]> code.delx.au - gnu-emacs/blob - src/fns.c
(internal_equal): New arg PROPS controls comparing
[gnu-emacs] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985, 86, 87, 93, 94, 95, 97, 98, 99, 2000, 2001, 02, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23
24 #ifdef HAVE_UNISTD_H
25 #include <unistd.h>
26 #endif
27 #include <time.h>
28
29 #ifndef MAC_OSX
30 /* On Mac OS X, defining this conflicts with precompiled headers. */
31
32 /* Note on some machines this defines `vector' as a typedef,
33 so make sure we don't use that name in this file. */
34 #undef vector
35 #define vector *****
36
37 #endif /* ! MAC_OSX */
38
39 #include "lisp.h"
40 #include "commands.h"
41 #include "charset.h"
42 #include "coding.h"
43 #include "buffer.h"
44 #include "keyboard.h"
45 #include "keymap.h"
46 #include "intervals.h"
47 #include "frame.h"
48 #include "window.h"
49 #include "blockinput.h"
50 #if defined (HAVE_MENUS) && defined (HAVE_X_WINDOWS)
51 #include "xterm.h"
52 #endif
53
54 #ifndef NULL
55 #define NULL ((POINTER_TYPE *)0)
56 #endif
57
58 /* Nonzero enables use of dialog boxes for questions
59 asked by mouse commands. */
60 int use_dialog_box;
61
62 /* Nonzero enables use of a file dialog for file name
63 questions asked by mouse commands. */
64 int use_file_dialog;
65
66 extern int minibuffer_auto_raise;
67 extern Lisp_Object minibuf_window;
68 extern Lisp_Object Vlocale_coding_system;
69
70 Lisp_Object Qstring_lessp, Qprovide, Qrequire;
71 Lisp_Object Qyes_or_no_p_history;
72 Lisp_Object Qcursor_in_echo_area;
73 Lisp_Object Qwidget_type;
74 Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
75
76 extern Lisp_Object Qinput_method_function;
77
78 static int internal_equal ();
79
80 extern long get_random ();
81 extern void seed_random ();
82
83 #ifndef HAVE_UNISTD_H
84 extern long time ();
85 #endif
86 \f
87 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
88 doc: /* Return the argument unchanged. */)
89 (arg)
90 Lisp_Object arg;
91 {
92 return arg;
93 }
94
95 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
96 doc: /* Return a pseudo-random number.
97 All integers representable in Lisp are equally likely.
98 On most systems, this is 29 bits' worth.
99 With positive integer argument N, return random number in interval [0,N).
100 With argument t, set the random number seed from the current time and pid. */)
101 (n)
102 Lisp_Object n;
103 {
104 EMACS_INT val;
105 Lisp_Object lispy_val;
106 unsigned long denominator;
107
108 if (EQ (n, Qt))
109 seed_random (getpid () + time (NULL));
110 if (NATNUMP (n) && XFASTINT (n) != 0)
111 {
112 /* Try to take our random number from the higher bits of VAL,
113 not the lower, since (says Gentzel) the low bits of `random'
114 are less random than the higher ones. We do this by using the
115 quotient rather than the remainder. At the high end of the RNG
116 it's possible to get a quotient larger than n; discarding
117 these values eliminates the bias that would otherwise appear
118 when using a large n. */
119 denominator = ((unsigned long)1 << VALBITS) / XFASTINT (n);
120 do
121 val = get_random () / denominator;
122 while (val >= XFASTINT (n));
123 }
124 else
125 val = get_random ();
126 XSETINT (lispy_val, val);
127 return lispy_val;
128 }
129 \f
130 /* Random data-structure functions */
131
132 DEFUN ("length", Flength, Slength, 1, 1, 0,
133 doc: /* Return the length of vector, list or string SEQUENCE.
134 A byte-code function object is also allowed.
135 If the string contains multibyte characters, this is not necessarily
136 the number of bytes in the string; it is the number of characters.
137 To get the number of bytes, use `string-bytes'. */)
138 (sequence)
139 register Lisp_Object sequence;
140 {
141 register Lisp_Object val;
142 register int i;
143
144 retry:
145 if (STRINGP (sequence))
146 XSETFASTINT (val, SCHARS (sequence));
147 else if (VECTORP (sequence))
148 XSETFASTINT (val, XVECTOR (sequence)->size);
149 else if (SUB_CHAR_TABLE_P (sequence))
150 XSETFASTINT (val, SUB_CHAR_TABLE_ORDINARY_SLOTS);
151 else if (CHAR_TABLE_P (sequence))
152 XSETFASTINT (val, MAX_CHAR);
153 else if (BOOL_VECTOR_P (sequence))
154 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
155 else if (COMPILEDP (sequence))
156 XSETFASTINT (val, XVECTOR (sequence)->size & PSEUDOVECTOR_SIZE_MASK);
157 else if (CONSP (sequence))
158 {
159 i = 0;
160 while (CONSP (sequence))
161 {
162 sequence = XCDR (sequence);
163 ++i;
164
165 if (!CONSP (sequence))
166 break;
167
168 sequence = XCDR (sequence);
169 ++i;
170 QUIT;
171 }
172
173 if (!NILP (sequence))
174 wrong_type_argument (Qlistp, sequence);
175
176 val = make_number (i);
177 }
178 else if (NILP (sequence))
179 XSETFASTINT (val, 0);
180 else
181 {
182 sequence = wrong_type_argument (Qsequencep, sequence);
183 goto retry;
184 }
185 return val;
186 }
187
188 /* This does not check for quits. That is safe
189 since it must terminate. */
190
191 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
192 doc: /* Return the length of a list, but avoid error or infinite loop.
193 This function never gets an error. If LIST is not really a list,
194 it returns 0. If LIST is circular, it returns a finite value
195 which is at least the number of distinct elements. */)
196 (list)
197 Lisp_Object list;
198 {
199 Lisp_Object tail, halftail, length;
200 int len = 0;
201
202 /* halftail is used to detect circular lists. */
203 halftail = list;
204 for (tail = list; CONSP (tail); tail = XCDR (tail))
205 {
206 if (EQ (tail, halftail) && len != 0)
207 break;
208 len++;
209 if ((len & 1) == 0)
210 halftail = XCDR (halftail);
211 }
212
213 XSETINT (length, len);
214 return length;
215 }
216
217 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
218 doc: /* Return the number of bytes in STRING.
219 If STRING is a multibyte string, this is greater than the length of STRING. */)
220 (string)
221 Lisp_Object string;
222 {
223 CHECK_STRING (string);
224 return make_number (SBYTES (string));
225 }
226
227 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
228 doc: /* Return t if two strings have identical contents.
229 Case is significant, but text properties are ignored.
230 Symbols are also allowed; their print names are used instead. */)
231 (s1, s2)
232 register Lisp_Object s1, s2;
233 {
234 if (SYMBOLP (s1))
235 s1 = SYMBOL_NAME (s1);
236 if (SYMBOLP (s2))
237 s2 = SYMBOL_NAME (s2);
238 CHECK_STRING (s1);
239 CHECK_STRING (s2);
240
241 if (SCHARS (s1) != SCHARS (s2)
242 || SBYTES (s1) != SBYTES (s2)
243 || bcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
244 return Qnil;
245 return Qt;
246 }
247
248 DEFUN ("compare-strings", Fcompare_strings,
249 Scompare_strings, 6, 7, 0,
250 doc: /* Compare the contents of two strings, converting to multibyte if needed.
251 In string STR1, skip the first START1 characters and stop at END1.
252 In string STR2, skip the first START2 characters and stop at END2.
253 END1 and END2 default to the full lengths of the respective strings.
254
255 Case is significant in this comparison if IGNORE-CASE is nil.
256 Unibyte strings are converted to multibyte for comparison.
257
258 The value is t if the strings (or specified portions) match.
259 If string STR1 is less, the value is a negative number N;
260 - 1 - N is the number of characters that match at the beginning.
261 If string STR1 is greater, the value is a positive number N;
262 N - 1 is the number of characters that match at the beginning. */)
263 (str1, start1, end1, str2, start2, end2, ignore_case)
264 Lisp_Object str1, start1, end1, start2, str2, end2, ignore_case;
265 {
266 register int end1_char, end2_char;
267 register int i1, i1_byte, i2, i2_byte;
268
269 CHECK_STRING (str1);
270 CHECK_STRING (str2);
271 if (NILP (start1))
272 start1 = make_number (0);
273 if (NILP (start2))
274 start2 = make_number (0);
275 CHECK_NATNUM (start1);
276 CHECK_NATNUM (start2);
277 if (! NILP (end1))
278 CHECK_NATNUM (end1);
279 if (! NILP (end2))
280 CHECK_NATNUM (end2);
281
282 i1 = XINT (start1);
283 i2 = XINT (start2);
284
285 i1_byte = string_char_to_byte (str1, i1);
286 i2_byte = string_char_to_byte (str2, i2);
287
288 end1_char = SCHARS (str1);
289 if (! NILP (end1) && end1_char > XINT (end1))
290 end1_char = XINT (end1);
291
292 end2_char = SCHARS (str2);
293 if (! NILP (end2) && end2_char > XINT (end2))
294 end2_char = XINT (end2);
295
296 while (i1 < end1_char && i2 < end2_char)
297 {
298 /* When we find a mismatch, we must compare the
299 characters, not just the bytes. */
300 int c1, c2;
301
302 if (STRING_MULTIBYTE (str1))
303 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
304 else
305 {
306 c1 = SREF (str1, i1++);
307 c1 = unibyte_char_to_multibyte (c1);
308 }
309
310 if (STRING_MULTIBYTE (str2))
311 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
312 else
313 {
314 c2 = SREF (str2, i2++);
315 c2 = unibyte_char_to_multibyte (c2);
316 }
317
318 if (c1 == c2)
319 continue;
320
321 if (! NILP (ignore_case))
322 {
323 Lisp_Object tem;
324
325 tem = Fupcase (make_number (c1));
326 c1 = XINT (tem);
327 tem = Fupcase (make_number (c2));
328 c2 = XINT (tem);
329 }
330
331 if (c1 == c2)
332 continue;
333
334 /* Note that I1 has already been incremented
335 past the character that we are comparing;
336 hence we don't add or subtract 1 here. */
337 if (c1 < c2)
338 return make_number (- i1 + XINT (start1));
339 else
340 return make_number (i1 - XINT (start1));
341 }
342
343 if (i1 < end1_char)
344 return make_number (i1 - XINT (start1) + 1);
345 if (i2 < end2_char)
346 return make_number (- i1 + XINT (start1) - 1);
347
348 return Qt;
349 }
350
351 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
352 doc: /* Return t if first arg string is less than second in lexicographic order.
353 Case is significant.
354 Symbols are also allowed; their print names are used instead. */)
355 (s1, s2)
356 register Lisp_Object s1, s2;
357 {
358 register int end;
359 register int i1, i1_byte, i2, i2_byte;
360
361 if (SYMBOLP (s1))
362 s1 = SYMBOL_NAME (s1);
363 if (SYMBOLP (s2))
364 s2 = SYMBOL_NAME (s2);
365 CHECK_STRING (s1);
366 CHECK_STRING (s2);
367
368 i1 = i1_byte = i2 = i2_byte = 0;
369
370 end = SCHARS (s1);
371 if (end > SCHARS (s2))
372 end = SCHARS (s2);
373
374 while (i1 < end)
375 {
376 /* When we find a mismatch, we must compare the
377 characters, not just the bytes. */
378 int c1, c2;
379
380 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
381 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
382
383 if (c1 != c2)
384 return c1 < c2 ? Qt : Qnil;
385 }
386 return i1 < SCHARS (s2) ? Qt : Qnil;
387 }
388 \f
389 static Lisp_Object concat ();
390
391 /* ARGSUSED */
392 Lisp_Object
393 concat2 (s1, s2)
394 Lisp_Object s1, s2;
395 {
396 #ifdef NO_ARG_ARRAY
397 Lisp_Object args[2];
398 args[0] = s1;
399 args[1] = s2;
400 return concat (2, args, Lisp_String, 0);
401 #else
402 return concat (2, &s1, Lisp_String, 0);
403 #endif /* NO_ARG_ARRAY */
404 }
405
406 /* ARGSUSED */
407 Lisp_Object
408 concat3 (s1, s2, s3)
409 Lisp_Object s1, s2, s3;
410 {
411 #ifdef NO_ARG_ARRAY
412 Lisp_Object args[3];
413 args[0] = s1;
414 args[1] = s2;
415 args[2] = s3;
416 return concat (3, args, Lisp_String, 0);
417 #else
418 return concat (3, &s1, Lisp_String, 0);
419 #endif /* NO_ARG_ARRAY */
420 }
421
422 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
423 doc: /* Concatenate all the arguments and make the result a list.
424 The result is a list whose elements are the elements of all the arguments.
425 Each argument may be a list, vector or string.
426 The last argument is not copied, just used as the tail of the new list.
427 usage: (append &rest SEQUENCES) */)
428 (nargs, args)
429 int nargs;
430 Lisp_Object *args;
431 {
432 return concat (nargs, args, Lisp_Cons, 1);
433 }
434
435 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
436 doc: /* Concatenate all the arguments and make the result a string.
437 The result is a string whose elements are the elements of all the arguments.
438 Each argument may be a string or a list or vector of characters (integers).
439 usage: (concat &rest SEQUENCES) */)
440 (nargs, args)
441 int nargs;
442 Lisp_Object *args;
443 {
444 return concat (nargs, args, Lisp_String, 0);
445 }
446
447 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
448 doc: /* Concatenate all the arguments and make the result a vector.
449 The result is a vector whose elements are the elements of all the arguments.
450 Each argument may be a list, vector or string.
451 usage: (vconcat &rest SEQUENCES) */)
452 (nargs, args)
453 int nargs;
454 Lisp_Object *args;
455 {
456 return concat (nargs, args, Lisp_Vectorlike, 0);
457 }
458
459 /* Return a copy of a sub char table ARG. The elements except for a
460 nested sub char table are not copied. */
461 static Lisp_Object
462 copy_sub_char_table (arg)
463 Lisp_Object arg;
464 {
465 Lisp_Object copy = make_sub_char_table (XCHAR_TABLE (arg)->defalt);
466 int i;
467
468 /* Copy all the contents. */
469 bcopy (XCHAR_TABLE (arg)->contents, XCHAR_TABLE (copy)->contents,
470 SUB_CHAR_TABLE_ORDINARY_SLOTS * sizeof (Lisp_Object));
471 /* Recursively copy any sub char-tables in the ordinary slots. */
472 for (i = 32; i < SUB_CHAR_TABLE_ORDINARY_SLOTS; i++)
473 if (SUB_CHAR_TABLE_P (XCHAR_TABLE (arg)->contents[i]))
474 XCHAR_TABLE (copy)->contents[i]
475 = copy_sub_char_table (XCHAR_TABLE (copy)->contents[i]);
476
477 return copy;
478 }
479
480
481 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
482 doc: /* Return a copy of a list, vector, string or char-table.
483 The elements of a list or vector are not copied; they are shared
484 with the original. */)
485 (arg)
486 Lisp_Object arg;
487 {
488 if (NILP (arg)) return arg;
489
490 if (CHAR_TABLE_P (arg))
491 {
492 int i;
493 Lisp_Object copy;
494
495 copy = Fmake_char_table (XCHAR_TABLE (arg)->purpose, Qnil);
496 /* Copy all the slots, including the extra ones. */
497 bcopy (XVECTOR (arg)->contents, XVECTOR (copy)->contents,
498 ((XCHAR_TABLE (arg)->size & PSEUDOVECTOR_SIZE_MASK)
499 * sizeof (Lisp_Object)));
500
501 /* Recursively copy any sub char tables in the ordinary slots
502 for multibyte characters. */
503 for (i = CHAR_TABLE_SINGLE_BYTE_SLOTS;
504 i < CHAR_TABLE_ORDINARY_SLOTS; i++)
505 if (SUB_CHAR_TABLE_P (XCHAR_TABLE (arg)->contents[i]))
506 XCHAR_TABLE (copy)->contents[i]
507 = copy_sub_char_table (XCHAR_TABLE (copy)->contents[i]);
508
509 return copy;
510 }
511
512 if (BOOL_VECTOR_P (arg))
513 {
514 Lisp_Object val;
515 int size_in_chars
516 = (XBOOL_VECTOR (arg)->size + BITS_PER_CHAR - 1) / BITS_PER_CHAR;
517
518 val = Fmake_bool_vector (Flength (arg), Qnil);
519 bcopy (XBOOL_VECTOR (arg)->data, XBOOL_VECTOR (val)->data,
520 size_in_chars);
521 return val;
522 }
523
524 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
525 arg = wrong_type_argument (Qsequencep, arg);
526 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
527 }
528
529 /* In string STR of length LEN, see if bytes before STR[I] combine
530 with bytes after STR[I] to form a single character. If so, return
531 the number of bytes after STR[I] which combine in this way.
532 Otherwize, return 0. */
533
534 static int
535 count_combining (str, len, i)
536 unsigned char *str;
537 int len, i;
538 {
539 int j = i - 1, bytes;
540
541 if (i == 0 || i == len || CHAR_HEAD_P (str[i]))
542 return 0;
543 while (j >= 0 && !CHAR_HEAD_P (str[j])) j--;
544 if (j < 0 || ! BASE_LEADING_CODE_P (str[j]))
545 return 0;
546 PARSE_MULTIBYTE_SEQ (str + j, len - j, bytes);
547 return (bytes <= i - j ? 0 : bytes - (i - j));
548 }
549
550 /* This structure holds information of an argument of `concat' that is
551 a string and has text properties to be copied. */
552 struct textprop_rec
553 {
554 int argnum; /* refer to ARGS (arguments of `concat') */
555 int from; /* refer to ARGS[argnum] (argument string) */
556 int to; /* refer to VAL (the target string) */
557 };
558
559 static Lisp_Object
560 concat (nargs, args, target_type, last_special)
561 int nargs;
562 Lisp_Object *args;
563 enum Lisp_Type target_type;
564 int last_special;
565 {
566 Lisp_Object val;
567 register Lisp_Object tail;
568 register Lisp_Object this;
569 int toindex;
570 int toindex_byte = 0;
571 register int result_len;
572 register int result_len_byte;
573 register int argnum;
574 Lisp_Object last_tail;
575 Lisp_Object prev;
576 int some_multibyte;
577 /* When we make a multibyte string, we can't copy text properties
578 while concatinating each string because the length of resulting
579 string can't be decided until we finish the whole concatination.
580 So, we record strings that have text properties to be copied
581 here, and copy the text properties after the concatination. */
582 struct textprop_rec *textprops = NULL;
583 /* Number of elments in textprops. */
584 int num_textprops = 0;
585
586 tail = Qnil;
587
588 /* In append, the last arg isn't treated like the others */
589 if (last_special && nargs > 0)
590 {
591 nargs--;
592 last_tail = args[nargs];
593 }
594 else
595 last_tail = Qnil;
596
597 /* Canonicalize each argument. */
598 for (argnum = 0; argnum < nargs; argnum++)
599 {
600 this = args[argnum];
601 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
602 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
603 {
604 args[argnum] = wrong_type_argument (Qsequencep, this);
605 }
606 }
607
608 /* Compute total length in chars of arguments in RESULT_LEN.
