]> code.delx.au - gnu-emacs/blob - src/keymap.c
* xterm.c (XTread_socket): Never treat a modifier key as a
[gnu-emacs] / src / keymap.c
1 /* Manipulation of keymaps
2 Copyright (C) 1985, 1986, 1987, 1988, 1993 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 #include "config.h"
22 #include <stdio.h>
23 #undef NULL
24 #include "lisp.h"
25 #include "commands.h"
26 #include "buffer.h"
27 #include "keyboard.h"
28 #include "termhooks.h"
29 #include "blockinput.h"
30
31 #define min(a, b) ((a) < (b) ? (a) : (b))
32
33 /* The number of elements in keymap vectors. */
34 #define DENSE_TABLE_SIZE (0200)
35
36 /* Actually allocate storage for these variables */
37
38 Lisp_Object current_global_map; /* Current global keymap */
39
40 Lisp_Object global_map; /* default global key bindings */
41
42 Lisp_Object meta_map; /* The keymap used for globally bound
43 ESC-prefixed default commands */
44
45 Lisp_Object control_x_map; /* The keymap used for globally bound
46 C-x-prefixed default commands */
47
48 /* was MinibufLocalMap */
49 Lisp_Object Vminibuffer_local_map;
50 /* The keymap used by the minibuf for local
51 bindings when spaces are allowed in the
52 minibuf */
53
54 /* was MinibufLocalNSMap */
55 Lisp_Object Vminibuffer_local_ns_map;
56 /* The keymap used by the minibuf for local
57 bindings when spaces are not encouraged
58 in the minibuf */
59
60 /* keymap used for minibuffers when doing completion */
61 /* was MinibufLocalCompletionMap */
62 Lisp_Object Vminibuffer_local_completion_map;
63
64 /* keymap used for minibuffers when doing completion and require a match */
65 /* was MinibufLocalMustMatchMap */
66 Lisp_Object Vminibuffer_local_must_match_map;
67
68 /* Alist of minor mode variables and keymaps. */
69 Lisp_Object Vminor_mode_map_alist;
70
71 /* Keymap mapping ASCII function key sequences onto their preferred forms.
72 Initialized by the terminal-specific lisp files. See DEFVAR for more
73 documentation. */
74 Lisp_Object Vfunction_key_map;
75
76 Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii;
77
78 /* A char with the CHAR_META bit set in a vector or the 0200 bit set
79 in a string key sequence is equivalent to prefixing with this
80 character. */
81 extern Lisp_Object meta_prefix_char;
82
83 void describe_map_tree ();
84 static Lisp_Object define_as_prefix ();
85 static Lisp_Object describe_buffer_bindings ();
86 static void describe_command ();
87 static void describe_map ();
88 static void describe_map_2 ();
89 \f
90 /* Keymap object support - constructors and predicates. */
91
92 DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
93 "Construct and return a new keymap, of the form (keymap VECTOR . ALIST).\n\
94 VECTOR is a vector which holds the bindings for the ASCII\n\
95 characters. ALIST is an assoc-list which holds bindings for function keys,\n\
96 mouse events, and any other things that appear in the input stream.\n\
97 All entries in it are initially nil, meaning \"command undefined\".\n\n\
98 The optional arg STRING supplies a menu name for the keymap\n\
99 in case you use it as a menu with `x-popup-menu'.")
100 (string)
101 Lisp_Object string;
102 {
103 Lisp_Object tail;
104 if (!NILP (string))
105 tail = Fcons (string, Qnil);
106 else
107 tail = Qnil;
108 return Fcons (Qkeymap,
109 Fcons (Fmake_vector (make_number (DENSE_TABLE_SIZE), Qnil),
110 tail));
111 }
112
113 DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
114 "Construct and return a new sparse-keymap list.\n\
115 Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),\n\
116 which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),\n\
117 which binds the function key or mouse event SYMBOL to DEFINITION.\n\
118 Initially the alist is nil.\n\n\
119 The optional arg STRING supplies a menu name for the keymap\n\
120 in case you use it as a menu with `x-popup-menu'.")
