]> code.delx.au - gnu-emacs/blob - src/regex.c
(enriched-mode): Add autoload cookie.
[gnu-emacs] / src / regex.c
1 /* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
5
6 Copyright (C) 1993, 1994 Free Software Foundation, Inc.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25 #endif
26
27 #define _GNU_SOURCE
28
29 #ifdef HAVE_CONFIG_H
30 #include <config.h>
31 #endif
32
33 /* We need this for `regex.h', and perhaps for the Emacs include files. */
34 #include <sys/types.h>
35
36 /* The `emacs' switch turns on certain matching commands
37 that make sense only in Emacs. */
38 #ifdef emacs
39
40 #include "lisp.h"
41 #include "buffer.h"
42 #include "syntax.h"
43
44 /* Emacs uses `NULL' as a predicate. */
45 #undef NULL
46
47 #else /* not emacs */
48
49 #ifdef STDC_HEADERS
50 #include <stdlib.h>
51 #else
52 char *malloc ();
53 char *realloc ();
54 #endif
55
56
57 /* We used to test for `BSTRING' here, but only GCC and Emacs define
58 `BSTRING', as far as I know, and neither of them use this code. */
59 #ifndef INHIBIT_STRING_HEADER
60 #if HAVE_STRING_H || STDC_HEADERS
61 #include <string.h>
62 #ifndef bcmp
63 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
64 #endif
65 #ifndef bcopy
66 #define bcopy(s, d, n) memcpy ((d), (s), (n))
67 #endif
68 #ifndef bzero
69 #define bzero(s, n) memset ((s), 0, (n))
70 #endif
71 #else
72 #include <strings.h>
73 #endif
74 #endif
75
76 /* Define the syntax stuff for \<, \>, etc. */
77
78 /* This must be nonzero for the wordchar and notwordchar pattern
79 commands in re_match_2. */
80 #ifndef Sword
81 #define Sword 1
82 #endif
83
84 #ifdef SYNTAX_TABLE
85
86 extern char *re_syntax_table;
87
88 #else /* not SYNTAX_TABLE */
89
90 /* How many characters in the character set. */
91 #define CHAR_SET_SIZE 256
92
93 static char re_syntax_table[CHAR_SET_SIZE];
94
95 static void
96 init_syntax_once ()
97 {
98 register int c;
99 static int done = 0;
100
101 if (done)
102 return;
103
104 bzero (re_syntax_table, sizeof re_syntax_table);
105
106 for (c = 'a'; c <= 'z'; c++)
107 re_syntax_table[c] = Sword;
108
109 for (c = 'A'; c <= 'Z'; c++)
110 re_syntax_table[c] = Sword;
111
112 for (c = '0'; c <= '9'; c++)
113 re_syntax_table[c] = Sword;
114
115 re_syntax_table['_'] = Sword;
116
117 done = 1;
118 }
119
120 #endif /* not SYNTAX_TABLE */
121
122 #define SYNTAX(c) re_syntax_table[c]
123
124 #endif /* not emacs */
125 \f
126 /* Get the interface, including the syntax bits. */
127 #include "regex.h"
128
129 /* isalpha etc. are used for the character classes. */
130 #include <ctype.h>
131
132 /* Jim Meyering writes:
133
134 "... Some ctype macros are valid only for character codes that
135 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
136 using /bin/cc or gcc but without giving an ansi option). So, all
137 ctype uses should be through macros like ISPRINT... If
138 STDC_HEADERS is defined, then autoconf has verified that the ctype
139 macros don't need to be guarded with references to isascii. ...
140 Defining isascii to 1 should let any compiler worth its salt
141 eliminate the && through constant folding." */
142
143 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
144 #define ISASCII(c) 1
145 #else
146 #define ISASCII(c) isascii(c)
147 #endif
148
149 #ifdef isblank
150 #define ISBLANK(c) (ISASCII (c) && isblank (c))
151 #else
152 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
153 #endif
154 #ifdef isgraph
155 #define ISGRAPH(c) (ISASCII (c) && isgraph (c))
156 #else
157 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
158 #endif
159
160 #define ISPRINT(c) (ISASCII (c) && isprint (c))
161 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
162 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
163 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
164 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
165 #define ISLOWER(c) (ISASCII (c) && islower (c))
166 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
167 #define ISSPACE(c) (ISASCII (c) && isspace (c))
168 #define ISUPPER(c) (ISASCII (c) && isupper (c))
169 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
170
171 #ifndef NULL
172 #define NULL 0
173 #endif
174
175 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
176 since ours (we hope) works properly with all combinations of
177 machines, compilers, `char' and `unsigned char' argument types.
178 (Per Bothner suggested the basic approach.) */
179 #undef SIGN_EXTEND_CHAR
180 #if __STDC__
181 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
182 #else /* not __STDC__ */
183 /* As in Harbison and Steele. */
184 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
185 #endif
186 \f
187 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
188 use `alloca' instead of `malloc'. This is because using malloc in
189 re_search* or re_match* could cause memory leaks when C-g is used in
190 Emacs; also, malloc is slower and causes storage fragmentation. On
191 the other hand, malloc is more portable, and easier to debug.
192
193 Because we sometimes use alloca, some routines have to be macros,
194 not functions -- `alloca'-allocated space disappears at the end of the
195 function it is called in. */
196
197 #ifdef REGEX_MALLOC
198
199 #define REGEX_ALLOCATE malloc
200 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
201
202 #else /* not REGEX_MALLOC */
203
204 /* Emacs already defines alloca, sometimes. */
205 #ifndef alloca
206
207 /* Make alloca work the best possible way. */
208 #ifdef __GNUC__
209 #define alloca __builtin_alloca
210 #else /* not __GNUC__ */
211 #if HAVE_ALLOCA_H
212 #include <alloca.h>
213 #else /* not __GNUC__ or HAVE_ALLOCA_H */
214 #ifndef _AIX /* Already did AIX, up at the top. */
215 char *alloca ();
216 #endif /* not _AIX */
217 #endif /* not HAVE_ALLOCA_H */
218 #endif /* not __GNUC__ */
219
220 #endif /* not alloca */
221
222 #define REGEX_ALLOCATE alloca
223
224 /* Assumes a `char *destination' variable. */
225 #define REGEX_REALLOCATE(source, osize, nsize) \
226 (destination = (char *) alloca (nsize), \
227 bcopy (source, destination, osize), \
228 destination)
229
230 #endif /* not REGEX_MALLOC */
231
232
233 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
234 `string1' or just past its end. This works if PTR is NULL, which is
235 a good thing. */
236 #define FIRST_STRING_P(ptr) \
237 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
238
239 /* (Re)Allocate N items of type T using malloc, or fail. */
240 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
241 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
242 #define RETALLOC_IF(addr, n, t) \
243 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
244 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
245
246 #define BYTEWIDTH 8 /* In bits. */
247
248 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
249
250 #undef MAX
251 #undef MIN
252 #define MAX(a, b) ((a) > (b) ? (a) : (b))
253 #define MIN(a, b) ((a) < (b) ? (a) : (b))
254
255 typedef char boolean;
256 #define false 0
257 #define true 1
258
259 static int re_match_2_internal ();
260 \f
261 /* These are the command codes that appear in compiled regular
262 expressions. Some opcodes are followed by argument bytes. A
263 command code can specify any interpretation whatsoever for its
264 arguments. Zero bytes may appear in the compiled regular expression. */
265
266 typedef enum
267 {
268 no_op = 0,
269
270 /* Followed by one byte giving n, then by n literal bytes. */
271 exactn,
272
273 /* Matches any (more or less) character. */
274 anychar,
275
276 /* Matches any one char belonging to specified set. First
277 following byte is number of bitmap bytes. Then come bytes
278 for a bitmap saying which chars are in. Bits in each byte
279 are ordered low-bit-first. A character is in the set if its
280 bit is 1. A character too large to have a bit in the map is
281 automatically not in the set. */
282 charset,
283
284 /* Same parameters as charset, but match any character that is
285 not one of those specified. */
286 charset_not,
287
288 /* Start remembering the text that is matched, for storing in a
289 register. Followed by one byte with the register number, in
290 the range 0 to one less than the pattern buffer's re_nsub
291 field. Then followed by one byte with the number of groups
292 inner to this one. (This last has to be part of the
293 start_memory only because we need it in the on_failure_jump
294 of re_match_2.) */
295 start_memory,
296
297 /* Stop remembering the text that is matched and store it in a
298 memory register. Followed by one byte with the register
299 number, in the range 0 to one less than `re_nsub' in the
300 pattern buffer, and one byte with the number of inner groups,
301 just like `start_memory'. (We need the number of inner
302 groups here because we don't have any easy way of finding the
303 corresponding start_memory when we're at a stop_memory.) */
304 stop_memory,
305
306 /* Match a duplicate of something remembered. Followed by one
307 byte containing the register number. */
308 duplicate,
309
310 /* Fail unless at beginning of line. */
311 begline,
312
313 /* Fail unless at end of line. */
314 endline,
315
316 /* Succeeds if at beginning of buffer (if emacs) or at beginning
317 of string to be matched (if not). */
318 begbuf,
319
320 /* Analogously, for end of buffer/string. */
321 endbuf,
322
323 /* Followed by two byte relative address to which to jump. */
324 jump,
325
326 /* Same as jump, but marks the end of an alternative. */
327 jump_past_alt,
328
329 /* Followed by two-byte relative address of place to resume at
330 in case of failure. */
331 on_failure_jump,
332
333 /* Like on_failure_jump, but pushes a placeholder instead of the
334 current string position when executed. */
335 on_failure_keep_string_jump,
336
337 /* Throw away latest failure point and then jump to following
338 two-byte relative address. */
339 pop_failure_jump,
340
341 /* Change to pop_failure_jump if know won't have to backtrack to
342 match; otherwise change to jump. This is used to jump
343 back to the beginning of a repeat. If what follows this jump
344 clearly won't match what the repeat does, such that we can be
345 sure that there is no use backtracking out of repetitions
346 already matched, then we change it to a pop_failure_jump.
347 Followed by two-byte address. */
348 maybe_pop_jump,
349
350 /* Jump to following two-byte address, and push a dummy failure
351 point. This failure point will be thrown away if an attempt
352 is made to use it for a failure. A `+' construct makes this
353 before the first repeat. Also used as an intermediary kind
354 of jump when compiling an alternative. */
355 dummy_failure_jump,
356
357 /* Push a dummy failure point and continue. Used at the end of
358 alternatives. */
359 push_dummy_failure,
360
361 /* Followed by two-byte relative address and two-byte number n.
362 After matching N times, jump to the address upon failure. */
363 succeed_n,
364
365 /* Followed by two-byte relative address, and two-byte number n.
366 Jump to the address N times, then fail. */
367 jump_n,
368
369 /* Set the following two-byte relative address to the
370 subsequent two-byte number. The address *includes* the two
371 bytes of number. */
372 set_number_at,
373
374 wordchar, /* Matches any word-constituent character. */
375 notwordchar, /* Matches any char that is not a word-constituent. */
376
377 wordbeg, /* Succeeds if at word beginning. */
378 wordend, /* Succeeds if at word end. */
379
380 wordbound, /* Succeeds if at a word boundary. */
381 notwordbound /* Succeeds if not at a word boundary. */
382
383 #ifdef emacs
384 ,before_dot, /* Succeeds if before point. */
385 at_dot, /* Succeeds if at point. */
386 after_dot, /* Succeeds if after point. */
387
388 /* Matches any character whose syntax is specified. Followed by
389 a byte which contains a syntax code, e.g., Sword. */
390 syntaxspec,
391
392 /* Matches any character whose syntax is not that specified. */
393 notsyntaxspec
394 #endif /* emacs */
395 } re_opcode_t;
396 \f
397 /* Common operations on the compiled pattern. */
398
399 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
400
401 #define STORE_NUMBER(destination, number) \
402 do { \
403 (destination)[0] = (number) & 0377; \
404 (destination)[1] = (number) >> 8; \
405 } while (0)
406
407 /* Same as STORE_NUMBER, except increment DESTINATION to
408 the byte after where the number is stored. Therefore, DESTINATION
409 must be an lvalue. */
410
411 #define STORE_NUMBER_AND_INCR(destination, number) \
412 do { \
413 STORE_NUMBER (destination, number); \
414 (destination) += 2; \
415 } while (0)
416
417 /* Put into DESTINATION a number stored in two contiguous bytes starting
418 at SOURCE. */
419
420 #define EXTRACT_NUMBER(destination, source) \
421 do { \
422 (destination) = *(source) & 0377; \
423 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
424 } while (0)
425
426 #ifdef DEBUG
427 static void
428 extract_number (dest, source)
429 int *dest;
430 unsigned char *source;
431 {
432 int temp = SIGN_EXTEND_CHAR (*(source + 1));
433 *dest = *source & 0377;
434 *dest += temp << 8;
435 }
436
437 #ifndef EXTRACT_MACROS /* To debug the macros. */
438 #undef EXTRACT_NUMBER
439 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
440 #endif /* not EXTRACT_MACROS */
441
442 #endif /* DEBUG */
443
444 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
445 SOURCE must be an lvalue. */
446
447 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
448 do { \
449 EXTRACT_NUMBER (destination, source); \
450 (source) += 2; \
451 } while (0)
452
453 #ifdef DEBUG
454 static void
455 extract_number_and_incr (destination, source)
456 int *destination;
457 unsigned char **source;
458 {
459 extract_number (destination, *source);
460 *source += 2;
461 }
462
463 #ifndef EXTRACT_MACROS
464 #undef EXTRACT_NUMBER_AND_INCR
465 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
466 extract_number_and_incr (&dest, &src)
467 #endif /* not EXTRACT_MACROS */
468
469 #endif /* DEBUG */
470 \f
471 /* If DEBUG is defined, Regex prints many voluminous messages about what
472 it is doing (if the variable `debug' is nonzero). If linked with the
473 main program in `iregex.c', you can enter patterns and strings
474 interactively. And if linked with the main program in `main.c' and
475 the other test files, you can run the already-written tests. */
476
477 #ifdef DEBUG
478
479 /* We use standard I/O for debugging. */
480 #include <stdio.h>
481
482 /* It is useful to test things that ``must'' be true when debugging. */
483 #include <assert.h>
484
485 static int debug = 0;
486
487 #define DEBUG_STATEMENT(e) e
488 #define DEBUG_PRINT1(x) if (debug) printf (x)
489 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
490 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
491 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
492 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
493 if (debug) print_partial_compiled_pattern (s, e)
494 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
495 if (debug) print_double_string (w, s1, sz1, s2, sz2)
496
497
498 extern void printchar ();
499
500 /* Print the fastmap in human-readable form. */
501
502 void
503 print_fastmap (fastmap)
504 char *fastmap;
505 {
506 unsigned was_a_range = 0;
507 unsigned i = 0;
508
509 while (i < (1 << BYTEWIDTH))
510 {
511 if (fastmap[i++])
512 {
513 was_a_range = 0;
514 printchar (i - 1);
515 while (i < (1 << BYTEWIDTH) && fastmap[i])
516 {
517 was_a_range = 1;
518 i++;
519 }
520 if (was_a_range)
521 {
522 printf ("-");
523 printchar (i - 1);
524 }
525 }
526 }
527 putchar ('\n');
528 }
529
530
531 /* Print a compiled pattern string in human-readable form, starting at
532 the START pointer into it and ending just before the pointer END. */
533
534 void
535 print_partial_compiled_pattern (start, end)
536 unsigned char *start;
537 unsigned char *end;
538 {
539 int mcnt, mcnt2;
540 unsigned char *p = start;
541 unsigned char *pend = end;
542
543 if (start == NULL)
544 {
545 printf ("(null)\n");
546 return;
547 }
548
549 /* Loop over pattern commands. */
550 while (p < pend)
551 {
552 printf ("%d:\t", p - start);
553
554 switch ((re_opcode_t) *p++)
555 {
556 case no_op:
557 printf ("/no_op");
558 break;
559
560 case exactn:
561 mcnt = *p++;
562 printf ("/exactn/%d", mcnt);
563 do
564 {
565 putchar ('/');
566 printchar (*p++);
567 }
568 while (--mcnt);
569 break;
570
571 case start_memory:
572 mcnt = *p++;
573 printf ("/start_memory/%d/%d", mcnt, *p++);
574 break;
575
576 case stop_memory:
577 mcnt = *p++;
578 printf ("/stop_memory/%d/%d", mcnt, *p++);
579 break;
580
581 case duplicate:
582 printf ("/duplicate/%d", *p++);
583 break;
584
585 case anychar:
586 printf ("/anychar");
587 break;
588
589 case charset:
590 case charset_not:
591 {
592 register int c, last = -100;
593 register int in_range = 0;
594
595 printf ("/charset [%s",
596 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
597
598 assert (p + *p < pend);
599
600 for (c = 0; c < 256; c++)
601 if (c / 8 < *p
602 && (p[1 + (c/8)] & (1 << (c % 8))))
603 {
604 /* Are we starting a range? */
605 if (last + 1 == c && ! in_range)
606 {
607 putchar ('-');
608 in_range = 1;
609 }
610 /* Have we broken a range? */
611 else if (last + 1 != c && in_range)
612 {
613 printchar (last);
614 in_range = 0;
615 }
616
617 if (! in_range)
618 printchar (c);
619
620 last = c;
621 }
622
623 if (in_range)
624 printchar (last);
625
626 putchar (']');
627
628 p += 1 + *p;
629 }
630 break;
631
632 case begline:
633 printf ("/begline");
634 break;
635
636 case endline:
637 printf ("/endline");
638 break;
639
640 case on_failure_jump:
641 extract_number_and_incr (&mcnt, &p);
642 printf ("/on_failure_jump to %d", p + mcnt - start);
643 break;
644
645 case on_failure_keep_string_jump:
646 extract_number_and_incr (&mcnt, &p);
647 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
648 break;
649
650 case dummy_failure_jump:
651 extract_number_and_incr (&mcnt, &p);
652 printf ("/dummy_failure_jump to %d", p + mcnt - start);
653 break;
654
655 case push_dummy_failure:
656 printf ("/push_dummy_failure");
657 break;
658
659 case maybe_pop_jump:
660 extract_number_and_incr (&mcnt, &p);
661 printf ("/maybe_pop_jump to %d", p + mcnt - start);
662 break;
663
664 case pop_failure_jump:
665 extract_number_and_incr (&mcnt, &p);
666 printf ("/pop_failure_jump to %d", p + mcnt - start);
667 break;
668
669 case jump_past_alt:
670 extract_number_and_incr (&mcnt, &p);
671 printf ("/jump_past_alt to %d", p + mcnt - start);
672 break;
673
674 case jump:
675 extract_number_and_incr (&mcnt, &p);
676 printf ("/jump to %d", p + mcnt - start);
677 break;
678
679 case succeed_n:
680 extract_number_and_incr (&mcnt, &p);
681 extract_number_and_incr (&mcnt2, &p);
682 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
683 break;
684
685 case jump_n:
686 extract_number_and_incr (&mcnt, &p);
687 extract_number_and_incr (&mcnt2, &p);
688 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
689 break;
690
691 case set_number_at:
692 extract_number_and_incr (&mcnt, &p);
693 extract_number_and_incr (&mcnt2, &p);
694 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
695 break;
696
697 case wordbound:
698 printf ("/wordbound");
699 break;
700
701 case notwordbound:
702 printf ("/notwordbound");
703 break;
704
705 case wordbeg:
706 printf ("/wordbeg");
707 break;
708
709 case wordend:
710 printf ("/wordend");
711
712 #ifdef emacs
713 case before_dot:
714 printf ("/before_dot");
715 break;
716
717 case at_dot:
718 printf ("/at_dot");
719 break;
720
721 case after_dot:
722 printf ("/after_dot");
723 break;
724
725 case syntaxspec:
726 printf ("/syntaxspec");
727 mcnt = *p++;
728 printf ("/%d", mcnt);
729 break;
730
731 case notsyntaxspec:
732 printf ("/notsyntaxspec");
733 mcnt = *p++;
734 printf ("/%d", mcnt);
735 break;
736 #endif /* emacs */
737
738 case wordchar:
739 printf ("/wordchar");
740 break;
741
742 case notwordchar:
743 printf ("/notwordchar");
744 break;
745
746 case begbuf:
747 printf ("/begbuf");
748 break;
749
750 case endbuf:
751 printf ("/endbuf");
752 break;
753
754 default:
755 printf ("?%d", *(p-1));
756 }
757
758 putchar ('\n');
759 }
760
761 printf ("%d:\tend of pattern.\n", p - start);
762 }
763
764
765 void
766 print_compiled_pattern (bufp)
767 struct re_pattern_buffer *bufp;
768 {
769 unsigned char *buffer = bufp->buffer;
770
771 print_partial_compiled_pattern (buffer, buffer + bufp->used);
772 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
773
774 if (bufp->fastmap_accurate && bufp->fastmap)
775 {
776 printf ("fastmap: ");
777 print_fastmap (bufp->fastmap);
778 }
779
780 printf ("re_nsub: %d\t", bufp->re_nsub);
781 printf ("regs_alloc: %d\t", bufp->regs_allocated);
782 printf ("can_be_null: %d\t", bufp->can_be_null);
783 printf ("newline_anchor: %d\n", bufp->newline_anchor);
784 printf ("no_sub: %d\t", bufp->no_sub);
785 printf ("not_bol: %d\t", bufp->not_bol);
786 printf ("not_eol: %d\t", bufp->not_eol);
787 printf ("syntax: %d\n", bufp->syntax);
788 /* Perhaps we should print the translate table? */
789 }
790
791
792 void
793 print_double_string (where, string1, size1, string2, size2)
794 const char *where;
795 const char *string1;
796 const char *string2;
797 int size1;
798 int size2;
799 {
800 unsigned this_char;
801
802 if (where == NULL)
803 printf ("(null)");
804 else
805 {
806 if (FIRST_STRING_P (where))
807 {
808 for (this_char = where - string1; this_char < size1; this_char++)
809 printchar (string1[this_char]);
810
811 where = string2;
812 }
813
814 for (this_char = where - string2; this_char < size2; this_char++)
815 printchar (string2[this_char]);
816 }
817 }
818
819 #else /* not DEBUG */
820
821 #undef assert
822 #define assert(e)
823
824 #define DEBUG_STATEMENT(e)
825 #define DEBUG_PRINT1(x)
826 #define DEBUG_PRINT2(x1, x2)
827 #define DEBUG_PRINT3(x1, x2, x3)
828 #define DEBUG_PRINT4(x1, x2, x3, x4)
829 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
830 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
831
832 #endif /* not DEBUG */
833 \f
834 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
835 also be assigned to arbitrarily: each pattern buffer stores its own
836 syntax, so it can be changed between regex compilations. */
837 reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;
838
839
840 /* Specify the precise syntax of regexps for compilation. This provides
841 for compatibility for various utilities which historically have
842 different, incompatible syntaxes.
