_Object);
4261 extern void syms_of_undo (void);
4262
4263 /* Defined in textprop.c. */
4264 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4265
4266 /* Defined in menu.c. */
4267 extern void syms_of_menu (void);
4268
4269 /* Defined in xmenu.c. */
4270 extern void syms_of_xmenu (void);
4271
4272 /* Defined in termchar.h. */
4273 struct tty_display_info;
4274
4275 /* Defined in termhooks.h. */
4276 struct terminal;
4277
4278 /* Defined in sysdep.c. */
4279 #ifndef HAVE_GET_CURRENT_DIR_NAME
4280 extern char *get_current_dir_name (void);
4281 #endif
4282 extern void stuff_char (char c);
4283 extern void init_foreground_group (void);
4284 extern void sys_subshell (void);
4285 extern void sys_suspend (void);
4286 extern void discard_tty_input (void);
4287 extern void init_sys_modes (struct tty_display_info *);
4288 extern void reset_sys_modes (struct tty_display_info *);
4289 extern void init_all_sys_modes (void);
4290 extern void reset_all_sys_modes (void);
4291 extern void child_setup_tty (int);
4292 extern void setup_pty (int);
4293 extern int set_window_size (int, int, int);
4294 extern EMACS_INT get_random (void);
4295 extern void seed_random (void *, ptrdiff_t);
4296 extern void init_random (void);
4297 extern void emacs_backtrace (int);
4298 extern _Noreturn void emacs_abort (void) NO_INLINE;
4299 extern int emacs_open (const char *, int, int);
4300 extern int emacs_pipe (int[2]);
4301 extern int emacs_close (int);
4302 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4303 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4304 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4305 extern void emacs_perror (char const *);
4306
4307 extern void unlock_all_files (void);
4308 extern void lock_file (Lisp_Object);
4309 extern void unlock_file (Lisp_Object);
4310 extern void unlock_buffer (struct buffer *);
4311 extern void syms_of_filelock (void);
4312 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4313
4314 /* Defined in sound.c. */
4315 extern void syms_of_sound (void);
4316
4317 /* Defined in category.c. */
4318 extern void init_category_once (void);
4319 extern Lisp_Object char_category_set (int);
4320 extern void syms_of_category (void);
4321
4322 /* Defined in ccl.c. */
4323 extern void syms_of_ccl (void);
4324
4325 /* Defined in dired.c. */
4326 extern void syms_of_dired (void);
4327 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4328 Lisp_Object, Lisp_Object,
4329 bool, Lisp_Object);
4330
4331 /* Defined in term.c. */
4332 extern int *char_ins_del_vector;
4333 extern void syms_of_term (void);
4334 extern _Noreturn void fatal (const char *msgid, ...)
4335 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4336
4337 /* Defined in terminal.c. */
4338 extern void syms_of_terminal (void);
4339
4340 /* Defined in font.c. */
4341 extern void syms_of_font (void);
4342 extern void init_font (void);
4343
4344 #ifdef HAVE_WINDOW_SYSTEM
4345 /* Defined in fontset.c. */
4346 extern void syms_of_fontset (void);
4347 #endif
4348
4349 /* Defined in gfilenotify.c */
4350 #ifdef HAVE_GFILENOTIFY
4351 extern void globals_of_gfilenotify (void);
4352 extern void syms_of_gfilenotify (void);
4353 #endif
4354
4355 /* Defined in inotify.c */
4356 #ifdef HAVE_INOTIFY
4357 extern void syms_of_inotify (void);
4358 #endif
4359
4360 #ifdef HAVE_W32NOTIFY
4361 /* Defined on w32notify.c. */
4362 extern void syms_of_w32notify (void);
4363 #endif
4364
4365 /* Defined in xfaces.c. */
4366 extern Lisp_Object Vface_alternative_font_family_alist;
4367 extern Lisp_Object Vface_alternative_font_registry_alist;
4368 extern void syms_of_xfaces (void);
4369
4370 #ifdef HAVE_X_WINDOWS
4371 /* Defined in xfns.c. */
4372 extern void syms_of_xfns (void);
4373
4374 /* Defined in xsmfns.c. */
4375 extern void syms_of_xsmfns (void);
4376
4377 /* Defined in xselect.c. */
4378 extern void syms_of_xselect (void);
4379
4380 /* Defined in xterm.c. */
4381 extern void init_xterm (void);
4382 extern void syms_of_xterm (void);
4383 #endif /* HAVE_X_WINDOWS */
4384
4385 #ifdef HAVE_WINDOW_SYSTEM