121 (string)
122 Lisp_Object string;
123 {
124 if (!NILP (string))
125 return Fcons (Qkeymap, Fcons (string, Qnil));
126 return Fcons (Qkeymap, Qnil);
127 }
128
129 /* This function is used for installing the standard key bindings
130 at initialization time.
131
132 For example:
133
134 initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
135
136 void
137 initial_define_key (keymap, key, defname)
138 Lisp_Object keymap;
139 int key;
140 char *defname;
141 {
142 store_in_keymap (keymap, make_number (key), intern (defname));
143 }
144
145 void
146 initial_define_lispy_key (keymap, keyname, defname)
147 Lisp_Object keymap;
148 char *keyname;
149 char *defname;
150 {
151 store_in_keymap (keymap, intern (keyname), intern (defname));
152 }
153
154 /* Define character fromchar in map frommap as an alias for character
155 tochar in map tomap. Subsequent redefinitions of the latter WILL
156 affect the former. */
157
158 #if 0
159 void
160 synkey (frommap, fromchar, tomap, tochar)
161 struct Lisp_Vector *frommap, *tomap;
162 int fromchar, tochar;
163 {
164 Lisp_Object v, c;
165 XSET (v, Lisp_Vector, tomap);
166 XFASTINT (c) = tochar;
167 frommap->contents[fromchar] = Fcons (v, c);
168 }
169 #endif /* 0 */
170
171 DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
172 "Return t if ARG is a keymap.\n\
173 \n\
174 A keymap is a list (keymap . ALIST),\n\
175 or a symbol whose function definition is a keymap is itself a keymap.\n\
176 ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);\n\
177 a vector of densely packed bindings for small character codes\n\
178 is also allowed as an element.")
179 (object)
180 Lisp_Object object;
181 {
182 return (NILP (get_keymap_1 (object, 0, 0)) ? Qnil : Qt);
183 }
184
185 /* Check that OBJECT is a keymap (after dereferencing through any
186 symbols). If it is, return it.
187
188 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
189 is an autoload form, do the autoload and try again.
190
191 ERROR controls how we respond if OBJECT isn't a keymap.
192 If ERROR is non-zero, signal an error; otherwise, just return Qnil.
193
194 Note that most of the time, we don't want to pursue autoloads.
195 Functions like Faccessible_keymaps which scan entire keymap trees
196 shouldn't load every autoloaded keymap. I'm not sure about this,
197 but it seems to me that only read_key_sequence, Flookup_key, and
198 Fdefine_key should cause keymaps to be autoloaded. */
199
200 Lisp_Object
201 get_keymap_1 (object, error, autoload)
202 Lisp_Object object;
203 int error, autoload;
204 {
205 Lisp_Object tem;
206
207 autoload_retry:
208 tem = indirect_function (object);
209 if (CONSP (tem) && EQ (XCONS (tem)->car, Qkeymap))
210 return tem;
211
212 /* Should we do an autoload? Autoload forms for keymaps have
213 Qkeymap as their fifth element. */
214 if (autoload
215 && XTYPE (object) == Lisp_Symbol
216 && CONSP (tem)
217 && EQ (XCONS (tem)->car, Qautoload))
218 {
219 Lisp_Object tail;
220
221 tail = Fnth (make_number (4), tem);
222 if (EQ (tail, Qkeymap))
223 {
224 struct gcpro gcpro1, gcpro2;
225
226 GCPRO2 (tem, object);
227 do_autoload (tem, object);
228 UNGCPRO;
229
230 goto autoload_retry;
231 }
232 }
233
234 if (error)
235 wrong_type_argument (Qkeymapp, object);
236 else
237 return Qnil;
238 }
239
240
241 /* Follow any symbol chaining, and return the keymap denoted by OBJECT.
242 If OBJECT doesn't denote a keymap at all, signal an error. */
243 Lisp_Object
244 get_keymap (object)
245 Lisp_Object object;
246 {
247 return get_keymap_1 (object, 0, 0);
248 }
249
250
251 /* Look up IDX in MAP. IDX may be any sort of event.
252 Note that this does only one level of lookup; IDX must be a single
253 event, not a sequence.