843
844 The argument SYNTAX is a bit mask comprised of the various bits
845 defined in regex.h. We return the old syntax. */
846
847 reg_syntax_t
848 re_set_syntax (syntax)
849 reg_syntax_t syntax;
850 {
851 reg_syntax_t ret = re_syntax_options;
852
853 re_syntax_options = syntax;
854 return ret;
855 }
856 \f
857 /* This table gives an error message for each of the error codes listed
858 in regex.h. Obviously the order here has to be same as there. */
859
860 static const char *re_error_msg[] =
861 { NULL, /* REG_NOERROR */
862 "No match", /* REG_NOMATCH */
863 "Invalid regular expression", /* REG_BADPAT */
864 "Invalid collation character", /* REG_ECOLLATE */
865 "Invalid character class name", /* REG_ECTYPE */
866 "Trailing backslash", /* REG_EESCAPE */
867 "Invalid back reference", /* REG_ESUBREG */
868 "Unmatched [ or [^", /* REG_EBRACK */
869 "Unmatched ( or \\(", /* REG_EPAREN */
870 "Unmatched \\{", /* REG_EBRACE */
871 "Invalid content of \\{\\}", /* REG_BADBR */
872 "Invalid range end", /* REG_ERANGE */
873 "Memory exhausted", /* REG_ESPACE */
874 "Invalid preceding regular expression", /* REG_BADRPT */
875 "Premature end of regular expression", /* REG_EEND */
876 "Regular expression too big", /* REG_ESIZE */
877 "Unmatched ) or \\)", /* REG_ERPAREN */
878 };
879 \f
880 /* Avoiding alloca during matching, to placate r_alloc. */
881
882 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
883 searching and matching functions should not call alloca. On some
884 systems, alloca is implemented in terms of malloc, and if we're
885 using the relocating allocator routines, then malloc could cause a
886 relocation, which might (if the strings being searched are in the
887 ralloc heap) shift the data out from underneath the regexp
888 routines.
889
890 Here's another reason to avoid allocation: Emacs
891 processes input from X in a signal handler; processing X input may
892 call malloc; if input arrives while a matching routine is calling
893 malloc, then we're scrod. But Emacs can't just block input while
894 calling matching routines; then we don't notice interrupts when
895 they come in. So, Emacs blocks input around all regexp calls
896 except the matching calls, which it leaves unprotected, in the
897 faith that they will not malloc. */
898
899 /* Normally, this is fine. */
900 #define MATCH_MAY_ALLOCATE
901
902 /* The match routines may not allocate if (1) they would do it with malloc
903 and (2) it's not safe for them to use malloc. */
904 #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && (defined (emacs) || defined (REL_ALLOC))
905 #undef MATCH_MAY_ALLOCATE
906 #endif
907
908 \f
909 /* Failure stack declarations and macros; both re_compile_fastmap and
910 re_match_2 use a failure stack. These have to be macros because of
911 REGEX_ALLOCATE. */
912
913
914 /* Number of failure points for which to initially allocate space
915 when matching. If this number is exceeded, we allocate more
916 space, so it is not a hard limit. */
917 #ifndef INIT_FAILURE_ALLOC
918 #define INIT_FAILURE_ALLOC 5
919 #endif
920
921 /* Roughly the maximum number of failure points on the stack. Would be
922 exactly that if always used MAX_FAILURE_SPACE each time we failed.
923 This is a variable only so users of regex can assign to it; we never
924 change it ourselves. */
925 int re_max_failures = 2000;
926
927 typedef unsigned char *fail_stack_elt_t;
928
929 typedef struct
930 {
931 fail_stack_elt_t *stack;
932 unsigned size;
933 unsigned avail; /* Offset of next open position. */
934 } fail_stack_type;
935
936 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
937 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
938 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
939 #define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
940
941
942 /* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
943
944 #ifdef MATCH_MAY_ALLOCATE
945 #define INIT_FAIL_STACK() \
946 do { \
947 fail_stack.stack = (fail_stack_elt_t *) \
948 REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
949 \
950 if (fail_stack.stack == NULL) \
951 return -2; \
952 \
953 fail_stack.size = INIT_FAILURE_ALLOC; \
954 fail_stack.avail = 0; \
955 } while (0)
956 #else
957 #define INIT_FAIL_STACK() \
958 do { \
959 fail_stack.avail = 0; \
960 } while (0)
961 #endif
962
963
964 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
965
966 Return 1 if succeeds, and 0 if either ran out of memory
967 allocating space for it or it was already too large.
968
969 REGEX_REALLOCATE requires `destination' be declared. */
970
971 #define DOUBLE_FAIL_STACK(fail_stack) \
972 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
973 ? 0 \
974 : ((fail_stack).stack = (fail_stack_elt_t *) \
975 REGEX_REALLOCATE ((fail_stack).stack, \
976 (fail_stack).size * sizeof (fail_stack_elt_t), \
977 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
978 \
979 (fail_stack).stack == NULL \
980 ? 0 \
981 : ((fail_stack).size <<= 1, \
982 1)))
983
984
985 /* Push PATTERN_OP on FAIL_STACK.
986
987 Return 1 if was able to do so and 0 if ran out of memory allocating
988 space to do so. */
989 #define PUSH_PATTERN_OP(pattern_op, fail_stack) \
990 ((FAIL_STACK_FULL () \
991 && !DOUBLE_FAIL_STACK (fail_stack)) \
992 ? 0 \
993 : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
994 1))
995
996 /* This pushes an item onto the failure stack. Must be a four-byte
997 value. Assumes the variable `fail_stack'. Probably should only
998 be called from within `PUSH_FAILURE_POINT'. */
999 #define PUSH_FAILURE_ITEM(item) \
1000 fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
1001
1002 /* The complement operation. Assumes `fail_stack' is nonempty. */
1003 #define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
1004
1005 /* Used to omit pushing failure point id's when we're not debugging. */
1006 #ifdef DEBUG
1007 #define DEBUG_PUSH PUSH_FAILURE_ITEM
1008 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
1009 #else
1010 #define DEBUG_PUSH(item)
1011 #define DEBUG_POP(item_addr)
1012 #endif
1013
1014
1015 /* Push the information about the state we will need
1016 if we ever fail back to it.
1017
1018 Requires variables fail_stack, regstart, regend, reg_info, and
1019 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1020 declared.
1021
1022 Does `return FAILURE_CODE' if runs out of memory. */
1023
1024 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1025 do { \
1026 char *destination; \
1027 /* Must be int, so when we don't save any registers, the arithmetic \
1028 of 0 + -1 isn't done as unsigned. */ \
1029 int this_reg; \
1030 \
1031 DEBUG_STATEMENT (failure_id++); \
1032 DEBUG_STATEMENT (nfailure_points_pushed++); \
1033 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1034 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1035 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1036 \
1037 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1038 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1039 \
1040 /* Ensure we have enough space allocated for what we will push. */ \
1041 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1042 { \
1043 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1044 return failure_code; \
1045 \
1046 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1047 (fail_stack).size); \
1048 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1049 } \
1050 \
1051 /* Push the info, starting with the registers. */ \
1052 DEBUG_PRINT1 ("\n"); \
1053 \
1054 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1055 this_reg++) \
1056 { \
1057 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1058 DEBUG_STATEMENT (num_regs_pushed++); \
1059 \
1060 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1061 PUSH_FAILURE_ITEM (regstart[this_reg]); \
1062 \
1063 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1064 PUSH_FAILURE_ITEM (regend[this_reg]); \
1065 \
1066 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1067 DEBUG_PRINT2 (" match_null=%d", \
1068 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1069 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1070 DEBUG_PRINT2 (" matched_something=%d", \
1071 MATCHED_SOMETHING (reg_info[this_reg])); \
1072 DEBUG_PRINT2 (" ever_matched=%d", \
1073 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1074 DEBUG_PRINT1 ("\n"); \
1075 PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
1076 } \
1077 \
1078 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1079 PUSH_FAILURE_ITEM (lowest_active_reg); \
1080 \
1081 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1082 PUSH_FAILURE_ITEM (highest_active_reg); \
1083 \
1084 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1085 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1086 PUSH_FAILURE_ITEM (pattern_place); \
1087 \
1088 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1089 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1090 size2); \
1091 DEBUG_PRINT1 ("'\n"); \
1092 PUSH_FAILURE_ITEM (string_place); \
1093 \
1094 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1095 DEBUG_PUSH (failure_id); \
1096 } while (0)
1097
1098 /* This is the number of items that are pushed and popped on the stack
1099 for each register. */
1100 #define NUM_REG_ITEMS 3
1101
1102 /* Individual items aside from the registers. */
1103 #ifdef DEBUG
1104 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1105 #else
1106 #define NUM_NONREG_ITEMS 4
1107 #endif
1108
1109 /* We push at most this many items on the stack. */
1110 #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1111
1112 /* We actually push this many items. */
1113 #define NUM_FAILURE_ITEMS \
1114 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
1115 + NUM_NONREG_ITEMS)
1116
1117 /* How many items can still be added to the stack without overflowing it. */
1118 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1119
1120
1121 /* Pops what PUSH_FAIL_STACK pushes.
1122
1123 We restore into the parameters, all of which should be lvalues:
1124 STR -- the saved data position.
1125 PAT -- the saved pattern position.
1126 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1127 REGSTART, REGEND -- arrays of string positions.
1128 REG_INFO -- array of information about each subexpression.
1129
1130 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1131 `pend', `string1', `size1', `string2', and `size2'. */
1132
1133 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1134 { \
1135 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1136 int this_reg; \
1137 const unsigned char *string_temp; \
1138 \
1139 assert (!FAIL_STACK_EMPTY ()); \
1140 \
1141 /* Remove failure points and point to how many regs pushed. */ \
1142 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1143 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1144 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1145 \
1146 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1147 \
1148 DEBUG_POP (&failure_id); \
1149 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1150 \
1151 /* If the saved string location is NULL, it came from an \
1152 on_failure_keep_string_jump opcode, and we want to throw away the \
1153 saved NULL, thus retaining our current position in the string. */ \
1154 string_temp = POP_FAILURE_ITEM (); \
1155 if (string_temp != NULL) \
1156 str = (const char *) string_temp; \
1157 \
1158 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1159 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1160 DEBUG_PRINT1 ("'\n"); \
1161 \
1162 pat = (unsigned char *) POP_FAILURE_ITEM (); \
1163 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1164 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1165 \
1166 /* Restore register info. */ \
1167 high_reg = (unsigned) POP_FAILURE_ITEM (); \
1168 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1169 \
1170 low_reg = (unsigned) POP_FAILURE_ITEM (); \
1171 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1172 \
1173 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1174 { \
1175 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
1176 \
1177 reg_info[this_reg].word = POP_FAILURE_ITEM (); \
1178 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
1179 \
1180 regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
1181 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1182 \
1183 regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
1184 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1185 } \
1186 \
1187 DEBUG_STATEMENT (nfailure_points_popped++); \
1188 } /* POP_FAILURE_POINT */
1189
1190
1191 \f
1192 /* Structure for per-register (a.k.a. per-group) information.
1193 This must not be longer than one word, because we push this value
1194 onto the failure stack. Other register information, such as the
1195 starting and ending positions (which are addresses), and the list of
1196 inner groups (which is a bits list) are maintained in separate
1197 variables.
1198
1199 We are making a (strictly speaking) nonportable assumption here: that
1200 the compiler will pack our bit fields into something that fits into
1201 the type of `word', i.e., is something that fits into one item on the
1202 failure stack. */
1203 typedef union
1204 {
1205 fail_stack_elt_t word;
1206 struct
1207 {
1208 /* This field is one if this group can match the empty string,
1209 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1210 #define MATCH_NULL_UNSET_VALUE 3
1211 unsigned match_null_string_p : 2;
1212 unsigned is_active : 1;
1213 unsigned matched_something : 1;
1214 unsigned ever_matched_something : 1;
1215 } bits;
1216 } register_info_type;
1217
1218 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1219 #define IS_ACTIVE(R) ((R).bits.is_active)
1220 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1221 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1222
1223
1224 /* Call this when have matched a real character; it sets `matched' flags
1225 for the subexpressions which we are currently inside. Also records
1226 that those subexprs have matched. */
1227 #define SET_REGS_MATCHED() \
1228 do \
1229 { \
1230 unsigned r; \
1231 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1232 { \
1233 MATCHED_SOMETHING (reg_info[r]) \
1234 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1235 = 1; \
1236 } \
1237 } \
1238 while (0)
1239
1240
1241 /* Registers are set to a sentinel when they haven't yet matched. */
1242 #define REG_UNSET_VALUE ((char *) -1)
1243 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1244
1245
1246 \f
1247 /* How do we implement a missing MATCH_MAY_ALLOCATE?
1248 We make the fail stack a global thing, and then grow it to
1249 re_max_failures when we compile. */
1250 #ifndef MATCH_MAY_ALLOCATE
1251 static fail_stack_type fail_stack;
1252
1253 static const char ** regstart, ** regend;
1254 static const char ** old_regstart, ** old_regend;
1255 static const char **best_regstart, **best_regend;
1256 static register_info_type *reg_info;
1257 static const char **reg_dummy;
1258 static register_info_type *reg_info_dummy;
1259 #endif
1260
1261 \f
1262 /* Subroutine declarations and macros for regex_compile. */
1263
1264 static void store_op1 (), store_op2 ();
1265 static void insert_op1 (), insert_op2 ();
1266 static boolean at_begline_loc_p (), at_endline_loc_p ();
1267 static boolean group_in_compile_stack ();
1268 static reg_errcode_t compile_range ();
1269
1270 /* Fetch the next character in the uncompiled pattern---translating it
1271 if necessary. Also cast from a signed character in the constant
1272 string passed to us by the user to an unsigned char that we can use
1273 as an array index (in, e.g., `translate'). */
1274 #define PATFETCH(c) \
1275 do {if (p == pend) return REG_EEND; \
1276 c = (unsigned char) *p++; \
1277 if (translate) c = translate[c]; \
1278 } while (0)
1279
1280 /* Fetch the next character in the uncompiled pattern, with no
1281 translation. */
1282 #define PATFETCH_RAW(c) \
1283 do {if (p == pend) return REG_EEND; \
1284 c = (unsigned char) *p++; \
1285 } while (0)
1286
1287 /* Go backwards one character in the pattern. */
1288 #define PATUNFETCH p--
1289
1290
1291 /* If `translate' is non-null, return translate[D], else just D. We
1292 cast the subscript to translate because some data is declared as
1293 `char *', to avoid warnings when a string constant is passed. But
1294 when we use a character as a subscript we must make it unsigned. */
1295 #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
1296
1297
1298 /* Macros for outputting the compiled pattern into `buffer'. */
1299
1300 /* If the buffer isn't allocated when it comes in, use this. */
1301 #define INIT_BUF_SIZE 32
1302
1303 /* Make sure we have at least N more bytes of space in buffer. */
1304 #define GET_BUFFER_SPACE(n) \
1305 while (b - bufp->buffer + (n) > bufp->allocated) \
1306 EXTEND_BUFFER ()
1307
1308 /* Make sure we have one more byte of buffer space and then add C to it. */
1309 #define BUF_PUSH(c) \
1310 do { \
1311 GET_BUFFER_SPACE (1); \
1312 *b++ = (unsigned char) (c); \
1313 } while (0)
1314
1315
1316 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1317 #define BUF_PUSH_2(c1, c2) \
1318 do { \
1319 GET_BUFFER_SPACE (2); \
1320 *b++ = (unsigned char) (c1); \
1321 *b++ = (unsigned char) (c2); \
1322 } while (0)
1323
1324
1325 /* As with BUF_PUSH_2, except for three bytes. */
1326 #define BUF_PUSH_3(c1, c2, c3) \
1327 do { \
1328 GET_BUFFER_SPACE (3); \
1329 *b++ = (unsigned char) (c1); \
1330 *b++ = (unsigned char) (c2); \
1331 *b++ = (unsigned char) (c3); \
1332 } while (0)
1333
1334
1335 /* Store a jump with opcode OP at LOC to location TO. We store a
1336 relative address offset by the three bytes the jump itself occupies. */
1337 #define STORE_JUMP(op, loc, to) \
1338 store_op1 (op, loc, (to) - (loc) - 3)
1339
1340 /* Likewise, for a two-argument jump. */
1341 #define STORE_JUMP2(op, loc, to, arg) \
1342 store_op2 (op, loc, (to) - (loc) - 3, arg)
1343
1344 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1345 #define INSERT_JUMP(op, loc, to) \
1346 insert_op1 (op, loc, (to) - (loc) - 3, b)
1347
1348 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1349 #define INSERT_JUMP2(op, loc, to, arg) \
1350 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1351
1352
1353 /* This is not an arbitrary limit: the arguments which represent offsets
1354 into the pattern are two bytes long. So if 2^16 bytes turns out to
1355 be too small, many things would have to change. */
1356 #define MAX_BUF_SIZE (1L << 16)
1357
1358
1359 /* Extend the buffer by twice its current size via realloc and
1360 reset the pointers that pointed into the old block to point to the
1361 correct places in the new one. If extending the buffer results in it
1362 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1363 #define EXTEND_BUFFER() \
1364 do { \
1365 unsigned char *old_buffer = bufp->buffer; \
1366 if (bufp->allocated == MAX_BUF_SIZE) \
1367 return REG_ESIZE; \
1368 bufp->allocated <<= 1; \
1369 if (bufp->allocated > MAX_BUF_SIZE) \
1370 bufp->allocated = MAX_BUF_SIZE; \
1371 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1372 if (bufp->buffer == NULL) \
1373 return REG_ESPACE; \
1374 /* If the buffer moved, move all the pointers into it. */ \
1375 if (old_buffer != bufp->buffer) \
1376 { \
1377 b = (b - old_buffer) + bufp->buffer; \
1378 begalt = (begalt - old_buffer) + bufp->buffer; \
1379 if (fixup_alt_jump) \
1380 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1381 if (laststart) \
1382 laststart = (laststart - old_buffer) + bufp->buffer; \
1383 if (pending_exact) \
1384 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1385 } \
1386 } while (0)
1387
1388
1389 /* Since we have one byte reserved for the register number argument to
1390 {start,stop}_memory, the maximum number of groups we can report
1391 things about is what fits in that byte. */
1392 #define MAX_REGNUM 255
1393
1394 /* But patterns can have more than `MAX_REGNUM' registers. We just
1395 ignore the excess. */
1396 typedef unsigned regnum_t;
1397
1398
1399 /* Macros for the compile stack. */
1400
1401 /* Since offsets can go either forwards or backwards, this type needs to
1402 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1403 typedef int pattern_offset_t;
1404
1405 typedef struct
1406 {
1407 pattern_offset_t begalt_offset;
1408 pattern_offset_t fixup_alt_jump;
1409 pattern_offset_t inner_group_offset;
1410 pattern_offset_t laststart_offset;
1411 regnum_t regnum;
1412 } compile_stack_elt_t;
1413
1414
1415 typedef struct
1416 {
1417 compile_stack_elt_t *stack;
1418 unsigned size;
1419 unsigned avail; /* Offset of next open position. */
1420 } compile_stack_type;
1421
1422
1423 #define INIT_COMPILE_STACK_SIZE 32
1424
1425 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1426 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1427
1428 /* The next available element. */
1429 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1430
1431
1432 /* Set the bit for character C in a list. */
1433 #define SET_LIST_BIT(c) \
1434 (b[((unsigned char) (c)) / BYTEWIDTH] \
1435 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1436
1437
1438 /* Get the next unsigned number in the uncompiled pattern. */
1439 #define GET_UNSIGNED_NUMBER(num) \
1440 { if (p != pend) \
1441 { \
1442 PATFETCH (c); \
1443 while (ISDIGIT (c)) \
1444 { \
1445 if (num < 0) \
1446 num = 0; \
1447 num = num * 10 + c - '0'; \
1448 if (p == pend) \
1449 break; \
1450 PATFETCH (c); \
1451 } \
1452 } \
1453 }
1454
1455 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1456
1457 #define IS_CHAR_CLASS(string) \
1458 (STREQ (string, "alpha") || STREQ (string, "upper") \
1459 || STREQ (string, "lower") || STREQ (string, "digit") \
1460 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1461 || STREQ (string, "space") || STREQ (string, "print") \
1462 || STREQ (string, "punct") || STREQ (string, "graph") \
1463 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1464 \f
1465 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1466 Returns one of error codes defined in `regex.h', or zero for success.