609 If desired output is a string, also compute length in bytes
610 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
611 whether the result should be a multibyte string. */
612 result_len_byte = 0;
613 result_len = 0;
614 some_multibyte = 0;
615 for (argnum = 0; argnum < nargs; argnum++)
616 {
617 int len;
618 this = args[argnum];
619 len = XFASTINT (Flength (this));
620 if (target_type == Lisp_String)
621 {
622 /* We must count the number of bytes needed in the string
623 as well as the number of characters. */
624 int i;
625 Lisp_Object ch;
626 int this_len_byte;
627
628 if (VECTORP (this))
629 for (i = 0; i < len; i++)
630 {
631 ch = XVECTOR (this)->contents[i];
632 if (! INTEGERP (ch))
633 wrong_type_argument (Qintegerp, ch);
634 this_len_byte = CHAR_BYTES (XINT (ch));
635 result_len_byte += this_len_byte;
636 if (!SINGLE_BYTE_CHAR_P (XINT (ch)))
637 some_multibyte = 1;
638 }
639 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
640 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
641 else if (CONSP (this))
642 for (; CONSP (this); this = XCDR (this))
643 {
644 ch = XCAR (this);
645 if (! INTEGERP (ch))
646 wrong_type_argument (Qintegerp, ch);
647 this_len_byte = CHAR_BYTES (XINT (ch));
648 result_len_byte += this_len_byte;
649 if (!SINGLE_BYTE_CHAR_P (XINT (ch)))
650 some_multibyte = 1;
651 }
652 else if (STRINGP (this))
653 {
654 if (STRING_MULTIBYTE (this))
655 {
656 some_multibyte = 1;
657 result_len_byte += SBYTES (this);
658 }
659 else
660 result_len_byte += count_size_as_multibyte (SDATA (this),
661 SCHARS (this));
662 }
663 }
664
665 result_len += len;
666 }
667
668 if (! some_multibyte)
669 result_len_byte = result_len;
670
671 /* Create the output object. */
672 if (target_type == Lisp_Cons)
673 val = Fmake_list (make_number (result_len), Qnil);
674 else if (target_type == Lisp_Vectorlike)
675 val = Fmake_vector (make_number (result_len), Qnil);
676 else if (some_multibyte)
677 val = make_uninit_multibyte_string (result_len, result_len_byte);
678 else
679 val = make_uninit_string (result_len);
680
681 /* In `append', if all but last arg are nil, return last arg. */
682 if (target_type == Lisp_Cons && EQ (val, Qnil))
683 return last_tail;
684
685 /* Copy the contents of the args into the result. */
686 if (CONSP (val))
687 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
688 else
689 toindex = 0, toindex_byte = 0;
690
691 prev = Qnil;
692 if (STRINGP (val))
693 textprops
694 = (struct textprop_rec *) alloca (sizeof (struct textprop_rec) * nargs);
695
696 for (argnum = 0; argnum < nargs; argnum++)
697 {
698 Lisp_Object thislen;
699 int thisleni = 0;
700 register unsigned int thisindex = 0;
701 register unsigned int thisindex_byte = 0;
702
703 this = args[argnum];
704 if (!CONSP (this))
705 thislen = Flength (this), thisleni = XINT (thislen);
706
707 /* Between strings of the same kind, copy fast. */
708 if (STRINGP (this) && STRINGP (val)
709 && STRING_MULTIBYTE (this) == some_multibyte)
710 {
711 int thislen_byte = SBYTES (this);
712 int combined;
713
714 bcopy (SDATA (this), SDATA (val) + toindex_byte,
715 SBYTES (this));
716 combined = (some_multibyte && toindex_byte > 0
717 ? count_combining (SDATA (val),
718 toindex_byte + thislen_byte,
719 toindex_byte)
720 : 0);
721 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
722 {
723 textprops[num_textprops].argnum = argnum;
724 /* We ignore text properties on characters being combined. */
725 textprops[num_textprops].from = combined;
726 textprops[num_textprops++].to = toindex;
727 }
728 toindex_byte += thislen_byte;
729 toindex += thisleni - combined;
730 STRING_SET_CHARS (val, SCHARS (val) - combined);
731 }
732 /* Copy a single-byte string to a multibyte string. */
733 else if (STRINGP (this) && STRINGP (val))
734 {
735 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
736 {
737 textprops[num_textprops].argnum = argnum;
738 textprops[num_textprops].from = 0;
739 textprops[num_textprops++].to = toindex;
740 }
741 toindex_byte += copy_text (SDATA (this),
742 SDATA (val) + toindex_byte,
743 SCHARS (this), 0, 1);
744 toindex += thisleni;
745 }
746 else
747 /* Copy element by element. */
748 while (1)
749 {
750 register Lisp_Object elt;
751
752 /* Fetch next element of `this' arg into `elt', or break if
753 `this' is exhausted. */
754 if (NILP (this)) break;
755 if (CONSP (this))
756 elt = XCAR (this), this = XCDR (this);
757 else if (thisindex >= thisleni)
758 break;
759 else if (STRINGP (this))
760 {
761 int c;
762 if (STRING_MULTIBYTE (this))
763 {
764 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
765 thisindex,
766 thisindex_byte);
767 XSETFASTINT (elt, c);
768 }
769 else
770 {
771 XSETFASTINT (elt, SREF (this, thisindex++));
772 if (some_multibyte
773 && (XINT (elt) >= 0240
774 || (XINT (elt) >= 0200
775 && ! NILP (Vnonascii_translation_table)))
776 && XINT (elt) < 0400)
777 {
778 c = unibyte_char_to_multibyte (XINT (elt));
779 XSETINT (elt, c);
780 }
781 }
782 }
783 else if (BOOL_VECTOR_P (this))
784 {
785 int byte;
786 byte = XBOOL_VECTOR (this)->data[thisindex / BITS_PER_CHAR];
787 if (byte & (1 << (thisindex % BITS_PER_CHAR)))
788 elt = Qt;
789 else
790 elt = Qnil;
791 thisindex++;
792 }
793 else
794 elt = XVECTOR (this)->contents[thisindex++];
795
796 /* Store this element into the result. */
797 if (toindex < 0)
798 {
799 XSETCAR (tail, elt);
800 prev = tail;
801 tail = XCDR (tail);
802 }
803 else if (VECTORP (val))
804 XVECTOR (val)->contents[toindex++] = elt;
805 else
806 {
807 CHECK_NUMBER (elt);
808 if (SINGLE_BYTE_CHAR_P (XINT (elt)))
809 {
810 if (some_multibyte)
811 toindex_byte
812 += CHAR_STRING (XINT (elt),
813 SDATA (val) + toindex_byte);
814 else
815 SSET (val, toindex_byte++, XINT (elt));
816 if (some_multibyte
817 && toindex_byte > 0
818 && count_combining (SDATA (val),
819 toindex_byte, toindex_byte - 1))
820 STRING_SET_CHARS (val, SCHARS (val) - 1);
821 else
822 toindex++;
823 }
824 else
825 /* If we have any multibyte characters,
826 we already decided to make a multibyte string. */
827 {
828 int c = XINT (elt);
829 /* P exists as a variable
830 to avoid a bug on the Masscomp C compiler. */
831 unsigned char *p = SDATA (val) + toindex_byte;
832
833 toindex_byte += CHAR_STRING (c, p);
834 toindex++;
835 }
836 }
837 }
838 }
839 if (!NILP (prev))
840 XSETCDR (prev, last_tail);
841
842 if (num_textprops > 0)
843 {
844 Lisp_Object props;
845 int last_to_end = -1;
846
847 for (argnum = 0; argnum < num_textprops; argnum++)
848 {
849 this = args[textprops[argnum].argnum];
850 props = text_property_list (this,
851 make_number (0),
852 make_number (SCHARS (this)),
853 Qnil);
854 /* If successive arguments have properites, be sure that the
855 value of `composition' property be the copy. */
856 if (last_to_end == textprops[argnum].to)
857 make_composition_value_copy (props);
858 add_text_properties_from_list (val, props,
859 make_number (textprops[argnum].to));
860 last_to_end = textprops[argnum].to + SCHARS (this);
861 }
862 }
863 return val;
864 }
865 \f
866 static Lisp_Object string_char_byte_cache_string;
867 static int string_char_byte_cache_charpos;
868 static int string_char_byte_cache_bytepos;
869
870 void
871 clear_string_char_byte_cache ()
872 {
873 string_char_byte_cache_string = Qnil;
874 }
875
876 /* Return the character index corresponding to CHAR_INDEX in STRING. */
877
878 int
879 string_char_to_byte (string, char_index)
880 Lisp_Object string;
881 int char_index;
882 {
883 int i, i_byte;
884 int best_below, best_below_byte;
885 int best_above, best_above_byte;
886
887 best_below = best_below_byte = 0;
888 best_above = SCHARS (string);
889 best_above_byte = SBYTES (string);
890 if (best_above == best_above_byte)
891 return char_index;
892
893 if (EQ (string, string_char_byte_cache_string))
894 {
895 if (string_char_byte_cache_charpos < char_index)
896 {
897 best_below = string_char_byte_cache_charpos;
898 best_below_byte = string_char_byte_cache_bytepos;
899 }
900 else
901 {
902 best_above = string_char_byte_cache_charpos;
903 best_above_byte = string_char_byte_cache_bytepos;
904 }
905 }
906
907 if (char_index - best_below < best_above - char_index)
908 {
909 while (best_below < char_index)
910 {
911 int c;
912 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, string,
913 best_below, best_below_byte);
914 }
915 i = best_below;
916 i_byte = best_below_byte;
917 }
918 else
919 {
920 while (best_above > char_index)
921 {
922 unsigned char *pend = SDATA (string) + best_above_byte;
923 unsigned char *pbeg = pend - best_above_byte;
924 unsigned char *p = pend - 1;
925 int bytes;
926
927 while (p > pbeg && !CHAR_HEAD_P (*p)) p--;
928 PARSE_MULTIBYTE_SEQ (p, pend - p, bytes);
929 if (bytes == pend - p)
930 best_above_byte -= bytes;
931 else if (bytes > pend - p)
932 best_above_byte -= (pend - p);
933 else
934 best_above_byte--;
935 best_above--;
936 }
937 i = best_above;
938 i_byte = best_above_byte;
939 }
940
941 string_char_byte_cache_bytepos = i_byte;
942 string_char_byte_cache_charpos = i;
943 string_char_byte_cache_string = string;
944
945 return i_byte;
946 }
947 \f
948 /* Return the character index corresponding to BYTE_INDEX in STRING. */
949
950 int
951 string_byte_to_char (string, byte_index)
952 Lisp_Object string;
953 int byte_index;
954 {
955 int i, i_byte;
956 int best_below, best_below_byte;
957 int best_above, best_above_byte;
958
959 best_below = best_below_byte = 0;
960 best_above = SCHARS (string);
961 best_above_byte = SBYTES (string);
962 if (best_above == best_above_byte)
963 return byte_index;
964
965 if (EQ (string, string_char_byte_cache_string))
966 {
967 if (string_char_byte_cache_bytepos < byte_index)
968 {
969 best_below = string_char_byte_cache_charpos;
970 best_below_byte = string_char_byte_cache_bytepos;
971 }
972 else
973 {
974 best_above = string_char_byte_cache_charpos;
975 best_above_byte = string_char_byte_cache_bytepos;
976 }
977 }
978
979 if (byte_index - best_below_byte < best_above_byte - byte_index)
980 {
981 while (best_below_byte < byte_index)
982 {
983 int c;
984 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, string,
985 best_below, best_below_byte);
986 }
987 i = best_below;
988 i_byte = best_below_byte;
989 }
990 else
991 {
992 while (best_above_byte > byte_index)
993 {
994 unsigned char *pend = SDATA (string) + best_above_byte;
995 unsigned char *pbeg = pend - best_above_byte;
996 unsigned char *p = pend - 1;
997 int bytes;
998
999 while (p > pbeg && !CHAR_HEAD_P (*p)) p--;
1000 PARSE_MULTIBYTE_SEQ (p, pend - p, bytes);
1001 if (bytes == pend - p)
1002 best_above_byte -= bytes;
1003 else if (bytes > pend - p)
1004 best_above_byte -= (pend - p);
1005 else
1006 best_above_byte--;
1007 best_above--;
1008 }
1009 i = best_above;
1010 i_byte = best_above_byte;
1011 }
1012
1013 string_char_byte_cache_bytepos = i_byte;
1014 string_char_byte_cache_charpos = i;
1015 string_char_byte_cache_string = string;
1016
1017 return i;
1018 }
1019 \f
1020 /* Convert STRING to a multibyte string.
1021 Single-byte characters 0240 through 0377 are converted
1022 by adding nonascii_insert_offset to each. */
1023
1024 Lisp_Object
1025 string_make_multibyte (string)
1026 Lisp_Object string;
1027 {
1028 unsigned char *buf;
1029 int nbytes;
1030
1031 if (STRING_MULTIBYTE (string))
1032 return string;
1033
1034 nbytes = count_size_as_multibyte (SDATA (string),
1035 SCHARS (string));
1036 /* If all the chars are ASCII, they won't need any more bytes
1037 once converted. In that case, we can return STRING itself. */
1038 if (nbytes == SBYTES (string))
1039 return string;
1040
1041 buf = (unsigned char *) alloca (nbytes);
1042 copy_text (SDATA (string), buf, SBYTES (string),
1043 0, 1);
1044
1045 return make_multibyte_string (buf, SCHARS (string), nbytes);
1046 }
1047
1048
1049 /* Convert STRING to a multibyte string without changing each
1050 character codes. Thus, characters 0200 trough 0237 are converted
1051 to eight-bit-control characters, and characters 0240 through 0377
1052 are converted eight-bit-graphic characters. */
1053
1054 Lisp_Object
1055 string_to_multibyte (string)
1056 Lisp_Object string;
1057 {
1058 unsigned char *buf;
1059 int nbytes;
1060
1061 if (STRING_MULTIBYTE (string))
1062 return string;
1063
1064 nbytes = parse_str_to_multibyte (SDATA (string), SBYTES (string));
1065 /* If all the chars are ASCII or eight-bit-graphic, they won't need
1066 any more bytes once converted. */
1067 if (nbytes == SBYTES (string))
1068 return make_multibyte_string (SDATA (string), nbytes, nbytes);
1069
1070 buf = (unsigned char *) alloca (nbytes);
1071 bcopy (SDATA (string), buf, SBYTES (string));
1072 str_to_multibyte (buf, nbytes, SBYTES (string));
1073
1074 return make_multibyte_string (buf, SCHARS (string), nbytes);
1075 }
1076
1077
1078 /* Convert STRING to a single-byte string. */
1079
1080 Lisp_Object
1081 string_make_unibyte (string)
1082 Lisp_Object string;
1083 {
1084 unsigned char *buf;
1085
1086 if (! STRING_MULTIBYTE (string))
1087 return string;
1088
1089 buf = (unsigned char *) alloca (SCHARS (string));
1090
1091 copy_text (SDATA (string), buf, SBYTES (string),
1092 1, 0);
1093
1094 return make_unibyte_string (buf, SCHARS (string));
1095 }
1096
1097 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
1098 1, 1, 0,
1099 doc: /* Return the multibyte equivalent of STRING.
1100 If STRING is unibyte and contains non-ASCII characters, the function
1101 `unibyte-char-to-multibyte' is used to convert each unibyte character
1102 to a multibyte character. In this case, the returned string is a
1103 newly created string with no text properties. If STRING is multibyte
1104 or entirely ASCII, it is returned unchanged. In particular, when
1105 STRING is unibyte and entirely ASCII, the returned string is unibyte.
1106 \(When the characters are all ASCII, Emacs primitives will treat the
1107 string the same way whether it is unibyte or multibyte.) */)
1108 (string)
1109 Lisp_Object string;
1110 {
1111 CHECK_STRING (string);
1112
1113 return string_make_multibyte (string);
1114 }
1115
1116 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
1117 1, 1, 0,
1118 doc: /* Return the unibyte equivalent of STRING.
1119 Multibyte character codes are converted to unibyte according to
1120 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
1121 If the lookup in the translation table fails, this function takes just
1122 the low 8 bits of each character. */)
1123 (string)
1124 Lisp_Object string;
1125 {
1126 CHECK_STRING (string);
1127
1128 return string_make_unibyte (string);
1129 }
1130
1131 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1132 1, 1, 0,
1133 doc: /* Return a unibyte string with the same individual bytes as STRING.
1134 If STRING is unibyte, the result is STRING itself.
1135 Otherwise it is a newly created string, with no text properties.
1136 If STRING is multibyte and contains a character of charset
1137 `eight-bit-control' or `eight-bit-graphic', it is converted to the
1138 corresponding single byte. */)
1139 (string)
1140 Lisp_Object string;
1141 {
1142 CHECK_STRING (string);
1143
1144 if (STRING_MULTIBYTE (string))
1145 {
1146 int bytes = SBYTES (string);
1147 unsigned char *str = (unsigned char *) xmalloc (bytes);
1148
1149 bcopy (SDATA (string), str, bytes);
1150 bytes = str_as_unibyte (str, bytes);
1151 string = make_unibyte_string (str, bytes);
1152 xfree (str);
1153 }
1154 return string;
1155 }
1156
1157 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1158 1, 1, 0,
1159 doc: /* Return a multibyte string with the same individual bytes as STRING.
1160 If STRING is multibyte, the result is STRING itself.
1161 Otherwise it is a newly created string, with no text properties.
1162 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1163 part of a multibyte form), it is converted to the corresponding
1164 multibyte character of charset `eight-bit-control' or `eight-bit-graphic'. */)
1165 (string)
1166 Lisp_Object string;
1167 {
1168 CHECK_STRING (string);
1169
1170 if (! STRING_MULTIBYTE (string))
1171 {
1172 Lisp_Object new_string;
1173 int nchars, nbytes;
1174
1175 parse_str_as_multibyte (SDATA (string),
1176 SBYTES (string),
1177 &nchars, &nbytes);
1178 new_string = make_uninit_multibyte_string (nchars, nbytes);
1179 bcopy (SDATA (string), SDATA (new_string),
1180 SBYTES (string));
1181 if (nbytes != SBYTES (string))
1182 str_as_multibyte (SDATA (new_string), nbytes,
1183 SBYTES (string), NULL);
1184 string = new_string;
1185 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1186 }
1187 return string;
1188 }
1189
1190 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1191 1, 1, 0,
1192 doc: /* Return a multibyte string with the same individual chars as STRING.
1193 If STRING is multibyte, the result is STRING itself.
1194 Otherwise it is a newly created string, with no text properties.
1195 Characters 0200 through 0237 are converted to eight-bit-control
1196 characters of the same character code. Characters 0240 through 0377
1197 are converted to eight-bit-graphic characters of the same character
1198 codes. */)
1199 (string)
1200 Lisp_Object string;
1201 {
1202 CHECK_STRING (string);
1203
1204 return string_to_multibyte (string);
1205 }
1206
1207 \f
1208 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1209 doc: /* Return a copy of ALIST.
1210 This is an alist which represents the same mapping from objects to objects,
1211 but does not share the alist structure with ALIST.
1212 The objects mapped (cars and cdrs of elements of the alist)
1213 are shared, however.
1214 Elements of ALIST that are not conses are also shared. */)
1215 (alist)
1216 Lisp_Object alist;
1217 {
1218 register Lisp_Object tem;
1219
1220 CHECK_LIST (alist);
1221 if (NILP (alist))
1222 return alist;
1223 alist = concat (1, &alist, Lisp_Cons, 0);
1224 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1225 {
1226 register Lisp_Object car;
1227 car = XCAR (tem);
1228
1229 if (CONSP (car))
1230 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1231 }
1232 return alist;
1233 }
1234
1235 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1236 doc: /* Return a substring of STRING, starting at index FROM and ending before TO.
1237 TO may be nil or omitted; then the substring runs to the end of STRING.
1238 FROM and TO start at 0. If either is negative, it counts from the end.
1239
1240 This function allows vectors as well as strings. */)
1241 (string, from, to)
1242 Lisp_Object string;
1243 register Lisp_Object from, to;
1244 {
1245 Lisp_Object res;
1246 int size;
1247 int size_byte = 0;
1248 int from_char, to_char;
1249 int from_byte = 0, to_byte = 0;
1250
1251 if (! (STRINGP (string) || VECTORP (string)))
1252 wrong_type_argument (Qarrayp, string);
1253
1254 CHECK_NUMBER (from);
1255
1256 if (STRINGP (string))
1257 {
1258 size = SCHARS (string);
1259 size_byte = SBYTES (string);
1260 }
1261 else
1262 size = XVECTOR (string)->size;
1263
1264 if (NILP (to))
1265 {
1266 to_char = size;
1267 to_byte = size_byte;
1268 }
1269 else
1270 {
1271 CHECK_NUMBER (to);
1272
1273 to_char = XINT (to);
1274 if (to_char < 0)
1275 to_char += size;
1276
1277 if (STRINGP (string))
1278 to_byte = string_char_to_byte (string, to_char);
1279 }
1280
1281 from_char = XINT (from);
1282 if (from_char < 0)
1283 from_char += size;
1284 if (STRINGP (string))
1285 from_byte = string_char_to_byte (string, from_char);
1286
1287 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1288 args_out_of_range_3 (string, make_number (from_char),
1289 make_number (to_char));
1290
1291 if (STRINGP (string))
1292 {
1293 res = make_specified_string (SDATA (string) + from_byte,
1294 to_char - from_char, to_byte - from_byte,
1295 STRING_MULTIBYTE (string));
1296 copy_text_properties (make_number (from_char), make_number (to_char),
1297 string, make_number (0), res, Qnil);
1298 }
1299 else
1300 res = Fvector (to_char - from_char,
1301 XVECTOR (string)->contents + from_char);
1302
1303 return res;
1304 }
1305
1306
1307 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1308 doc: /* Return a substring of STRING, without text properties.
1309 It starts at index FROM and ending before TO.
1310 TO may be nil or omitted; then the substring runs to the end of STRING.
1311 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1312 If FROM or TO is negative, it counts from the end.
1313
1314 With one argument, just copy STRING without its properties. */)
1315 (string, from, to)
1316 Lisp_Object string;
1317 register Lisp_Object from, to;
1318 {
1319 int size, size_byte;
1320 int from_char, to_char;
1321 int from_byte, to_byte;
1322
1323 CHECK_STRING (string);
1324
1325 size = SCHARS (string);
1326 size_byte = SBYTES (string);
1327
1328 if (NILP (from))
1329 from_char = from_byte = 0;
1330 else
1331 {
1332 CHECK_NUMBER (from);
1333 from_char = XINT (from);
1334 if (from_char < 0)
1335 from_char += size;
1336
1337 from_byte = string_char_to_byte (string, from_char);
1338 }
1339
1340 if (NILP (to))
1341 {
1342 to_char = size;
1343 to_byte = size_byte;
1344 }
1345 else
1346 {
1347 CHECK_NUMBER (to);
1348
1349 to_char = XINT (to);
1350 if (to_char < 0)
1351 to_char += size;
1352
1353 to_byte = string_char_to_byte (string, to_char);
1354 }
1355
1356 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1357 args_out_of_range_3 (string, make_number (from_char),
1358 make_number (to_char));
1359
1360 return make_specified_string (SDATA (string) + from_byte,
1361 to_char - from_char, to_byte - from_byte,
1362 STRING_MULTIBYTE (string));
1363 }
1364
1365 /* Extract a substring of STRING, giving start and end positions
1366 both in characters and in bytes. */
1367
1368 Lisp_Object
1369 substring_both (string, from, from_byte, to, to_byte)
1370 Lisp_Object string;
1371 int from, from_byte, to, to_byte;
1372 {
1373 Lisp_Object res;
1374 int size;
1375 int size_byte;
1376
1377 if (! (STRINGP (string) || VECTORP (string)))
1378 wrong_type_argument (Qarrayp, string);
1379
1380 if (STRINGP (string))
1381 {
1382 size = SCHARS (string);
1383 size_byte = SBYTES (string);
1384 }
1385 else
1386 size = XVECTOR (string)->size;
1387
1388 if (!(0 <= from && from <= to && to <= size))
1389 args_out_of_range_3 (string, make_number (from), make_number (to));
1390
1391 if (STRINGP (string))
1392 {
1393 res = make_specified_string (SDATA (string) + from_byte,
1394 to - from, to_byte - from_byte,
1395 STRING_MULTIBYTE (string));
1396 copy_text_properties (make_number (from), make_number (to),
1397 string, make_number (0), res, Qnil);
1398 }
1399 else
1400 res = Fvector (to - from,
1401 XVECTOR (string)->contents + from);
1402
1403 return res;
1404 }
1405 \f
1406 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1407 doc: /* Take cdr N times on LIST, returns the result. */)
1408 (n, list)
1409 Lisp_Object n;
1410 register Lisp_Object list;
1411 {
1412 register int i, num;
1413 CHECK_NUMBER (n);
1414 num = XINT (n);
1415 for (i = 0; i < num && !NILP (list); i++)
1416 {
1417 QUIT;
1418 if (! CONSP (list))
1419 wrong_type_argument (Qlistp, list);
1420 list = XCDR (list);
1421 }
1422 return list;
1423 }
1424
1425 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1426 doc: /* Return the Nth element of LIST.
1427 N counts from zero. If LIST is not that long, nil is returned. */)
1428 (n, list)
1429 Lisp_Object n, list;
1430 {
1431 return Fcar (Fnthcdr (n, list));
1432 }
1433
1434 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1435 doc: /* Return element of SEQUENCE at index N. */)
1436 (sequence, n)
1437 register Lisp_Object sequence, n;
1438 {
1439 CHECK_NUMBER (n);
1440 while (1)
1441 {
1442 if (CONSP (sequence) || NILP (sequence))
1443 return Fcar (Fnthcdr (n, sequence));
1444 else if (STRINGP (sequence) || VECTORP (sequence)
1445 || BOOL_VECTOR_P (sequence) || CHAR_TABLE_P (sequence))
1446 return Faref (sequence, n);
1447 else
1448 sequence = wrong_type_argument (Qsequencep, sequence);
1449 }
1450 }
1451
1452 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1453 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1454 The value is actually the tail of LIST whose car is ELT. */)
1455 (elt, list)
1456 register Lisp_Object elt;
1457 Lisp_Object list;
1458 {
1459 register Lisp_Object tail;
1460 for (tail = list; !NILP (tail); tail = XCDR (tail))
1461 {
1462 register Lisp_Object tem;
1463 if (! CONSP (tail))
1464 wrong_type_argument (Qlistp, list);
1465 tem = XCAR (tail);
1466 if (! NILP (Fequal (elt, tem)))
1467 return tail;
1468 QUIT;
1469 }
1470 return Qnil;
1471 }
1472
1473 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1474 doc: /* Return non-nil if ELT is an element of LIST.