254
255 If T_OK is non-zero, bindings for Qt are treated as default
256 bindings; any key left unmentioned by other tables and bindings is
257 given the binding of Qt.
258
259 If T_OK is zero, bindings for Qt are not treated specially.
260
261 If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */
262
263 Lisp_Object
264 access_keymap (map, idx, t_ok, noinherit)
265 Lisp_Object map;
266 Lisp_Object idx;
267 int t_ok;
268 int noinherit;
269 {
270 int noprefix = 0;
271 Lisp_Object val;
272
273 /* If idx is a list (some sort of mouse click, perhaps?),
274 the index we want to use is the car of the list, which
275 ought to be a symbol. */
276 idx = EVENT_HEAD (idx);
277
278 /* If idx is a symbol, it might have modifiers, which need to
279 be put in the canonical order. */
280 if (XTYPE (idx) == Lisp_Symbol)
281 idx = reorder_modifiers (idx);
282 else if (INTEGERP (idx))
283 /* Clobber the high bits that can be present on a machine
284 with more than 24 bits of integer. */
285 XFASTINT (idx) = XINT (idx) & (CHAR_META | (CHAR_META - 1));
286
287 {
288 Lisp_Object tail;
289 Lisp_Object t_binding = Qnil;
290
291 for (tail = map; CONSP (tail); tail = XCONS (tail)->cdr)
292 {
293 Lisp_Object binding = XCONS (tail)->car;
294
295 switch (XTYPE (binding))
296 {
297 case Lisp_Symbol:
298 /* If NOINHERIT, stop finding prefix definitions
299 after we pass a second occurrence of the `keymap' symbol. */
300 if (noinherit && EQ (binding, Qkeymap) && ! EQ (tail, map))
301 noprefix = 1;
302 break;
303
304 case Lisp_Cons:
305 if (EQ (XCONS (binding)->car, idx))
306 {
307 val = XCONS (binding)->cdr;
308 if (noprefix && CONSP (val) && EQ (XCONS (val)->car, Qkeymap))
309 return Qnil;
310 return val;
311 }
312 if (t_ok && EQ (XCONS (binding)->car, Qt))
313 t_binding = XCONS (binding)->cdr;
314 break;
315
316 case Lisp_Vector:
317 if (XTYPE (idx) == Lisp_Int
318 && XINT (idx) >= 0
319 && XINT (idx) < XVECTOR (binding)->size)
320 {
321 val = XVECTOR (binding)->contents[XINT (idx)];
322 if (noprefix && CONSP (val) && EQ (XCONS (val)->car, Qkeymap))
323 return Qnil;
324 return val;
325 }
326 break;
327 }
328
329 QUIT;
330 }
331
332 return t_binding;
333 }
334 }
335
336 /* Given OBJECT which was found in a slot in a keymap,
337 trace indirect definitions to get the actual definition of that slot.
338 An indirect definition is a list of the form
339 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
340 and INDEX is the object to look up in KEYMAP to yield the definition.
341
342 Also if OBJECT has a menu string as the first element,
343 remove that. Also remove a menu help string as second element. */
344
345 Lisp_Object
346 get_keyelt (object)
347 register Lisp_Object object;
348 {
349 while (1)
350 {
351 register Lisp_Object map, tem;
352
353 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
354 map = get_keymap_1 (Fcar_safe (object), 0, 0);
355 tem = Fkeymapp (map);
356 if (!NILP (tem))
357 object = access_keymap (map, Fcdr (object), 0, 0);
358
359 /* If the keymap contents looks like (STRING . DEFN),
360 use DEFN.