1467
1468 Assumes the `allocated' (and perhaps `buffer') and `translate'
1469 fields are set in BUFP on entry.
1470
1471 If it succeeds, results are put in BUFP (if it returns an error, the
1472 contents of BUFP are undefined):
1473 `buffer' is the compiled pattern;
1474 `syntax' is set to SYNTAX;
1475 `used' is set to the length of the compiled pattern;
1476 `fastmap_accurate' is zero;
1477 `re_nsub' is the number of subexpressions in PATTERN;
1478 `not_bol' and `not_eol' are zero;
1479
1480 The `fastmap' and `newline_anchor' fields are neither
1481 examined nor set. */
1482
1483 /* Return, freeing storage we allocated. */
1484 #define FREE_STACK_RETURN(value) \
1485 return (free (compile_stack.stack), value)
1486
1487 static reg_errcode_t
1488 regex_compile (pattern, size, syntax, bufp)
1489 const char *pattern;
1490 int size;
1491 reg_syntax_t syntax;
1492 struct re_pattern_buffer *bufp;
1493 {
1494 /* We fetch characters from PATTERN here. Even though PATTERN is
1495 `char *' (i.e., signed), we declare these variables as unsigned, so
1496 they can be reliably used as array indices. */
1497 register unsigned char c, c1;
1498
1499 /* A random temporary spot in PATTERN. */
1500 const char *p1;
1501
1502 /* Points to the end of the buffer, where we should append. */
1503 register unsigned char *b;
1504
1505 /* Keeps track of unclosed groups. */
1506 compile_stack_type compile_stack;
1507
1508 /* Points to the current (ending) position in the pattern. */
1509 const char *p = pattern;
1510 const char *pend = pattern + size;
1511
1512 /* How to translate the characters in the pattern. */
1513 char *translate = bufp->translate;
1514
1515 /* Address of the count-byte of the most recently inserted `exactn'
1516 command. This makes it possible to tell if a new exact-match
1517 character can be added to that command or if the character requires
1518 a new `exactn' command. */
1519 unsigned char *pending_exact = 0;
1520
1521 /* Address of start of the most recently finished expression.
1522 This tells, e.g., postfix * where to find the start of its
1523 operand. Reset at the beginning of groups and alternatives. */
1524 unsigned char *laststart = 0;
1525
1526 /* Address of beginning of regexp, or inside of last group. */
1527 unsigned char *begalt;
1528
1529 /* Place in the uncompiled pattern (i.e., the {) to
1530 which to go back if the interval is invalid. */
1531 const char *beg_interval;
1532
1533 /* Address of the place where a forward jump should go to the end of
1534 the containing expression. Each alternative of an `or' -- except the
1535 last -- ends with a forward jump of this sort. */
1536 unsigned char *fixup_alt_jump = 0;
1537
1538 /* Counts open-groups as they are encountered. Remembered for the
1539 matching close-group on the compile stack, so the same register
1540 number is put in the stop_memory as the start_memory. */
1541 regnum_t regnum = 0;
1542
1543 #ifdef DEBUG
1544 DEBUG_PRINT1 ("\nCompiling pattern: ");
1545 if (debug)
1546 {
1547 unsigned debug_count;
1548
1549 for (debug_count = 0; debug_count < size; debug_count++)
1550 printchar (pattern[debug_count]);
1551 putchar ('\n');
1552 }
1553 #endif /* DEBUG */
1554
1555 /* Initialize the compile stack. */
1556 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1557 if (compile_stack.stack == NULL)
1558 return REG_ESPACE;
1559
1560 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1561 compile_stack.avail = 0;
1562
1563 /* Initialize the pattern buffer. */
1564 bufp->syntax = syntax;
1565 bufp->fastmap_accurate = 0;
1566 bufp->not_bol = bufp->not_eol = 0;
1567
1568 /* Set `used' to zero, so that if we return an error, the pattern
1569 printer (for debugging) will think there's no pattern. We reset it
1570 at the end. */
1571 bufp->used = 0;
1572
1573 /* Always count groups, whether or not bufp->no_sub is set. */
1574 bufp->re_nsub = 0;
1575
1576 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1577 /* Initialize the syntax table. */
1578 init_syntax_once ();
1579 #endif
1580
1581 if (bufp->allocated == 0)
1582 {
1583 if (bufp->buffer)
1584 { /* If zero allocated, but buffer is non-null, try to realloc
1585 enough space. This loses if buffer's address is bogus, but
1586 that is the user's responsibility. */
1587 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1588 }
1589 else
1590 { /* Caller did not allocate a buffer. Do it for them. */
1591 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1592 }
1593 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1594
1595 bufp->allocated = INIT_BUF_SIZE;
1596 }
1597
1598 begalt = b = bufp->buffer;
1599
1600 /* Loop through the uncompiled pattern until we're at the end. */
1601 while (p != pend)
1602 {
1603 PATFETCH (c);
1604
1605 switch (c)
1606 {
1607 case '^':
1608 {
1609 if ( /* If at start of pattern, it's an operator. */
1610 p == pattern + 1
1611 /* If context independent, it's an operator. */
1612 || syntax & RE_CONTEXT_INDEP_ANCHORS
1613 /* Otherwise, depends on what's come before. */
1614 || at_begline_loc_p (pattern, p, syntax))
1615 BUF_PUSH (begline);
1616 else
1617 goto normal_char;
1618 }
1619 break;
1620
1621
1622 case '$':
1623 {
1624 if ( /* If at end of pattern, it's an operator. */
1625 p == pend
1626 /* If context independent, it's an operator. */
1627 || syntax & RE_CONTEXT_INDEP_ANCHORS
1628 /* Otherwise, depends on what's next. */
1629 || at_endline_loc_p (p, pend, syntax))
1630 BUF_PUSH (endline);
1631 else
1632 goto normal_char;
1633 }
1634 break;
1635
1636
1637 case '+':
1638 case '?':
1639 if ((syntax & RE_BK_PLUS_QM)
1640 || (syntax & RE_LIMITED_OPS))
1641 goto normal_char;
1642 handle_plus:
1643 case '*':
1644 /* If there is no previous pattern... */
1645 if (!laststart)
1646 {
1647 if (syntax & RE_CONTEXT_INVALID_OPS)
1648 FREE_STACK_RETURN (REG_BADRPT);
1649 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1650 goto normal_char;
1651 }
1652
1653 {
1654 /* Are we optimizing this jump? */
1655 boolean keep_string_p = false;
1656
1657 /* 1 means zero (many) matches is allowed. */
1658 char zero_times_ok = 0, many_times_ok = 0;
1659
1660 /* If there is a sequence of repetition chars, collapse it
1661 down to just one (the right one). We can't combine
1662 interval operators with these because of, e.g., `a{2}*',
1663 which should only match an even number of `a's. */
1664
1665 for (;;)
1666 {
1667 zero_times_ok |= c != '+';
1668 many_times_ok |= c != '?';
1669
1670 if (p == pend)
1671 break;
1672
1673 PATFETCH (c);
1674
1675 if (c == '*'
1676 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1677 ;
1678
1679 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1680 {
1681 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1682
1683 PATFETCH (c1);
1684 if (!(c1 == '+' || c1 == '?'))
1685 {
1686 PATUNFETCH;
1687 PATUNFETCH;
1688 break;
1689 }
1690
1691 c = c1;
1692 }
1693 else
1694 {
1695 PATUNFETCH;
1696 break;
1697 }
1698
1699 /* If we get here, we found another repeat character. */
1700 }
1701
1702 /* Star, etc. applied to an empty pattern is equivalent
1703 to an empty pattern. */
1704 if (!laststart)
1705 break;
1706
1707 /* Now we know whether or not zero matches is allowed
1708 and also whether or not two or more matches is allowed. */
1709 if (many_times_ok)
1710 { /* More than one repetition is allowed, so put in at the
1711 end a backward relative jump from `b' to before the next
1712 jump we're going to put in below (which jumps from
1713 laststart to after this jump).
1714
1715 But if we are at the `*' in the exact sequence `.*\n',
1716 insert an unconditional jump backwards to the .,
1717 instead of the beginning of the loop. This way we only
1718 push a failure point once, instead of every time
1719 through the loop. */
1720 assert (p - 1 > pattern);
1721
1722 /* Allocate the space for the jump. */
1723 GET_BUFFER_SPACE (3);
1724
1725 /* We know we are not at the first character of the pattern,
1726 because laststart was nonzero. And we've already
1727 incremented `p', by the way, to be the character after
1728 the `*'. Do we have to do something analogous here
1729 for null bytes, because of RE_DOT_NOT_NULL? */
1730 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
1731 && zero_times_ok
1732 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1733 && !(syntax & RE_DOT_NEWLINE))
1734 { /* We have .*\n. */
1735 STORE_JUMP (jump, b, laststart);
1736 keep_string_p = true;
1737 }
1738 else
1739 /* Anything else. */
1740 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1741
1742 /* We've added more stuff to the buffer. */
1743 b += 3;
1744 }
1745
1746 /* On failure, jump from laststart to b + 3, which will be the
1747 end of the buffer after this jump is inserted. */
1748 GET_BUFFER_SPACE (3);
1749 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1750 : on_failure_jump,
1751 laststart, b + 3);
1752 pending_exact = 0;
1753 b += 3;
1754
1755 if (!zero_times_ok)
1756 {
1757 /* At least one repetition is required, so insert a
1758 `dummy_failure_jump' before the initial
1759 `on_failure_jump' instruction of the loop. This
1760 effects a skip over that instruction the first time
1761 we hit that loop. */
1762 GET_BUFFER_SPACE (3);
1763 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1764 b += 3;
1765 }
1766 }
1767 break;
1768
1769
1770 case '.':
1771 laststart = b;
1772 BUF_PUSH (anychar);
1773 break;
1774
1775
1776 case '[':
1777 {
1778 boolean had_char_class = false;
1779
1780 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1781
1782 /* Ensure that we have enough space to push a charset: the
1783 opcode, the length count, and the bitset; 34 bytes in all. */
1784 GET_BUFFER_SPACE (34);
1785
1786 laststart = b;
1787
1788 /* We test `*p == '^' twice, instead of using an if
1789 statement, so we only need one BUF_PUSH. */
1790 BUF_PUSH (*p == '^' ? charset_not : charset);
1791 if (*p == '^')
1792 p++;
1793
1794 /* Remember the first position in the bracket expression. */
1795 p1 = p;
1796
1797 /* Push the number of bytes in the bitmap. */
1798 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1799
1800 /* Clear the whole map. */
1801 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1802
1803 /* charset_not matches newline according to a syntax bit. */
1804 if ((re_opcode_t) b[-2] == charset_not
1805 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1806 SET_LIST_BIT ('\n');
1807
1808 /* Read in characters and ranges, setting map bits. */
1809 for (;;)
1810 {
1811 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1812
1813 PATFETCH (c);
1814
1815 /* \ might escape characters inside [...] and [^...]. */
1816 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1817 {
1818 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1819
1820 PATFETCH (c1);
1821 SET_LIST_BIT (c1);
1822 continue;
1823 }
1824
1825 /* Could be the end of the bracket expression. If it's
1826 not (i.e., when the bracket expression is `[]' so
1827 far), the ']' character bit gets set way below. */
1828 if (c == ']' && p != p1 + 1)
1829 break;
1830
1831 /* Look ahead to see if it's a range when the last thing
1832 was a character class. */
1833 if (had_char_class && c == '-' && *p != ']')
1834 FREE_STACK_RETURN (REG_ERANGE);
1835
1836 /* Look ahead to see if it's a range when the last thing
1837 was a character: if this is a hyphen not at the
1838 beginning or the end of a list, then it's the range
1839 operator. */
1840 if (c == '-'
1841 && !(p - 2 >= pattern && p[-2] == '[')
1842 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
1843 && *p != ']')
1844 {
1845 reg_errcode_t ret
1846 = compile_range (&p, pend, translate, syntax, b);
1847 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
1848 }
1849
1850 else if (p[0] == '-' && p[1] != ']')
1851 { /* This handles ranges made up of characters only. */
1852 reg_errcode_t ret;
1853
1854 /* Move past the `-'. */
1855 PATFETCH (c1);
1856
1857 ret = compile_range (&p, pend, translate, syntax, b);
1858 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
1859 }
1860
1861 /* See if we're at the beginning of a possible character
1862 class. */
1863
1864 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
1865 { /* Leave room for the null. */
1866 char str[CHAR_CLASS_MAX_LENGTH + 1];
1867
1868 PATFETCH (c);
1869 c1 = 0;
1870
1871 /* If pattern is `[[:'. */
1872 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1873
1874 for (;;)
1875 {
1876 PATFETCH (c);
1877 if (c == ':' || c == ']' || p == pend
1878 || c1 == CHAR_CLASS_MAX_LENGTH)
1879 break;
1880 str[c1++] = c;
1881 }
1882 str[c1] = '\0';
1883
1884 /* If isn't a word bracketed by `[:' and:`]':
1885 undo the ending character, the letters, and leave
1886 the leading `:' and `[' (but set bits for them). */
1887 if (c == ':' && *p == ']')
1888 {
1889 int ch;
1890 boolean is_alnum = STREQ (str, "alnum");
1891 boolean is_alpha = STREQ (str, "alpha");
1892 boolean is_blank = STREQ (str, "blank");
1893 boolean is_cntrl = STREQ (str, "cntrl");
1894 boolean is_digit = STREQ (str, "digit");
1895 boolean is_graph = STREQ (str, "graph");
1896 boolean is_lower = STREQ (str, "lower");
1897 boolean is_print = STREQ (str, "print");
1898 boolean is_punct = STREQ (str, "punct");
1899 boolean is_space = STREQ (str, "space");
1900 boolean is_upper = STREQ (str, "upper");
1901 boolean is_xdigit = STREQ (str, "xdigit");
1902
1903 if (!IS_CHAR_CLASS (str))
1904 FREE_STACK_RETURN (REG_ECTYPE);
1905
1906 /* Throw away the ] at the end of the character
1907 class. */
1908 PATFETCH (c);
1909
1910 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1911
1912 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
1913 {
1914 /* This was split into 3 if's to
1915 avoid an arbitrary limit in some compiler. */
1916 if ( (is_alnum && ISALNUM (ch))
1917 || (is_alpha && ISALPHA (ch))
1918 || (is_blank && ISBLANK (ch))
1919 || (is_cntrl && ISCNTRL (ch)))
1920 SET_LIST_BIT (ch);
1921 if ( (is_digit && ISDIGIT (ch))
1922 || (is_graph && ISGRAPH (ch))
1923 || (is_lower && ISLOWER (ch))
1924 || (is_print && ISPRINT (ch)))
1925 SET_LIST_BIT (ch);
1926 if ( (is_punct && ISPUNCT (ch))
1927 || (is_space && ISSPACE (ch))
1928 || (is_upper && ISUPPER (ch))
1929 || (is_xdigit && ISXDIGIT (ch)))
1930 SET_LIST_BIT (ch);
1931 }
1932 had_char_class = true;
1933 }
1934 else
1935 {
1936 c1++;
1937 while (c1--)
1938 PATUNFETCH;
1939 SET_LIST_BIT ('[');
1940 SET_LIST_BIT (':');
1941 had_char_class = false;
1942 }
1943 }
1944 else
1945 {
1946 had_char_class = false;
1947 SET_LIST_BIT (c);
1948 }
1949 }
1950
1951 /* Discard any (non)matching list bytes that are all 0 at the
1952 end of the map. Decrease the map-length byte too. */
1953 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
1954 b[-1]--;
1955 b += b[-1];
1956 }
1957 break;
1958
1959
1960 case '(':
1961 if (syntax & RE_NO_BK_PARENS)
1962 goto handle_open;
1963 else
1964 goto normal_char;
1965
1966
1967 case ')':
1968 if (syntax & RE_NO_BK_PARENS)
1969 goto handle_close;
1970 else
1971 goto normal_char;
1972
1973
1974 case '\n':
1975 if (syntax & RE_NEWLINE_ALT)
1976 goto handle_alt;
1977 else
1978 goto normal_char;
1979
1980
1981 case '|':
1982 if (syntax & RE_NO_BK_VBAR)
1983 goto handle_alt;
1984 else
1985 goto normal_char;
1986
1987
1988 case '{':
1989 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
1990 goto handle_interval;
1991 else
1992 goto normal_char;
1993
1994
1995 case '\\':
1996 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1997
1998 /* Do not translate the character after the \, so that we can
1999 distinguish, e.g., \B from \b, even if we normally would
2000 translate, e.g., B to b. */
2001 PATFETCH_RAW (c);
2002
2003 switch (c)
2004 {
2005 case '(':
2006 if (syntax & RE_NO_BK_PARENS)
2007 goto normal_backslash;
2008
2009 handle_open:
2010 bufp->re_nsub++;
2011 regnum++;
2012
2013 if (COMPILE_STACK_FULL)
2014 {
2015 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2016 compile_stack_elt_t);
2017 if (compile_stack.stack == NULL) return REG_ESPACE;
2018
2019 compile_stack.size <<= 1;
2020 }
2021
2022 /* These are the values to restore when we hit end of this
2023 group. They are all relative offsets, so that if the
2024 whole pattern moves because of realloc, they will still
2025 be valid. */
2026 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2027 COMPILE_STACK_TOP.fixup_alt_jump
2028 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2029 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2030 COMPILE_STACK_TOP.regnum = regnum;
2031
2032 /* We will eventually replace the 0 with the number of
2033 groups inner to this one. But do not push a
2034 start_memory for groups beyond the last one we can
2035 represent in the compiled pattern. */
2036 if (regnum <= MAX_REGNUM)
2037 {
2038 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2039 BUF_PUSH_3 (start_memory, regnum, 0);
2040 }
2041
2042 compile_stack.avail++;
2043
2044 fixup_alt_jump = 0;
2045 laststart = 0;
2046 begalt = b;
2047 /* If we've reached MAX_REGNUM groups, then this open
2048 won't actually generate any code, so we'll have to
2049 clear pending_exact explicitly. */
2050 pending_exact = 0;
2051 break;
2052
2053
2054 case ')':
2055 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2056
2057 if (COMPILE_STACK_EMPTY)