1475 Comparison done with EQ. The value is actually the tail of LIST
1476 whose car is ELT. */)
1477 (elt, list)
1478 Lisp_Object elt, list;
1479 {
1480 while (1)
1481 {
1482 if (!CONSP (list) || EQ (XCAR (list), elt))
1483 break;
1484
1485 list = XCDR (list);
1486 if (!CONSP (list) || EQ (XCAR (list), elt))
1487 break;
1488
1489 list = XCDR (list);
1490 if (!CONSP (list) || EQ (XCAR (list), elt))
1491 break;
1492
1493 list = XCDR (list);
1494 QUIT;
1495 }
1496
1497 if (!CONSP (list) && !NILP (list))
1498 list = wrong_type_argument (Qlistp, list);
1499
1500 return list;
1501 }
1502
1503 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1504 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1505 The value is actually the first element of LIST whose car is KEY.
1506 Elements of LIST that are not conses are ignored. */)
1507 (key, list)
1508 Lisp_Object key, list;
1509 {
1510 Lisp_Object result;
1511
1512 while (1)
1513 {
1514 if (!CONSP (list)
1515 || (CONSP (XCAR (list))
1516 && EQ (XCAR (XCAR (list)), key)))
1517 break;
1518
1519 list = XCDR (list);
1520 if (!CONSP (list)
1521 || (CONSP (XCAR (list))
1522 && EQ (XCAR (XCAR (list)), key)))
1523 break;
1524
1525 list = XCDR (list);
1526 if (!CONSP (list)
1527 || (CONSP (XCAR (list))
1528 && EQ (XCAR (XCAR (list)), key)))
1529 break;
1530
1531 list = XCDR (list);
1532 QUIT;
1533 }
1534
1535 if (CONSP (list))
1536 result = XCAR (list);
1537 else if (NILP (list))
1538 result = Qnil;
1539 else
1540 result = wrong_type_argument (Qlistp, list);
1541
1542 return result;
1543 }
1544
1545 /* Like Fassq but never report an error and do not allow quits.
1546 Use only on lists known never to be circular. */
1547
1548 Lisp_Object
1549 assq_no_quit (key, list)
1550 Lisp_Object key, list;
1551 {
1552 while (CONSP (list)
1553 && (!CONSP (XCAR (list))
1554 || !EQ (XCAR (XCAR (list)), key)))
1555 list = XCDR (list);
1556
1557 return CONSP (list) ? XCAR (list) : Qnil;
1558 }
1559
1560 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1561 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1562 The value is actually the first element of LIST whose car equals KEY. */)
1563 (key, list)
1564 Lisp_Object key, list;
1565 {
1566 Lisp_Object result, car;
1567
1568 while (1)
1569 {
1570 if (!CONSP (list)
1571 || (CONSP (XCAR (list))
1572 && (car = XCAR (XCAR (list)),
1573 EQ (car, key) || !NILP (Fequal (car, key)))))
1574 break;
1575
1576 list = XCDR (list);
1577 if (!CONSP (list)
1578 || (CONSP (XCAR (list))
1579 && (car = XCAR (XCAR (list)),
1580 EQ (car, key) || !NILP (Fequal (car, key)))))
1581 break;
1582
1583 list = XCDR (list);
1584 if (!CONSP (list)
1585 || (CONSP (XCAR (list))
1586 && (car = XCAR (XCAR (list)),
1587 EQ (car, key) || !NILP (Fequal (car, key)))))
1588 break;
1589
1590 list = XCDR (list);
1591 QUIT;
1592 }
1593
1594 if (CONSP (list))
1595 result = XCAR (list);
1596 else if (NILP (list))
1597 result = Qnil;
1598 else
1599 result = wrong_type_argument (Qlistp, list);
1600
1601 return result;
1602 }
1603
1604 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1605 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1606 The value is actually the first element of LIST whose cdr is KEY. */)
1607 (key, list)
1608 register Lisp_Object key;
1609 Lisp_Object list;
1610 {
1611 Lisp_Object result;
1612
1613 while (1)
1614 {
1615 if (!CONSP (list)
1616 || (CONSP (XCAR (list))
1617 && EQ (XCDR (XCAR (list)), key)))
1618 break;
1619
1620 list = XCDR (list);
1621 if (!CONSP (list)
1622 || (CONSP (XCAR (list))
1623 && EQ (XCDR (XCAR (list)), key)))
1624 break;
1625
1626 list = XCDR (list);
1627 if (!CONSP (list)
1628 || (CONSP (XCAR (list))
1629 && EQ (XCDR (XCAR (list)), key)))
1630 break;
1631
1632 list = XCDR (list);
1633 QUIT;
1634 }
1635
1636 if (NILP (list))
1637 result = Qnil;
1638 else if (CONSP (list))
1639 result = XCAR (list);
1640 else
1641 result = wrong_type_argument (Qlistp, list);
1642
1643 return result;
1644 }
1645
1646 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1647 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1648 The value is actually the first element of LIST whose cdr equals KEY. */)
1649 (key, list)
1650 Lisp_Object key, list;
1651 {
1652 Lisp_Object result, cdr;
1653
1654 while (1)
1655 {
1656 if (!CONSP (list)
1657 || (CONSP (XCAR (list))
1658 && (cdr = XCDR (XCAR (list)),
1659 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1660 break;
1661
1662 list = XCDR (list);
1663 if (!CONSP (list)
1664 || (CONSP (XCAR (list))
1665 && (cdr = XCDR (XCAR (list)),
1666 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1667 break;
1668
1669 list = XCDR (list);
1670 if (!CONSP (list)
1671 || (CONSP (XCAR (list))
1672 && (cdr = XCDR (XCAR (list)),
1673 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1674 break;
1675
1676 list = XCDR (list);
1677 QUIT;
1678 }
1679
1680 if (CONSP (list))
1681 result = XCAR (list);
1682 else if (NILP (list))
1683 result = Qnil;
1684 else
1685 result = wrong_type_argument (Qlistp, list);
1686
1687 return result;
1688 }
1689 \f
1690 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1691 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1692 The modified LIST is returned. Comparison is done with `eq'.
1693 If the first member of LIST is ELT, there is no way to remove it by side effect;
1694 therefore, write `(setq foo (delq element foo))'
1695 to be sure of changing the value of `foo'. */)
1696 (elt, list)
1697 register Lisp_Object elt;
1698 Lisp_Object list;
1699 {
1700 register Lisp_Object tail, prev;
1701 register Lisp_Object tem;
1702
1703 tail = list;
1704 prev = Qnil;
1705 while (!NILP (tail))
1706 {
1707 if (! CONSP (tail))
1708 wrong_type_argument (Qlistp, list);
1709 tem = XCAR (tail);
1710 if (EQ (elt, tem))
1711 {
1712 if (NILP (prev))
1713 list = XCDR (tail);
1714 else
1715 Fsetcdr (prev, XCDR (tail));
1716 }
1717 else
1718 prev = tail;
1719 tail = XCDR (tail);
1720 QUIT;
1721 }
1722 return list;
1723 }
1724
1725 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1726 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1727 SEQ must be a list, a vector, or a string.
1728 The modified SEQ is returned. Comparison is done with `equal'.
1729 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1730 is not a side effect; it is simply using a different sequence.
1731 Therefore, write `(setq foo (delete element foo))'
1732 to be sure of changing the value of `foo'. */)
1733 (elt, seq)
1734 Lisp_Object elt, seq;
1735 {
1736 if (VECTORP (seq))
1737 {
1738 EMACS_INT i, n;
1739
1740 for (i = n = 0; i < ASIZE (seq); ++i)
1741 if (NILP (Fequal (AREF (seq, i), elt)))
1742 ++n;
1743
1744 if (n != ASIZE (seq))
1745 {
1746 struct Lisp_Vector *p = allocate_vector (n);
1747
1748 for (i = n = 0; i < ASIZE (seq); ++i)
1749 if (NILP (Fequal (AREF (seq, i), elt)))
1750 p->contents[n++] = AREF (seq, i);
1751
1752 XSETVECTOR (seq, p);
1753 }
1754 }
1755 else if (STRINGP (seq))
1756 {
1757 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1758 int c;
1759
1760 for (i = nchars = nbytes = ibyte = 0;
1761 i < SCHARS (seq);
1762 ++i, ibyte += cbytes)
1763 {
1764 if (STRING_MULTIBYTE (seq))
1765 {
1766 c = STRING_CHAR (SDATA (seq) + ibyte,
1767 SBYTES (seq) - ibyte);
1768 cbytes = CHAR_BYTES (c);
1769 }
1770 else
1771 {
1772 c = SREF (seq, i);
1773 cbytes = 1;
1774 }
1775
1776 if (!INTEGERP (elt) || c != XINT (elt))
1777 {
1778 ++nchars;
1779 nbytes += cbytes;
1780 }
1781 }
1782
1783 if (nchars != SCHARS (seq))
1784 {
1785 Lisp_Object tem;
1786
1787 tem = make_uninit_multibyte_string (nchars, nbytes);
1788 if (!STRING_MULTIBYTE (seq))
1789 STRING_SET_UNIBYTE (tem);
1790
1791 for (i = nchars = nbytes = ibyte = 0;
1792 i < SCHARS (seq);
1793 ++i, ibyte += cbytes)
1794 {
1795 if (STRING_MULTIBYTE (seq))
1796 {
1797 c = STRING_CHAR (SDATA (seq) + ibyte,
1798 SBYTES (seq) - ibyte);
1799 cbytes = CHAR_BYTES (c);
1800 }
1801 else
1802 {
1803 c = SREF (seq, i);
1804 cbytes = 1;
1805 }
1806
1807 if (!INTEGERP (elt) || c != XINT (elt))
1808 {
1809 unsigned char *from = SDATA (seq) + ibyte;
1810 unsigned char *to = SDATA (tem) + nbytes;
1811 EMACS_INT n;
1812
1813 ++nchars;
1814 nbytes += cbytes;
1815
1816 for (n = cbytes; n--; )
1817 *to++ = *from++;
1818 }
1819 }
1820
1821 seq = tem;
1822 }
1823 }
1824 else
1825 {
1826 Lisp_Object tail, prev;
1827
1828 for (tail = seq, prev = Qnil; !NILP (tail); tail = XCDR (tail))
1829 {
1830 if (!CONSP (tail))
1831 wrong_type_argument (Qlistp, seq);
1832
1833 if (!NILP (Fequal (elt, XCAR (tail))))
1834 {
1835 if (NILP (prev))
1836 seq = XCDR (tail);
1837 else
1838 Fsetcdr (prev, XCDR (tail));
1839 }
1840 else
1841 prev = tail;
1842 QUIT;
1843 }
1844 }
1845
1846 return seq;
1847 }
1848
1849 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1850 doc: /* Reverse LIST by modifying cdr pointers.
1851 Return the reversed list. */)
1852 (list)
1853 Lisp_Object list;
1854 {
1855 register Lisp_Object prev, tail, next;
1856
1857 if (NILP (list)) return list;
1858 prev = Qnil;
1859 tail = list;
1860 while (!NILP (tail))
1861 {
1862 QUIT;
1863 if (! CONSP (tail))
1864 wrong_type_argument (Qlistp, list);
1865 next = XCDR (tail);
1866 Fsetcdr (tail, prev);
1867 prev = tail;
1868 tail = next;
1869 }
1870 return prev;
1871 }
1872
1873 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1874 doc: /* Reverse LIST, copying. Return the reversed list.
1875 See also the function `nreverse', which is used more often. */)
1876 (list)
1877 Lisp_Object list;
1878 {
1879 Lisp_Object new;
1880
1881 for (new = Qnil; CONSP (list); list = XCDR (list))
1882 {
1883 QUIT;
1884 new = Fcons (XCAR (list), new);
1885 }
1886 if (!NILP (list))
1887 wrong_type_argument (Qconsp, list);
1888 return new;
1889 }
1890 \f
1891 Lisp_Object merge ();
1892
1893 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1894 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1895 Returns the sorted list. LIST is modified by side effects.
1896 PREDICATE is called with two elements of LIST, and should return t
1897 if the first element is "less" than the second. */)
1898 (list, predicate)
1899 Lisp_Object list, predicate;
1900 {
1901 Lisp_Object front, back;
1902 register Lisp_Object len, tem;
1903 struct gcpro gcpro1, gcpro2;
1904 register int length;
1905
1906 front = list;
1907 len = Flength (list);
1908 length = XINT (len);
1909 if (length < 2)
1910 return list;
1911
1912 XSETINT (len, (length / 2) - 1);
1913 tem = Fnthcdr (len, list);
1914 back = Fcdr (tem);
1915 Fsetcdr (tem, Qnil);
1916
1917 GCPRO2 (front, back);
1918 front = Fsort (front, predicate);
1919 back = Fsort (back, predicate);
1920 UNGCPRO;
1921 return merge (front, back, predicate);
1922 }
1923
1924 Lisp_Object
1925 merge (org_l1, org_l2, pred)
1926 Lisp_Object org_l1, org_l2;
1927 Lisp_Object pred;
1928 {
1929 Lisp_Object value;
1930 register Lisp_Object tail;
1931 Lisp_Object tem;
1932 register Lisp_Object l1, l2;
1933 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1934
1935 l1 = org_l1;
1936 l2 = org_l2;
1937 tail = Qnil;
1938 value = Qnil;
1939
1940 /* It is sufficient to protect org_l1 and org_l2.
1941 When l1 and l2 are updated, we copy the new values
1942 back into the org_ vars. */
1943 GCPRO4 (org_l1, org_l2, pred, value);
1944
1945 while (1)
1946 {
1947 if (NILP (l1))
1948 {
1949 UNGCPRO;
1950 if (NILP (tail))
1951 return l2;
1952 Fsetcdr (tail, l2);
1953 return value;
1954 }
1955 if (NILP (l2))
1956 {
1957 UNGCPRO;
1958 if (NILP (tail))
1959 return l1;
1960 Fsetcdr (tail, l1);
1961 return value;
1962 }
1963 tem = call2 (pred, Fcar (l2), Fcar (l1));
1964 if (NILP (tem))
1965 {
1966 tem = l1;
1967 l1 = Fcdr (l1);
1968 org_l1 = l1;
1969 }
1970 else
1971 {
1972 tem = l2;
1973 l2 = Fcdr (l2);
1974 org_l2 = l2;
1975 }
1976 if (NILP (tail))
1977 value = tem;
1978 else
1979 Fsetcdr (tail, tem);
1980 tail = tem;
1981 }
1982 }
1983
1984 \f
1985 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1986 doc: /* Extract a value from a property list.
1987 PLIST is a property list, which is a list of the form
1988 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1989 corresponding to the given PROP, or nil if PROP is not
1990 one of the properties on the list. */)
1991 (plist, prop)
1992 Lisp_Object plist;
1993 Lisp_Object prop;
1994 {
1995 Lisp_Object tail;
1996
1997 for (tail = plist;
1998 CONSP (tail) && CONSP (XCDR (tail));
1999 tail = XCDR (XCDR (tail)))
2000 {
2001 if (EQ (prop, XCAR (tail)))
2002 return XCAR (XCDR (tail));
2003
2004 /* This function can be called asynchronously
2005 (setup_coding_system). Don't QUIT in that case. */
2006 if (!interrupt_input_blocked)
2007 QUIT;
2008 }
2009
2010 if (!NILP (tail))
2011 wrong_type_argument (Qlistp, prop);
2012
2013 return Qnil;
2014 }
2015
2016 DEFUN ("get", Fget, Sget, 2, 2, 0,
2017 doc: /* Return the value of SYMBOL's PROPNAME property.
2018 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
2019 (symbol, propname)
2020 Lisp_Object symbol, propname;
2021 {
2022 CHECK_SYMBOL (symbol);
2023 return Fplist_get (XSYMBOL (symbol)->plist, propname);
2024 }
2025
2026 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
2027 doc: /* Change value in PLIST of PROP to VAL.
2028 PLIST is a property list, which is a list of the form
2029 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
2030 If PROP is already a property on the list, its value is set to VAL,
2031 otherwise the new PROP VAL pair is added. The new plist is returned;
2032 use `(setq x (plist-put x prop val))' to be sure to use the new value.
2033 The PLIST is modified by side effects. */)
2034 (plist, prop, val)
2035 Lisp_Object plist;
2036 register Lisp_Object prop;
2037 Lisp_Object val;
2038 {
2039 register Lisp_Object tail, prev;
2040 Lisp_Object newcell;
2041 prev = Qnil;
2042 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2043 tail = XCDR (XCDR (tail)))
2044 {
2045 if (EQ (prop, XCAR (tail)))
2046 {
2047 Fsetcar (XCDR (tail), val);
2048 return plist;
2049 }
2050
2051 prev = tail;
2052 QUIT;
2053 }
2054 newcell = Fcons (prop, Fcons (val, Qnil));
2055 if (NILP (prev))
2056 return newcell;
2057 else
2058 Fsetcdr (XCDR (prev), newcell);
2059 return plist;
2060 }
2061
2062 DEFUN ("put", Fput, Sput, 3, 3, 0,
2063 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
2064 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
2065 (symbol, propname, value)
2066 Lisp_Object symbol, propname, value;
2067 {
2068 CHECK_SYMBOL (symbol);
2069 XSYMBOL (symbol)->plist
2070 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
2071 return value;
2072 }
2073 \f
2074 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
2075 doc: /* Extract a value from a property list, comparing with `equal'.
2076 PLIST is a property list, which is a list of the form
2077 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
2078 corresponding to the given PROP, or nil if PROP is not
2079 one of the properties on the list. */)
2080 (plist, prop)
2081 Lisp_Object plist;
2082 Lisp_Object prop;
2083 {
2084 Lisp_Object tail;
2085
2086 for (tail = plist;
2087 CONSP (tail) && CONSP (XCDR (tail));
2088 tail = XCDR (XCDR (tail)))
2089 {
2090 if (! NILP (Fequal (prop, XCAR (tail))))
2091 return XCAR (XCDR (tail));
2092
2093 QUIT;
2094 }
2095
2096 if (!NILP (tail))
2097 wrong_type_argument (Qlistp, prop);
2098
2099 return Qnil;
2100 }
2101
2102 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
2103 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
2104 PLIST is a property list, which is a list of the form
2105 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
2106 If PROP is already a property on the list, its value is set to VAL,
2107 otherwise the new PROP VAL pair is added. The new plist is returned;
2108 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
2109 The PLIST is modified by side effects. */)
2110 (plist, prop, val)
2111 Lisp_Object plist;
2112 register Lisp_Object prop;
2113 Lisp_Object val;
2114 {
2115 register Lisp_Object tail, prev;
2116 Lisp_Object newcell;
2117 prev = Qnil;
2118 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2119 tail = XCDR (XCDR (tail)))
2120 {
2121 if (! NILP (Fequal (prop, XCAR (tail))))
2122 {
2123 Fsetcar (XCDR (tail), val);
2124 return plist;
2125 }
2126
2127 prev = tail;
2128 QUIT;
2129 }
2130 newcell = Fcons (prop, Fcons (val, Qnil));
2131 if (NILP (prev))
2132 return newcell;
2133 else
2134 Fsetcdr (XCDR (prev), newcell);
2135 return plist;
2136 }
2137 \f
2138 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
2139 doc: /* Return t if two Lisp objects have similar structure and contents.
2140 They must have the same data type.
2141 Conses are compared by comparing the cars and the cdrs.
2142 Vectors and strings are compared element by element.
2143 Numbers are compared by value, but integers cannot equal floats.
2144 (Use `=' if you want integers and floats to be able to be equal.)
2145 Symbols must match exactly. */)
2146 (o1, o2)
2147 register Lisp_Object o1, o2;
2148 {
2149 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
2150 }
2151
2152 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2153 doc: /* Return t if two Lisp objects have similar structure and contents.
2154 This is like `equal' except that it compares the text properties
2155 of strings. (`equal' ignores text properties.) */)
2156 (o1, o2)
2157 register Lisp_Object o1, o2;
2158 {
2159 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2160 }
2161
2162 /* DEPTH is current depth of recursion. Signal an error if it
2163 gets too deep.
2164 PROPS, if non-nil, means compare string text properties too. */
2165
2166 static int
2167 internal_equal (o1, o2, depth, props)
2168 register Lisp_Object o1, o2;
2169 int depth, props;
2170 {
2171 if (depth > 200)
2172 error ("Stack overflow in equal");
2173
2174 tail_recurse:
2175 QUIT;
2176 if (EQ (o1, o2))
2177 return 1;
2178 if (XTYPE (o1) != XTYPE (o2))
2179 return 0;
2180
2181 switch (XTYPE (o1))
2182 {
2183 case Lisp_Float:
2184 {
2185 double d1, d2;
2186
2187 d1 = extract_float (o1);
2188 d2 = extract_float (o2);
2189 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2190 though they are not =. */
2191 return d1 == d2 || (d1 != d1 && d2 != d2);
2192 }
2193
2194 case Lisp_Cons:
2195 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2196 return 0;
2197 o1 = XCDR (o1);
2198 o2 = XCDR (o2);
2199 goto tail_recurse;
2200
2201 case Lisp_Misc:
2202 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2203 return 0;
2204 if (OVERLAYP (o1))
2205 {
2206 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2207 depth + 1, props)
2208 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2209 depth + 1))
2210 return 0;
2211 o1 = XOVERLAY (o1)->plist;
2212 o2 = XOVERLAY (o2)->plist;
2213 goto tail_recurse;
2214 }
2215 if (MARKERP (o1))
2216 {
2217 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2218 && (XMARKER (o1)->buffer == 0
2219 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2220 }
2221 break;
2222
2223 case Lisp_Vectorlike:
2224 {
2225 register int i;
2226 EMACS_INT size = XVECTOR (o1)->size;
2227 /* Pseudovectors have the type encoded in the size field, so this test
2228 actually checks that the objects have the same type as well as the
2229 same size. */
2230 if (XVECTOR (o2)->size != size)
2231 return 0;
2232 /* Boolvectors are compared much like strings. */
2233 if (BOOL_VECTOR_P (o1))
2234 {
2235 int size_in_chars
2236 = (XBOOL_VECTOR (o1)->size + BITS_PER_CHAR - 1) / BITS_PER_CHAR;
2237
2238 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2239 return 0;
2240 if (bcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2241 size_in_chars))
2242 return 0;
2243 return 1;
2244 }
2245 if (WINDOW_CONFIGURATIONP (o1))
2246 return compare_window_configurations (o1, o2, 0);
2247
2248 /* Aside from them, only true vectors, char-tables, and compiled
2249 functions are sensible to compare, so eliminate the others now. */
2250 if (size & PSEUDOVECTOR_FLAG)
2251 {
2252 if (!(size & (PVEC_COMPILED | PVEC_CHAR_TABLE)))
2253 return 0;
2254 size &= PSEUDOVECTOR_SIZE_MASK;
2255 }
2256 for (i = 0; i < size; i++)
2257 {
2258 Lisp_Object v1, v2;
2259 v1 = XVECTOR (o1)->contents [i];
2260 v2 = XVECTOR (o2)->contents [i];
2261 if (!internal_equal (v1, v2, depth + 1, props))
2262 return 0;
2263 }
2264 return 1;
2265 }
2266 break;
2267
2268 case Lisp_String:
2269 if (SCHARS (o1) != SCHARS (o2))
2270 return 0;
2271 if (SBYTES (o1) != SBYTES (o2))
2272 return 0;
2273 if (bcmp (SDATA (o1), SDATA (o2),
2274 SBYTES (o1)))
2275 return 0;
2276 if (props && !compare_string_intervals (o1, o2))
2277 return 0;
2278 return 1;
2279
2280 case Lisp_Int:
2281 case Lisp_Symbol:
2282 case Lisp_Type_Limit:
2283 break;
2284 }
2285
2286 return 0;
2287 }
2288 \f
2289 extern Lisp_Object Fmake_char_internal ();
2290
2291 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2292 doc: /* Store each element of ARRAY with ITEM.