361 Keymap alist elements like (CHAR MENUSTRING . DEFN)
362 will be used by HierarKey menus. */
363 else if (XTYPE (object) == Lisp_Cons
364 && XTYPE (XCONS (object)->car) == Lisp_String)
365 {
366 object = XCONS (object)->cdr;
367 /* Also remove a menu help string, if any,
368 following the menu item name. */
369 if (XTYPE (object) == Lisp_Cons
370 && XTYPE (XCONS (object)->car) == Lisp_String)
371 object = XCONS (object)->cdr;
372 }
373
374 else
375 /* Anything else is really the value. */
376 return object;
377 }
378 }
379
380 Lisp_Object
381 store_in_keymap (keymap, idx, def)
382 Lisp_Object keymap;
383 register Lisp_Object idx;
384 register Lisp_Object def;
385 {
386 if (XTYPE (keymap) != Lisp_Cons
387 || ! EQ (XCONS (keymap)->car, Qkeymap))
388 error ("attempt to define a key in a non-keymap");
389
390 /* If idx is a list (some sort of mouse click, perhaps?),
391 the index we want to use is the car of the list, which
392 ought to be a symbol. */
393 idx = EVENT_HEAD (idx);
394
395 /* If idx is a symbol, it might have modifiers, which need to
396 be put in the canonical order. */
397 if (XTYPE (idx) == Lisp_Symbol)
398 idx = reorder_modifiers (idx);
399 else if (INTEGERP (idx))
400 /* Clobber the high bits that can be present on a machine
401 with more than 24 bits of integer. */
402 XFASTINT (idx) = XINT (idx) & (CHAR_META | (CHAR_META - 1));
403
404 /* Scan the keymap for a binding of idx. */
405 {
406 Lisp_Object tail;
407
408 /* The cons after which we should insert new bindings. If the
409 keymap has a table element, we record its position here, so new
410 bindings will go after it; this way, the table will stay
411 towards the front of the alist and character lookups in dense
412 keymaps will remain fast. Otherwise, this just points at the
413 front of the keymap. */
414 Lisp_Object insertion_point = keymap;
415
416 for (tail = XCONS (keymap)->cdr; CONSP (tail); tail = XCONS (tail)->cdr)
417 {
418 Lisp_Object elt = XCONS (tail)->car;
419
420 switch (XTYPE (elt))
421 {
422 case Lisp_Vector:
423 if (XTYPE (idx) == Lisp_Int
424 && XINT (idx) >= 0 && XINT (idx) < XVECTOR (elt)->size)
425 {
426 XVECTOR (elt)->contents[XFASTINT (idx)] = def;
427 return def;
428 }
429 insertion_point = tail;
430 break;
431
432 case Lisp_Cons:
433 if (EQ (idx, XCONS (elt)->car))
434 {
435 XCONS (elt)->cdr = def;
436 return def;
437 }
438 break;
439
440 case Lisp_Symbol:
441 /* If we find a 'keymap' symbol in the spine of KEYMAP,
442 then we must have found the start of a second keymap
443 being used as the tail of KEYMAP, and a binding for IDX
444 should be inserted before it. */
445 if (EQ (elt, Qkeymap))
446 goto keymap_end;
447 break;
448 }
449
450 QUIT;
451 }
452
453 keymap_end:
454 /* We have scanned the entire keymap, and not found a binding for
455 IDX. Let's add one. */
456 XCONS (insertion_point)->cdr =
457 Fcons (Fcons (idx, def), XCONS (insertion_point)->cdr);
458 }
459
460 return def;
461 }
462
463
464 DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
465 "Return a copy of the keymap KEYMAP.\n\
466 The copy starts out with the same definitions of KEYMAP,\n\
467 but changing either the copy or KEYMAP does not affect the other.\n\
468 Any key definitions that are subkeymaps are recursively copied.\n\
469 However, a key definition which is a symbol whose definition is a keymap\n\
470 is not copied.")