2058 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2059 goto normal_backslash;
2060 else
2061 FREE_STACK_RETURN (REG_ERPAREN);
2062
2063 handle_close:
2064 if (fixup_alt_jump)
2065 { /* Push a dummy failure point at the end of the
2066 alternative for a possible future
2067 `pop_failure_jump' to pop. See comments at
2068 `push_dummy_failure' in `re_match_2'. */
2069 BUF_PUSH (push_dummy_failure);
2070
2071 /* We allocated space for this jump when we assigned
2072 to `fixup_alt_jump', in the `handle_alt' case below. */
2073 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2074 }
2075
2076 /* See similar code for backslashed left paren above. */
2077 if (COMPILE_STACK_EMPTY)
2078 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2079 goto normal_char;
2080 else
2081 FREE_STACK_RETURN (REG_ERPAREN);
2082
2083 /* Since we just checked for an empty stack above, this
2084 ``can't happen''. */
2085 assert (compile_stack.avail != 0);
2086 {
2087 /* We don't just want to restore into `regnum', because
2088 later groups should continue to be numbered higher,
2089 as in `(ab)c(de)' -- the second group is #2. */
2090 regnum_t this_group_regnum;
2091
2092 compile_stack.avail--;
2093 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2094 fixup_alt_jump
2095 = COMPILE_STACK_TOP.fixup_alt_jump
2096 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2097 : 0;
2098 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2099 this_group_regnum = COMPILE_STACK_TOP.regnum;
2100 /* If we've reached MAX_REGNUM groups, then this open
2101 won't actually generate any code, so we'll have to
2102 clear pending_exact explicitly. */
2103 pending_exact = 0;
2104
2105 /* We're at the end of the group, so now we know how many
2106 groups were inside this one. */
2107 if (this_group_regnum <= MAX_REGNUM)
2108 {
2109 unsigned char *inner_group_loc
2110 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2111
2112 *inner_group_loc = regnum - this_group_regnum;
2113 BUF_PUSH_3 (stop_memory, this_group_regnum,
2114 regnum - this_group_regnum);
2115 }
2116 }
2117 break;
2118
2119
2120 case '|': /* `\|'. */
2121 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2122 goto normal_backslash;
2123 handle_alt:
2124 if (syntax & RE_LIMITED_OPS)
2125 goto normal_char;
2126
2127 /* Insert before the previous alternative a jump which
2128 jumps to this alternative if the former fails. */
2129 GET_BUFFER_SPACE (3);
2130 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2131 pending_exact = 0;
2132 b += 3;
2133
2134 /* The alternative before this one has a jump after it
2135 which gets executed if it gets matched. Adjust that
2136 jump so it will jump to this alternative's analogous
2137 jump (put in below, which in turn will jump to the next
2138 (if any) alternative's such jump, etc.). The last such
2139 jump jumps to the correct final destination. A picture:
2140 _____ _____
2141 | | | |
2142 | v | v
2143 a | b | c
2144
2145 If we are at `b', then fixup_alt_jump right now points to a
2146 three-byte space after `a'. We'll put in the jump, set
2147 fixup_alt_jump to right after `b', and leave behind three
2148 bytes which we'll fill in when we get to after `c'. */
2149
2150 if (fixup_alt_jump)
2151 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2152
2153 /* Mark and leave space for a jump after this alternative,
2154 to be filled in later either by next alternative or
2155 when know we're at the end of a series of alternatives. */
2156 fixup_alt_jump = b;
2157 GET_BUFFER_SPACE (3);
2158 b += 3;
2159
2160 laststart = 0;
2161 begalt = b;
2162 break;
2163
2164
2165 case '{':
2166 /* If \{ is a literal. */
2167 if (!(syntax & RE_INTERVALS)
2168 /* If we're at `\{' and it's not the open-interval
2169 operator. */
2170 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2171 || (p - 2 == pattern && p == pend))
2172 goto normal_backslash;
2173
2174 handle_interval:
2175 {
2176 /* If got here, then the syntax allows intervals. */
2177
2178 /* At least (most) this many matches must be made. */
2179 int lower_bound = -1, upper_bound = -1;
2180
2181 beg_interval = p - 1;
2182
2183 if (p == pend)
2184 {
2185 if (syntax & RE_NO_BK_BRACES)
2186 goto unfetch_interval;
2187 else
2188 FREE_STACK_RETURN (REG_EBRACE);
2189 }
2190
2191 GET_UNSIGNED_NUMBER (lower_bound);
2192
2193 if (c == ',')
2194 {
2195 GET_UNSIGNED_NUMBER (upper_bound);
2196 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2197 }
2198 else
2199 /* Interval such as `{1}' => match exactly once. */
2200 upper_bound = lower_bound;
2201
2202 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2203 || lower_bound > upper_bound)
2204 {
2205 if (syntax & RE_NO_BK_BRACES)
2206 goto unfetch_interval;
2207 else
2208 FREE_STACK_RETURN (REG_BADBR);
2209 }
2210
2211 if (!(syntax & RE_NO_BK_BRACES))
2212 {
2213 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2214
2215 PATFETCH (c);
2216 }
2217
2218 if (c != '}')
2219 {
2220 if (syntax & RE_NO_BK_BRACES)
2221 goto unfetch_interval;
2222 else
2223 FREE_STACK_RETURN (REG_BADBR);
2224 }
2225
2226 /* We just parsed a valid interval. */
2227
2228 /* If it's invalid to have no preceding re. */
2229 if (!laststart)
2230 {
2231 if (syntax & RE_CONTEXT_INVALID_OPS)
2232 FREE_STACK_RETURN (REG_BADRPT);
2233 else if (syntax & RE_CONTEXT_INDEP_OPS)
2234 laststart = b;
2235 else
2236 goto unfetch_interval;
2237 }
2238
2239 /* If the upper bound is zero, don't want to succeed at
2240 all; jump from `laststart' to `b + 3', which will be
2241 the end of the buffer after we insert the jump. */
2242 if (upper_bound == 0)
2243 {
2244 GET_BUFFER_SPACE (3);
2245 INSERT_JUMP (jump, laststart, b + 3);
2246 b += 3;
2247 }
2248
2249 /* Otherwise, we have a nontrivial interval. When
2250 we're all done, the pattern will look like:
2251 set_number_at <jump count> <upper bound>
2252 set_number_at <succeed_n count> <lower bound>
2253 succeed_n <after jump addr> <succeed_n count>
2254 <body of loop>
2255 jump_n <succeed_n addr> <jump count>
2256 (The upper bound and `jump_n' are omitted if
2257 `upper_bound' is 1, though.) */
2258 else
2259 { /* If the upper bound is > 1, we need to insert
2260 more at the end of the loop. */
2261 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2262
2263 GET_BUFFER_SPACE (nbytes);
2264
2265 /* Initialize lower bound of the `succeed_n', even
2266 though it will be set during matching by its
2267 attendant `set_number_at' (inserted next),
2268 because `re_compile_fastmap' needs to know.
2269 Jump to the `jump_n' we might insert below. */
2270 INSERT_JUMP2 (succeed_n, laststart,
2271 b + 5 + (upper_bound > 1) * 5,
2272 lower_bound);
2273 b += 5;
2274
2275 /* Code to initialize the lower bound. Insert
2276 before the `succeed_n'. The `5' is the last two
2277 bytes of this `set_number_at', plus 3 bytes of
2278 the following `succeed_n'. */
2279 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2280 b += 5;
2281
2282 if (upper_bound > 1)
2283 { /* More than one repetition is allowed, so
2284 append a backward jump to the `succeed_n'
2285 that starts this interval.
2286
2287 When we've reached this during matching,
2288 we'll have matched the interval once, so
2289 jump back only `upper_bound - 1' times. */
2290 STORE_JUMP2 (jump_n, b, laststart + 5,
2291 upper_bound - 1);
2292 b += 5;
2293
2294 /* The location we want to set is the second
2295 parameter of the `jump_n'; that is `b-2' as
2296 an absolute address. `laststart' will be
2297 the `set_number_at' we're about to insert;
2298 `laststart+3' the number to set, the source
2299 for the relative address. But we are
2300 inserting into the middle of the pattern --
2301 so everything is getting moved up by 5.
2302 Conclusion: (b - 2) - (laststart + 3) + 5,
2303 i.e., b - laststart.
2304
2305 We insert this at the beginning of the loop
2306 so that if we fail during matching, we'll
2307 reinitialize the bounds. */
2308 insert_op2 (set_number_at, laststart, b - laststart,
2309 upper_bound - 1, b);
2310 b += 5;
2311 }
2312 }
2313 pending_exact = 0;
2314 beg_interval = NULL;
2315 }
2316 break;
2317
2318 unfetch_interval:
2319 /* If an invalid interval, match the characters as literals. */
2320 assert (beg_interval);
2321 p = beg_interval;
2322 beg_interval = NULL;
2323
2324 /* normal_char and normal_backslash need `c'. */
2325 PATFETCH (c);
2326
2327 if (!(syntax & RE_NO_BK_BRACES))
2328 {
2329 if (p > pattern && p[-1] == '\\')
2330 goto normal_backslash;
2331 }
2332 goto normal_char;
2333
2334 #ifdef emacs
2335 /* There is no way to specify the before_dot and after_dot
2336 operators. rms says this is ok. --karl */
2337 case '=':
2338 BUF_PUSH (at_dot);
2339 break;
2340
2341 case 's':
2342 laststart = b;
2343 PATFETCH (c);
2344 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2345 break;
2346
2347 case 'S':
2348 laststart = b;
2349 PATFETCH (c);
2350 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2351 break;
2352 #endif /* emacs */
2353
2354
2355 case 'w':
2356 laststart = b;
2357 BUF_PUSH (wordchar);
2358 break;
2359
2360
2361 case 'W':
2362 laststart = b;
2363 BUF_PUSH (notwordchar);
2364 break;
2365
2366
2367 case '<':
2368 BUF_PUSH (wordbeg);
2369 break;
2370
2371 case '>':
2372 BUF_PUSH (wordend);
2373 break;
2374
2375 case 'b':
2376 BUF_PUSH (wordbound);
2377 break;
2378
2379 case 'B':
2380 BUF_PUSH (notwordbound);
2381 break;
2382
2383 case '`':
2384 BUF_PUSH (begbuf);
2385 break;
2386
2387 case '\'':
2388 BUF_PUSH (endbuf);
2389 break;
2390
2391 case '1': case '2': case '3': case '4': case '5':
2392 case '6': case '7': case '8': case '9':
2393 if (syntax & RE_NO_BK_REFS)
2394 goto normal_char;
2395
2396 c1 = c - '0';
2397
2398 if (c1 > regnum)
2399 FREE_STACK_RETURN (REG_ESUBREG);
2400
2401 /* Can't back reference to a subexpression if inside of it. */
2402 if (group_in_compile_stack (compile_stack, c1))
2403 goto normal_char;
2404
2405 laststart = b;
2406 BUF_PUSH_2 (duplicate, c1);
2407 break;
2408
2409
2410 case '+':
2411 case '?':
2412 if (syntax & RE_BK_PLUS_QM)
2413 goto handle_plus;
2414 else
2415 goto normal_backslash;
2416
2417 default:
2418 normal_backslash:
2419 /* You might think it would be useful for \ to mean
2420 not to translate; but if we don't translate it
2421 it will never match anything. */
2422 c = TRANSLATE (c);
2423 goto normal_char;
2424 }
2425 break;
2426
2427
2428 default:
2429 /* Expects the character in `c'. */
2430 normal_char:
2431 /* If no exactn currently being built. */
2432 if (!pending_exact
2433
2434 /* If last exactn not at current position. */
2435 || pending_exact + *pending_exact + 1 != b
2436
2437 /* We have only one byte following the exactn for the count. */
2438 || *pending_exact == (1 << BYTEWIDTH) - 1
2439
2440 /* If followed by a repetition operator. */
2441 || *p == '*' || *p == '^'
2442 || ((syntax & RE_BK_PLUS_QM)
2443 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2444 : (*p == '+' || *p == '?'))
2445 || ((syntax & RE_INTERVALS)
2446 && ((syntax & RE_NO_BK_BRACES)
2447 ? *p == '{'
2448 : (p[0] == '\\' && p[1] == '{'))))
2449 {
2450 /* Start building a new exactn. */
2451
2452 laststart = b;
2453
2454 BUF_PUSH_2 (exactn, 0);
2455 pending_exact = b - 1;
2456 }
2457
2458 BUF_PUSH (c);
2459 (*pending_exact)++;
2460 break;
2461 } /* switch (c) */
2462 } /* while p != pend */
2463
2464
2465 /* Through the pattern now. */
2466
2467 if (fixup_alt_jump)
2468 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2469
2470 if (!COMPILE_STACK_EMPTY)
2471 FREE_STACK_RETURN (REG_EPAREN);
2472
2473 free (compile_stack.stack);
2474
2475 /* We have succeeded; set the length of the buffer. */
2476 bufp->used = b - bufp->buffer;
2477
2478 #ifdef DEBUG
2479 if (debug)
2480 {
2481 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2482 print_compiled_pattern (bufp);
2483 }
2484 #endif /* DEBUG */
2485
2486 #ifndef MATCH_MAY_ALLOCATE
2487 /* Initialize the failure stack to the largest possible stack. This
2488 isn't necessary unless we're trying to avoid calling alloca in
2489 the search and match routines. */
2490 {
2491 int num_regs = bufp->re_nsub + 1;
2492
2493 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2494 is strictly greater than re_max_failures, the largest possible stack
2495 is 2 * re_max_failures failure points. */
2496 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2497 {
2498 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2499
2500 #ifdef emacs
2501 if (! fail_stack.stack)
2502 fail_stack.stack
2503 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2504 * sizeof (fail_stack_elt_t));
2505 else
2506 fail_stack.stack
2507 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2508 (fail_stack.size
2509 * sizeof (fail_stack_elt_t)));
2510 #else /* not emacs */
2511 if (! fail_stack.stack)
2512 fail_stack.stack
2513 = (fail_stack_elt_t *) malloc (fail_stack.size
2514 * sizeof (fail_stack_elt_t));
2515 else
2516 fail_stack.stack
2517 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2518 (fail_stack.size
2519 * sizeof (fail_stack_elt_t)));
2520 #endif /* not emacs */
2521 }
2522
2523 /* Initialize some other variables the matcher uses. */
2524 RETALLOC_IF (regstart, num_regs, const char *);
2525 RETALLOC_IF (regend, num_regs, const char *);
2526 RETALLOC_IF (old_regstart, num_regs, const char *);
2527 RETALLOC_IF (old_regend, num_regs, const char *);
2528 RETALLOC_IF (best_regstart, num_regs, const char *);
2529 RETALLOC_IF (best_regend, num_regs, const char *);
2530 RETALLOC_IF (reg_info, num_regs, register_info_type);
2531 RETALLOC_IF (reg_dummy, num_regs, const char *);
2532 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
2533 }
2534 #endif
2535
2536 return REG_NOERROR;
2537 } /* regex_compile */
2538 \f
2539 /* Subroutines for `regex_compile'. */
2540
2541 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2542
2543 static void
2544 store_op1 (op, loc, arg)
2545 re_opcode_t op;
2546 unsigned char *loc;
2547 int arg;
2548 {
2549 *loc = (unsigned char) op;
2550 STORE_NUMBER (loc + 1, arg);
2551 }
2552
2553
2554 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2555
2556 static void
2557 store_op2 (op, loc, arg1, arg2)
2558 re_opcode_t op;
2559 unsigned char *loc;
2560 int arg1, arg2;
2561 {
2562 *loc = (unsigned char) op;
2563 STORE_NUMBER (loc + 1, arg1);
2564 STORE_NUMBER (loc + 3, arg2);
2565 }
2566
2567
2568 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2569 for OP followed by two-byte integer parameter ARG. */
2570
2571 static void
2572 insert_op1 (op, loc, arg, end)
2573 re_opcode_t op;
2574 unsigned char *loc;
2575 int arg;
2576 unsigned char *end;
2577 {
2578 register unsigned char *pfrom = end;
2579 register unsigned char *pto = end + 3;
2580
2581 while (pfrom != loc)
2582 *--pto = *--pfrom;
2583
2584 store_op1 (op, loc, arg);
2585 }
2586
2587
2588 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2589
2590 static void
2591 insert_op2 (op, loc, arg1, arg2, end)
2592 re_opcode_t op;
2593 unsigned char *loc;
2594 int arg1, arg2;
2595 unsigned char *end;
2596 {
2597 register unsigned char *pfrom = end;
2598 register unsigned char *pto = end + 5;
2599
2600 while (pfrom != loc)
2601 *--pto = *--pfrom;
2602
2603 store_op2 (op, loc, arg1, arg2);
2604 }
2605
2606
2607 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2608 after an alternative or a begin-subexpression. We assume there is at
2609 least one character before the ^. */
2610
2611 static boolean
2612 at_begline_loc_p (pattern, p, syntax)
2613 const char *pattern, *p;
2614 reg_syntax_t syntax;
2615 {
2616 const char *prev = p - 2;
2617 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2618
2619 return
2620 /* After a subexpression? */
2621 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2622 /* After an alternative? */
2623 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2624 }
2625
2626
2627 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2628 at least one character after the $, i.e., `P < PEND'. */
2629
2630 static boolean
2631 at_endline_loc_p (p, pend, syntax)
2632 const char *p, *pend;
2633 int syntax;
2634 {
2635 const char *next = p;
2636 boolean next_backslash = *next == '\\';
2637 const char *next_next = p + 1 < pend ? p + 1 : NULL;
2638
2639 return
2640 /* Before a subexpression? */
2641 (syntax & RE_NO_BK_PARENS ? *next == ')'
2642 : next_backslash && next_next && *next_next == ')')
2643 /* Before an alternative? */
2644 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2645 : next_backslash && next_next && *next_next == '|');
2646 }
2647
2648
2649 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2650 false if it's not. */
2651
2652 static boolean
2653 group_in_compile_stack (compile_stack, regnum)
2654 compile_stack_type compile_stack;
2655 regnum_t regnum;
2656 {
2657 int this_element;
2658
2659 for (this_element = compile_stack.avail - 1;
2660 this_element >= 0;
2661 this_element--)
2662 if (compile_stack.stack[this_element].regnum == regnum)
2663 return true;
2664
2665 return false;
2666 }
2667
2668
2669 /* Read the ending character of a range (in a bracket expression) from the
2670 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2671 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2672 Then we set the translation of all bits between the starting and
2673 ending characters (inclusive) in the compiled pattern B.