2293 ARRAY is a vector, string, char-table, or bool-vector. */)
2294 (array, item)
2295 Lisp_Object array, item;
2296 {
2297 register int size, index, charval;
2298 retry:
2299 if (VECTORP (array))
2300 {
2301 register Lisp_Object *p = XVECTOR (array)->contents;
2302 size = XVECTOR (array)->size;
2303 for (index = 0; index < size; index++)
2304 p[index] = item;
2305 }
2306 else if (CHAR_TABLE_P (array))
2307 {
2308 register Lisp_Object *p = XCHAR_TABLE (array)->contents;
2309 size = CHAR_TABLE_ORDINARY_SLOTS;
2310 for (index = 0; index < size; index++)
2311 p[index] = item;
2312 XCHAR_TABLE (array)->defalt = Qnil;
2313 }
2314 else if (STRINGP (array))
2315 {
2316 register unsigned char *p = SDATA (array);
2317 CHECK_NUMBER (item);
2318 charval = XINT (item);
2319 size = SCHARS (array);
2320 if (STRING_MULTIBYTE (array))
2321 {
2322 unsigned char str[MAX_MULTIBYTE_LENGTH];
2323 int len = CHAR_STRING (charval, str);
2324 int size_byte = SBYTES (array);
2325 unsigned char *p1 = p, *endp = p + size_byte;
2326 int i;
2327
2328 if (size != size_byte)
2329 while (p1 < endp)
2330 {
2331 int this_len = MULTIBYTE_FORM_LENGTH (p1, endp - p1);
2332 if (len != this_len)
2333 error ("Attempt to change byte length of a string");
2334 p1 += this_len;
2335 }
2336 for (i = 0; i < size_byte; i++)
2337 *p++ = str[i % len];
2338 }
2339 else
2340 for (index = 0; index < size; index++)
2341 p[index] = charval;
2342 }
2343 else if (BOOL_VECTOR_P (array))
2344 {
2345 register unsigned char *p = XBOOL_VECTOR (array)->data;
2346 int size_in_chars
2347 = (XBOOL_VECTOR (array)->size + BITS_PER_CHAR - 1) / BITS_PER_CHAR;
2348
2349 charval = (! NILP (item) ? -1 : 0);
2350 for (index = 0; index < size_in_chars - 1; index++)
2351 p[index] = charval;
2352 if (index < size_in_chars)
2353 {
2354 /* Mask out bits beyond the vector size. */
2355 if (XBOOL_VECTOR (array)->size % BITS_PER_CHAR)
2356 charval &= (1 << (XBOOL_VECTOR (array)->size % BITS_PER_CHAR)) - 1;
2357 p[index] = charval;
2358 }
2359 }
2360 else
2361 {
2362 array = wrong_type_argument (Qarrayp, array);
2363 goto retry;
2364 }
2365 return array;
2366 }
2367
2368 DEFUN ("clear-string", Fclear_string, Sclear_string,
2369 1, 1, 0,
2370 doc: /* Clear the contents of STRING.
2371 This makes STRING unibyte and may change its length. */)
2372 (string)
2373 Lisp_Object string;
2374 {
2375 int len = SBYTES (string);
2376 bzero (SDATA (string), len);
2377 STRING_SET_CHARS (string, len);
2378 STRING_SET_UNIBYTE (string);
2379 return Qnil;
2380 }
2381 \f
2382 DEFUN ("char-table-subtype", Fchar_table_subtype, Schar_table_subtype,
2383 1, 1, 0,
2384 doc: /* Return the subtype of char-table CHAR-TABLE. The value is a symbol. */)
2385 (char_table)
2386 Lisp_Object char_table;
2387 {
2388 CHECK_CHAR_TABLE (char_table);
2389
2390 return XCHAR_TABLE (char_table)->purpose;
2391 }
2392
2393 DEFUN ("char-table-parent", Fchar_table_parent, Schar_table_parent,
2394 1, 1, 0,
2395 doc: /* Return the parent char-table of CHAR-TABLE.
2396 The value is either nil or another char-table.
2397 If CHAR-TABLE holds nil for a given character,
2398 then the actual applicable value is inherited from the parent char-table
2399 \(or from its parents, if necessary). */)
2400 (char_table)
2401 Lisp_Object char_table;
2402 {
2403 CHECK_CHAR_TABLE (char_table);
2404
2405 return XCHAR_TABLE (char_table)->parent;
2406 }
2407
2408 DEFUN ("set-char-table-parent", Fset_char_table_parent, Sset_char_table_parent,
2409 2, 2, 0,
2410 doc: /* Set the parent char-table of CHAR-TABLE to PARENT.
2411 Return PARENT. PARENT must be either nil or another char-table. */)
2412 (char_table, parent)
2413 Lisp_Object char_table, parent;
2414 {
2415 Lisp_Object temp;
2416
2417 CHECK_CHAR_TABLE (char_table);
2418
2419 if (!NILP (parent))
2420 {
2421 CHECK_CHAR_TABLE (parent);
2422
2423 for (temp = parent; !NILP (temp); temp = XCHAR_TABLE (temp)->parent)
2424 if (EQ (temp, char_table))
2425 error ("Attempt to make a chartable be its own parent");
2426 }
2427
2428 XCHAR_TABLE (char_table)->parent = parent;
2429
2430 return parent;
2431 }
2432
2433 DEFUN ("char-table-extra-slot", Fchar_table_extra_slot, Schar_table_extra_slot,
2434 2, 2, 0,
2435 doc: /* Return the value of CHAR-TABLE's extra-slot number N. */)
2436 (char_table, n)
2437 Lisp_Object char_table, n;
2438 {
2439 CHECK_CHAR_TABLE (char_table);
2440 CHECK_NUMBER (n);
2441 if (XINT (n) < 0
2442 || XINT (n) >= CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (char_table)))
2443 args_out_of_range (char_table, n);
2444
2445 return XCHAR_TABLE (char_table)->extras[XINT (n)];
2446 }
2447
2448 DEFUN ("set-char-table-extra-slot", Fset_char_table_extra_slot,
2449 Sset_char_table_extra_slot,
2450 3, 3, 0,
2451 doc: /* Set CHAR-TABLE's extra-slot number N to VALUE. */)
2452 (char_table, n, value)
2453 Lisp_Object char_table, n, value;
2454 {
2455 CHECK_CHAR_TABLE (char_table);
2456 CHECK_NUMBER (n);
2457 if (XINT (n) < 0
2458 || XINT (n) >= CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (char_table)))
2459 args_out_of_range (char_table, n);
2460
2461 return XCHAR_TABLE (char_table)->extras[XINT (n)] = value;
2462 }
2463 \f
2464 DEFUN ("char-table-range", Fchar_table_range, Schar_table_range,
2465 2, 2, 0,
2466 doc: /* Return the value in CHAR-TABLE for a range of characters RANGE.
2467 RANGE should be nil (for the default value)
2468 a vector which identifies a character set or a row of a character set,
2469 a character set name, or a character code. */)
2470 (char_table, range)
2471 Lisp_Object char_table, range;
2472 {
2473 CHECK_CHAR_TABLE (char_table);
2474
2475 if (EQ (range, Qnil))
2476 return XCHAR_TABLE (char_table)->defalt;
2477 else if (INTEGERP (range))
2478 return Faref (char_table, range);
2479 else if (SYMBOLP (range))
2480 {
2481 Lisp_Object charset_info;
2482
2483 charset_info = Fget (range, Qcharset);
2484 CHECK_VECTOR (charset_info);
2485
2486 return Faref (char_table,
2487 make_number (XINT (XVECTOR (charset_info)->contents[0])
2488 + 128));
2489 }
2490 else if (VECTORP (range))
2491 {
2492 if (XVECTOR (range)->size == 1)
2493 return Faref (char_table,
2494 make_number (XINT (XVECTOR (range)->contents[0]) + 128));
2495 else
2496 {
2497 int size = XVECTOR (range)->size;
2498 Lisp_Object *val = XVECTOR (range)->contents;
2499 Lisp_Object ch = Fmake_char_internal (size <= 0 ? Qnil : val[0],
2500 size <= 1 ? Qnil : val[1],
2501 size <= 2 ? Qnil : val[2]);
2502 return Faref (char_table, ch);
2503 }
2504 }
2505 else
2506 error ("Invalid RANGE argument to `char-table-range'");
2507 return Qt;
2508 }
2509
2510 DEFUN ("set-char-table-range", Fset_char_table_range, Sset_char_table_range,
2511 3, 3, 0,
2512 doc: /* Set the value in CHAR-TABLE for a range of characters RANGE to VALUE.
2513 RANGE should be t (for all characters), nil (for the default value),
2514 a character set, a vector which identifies a character set, a row of a
2515 character set, or a character code. Return VALUE. */)
2516 (char_table, range, value)
2517 Lisp_Object char_table, range, value;
2518 {
2519 int i;
2520
2521 CHECK_CHAR_TABLE (char_table);
2522
2523 if (EQ (range, Qt))
2524 for (i = 0; i < CHAR_TABLE_ORDINARY_SLOTS; i++)
2525 XCHAR_TABLE (char_table)->contents[i] = value;
2526 else if (EQ (range, Qnil))
2527 XCHAR_TABLE (char_table)->defalt = value;
2528 else if (SYMBOLP (range))
2529 {
2530 Lisp_Object charset_info;
2531 int charset_id;
2532
2533 charset_info = Fget (range, Qcharset);
2534 if (! VECTORP (charset_info)
2535 || ! NATNUMP (AREF (charset_info, 0))
2536 || (charset_id = XINT (AREF (charset_info, 0)),
2537 ! CHARSET_DEFINED_P (charset_id)))
2538 error ("Invalid charset: %s", SDATA (SYMBOL_NAME (range)));
2539
2540 if (charset_id == CHARSET_ASCII)
2541 for (i = 0; i < 128; i++)
2542 XCHAR_TABLE (char_table)->contents[i] = value;
2543 else if (charset_id == CHARSET_8_BIT_CONTROL)
2544 for (i = 128; i < 160; i++)
2545 XCHAR_TABLE (char_table)->contents[i] = value;
2546 else if (charset_id == CHARSET_8_BIT_GRAPHIC)
2547 for (i = 160; i < 256; i++)
2548 XCHAR_TABLE (char_table)->contents[i] = value;
2549 else
2550 XCHAR_TABLE (char_table)->contents[charset_id + 128] = value;
2551 }
2552 else if (INTEGERP (range))
2553 Faset (char_table, range, value);
2554 else if (VECTORP (range))
2555 {
2556 if (XVECTOR (range)->size == 1)
2557 return Faset (char_table,
2558 make_number (XINT (XVECTOR (range)->contents[0]) + 128),
2559 value);
2560 else
2561 {
2562 int size = XVECTOR (range)->size;
2563 Lisp_Object *val = XVECTOR (range)->contents;
2564 Lisp_Object ch = Fmake_char_internal (size <= 0 ? Qnil : val[0],
2565 size <= 1 ? Qnil : val[1],
2566 size <= 2 ? Qnil : val[2]);
2567 return Faset (char_table, ch, value);
2568 }
2569 }
2570 else
2571 error ("Invalid RANGE argument to `set-char-table-range'");
2572
2573 return value;
2574 }
2575
2576 DEFUN ("set-char-table-default", Fset_char_table_default,
2577 Sset_char_table_default, 3, 3, 0,
2578 doc: /* Set the default value in CHAR-TABLE for generic character CH to VALUE.
2579 The generic character specifies the group of characters.
2580 See also the documentation of `make-char'. */)
2581 (char_table, ch, value)
2582 Lisp_Object char_table, ch, value;
2583 {
2584 int c, charset, code1, code2;
2585 Lisp_Object temp;
2586
2587 CHECK_CHAR_TABLE (char_table);
2588 CHECK_NUMBER (ch);
2589
2590 c = XINT (ch);
2591 SPLIT_CHAR (c, charset, code1, code2);
2592
2593 /* Since we may want to set the default value for a character set
2594 not yet defined, we check only if the character set is in the
2595 valid range or not, instead of it is already defined or not. */
2596 if (! CHARSET_VALID_P (charset))
2597 invalid_character (c);
2598
2599 if (charset == CHARSET_ASCII)
2600 return (XCHAR_TABLE (char_table)->defalt = value);
2601
2602 /* Even if C is not a generic char, we had better behave as if a
2603 generic char is specified. */
2604 if (!CHARSET_DEFINED_P (charset) || CHARSET_DIMENSION (charset) == 1)
2605 code1 = 0;
2606 temp = XCHAR_TABLE (char_table)->contents[charset + 128];
2607 if (!code1)
2608 {
2609 if (SUB_CHAR_TABLE_P (temp))
2610 XCHAR_TABLE (temp)->defalt = value;
2611 else
2612 XCHAR_TABLE (char_table)->contents[charset + 128] = value;
2613 return value;
2614 }
2615 if (SUB_CHAR_TABLE_P (temp))
2616 char_table = temp;
2617 else
2618 char_table = (XCHAR_TABLE (char_table)->contents[charset + 128]
2619 = make_sub_char_table (temp));
2620 temp = XCHAR_TABLE (char_table)->contents[code1];
2621 if (SUB_CHAR_TABLE_P (temp))
2622 XCHAR_TABLE (temp)->defalt = value;
2623 else
2624 XCHAR_TABLE (char_table)->contents[code1] = value;
2625 return value;
2626 }
2627
2628 /* Look up the element in TABLE at index CH,
2629 and return it as an integer.
2630 If the element is nil, return CH itself.
2631 (Actually we do that for any non-integer.) */
2632
2633 int
2634 char_table_translate (table, ch)
2635 Lisp_Object table;
2636 int ch;
2637 {
2638 Lisp_Object value;
2639 value = Faref (table, make_number (ch));
2640 if (! INTEGERP (value))
2641 return ch;
2642 return XINT (value);
2643 }
2644
2645 static void
2646 optimize_sub_char_table (table, chars)
2647 Lisp_Object *table;
2648 int chars;
2649 {
2650 Lisp_Object elt;
2651 int from, to;
2652
2653 if (chars == 94)
2654 from = 33, to = 127;
2655 else
2656 from = 32, to = 128;
2657
2658 if (!SUB_CHAR_TABLE_P (*table))
2659 return;
2660 elt = XCHAR_TABLE (*table)->contents[from++];
2661 for (; from < to; from++)
2662 if (NILP (Fequal (elt, XCHAR_TABLE (*table)->contents[from])))
2663 return;
2664 *table = elt;
2665 }
2666
2667 DEFUN ("optimize-char-table", Foptimize_char_table, Soptimize_char_table,
2668 1, 1, 0, doc: /* Optimize char table TABLE. */)
2669 (table)
2670 Lisp_Object table;
2671 {
2672 Lisp_Object elt;
2673 int dim;
2674 int i, j;
2675
2676 CHECK_CHAR_TABLE (table);
2677
2678 for (i = CHAR_TABLE_SINGLE_BYTE_SLOTS; i < CHAR_TABLE_ORDINARY_SLOTS; i++)
2679 {
2680 elt = XCHAR_TABLE (table)->contents[i];
2681 if (!SUB_CHAR_TABLE_P (elt))
2682 continue;
2683 dim = CHARSET_DIMENSION (i - 128);
2684 if (dim == 2)
2685 for (j = 32; j < SUB_CHAR_TABLE_ORDINARY_SLOTS; j++)
2686 optimize_sub_char_table (XCHAR_TABLE (elt)->contents + j, dim);
2687 optimize_sub_char_table (XCHAR_TABLE (table)->contents + i, dim);
2688 }
2689 return Qnil;
2690 }
2691
2692 \f
2693 /* Map C_FUNCTION or FUNCTION over SUBTABLE, calling it for each
2694 character or group of characters that share a value.
2695 DEPTH is the current depth in the originally specified
2696 chartable, and INDICES contains the vector indices
2697 for the levels our callers have descended.
2698
2699 ARG is passed to C_FUNCTION when that is called. */
2700
2701 void
2702 map_char_table (c_function, function, table, subtable, arg, depth, indices)
2703 void (*c_function) P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
2704 Lisp_Object function, table, subtable, arg, *indices;
2705 int depth;
2706 {
2707 int i, to;
2708
2709 if (depth == 0)
2710 {
2711 /* At first, handle ASCII and 8-bit European characters. */
2712 for (i = 0; i < CHAR_TABLE_SINGLE_BYTE_SLOTS; i++)
2713 {
2714 Lisp_Object elt= XCHAR_TABLE (subtable)->contents[i];
2715 if (NILP (elt))
2716 elt = XCHAR_TABLE (subtable)->defalt;
2717 if (NILP (elt))
2718 elt = Faref (subtable, make_number (i));
2719 if (c_function)
2720 (*c_function) (arg, make_number (i), elt);
2721 else
2722 call2 (function, make_number (i), elt);
2723 }
2724 #if 0 /* If the char table has entries for higher characters,
2725 we should report them. */
2726 if (NILP (current_buffer->enable_multibyte_characters))
2727 return;
2728 #endif
2729 to = CHAR_TABLE_ORDINARY_SLOTS;
2730 }
2731 else
2732 {
2733 int charset = XFASTINT (indices[0]) - 128;
2734
2735 i = 32;
2736 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
2737 if (CHARSET_CHARS (charset) == 94)
2738 i++, to--;
2739 }
2740
2741 for (; i < to; i++)
2742 {
2743 Lisp_Object elt;
2744 int charset;
2745
2746 elt = XCHAR_TABLE (subtable)->contents[i];
2747 XSETFASTINT (indices[depth], i);
2748 charset = XFASTINT (indices[0]) - 128;
2749 if (depth == 0
2750 && (!CHARSET_DEFINED_P (charset)
2751 || charset == CHARSET_8_BIT_CONTROL
2752 || charset == CHARSET_8_BIT_GRAPHIC))
2753 continue;
2754
2755 if (SUB_CHAR_TABLE_P (elt))
2756 {
2757 if (depth >= 3)
2758 error ("Too deep char table");
2759 map_char_table (c_function, function, table, elt, arg, depth + 1, indices);
2760 }
2761 else
2762 {
2763 int c1, c2, c;
2764
2765 c1 = depth >= 1 ? XFASTINT (indices[1]) : 0;
2766 c2 = depth >= 2 ? XFASTINT (indices[2]) : 0;
2767 c = MAKE_CHAR (charset, c1, c2);
2768
2769 if (NILP (elt))
2770 elt = XCHAR_TABLE (subtable)->defalt;
2771 if (NILP (elt))
2772 elt = Faref (table, make_number (c));
2773
2774 if (c_function)
2775 (*c_function) (arg, make_number (c), elt);
2776 else
2777 call2 (function, make_number (c), elt);
2778 }
2779 }
2780 }
2781
2782 static void void_call2 P_ ((Lisp_Object a, Lisp_Object b, Lisp_Object c));
2783 static void
2784 void_call2 (a, b, c)
2785 Lisp_Object a, b, c;
2786 {
2787 call2 (a, b, c);
2788 }
2789
2790 DEFUN ("map-char-table", Fmap_char_table, Smap_char_table,
2791 2, 2, 0,
2792 doc: /* Call FUNCTION for each (normal and generic) characters in CHAR-TABLE.
2793 FUNCTION is called with two arguments--a key and a value.
2794 The key is always a possible IDX argument to `aref'. */)
2795 (function, char_table)
2796 Lisp_Object function, char_table;
2797 {
2798 /* The depth of char table is at most 3. */
2799 Lisp_Object indices[3];
2800
2801 CHECK_CHAR_TABLE (char_table);
2802
2803 /* When Lisp_Object is represented as a union, `call2' cannot directly
2804 be passed to map_char_table because it returns a Lisp_Object rather
2805 than returning nothing.
2806 Casting leads to crashes on some architectures. -stef */
2807 map_char_table (void_call2, Qnil, char_table, char_table, function, 0, indices);
2808 return Qnil;
2809 }
2810
2811 /* Return a value for character C in char-table TABLE. Store the
2812 actual index for that value in *IDX. Ignore the default value of
2813 TABLE. */
2814
2815 Lisp_Object
2816 char_table_ref_and_index (table, c, idx)
2817 Lisp_Object table;
2818 int c, *idx;
2819 {
2820 int charset, c1, c2;
2821 Lisp_Object elt;
2822
2823 if (SINGLE_BYTE_CHAR_P (c))
2824 {
2825 *idx = c;
2826 return XCHAR_TABLE (table)->contents[c];
2827 }
2828 SPLIT_CHAR (c, charset, c1, c2);
2829 elt = XCHAR_TABLE (table)->contents[charset + 128];
2830 *idx = MAKE_CHAR (charset, 0, 0);
2831 if (!SUB_CHAR_TABLE_P (elt))
2832 return elt;
2833 if (c1 < 32 || NILP (XCHAR_TABLE (elt)->contents[c1]))
2834 return XCHAR_TABLE (elt)->defalt;
2835 elt = XCHAR_TABLE (elt)->contents[c1];
2836 *idx = MAKE_CHAR (charset, c1, 0);
2837 if (!SUB_CHAR_TABLE_P (elt))
2838 return elt;
2839 if (c2 < 32 || NILP (XCHAR_TABLE (elt)->contents[c2]))
2840 return XCHAR_TABLE (elt)->defalt;
2841 *idx = c;
2842 return XCHAR_TABLE (elt)->contents[c2];
2843 }
2844
2845 \f
2846 /* ARGSUSED */
2847 Lisp_Object
2848 nconc2 (s1, s2)
2849 Lisp_Object s1, s2;
2850 {
2851 #ifdef NO_ARG_ARRAY
2852 Lisp_Object args[2];
2853 args[0] = s1;
2854 args[1] = s2;
2855 return Fnconc (2, args);
2856 #else
2857 return Fnconc (2, &s1);
2858 #endif /* NO_ARG_ARRAY */
2859 }
2860
2861 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2862 doc: /* Concatenate any number of lists by altering them.
2863 Only the last argument is not altered, and need not be a list.
2864 usage: (nconc &rest LISTS) */)
2865 (nargs, args)
2866 int nargs;
2867 Lisp_Object *args;
2868 {
2869 register int argnum;
2870 register Lisp_Object tail, tem, val;
2871
2872 val = tail = Qnil;
2873
2874 for (argnum = 0; argnum < nargs; argnum++)
2875 {
2876 tem = args[argnum];
2877 if (NILP (tem)) continue;
2878
2879 if (NILP (val))
2880 val = tem;
2881
2882 if (argnum + 1 == nargs) break;
2883
2884 if (!CONSP (tem))
2885 tem = wrong_type_argument (Qlistp, tem);
2886
2887 while (CONSP (tem))
2888 {
2889 tail = tem;
2890 tem = XCDR (tail);
2891 QUIT;
2892 }
2893
2894 tem = args[argnum + 1];
2895 Fsetcdr (tail, tem);
2896 if (NILP (tem))
2897 args[argnum + 1] = tail;
2898 }
2899
2900 return val;
2901 }
2902 \f
2903 /* This is the guts of all mapping functions.