4386 /* Defined in xterm.c, nsterm.m, w32term.c. */
4387 extern char *x_get_keysym_name (int);
4388 #endif /* HAVE_WINDOW_SYSTEM */
4389
4390 #ifdef HAVE_LIBXML2
4391 /* Defined in xml.c. */
4392 extern void syms_of_xml (void);
4393 extern void xml_cleanup_parser (void);
4394 #endif
4395
4396 #ifdef HAVE_ZLIB
4397 /* Defined in decompress.c. */
4398 extern void syms_of_decompress (void);
4399 #endif
4400
4401 #ifdef HAVE_DBUS
4402 /* Defined in dbusbind.c. */
4403 void init_dbusbind (void);
4404 void syms_of_dbusbind (void);
4405 #endif
4406
4407
4408 /* Defined in profiler.c. */
4409 extern bool profiler_memory_running;
4410 extern void malloc_probe (size_t);
4411 extern void syms_of_profiler (void);
4412
4413
4414 #ifdef DOS_NT
4415 /* Defined in msdos.c, w32.c. */
4416 extern char *emacs_root_dir (void);
4417 #endif /* DOS_NT */
4418
4419 /* Defined in lastfile.c. */
4420 extern char my_edata[];
4421 extern char my_endbss[];
4422 extern char *my_endbss_static;
4423
4424 /* True means ^G can quit instantly. */
4425 extern bool immediate_quit;
4426
4427 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4428 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4429 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4430 extern void xfree (void *);
4431 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4432 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4433 ATTRIBUTE_ALLOC_SIZE ((2,3));
4434 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4435
4436 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4437 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4438 extern void dupstring (char **, char const *);
4439
4440 /* Make DEST a copy of STRING's data. Return a pointer to DEST's terminating
4441 null byte. This is like stpcpy, except the source is a Lisp string. */
4442
4443 INLINE char *
4444 lispstpcpy (char *dest, Lisp_Object string)
4445 {
4446 ptrdiff_t len = SBYTES (string);
4447 memcpy (dest, SDATA (string), len + 1);
4448 return dest + len;
4449 }
4450
4451 extern void xputenv (const char *);
4452
4453 extern char *egetenv_internal (const char *, ptrdiff_t);
4454
4455 INLINE char *
4456 egetenv (const char *var)
4457 {
4458 /* When VAR is a string literal, strlen can be optimized away. */
4459 return egetenv_internal (var, strlen (var));
4460 }
4461
4462 /* Set up the name of the machine we're running on. */
4463 extern void init_system_name (void);
4464
4465 /* Return the absolute value of X. X should be a signed integer
4466 expression without side effects, and X's absolute value should not
4467 exceed the maximum for its promoted type. This is called 'eabs'
4468 because 'abs' is reserved by the C standard. */
4469 #define eabs(x) ((x) < 0 ? -(x) : (x))
4470
4471 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4472 fixnum. */
4473
4474 #define make_fixnum_or_float(val) \
4475 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4476
4477 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4478 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4479
4480 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4481
4482 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4483
4484 #define USE_SAFE_ALLOCA \
4485 ptrdiff_t sa_avail = MAX_ALLOCA; \
4486 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4487
4488 #define AVAIL_ALLOCA(size) (sa_avail -= (size), alloca (size))
4489
4490 /* SAFE_ALLOCA allocates a simple buffer. */
4491
4492 #define SAFE_ALLOCA(size) ((size) <= sa_avail \
4493 ? AVAIL_ALLOCA (size) \
4494 : (sa_must_free = true, record_xmalloc (size)))
4495
4496 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4497 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4498 positive. The code is tuned for MULTIPLIER being a constant. */
4499
4500 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4501 do { \
4502 if ((nitems) <= sa_avail / sizeof *(buf) / (multiplier)) \
4503 (buf) = AVAIL_ALLOCA (sizeof *(buf) * (multiplier) * (nitems)); \
4504 else \
4505 { \
4506 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4507 sa_must_free = true; \