2674
2675 Return an error code.
2676
2677 We use these short variable names so we can use the same macros as
2678 `regex_compile' itself. */
2679
2680 static reg_errcode_t
2681 compile_range (p_ptr, pend, translate, syntax, b)
2682 const char **p_ptr, *pend;
2683 char *translate;
2684 reg_syntax_t syntax;
2685 unsigned char *b;
2686 {
2687 unsigned this_char;
2688
2689 const char *p = *p_ptr;
2690 int range_start, range_end;
2691
2692 if (p == pend)
2693 return REG_ERANGE;
2694
2695 /* Even though the pattern is a signed `char *', we need to fetch
2696 with unsigned char *'s; if the high bit of the pattern character
2697 is set, the range endpoints will be negative if we fetch using a
2698 signed char *.
2699
2700 We also want to fetch the endpoints without translating them; the
2701 appropriate translation is done in the bit-setting loop below. */
2702 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
2703 range_start = ((const unsigned char *) p)[-2];
2704 range_end = ((const unsigned char *) p)[0];
2705
2706 /* Have to increment the pointer into the pattern string, so the
2707 caller isn't still at the ending character. */
2708 (*p_ptr)++;
2709
2710 /* If the start is after the end, the range is empty. */
2711 if (range_start > range_end)
2712 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2713
2714 /* Here we see why `this_char' has to be larger than an `unsigned
2715 char' -- the range is inclusive, so if `range_end' == 0xff
2716 (assuming 8-bit characters), we would otherwise go into an infinite
2717 loop, since all characters <= 0xff. */
2718 for (this_char = range_start; this_char <= range_end; this_char++)
2719 {
2720 SET_LIST_BIT (TRANSLATE (this_char));
2721 }
2722
2723 return REG_NOERROR;
2724 }
2725 \f
2726 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2727 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2728 characters can start a string that matches the pattern. This fastmap
2729 is used by re_search to skip quickly over impossible starting points.
2730
2731 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2732 area as BUFP->fastmap.
2733
2734 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2735 the pattern buffer.
2736
2737 Returns 0 if we succeed, -2 if an internal error. */
2738
2739 int
2740 re_compile_fastmap (bufp)
2741 struct re_pattern_buffer *bufp;
2742 {
2743 int j, k;
2744 #ifdef MATCH_MAY_ALLOCATE
2745 fail_stack_type fail_stack;
2746 #endif
2747 #ifndef REGEX_MALLOC
2748 char *destination;
2749 #endif
2750 /* We don't push any register information onto the failure stack. */
2751 unsigned num_regs = 0;
2752
2753 register char *fastmap = bufp->fastmap;
2754 unsigned char *pattern = bufp->buffer;
2755 unsigned long size = bufp->used;
2756 unsigned char *p = pattern;
2757 register unsigned char *pend = pattern + size;
2758
2759 /* Assume that each path through the pattern can be null until
2760 proven otherwise. We set this false at the bottom of switch
2761 statement, to which we get only if a particular path doesn't
2762 match the empty string. */
2763 boolean path_can_be_null = true;
2764
2765 /* We aren't doing a `succeed_n' to begin with. */
2766 boolean succeed_n_p = false;
2767
2768 assert (fastmap != NULL && p != NULL);
2769
2770 INIT_FAIL_STACK ();
2771 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
2772 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2773 bufp->can_be_null = 0;
2774
2775 while (p != pend || !FAIL_STACK_EMPTY ())
2776 {
2777 if (p == pend)
2778 {
2779 bufp->can_be_null |= path_can_be_null;
2780
2781 /* Reset for next path. */
2782 path_can_be_null = true;
2783
2784 p = fail_stack.stack[--fail_stack.avail];
2785 }
2786
2787 /* We should never be about to go beyond the end of the pattern. */
2788 assert (p < pend);
2789
2790 #ifdef SWITCH_ENUM_BUG
2791 switch ((int) ((re_opcode_t) *p++))
2792 #else
2793 switch ((re_opcode_t) *p++)
2794 #endif
2795 {
2796
2797 /* I guess the idea here is to simply not bother with a fastmap
2798 if a backreference is used, since it's too hard to figure out
2799 the fastmap for the corresponding group. Setting
2800 `can_be_null' stops `re_search_2' from using the fastmap, so
2801 that is all we do. */
2802 case duplicate:
2803 bufp->can_be_null = 1;
2804 return 0;
2805
2806
2807 /* Following are the cases which match a character. These end
2808 with `break'. */
2809
2810 case exactn:
2811 fastmap[p[1]] = 1;
2812 break;
2813
2814
2815 case charset:
2816 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2817 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2818 fastmap[j] = 1;
2819 break;
2820
2821
2822 case charset_not:
2823 /* Chars beyond end of map must be allowed. */
2824 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
2825 fastmap[j] = 1;
2826
2827 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2828 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
2829 fastmap[j] = 1;
2830 break;
2831
2832
2833 case wordchar:
2834 for (j = 0; j < (1 << BYTEWIDTH); j++)
2835 if (SYNTAX (j) == Sword)
2836 fastmap[j] = 1;
2837 break;
2838
2839
2840 case notwordchar:
2841 for (j = 0; j < (1 << BYTEWIDTH); j++)
2842 if (SYNTAX (j) != Sword)
2843 fastmap[j] = 1;
2844 break;
2845
2846
2847 case anychar:
2848 {
2849 int fastmap_newline = fastmap['\n'];
2850
2851 /* `.' matches anything ... */
2852 for (j = 0; j < (1 << BYTEWIDTH); j++)
2853 fastmap[j] = 1;
2854
2855 /* ... except perhaps newline. */
2856 if (!(bufp->syntax & RE_DOT_NEWLINE))
2857 fastmap['\n'] = fastmap_newline;
2858
2859 /* Return if we have already set `can_be_null'; if we have,
2860 then the fastmap is irrelevant. Something's wrong here. */
2861 else if (bufp->can_be_null)
2862 return 0;
2863
2864 /* Otherwise, have to check alternative paths. */
2865 break;
2866 }
2867
2868 #ifdef emacs
2869 case syntaxspec:
2870 k = *p++;
2871 for (j = 0; j < (1 << BYTEWIDTH); j++)
2872 if (SYNTAX (j) == (enum syntaxcode) k)
2873 fastmap[j] = 1;
2874 break;
2875
2876
2877 case notsyntaxspec:
2878 k = *p++;
2879 for (j = 0; j < (1 << BYTEWIDTH); j++)
2880 if (SYNTAX (j) != (enum syntaxcode) k)
2881 fastmap[j] = 1;
2882 break;
2883
2884
2885 /* All cases after this match the empty string. These end with
2886 `continue'. */
2887
2888
2889 case before_dot:
2890 case at_dot:
2891 case after_dot:
2892 continue;
2893 #endif /* not emacs */
2894
2895
2896 case no_op:
2897 case begline:
2898 case endline:
2899 case begbuf:
2900 case endbuf:
2901 case wordbound:
2902 case notwordbound:
2903 case wordbeg:
2904 case wordend:
2905 case push_dummy_failure:
2906 continue;
2907
2908
2909 case jump_n:
2910 case pop_failure_jump:
2911 case maybe_pop_jump:
2912 case jump:
2913 case jump_past_alt:
2914 case dummy_failure_jump:
2915 EXTRACT_NUMBER_AND_INCR (j, p);
2916 p += j;
2917 if (j > 0)
2918 continue;
2919
2920 /* Jump backward implies we just went through the body of a
2921 loop and matched nothing. Opcode jumped to should be
2922 `on_failure_jump' or `succeed_n'. Just treat it like an
2923 ordinary jump. For a * loop, it has pushed its failure
2924 point already; if so, discard that as redundant. */
2925 if ((re_opcode_t) *p != on_failure_jump
2926 && (re_opcode_t) *p != succeed_n)
2927 continue;
2928
2929 p++;
2930 EXTRACT_NUMBER_AND_INCR (j, p);
2931 p += j;
2932
2933 /* If what's on the stack is where we are now, pop it. */
2934 if (!FAIL_STACK_EMPTY ()
2935 && fail_stack.stack[fail_stack.avail - 1] == p)
2936 fail_stack.avail--;
2937
2938 continue;
2939
2940
2941 case on_failure_jump:
2942 case on_failure_keep_string_jump:
2943 handle_on_failure_jump:
2944 EXTRACT_NUMBER_AND_INCR (j, p);
2945
2946 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
2947 end of the pattern. We don't want to push such a point,
2948 since when we restore it above, entering the switch will
2949 increment `p' past the end of the pattern. We don't need
2950 to push such a point since we obviously won't find any more
2951 fastmap entries beyond `pend'. Such a pattern can match
2952 the null string, though. */
2953 if (p + j < pend)
2954 {
2955 if (!PUSH_PATTERN_OP (p + j, fail_stack))
2956 return -2;
2957 }
2958 else
2959 bufp->can_be_null = 1;
2960
2961 if (succeed_n_p)
2962 {
2963 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
2964 succeed_n_p = false;
2965 }
2966
2967 continue;
2968
2969
2970 case succeed_n:
2971 /* Get to the number of times to succeed. */
2972 p += 2;
2973
2974 /* Increment p past the n for when k != 0. */
2975 EXTRACT_NUMBER_AND_INCR (k, p);
2976 if (k == 0)
2977 {
2978 p -= 4;
2979 succeed_n_p = true; /* Spaghetti code alert. */
2980 goto handle_on_failure_jump;
2981 }
2982 continue;
2983
2984
2985 case set_number_at:
2986 p += 4;
2987 continue;
2988
2989
2990 case start_memory:
2991 case stop_memory:
2992 p += 2;
2993 continue;
2994
2995
2996 default:
2997 abort (); /* We have listed all the cases. */
2998 } /* switch *p++ */
2999
3000 /* Getting here means we have found the possible starting
3001 characters for one path of the pattern -- and that the empty
3002 string does not match. We need not follow this path further.
3003 Instead, look at the next alternative (remembered on the
3004 stack), or quit if no more. The test at the top of the loop
3005 does these things. */
3006 path_can_be_null = false;
3007 p = pend;
3008 } /* while p */
3009
3010 /* Set `can_be_null' for the last path (also the first path, if the
3011 pattern is empty). */
3012 bufp->can_be_null |= path_can_be_null;
3013 return 0;
3014 } /* re_compile_fastmap */
3015 \f
3016 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3017 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3018 this memory for recording register information. STARTS and ENDS
3019 must be allocated using the malloc library routine, and must each
3020 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3021
3022 If NUM_REGS == 0, then subsequent matches should allocate their own
3023 register data.
3024
3025 Unless this function is called, the first search or match using
3026 PATTERN_BUFFER will allocate its own register data, without
3027 freeing the old data. */
3028
3029 void
3030 re_set_registers (bufp, regs, num_regs, starts, ends)
3031 struct re_pattern_buffer *bufp;
3032 struct re_registers *regs;
3033 unsigned num_regs;
3034 regoff_t *starts, *ends;
3035 {
3036 if (num_regs)
3037 {
3038 bufp->regs_allocated = REGS_REALLOCATE;
3039 regs->num_regs = num_regs;
3040 regs->start = starts;
3041 regs->end = ends;
3042 }
3043 else
3044 {
3045 bufp->regs_allocated = REGS_UNALLOCATED;
3046 regs->num_regs = 0;
3047 regs->start = regs->end = (regoff_t *) 0;
3048 }
3049 }
3050 \f
3051 /* Searching routines. */
3052
3053 /* Like re_search_2, below, but only one string is specified, and
3054 doesn't let you say where to stop matching. */
3055
3056 int
3057 re_search (bufp, string, size, startpos, range, regs)
3058 struct re_pattern_buffer *bufp;
3059 const char *string;
3060 int size, startpos, range;
3061 struct re_registers *regs;
3062 {
3063 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3064 regs, size);
3065 }
3066
3067
3068 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3069 virtual concatenation of STRING1 and STRING2, starting first at index
3070 STARTPOS, then at STARTPOS + 1, and so on.
3071
3072 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3073
3074 RANGE is how far to scan while trying to match. RANGE = 0 means try
3075 only at STARTPOS; in general, the last start tried is STARTPOS +
3076 RANGE.
3077
3078 In REGS, return the indices of the virtual concatenation of STRING1
3079 and STRING2 that matched the entire BUFP->buffer and its contained
3080 subexpressions.
3081
3082 Do not consider matching one past the index STOP in the virtual
3083 concatenation of STRING1 and STRING2.
3084
3085 We return either the position in the strings at which the match was
3086 found, -1 if no match, or -2 if error (such as failure
3087 stack overflow). */
3088
3089 int
3090 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3091 struct re_pattern_buffer *bufp;
3092 const char *string1, *string2;
3093 int size1, size2;
3094 int startpos;
3095 int range;
3096 struct re_registers *regs;
3097 int stop;
3098 {
3099 int val;
3100 register char *fastmap = bufp->fastmap;
3101 register char *translate = bufp->translate;
3102 int total_size = size1 + size2;
3103 int endpos = startpos + range;
3104
3105 /* Check for out-of-range STARTPOS. */
3106 if (startpos < 0 || startpos > total_size)
3107 return -1;
3108
3109 /* Fix up RANGE if it might eventually take us outside
3110 the virtual concatenation of STRING1 and STRING2. */
3111 if (endpos < -1)
3112 range = -1 - startpos;
3113 else if (endpos > total_size)
3114 range = total_size - startpos;
3115
3116 /* If the search isn't to be a backwards one, don't waste time in a
3117 search for a pattern that must be anchored. */
3118 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3119 {
3120 if (startpos > 0)
3121 return -1;
3122 else
3123 range = 1;
3124 }
3125
3126 /* Update the fastmap now if not correct already. */
3127 if (fastmap && !bufp->fastmap_accurate)
3128 if (re_compile_fastmap (bufp) == -2)
3129 return -2;
3130
3131 /* Loop through the string, looking for a place to start matching. */
3132 for (;;)
3133 {
3134 /* If a fastmap is supplied, skip quickly over characters that
3135 cannot be the start of a match. If the pattern can match the
3136 null string, however, we don't need to skip characters; we want
3137 the first null string. */
3138 if (fastmap && startpos < total_size && !bufp->can_be_null)
3139 {
3140 if (range > 0) /* Searching forwards. */
3141 {
3142 register const char *d;
3143 register int lim = 0;
3144 int irange = range;
3145
3146 if (startpos < size1 && startpos + range >= size1)
3147 lim = range - (size1 - startpos);
3148
3149 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3150
3151 /* Written out as an if-else to avoid testing `translate'
3152 inside the loop. */
3153 if (translate)
3154 while (range > lim
3155 && !fastmap[(unsigned char)
3156 translate[(unsigned char) *d++]])
3157 range--;
3158 else
3159 while (range > lim && !fastmap[(unsigned char) *d++])
3160 range--;
3161
3162 startpos += irange - range;
3163 }
3164 else /* Searching backwards. */
3165 {
3166 register char c = (size1 == 0 || startpos >= size1
3167 ? string2[startpos - size1]
3168 : string1[startpos]);
3169
3170 if (!fastmap[(unsigned char) TRANSLATE (c)])
3171 goto advance;
3172 }
3173 }
3174
3175 /* If can't match the null string, and that's all we have left, fail. */
3176 if (range >= 0 && startpos == total_size && fastmap
3177 && !bufp->can_be_null)
3178 return -1;
3179
3180 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3181 startpos, regs, stop);
3182 #ifndef REGEX_MALLOC
3183 #ifdef C_ALLOCA
3184 alloca (0);
3185 #endif
3186 #endif
3187
3188 if (val >= 0)
3189 return startpos;
3190
3191 if (val == -2)
3192 return -2;
3193
3194 advance:
3195 if (!range)
3196 break;
3197 else if (range > 0)
3198 {
3199 range--;
3200 startpos++;
3201 }
3202 else
3203 {
3204 range++;
3205 startpos--;
3206 }
3207 }
3208 return -1;
3209 } /* re_search_2 */
3210 \f
3211 /* Declarations and macros for re_match_2. */
3212
3213 static int bcmp_translate ();
3214 static boolean alt_match_null_string_p (),
3215 common_op_match_null_string_p (),
3216 group_match_null_string_p ();
3217
3218 /* This converts PTR, a pointer into one of the search strings `string1'
3219 and `string2' into an offset from the beginning of that string. */
3220 #define POINTER_TO_OFFSET(ptr) \
3221 (FIRST_STRING_P (ptr) \
3222 ? ((regoff_t) ((ptr) - string1)) \
3223 : ((regoff_t) ((ptr) - string2 + size1)))
3224
3225 /* Macros for dealing with the split strings in re_match_2. */
3226
3227 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3228
3229 /* Call before fetching a character with *d. This switches over to
3230 string2 if necessary. */
3231 #define PREFETCH() \
3232 while (d == dend) \
3233 { \
3234 /* End of string2 => fail. */ \
3235 if (dend == end_match_2) \
3236 goto fail; \
3237 /* End of string1 => advance to string2. */ \
3238 d = string2; \
3239 dend = end_match_2; \
3240 }
3241
3242
3243 /* Test if at very beginning or at very end of the virtual concatenation
3244 of `string1' and `string2'. If only one string, it's `string2'. */
3245 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3246 #define AT_STRINGS_END(d) ((d) == end2)
3247
3248
3249 /* Test if D points to a character which is word-constituent. We have
3250 two special cases to check for: if past the end of string1, look at
3251 the first character in string2; and if before the beginning of
3252 string2, look at the last character in string1. */
3253 #define WORDCHAR_P(d) \
3254 (SYNTAX ((d) == end1 ? *string2 \
3255 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3256 == Sword)
3257
3258 /* Test if the character before D and the one at D differ with respect
3259 to being word-constituent. */
3260 #define AT_WORD_BOUNDARY(d) \
3261 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3262 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3263
3264
3265 /* Free everything we malloc. */
3266 #ifdef MATCH_MAY_ALLOCATE
3267 #ifdef REGEX_MALLOC
3268 #define FREE_VAR(var) if (var) free (var); var = NULL
3269 #define FREE_VARIABLES() \
3270 do { \
3271 FREE_VAR (fail_stack.stack); \
3272 FREE_VAR (regstart); \
3273 FREE_VAR (regend); \
3274 FREE_VAR (old_regstart); \
3275 FREE_VAR (old_regend); \
3276 FREE_VAR (best_regstart); \
3277 FREE_VAR (best_regend); \
3278 FREE_VAR (reg_info); \
3279 FREE_VAR (reg_dummy); \
3280 FREE_VAR (reg_info_dummy); \
3281 } while (0)
3282 #else /* not REGEX_MALLOC */
3283 /* This used to do alloca (0), but now we do that in the caller. */
3284 #define FREE_VARIABLES() /* Nothing */
3285 #endif /* not REGEX_MALLOC */
3286 #else
3287 #define FREE_VARIABLES() /* Do nothing! */
3288 #endif /* not MATCH_MAY_ALLOCATE */
3289
3290 /* These values must meet several constraints. They must not be valid
3291 register values; since we have a limit of 255 registers (because
3292 we use only one byte in the pattern for the register number), we can
3293 use numbers larger than 255. They must differ by 1, because of
3294 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3295 be larger than the value for the highest register, so we do not try
3296 to actually save any registers when none are active. */
3297 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3298 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3299 \f
3300 /* Matching routines. */
3301
3302 #ifndef emacs /* Emacs never uses this. */
3303 /* re_match is like re_match_2 except it takes only a single string. */
3304
3305 int
3306 re_match (bufp, string, size, pos, regs)
3307 struct re_pattern_buffer *bufp;
3308 const char *string;
3309 int size, pos;
3310 struct re_registers *regs;
3311 {
3312 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3313 pos, regs, size);
3314 alloca (0);
3315 return result;
3316 }
3317 #endif /* not emacs */
3318
3319
3320 /* re_match_2 matches the compiled pattern in BUFP against the
3321 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3322 and SIZE2, respectively). We start matching at POS, and stop
3323 matching at STOP.