2904 Apply FN to each element of SEQ, one by one,
2905 storing the results into elements of VALS, a C vector of Lisp_Objects.
2906 LENI is the length of VALS, which should also be the length of SEQ. */
2907
2908 static void
2909 mapcar1 (leni, vals, fn, seq)
2910 int leni;
2911 Lisp_Object *vals;
2912 Lisp_Object fn, seq;
2913 {
2914 register Lisp_Object tail;
2915 Lisp_Object dummy;
2916 register int i;
2917 struct gcpro gcpro1, gcpro2, gcpro3;
2918
2919 if (vals)
2920 {
2921 /* Don't let vals contain any garbage when GC happens. */
2922 for (i = 0; i < leni; i++)
2923 vals[i] = Qnil;
2924
2925 GCPRO3 (dummy, fn, seq);
2926 gcpro1.var = vals;
2927 gcpro1.nvars = leni;
2928 }
2929 else
2930 GCPRO2 (fn, seq);
2931 /* We need not explicitly protect `tail' because it is used only on lists, and
2932 1) lists are not relocated and 2) the list is marked via `seq' so will not be freed */
2933
2934 if (VECTORP (seq))
2935 {
2936 for (i = 0; i < leni; i++)
2937 {
2938 dummy = XVECTOR (seq)->contents[i];
2939 dummy = call1 (fn, dummy);
2940 if (vals)
2941 vals[i] = dummy;
2942 }
2943 }
2944 else if (BOOL_VECTOR_P (seq))
2945 {
2946 for (i = 0; i < leni; i++)
2947 {
2948 int byte;
2949 byte = XBOOL_VECTOR (seq)->data[i / BITS_PER_CHAR];
2950 if (byte & (1 << (i % BITS_PER_CHAR)))
2951 dummy = Qt;
2952 else
2953 dummy = Qnil;
2954
2955 dummy = call1 (fn, dummy);
2956 if (vals)
2957 vals[i] = dummy;
2958 }
2959 }
2960 else if (STRINGP (seq))
2961 {
2962 int i_byte;
2963
2964 for (i = 0, i_byte = 0; i < leni;)
2965 {
2966 int c;
2967 int i_before = i;
2968
2969 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2970 XSETFASTINT (dummy, c);
2971 dummy = call1 (fn, dummy);
2972 if (vals)
2973 vals[i_before] = dummy;
2974 }
2975 }
2976 else /* Must be a list, since Flength did not get an error */
2977 {
2978 tail = seq;
2979 for (i = 0; i < leni; i++)
2980 {
2981 dummy = call1 (fn, Fcar (tail));
2982 if (vals)
2983 vals[i] = dummy;
2984 tail = XCDR (tail);
2985 }
2986 }
2987
2988 UNGCPRO;
2989 }
2990
2991 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2992 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2993 In between each pair of results, stick in SEPARATOR. Thus, " " as
2994 SEPARATOR results in spaces between the values returned by FUNCTION.
2995 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2996 (function, sequence, separator)
2997 Lisp_Object function, sequence, separator;
2998 {
2999 Lisp_Object len;
3000 register int leni;
3001 int nargs;
3002 register Lisp_Object *args;
3003 register int i;
3004 struct gcpro gcpro1;
3005
3006 len = Flength (sequence);
3007 leni = XINT (len);
3008 nargs = leni + leni - 1;
3009 if (nargs < 0) return build_string ("");
3010
3011 args = (Lisp_Object *) alloca (nargs * sizeof (Lisp_Object));
3012
3013 GCPRO1 (separator);
3014 mapcar1 (leni, args, function, sequence);
3015 UNGCPRO;
3016
3017 for (i = leni - 1; i >= 0; i--)
3018 args[i + i] = args[i];
3019
3020 for (i = 1; i < nargs; i += 2)
3021 args[i] = separator;
3022
3023 return Fconcat (nargs, args);
3024 }
3025
3026 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
3027 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
3028 The result is a list just as long as SEQUENCE.
3029 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
3030 (function, sequence)
3031 Lisp_Object function, sequence;
3032 {
3033 register Lisp_Object len;
3034 register int leni;
3035 register Lisp_Object *args;
3036
3037 len = Flength (sequence);
3038 leni = XFASTINT (len);
3039 args = (Lisp_Object *) alloca (leni * sizeof (Lisp_Object));
3040
3041 mapcar1 (leni, args, function, sequence);
3042
3043 return Flist (leni, args);
3044 }
3045
3046 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
3047 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
3048 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
3049 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
3050 (function, sequence)
3051 Lisp_Object function, sequence;
3052 {
3053 register int leni;
3054
3055 leni = XFASTINT (Flength (sequence));
3056 mapcar1 (leni, 0, function, sequence);
3057
3058 return sequence;
3059 }
3060 \f
3061 /* Anything that calls this function must protect from GC! */
3062
3063 DEFUN ("y-or-n-p", Fy_or_n_p, Sy_or_n_p, 1, 1, 0,
3064 doc: /* Ask user a "y or n" question. Return t if answer is "y".
3065 Takes one argument, which is the string to display to ask the question.
3066 It should end in a space; `y-or-n-p' adds `(y or n) ' to it.
3067 No confirmation of the answer is requested; a single character is enough.
3068 Also accepts Space to mean yes, or Delete to mean no. \(Actually, it uses
3069 the bindings in `query-replace-map'; see the documentation of that variable
3070 for more information. In this case, the useful bindings are `act', `skip',
3071 `recenter', and `quit'.\)
3072
3073 Under a windowing system a dialog box will be used if `last-nonmenu-event'
3074 is nil and `use-dialog-box' is non-nil. */)
3075 (prompt)
3076 Lisp_Object prompt;
3077 {
3078 register Lisp_Object obj, key, def, map;
3079 register int answer;
3080 Lisp_Object xprompt;
3081 Lisp_Object args[2];
3082 struct gcpro gcpro1, gcpro2;
3083 int count = SPECPDL_INDEX ();
3084
3085 specbind (Qcursor_in_echo_area, Qt);
3086
3087 map = Fsymbol_value (intern ("query-replace-map"));
3088
3089 CHECK_STRING (prompt);
3090 xprompt = prompt;
3091 GCPRO2 (prompt, xprompt);
3092
3093 #ifdef HAVE_X_WINDOWS
3094 if (display_hourglass_p)
3095 cancel_hourglass ();
3096 #endif
3097
3098 while (1)
3099 {
3100
3101 #ifdef HAVE_MENUS
3102 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3103 && use_dialog_box
3104 && have_menus_p ())
3105 {
3106 Lisp_Object pane, menu;
3107 redisplay_preserve_echo_area (3);
3108 pane = Fcons (Fcons (build_string ("Yes"), Qt),
3109 Fcons (Fcons (build_string ("No"), Qnil),
3110 Qnil));
3111 menu = Fcons (prompt, pane);
3112 obj = Fx_popup_dialog (Qt, menu);
3113 answer = !NILP (obj);
3114 break;
3115 }
3116 #endif /* HAVE_MENUS */
3117 cursor_in_echo_area = 1;
3118 choose_minibuf_frame ();
3119
3120 {
3121 Lisp_Object pargs[3];
3122
3123 /* Colorize prompt according to `minibuffer-prompt' face. */
3124 pargs[0] = build_string ("%s(y or n) ");
3125 pargs[1] = intern ("face");
3126 pargs[2] = intern ("minibuffer-prompt");
3127 args[0] = Fpropertize (3, pargs);
3128 args[1] = xprompt;
3129 Fmessage (2, args);
3130 }
3131
3132 if (minibuffer_auto_raise)
3133 {
3134 Lisp_Object mini_frame;
3135
3136 mini_frame = WINDOW_FRAME (XWINDOW (minibuf_window));
3137
3138 Fraise_frame (mini_frame);
3139 }
3140
3141 obj = read_filtered_event (1, 0, 0, 0);
3142 cursor_in_echo_area = 0;
3143 /* If we need to quit, quit with cursor_in_echo_area = 0. */
3144 QUIT;
3145
3146 key = Fmake_vector (make_number (1), obj);
3147 def = Flookup_key (map, key, Qt);
3148
3149 if (EQ (def, intern ("skip")))
3150 {
3151 answer = 0;
3152 break;
3153 }
3154 else if (EQ (def, intern ("act")))
3155 {
3156 answer = 1;
3157 break;
3158 }
3159 else if (EQ (def, intern ("recenter")))
3160 {
3161 Frecenter (Qnil);
3162 xprompt = prompt;
3163 continue;
3164 }
3165 else if (EQ (def, intern ("quit")))
3166 Vquit_flag = Qt;
3167 /* We want to exit this command for exit-prefix,
3168 and this is the only way to do it. */
3169 else if (EQ (def, intern ("exit-prefix")))
3170 Vquit_flag = Qt;
3171
3172 QUIT;
3173
3174 /* If we don't clear this, then the next call to read_char will
3175 return quit_char again, and we'll enter an infinite loop. */
3176 Vquit_flag = Qnil;
3177
3178 Fding (Qnil);
3179 Fdiscard_input ();
3180 if (EQ (xprompt, prompt))
3181 {
3182 args[0] = build_string ("Please answer y or n. ");
3183 args[1] = prompt;
3184 xprompt = Fconcat (2, args);
3185 }
3186 }
3187 UNGCPRO;
3188
3189 if (! noninteractive)
3190 {
3191 cursor_in_echo_area = -1;
3192 message_with_string (answer ? "%s(y or n) y" : "%s(y or n) n",
3193 xprompt, 0);
3194 }
3195
3196 unbind_to (count, Qnil);
3197 return answer ? Qt : Qnil;
3198 }
3199 \f
3200 /* This is how C code calls `yes-or-no-p' and allows the user
3201 to redefined it.
3202
3203 Anything that calls this function must protect from GC! */
3204
3205 Lisp_Object
3206 do_yes_or_no_p (prompt)
3207 Lisp_Object prompt;
3208 {
3209 return call1 (intern ("yes-or-no-p"), prompt);
3210 }
3211
3212 /* Anything that calls this function must protect from GC! */
3213
3214 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
3215 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
3216 Takes one argument, which is the string to display to ask the question.
3217 It should end in a space; `yes-or-no-p' adds `(yes or no) ' to it.
3218 The user must confirm the answer with RET,
3219 and can edit it until it has been confirmed.
3220
3221 Under a windowing system a dialog box will be used if `last-nonmenu-event'
3222 is nil, and `use-dialog-box' is non-nil. */)
3223 (prompt)
3224 Lisp_Object prompt;
3225 {
3226 register Lisp_Object ans;
3227 Lisp_Object args[2];
3228 struct gcpro gcpro1;
3229
3230 CHECK_STRING (prompt);
3231
3232 #ifdef HAVE_MENUS
3233 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3234 && use_dialog_box
3235 && have_menus_p ())
3236 {
3237 Lisp_Object pane, menu, obj;
3238 redisplay_preserve_echo_area (4);
3239 pane = Fcons (Fcons (build_string ("Yes"), Qt),
3240 Fcons (Fcons (build_string ("No"), Qnil),
3241 Qnil));
3242 GCPRO1 (pane);
3243 menu = Fcons (prompt, pane);
3244 obj = Fx_popup_dialog (Qt, menu);
3245 UNGCPRO;
3246 return obj;
3247 }
3248 #endif /* HAVE_MENUS */
3249
3250 args[0] = prompt;
3251 args[1] = build_string ("(yes or no) ");
3252 prompt = Fconcat (2, args);
3253
3254 GCPRO1 (prompt);
3255
3256 while (1)
3257 {
3258 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
3259 Qyes_or_no_p_history, Qnil,
3260 Qnil));
3261 if (SCHARS (ans) == 3 && !strcmp (SDATA (ans), "yes"))
3262 {
3263 UNGCPRO;
3264 return Qt;
3265 }
3266 if (SCHARS (ans) == 2 && !strcmp (SDATA (ans), "no"))
3267 {
3268 UNGCPRO;
3269 return Qnil;
3270 }
3271
3272 Fding (Qnil);
3273 Fdiscard_input ();
3274 message ("Please answer yes or no.");
3275 Fsleep_for (make_number (2), Qnil);
3276 }
3277 }
3278 \f
3279 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
3280 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
3281
3282 Each of the three load averages is multiplied by 100, then converted
3283 to integer.
3284
3285 When USE-FLOATS is non-nil, floats will be used instead of integers.
3286 These floats are not multiplied by 100.
3287
3288 If the 5-minute or 15-minute load averages are not available, return a
3289 shortened list, containing only those averages which are available.
3290
3291 An error is thrown if the load average can't be obtained. In some
3292 cases making it work would require Emacs being installed setuid or
3293 setgid so that it can read kernel information, and that usually isn't
3294 advisable. */)
3295 (use_floats)
3296 Lisp_Object use_floats;
3297 {
3298 double load_ave[3];
3299 int loads = getloadavg (load_ave, 3);
3300 Lisp_Object ret = Qnil;
3301
3302 if (loads < 0)
3303 error ("load-average not implemented for this operating system");
3304
3305 while (loads-- > 0)
3306 {
3307 Lisp_Object load = (NILP (use_floats) ?
3308 make_number ((int) (100.0 * load_ave[loads]))
3309 : make_float (load_ave[loads]));
3310 ret = Fcons (load, ret);
3311 }
3312
3313 return ret;
3314 }
3315 \f
3316 Lisp_Object Vfeatures, Qsubfeatures;
3317 extern Lisp_Object Vafter_load_alist;
3318
3319 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
3320 doc: /* Returns t if FEATURE is present in this Emacs.
3321
3322 Use this to conditionalize execution of lisp code based on the
3323 presence or absence of emacs or environment extensions.
3324 Use `provide' to declare that a feature is available. This function
3325 looks at the value of the variable `features'. The optional argument
3326 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
3327 (feature, subfeature)
3328 Lisp_Object feature, subfeature;
3329 {
3330 register Lisp_Object tem;
3331 CHECK_SYMBOL (feature);
3332 tem = Fmemq (feature, Vfeatures);
3333 if (!NILP (tem) && !NILP (subfeature))
3334 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
3335 return (NILP (tem)) ? Qnil : Qt;
3336 }
3337
3338 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
3339 doc: /* Announce that FEATURE is a feature of the current Emacs.
3340 The optional argument SUBFEATURES should be a list of symbols listing
3341 particular subfeatures supported in this version of FEATURE. */)
3342 (feature, subfeatures)
3343 Lisp_Object feature, subfeatures;
3344 {
3345 register Lisp_Object tem;
3346 CHECK_SYMBOL (feature);
3347 CHECK_LIST (subfeatures);
3348 if (!NILP (Vautoload_queue))
3349 Vautoload_queue = Fcons (Fcons (Vfeatures, Qnil), Vautoload_queue);
3350 tem = Fmemq (feature, Vfeatures);
3351 if (NILP (tem))
3352 Vfeatures = Fcons (feature, Vfeatures);
3353 if (!NILP (subfeatures))
3354 Fput (feature, Qsubfeatures, subfeatures);
3355 LOADHIST_ATTACH (Fcons (Qprovide, feature));
3356
3357 /* Run any load-hooks for this file. */
3358 tem = Fassq (feature, Vafter_load_alist);
3359 if (CONSP (tem))
3360 Fprogn (XCDR (tem));
3361
3362 return feature;
3363 }
3364 \f
3365 /* `require' and its subroutines. */
3366
3367 /* List of features currently being require'd, innermost first. */
3368
3369 Lisp_Object require_nesting_list;
3370
3371 Lisp_Object
3372 require_unwind (old_value)
3373 Lisp_Object old_value;
3374 {
3375 return require_nesting_list = old_value;
3376 }
3377
3378 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
3379 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
3380 If FEATURE is not a member of the list `features', then the feature
3381 is not loaded; so load the file FILENAME.
3382 If FILENAME is omitted, the printname of FEATURE is used as the file name,
3383 and `load' will try to load this name appended with the suffix `.elc' or
3384 `.el', in that order. The name without appended suffix will not be used.
3385 If the optional third argument NOERROR is non-nil,
3386 then return nil if the file is not found instead of signaling an error.
3387 Normally the return value is FEATURE.
3388 The normal messages at start and end of loading FILENAME are suppressed. */)
3389 (feature, filename, noerror)
3390 Lisp_Object feature, filename, noerror;
3391 {
3392 register Lisp_Object tem;
3393 struct gcpro gcpro1, gcpro2;
3394
3395 CHECK_SYMBOL (feature);
3396
3397 tem = Fmemq (feature, Vfeatures);
3398
3399 if (NILP (tem))
3400 {
3401 int count = SPECPDL_INDEX ();
3402 int nesting = 0;
3403
3404 LOADHIST_ATTACH (Fcons (Qrequire, feature));
3405
3406 /* This is to make sure that loadup.el gives a clear picture
3407 of what files are preloaded and when. */
3408 if (! NILP (Vpurify_flag))
3409 error ("(require %s) while preparing to dump",
3410 SDATA (SYMBOL_NAME (feature)));
3411
3412 /* A certain amount of recursive `require' is legitimate,
3413 but if we require the same feature recursively 3 times,
3414 signal an error. */
3415 tem = require_nesting_list;
3416 while (! NILP (tem))
3417 {
3418 if (! NILP (Fequal (feature, XCAR (tem))))
3419 nesting++;
3420 tem = XCDR (tem);
3421 }
3422 if (nesting > 3)
3423 error ("Recursive `require' for feature `%s'",
3424 SDATA (SYMBOL_NAME (feature)));
3425
3426 /* Update the list for any nested `require's that occur. */
3427 record_unwind_protect (require_unwind, require_nesting_list);
3428 require_nesting_list = Fcons (feature, require_nesting_list);
3429
3430 /* Value saved here is to be restored into Vautoload_queue */
3431 record_unwind_protect (un_autoload, Vautoload_queue);
3432 Vautoload_queue = Qt;
3433
3434 /* Load the file. */
3435 GCPRO2 (feature, filename);
3436 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
3437 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
3438 UNGCPRO;
3439
3440 /* If load failed entirely, return nil. */
3441 if (NILP (tem))
3442 return unbind_to (count, Qnil);
3443
3444 tem = Fmemq (feature, Vfeatures);
3445 if (NILP (tem))
3446 error ("Required feature `%s' was not provided",
3447 SDATA (SYMBOL_NAME (feature)));
3448
3449 /* Once loading finishes, don't undo it. */
3450 Vautoload_queue = Qt;
3451 feature = unbind_to (count, feature);
3452 }
3453
3454 return feature;
3455 }
3456 \f
3457 /* Primitives for work of the "widget" library.
3458 In an ideal world, this section would not have been necessary.
3459 However, lisp function calls being as slow as they are, it turns
3460 out that some functions in the widget library (wid-edit.el) are the
3461 bottleneck of Widget operation. Here is their translation to C,
3462 for the sole reason of efficiency. */
3463
3464 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
3465 doc: /* Return non-nil if PLIST has the property PROP.
3466 PLIST is a property list, which is a list of the form
3467 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
3468 Unlike `plist-get', this allows you to distinguish between a missing
3469 property and a property with the value nil.
3470 The value is actually the tail of PLIST whose car is PROP. */)
3471 (plist, prop)
3472 Lisp_Object plist, prop;
3473 {
3474 while (CONSP (plist) && !EQ (XCAR (plist), prop))
3475 {
3476 QUIT;
3477 plist = XCDR (plist);
3478 plist = CDR (plist);
3479 }
3480 return plist;
3481 }
3482
3483 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
3484 doc: /* In WIDGET, set PROPERTY to VALUE.
3485 The value can later be retrieved with `widget-get'. */)
3486 (widget, property, value)
3487 Lisp_Object widget, property, value;
3488 {
3489 CHECK_CONS (widget);
3490 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
3491 return value;
3492 }
3493
3494 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
3495 doc: /* In WIDGET, get the value of PROPERTY.
3496 The value could either be specified when the widget was created, or
3497 later with `widget-put'. */)
3498 (widget, property)
3499 Lisp_Object widget, property;
3500 {
3501 Lisp_Object tmp;
3502
3503 while (1)
3504 {
3505 if (NILP (widget))
3506 return Qnil;
3507 CHECK_CONS (widget);
3508 tmp = Fplist_member (XCDR (widget), property);
3509 if (CONSP (tmp))
3510 {
3511 tmp = XCDR (tmp);
3512 return CAR (tmp);
3513 }
3514 tmp = XCAR (widget);
3515 if (NILP (tmp))
3516 return Qnil;
3517 widget = Fget (tmp, Qwidget_type);
3518 }
3519 }
3520
3521 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
3522 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
3523 ARGS are passed as extra arguments to the function.
3524 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
3525 (nargs, args)
3526 int nargs;
3527 Lisp_Object *args;
3528 {
3529 /* This function can GC. */
3530 Lisp_Object newargs[3];
3531 struct gcpro gcpro1, gcpro2;
3532 Lisp_Object result;
3533
3534 newargs[0] = Fwidget_get (args[0], args[1]);
3535 newargs[1] = args[0];
3536 newargs[2] = Flist (nargs - 2, args + 2);
3537 GCPRO2 (newargs[0], newargs[2]);
3538 result = Fapply (3, newargs);
3539 UNGCPRO;
3540 return result;
3541 }
3542
3543 #ifdef HAVE_LANGINFO_CODESET
3544 #include <langinfo.h>
3545 #endif
3546
3547 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
3548 doc: /* Access locale data ITEM for the current C locale, if available.
3549 ITEM should be one of the following:
3550
3551 `codeset', returning the character set as a string (locale item CODESET);
3552
3553 `days', returning a 7-element vector of day names (locale items DAY_n);
3554
3555 `months', returning a 12-element vector of month names (locale items MON_n);
3556
3557 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
3558 both measured in milimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
3559
3560 If the system can't provide such information through a call to
3561 `nl_langinfo', or if ITEM isn't from the list above, return nil.