4508 record_unwind_protect_ptr (xfree, buf); \
4509 } \
4510 } while (false)
4511
4512 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4513
4514 #define SAFE_ALLOCA_STRING(ptr, string) \
4515 do { \
4516 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4517 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4518 } while (false)
4519
4520 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4521
4522 #define SAFE_FREE() \
4523 do { \
4524 if (sa_must_free) { \
4525 sa_must_free = false; \
4526 unbind_to (sa_count, Qnil); \
4527 } \
4528 } while (false)
4529
4530
4531 /* Return floor (NBYTES / WORD_SIZE). */
4532
4533 INLINE ptrdiff_t
4534 lisp_word_count (ptrdiff_t nbytes)
4535 {
4536 if (-1 >> 1 == -1)
4537 switch (word_size)
4538 {
4539 case 2: return nbytes >> 1;
4540 case 4: return nbytes >> 2;
4541 case 8: return nbytes >> 3;
4542 case 16: return nbytes >> 4;
4543 }
4544 return nbytes / word_size - (nbytes % word_size < 0);
4545 }
4546
4547 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4548
4549 #define SAFE_ALLOCA_LISP(buf, nelt) \
4550 do { \
4551 if ((nelt) <= lisp_word_count (sa_avail)) \
4552 (buf) = AVAIL_ALLOCA ((nelt) * word_size); \
4553 else if ((nelt) <= min (PTRDIFF_MAX, SIZE_MAX) / word_size) \
4554 { \
4555 Lisp_Object arg_; \
4556 (buf) = xmalloc ((nelt) * word_size); \
4557 arg_ = make_save_memory (buf, nelt); \
4558 sa_must_free = true; \
4559 record_unwind_protect (free_save_value, arg_); \
4560 } \
4561 else \
4562 memory_full (SIZE_MAX); \
4563 } while (false)
4564
4565
4566 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that allocate
4567 block-scoped conses and strings. These objects are not
4568 managed by the garbage collector, so they are dangerous: passing them
4569 out of their scope (e.g., to user code) results in undefined behavior.
4570 Conversely, they have better performance because GC is not involved.
4571
4572 This feature is experimental and requires careful debugging.
4573 Build with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS=0' to disable it. */
4574
4575 #ifndef USE_STACK_LISP_OBJECTS
4576 # define USE_STACK_LISP_OBJECTS true
4577 #endif
4578
4579 /* USE_STACK_LISP_OBJECTS requires GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS. */
4580
4581 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
4582 # undef USE_STACK_LISP_OBJECTS
4583 # define USE_STACK_LISP_OBJECTS false
4584 #endif
4585
4586 #ifdef GC_CHECK_STRING_BYTES
4587 enum { defined_GC_CHECK_STRING_BYTES = true };
4588 #else
4589 enum { defined_GC_CHECK_STRING_BYTES = false };
4590 #endif
4591
4592 /* Struct inside unions that are typically no larger and aligned enough. */
4593
4594 union Aligned_Cons
4595 {
4596 struct Lisp_Cons s;
4597 double d; intmax_t i; void *p;
4598 };
4599
4600 union Aligned_String
4601 {
4602 struct Lisp_String s;
4603 double d; intmax_t i; void *p;
4604 };
4605
4606 /* True for stack-based cons and string implementations, respectively.
4607 Use stack-based strings only if stack-based cons also works.
4608 Otherwise, STACK_CONS would create heap-based cons cells that
4609 could point to stack-based strings, which is a no-no. */
4610
4611 enum
4612 {
4613 USE_STACK_CONS = (USE_STACK_LISP_OBJECTS
4614 && alignof (union Aligned_Cons) % GCALIGNMENT == 0),
4615 USE_STACK_STRING = (USE_STACK_CONS
4616 && !defined_GC_CHECK_STRING_BYTES
4617 && alignof (union Aligned_String) % GCALIGNMENT == 0)
4618 };
4619
4620 /* Auxiliary macros used for auto allocation of Lisp objects. Please
4621 use these only in macros like AUTO_CONS that declare a local
4622 variable whose lifetime will be clear to the programmer. */
4623 #define STACK_CONS(a, b) \
4624 make_lisp_ptr (&(union Aligned_Cons) { { a, { b } } }.s, Lisp_Cons)
4625 #define AUTO_CONS_EXPR(a, b) \
4626 (USE_STACK_CONS ? STACK_CONS (a, b) : Fcons (a, b))
4627
4628 /* Declare NAME as an auto Lisp cons or short list if possible, a
4629 GC-based one otherwise. This is in the sense of the C keyword
4630 'auto'; i.e., the object has the lifetime of the containing block.