3324
3325 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3326 store offsets for the substring each group matched in REGS. See the
3327 documentation for exactly how many groups we fill.
3328
3329 We return -1 if no match, -2 if an internal error (such as the
3330 failure stack overflowing). Otherwise, we return the length of the
3331 matched substring. */
3332
3333 int
3334 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3335 struct re_pattern_buffer *bufp;
3336 const char *string1, *string2;
3337 int size1, size2;
3338 int pos;
3339 struct re_registers *regs;
3340 int stop;
3341 {
3342 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3343 pos, regs, stop);
3344 alloca (0);
3345 return result;
3346 }
3347
3348 /* This is a separate function so that we can force an alloca cleanup
3349 afterwards. */
3350 static int
3351 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3352 struct re_pattern_buffer *bufp;
3353 const char *string1, *string2;
3354 int size1, size2;
3355 int pos;
3356 struct re_registers *regs;
3357 int stop;
3358 {
3359 /* General temporaries. */
3360 int mcnt;
3361 unsigned char *p1;
3362
3363 /* Just past the end of the corresponding string. */
3364 const char *end1, *end2;
3365
3366 /* Pointers into string1 and string2, just past the last characters in
3367 each to consider matching. */
3368 const char *end_match_1, *end_match_2;
3369
3370 /* Where we are in the data, and the end of the current string. */
3371 const char *d, *dend;
3372
3373 /* Where we are in the pattern, and the end of the pattern. */
3374 unsigned char *p = bufp->buffer;
3375 register unsigned char *pend = p + bufp->used;
3376
3377 /* Mark the opcode just after a start_memory, so we can test for an
3378 empty subpattern when we get to the stop_memory. */
3379 unsigned char *just_past_start_mem = 0;
3380
3381 /* We use this to map every character in the string. */
3382 char *translate = bufp->translate;
3383
3384 /* Failure point stack. Each place that can handle a failure further
3385 down the line pushes a failure point on this stack. It consists of
3386 restart, regend, and reg_info for all registers corresponding to
3387 the subexpressions we're currently inside, plus the number of such
3388 registers, and, finally, two char *'s. The first char * is where
3389 to resume scanning the pattern; the second one is where to resume
3390 scanning the strings. If the latter is zero, the failure point is
3391 a ``dummy''; if a failure happens and the failure point is a dummy,
3392 it gets discarded and the next next one is tried. */
3393 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3394 fail_stack_type fail_stack;
3395 #endif
3396 #ifdef DEBUG
3397 static unsigned failure_id = 0;
3398 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3399 #endif
3400
3401 /* We fill all the registers internally, independent of what we
3402 return, for use in backreferences. The number here includes
3403 an element for register zero. */
3404 unsigned num_regs = bufp->re_nsub + 1;
3405
3406 /* The currently active registers. */
3407 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3408 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3409
3410 /* Information on the contents of registers. These are pointers into
3411 the input strings; they record just what was matched (on this
3412 attempt) by a subexpression part of the pattern, that is, the
3413 regnum-th regstart pointer points to where in the pattern we began
3414 matching and the regnum-th regend points to right after where we
3415 stopped matching the regnum-th subexpression. (The zeroth register
3416 keeps track of what the whole pattern matches.) */
3417 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3418 const char **regstart, **regend;
3419 #endif
3420
3421 /* If a group that's operated upon by a repetition operator fails to
3422 match anything, then the register for its start will need to be
3423 restored because it will have been set to wherever in the string we
3424 are when we last see its open-group operator. Similarly for a
3425 register's end. */
3426 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3427 const char **old_regstart, **old_regend;
3428 #endif
3429
3430 /* The is_active field of reg_info helps us keep track of which (possibly
3431 nested) subexpressions we are currently in. The matched_something
3432 field of reg_info[reg_num] helps us tell whether or not we have
3433 matched any of the pattern so far this time through the reg_num-th
3434 subexpression. These two fields get reset each time through any
3435 loop their register is in. */
3436 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3437 register_info_type *reg_info;
3438 #endif
3439
3440 /* The following record the register info as found in the above
3441 variables when we find a match better than any we've seen before.
3442 This happens as we backtrack through the failure points, which in
3443 turn happens only if we have not yet matched the entire string. */
3444 unsigned best_regs_set = false;
3445 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3446 const char **best_regstart, **best_regend;
3447 #endif
3448
3449 /* Logically, this is `best_regend[0]'. But we don't want to have to
3450 allocate space for that if we're not allocating space for anything
3451 else (see below). Also, we never need info about register 0 for
3452 any of the other register vectors, and it seems rather a kludge to
3453 treat `best_regend' differently than the rest. So we keep track of
3454 the end of the best match so far in a separate variable. We
3455 initialize this to NULL so that when we backtrack the first time
3456 and need to test it, it's not garbage. */
3457 const char *match_end = NULL;
3458
3459 /* Used when we pop values we don't care about. */
3460 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3461 const char **reg_dummy;
3462 register_info_type *reg_info_dummy;
3463 #endif
3464
3465 #ifdef DEBUG
3466 /* Counts the total number of registers pushed. */
3467 unsigned num_regs_pushed = 0;
3468 #endif
3469
3470 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3471
3472 INIT_FAIL_STACK ();
3473
3474 #ifdef MATCH_MAY_ALLOCATE
3475 /* Do not bother to initialize all the register variables if there are
3476 no groups in the pattern, as it takes a fair amount of time. If
3477 there are groups, we include space for register 0 (the whole
3478 pattern), even though we never use it, since it simplifies the
3479 array indexing. We should fix this. */
3480 if (bufp->re_nsub)
3481 {
3482 regstart = REGEX_TALLOC (num_regs, const char *);
3483 regend = REGEX_TALLOC (num_regs, const char *);
3484 old_regstart = REGEX_TALLOC (num_regs, const char *);
3485 old_regend = REGEX_TALLOC (num_regs, const char *);
3486 best_regstart = REGEX_TALLOC (num_regs, const char *);
3487 best_regend = REGEX_TALLOC (num_regs, const char *);
3488 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3489 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3490 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3491
3492 if (!(regstart && regend && old_regstart && old_regend && reg_info
3493 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3494 {
3495 FREE_VARIABLES ();
3496 return -2;
3497 }
3498 }
3499 #if defined (REGEX_MALLOC)
3500 else
3501 {
3502 /* We must initialize all our variables to NULL, so that
3503 `FREE_VARIABLES' doesn't try to free them. */
3504 regstart = regend = old_regstart = old_regend = best_regstart
3505 = best_regend = reg_dummy = NULL;
3506 reg_info = reg_info_dummy = (register_info_type *) NULL;
3507 }
3508 #endif /* REGEX_MALLOC */
3509 #endif /* MATCH_MAY_ALLOCATE */
3510
3511 /* The starting position is bogus. */
3512 if (pos < 0 || pos > size1 + size2)
3513 {
3514 FREE_VARIABLES ();
3515 return -1;
3516 }
3517
3518 /* Initialize subexpression text positions to -1 to mark ones that no
3519 start_memory/stop_memory has been seen for. Also initialize the
3520 register information struct. */
3521 for (mcnt = 1; mcnt < num_regs; mcnt++)
3522 {
3523 regstart[mcnt] = regend[mcnt]
3524 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3525
3526 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3527 IS_ACTIVE (reg_info[mcnt]) = 0;
3528 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3529 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3530 }
3531
3532 /* We move `string1' into `string2' if the latter's empty -- but not if
3533 `string1' is null. */
3534 if (size2 == 0 && string1 != NULL)
3535 {
3536 string2 = string1;
3537 size2 = size1;
3538 string1 = 0;
3539 size1 = 0;
3540 }
3541 end1 = string1 + size1;
3542 end2 = string2 + size2;
3543
3544 /* Compute where to stop matching, within the two strings. */
3545 if (stop <= size1)
3546 {
3547 end_match_1 = string1 + stop;
3548 end_match_2 = string2;
3549 }
3550 else
3551 {
3552 end_match_1 = end1;
3553 end_match_2 = string2 + stop - size1;
3554 }
3555
3556 /* `p' scans through the pattern as `d' scans through the data.
3557 `dend' is the end of the input string that `d' points within. `d'
3558 is advanced into the following input string whenever necessary, but
3559 this happens before fetching; therefore, at the beginning of the
3560 loop, `d' can be pointing at the end of a string, but it cannot
3561 equal `string2'. */
3562 if (size1 > 0 && pos <= size1)
3563 {
3564 d = string1 + pos;
3565 dend = end_match_1;
3566 }
3567 else
3568 {
3569 d = string2 + pos - size1;
3570 dend = end_match_2;
3571 }
3572
3573 DEBUG_PRINT1 ("The compiled pattern is: ");
3574 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3575 DEBUG_PRINT1 ("The string to match is: `");
3576 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3577 DEBUG_PRINT1 ("'\n");
3578
3579 /* This loops over pattern commands. It exits by returning from the
3580 function if the match is complete, or it drops through if the match
3581 fails at this starting point in the input data. */
3582 for (;;)
3583 {
3584 DEBUG_PRINT2 ("\n0x%x: ", p);
3585
3586 if (p == pend)
3587 { /* End of pattern means we might have succeeded. */
3588 DEBUG_PRINT1 ("end of pattern ... ");
3589
3590 /* If we haven't matched the entire string, and we want the
3591 longest match, try backtracking. */
3592 if (d != end_match_2)
3593 {
3594 /* 1 if this match ends in the same string (string1 or string2)
3595 as the best previous match. */
3596 boolean same_str_p = (FIRST_STRING_P (match_end)
3597 == MATCHING_IN_FIRST_STRING);
3598 /* 1 if this match is the best seen so far. */
3599 boolean best_match_p;
3600
3601 /* AIX compiler got confused when this was combined
3602 with the previous declaration. */
3603 if (same_str_p)
3604 best_match_p = d > match_end;
3605 else
3606 best_match_p = !MATCHING_IN_FIRST_STRING;
3607
3608 DEBUG_PRINT1 ("backtracking.\n");
3609
3610 if (!FAIL_STACK_EMPTY ())
3611 { /* More failure points to try. */
3612
3613 /* If exceeds best match so far, save it. */
3614 if (!best_regs_set || best_match_p)
3615 {
3616 best_regs_set = true;
3617 match_end = d;
3618
3619 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3620
3621 for (mcnt = 1; mcnt < num_regs; mcnt++)
3622 {
3623 best_regstart[mcnt] = regstart[mcnt];
3624 best_regend[mcnt] = regend[mcnt];
3625 }
3626 }
3627 goto fail;
3628 }
3629
3630 /* If no failure points, don't restore garbage. And if
3631 last match is real best match, don't restore second
3632 best one. */
3633 else if (best_regs_set && !best_match_p)
3634 {
3635 restore_best_regs:
3636 /* Restore best match. It may happen that `dend ==
3637 end_match_1' while the restored d is in string2.
3638 For example, the pattern `x.*y.*z' against the
3639 strings `x-' and `y-z-', if the two strings are
3640 not consecutive in memory. */
3641 DEBUG_PRINT1 ("Restoring best registers.\n");
3642
3643 d = match_end;
3644 dend = ((d >= string1 && d <= end1)
3645 ? end_match_1 : end_match_2);
3646
3647 for (mcnt = 1; mcnt < num_regs; mcnt++)
3648 {
3649 regstart[mcnt] = best_regstart[mcnt];
3650 regend[mcnt] = best_regend[mcnt];
3651 }
3652 }
3653 } /* d != end_match_2 */
3654
3655 DEBUG_PRINT1 ("Accepting match.\n");
3656
3657 /* If caller wants register contents data back, do it. */
3658 if (regs && !bufp->no_sub)
3659 {
3660 /* Have the register data arrays been allocated? */
3661 if (bufp->regs_allocated == REGS_UNALLOCATED)
3662 { /* No. So allocate them with malloc. We need one
3663 extra element beyond `num_regs' for the `-1' marker
3664 GNU code uses. */
3665 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3666 regs->start = TALLOC (regs->num_regs, regoff_t);
3667 regs->end = TALLOC (regs->num_regs, regoff_t);
3668 if (regs->start == NULL || regs->end == NULL)
3669 return -2;
3670 bufp->regs_allocated = REGS_REALLOCATE;
3671 }
3672 else if (bufp->regs_allocated == REGS_REALLOCATE)
3673 { /* Yes. If we need more elements than were already
3674 allocated, reallocate them. If we need fewer, just
3675 leave it alone. */
3676 if (regs->num_regs < num_regs + 1)
3677 {
3678 regs->num_regs = num_regs + 1;
3679 RETALLOC (regs->start, regs->num_regs, regoff_t);
3680 RETALLOC (regs->end, regs->num_regs, regoff_t);
3681 if (regs->start == NULL || regs->end == NULL)
3682 return -2;
3683 }
3684 }
3685 else
3686 {
3687 /* These braces fend off a "empty body in an else-statement"
3688 warning under GCC when assert expands to nothing. */
3689 assert (bufp->regs_allocated == REGS_FIXED);
3690 }
3691
3692 /* Convert the pointer data in `regstart' and `regend' to
3693 indices. Register zero has to be set differently,
3694 since we haven't kept track of any info for it. */
3695 if (regs->num_regs > 0)
3696 {
3697 regs->start[0] = pos;
3698 regs->end[0] = (MATCHING_IN_FIRST_STRING
3699 ? ((regoff_t) (d - string1))
3700 : ((regoff_t) (d - string2 + size1)));
3701 }
3702
3703 /* Go through the first `min (num_regs, regs->num_regs)'
3704 registers, since that is all we initialized. */
3705 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3706 {
3707 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3708 regs->start[mcnt] = regs->end[mcnt] = -1;
3709 else
3710 {
3711 regs->start[mcnt]
3712 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
3713 regs->end[mcnt]
3714 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
3715 }
3716 }
3717
3718 /* If the regs structure we return has more elements than
3719 were in the pattern, set the extra elements to -1. If
3720 we (re)allocated the registers, this is the case,
3721 because we always allocate enough to have at least one
3722 -1 at the end. */
3723 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3724 regs->start[mcnt] = regs->end[mcnt] = -1;
3725 } /* regs && !bufp->no_sub */
3726
3727 FREE_VARIABLES ();
3728 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3729 nfailure_points_pushed, nfailure_points_popped,
3730 nfailure_points_pushed - nfailure_points_popped);
3731 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
3732
3733 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3734 ? string1
3735 : string2 - size1);
3736
3737 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3738
3739 return mcnt;
3740 }
3741
3742 /* Otherwise match next pattern command. */
3743 #ifdef SWITCH_ENUM_BUG
3744 switch ((int) ((re_opcode_t) *p++))
3745 #else
3746 switch ((re_opcode_t) *p++)
3747 #endif
3748 {
3749 /* Ignore these. Used to ignore the n of succeed_n's which
3750 currently have n == 0. */
3751 case no_op:
3752 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3753 break;
3754
3755
3756 /* Match the next n pattern characters exactly. The following
3757 byte in the pattern defines n, and the n bytes after that
3758 are the characters to match. */
3759 case exactn:
3760 mcnt = *p++;
3761 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3762
3763 /* This is written out as an if-else so we don't waste time
3764 testing `translate' inside the loop. */
3765 if (translate)
3766 {
3767 do
3768 {
3769 PREFETCH ();
3770 if (translate[(unsigned char) *d++] != (char) *p++)
3771 goto fail;
3772 }
3773 while (--mcnt);
3774 }
3775 else
3776 {
3777 do
3778 {
3779 PREFETCH ();
3780 if (*d++ != (char) *p++) goto fail;
3781 }
3782 while (--mcnt);
3783 }
3784 SET_REGS_MATCHED ();
3785 break;
3786
3787
3788 /* Match any character except possibly a newline or a null. */
3789 case anychar:
3790 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3791
3792 PREFETCH ();
3793
3794 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
3795 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
3796 goto fail;
3797
3798 SET_REGS_MATCHED ();
3799 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
3800 d++;
3801 break;
3802
3803
3804 case charset:
3805 case charset_not:
3806 {
3807 register unsigned char c;
3808 boolean not = (re_opcode_t) *(p - 1) == charset_not;
3809
3810 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3811
3812 PREFETCH ();
3813 c = TRANSLATE (*d); /* The character to match. */
3814
3815 /* Cast to `unsigned' instead of `unsigned char' in case the
3816 bit list is a full 32 bytes long. */
3817 if (c < (unsigned) (*p * BYTEWIDTH)
3818 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
3819 not = !not;
3820
3821 p += 1 + *p;
3822
3823 if (!not) goto fail;
3824
3825 SET_REGS_MATCHED ();
3826 d++;
3827 break;
3828 }
3829
3830
3831 /* The beginning of a group is represented by start_memory.
3832 The arguments are the register number in the next byte, and the
3833 number of groups inner to this one in the next. The text
3834 matched within the group is recorded (in the internal
3835 registers data structure) under the register number. */
3836 case start_memory:
3837 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
3838
3839 /* Find out if this group can match the empty string. */
3840 p1 = p; /* To send to group_match_null_string_p. */
3841
3842 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
3843 REG_MATCH_NULL_STRING_P (reg_info[*p])
3844 = group_match_null_string_p (&p1, pend, reg_info);
3845
3846 /* Save the position in the string where we were the last time
3847 we were at this open-group operator in case the group is
3848 operated upon by a repetition operator, e.g., with `(a*)*b'
3849 against `ab'; then we want to ignore where we are now in
3850 the string in case this attempt to match fails. */
3851 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3852 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
3853 : regstart[*p];
3854 DEBUG_PRINT2 (" old_regstart: %d\n",
3855 POINTER_TO_OFFSET (old_regstart[*p]));
3856
3857 regstart[*p] = d;
3858 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
3859
3860 IS_ACTIVE (reg_info[*p]) = 1;
3861 MATCHED_SOMETHING (reg_info[*p]) = 0;
3862
3863 /* This is the new highest active register. */
3864 highest_active_reg = *p;
3865
3866 /* If nothing was active before, this is the new lowest active
3867 register. */
3868 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3869 lowest_active_reg = *p;
3870
3871 /* Move past the register number and inner group count. */
3872 p += 2;
3873 just_past_start_mem = p;
3874 break;
3875
3876
3877 /* The stop_memory opcode represents the end of a group. Its
3878 arguments are the same as start_memory's: the register
3879 number, and the number of inner groups. */
3880 case stop_memory:
3881 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
3882
3883 /* We need to save the string position the last time we were at
3884 this close-group operator in case the group is operated
3885 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
3886 against `aba'; then we want to ignore where we are now in
3887 the string in case this attempt to match fails. */
3888 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3889 ? REG_UNSET (regend[*p]) ? d : regend[*p]
3890 : regend[*p];
3891 DEBUG_PRINT2 (" old_regend: %d\n",
3892 POINTER_TO_OFFSET (old_regend[*p]));
3893
3894 regend[*p] = d;
3895 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
3896
3897 /* This register isn't active anymore. */
3898 IS_ACTIVE (reg_info[*p]) = 0;
3899
3900 /* If this was the only register active, nothing is active
3901 anymore. */
3902 if (lowest_active_reg == highest_active_reg)
3903 {
3904 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3905 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3906 }
3907 else
3908 { /* We must scan for the new highest active register, since
3909 it isn't necessarily one less than now: consider
3910 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
3911 new highest active register is 1. */
3912 unsigned char r = *p - 1;
3913 while (r > 0 && !IS_ACTIVE (reg_info[r]))
3914 r--;
3915
3916 /* If we end up at register zero, that means that we saved
3917 the registers as the result of an `on_failure_jump', not
3918 a `start_memory', and we jumped to past the innermost
3919 `stop_memory'. For example, in ((.)*) we save
3920 registers 1 and 2 as a result of the *, but when we pop
3921 back to the second ), we are at the stop_memory 1.