3562
3563 See also Info node `(libc)Locales'.
3564
3565 The data read from the system are decoded using `locale-coding-system'. */)
3566 (item)
3567 Lisp_Object item;
3568 {
3569 char *str = NULL;
3570 #ifdef HAVE_LANGINFO_CODESET
3571 Lisp_Object val;
3572 if (EQ (item, Qcodeset))
3573 {
3574 str = nl_langinfo (CODESET);
3575 return build_string (str);
3576 }
3577 #ifdef DAY_1
3578 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
3579 {
3580 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
3581 int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
3582 int i;
3583 synchronize_system_time_locale ();
3584 for (i = 0; i < 7; i++)
3585 {
3586 str = nl_langinfo (days[i]);
3587 val = make_unibyte_string (str, strlen (str));
3588 /* Fixme: Is this coding system necessarily right, even if
3589 it is consistent with CODESET? If not, what to do? */
3590 Faset (v, make_number (i),
3591 code_convert_string_norecord (val, Vlocale_coding_system,
3592 0));
3593 }
3594 return v;
3595 }
3596 #endif /* DAY_1 */
3597 #ifdef MON_1
3598 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
3599 {
3600 struct Lisp_Vector *p = allocate_vector (12);
3601 int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
3602 MON_8, MON_9, MON_10, MON_11, MON_12};
3603 int i;
3604 synchronize_system_time_locale ();
3605 for (i = 0; i < 12; i++)
3606 {
3607 str = nl_langinfo (months[i]);
3608 val = make_unibyte_string (str, strlen (str));
3609 p->contents[i] =
3610 code_convert_string_norecord (val, Vlocale_coding_system, 0);
3611 }
3612 XSETVECTOR (val, p);
3613 return val;
3614 }
3615 #endif /* MON_1 */
3616 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
3617 but is in the locale files. This could be used by ps-print. */
3618 #ifdef PAPER_WIDTH
3619 else if (EQ (item, Qpaper))
3620 {
3621 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
3622 make_number (nl_langinfo (PAPER_HEIGHT)));
3623 }
3624 #endif /* PAPER_WIDTH */
3625 #endif /* HAVE_LANGINFO_CODESET*/
3626 return Qnil;
3627 }
3628 \f
3629 /* base64 encode/decode functions (RFC 2045).
3630 Based on code from GNU recode. */
3631
3632 #define MIME_LINE_LENGTH 76
3633
3634 #define IS_ASCII(Character) \
3635 ((Character) < 128)
3636 #define IS_BASE64(Character) \
3637 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
3638 #define IS_BASE64_IGNORABLE(Character) \
3639 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
3640 || (Character) == '\f' || (Character) == '\r')
3641
3642 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
3643 character or return retval if there are no characters left to
3644 process. */
3645 #define READ_QUADRUPLET_BYTE(retval) \
3646 do \
3647 { \
3648 if (i == length) \
3649 { \
3650 if (nchars_return) \
3651 *nchars_return = nchars; \
3652 return (retval); \
3653 } \
3654 c = from[i++]; \
3655 } \
3656 while (IS_BASE64_IGNORABLE (c))
3657
3658 /* Don't use alloca for regions larger than this, lest we overflow
3659 their stack. */
3660 #define MAX_ALLOCA 16*1024
3661
3662 /* Table of characters coding the 64 values. */
3663 static char base64_value_to_char[64] =
3664 {
3665 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
3666 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
3667 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
3668 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
3669 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
3670 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
3671 '8', '9', '+', '/' /* 60-63 */
3672 };
3673
3674 /* Table of base64 values for first 128 characters. */
3675 static short base64_char_to_value[128] =
3676 {
3677 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
3678 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
3679 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
3680 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
3681 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
3682 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
3683 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
3684 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
3685 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
3686 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
3687 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
3688 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
3689 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
3690 };
3691
3692 /* The following diagram shows the logical steps by which three octets
3693 get transformed into four base64 characters.
3694
3695 .--------. .--------. .--------.
3696 |aaaaaabb| |bbbbcccc| |ccdddddd|
3697 `--------' `--------' `--------'
3698 6 2 4 4 2 6
3699 .--------+--------+--------+--------.
3700 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
3701 `--------+--------+--------+--------'
3702
3703 .--------+--------+--------+--------.
3704 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
3705 `--------+--------+--------+--------'
3706
3707 The octets are divided into 6 bit chunks, which are then encoded into
3708 base64 characters. */
3709
3710
3711 static int base64_encode_1 P_ ((const char *, char *, int, int, int));
3712 static int base64_decode_1 P_ ((const char *, char *, int, int, int *));
3713
3714 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
3715 2, 3, "r",
3716 doc: /* Base64-encode the region between BEG and END.
3717 Return the length of the encoded text.
3718 Optional third argument NO-LINE-BREAK means do not break long lines
3719 into shorter lines. */)
3720 (beg, end, no_line_break)
3721 Lisp_Object beg, end, no_line_break;
3722 {
3723 char *encoded;
3724 int allength, length;
3725 int ibeg, iend, encoded_length;
3726 int old_pos = PT;
3727
3728 validate_region (&beg, &end);
3729
3730 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3731 iend = CHAR_TO_BYTE (XFASTINT (end));
3732 move_gap_both (XFASTINT (beg), ibeg);
3733
3734 /* We need to allocate enough room for encoding the text.
3735 We need 33 1/3% more space, plus a newline every 76
3736 characters, and then we round up. */
3737 length = iend - ibeg;
3738 allength = length + length/3 + 1;
3739 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3740
3741 if (allength <= MAX_ALLOCA)
3742 encoded = (char *) alloca (allength);
3743 else
3744 encoded = (char *) xmalloc (allength);
3745 encoded_length = base64_encode_1 (BYTE_POS_ADDR (ibeg), encoded, length,
3746 NILP (no_line_break),
3747 !NILP (current_buffer->enable_multibyte_characters));
3748 if (encoded_length > allength)
3749 abort ();
3750
3751 if (encoded_length < 0)
3752 {
3753 /* The encoding wasn't possible. */
3754 if (length > MAX_ALLOCA)
3755 xfree (encoded);
3756 error ("Multibyte character in data for base64 encoding");
3757 }
3758
3759 /* Now we have encoded the region, so we insert the new contents
3760 and delete the old. (Insert first in order to preserve markers.) */
3761 SET_PT_BOTH (XFASTINT (beg), ibeg);
3762 insert (encoded, encoded_length);
3763 if (allength > MAX_ALLOCA)
3764 xfree (encoded);
3765 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3766
3767 /* If point was outside of the region, restore it exactly; else just
3768 move to the beginning of the region. */
3769 if (old_pos >= XFASTINT (end))
3770 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3771 else if (old_pos > XFASTINT (beg))
3772 old_pos = XFASTINT (beg);
3773 SET_PT (old_pos);
3774
3775 /* We return the length of the encoded text. */
3776 return make_number (encoded_length);
3777 }
3778
3779 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3780 1, 2, 0,
3781 doc: /* Base64-encode STRING and return the result.
3782 Optional second argument NO-LINE-BREAK means do not break long lines
3783 into shorter lines. */)
3784 (string, no_line_break)
3785 Lisp_Object string, no_line_break;
3786 {
3787 int allength, length, encoded_length;
3788 char *encoded;
3789 Lisp_Object encoded_string;
3790
3791 CHECK_STRING (string);
3792
3793 /* We need to allocate enough room for encoding the text.
3794 We need 33 1/3% more space, plus a newline every 76
3795 characters, and then we round up. */
3796 length = SBYTES (string);
3797 allength = length + length/3 + 1;
3798 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3799
3800 /* We need to allocate enough room for decoding the text. */
3801 if (allength <= MAX_ALLOCA)
3802 encoded = (char *) alloca (allength);
3803 else
3804 encoded = (char *) xmalloc (allength);
3805
3806 encoded_length = base64_encode_1 (SDATA (string),
3807 encoded, length, NILP (no_line_break),
3808 STRING_MULTIBYTE (string));
3809 if (encoded_length > allength)
3810 abort ();
3811
3812 if (encoded_length < 0)
3813 {
3814 /* The encoding wasn't possible. */
3815 if (length > MAX_ALLOCA)
3816 xfree (encoded);
3817 error ("Multibyte character in data for base64 encoding");
3818 }
3819
3820 encoded_string = make_unibyte_string (encoded, encoded_length);
3821 if (allength > MAX_ALLOCA)
3822 xfree (encoded);
3823
3824 return encoded_string;
3825 }
3826
3827 static int
3828 base64_encode_1 (from, to, length, line_break, multibyte)
3829 const char *from;
3830 char *to;
3831 int length;
3832 int line_break;
3833 int multibyte;
3834 {
3835 int counter = 0, i = 0;
3836 char *e = to;
3837 int c;
3838 unsigned int value;
3839 int bytes;
3840
3841 while (i < length)
3842 {
3843 if (multibyte)
3844 {
3845 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3846 if (c >= 256)
3847 return -1;
3848 i += bytes;
3849 }
3850 else
3851 c = from[i++];
3852
3853 /* Wrap line every 76 characters. */
3854
3855 if (line_break)
3856 {
3857 if (counter < MIME_LINE_LENGTH / 4)
3858 counter++;
3859 else
3860 {
3861 *e++ = '\n';
3862 counter = 1;
3863 }
3864 }
3865
3866 /* Process first byte of a triplet. */
3867
3868 *e++ = base64_value_to_char[0x3f & c >> 2];
3869 value = (0x03 & c) << 4;
3870
3871 /* Process second byte of a triplet. */
3872
3873 if (i == length)
3874 {
3875 *e++ = base64_value_to_char[value];
3876 *e++ = '=';
3877 *e++ = '=';
3878 break;
3879 }
3880
3881 if (multibyte)
3882 {
3883 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3884 if (c >= 256)
3885 return -1;
3886 i += bytes;
3887 }
3888 else
3889 c = from[i++];
3890
3891 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3892 value = (0x0f & c) << 2;
3893
3894 /* Process third byte of a triplet. */
3895
3896 if (i == length)
3897 {
3898 *e++ = base64_value_to_char[value];
3899 *e++ = '=';
3900 break;
3901 }
3902
3903 if (multibyte)
3904 {
3905 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3906 if (c >= 256)
3907 return -1;
3908 i += bytes;
3909 }
3910 else
3911 c = from[i++];
3912
3913 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3914 *e++ = base64_value_to_char[0x3f & c];
3915 }
3916
3917 return e - to;
3918 }
3919
3920
3921 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3922 2, 2, "r",
3923 doc: /* Base64-decode the region between BEG and END.
3924 Return the length of the decoded text.
3925 If the region can't be decoded, signal an error and don't modify the buffer. */)
3926 (beg, end)
3927 Lisp_Object beg, end;
3928 {
3929 int ibeg, iend, length, allength;
3930 char *decoded;
3931 int old_pos = PT;
3932 int decoded_length;
3933 int inserted_chars;
3934 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
3935
3936 validate_region (&beg, &end);
3937
3938 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3939 iend = CHAR_TO_BYTE (XFASTINT (end));
3940
3941 length = iend - ibeg;
3942
3943 /* We need to allocate enough room for decoding the text. If we are
3944 working on a multibyte buffer, each decoded code may occupy at
3945 most two bytes. */
3946 allength = multibyte ? length * 2 : length;
3947 if (allength <= MAX_ALLOCA)
3948 decoded = (char *) alloca (allength);
3949 else
3950 decoded = (char *) xmalloc (allength);
3951
3952 move_gap_both (XFASTINT (beg), ibeg);
3953 decoded_length = base64_decode_1 (BYTE_POS_ADDR (ibeg), decoded, length,
3954 multibyte, &inserted_chars);
3955 if (decoded_length > allength)
3956 abort ();
3957
3958 if (decoded_length < 0)
3959 {
3960 /* The decoding wasn't possible. */
3961 if (allength > MAX_ALLOCA)
3962 xfree (decoded);
3963 error ("Invalid base64 data");
3964 }
3965
3966 /* Now we have decoded the region, so we insert the new contents
3967 and delete the old. (Insert first in order to preserve markers.) */
3968 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3969 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3970 if (allength > MAX_ALLOCA)
3971 xfree (decoded);
3972 /* Delete the original text. */
3973 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3974 iend + decoded_length, 1);
3975
3976 /* If point was outside of the region, restore it exactly; else just
3977 move to the beginning of the region. */
3978 if (old_pos >= XFASTINT (end))
3979 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3980 else if (old_pos > XFASTINT (beg))
3981 old_pos = XFASTINT (beg);
3982 SET_PT (old_pos > ZV ? ZV : old_pos);
3983
3984 return make_number (inserted_chars);
3985 }
3986
3987 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3988 1, 1, 0,
3989 doc: /* Base64-decode STRING and return the result. */)
3990 (string)
3991 Lisp_Object string;
3992 {
3993 char *decoded;
3994 int length, decoded_length;
3995 Lisp_Object decoded_string;
3996
3997 CHECK_STRING (string);
3998
3999 length = SBYTES (string);
4000 /* We need to allocate enough room for decoding the text. */
4001 if (length <= MAX_ALLOCA)
4002 decoded = (char *) alloca (length);
4003 else
4004 decoded = (char *) xmalloc (length);
4005
4006 /* The decoded result should be unibyte. */
4007 decoded_length = base64_decode_1 (SDATA (string), decoded, length,
4008 0, NULL);
4009 if (decoded_length > length)
4010 abort ();
4011 else if (decoded_length >= 0)
4012 decoded_string = make_unibyte_string (decoded, decoded_length);
4013 else
4014 decoded_string = Qnil;
4015
4016 if (length > MAX_ALLOCA)
4017 xfree (decoded);
4018 if (!STRINGP (decoded_string))
4019 error ("Invalid base64 data");
4020
4021 return decoded_string;
4022 }
4023
4024 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
4025 MULTIBYTE is nonzero, the decoded result should be in multibyte
4026 form. If NCHARS_RETRUN is not NULL, store the number of produced
4027 characters in *NCHARS_RETURN. */
4028
4029 static int
4030 base64_decode_1 (from, to, length, multibyte, nchars_return)
4031 const char *from;
4032 char *to;
4033 int length;
4034 int multibyte;
4035 int *nchars_return;
4036 {
4037 int i = 0;
4038 char *e = to;
4039 unsigned char c;
4040 unsigned long value;
4041 int nchars = 0;
4042
4043 while (1)
4044 {
4045 /* Process first byte of a quadruplet. */
4046
4047 READ_QUADRUPLET_BYTE (e-to);
4048
4049 if (!IS_BASE64 (c))
4050 return -1;
4051 value = base64_char_to_value[c] << 18;
4052
4053 /* Process second byte of a quadruplet. */
4054
4055 READ_QUADRUPLET_BYTE (-1);
4056
4057 if (!IS_BASE64 (c))
4058 return -1;
4059 value |= base64_char_to_value[c] << 12;
4060
4061 c = (unsigned char) (value >> 16);
4062 if (multibyte)
4063 e += CHAR_STRING (c, e);
4064 else
4065 *e++ = c;
4066 nchars++;
4067
4068 /* Process third byte of a quadruplet. */
4069
4070 READ_QUADRUPLET_BYTE (-1);
4071
4072 if (c == '=')
4073 {
4074 READ_QUADRUPLET_BYTE (-1);
4075
4076 if (c != '=')
4077 return -1;
4078 continue;
4079 }
4080
4081 if (!IS_BASE64 (c))
4082 return -1;
4083 value |= base64_char_to_value[c] << 6;
4084
4085 c = (unsigned char) (0xff & value >> 8);
4086 if (multibyte)
4087 e += CHAR_STRING (c, e);
4088 else
4089 *e++ = c;
4090 nchars++;
4091
4092 /* Process fourth byte of a quadruplet. */
4093
4094 READ_QUADRUPLET_BYTE (-1);
4095
4096 if (c == '=')
4097 continue;
4098
4099 if (!IS_BASE64 (c))
4100 return -1;
4101 value |= base64_char_to_value[c];
4102
4103 c = (unsigned char) (0xff & value);
4104 if (multibyte)
4105 e += CHAR_STRING (c, e);
4106 else
4107 *e++ = c;
4108 nchars++;
4109 }
4110 }
4111
4112
4113 \f
4114 /***********************************************************************
4115 ***** *****
4116 ***** Hash Tables *****
4117 ***** *****
4118 ***********************************************************************/
4119
4120 /* Implemented by gerd@gnu.org. This hash table implementation was
4121 inspired by CMUCL hash tables. */
4122
4123 /* Ideas:
4124
4125 1. For small tables, association lists are probably faster than
4126 hash tables because they have lower overhead.
4127
4128 For uses of hash tables where the O(1) behavior of table
4129 operations is not a requirement, it might therefore be a good idea
4130 not to hash. Instead, we could just do a linear search in the
4131 key_and_value vector of the hash table. This could be done
4132 if a `:linear-search t' argument is given to make-hash-table. */
4133
4134
4135 /* The list of all weak hash tables. Don't staticpro this one. */
4136
4137 Lisp_Object Vweak_hash_tables;
4138
4139 /* Various symbols. */
4140
4141 Lisp_Object Qhash_table_p, Qeq, Qeql, Qequal, Qkey, Qvalue;
4142 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
4143 Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
4144
4145 /* Function prototypes. */
4146
4147 static struct Lisp_Hash_Table *check_hash_table P_ ((Lisp_Object));
4148 static int get_key_arg P_ ((Lisp_Object, int, Lisp_Object *, char *));
4149 static void maybe_resize_hash_table P_ ((struct Lisp_Hash_Table *));
4150 static int cmpfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
4151 Lisp_Object, unsigned));
4152 static int cmpfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
4153 Lisp_Object, unsigned));
4154 static int cmpfn_user_defined P_ ((struct Lisp_Hash_Table *, Lisp_Object,
4155 unsigned, Lisp_Object, unsigned));
4156 static unsigned hashfn_eq P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4157 static unsigned hashfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4158 static unsigned hashfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4159 static unsigned hashfn_user_defined P_ ((struct Lisp_Hash_Table *,
4160 Lisp_Object));
4161 static unsigned sxhash_string P_ ((unsigned char *, int));
4162 static unsigned sxhash_list P_ ((Lisp_Object, int));
4163 static unsigned sxhash_vector P_ ((Lisp_Object, int));
4164 static unsigned sxhash_bool_vector P_ ((Lisp_Object));
4165 static int sweep_weak_table P_ ((struct Lisp_Hash_Table *, int));
4166
4167
4168 \f
4169 /***********************************************************************
4170 Utilities
4171 ***********************************************************************/
4172
4173 /* If OBJ is a Lisp hash table, return a pointer to its struct
4174 Lisp_Hash_Table. Otherwise, signal an error. */
4175
4176 static struct Lisp_Hash_Table *
4177 check_hash_table (obj)
4178 Lisp_Object obj;
4179 {
4180 CHECK_HASH_TABLE (obj);
4181 return XHASH_TABLE (obj);
4182 }
4183
4184
4185 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
4186 number. */
4187
4188 int
4189 next_almost_prime (n)
4190 int n;
4191 {
4192 if (n % 2 == 0)
4193 n += 1;
4194 if (n % 3 == 0)
4195 n += 2;
4196 if (n % 7 == 0)
4197 n += 4;
4198 return n;
4199 }
4200
4201
4202 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
4203 which USED[I] is non-zero. If found at index I in ARGS, set
4204 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
4205 -1. This function is used to extract a keyword/argument pair from
4206 a DEFUN parameter list. */
4207
4208 static int
4209 get_key_arg (key, nargs, args, used)
4210 Lisp_Object key;
4211 int nargs;
4212 Lisp_Object *args;
4213 char *used;
4214 {
4215 int i;
4216
4217 for (i = 0; i < nargs - 1; ++i)
4218 if (!used[i] && EQ (args[i], key))
4219 break;
4220
4221 if (i >= nargs - 1)
4222 i = -1;
4223 else
4224 {
4225 used[i++] = 1;
4226 used[i] = 1;
4227 }
4228
4229 return i;
4230 }
4231
4232
4233 /* Return a Lisp vector which has the same contents as VEC but has
4234 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
4235 vector that are not copied from VEC are set to INIT. */
4236
4237 Lisp_Object
4238 larger_vector (vec, new_size, init)
4239 Lisp_Object vec;
4240 int new_size;
4241 Lisp_Object init;
4242 {
4243 struct Lisp_Vector *v;
4244 int i, old_size;
4245
4246 xassert (VECTORP (vec));
4247 old_size = XVECTOR (vec)->size;
4248 xassert (new_size >= old_size);
4249
4250 v = allocate_vector (new_size);
4251 bcopy (XVECTOR (vec)->contents, v->contents,
4252 old_size * sizeof *v->contents);
4253 for (i = old_size; i < new_size; ++i)
4254 v->contents[i] = init;
4255 XSETVECTOR (vec, v);
4256 return vec;
4257 }
4258
4259
4260 /***********************************************************************
4261 Low-level Functions
4262 ***********************************************************************/
4263
4264 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
4265 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
4266 KEY2 are the same. */
4267
4268 static int
4269 cmpfn_eql (h, key1, hash1, key2, hash2)
4270 struct Lisp_Hash_Table *h;
4271 Lisp_Object key1, key2;
4272 unsigned hash1, hash2;
4273 {
4274 return (FLOATP (key1)
4275 && FLOATP (key2)
4276 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
4277 }
4278
4279
4280 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
4281 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
4282 KEY2 are the same. */
4283
4284 static int
4285 cmpfn_equal (h, key1, hash1, key2, hash2)
4286 struct Lisp_Hash_Table *h;
4287 Lisp_Object key1, key2;
4288 unsigned hash1, hash2;
4289 {
4290 return hash1 == hash2 && !NILP (Fequal (key1, key2));
4291 }
4292
4293
4294 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
4295 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
4296 if KEY1 and KEY2 are the same. */
4297
4298 static int
4299 cmpfn_user_defined (h, key1, hash1, key2, hash2)
4300 struct Lisp_Hash_Table *h;
4301 Lisp_Object key1, key2;
4302 unsigned hash1, hash2;
4303 {
4304 if (hash1 == hash2)
4305 {
4306 Lisp_Object args[3];
4307
4308 args[0] = h->user_cmp_function;
4309 args[1] = key1;
4310 args[2] = key2;
4311 return !NILP (Ffuncall (3, args));
4312 }
4313 else
4314 return 0;
4315 }
4316
4317
4318 /* Value is a hash code for KEY for use in hash table H which uses
4319 `eq' to compare keys. The hash code returned is guaranteed to fit
4320 in a Lisp integer. */
4321
4322 static unsigned
4323 hashfn_eq (h, key)
4324 struct Lisp_Hash_Table *h;
4325 Lisp_Object key;
4326 {
4327 unsigned hash = XUINT (key) ^ XGCTYPE (key);
4328 xassert ((hash & ~INTMASK) == 0);
4329 return hash;
4330 }
4331
4332
4333 /* Value is a hash code for KEY for use in hash table H which uses
4334 `eql' to compare keys. The hash code returned is guaranteed to fit
4335 in a Lisp integer. */
4336
4337 static unsigned
4338 hashfn_eql (h, key)
4339 struct Lisp_Hash_Table *h;
4340 Lisp_Object key;
4341 {
4342 unsigned hash;
4343 if (FLOATP (key))
4344 hash = sxhash (key, 0);
4345 else
4346 hash = XUINT (key) ^ XGCTYPE (key);
4347 xassert ((hash & ~INTMASK) == 0);
4348 return hash;
4349 }
4350
4351
4352 /* Value is a hash code for KEY for use in hash table H which uses
4353 `equal' to compare keys. The hash code returned is guaranteed to fit
4354 in a Lisp integer. */
4355
4356 static unsigned
4357 hashfn_equal (h, key)
4358 struct Lisp_Hash_Table *h;
4359 Lisp_Object key;
4360 {
4361 unsigned hash = sxhash (key, 0);
4362 xassert ((hash & ~INTMASK) == 0);
4363 return hash;
4364 }
4365
4366
4367 /* Value is a hash code for KEY for use in hash table H which uses as
4368 user-defined function to compare keys. The hash code returned is
4369 guaranteed to fit in a Lisp integer. */
4370
4371 static unsigned
4372 hashfn_user_defined (h, key)
4373 struct Lisp_Hash_Table *h;
4374 Lisp_Object key;
4375 {
4376 Lisp_Object args[2], hash;
4377
4378 args[0] = h->user_hash_function;
4379 args[1] = key;
4380 hash = Ffuncall (2, args);
4381 if (!INTEGERP (hash))
4382 Fsignal (Qerror,
4383 list2 (build_string ("Invalid hash code returned from \
4384 user-supplied hash function"),
4385 hash));
4386 return XUINT (hash);
4387 }
4388
4389
4390 /* Create and initialize a new hash table.