4631 The resulting object should not be made visible to user Lisp code. */
4632
4633 #define AUTO_CONS(name, a, b) Lisp_Object name = AUTO_CONS_EXPR (a, b)
4634 #define AUTO_LIST1(name, a) \
4635 Lisp_Object name = (USE_STACK_CONS ? STACK_CONS (a, Qnil) : list1 (a))
4636 #define AUTO_LIST2(name, a, b) \
4637 Lisp_Object name = (USE_STACK_CONS \
4638 ? STACK_CONS (a, STACK_CONS (b, Qnil)) \
4639 : list2 (a, b))
4640 #define AUTO_LIST3(name, a, b, c) \
4641 Lisp_Object name = (USE_STACK_CONS \
4642 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, Qnil))) \
4643 : list3 (a, b, c))
4644 #define AUTO_LIST4(name, a, b, c, d) \
4645 Lisp_Object name \
4646 = (USE_STACK_CONS \
4647 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, \
4648 STACK_CONS (d, Qnil)))) \
4649 : list4 (a, b, c, d))
4650
4651 /* Check whether stack-allocated strings are ASCII-only. */
4652
4653 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
4654 extern const char *verify_ascii (const char *);
4655 #else
4656 # define verify_ascii(str) (str)
4657 #endif
4658
4659 /* Declare NAME as an auto Lisp string if possible, a GC-based one if not.
4660 Take its value from STR. STR is not necessarily copied and should
4661 contain only ASCII characters. The resulting Lisp string should
4662 not be modified or made visible to user code. */
4663
4664 #define AUTO_STRING(name, str) \
4665 Lisp_Object name = \
4666 (USE_STACK_STRING \
4667 ? (make_lisp_ptr \
4668 ((&(union Aligned_String) \
4669 {{strlen (str), -1, 0, (unsigned char *) verify_ascii (str)}}.s), \
4670 Lisp_String)) \
4671 : build_string (verify_ascii (str)))
4672
4673 /* Loop over all tails of a list, checking for cycles.
4674 FIXME: Make tortoise and n internal declarations.
4675 FIXME: Unroll the loop body so we don't need `n'. */
4676 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4677 for ((tortoise) = (hare) = (list), (n) = true; \
4678 CONSP (hare); \
4679 (hare = XCDR (hare), (n) = !(n), \
4680 ((n) \
4681 ? (EQ (hare, tortoise) \
4682 ? xsignal1 (Qcircular_list, list) \
4683 : (void) 0) \
4684 /* Move tortoise before the next iteration, in case */ \
4685 /* the next iteration does an Fsetcdr. */ \
4686 : (void) ((tortoise) = XCDR (tortoise)))))
4687
4688 /* Do a `for' loop over alist values. */
4689
4690 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4691 for ((list_var) = (head_var); \
4692 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4693 (list_var) = XCDR (list_var))
4694
4695 /* Check whether it's time for GC, and run it if so. */
4696
4697 INLINE void
4698 maybe_gc (void)
4699 {
4700 if ((consing_since_gc > gc_cons_threshold
4701 && consing_since_gc > gc_relative_threshold)
4702 || (!NILP (Vmemory_full)
4703 && consing_since_gc > memory_full_cons_threshold))
4704 Fgarbage_collect ();
4705 }
4706
4707 INLINE bool
4708 functionp (Lisp_Object object)
4709 {
4710 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4711 {
4712 object = Findirect_function (object, Qt);
4713
4714 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4715 {
4716 /* Autoloaded symbols are functions, except if they load
4717 macros or keymaps. */
4718 int i;
4719 for (i = 0; i < 4 && CONSP (object); i++)
4720 object = XCDR (object);
4721
4722 return ! (CONSP (object) && !NILP (XCAR (object)));
4723 }
4724 }
4725
4726 if (SUBRP (object))
4727 return XSUBR (object)->max_args != UNEVALLED;
4728 else if (COMPILEDP (object))
4729 return true;
4730 else if (CONSP (object))
4731 {
4732 Lisp_Object car = XCAR (object);
4733 return EQ (car, Qlambda) || EQ (car, Qclosure);
4734 }
4735 else
4736 return false;
4737 }
4738
4739 INLINE_HEADER_END
4740
4741 #endif /* EMACS_LISP_H */