471 (keymap)
472 Lisp_Object keymap;
473 {
474 register Lisp_Object copy, tail;
475
476 copy = Fcopy_alist (get_keymap (keymap));
477
478 for (tail = copy; CONSP (tail); tail = XCONS (tail)->cdr)
479 {
480 Lisp_Object elt = XCONS (tail)->car;
481
482 if (XTYPE (elt) == Lisp_Vector)
483 {
484 int i;
485
486 elt = Fcopy_sequence (elt);
487 XCONS (tail)->car = elt;
488
489 for (i = 0; i < XVECTOR (elt)->size; i++)
490 if (XTYPE (XVECTOR (elt)->contents[i]) != Lisp_Symbol
491 && ! NILP (Fkeymapp (XVECTOR (elt)->contents[i])))
492 XVECTOR (elt)->contents[i] =
493 Fcopy_keymap (XVECTOR (elt)->contents[i]);
494 }
495 else if (CONSP (elt)
496 && XTYPE (XCONS (elt)->cdr) != Lisp_Symbol
497 && ! NILP (Fkeymapp (XCONS (elt)->cdr)))
498 XCONS (elt)->cdr = Fcopy_keymap (XCONS (elt)->cdr);
499 }
500
501 return copy;
502 }
503 \f
504 /* Simple Keymap mutators and accessors. */
505
506 DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
507 "Args KEYMAP, KEY, DEF. Define key sequence KEY, in KEYMAP, as DEF.\n\
508 KEYMAP is a keymap. KEY is a string or a vector of symbols and characters\n\
509 meaning a sequence of keystrokes and events.\n\
510 DEF is anything that can be a key's definition:\n\
511 nil (means key is undefined in this keymap),\n\
512 a command (a Lisp function suitable for interactive calling)\n\
513 a string (treated as a keyboard macro),\n\
514 a keymap (to define a prefix key),\n\
515 a symbol. When the key is looked up, the symbol will stand for its\n\
516 function definition, which should at that time be one of the above,\n\
517 or another symbol whose function definition is used, etc.\n\
518 a cons (STRING . DEFN), meaning that DEFN is the definition\n\
519 (DEFN should be a valid definition in its own right),\n\
520 or a cons (KEYMAP . CHAR), meaning use definition of CHAR in map KEYMAP.\n\
521 \n\
522 If KEYMAP is a sparse keymap, the pair binding KEY to DEF is added at\n\
523 the front of KEYMAP.")
524 (keymap, key, def)
525 Lisp_Object keymap;
526 Lisp_Object key;
527 Lisp_Object def;
528 {
529 register int idx;
530 register Lisp_Object c;
531 register Lisp_Object tem;
532 register Lisp_Object cmd;
533 int metized = 0;
534 int meta_bit;
535 int length;
536 struct gcpro gcpro1, gcpro2, gcpro3;
537
538 keymap = get_keymap (keymap);
539
540 if (XTYPE (key) != Lisp_Vector
541 && XTYPE (key) != Lisp_String)
542 key = wrong_type_argument (Qarrayp, key);
543
544 length = XFASTINT (Flength (key));
545 if (length == 0)
546 return Qnil;
547
548 GCPRO3 (keymap, key, def);
549
550 if (XTYPE (key) == Lisp_Vector)
551 meta_bit = meta_modifier;
552 else
553 meta_bit = 0x80;
554
555 idx = 0;
556 while (1)
557 {
558 c = Faref (key, make_number (idx));
559
560 if (XTYPE (c) == Lisp_Int
561 && (XINT (c) & meta_bit)
562 && !metized)
563 {
564 c = meta_prefix_char;
565 metized = 1;
566 }
567 else
568 {
569 if (XTYPE (c) == Lisp_Int)
570 XSETINT (c, XINT (c) & ~meta_bit);
571
572 metized = 0;
573 idx++;
574 }
575
576 if (idx == length)
577 RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
578
579 cmd = get_keyelt (access_keymap (keymap, c, 0, 1));
580
581 /* If this key is undefined, make it a prefix. */
582 if (NILP (cmd))
583 cmd = define_as_prefix (keymap, c);
584
585 keymap = get_keymap_1 (cmd, 0, 1);
586 if (NILP (keymap))
587 {
588 /* We must use Fkey_description rather than just passing key to
589 error; key might be a vector, not a string. */
590 Lisp_Object description = Fkey_description (key);
591
592 error ("Key sequence %s uses invalid prefix characters",
593 XSTRING (description)->data);
594 }
595 }
596 }
597
598 /* Value is number if KEY is too long; NIL if valid but has no definition. */
599
600 DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
601 "In keymap KEYMAP, look up key sequence KEY. Return the definition.\n\
602 nil means undefined. See doc of `define-key' for kinds of definitions.\n\
603 \n\
604 A number as value means KEY is \"too long\";\n\
605 that is, characters or symbols in it except for the last one\n\
606 fail to be a valid sequence of prefix characters in KEYMAP.\n\
607 The number is how many characters at the front of KEY\n\
608 it takes to reach a non-prefix command.\n\
609 \n\
610 Normally, `lookup-key' ignores bindings for t, which act as default\n\
611 bindings, used when nothing else in the keymap applies; this makes it\n\
612 useable as a general function for probing keymaps. However, if the\n\
613 third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will\n\
614 recognize the default bindings, just as `read-key-sequence' does.")