3922 Thus, nothing is active. */
3923 if (r == 0)
3924 {
3925 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3926 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3927 }
3928 else
3929 highest_active_reg = r;
3930 }
3931
3932 /* If just failed to match something this time around with a
3933 group that's operated on by a repetition operator, try to
3934 force exit from the ``loop'', and restore the register
3935 information for this group that we had before trying this
3936 last match. */
3937 if ((!MATCHED_SOMETHING (reg_info[*p])
3938 || just_past_start_mem == p - 1)
3939 && (p + 2) < pend)
3940 {
3941 boolean is_a_jump_n = false;
3942
3943 p1 = p + 2;
3944 mcnt = 0;
3945 switch ((re_opcode_t) *p1++)
3946 {
3947 case jump_n:
3948 is_a_jump_n = true;
3949 case pop_failure_jump:
3950 case maybe_pop_jump:
3951 case jump:
3952 case dummy_failure_jump:
3953 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3954 if (is_a_jump_n)
3955 p1 += 2;
3956 break;
3957
3958 default:
3959 /* do nothing */ ;
3960 }
3961 p1 += mcnt;
3962
3963 /* If the next operation is a jump backwards in the pattern
3964 to an on_failure_jump right before the start_memory
3965 corresponding to this stop_memory, exit from the loop
3966 by forcing a failure after pushing on the stack the
3967 on_failure_jump's jump in the pattern, and d. */
3968 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
3969 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
3970 {
3971 /* If this group ever matched anything, then restore
3972 what its registers were before trying this last
3973 failed match, e.g., with `(a*)*b' against `ab' for
3974 regstart[1], and, e.g., with `((a*)*(b*)*)*'
3975 against `aba' for regend[3].
3976
3977 Also restore the registers for inner groups for,
3978 e.g., `((a*)(b*))*' against `aba' (register 3 would
3979 otherwise get trashed). */
3980
3981 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
3982 {
3983 unsigned r;
3984
3985 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
3986
3987 /* Restore this and inner groups' (if any) registers. */
3988 for (r = *p; r < *p + *(p + 1); r++)
3989 {
3990 regstart[r] = old_regstart[r];
3991
3992 /* xx why this test? */
3993 if ((int) old_regend[r] >= (int) regstart[r])
3994 regend[r] = old_regend[r];
3995 }
3996 }
3997 p1++;
3998 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3999 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4000
4001 goto fail;
4002 }
4003 }
4004
4005 /* Move past the register number and the inner group count. */
4006 p += 2;
4007 break;
4008
4009
4010 /* \<digit> has been turned into a `duplicate' command which is
4011 followed by the numeric value of <digit> as the register number. */
4012 case duplicate:
4013 {
4014 register const char *d2, *dend2;
4015 int regno = *p++; /* Get which register to match against. */
4016 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4017
4018 /* Can't back reference a group which we've never matched. */
4019 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4020 goto fail;
4021
4022 /* Where in input to try to start matching. */
4023 d2 = regstart[regno];
4024
4025 /* Where to stop matching; if both the place to start and
4026 the place to stop matching are in the same string, then
4027 set to the place to stop, otherwise, for now have to use
4028 the end of the first string. */
4029
4030 dend2 = ((FIRST_STRING_P (regstart[regno])
4031 == FIRST_STRING_P (regend[regno]))
4032 ? regend[regno] : end_match_1);
4033 for (;;)
4034 {
4035 /* If necessary, advance to next segment in register
4036 contents. */
4037 while (d2 == dend2)
4038 {
4039 if (dend2 == end_match_2) break;
4040 if (dend2 == regend[regno]) break;
4041
4042 /* End of string1 => advance to string2. */
4043 d2 = string2;
4044 dend2 = regend[regno];
4045 }
4046 /* At end of register contents => success */
4047 if (d2 == dend2) break;
4048
4049 /* If necessary, advance to next segment in data. */
4050 PREFETCH ();
4051
4052 /* How many characters left in this segment to match. */
4053 mcnt = dend - d;
4054
4055 /* Want how many consecutive characters we can match in
4056 one shot, so, if necessary, adjust the count. */
4057 if (mcnt > dend2 - d2)
4058 mcnt = dend2 - d2;
4059
4060 /* Compare that many; failure if mismatch, else move
4061 past them. */
4062 if (translate
4063 ? bcmp_translate (d, d2, mcnt, translate)
4064 : bcmp (d, d2, mcnt))
4065 goto fail;
4066 d += mcnt, d2 += mcnt;
4067 }
4068 }
4069 break;
4070
4071
4072 /* begline matches the empty string at the beginning of the string
4073 (unless `not_bol' is set in `bufp'), and, if
4074 `newline_anchor' is set, after newlines. */
4075 case begline:
4076 DEBUG_PRINT1 ("EXECUTING begline.\n");
4077
4078 if (AT_STRINGS_BEG (d))
4079 {
4080 if (!bufp->not_bol) break;
4081 }
4082 else if (d[-1] == '\n' && bufp->newline_anchor)
4083 {
4084 break;
4085 }
4086 /* In all other cases, we fail. */
4087 goto fail;
4088
4089
4090 /* endline is the dual of begline. */
4091 case endline:
4092 DEBUG_PRINT1 ("EXECUTING endline.\n");
4093
4094 if (AT_STRINGS_END (d))
4095 {
4096 if (!bufp->not_eol) break;
4097 }
4098
4099 /* We have to ``prefetch'' the next character. */
4100 else if ((d == end1 ? *string2 : *d) == '\n'
4101 && bufp->newline_anchor)
4102 {
4103 break;
4104 }
4105 goto fail;
4106
4107
4108 /* Match at the very beginning of the data. */
4109 case begbuf:
4110 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4111 if (AT_STRINGS_BEG (d))
4112 break;
4113 goto fail;
4114
4115
4116 /* Match at the very end of the data. */
4117 case endbuf:
4118 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4119 if (AT_STRINGS_END (d))
4120 break;
4121 goto fail;
4122
4123
4124 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4125 pushes NULL as the value for the string on the stack. Then
4126 `pop_failure_point' will keep the current value for the
4127 string, instead of restoring it. To see why, consider
4128 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4129 then the . fails against the \n. But the next thing we want
4130 to do is match the \n against the \n; if we restored the
4131 string value, we would be back at the foo.
4132
4133 Because this is used only in specific cases, we don't need to
4134 check all the things that `on_failure_jump' does, to make
4135 sure the right things get saved on the stack. Hence we don't
4136 share its code. The only reason to push anything on the
4137 stack at all is that otherwise we would have to change
4138 `anychar's code to do something besides goto fail in this
4139 case; that seems worse than this. */
4140 case on_failure_keep_string_jump:
4141 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4142
4143 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4144 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4145
4146 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4147 break;
4148
4149
4150 /* Uses of on_failure_jump:
4151
4152 Each alternative starts with an on_failure_jump that points
4153 to the beginning of the next alternative. Each alternative
4154 except the last ends with a jump that in effect jumps past
4155 the rest of the alternatives. (They really jump to the
4156 ending jump of the following alternative, because tensioning
4157 these jumps is a hassle.)
4158
4159 Repeats start with an on_failure_jump that points past both
4160 the repetition text and either the following jump or
4161 pop_failure_jump back to this on_failure_jump. */
4162 case on_failure_jump:
4163 on_failure:
4164 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4165
4166 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4167 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4168
4169 /* If this on_failure_jump comes right before a group (i.e.,
4170 the original * applied to a group), save the information
4171 for that group and all inner ones, so that if we fail back
4172 to this point, the group's information will be correct.
4173 For example, in \(a*\)*\1, we need the preceding group,
4174 and in \(\(a*\)b*\)\2, we need the inner group. */
4175
4176 /* We can't use `p' to check ahead because we push
4177 a failure point to `p + mcnt' after we do this. */
4178 p1 = p;
4179
4180 /* We need to skip no_op's before we look for the
4181 start_memory in case this on_failure_jump is happening as
4182 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4183 against aba. */
4184 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4185 p1++;
4186
4187 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4188 {
4189 /* We have a new highest active register now. This will
4190 get reset at the start_memory we are about to get to,
4191 but we will have saved all the registers relevant to
4192 this repetition op, as described above. */
4193 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4194 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4195 lowest_active_reg = *(p1 + 1);
4196 }
4197
4198 DEBUG_PRINT1 (":\n");
4199 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4200 break;
4201
4202
4203 /* A smart repeat ends with `maybe_pop_jump'.
4204 We change it to either `pop_failure_jump' or `jump'. */
4205 case maybe_pop_jump:
4206 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4207 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4208 {
4209 register unsigned char *p2 = p;
4210
4211 /* Compare the beginning of the repeat with what in the
4212 pattern follows its end. If we can establish that there
4213 is nothing that they would both match, i.e., that we
4214 would have to backtrack because of (as in, e.g., `a*a')
4215 then we can change to pop_failure_jump, because we'll
4216 never have to backtrack.
4217
4218 This is not true in the case of alternatives: in
4219 `(a|ab)*' we do need to backtrack to the `ab' alternative
4220 (e.g., if the string was `ab'). But instead of trying to
4221 detect that here, the alternative has put on a dummy
4222 failure point which is what we will end up popping. */
4223
4224 /* Skip over open/close-group commands.
4225 If what follows this loop is a ...+ construct,
4226 look at what begins its body, since we will have to
4227 match at least one of that. */
4228 while (1)
4229 {
4230 if (p2 + 2 < pend
4231 && ((re_opcode_t) *p2 == stop_memory
4232 || (re_opcode_t) *p2 == start_memory))
4233 p2 += 3;
4234 else if (p2 + 6 < pend
4235 && (re_opcode_t) *p2 == dummy_failure_jump)
4236 p2 += 6;
4237 else
4238 break;
4239 }
4240
4241 p1 = p + mcnt;
4242 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4243 to the `maybe_finalize_jump' of this case. Examine what
4244 follows. */
4245
4246 /* If we're at the end of the pattern, we can change. */
4247 if (p2 == pend)
4248 {
4249 /* Consider what happens when matching ":\(.*\)"
4250 against ":/". I don't really understand this code
4251 yet. */
4252 p[-3] = (unsigned char) pop_failure_jump;
4253 DEBUG_PRINT1
4254 (" End of pattern: change to `pop_failure_jump'.\n");
4255 }
4256
4257 else if ((re_opcode_t) *p2 == exactn
4258 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4259 {
4260 register unsigned char c
4261 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4262
4263 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4264 {
4265 p[-3] = (unsigned char) pop_failure_jump;
4266 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4267 c, p1[5]);
4268 }
4269
4270 else if ((re_opcode_t) p1[3] == charset
4271 || (re_opcode_t) p1[3] == charset_not)
4272 {
4273 int not = (re_opcode_t) p1[3] == charset_not;
4274
4275 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4276 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4277 not = !not;
4278
4279 /* `not' is equal to 1 if c would match, which means
4280 that we can't change to pop_failure_jump. */
4281 if (!not)
4282 {
4283 p[-3] = (unsigned char) pop_failure_jump;
4284 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4285 }
4286 }
4287 }
4288 else if ((re_opcode_t) *p2 == charset)
4289 {
4290 #ifdef DEBUG
4291 register unsigned char c
4292 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4293 #endif
4294
4295 if ((re_opcode_t) p1[3] == exactn
4296 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
4297 && (p2[1 + p1[4] / BYTEWIDTH]
4298 & (1 << (p1[4] % BYTEWIDTH)))))
4299 {
4300 p[-3] = (unsigned char) pop_failure_jump;
4301 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4302 c, p1[5]);
4303 }
4304
4305 else if ((re_opcode_t) p1[3] == charset_not)
4306 {
4307 int idx;
4308 /* We win if the charset_not inside the loop
4309 lists every character listed in the charset after. */
4310 for (idx = 0; idx < (int) p2[1]; idx++)
4311 if (! (p2[2 + idx] == 0
4312 || (idx < (int) p1[4]
4313 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4314 break;
4315
4316 if (idx == p2[1])
4317 {
4318 p[-3] = (unsigned char) pop_failure_jump;
4319 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4320 }
4321 }
4322 else if ((re_opcode_t) p1[3] == charset)
4323 {
4324 int idx;
4325 /* We win if the charset inside the loop
4326 has no overlap with the one after the loop. */
4327 for (idx = 0;
4328 idx < (int) p2[1] && idx < (int) p1[4];
4329 idx++)
4330 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4331 break;
4332
4333 if (idx == p2[1] || idx == p1[4])
4334 {
4335 p[-3] = (unsigned char) pop_failure_jump;
4336 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4337 }
4338 }
4339 }
4340 }
4341 p -= 2; /* Point at relative address again. */
4342 if ((re_opcode_t) p[-1] != pop_failure_jump)
4343 {
4344 p[-1] = (unsigned char) jump;
4345 DEBUG_PRINT1 (" Match => jump.\n");
4346 goto unconditional_jump;
4347 }
4348 /* Note fall through. */
4349
4350
4351 /* The end of a simple repeat has a pop_failure_jump back to
4352 its matching on_failure_jump, where the latter will push a
4353 failure point. The pop_failure_jump takes off failure
4354 points put on by this pop_failure_jump's matching
4355 on_failure_jump; we got through the pattern to here from the
4356 matching on_failure_jump, so didn't fail. */
4357 case pop_failure_jump:
4358 {
4359 /* We need to pass separate storage for the lowest and
4360 highest registers, even though we don't care about the
4361 actual values. Otherwise, we will restore only one
4362 register from the stack, since lowest will == highest in
4363 `pop_failure_point'. */
4364 unsigned dummy_low_reg, dummy_high_reg;
4365 unsigned char *pdummy;
4366 const char *sdummy;
4367
4368 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4369 POP_FAILURE_POINT (sdummy, pdummy,
4370 dummy_low_reg, dummy_high_reg,
4371 reg_dummy, reg_dummy, reg_info_dummy);
4372 }
4373 /* Note fall through. */
4374
4375
4376 /* Unconditionally jump (without popping any failure points). */
4377 case jump:
4378 unconditional_jump:
4379 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4380 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4381 p += mcnt; /* Do the jump. */
4382 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4383 break;
4384
4385
4386 /* We need this opcode so we can detect where alternatives end
4387 in `group_match_null_string_p' et al. */
4388 case jump_past_alt:
4389 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4390 goto unconditional_jump;
4391
4392
4393 /* Normally, the on_failure_jump pushes a failure point, which
4394 then gets popped at pop_failure_jump. We will end up at
4395 pop_failure_jump, also, and with a pattern of, say, `a+', we
4396 are skipping over the on_failure_jump, so we have to push
4397 something meaningless for pop_failure_jump to pop. */
4398 case dummy_failure_jump:
4399 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4400 /* It doesn't matter what we push for the string here. What
4401 the code at `fail' tests is the value for the pattern. */
4402 PUSH_FAILURE_POINT (0, 0, -2);
4403 goto unconditional_jump;
4404
4405
4406 /* At the end of an alternative, we need to push a dummy failure
4407 point in case we are followed by a `pop_failure_jump', because
4408 we don't want the failure point for the alternative to be
4409 popped. For example, matching `(a|ab)*' against `aab'
4410 requires that we match the `ab' alternative. */
4411 case push_dummy_failure:
4412 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4413 /* See comments just above at `dummy_failure_jump' about the
4414 two zeroes. */
4415 PUSH_FAILURE_POINT (0, 0, -2);
4416 break;
4417
4418 /* Have to succeed matching what follows at least n times.
4419 After that, handle like `on_failure_jump'. */
4420 case succeed_n:
4421 EXTRACT_NUMBER (mcnt, p + 2);
4422 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4423
4424 assert (mcnt >= 0);
4425 /* Originally, this is how many times we HAVE to succeed. */
4426 if (mcnt > 0)
4427 {
4428 mcnt--;
4429 p += 2;
4430 STORE_NUMBER_AND_INCR (p, mcnt);
4431 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
4432 }
4433 else if (mcnt == 0)
4434 {
4435 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4436 p[2] = (unsigned char) no_op;
4437 p[3] = (unsigned char) no_op;
4438 goto on_failure;
4439 }
4440 break;
4441
4442 case jump_n:
4443 EXTRACT_NUMBER (mcnt, p + 2);
4444 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4445
4446 /* Originally, this is how many times we CAN jump. */
4447 if (mcnt)
4448 {
4449 mcnt--;
4450 STORE_NUMBER (p + 2, mcnt);
4451 goto unconditional_jump;
4452 }
4453 /* If don't have to jump any more, skip over the rest of command. */
4454 else
4455 p += 4;
4456 break;
4457
4458 case set_number_at:
4459 {
4460 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4461
4462 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4463 p1 = p + mcnt;
4464 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4465 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4466 STORE_NUMBER (p1, mcnt);
4467 break;
4468 }
4469
4470 case wordbound:
4471 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4472 if (AT_WORD_BOUNDARY (d))
4473 break;
4474 goto fail;
4475
4476 case notwordbound:
4477 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4478 if (AT_WORD_BOUNDARY (d))
4479 goto fail;
4480 break;
4481
4482 case wordbeg:
4483 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4484 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4485 break;
4486 goto fail;
4487
4488 case wordend:
4489 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4490 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4491 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4492 break;
4493 goto fail;
4494
4495 #ifdef emacs
4496 case before_dot:
4497 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4498 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4499 goto fail;
4500 break;
4501
4502 case at_dot:
4503 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4504 if (PTR_CHAR_POS ((unsigned char *) d) != point)
4505 goto fail;
4506 break;
4507
4508 case after_dot:
4509 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4510 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
4511 goto fail;
4512 break;
4513 #if 0 /* not emacs19 */
4514 case at_dot:
4515 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4516 if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
4517 goto fail;
4518 break;
4519 #endif /* not emacs19 */
4520
4521 case syntaxspec:
4522 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4523 mcnt = *p++;
4524 goto matchsyntax;
4525
4526 case wordchar:
4527 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4528 mcnt = (int) Sword;
4529 matchsyntax:
4530 PREFETCH ();
4531 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4532 d++;
4533 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
4534 goto fail;
4535 SET_REGS_MATCHED ();
4536 break;
4537
4538 case notsyntaxspec:
4539 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4540 mcnt = *p++;
4541 goto matchnotsyntax;
4542
4543 case notwordchar:
4544 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4545 mcnt = (int) Sword;
4546 matchnotsyntax:
4547 PREFETCH ();
4548 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4549 d++;
4550 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
4551 goto fail;
4552 SET_REGS_MATCHED ();
4553 break;
4554
4555 #else /* not emacs */
4556 case wordchar:
4557 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4558 PREFETCH ();
4559 if (!WORDCHAR_P (d))
4560 goto fail;
4561 SET_REGS_MATCHED ();
4562 d++;
4563 break;
4564
4565 case notwordchar:
4566 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4567 PREFETCH ();
4568 if (WORDCHAR_P (d))
4569 goto fail;
4570 SET_REGS_MATCHED ();
4571 d++;
4572 break;
4573 #endif /* not emacs */
4574
4575 default:
4576 abort ();
4577 }
4578 continue; /* Successfully executed one pattern command; keep going. */
4579
4580
4581 /* We goto here if a matching operation fails. */
4582 fail:
4583 if (!FAIL_STACK_EMPTY ())
4584 { /* A restart point is known. Restore to that state. */
4585 DEBUG_PRINT1 ("\nFAIL:\n");
4586 POP_FAILURE_POINT (d, p,
4587 lowest_active_reg, highest_active_reg,
4588 regstart, regend, reg_info);
4589
4590 /* If this failure point is a dummy, try the next one. */
4591 if (!p)
4592 goto fail;
4593
4594 /* If we failed to the end of the pattern, don't examine *p. */
4595 assert (p <= pend);
4596 if (p < pend)
4597 {
4598 boolean is_a_jump_n = false;
4599
4600 /* If failed to a backwards jump that's part of a repetition
4601 loop, need to pop this failure point and use the next one. */
4602 switch ((re_opcode_t) *p)
4603 {
4604 case jump_n:
4605 is_a_jump_n = true;
4606 case maybe_pop_jump:
4607 case pop_failure_jump:
4608 case jump:
4609 p1 = p + 1;
4610 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4611 p1 += mcnt;
4612
4613 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4614 || (!is_a_jump_n
4615 && (re_opcode_t) *p1 == on_failure_jump))
4616 goto fail;
4617 break;
4618 default:
4619 /* do nothing */ ;
4620 }
4621 }
4622
4623 if (d >= string1 && d <= end1)
4624 dend = end_match_1;
4625 }
4626 else
4627 break; /* Matching at this starting point really fails. */
4628 } /* for (;;) */
4629
4630 if (best_regs_set)
4631 goto restore_best_regs;
4632
4633 FREE_VARIABLES ();
4634
4635 return -1; /* Failure to match. */
4636 } /* re_match_2 */
4637 \f
4638 /* Subroutine definitions for re_match_2. */
4639
4640
4641 /* We are passed P pointing to a register number after a start_memory.