4391
4392 TEST specifies the test the hash table will use to compare keys.
4393 It must be either one of the predefined tests `eq', `eql' or
4394 `equal' or a symbol denoting a user-defined test named TEST with
4395 test and hash functions USER_TEST and USER_HASH.
4396
4397 Give the table initial capacity SIZE, SIZE >= 0, an integer.
4398
4399 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
4400 new size when it becomes full is computed by adding REHASH_SIZE to
4401 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
4402 table's new size is computed by multiplying its old size with
4403 REHASH_SIZE.
4404
4405 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
4406 be resized when the ratio of (number of entries in the table) /
4407 (table size) is >= REHASH_THRESHOLD.
4408
4409 WEAK specifies the weakness of the table. If non-nil, it must be
4410 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
4411
4412 Lisp_Object
4413 make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4414 user_test, user_hash)
4415 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4416 Lisp_Object user_test, user_hash;
4417 {
4418 struct Lisp_Hash_Table *h;
4419 Lisp_Object table;
4420 int index_size, i, sz;
4421
4422 /* Preconditions. */
4423 xassert (SYMBOLP (test));
4424 xassert (INTEGERP (size) && XINT (size) >= 0);
4425 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
4426 || (FLOATP (rehash_size) && XFLOATINT (rehash_size) > 1.0));
4427 xassert (FLOATP (rehash_threshold)
4428 && XFLOATINT (rehash_threshold) > 0
4429 && XFLOATINT (rehash_threshold) <= 1.0);
4430
4431 if (XFASTINT (size) == 0)
4432 size = make_number (1);
4433
4434 /* Allocate a table and initialize it. */
4435 h = allocate_hash_table ();
4436
4437 /* Initialize hash table slots. */
4438 sz = XFASTINT (size);
4439
4440 h->test = test;
4441 if (EQ (test, Qeql))
4442 {
4443 h->cmpfn = cmpfn_eql;
4444 h->hashfn = hashfn_eql;
4445 }
4446 else if (EQ (test, Qeq))
4447 {
4448 h->cmpfn = NULL;
4449 h->hashfn = hashfn_eq;
4450 }
4451 else if (EQ (test, Qequal))
4452 {
4453 h->cmpfn = cmpfn_equal;
4454 h->hashfn = hashfn_equal;
4455 }
4456 else
4457 {
4458 h->user_cmp_function = user_test;
4459 h->user_hash_function = user_hash;
4460 h->cmpfn = cmpfn_user_defined;
4461 h->hashfn = hashfn_user_defined;
4462 }
4463
4464 h->weak = weak;
4465 h->rehash_threshold = rehash_threshold;
4466 h->rehash_size = rehash_size;
4467 h->count = make_number (0);
4468 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
4469 h->hash = Fmake_vector (size, Qnil);
4470 h->next = Fmake_vector (size, Qnil);
4471 /* Cast to int here avoids losing with gcc 2.95 on Tru64/Alpha... */
4472 index_size = next_almost_prime ((int) (sz / XFLOATINT (rehash_threshold)));
4473 h->index = Fmake_vector (make_number (index_size), Qnil);
4474
4475 /* Set up the free list. */
4476 for (i = 0; i < sz - 1; ++i)
4477 HASH_NEXT (h, i) = make_number (i + 1);
4478 h->next_free = make_number (0);
4479
4480 XSET_HASH_TABLE (table, h);
4481 xassert (HASH_TABLE_P (table));
4482 xassert (XHASH_TABLE (table) == h);
4483
4484 /* Maybe add this hash table to the list of all weak hash tables. */
4485 if (NILP (h->weak))
4486 h->next_weak = Qnil;
4487 else
4488 {
4489 h->next_weak = Vweak_hash_tables;
4490 Vweak_hash_tables = table;
4491 }
4492
4493 return table;
4494 }
4495
4496
4497 /* Return a copy of hash table H1. Keys and values are not copied,
4498 only the table itself is. */
4499
4500 Lisp_Object
4501 copy_hash_table (h1)
4502 struct Lisp_Hash_Table *h1;
4503 {
4504 Lisp_Object table;
4505 struct Lisp_Hash_Table *h2;
4506 struct Lisp_Vector *next;
4507
4508 h2 = allocate_hash_table ();
4509 next = h2->vec_next;
4510 bcopy (h1, h2, sizeof *h2);
4511 h2->vec_next = next;
4512 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
4513 h2->hash = Fcopy_sequence (h1->hash);
4514 h2->next = Fcopy_sequence (h1->next);
4515 h2->index = Fcopy_sequence (h1->index);
4516 XSET_HASH_TABLE (table, h2);
4517
4518 /* Maybe add this hash table to the list of all weak hash tables. */
4519 if (!NILP (h2->weak))
4520 {
4521 h2->next_weak = Vweak_hash_tables;
4522 Vweak_hash_tables = table;
4523 }
4524
4525 return table;
4526 }
4527
4528
4529 /* Resize hash table H if it's too full. If H cannot be resized
4530 because it's already too large, throw an error. */
4531
4532 static INLINE void
4533 maybe_resize_hash_table (h)
4534 struct Lisp_Hash_Table *h;
4535 {
4536 if (NILP (h->next_free))
4537 {
4538 int old_size = HASH_TABLE_SIZE (h);
4539 int i, new_size, index_size;
4540
4541 if (INTEGERP (h->rehash_size))
4542 new_size = old_size + XFASTINT (h->rehash_size);
4543 else
4544 new_size = old_size * XFLOATINT (h->rehash_size);
4545 new_size = max (old_size + 1, new_size);
4546 index_size = next_almost_prime ((int)
4547 (new_size
4548 / XFLOATINT (h->rehash_threshold)));
4549 if (max (index_size, 2 * new_size) > MOST_POSITIVE_FIXNUM)
4550 error ("Hash table too large to resize");
4551
4552 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
4553 h->next = larger_vector (h->next, new_size, Qnil);
4554 h->hash = larger_vector (h->hash, new_size, Qnil);
4555 h->index = Fmake_vector (make_number (index_size), Qnil);
4556
4557 /* Update the free list. Do it so that new entries are added at
4558 the end of the free list. This makes some operations like
4559 maphash faster. */
4560 for (i = old_size; i < new_size - 1; ++i)
4561 HASH_NEXT (h, i) = make_number (i + 1);
4562
4563 if (!NILP (h->next_free))
4564 {
4565 Lisp_Object last, next;
4566
4567 last = h->next_free;
4568 while (next = HASH_NEXT (h, XFASTINT (last)),
4569 !NILP (next))
4570 last = next;
4571
4572 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
4573 }
4574 else
4575 XSETFASTINT (h->next_free, old_size);
4576
4577 /* Rehash. */
4578 for (i = 0; i < old_size; ++i)
4579 if (!NILP (HASH_HASH (h, i)))
4580 {
4581 unsigned hash_code = XUINT (HASH_HASH (h, i));
4582 int start_of_bucket = hash_code % XVECTOR (h->index)->size;
4583 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4584 HASH_INDEX (h, start_of_bucket) = make_number (i);
4585 }
4586 }
4587 }
4588
4589
4590 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
4591 the hash code of KEY. Value is the index of the entry in H
4592 matching KEY, or -1 if not found. */
4593
4594 int
4595 hash_lookup (h, key, hash)
4596 struct Lisp_Hash_Table *h;
4597 Lisp_Object key;
4598 unsigned *hash;
4599 {
4600 unsigned hash_code;
4601 int start_of_bucket;
4602 Lisp_Object idx;
4603
4604 hash_code = h->hashfn (h, key);
4605 if (hash)
4606 *hash = hash_code;
4607
4608 start_of_bucket = hash_code % XVECTOR (h->index)->size;
4609 idx = HASH_INDEX (h, start_of_bucket);
4610
4611 /* We need not gcpro idx since it's either an integer or nil. */
4612 while (!NILP (idx))
4613 {
4614 int i = XFASTINT (idx);
4615 if (EQ (key, HASH_KEY (h, i))
4616 || (h->cmpfn
4617 && h->cmpfn (h, key, hash_code,
4618 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4619 break;
4620 idx = HASH_NEXT (h, i);
4621 }
4622
4623 return NILP (idx) ? -1 : XFASTINT (idx);
4624 }
4625
4626
4627 /* Put an entry into hash table H that associates KEY with VALUE.
4628 HASH is a previously computed hash code of KEY.
4629 Value is the index of the entry in H matching KEY. */
4630
4631 int
4632 hash_put (h, key, value, hash)
4633 struct Lisp_Hash_Table *h;
4634 Lisp_Object key, value;
4635 unsigned hash;
4636 {
4637 int start_of_bucket, i;
4638
4639 xassert ((hash & ~INTMASK) == 0);
4640
4641 /* Increment count after resizing because resizing may fail. */
4642 maybe_resize_hash_table (h);
4643 h->count = make_number (XFASTINT (h->count) + 1);
4644
4645 /* Store key/value in the key_and_value vector. */
4646 i = XFASTINT (h->next_free);
4647 h->next_free = HASH_NEXT (h, i);
4648 HASH_KEY (h, i) = key;
4649 HASH_VALUE (h, i) = value;
4650
4651 /* Remember its hash code. */
4652 HASH_HASH (h, i) = make_number (hash);
4653
4654 /* Add new entry to its collision chain. */
4655 start_of_bucket = hash % XVECTOR (h->index)->size;
4656 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4657 HASH_INDEX (h, start_of_bucket) = make_number (i);
4658 return i;
4659 }
4660
4661
4662 /* Remove the entry matching KEY from hash table H, if there is one. */
4663
4664 void
4665 hash_remove (h, key)
4666 struct Lisp_Hash_Table *h;
4667 Lisp_Object key;
4668 {
4669 unsigned hash_code;
4670 int start_of_bucket;
4671 Lisp_Object idx, prev;
4672
4673 hash_code = h->hashfn (h, key);
4674 start_of_bucket = hash_code % XVECTOR (h->index)->size;
4675 idx = HASH_INDEX (h, start_of_bucket);
4676 prev = Qnil;
4677
4678 /* We need not gcpro idx, prev since they're either integers or nil. */
4679 while (!NILP (idx))
4680 {
4681 int i = XFASTINT (idx);
4682
4683 if (EQ (key, HASH_KEY (h, i))
4684 || (h->cmpfn
4685 && h->cmpfn (h, key, hash_code,
4686 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4687 {
4688 /* Take entry out of collision chain. */
4689 if (NILP (prev))
4690 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
4691 else
4692 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
4693
4694 /* Clear slots in key_and_value and add the slots to
4695 the free list. */
4696 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
4697 HASH_NEXT (h, i) = h->next_free;
4698 h->next_free = make_number (i);
4699 h->count = make_number (XFASTINT (h->count) - 1);
4700 xassert (XINT (h->count) >= 0);
4701 break;
4702 }
4703 else
4704 {
4705 prev = idx;
4706 idx = HASH_NEXT (h, i);
4707 }
4708 }
4709 }
4710
4711
4712 /* Clear hash table H. */
4713
4714 void
4715 hash_clear (h)
4716 struct Lisp_Hash_Table *h;
4717 {
4718 if (XFASTINT (h->count) > 0)
4719 {
4720 int i, size = HASH_TABLE_SIZE (h);
4721
4722 for (i = 0; i < size; ++i)
4723 {
4724 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
4725 HASH_KEY (h, i) = Qnil;
4726 HASH_VALUE (h, i) = Qnil;
4727 HASH_HASH (h, i) = Qnil;
4728 }
4729
4730 for (i = 0; i < XVECTOR (h->index)->size; ++i)
4731 XVECTOR (h->index)->contents[i] = Qnil;
4732
4733 h->next_free = make_number (0);
4734 h->count = make_number (0);
4735 }
4736 }
4737
4738
4739 \f
4740 /************************************************************************
4741 Weak Hash Tables
4742 ************************************************************************/
4743
4744 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
4745 entries from the table that don't survive the current GC.
4746 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
4747 non-zero if anything was marked. */
4748
4749 static int
4750 sweep_weak_table (h, remove_entries_p)
4751 struct Lisp_Hash_Table *h;
4752 int remove_entries_p;
4753 {
4754 int bucket, n, marked;
4755
4756 n = XVECTOR (h->index)->size & ~ARRAY_MARK_FLAG;
4757 marked = 0;
4758
4759 for (bucket = 0; bucket < n; ++bucket)
4760 {
4761 Lisp_Object idx, next, prev;
4762
4763 /* Follow collision chain, removing entries that
4764 don't survive this garbage collection. */
4765 prev = Qnil;
4766 for (idx = HASH_INDEX (h, bucket); !GC_NILP (idx); idx = next)
4767 {
4768 int i = XFASTINT (idx);
4769 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
4770 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
4771 int remove_p;
4772
4773 if (EQ (h->weak, Qkey))
4774 remove_p = !key_known_to_survive_p;
4775 else if (EQ (h->weak, Qvalue))
4776 remove_p = !value_known_to_survive_p;
4777 else if (EQ (h->weak, Qkey_or_value))
4778 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
4779 else if (EQ (h->weak, Qkey_and_value))
4780 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
4781 else
4782 abort ();
4783
4784 next = HASH_NEXT (h, i);
4785
4786 if (remove_entries_p)
4787 {
4788 if (remove_p)
4789 {
4790 /* Take out of collision chain. */
4791 if (GC_NILP (prev))
4792 HASH_INDEX (h, bucket) = next;
4793 else
4794 HASH_NEXT (h, XFASTINT (prev)) = next;
4795
4796 /* Add to free list. */
4797 HASH_NEXT (h, i) = h->next_free;
4798 h->next_free = idx;
4799
4800 /* Clear key, value, and hash. */
4801 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
4802 HASH_HASH (h, i) = Qnil;
4803
4804 h->count = make_number (XFASTINT (h->count) - 1);
4805 }
4806 }
4807 else
4808 {
4809 if (!remove_p)
4810 {
4811 /* Make sure key and value survive. */
4812 if (!key_known_to_survive_p)
4813 {
4814 mark_object (HASH_KEY (h, i));
4815 marked = 1;
4816 }
4817
4818 if (!value_known_to_survive_p)
4819 {
4820 mark_object (HASH_VALUE (h, i));
4821 marked = 1;
4822 }
4823 }
4824 }
4825 }
4826 }
4827
4828 return marked;
4829 }
4830
4831 /* Remove elements from weak hash tables that don't survive the
4832 current garbage collection. Remove weak tables that don't survive
4833 from Vweak_hash_tables. Called from gc_sweep. */
4834
4835 void
4836 sweep_weak_hash_tables ()
4837 {
4838 Lisp_Object table, used, next;
4839 struct Lisp_Hash_Table *h;
4840 int marked;
4841
4842 /* Mark all keys and values that are in use. Keep on marking until
4843 there is no more change. This is necessary for cases like
4844 value-weak table A containing an entry X -> Y, where Y is used in a
4845 key-weak table B, Z -> Y. If B comes after A in the list of weak
4846 tables, X -> Y might be removed from A, although when looking at B
4847 one finds that it shouldn't. */
4848 do
4849 {
4850 marked = 0;
4851 for (table = Vweak_hash_tables; !GC_NILP (table); table = h->next_weak)
4852 {
4853 h = XHASH_TABLE (table);
4854 if (h->size & ARRAY_MARK_FLAG)
4855 marked |= sweep_weak_table (h, 0);
4856 }
4857 }
4858 while (marked);
4859
4860 /* Remove tables and entries that aren't used. */
4861 for (table = Vweak_hash_tables, used = Qnil; !GC_NILP (table); table = next)
4862 {
4863 h = XHASH_TABLE (table);
4864 next = h->next_weak;
4865
4866 if (h->size & ARRAY_MARK_FLAG)
4867 {
4868 /* TABLE is marked as used. Sweep its contents. */
4869 if (XFASTINT (h->count) > 0)
4870 sweep_weak_table (h, 1);
4871
4872 /* Add table to the list of used weak hash tables. */
4873 h->next_weak = used;
4874 used = table;
4875 }
4876 }
4877
4878 Vweak_hash_tables = used;
4879 }
4880
4881
4882 \f
4883 /***********************************************************************
4884 Hash Code Computation
4885 ***********************************************************************/
4886
4887 /* Maximum depth up to which to dive into Lisp structures. */
4888
4889 #define SXHASH_MAX_DEPTH 3
4890
4891 /* Maximum length up to which to take list and vector elements into
4892 account. */
4893
4894 #define SXHASH_MAX_LEN 7
4895
4896 /* Combine two integers X and Y for hashing. */
4897
4898 #define SXHASH_COMBINE(X, Y) \
4899 ((((unsigned)(X) << 4) + (((unsigned)(X) >> 24) & 0x0fffffff)) \
4900 + (unsigned)(Y))
4901
4902
4903 /* Return a hash for string PTR which has length LEN. The hash
4904 code returned is guaranteed to fit in a Lisp integer. */
4905
4906 static unsigned
4907 sxhash_string (ptr, len)
4908 unsigned char *ptr;
4909 int len;
4910 {
4911 unsigned char *p = ptr;
4912 unsigned char *end = p + len;
4913 unsigned char c;
4914 unsigned hash = 0;
4915
4916 while (p != end)
4917 {
4918 c = *p++;
4919 if (c >= 0140)
4920 c -= 40;
4921 hash = ((hash << 3) + (hash >> 28) + c);
4922 }
4923
4924 return hash & INTMASK;
4925 }
4926
4927
4928 /* Return a hash for list LIST. DEPTH is the current depth in the
4929 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4930
4931 static unsigned
4932 sxhash_list (list, depth)
4933 Lisp_Object list;
4934 int depth;
4935 {
4936 unsigned hash = 0;
4937 int i;
4938
4939 if (depth < SXHASH_MAX_DEPTH)
4940 for (i = 0;
4941 CONSP (list) && i < SXHASH_MAX_LEN;
4942 list = XCDR (list), ++i)
4943 {
4944 unsigned hash2 = sxhash (XCAR (list), depth + 1);
4945 hash = SXHASH_COMBINE (hash, hash2);
4946 }
4947
4948 return hash;
4949 }
4950
4951
4952 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4953 the Lisp structure. */
4954
4955 static unsigned
4956 sxhash_vector (vec, depth)
4957 Lisp_Object vec;
4958 int depth;
4959 {
4960 unsigned hash = XVECTOR (vec)->size;
4961 int i, n;
4962
4963 n = min (SXHASH_MAX_LEN, XVECTOR (vec)->size);
4964 for (i = 0; i < n; ++i)
4965 {
4966 unsigned hash2 = sxhash (XVECTOR (vec)->contents[i], depth + 1);
4967 hash = SXHASH_COMBINE (hash, hash2);
4968 }
4969
4970 return hash;
4971 }
4972
4973
4974 /* Return a hash for bool-vector VECTOR. */
4975
4976 static unsigned
4977 sxhash_bool_vector (vec)
4978 Lisp_Object vec;
4979 {
4980 unsigned hash = XBOOL_VECTOR (vec)->size;
4981 int i, n;
4982
4983 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->vector_size);
4984 for (i = 0; i < n; ++i)
4985 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4986
4987 return hash;
4988 }
4989
4990
4991 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4992 structure. Value is an unsigned integer clipped to INTMASK. */
4993
4994 unsigned
4995 sxhash (obj, depth)
4996 Lisp_Object obj;
4997 int depth;
4998 {
4999 unsigned hash;
5000
5001 if (depth > SXHASH_MAX_DEPTH)
5002 return 0;
5003
5004 switch (XTYPE (obj))
5005 {
5006 case Lisp_Int:
5007 hash = XUINT (obj);
5008 break;
5009
5010 case Lisp_Symbol:
5011 hash = sxhash_string (SDATA (SYMBOL_NAME (obj)),
5012 SCHARS (SYMBOL_NAME (obj)));
5013 break;
5014
5015 case Lisp_Misc:
5016 hash = XUINT (obj);
5017 break;
5018
5019 case Lisp_String:
5020 hash = sxhash_string (SDATA (obj), SCHARS (obj));
5021 break;
5022
5023 /* This can be everything from a vector to an overlay. */
5024 case Lisp_Vectorlike:
5025 if (VECTORP (obj))
5026 /* According to the CL HyperSpec, two arrays are equal only if
5027 they are `eq', except for strings and bit-vectors. In
5028 Emacs, this works differently. We have to compare element
5029 by element. */
5030 hash = sxhash_vector (obj, depth);
5031 else if (BOOL_VECTOR_P (obj))
5032 hash = sxhash_bool_vector (obj);
5033 else
5034 /* Others are `equal' if they are `eq', so let's take their
5035 address as hash. */
5036 hash = XUINT (obj);
5037 break;
5038
5039 case Lisp_Cons:
5040 hash = sxhash_list (obj, depth);
5041 break;
5042
5043 case Lisp_Float:
5044 {
5045 unsigned char *p = (unsigned char *) &XFLOAT_DATA (obj);
5046 unsigned char *e = p + sizeof XFLOAT_DATA (obj);
5047 for (hash = 0; p < e; ++p)
5048 hash = SXHASH_COMBINE (hash, *p);
5049 break;
5050 }
5051
5052 default:
5053 abort ();
5054 }
5055
5056 return hash & INTMASK;
5057 }
5058
5059
5060 \f
5061 /***********************************************************************
5062 Lisp Interface
5063 ***********************************************************************/
5064
5065
5066 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
5067 doc: /* Compute a hash code for OBJ and return it as integer. */)
5068 (obj)
5069 Lisp_Object obj;
5070 {
5071 unsigned hash = sxhash (obj, 0);;
5072 return make_number (hash);
5073 }
5074
5075
5076 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
5077 doc: /* Create and return a new hash table.
5078
5079 Arguments are specified as keyword/argument pairs. The following
5080 arguments are defined:
5081
5082 :test TEST -- TEST must be a symbol that specifies how to compare
5083 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
5084 `equal'. User-supplied test and hash functions can be specified via
5085 `define-hash-table-test'.
5086
5087 :size SIZE -- A hint as to how many elements will be put in the table.
5088 Default is 65.
5089
5090 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
5091 fills up. If REHASH-SIZE is an integer, add that many space. If it
5092 is a float, it must be > 1.0, and the new size is computed by
5093 multiplying the old size with that factor. Default is 1.5.
5094
5095 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
5096 Resize the hash table when ratio of the number of entries in the
5097 table. Default is 0.8.
5098
5099 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
5100 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
5101 returned is a weak table. Key/value pairs are removed from a weak
5102 hash table when there are no non-weak references pointing to their
5103 key, value, one of key or value, or both key and value, depending on
5104 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
5105 is nil.