615 (keymap, key, accept_default)
616 register Lisp_Object keymap;
617 Lisp_Object key;
618 Lisp_Object accept_default;
619 {
620 register int idx;
621 register Lisp_Object tem;
622 register Lisp_Object cmd;
623 register Lisp_Object c;
624 int metized = 0;
625 int length;
626 int t_ok = ! NILP (accept_default);
627 int meta_bit;
628
629 keymap = get_keymap (keymap);
630
631 if (XTYPE (key) != Lisp_Vector
632 && XTYPE (key) != Lisp_String)
633 key = wrong_type_argument (Qarrayp, key);
634
635 length = XFASTINT (Flength (key));
636 if (length == 0)
637 return keymap;
638
639 if (XTYPE (key) == Lisp_Vector)
640 meta_bit = meta_modifier;
641 else
642 meta_bit = 0x80;
643
644 idx = 0;
645 while (1)
646 {
647 c = Faref (key, make_number (idx));
648
649 if (XTYPE (c) == Lisp_Int
650 && (XINT (c) & meta_bit)
651 && !metized)
652 {
653 c = meta_prefix_char;
654 metized = 1;
655 }
656 else
657 {
658 if (XTYPE (c) == Lisp_Int)
659 XSETINT (c, XINT (c) & ~meta_bit);
660
661 metized = 0;
662 idx++;
663 }
664
665 cmd = get_keyelt (access_keymap (keymap, c, t_ok, 0));
666 if (idx == length)
667 return cmd;
668
669 keymap = get_keymap_1 (cmd, 0, 0);
670 if (NILP (keymap))
671 return make_number (idx);
672
673 QUIT;
674 }
675 }
676
677 /* Make KEYMAP define event C as a keymap (i.e., as a prefix).
678 Assume that currently it does not define C at all.
679 Return the keymap. */
680
681 static Lisp_Object
682 define_as_prefix (keymap, c)
683 Lisp_Object keymap, c;
684 {
685 Lisp_Object inherit, cmd;
686
687 cmd = Fmake_sparse_keymap (Qnil);
688 /* If this key is defined as a prefix in an inherited keymap,
689 make it a prefix in this map, and make its definition
690 inherit the other prefix definition. */
691 inherit = access_keymap (keymap, c, 0, 0);
692 if (NILP (inherit))
693 {
694 /* If there's an inherited keymap
695 and it doesn't define this key,
696 make it define this key. */
697 Lisp_Object tail;
698
699 for (tail = Fcdr (keymap); CONSP (tail); tail = XCONS (tail)->cdr)
700 if (EQ (XCONS (tail)->car, Qkeymap))
701 break;
702
703 if (!NILP (tail))
704 inherit = define_as_prefix (tail, c);
705 }
706
707 cmd = nconc2 (cmd, inherit);
708 store_in_keymap (keymap, c, cmd);
709
710 return cmd;
711 }
712
713 /* Append a key to the end of a key sequence. We always make a vector. */
714
715 Lisp_Object
716 append_key (key_sequence, key)
717 Lisp_Object key_sequence, key;
718 {
719 Lisp_Object args[2];
720
721 args[0] = key_sequence;
722
723 args[1] = Fcons (key, Qnil);
724 return Fvconcat (2, args);
725 }
726
727 \f
728 /* Global, local, and minor mode keymap stuff. */
729
730 /* We can't put these variables inside current_minor_maps, since under
731 some systems, static gets macro-defined to be the empty string.