4642
4643 Return true if the pattern up to the corresponding stop_memory can
4644 match the empty string, and false otherwise.
4645
4646 If we find the matching stop_memory, sets P to point to one past its number.
4647 Otherwise, sets P to an undefined byte less than or equal to END.
4648
4649 We don't handle duplicates properly (yet). */
4650
4651 static boolean
4652 group_match_null_string_p (p, end, reg_info)
4653 unsigned char **p, *end;
4654 register_info_type *reg_info;
4655 {
4656 int mcnt;
4657 /* Point to after the args to the start_memory. */
4658 unsigned char *p1 = *p + 2;
4659
4660 while (p1 < end)
4661 {
4662 /* Skip over opcodes that can match nothing, and return true or
4663 false, as appropriate, when we get to one that can't, or to the
4664 matching stop_memory. */
4665
4666 switch ((re_opcode_t) *p1)
4667 {
4668 /* Could be either a loop or a series of alternatives. */
4669 case on_failure_jump:
4670 p1++;
4671 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4672
4673 /* If the next operation is not a jump backwards in the
4674 pattern. */
4675
4676 if (mcnt >= 0)
4677 {
4678 /* Go through the on_failure_jumps of the alternatives,
4679 seeing if any of the alternatives cannot match nothing.
4680 The last alternative starts with only a jump,
4681 whereas the rest start with on_failure_jump and end
4682 with a jump, e.g., here is the pattern for `a|b|c':
4683
4684 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4685 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4686 /exactn/1/c
4687
4688 So, we have to first go through the first (n-1)
4689 alternatives and then deal with the last one separately. */
4690
4691
4692 /* Deal with the first (n-1) alternatives, which start
4693 with an on_failure_jump (see above) that jumps to right
4694 past a jump_past_alt. */
4695
4696 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4697 {
4698 /* `mcnt' holds how many bytes long the alternative
4699 is, including the ending `jump_past_alt' and
4700 its number. */
4701
4702 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
4703 reg_info))
4704 return false;
4705
4706 /* Move to right after this alternative, including the
4707 jump_past_alt. */
4708 p1 += mcnt;
4709
4710 /* Break if it's the beginning of an n-th alternative
4711 that doesn't begin with an on_failure_jump. */
4712 if ((re_opcode_t) *p1 != on_failure_jump)
4713 break;
4714
4715 /* Still have to check that it's not an n-th
4716 alternative that starts with an on_failure_jump. */
4717 p1++;
4718 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4719 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4720 {
4721 /* Get to the beginning of the n-th alternative. */
4722 p1 -= 3;
4723 break;
4724 }
4725 }
4726
4727 /* Deal with the last alternative: go back and get number
4728 of the `jump_past_alt' just before it. `mcnt' contains
4729 the length of the alternative. */
4730 EXTRACT_NUMBER (mcnt, p1 - 2);
4731
4732 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4733 return false;
4734
4735 p1 += mcnt; /* Get past the n-th alternative. */
4736 } /* if mcnt > 0 */
4737 break;
4738
4739
4740 case stop_memory:
4741 assert (p1[1] == **p);
4742 *p = p1 + 2;
4743 return true;
4744
4745
4746 default:
4747 if (!common_op_match_null_string_p (&p1, end, reg_info))
4748 return false;
4749 }
4750 } /* while p1 < end */
4751
4752 return false;
4753 } /* group_match_null_string_p */
4754
4755
4756 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4757 It expects P to be the first byte of a single alternative and END one
4758 byte past the last. The alternative can contain groups. */
4759
4760 static boolean
4761 alt_match_null_string_p (p, end, reg_info)
4762 unsigned char *p, *end;
4763 register_info_type *reg_info;
4764 {
4765 int mcnt;
4766 unsigned char *p1 = p;
4767
4768 while (p1 < end)
4769 {
4770 /* Skip over opcodes that can match nothing, and break when we get
4771 to one that can't. */
4772
4773 switch ((re_opcode_t) *p1)
4774 {
4775 /* It's a loop. */
4776 case on_failure_jump:
4777 p1++;
4778 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4779 p1 += mcnt;
4780 break;
4781
4782 default:
4783 if (!common_op_match_null_string_p (&p1, end, reg_info))
4784 return false;
4785 }
4786 } /* while p1 < end */
4787
4788 return true;
4789 } /* alt_match_null_string_p */
4790
4791
4792 /* Deals with the ops common to group_match_null_string_p and
4793 alt_match_null_string_p.
4794
4795 Sets P to one after the op and its arguments, if any. */
4796
4797 static boolean
4798 common_op_match_null_string_p (p, end, reg_info)
4799 unsigned char **p, *end;
4800 register_info_type *reg_info;
4801 {
4802 int mcnt;
4803 boolean ret;
4804 int reg_no;
4805 unsigned char *p1 = *p;
4806
4807 switch ((re_opcode_t) *p1++)
4808 {
4809 case no_op:
4810 case begline:
4811 case endline:
4812 case begbuf:
4813 case endbuf:
4814 case wordbeg:
4815 case wordend:
4816 case wordbound:
4817 case notwordbound:
4818 #ifdef emacs
4819 case before_dot:
4820 case at_dot:
4821 case after_dot:
4822 #endif
4823 break;
4824
4825 case start_memory:
4826 reg_no = *p1;
4827 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
4828 ret = group_match_null_string_p (&p1, end, reg_info);
4829
4830 /* Have to set this here in case we're checking a group which
4831 contains a group and a back reference to it. */
4832
4833 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
4834 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
4835
4836 if (!ret)
4837 return false;
4838 break;
4839
4840 /* If this is an optimized succeed_n for zero times, make the jump. */
4841 case jump:
4842 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4843 if (mcnt >= 0)
4844 p1 += mcnt;
4845 else
4846 return false;
4847 break;
4848
4849 case succeed_n:
4850 /* Get to the number of times to succeed. */
4851 p1 += 2;
4852 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4853
4854 if (mcnt == 0)
4855 {
4856 p1 -= 4;
4857 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4858 p1 += mcnt;
4859 }
4860 else
4861 return false;
4862 break;
4863
4864 case duplicate:
4865 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
4866 return false;
4867 break;
4868
4869 case set_number_at:
4870 p1 += 4;
4871
4872 default:
4873 /* All other opcodes mean we cannot match the empty string. */
4874 return false;
4875 }
4876
4877 *p = p1;
4878 return true;
4879 } /* common_op_match_null_string_p */
4880
4881
4882 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
4883 bytes; nonzero otherwise. */
4884
4885 static int
4886 bcmp_translate (s1, s2, len, translate)
4887 unsigned char *s1, *s2;
4888 register int len;
4889 char *translate;
4890 {
4891 register unsigned char *p1 = s1, *p2 = s2;
4892 while (len)
4893 {
4894 if (translate[*p1++] != translate[*p2++]) return 1;
4895 len--;
4896 }
4897 return 0;
4898 }
4899 \f
4900 /* Entry points for GNU code. */
4901
4902 /* re_compile_pattern is the GNU regular expression compiler: it
4903 compiles PATTERN (of length SIZE) and puts the result in BUFP.
4904 Returns 0 if the pattern was valid, otherwise an error string.
4905
4906 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
4907 are set in BUFP on entry.
4908
4909 We call regex_compile to do the actual compilation. */
4910
4911 const char *
4912 re_compile_pattern (pattern, length, bufp)
4913 const char *pattern;
4914 int length;
4915 struct re_pattern_buffer *bufp;
4916 {
4917 reg_errcode_t ret;
4918
4919 /* GNU code is written to assume at least RE_NREGS registers will be set
4920 (and at least one extra will be -1). */
4921 bufp->regs_allocated = REGS_UNALLOCATED;
4922
4923 /* And GNU code determines whether or not to get register information
4924 by passing null for the REGS argument to re_match, etc., not by
4925 setting no_sub. */
4926 bufp->no_sub = 0;
4927
4928 /* Match anchors at newline. */
4929 bufp->newline_anchor = 1;
4930
4931 ret = regex_compile (pattern, length, re_syntax_options, bufp);
4932
4933 return re_error_msg[(int) ret];
4934 }
4935 \f
4936 /* Entry points compatible with 4.2 BSD regex library. We don't define
4937 them if this is an Emacs or POSIX compilation. */
4938
4939 #if !defined (emacs) && !defined (_POSIX_SOURCE)
4940
4941 /* BSD has one and only one pattern buffer. */
4942 static struct re_pattern_buffer re_comp_buf;
4943
4944 char *
4945 re_comp (s)
4946 const char *s;
4947 {
4948 reg_errcode_t ret;
4949
4950 if (!s)
4951 {
4952 if (!re_comp_buf.buffer)
4953 return "No previous regular expression";
4954 return 0;
4955 }
4956
4957 if (!re_comp_buf.buffer)
4958 {
4959 re_comp_buf.buffer = (unsigned char *) malloc (200);
4960 if (re_comp_buf.buffer == NULL)
4961 return "Memory exhausted";
4962 re_comp_buf.allocated = 200;
4963
4964 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
4965 if (re_comp_buf.fastmap == NULL)
4966 return "Memory exhausted";
4967 }
4968
4969 /* Since `re_exec' always passes NULL for the `regs' argument, we
4970 don't need to initialize the pattern buffer fields which affect it. */
4971
4972 /* Match anchors at newlines. */
4973 re_comp_buf.newline_anchor = 1;
4974
4975 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
4976
4977 /* Yes, we're discarding `const' here. */
4978 return (char *) re_error_msg[(int) ret];
4979 }
4980
4981
4982 int
4983 re_exec (s)
4984 const char *s;
4985 {
4986 const int len = strlen (s);
4987 return
4988 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
4989 }
4990 #endif /* not emacs and not _POSIX_SOURCE */
4991 \f
4992 /* POSIX.2 functions. Don't define these for Emacs. */
4993
4994 #ifndef emacs
4995
4996 /* regcomp takes a regular expression as a string and compiles it.
4997
4998 PREG is a regex_t *. We do not expect any fields to be initialized,
4999 since POSIX says we shouldn't. Thus, we set
5000
5001 `buffer' to the compiled pattern;
5002 `used' to the length of the compiled pattern;
5003 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5004 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5005 RE_SYNTAX_POSIX_BASIC;
5006 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5007 `fastmap' and `fastmap_accurate' to zero;
5008 `re_nsub' to the number of subexpressions in PATTERN.
5009
5010 PATTERN is the address of the pattern string.
5011
5012 CFLAGS is a series of bits which affect compilation.
5013
5014 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5015 use POSIX basic syntax.
5016
5017 If REG_NEWLINE is set, then . and [^...] don't match newline.
5018 Also, regexec will try a match beginning after every newline.
5019
5020 If REG_ICASE is set, then we considers upper- and lowercase
5021 versions of letters to be equivalent when matching.
5022
5023 If REG_NOSUB is set, then when PREG is passed to regexec, that
5024 routine will report only success or failure, and nothing about the
5025 registers.
5026
5027 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5028 the return codes and their meanings.) */
5029
5030 int
5031 regcomp (preg, pattern, cflags)
5032 regex_t *preg;
5033 const char *pattern;
5034 int cflags;
5035 {
5036 reg_errcode_t ret;
5037 unsigned syntax
5038 = (cflags & REG_EXTENDED) ?
5039 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5040
5041 /* regex_compile will allocate the space for the compiled pattern. */
5042 preg->buffer = 0;
5043 preg->allocated = 0;
5044 preg->used = 0;
5045
5046 /* Don't bother to use a fastmap when searching. This simplifies the
5047 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5048 characters after newlines into the fastmap. This way, we just try
5049 every character. */
5050 preg->fastmap = 0;
5051
5052 if (cflags & REG_ICASE)
5053 {
5054 unsigned i;
5055
5056 preg->translate = (char *) malloc (CHAR_SET_SIZE);
5057 if (preg->translate == NULL)
5058 return (int) REG_ESPACE;
5059
5060 /* Map uppercase characters to corresponding lowercase ones. */
5061 for (i = 0; i < CHAR_SET_SIZE; i++)
5062 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5063 }
5064 else
5065 preg->translate = NULL;
5066
5067 /* If REG_NEWLINE is set, newlines are treated differently. */
5068 if (cflags & REG_NEWLINE)
5069 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5070 syntax &= ~RE_DOT_NEWLINE;
5071 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5072 /* It also changes the matching behavior. */
5073 preg->newline_anchor = 1;
5074 }
5075 else
5076 preg->newline_anchor = 0;
5077
5078 preg->no_sub = !!(cflags & REG_NOSUB);
5079
5080 /* POSIX says a null character in the pattern terminates it, so we
5081 can use strlen here in compiling the pattern. */
5082 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5083
5084 /* POSIX doesn't distinguish between an unmatched open-group and an
5085 unmatched close-group: both are REG_EPAREN. */
5086 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5087
5088 return (int) ret;
5089 }
5090
5091
5092 /* regexec searches for a given pattern, specified by PREG, in the
5093 string STRING.
5094
5095 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5096 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5097 least NMATCH elements, and we set them to the offsets of the
5098 corresponding matched substrings.
5099
5100 EFLAGS specifies `execution flags' which affect matching: if
5101 REG_NOTBOL is set, then ^ does not match at the beginning of the
5102 string; if REG_NOTEOL is set, then $ does not match at the end.
5103
5104 We return 0 if we find a match and REG_NOMATCH if not. */
5105
5106 int
5107 regexec (preg, string, nmatch, pmatch, eflags)
5108 const regex_t *preg;
5109 const char *string;
5110 size_t nmatch;
5111 regmatch_t pmatch[];
5112 int eflags;
5113 {
5114 int ret;
5115 struct re_registers regs;
5116 regex_t private_preg;
5117 int len = strlen (string);
5118 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5119
5120 private_preg = *preg;
5121
5122 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5123 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5124
5125 /* The user has told us exactly how many registers to return
5126 information about, via `nmatch'. We have to pass that on to the
5127 matching routines. */
5128 private_preg.regs_allocated = REGS_FIXED;
5129
5130 if (want_reg_info)
5131 {
5132 regs.num_regs = nmatch;
5133 regs.start = TALLOC (nmatch, regoff_t);
5134 regs.end = TALLOC (nmatch, regoff_t);
5135 if (regs.start == NULL || regs.end == NULL)
5136 return (int) REG_NOMATCH;
5137 }
5138
5139 /* Perform the searching operation. */
5140 ret = re_search (&private_preg, string, len,
5141 /* start: */ 0, /* range: */ len,
5142 want_reg_info ? &regs : (struct re_registers *) 0);
5143
5144 /* Copy the register information to the POSIX structure. */
5145 if (want_reg_info)
5146 {
5147 if (ret >= 0)
5148 {
5149 unsigned r;
5150
5151 for (r = 0; r < nmatch; r++)
5152 {
5153 pmatch[r].rm_so = regs.start[r];
5154 pmatch[r].rm_eo = regs.end[r];
5155 }
5156 }
5157
5158 /* If we needed the temporary register info, free the space now. */
5159 free (regs.start);
5160 free (regs.end);
5161 }
5162
5163 /* We want zero return to mean success, unlike `re_search'. */
5164 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5165 }
5166
5167
5168 /* Returns a message corresponding to an error code, ERRCODE, returned
5169 from either regcomp or regexec. We don't use PREG here. */
5170
5171 size_t
5172 regerror (errcode, preg, errbuf, errbuf_size)
5173 int errcode;
5174 const regex_t *preg;
5175 char *errbuf;
5176 size_t errbuf_size;
5177 {
5178 const char *msg;
5179 size_t msg_size;
5180
5181 if (errcode < 0
5182 || errcode >= (sizeof (re_error_msg) / sizeof (re_error_msg[0])))
5183 /* Only error codes returned by the rest of the code should be passed
5184 to this routine. If we are given anything else, or if other regex
5185 code generates an invalid error code, then the program has a bug.
5186 Dump core so we can fix it. */
5187 abort ();
5188
5189 msg = re_error_msg[errcode];
5190
5191 /* POSIX doesn't require that we do anything in this case, but why
5192 not be nice. */
5193 if (! msg)
5194 msg = "Success";
5195
5196 msg_size = strlen (msg) + 1; /* Includes the null. */
5197
5198 if (errbuf_size != 0)
5199 {
5200 if (msg_size > errbuf_size)
5201 {
5202 strncpy (errbuf, msg, errbuf_size - 1);
5203 errbuf[errbuf_size - 1] = 0;
5204 }
5205 else
5206 strcpy (errbuf, msg);
5207 }
5208
5209 return msg_size;
5210 }
5211
5212
5213 /* Free dynamically allocated space used by PREG. */
5214
5215 void
5216 regfree (preg)
5217 regex_t *preg;
5218 {
5219 if (preg->buffer != NULL)
5220 free (preg->buffer);
5221 preg->buffer = NULL;
5222
5223 preg->allocated = 0;
5224 preg->used = 0;
5225
5226 if (preg->fastmap != NULL)
5227 free (preg->fastmap);
5228 preg->fastmap = NULL;
5229 preg->fastmap_accurate = 0;
5230
5231 if (preg->translate != NULL)
5232 free (preg->translate);
5233 preg->translate = NULL;
5234 }
5235
5236 #endif /* not emacs */
5237 \f
5238 /*
5239 Local variables:
5240 make-backup-files: t
5241 version-control: t
5242 trim-versions-without-asking: nil
5243 End:
5244 */