5106
5107 usage: (make-hash-table &rest KEYWORD-ARGS) */)
5108 (nargs, args)
5109 int nargs;
5110 Lisp_Object *args;
5111 {
5112 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
5113 Lisp_Object user_test, user_hash;
5114 char *used;
5115 int i;
5116
5117 /* The vector `used' is used to keep track of arguments that
5118 have been consumed. */
5119 used = (char *) alloca (nargs * sizeof *used);
5120 bzero (used, nargs * sizeof *used);
5121
5122 /* See if there's a `:test TEST' among the arguments. */
5123 i = get_key_arg (QCtest, nargs, args, used);
5124 test = i < 0 ? Qeql : args[i];
5125 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
5126 {
5127 /* See if it is a user-defined test. */
5128 Lisp_Object prop;
5129
5130 prop = Fget (test, Qhash_table_test);
5131 if (!CONSP (prop) || !CONSP (XCDR (prop)))
5132 Fsignal (Qerror, list2 (build_string ("Invalid hash table test"),
5133 test));
5134 user_test = XCAR (prop);
5135 user_hash = XCAR (XCDR (prop));
5136 }
5137 else
5138 user_test = user_hash = Qnil;
5139
5140 /* See if there's a `:size SIZE' argument. */
5141 i = get_key_arg (QCsize, nargs, args, used);
5142 size = i < 0 ? Qnil : args[i];
5143 if (NILP (size))
5144 size = make_number (DEFAULT_HASH_SIZE);
5145 else if (!INTEGERP (size) || XINT (size) < 0)
5146 Fsignal (Qerror,
5147 list2 (build_string ("Invalid hash table size"),
5148 size));
5149
5150 /* Look for `:rehash-size SIZE'. */
5151 i = get_key_arg (QCrehash_size, nargs, args, used);
5152 rehash_size = i < 0 ? make_float (DEFAULT_REHASH_SIZE) : args[i];
5153 if (!NUMBERP (rehash_size)
5154 || (INTEGERP (rehash_size) && XINT (rehash_size) <= 0)
5155 || XFLOATINT (rehash_size) <= 1.0)
5156 Fsignal (Qerror,
5157 list2 (build_string ("Invalid hash table rehash size"),
5158 rehash_size));
5159
5160 /* Look for `:rehash-threshold THRESHOLD'. */
5161 i = get_key_arg (QCrehash_threshold, nargs, args, used);
5162 rehash_threshold = i < 0 ? make_float (DEFAULT_REHASH_THRESHOLD) : args[i];
5163 if (!FLOATP (rehash_threshold)
5164 || XFLOATINT (rehash_threshold) <= 0.0
5165 || XFLOATINT (rehash_threshold) > 1.0)
5166 Fsignal (Qerror,
5167 list2 (build_string ("Invalid hash table rehash threshold"),
5168 rehash_threshold));
5169
5170 /* Look for `:weakness WEAK'. */
5171 i = get_key_arg (QCweakness, nargs, args, used);
5172 weak = i < 0 ? Qnil : args[i];
5173 if (EQ (weak, Qt))
5174 weak = Qkey_and_value;
5175 if (!NILP (weak)
5176 && !EQ (weak, Qkey)
5177 && !EQ (weak, Qvalue)
5178 && !EQ (weak, Qkey_or_value)
5179 && !EQ (weak, Qkey_and_value))
5180 Fsignal (Qerror, list2 (build_string ("Invalid hash table weakness"),
5181 weak));
5182
5183 /* Now, all args should have been used up, or there's a problem. */
5184 for (i = 0; i < nargs; ++i)
5185 if (!used[i])
5186 Fsignal (Qerror,
5187 list2 (build_string ("Invalid argument list"), args[i]));
5188
5189 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
5190 user_test, user_hash);
5191 }
5192
5193
5194 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
5195 doc: /* Return a copy of hash table TABLE. */)
5196 (table)
5197 Lisp_Object table;
5198 {
5199 return copy_hash_table (check_hash_table (table));
5200 }
5201
5202
5203 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
5204 doc: /* Return the number of elements in TABLE. */)
5205 (table)
5206 Lisp_Object table;
5207 {
5208 return check_hash_table (table)->count;
5209 }
5210
5211
5212 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
5213 Shash_table_rehash_size, 1, 1, 0,
5214 doc: /* Return the current rehash size of TABLE. */)
5215 (table)
5216 Lisp_Object table;
5217 {
5218 return check_hash_table (table)->rehash_size;
5219 }
5220
5221
5222 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
5223 Shash_table_rehash_threshold, 1, 1, 0,
5224 doc: /* Return the current rehash threshold of TABLE. */)
5225 (table)
5226 Lisp_Object table;
5227 {
5228 return check_hash_table (table)->rehash_threshold;
5229 }
5230
5231
5232 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
5233 doc: /* Return the size of TABLE.
5234 The size can be used as an argument to `make-hash-table' to create
5235 a hash table than can hold as many elements of TABLE holds
5236 without need for resizing. */)
5237 (table)
5238 Lisp_Object table;
5239 {
5240 struct Lisp_Hash_Table *h = check_hash_table (table);
5241 return make_number (HASH_TABLE_SIZE (h));
5242 }
5243
5244
5245 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
5246 doc: /* Return the test TABLE uses. */)
5247 (table)
5248 Lisp_Object table;
5249 {
5250 return check_hash_table (table)->test;
5251 }
5252
5253
5254 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
5255 1, 1, 0,
5256 doc: /* Return the weakness of TABLE. */)
5257 (table)
5258 Lisp_Object table;
5259 {
5260 return check_hash_table (table)->weak;
5261 }
5262
5263
5264 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
5265 doc: /* Return t if OBJ is a Lisp hash table object. */)
5266 (obj)
5267 Lisp_Object obj;
5268 {
5269 return HASH_TABLE_P (obj) ? Qt : Qnil;
5270 }
5271
5272
5273 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
5274 doc: /* Clear hash table TABLE. */)
5275 (table)
5276 Lisp_Object table;
5277 {
5278 hash_clear (check_hash_table (table));
5279 return Qnil;
5280 }
5281
5282
5283 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
5284 doc: /* Look up KEY in TABLE and return its associated value.
5285 If KEY is not found, return DFLT which defaults to nil. */)
5286 (key, table, dflt)
5287 Lisp_Object key, table, dflt;
5288 {
5289 struct Lisp_Hash_Table *h = check_hash_table (table);
5290 int i = hash_lookup (h, key, NULL);
5291 return i >= 0 ? HASH_VALUE (h, i) : dflt;
5292 }
5293
5294
5295 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
5296 doc: /* Associate KEY with VALUE in hash table TABLE.
5297 If KEY is already present in table, replace its current value with
5298 VALUE. */)
5299 (key, value, table)
5300 Lisp_Object key, value, table;
5301 {
5302 struct Lisp_Hash_Table *h = check_hash_table (table);
5303 int i;
5304 unsigned hash;
5305
5306 i = hash_lookup (h, key, &hash);
5307 if (i >= 0)
5308 HASH_VALUE (h, i) = value;
5309 else
5310 hash_put (h, key, value, hash);
5311
5312 return value;
5313 }
5314
5315
5316 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
5317 doc: /* Remove KEY from TABLE. */)
5318 (key, table)
5319 Lisp_Object key, table;
5320 {
5321 struct Lisp_Hash_Table *h = check_hash_table (table);
5322 hash_remove (h, key);
5323 return Qnil;
5324 }
5325
5326
5327 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
5328 doc: /* Call FUNCTION for all entries in hash table TABLE.
5329 FUNCTION is called with 2 arguments KEY and VALUE. */)
5330 (function, table)
5331 Lisp_Object function, table;
5332 {
5333 struct Lisp_Hash_Table *h = check_hash_table (table);
5334 Lisp_Object args[3];
5335 int i;
5336
5337 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
5338 if (!NILP (HASH_HASH (h, i)))
5339 {
5340 args[0] = function;
5341 args[1] = HASH_KEY (h, i);
5342 args[2] = HASH_VALUE (h, i);
5343 Ffuncall (3, args);
5344 }
5345
5346 return Qnil;
5347 }
5348
5349
5350 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
5351 Sdefine_hash_table_test, 3, 3, 0,
5352 doc: /* Define a new hash table test with name NAME, a symbol.
5353
5354 In hash tables created with NAME specified as test, use TEST to
5355 compare keys, and HASH for computing hash codes of keys.
5356
5357 TEST must be a function taking two arguments and returning non-nil if
5358 both arguments are the same. HASH must be a function taking one
5359 argument and return an integer that is the hash code of the argument.
5360 Hash code computation should use the whole value range of integers,
5361 including negative integers. */)
5362 (name, test, hash)
5363 Lisp_Object name, test, hash;
5364 {
5365 return Fput (name, Qhash_table_test, list2 (test, hash));
5366 }
5367
5368
5369 \f
5370 /************************************************************************
5371 MD5
5372 ************************************************************************/
5373
5374 #include "md5.h"
5375 #include "coding.h"
5376
5377 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
5378 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
5379
5380 A message digest is a cryptographic checksum of a document, and the
5381 algorithm to calculate it is defined in RFC 1321.
5382
5383 The two optional arguments START and END are character positions
5384 specifying for which part of OBJECT the message digest should be
5385 computed. If nil or omitted, the digest is computed for the whole
5386 OBJECT.
5387
5388 The MD5 message digest is computed from the result of encoding the
5389 text in a coding system, not directly from the internal Emacs form of
5390 the text. The optional fourth argument CODING-SYSTEM specifies which
5391 coding system to encode the text with. It should be the same coding
5392 system that you used or will use when actually writing the text into a
5393 file.
5394
5395 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
5396 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
5397 system would be chosen by default for writing this text into a file.
5398
5399 If OBJECT is a string, the most preferred coding system (see the
5400 command `prefer-coding-system') is used.
5401
5402 If NOERROR is non-nil, silently assume the `raw-text' coding if the
5403 guesswork fails. Normally, an error is signaled in such case. */)
5404 (object, start, end, coding_system, noerror)
5405 Lisp_Object object, start, end, coding_system, noerror;
5406 {
5407 unsigned char digest[16];
5408 unsigned char value[33];
5409 int i;
5410 int size;
5411 int size_byte = 0;
5412 int start_char = 0, end_char = 0;
5413 int start_byte = 0, end_byte = 0;
5414 register int b, e;
5415 register struct buffer *bp;
5416 int temp;
5417
5418 if (STRINGP (object))
5419 {
5420 if (NILP (coding_system))
5421 {
5422 /* Decide the coding-system to encode the data with. */
5423
5424 if (STRING_MULTIBYTE (object))
5425 /* use default, we can't guess correct value */
5426 coding_system = SYMBOL_VALUE (XCAR (Vcoding_category_list));
5427 else
5428 coding_system = Qraw_text;
5429 }
5430
5431 if (NILP (Fcoding_system_p (coding_system)))
5432 {
5433 /* Invalid coding system. */
5434
5435 if (!NILP (noerror))
5436 coding_system = Qraw_text;
5437 else
5438 while (1)
5439 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
5440 }
5441
5442 if (STRING_MULTIBYTE (object))
5443 object = code_convert_string1 (object, coding_system, Qnil, 1);
5444
5445 size = SCHARS (object);
5446 size_byte = SBYTES (object);
5447
5448 if (!NILP (start))
5449 {
5450 CHECK_NUMBER (start);
5451
5452 start_char = XINT (start);
5453
5454 if (start_char < 0)
5455 start_char += size;
5456
5457 start_byte = string_char_to_byte (object, start_char);
5458 }
5459
5460 if (NILP (end))
5461 {
5462 end_char = size;
5463 end_byte = size_byte;
5464 }
5465 else
5466 {
5467 CHECK_NUMBER (end);
5468
5469 end_char = XINT (end);
5470
5471 if (end_char < 0)
5472 end_char += size;
5473
5474 end_byte = string_char_to_byte (object, end_char);
5475 }
5476
5477 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
5478 args_out_of_range_3 (object, make_number (start_char),
5479 make_number (end_char));
5480 }
5481 else
5482 {
5483 struct buffer *prev = current_buffer;
5484
5485 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
5486
5487 CHECK_BUFFER (object);
5488
5489 bp = XBUFFER (object);
5490 if (bp != current_buffer)
5491 set_buffer_internal (bp);
5492
5493 if (NILP (start))
5494 b = BEGV;
5495 else
5496 {
5497 CHECK_NUMBER_COERCE_MARKER (start);
5498 b = XINT (start);
5499 }
5500
5501 if (NILP (end))
5502 e = ZV;
5503 else
5504 {
5505 CHECK_NUMBER_COERCE_MARKER (end);
5506 e = XINT (end);
5507 }
5508
5509 if (b > e)
5510 temp = b, b = e, e = temp;
5511
5512 if (!(BEGV <= b && e <= ZV))
5513 args_out_of_range (start, end);
5514
5515 if (NILP (coding_system))
5516 {
5517 /* Decide the coding-system to encode the data with.
5518 See fileio.c:Fwrite-region */
5519
5520 if (!NILP (Vcoding_system_for_write))
5521 coding_system = Vcoding_system_for_write;
5522 else
5523 {
5524 int force_raw_text = 0;
5525
5526 coding_system = XBUFFER (object)->buffer_file_coding_system;
5527 if (NILP (coding_system)
5528 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
5529 {
5530 coding_system = Qnil;
5531 if (NILP (current_buffer->enable_multibyte_characters))
5532 force_raw_text = 1;
5533 }
5534
5535 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
5536 {
5537 /* Check file-coding-system-alist. */
5538 Lisp_Object args[4], val;
5539
5540 args[0] = Qwrite_region; args[1] = start; args[2] = end;
5541 args[3] = Fbuffer_file_name(object);
5542 val = Ffind_operation_coding_system (4, args);
5543 if (CONSP (val) && !NILP (XCDR (val)))
5544 coding_system = XCDR (val);
5545 }
5546
5547 if (NILP (coding_system)
5548 && !NILP (XBUFFER (object)->buffer_file_coding_system))
5549 {
5550 /* If we still have not decided a coding system, use the
5551 default value of buffer-file-coding-system. */
5552 coding_system = XBUFFER (object)->buffer_file_coding_system;
5553 }
5554
5555 if (!force_raw_text
5556 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
5557 /* Confirm that VAL can surely encode the current region. */
5558 coding_system = call4 (Vselect_safe_coding_system_function,
5559 make_number (b), make_number (e),
5560 coding_system, Qnil);
5561
5562 if (force_raw_text)
5563 coding_system = Qraw_text;
5564 }
5565
5566 if (NILP (Fcoding_system_p (coding_system)))
5567 {
5568 /* Invalid coding system. */
5569
5570 if (!NILP (noerror))
5571 coding_system = Qraw_text;
5572 else
5573 while (1)
5574 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
5575 }
5576 }
5577
5578 object = make_buffer_string (b, e, 0);
5579 if (prev != current_buffer)
5580 set_buffer_internal (prev);
5581 /* Discard the unwind protect for recovering the current
5582 buffer. */
5583 specpdl_ptr--;
5584
5585 if (STRING_MULTIBYTE (object))
5586 object = code_convert_string1 (object, coding_system, Qnil, 1);
5587 }
5588
5589 md5_buffer (SDATA (object) + start_byte,
5590 SBYTES (object) - (size_byte - end_byte),
5591 digest);
5592
5593 for (i = 0; i < 16; i++)
5594 sprintf (&value[2 * i], "%02x", digest[i]);
5595 value[32] = '\0';
5596
5597 return make_string (value, 32);
5598 }
5599
5600 \f
5601 void
5602 syms_of_fns ()
5603 {
5604 /* Hash table stuff. */
5605 Qhash_table_p = intern ("hash-table-p");
5606 staticpro (&Qhash_table_p);
5607 Qeq = intern ("eq");
5608 staticpro (&Qeq);
5609 Qeql = intern ("eql");
5610 staticpro (&Qeql);
5611 Qequal = intern ("equal");
5612 staticpro (&Qequal);
5613 QCtest = intern (":test");
5614 staticpro (&QCtest);
5615 QCsize = intern (":size");
5616 staticpro (&QCsize);
5617 QCrehash_size = intern (":rehash-size");
5618 staticpro (&QCrehash_size);
5619 QCrehash_threshold = intern (":rehash-threshold");
5620 staticpro (&QCrehash_threshold);
5621 QCweakness = intern (":weakness");
5622 staticpro (&QCweakness);
5623 Qkey = intern ("key");
5624 staticpro (&Qkey);
5625 Qvalue = intern ("value");
5626 staticpro (&Qvalue);
5627 Qhash_table_test = intern ("hash-table-test");
5628 staticpro (&Qhash_table_test);
5629 Qkey_or_value = intern ("key-or-value");
5630 staticpro (&Qkey_or_value);
5631 Qkey_and_value = intern ("key-and-value");
5632 staticpro (&Qkey_and_value);
5633
5634 defsubr (&Ssxhash);
5635 defsubr (&Smake_hash_table);
5636 defsubr (&Scopy_hash_table);
5637 defsubr (&Shash_table_count);
5638 defsubr (&Shash_table_rehash_size);
5639 defsubr (&Shash_table_rehash_threshold);
5640 defsubr (&Shash_table_size);
5641 defsubr (&Shash_table_test);
5642 defsubr (&Shash_table_weakness);
5643 defsubr (&Shash_table_p);
5644 defsubr (&Sclrhash);
5645 defsubr (&Sgethash);
5646 defsubr (&Sputhash);
5647 defsubr (&Sremhash);
5648 defsubr (&Smaphash);
5649 defsubr (&Sdefine_hash_table_test);
5650
5651 Qstring_lessp = intern ("string-lessp");
5652 staticpro (&Qstring_lessp);
5653 Qprovide = intern ("provide");
5654 staticpro (&Qprovide);
5655 Qrequire = intern ("require");
5656 staticpro (&Qrequire);
5657 Qyes_or_no_p_history = intern ("yes-or-no-p-history");
5658 staticpro (&Qyes_or_no_p_history);
5659 Qcursor_in_echo_area = intern ("cursor-in-echo-area");
5660 staticpro (&Qcursor_in_echo_area);
5661 Qwidget_type = intern ("widget-type");
5662 staticpro (&Qwidget_type);
5663
5664 staticpro (&string_char_byte_cache_string);
5665 string_char_byte_cache_string = Qnil;
5666
5667 require_nesting_list = Qnil;
5668 staticpro (&require_nesting_list);
5669
5670 Fset (Qyes_or_no_p_history, Qnil);
5671
5672 DEFVAR_LISP ("features", &Vfeatures,
5673 doc: /* A list of symbols which are the features of the executing emacs.
5674 Used by `featurep' and `require', and altered by `provide'. */);
5675 Vfeatures = Qnil;
5676 Qsubfeatures = intern ("subfeatures");
5677 staticpro (&Qsubfeatures);
5678
5679 #ifdef HAVE_LANGINFO_CODESET
5680 Qcodeset = intern ("codeset");
5681 staticpro (&Qcodeset);
5682 Qdays = intern ("days");
5683 staticpro (&Qdays);
5684 Qmonths = intern ("months");
5685 staticpro (&Qmonths);
5686 Qpaper = intern ("paper");
5687 staticpro (&Qpaper);
5688 #endif /* HAVE_LANGINFO_CODESET */
5689
5690 DEFVAR_BOOL ("use-dialog-box", &use_dialog_box,
5691 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
5692 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
5693 invoked by mouse clicks and mouse menu items. */);
5694 use_dialog_box = 1;
5695
5696 DEFVAR_BOOL ("use-file-dialog", &use_file_dialog,
5697 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
5698 This applies to commands from menus and tool bar buttons. The value of
5699 `use-dialog-box' takes precedence over this variable, so a file dialog is only
5700 used if both `use-dialog-box' and this variable are non-nil. */);
5701 use_file_dialog = 1;
5702
5703 defsubr (&Sidentity);
5704 defsubr (&Srandom);
5705 defsubr (&Slength);
5706 defsubr (&Ssafe_length);
5707 defsubr (&Sstring_bytes);
5708 defsubr (&Sstring_equal);
5709 defsubr (&Scompare_strings);
5710 defsubr (&Sstring_lessp);
5711 defsubr (&Sappend);
5712 defsubr (&Sconcat);
5713 defsubr (&Svconcat);
5714 defsubr (&Scopy_sequence);
5715 defsubr (&Sstring_make_multibyte);
5716 defsubr (&Sstring_make_unibyte);
5717 defsubr (&Sstring_as_multibyte);
5718 defsubr (&Sstring_as_unibyte);
5719 defsubr (&Sstring_to_multibyte);
5720 defsubr (&Scopy_alist);
5721 defsubr (&Ssubstring);
5722 defsubr (&Ssubstring_no_properties);
5723 defsubr (&Snthcdr);
5724 defsubr (&Snth);
5725 defsubr (&Selt);
5726 defsubr (&Smember);
5727 defsubr (&Smemq);
5728 defsubr (&Sassq);
5729 defsubr (&Sassoc);
5730 defsubr (&Srassq);
5731 defsubr (&Srassoc);
5732 defsubr (&Sdelq);
5733 defsubr (&Sdelete);
5734 defsubr (&Snreverse);
5735 defsubr (&Sreverse);
5736 defsubr (&Ssort);
5737 defsubr (&Splist_get);
5738 defsubr (&Sget);
5739 defsubr (&Splist_put);
5740 defsubr (&Sput);
5741 defsubr (&Slax_plist_get);
5742 defsubr (&Slax_plist_put);
5743 defsubr (&Sequal);
5744 defsubr (&Sequal_including_properties);
5745 defsubr (&Sfillarray);
5746 defsubr (&Sclear_string);
5747 defsubr (&Schar_table_subtype);
5748 defsubr (&Schar_table_parent);
5749 defsubr (&Sset_char_table_parent);
5750 defsubr (&Schar_table_extra_slot);
5751 defsubr (&Sset_char_table_extra_slot);
5752 defsubr (&Schar_table_range);
5753 defsubr (&Sset_char_table_range);
5754 defsubr (&Sset_char_table_default);
5755 defsubr (&Soptimize_char_table);
5756 defsubr (&Smap_char_table);
5757 defsubr (&Snconc);
5758 defsubr (&Smapcar);
5759 defsubr (&Smapc);
5760 defsubr (&Smapconcat);
5761 defsubr (&Sy_or_n_p);
5762 defsubr (&Syes_or_no_p);
5763 defsubr (&Sload_average);
5764 defsubr (&Sfeaturep);
5765 defsubr (&Srequire);
5766 defsubr (&Sprovide);
5767 defsubr (&Splist_member);
5768 defsubr (&Swidget_put);
5769 defsubr (&Swidget_get);
5770 defsubr (&Swidget_apply);
5771 defsubr (&Sbase64_encode_region);
5772 defsubr (&Sbase64_decode_region);
5773 defsubr (&Sbase64_encode_string);
5774 defsubr (&Sbase64_decode_string);
5775 defsubr (&Smd5);
5776 defsubr (&Slocale_info);
5777 }
5778
5779
5780 void
5781 init_fns ()
5782 {
5783 Vweak_hash_tables = Qnil;
5784 }
5785
5786 /* arch-tag: 787f8219-5b74-46bd-8469-7e1cc475fa31
5787 (do not change this comment) */