732 Ickypoo. */
733 static Lisp_Object *cmm_modes, *cmm_maps;
734 static int cmm_size;
735
736 /* Store a pointer to an array of the keymaps of the currently active
737 minor modes in *buf, and return the number of maps it contains.
738
739 This function always returns a pointer to the same buffer, and may
740 free or reallocate it, so if you want to keep it for a long time or
741 hand it out to lisp code, copy it. This procedure will be called
742 for every key sequence read, so the nice lispy approach (return a
743 new assoclist, list, what have you) for each invocation would
744 result in a lot of consing over time.
745
746 If we used xrealloc/xmalloc and ran out of memory, they would throw
747 back to the command loop, which would try to read a key sequence,
748 which would call this function again, resulting in an infinite
749 loop. Instead, we'll use realloc/malloc and silently truncate the
750 list, let the key sequence be read, and hope some other piece of
751 code signals the error. */
752 int
753 current_minor_maps (modeptr, mapptr)
754 Lisp_Object **modeptr, **mapptr;
755 {
756 int i = 0;
757 Lisp_Object alist, assoc, var, val;
758
759 for (alist = Vminor_mode_map_alist;
760 CONSP (alist);
761 alist = XCONS (alist)->cdr)
762 if (CONSP (assoc = XCONS (alist)->car)
763 && XTYPE (var = XCONS (assoc)->car) == Lisp_Symbol
764 && ! EQ ((val = find_symbol_value (var)), Qunbound)
765 && ! NILP (val))
766 {
767 if (i >= cmm_size)
768 {
769 Lisp_Object *newmodes, *newmaps;
770
771 if (cmm_maps)
772 {
773 BLOCK_INPUT;
774 newmodes = (Lisp_Object *) realloc (cmm_modes, cmm_size *= 2);
775 newmaps = (Lisp_Object *) realloc (cmm_maps, cmm_size);
776 UNBLOCK_INPUT;
777 }
778 else
779 {
780 BLOCK_INPUT;
781 newmodes = (Lisp_Object *) malloc (cmm_size = 30);
782 newmaps = (Lisp_Object *) malloc (cmm_size);
783 UNBLOCK_INPUT;
784 }
785
786 if (newmaps && newmodes)
787 {
788 cmm_modes = newmodes;
789 cmm_maps = newmaps;
790 }
791 else
792 break;
793 }
794 cmm_modes[i] = var;
795 cmm_maps [i] = Findirect_function (XCONS (assoc)->cdr);
796 i++;
797 }
798
799 if (modeptr) *modeptr = cmm_modes;
800 if (mapptr) *mapptr = cmm_maps;
801 return i;
802 }
803
804 DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 2, 0,
805 "Return the binding for command KEY in current keymaps.\n\
806 KEY is a string or vector, a sequence of keystrokes.\n\
807 The binding is probably a symbol with a function definition.\n\
808 \n\
809 Normally, `key-binding' ignores bindings for t, which act as default\n\
810 bindings, used when nothing else in the keymap applies; this makes it\n\
811 useable as a general function for probing keymaps. However, if the\n\
812 third optional argument ACCEPT-DEFAULT is non-nil, `key-binding' will\n\
813 recognize the default bindings, just as `read-key-sequence' does.")
814 (key, accept_default)
815 Lisp_Object key;
816 {
817 Lisp_Object *maps, value;
818 int nmaps, i;
819
820 nmaps = current_minor_maps (0, &maps);
821 for (i = 0; i < nmaps; i++)
822 if (! NILP (maps[i]))
823 {
824 value = Flookup_key (maps[i], key, accept_default);
825 if (! NILP (value) && XTYPE (value) != Lisp_Int)
826 return value;
827 }
828
829 if (! NILP (current_buffer->keymap))
830 {
831 value = Flookup_key (current_buffer->keymap, key, accept_default);
832 if (! NILP (value) && XTYPE (value) != Lisp_Int)
833 return value;
834 }
835
836 value = Flookup_key (current_global_map, key, accept_default);
837 if (! NILP (value) && XTYPE (value) != Lisp_Int)
838 return value;
839
840 return Qnil;
841 }
842
843 DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
844 "Return the binding for command KEYS in current local keymap only.\n\
845 KEYS is a string, a sequence of keystrokes.\n\
846 The binding is probably a symbol with a function definition.\n\
847 \n\
848 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
849 bindings; see the description of `lookup-key' for more details about this.")
850 (keys, accept_default)
851 Lisp_Object keys, accept_default;
852 {
853 register Lisp_Object map;
854 map = current_buffer->keymap;
855 if (NILP (map))
856 return Qnil;
857 return Flookup_key (map, keys, accept_default);
858 }
859
860 DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
861 "Return the binding for command KEYS in current global keymap only.\n\
862 KEYS is a string, a sequence of keystrokes.\n\
863 The binding is probably a symbol with a function definition.\n\
864 This function's return values are the same as those of lookup-key\n\
865 (which see).\n\
866 \n\
867 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
868 bindings; see the description of `lookup-key' for more details about this.")
869 (keys, accept_default)
870 Lisp_Object keys, accept_default;
871 {
872 return Flookup_key (current_global_map, keys, accept_default);
873 }
874
875 DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
876 "Find the visible minor mode bindings of KEY.\n\
877 Return an alist of pairs (MODENAME . BINDING), where MODENAME is the\n\
878 the symbol which names the minor mode binding KEY, and BINDING is\n\
879 KEY's definition in that mode. In particular, if KEY has no\n\
880 minor-mode bindings, return nil. If the first binding is a\n\
881 non-prefix, all subsequent bindings will be omitted, since they would\n\
882 be ignored. Similarly, the list doesn't include non-prefix bindings\n\
883 that come after prefix bindings.\n\
884 \n\
885 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
886 bindings; see the description of `lookup-key' for more details about this.")
887 (key, accept_default)
888 Lisp_Object key, accept_default;
889 {
890 Lisp_Object *modes, *maps;
891 int nmaps;
892 Lisp_Object binding;
893 int i, j;
894
895 nmaps = current_minor_maps (&modes, &maps);
896
897 for (i = j = 0; i < nmaps; i++)
898 if (! NILP (maps[i])
899 && ! NILP (binding = Flookup_key (maps[i], key, accept_default))
900 && XTYPE (binding) != Lisp_Int)
901 {
902 if (! NILP (get_keymap (binding)))
903 maps[j++] = Fcons (modes[i], binding);
904 else if (j == 0)
905 return Fcons (Fcons (modes[i], binding), Qnil);
906 }
907
908 return Flist (j, maps);
909 }
910
911 DEFUN ("global-set-key", Fglobal_set_key, Sglobal_set_key, 2, 2,
912 "kSet key globally: \nCSet key %s to command: ",
913 "Give KEY a global binding as COMMAND.\n\
914 COMMAND is a symbol naming an interactively-callable function.\n\
915 KEY is a key sequence (a string or vector of characters or event types).\n\
916 Note that if KEY has a local binding in the current buffer\n\
917 that local binding will continue to shadow any global binding.")
918 (keys, function)
919 Lisp_Object keys, function;
920 {
921 if (XTYPE (keys) != Lisp_Vector
922 && XTYPE (keys) != Lisp_String)
923 keys = wrong_type_argument (Qarrayp, keys);
924
925 Fdefine_key (current_global_map, keys, function);
926 return Qnil;
927 }
928
929 DEFUN ("local-set-key", Flocal_set_key, Slocal_set_key, 2, 2,
930 "kSet key locally: \nCSet key %s locally to command: ",
931 "Give KEY a local binding as COMMAND.\n\
932 COMMAND is a symbol naming an interactively-callable function.\n\
933 KEY is a key sequence (a string or vector of characters or event types).\n\
934 The binding goes in the current buffer's local map,\n\
935 which is shared with other buffers in the same major mode.")
936 (keys, function)
937 Lisp_Object keys, function;
938 {
939 register Lisp_Object map;
940 map = current_buffer->keymap;
941 if (NILP (map))
942 {
943 map = Fmake_sparse_keymap (Qnil);
944 current_buffer->keymap = map;
945 }
946
947 if (XTYPE (keys) != Lisp_Vector
948 && XTYPE (keys) != Lisp_String)
949 keys = wrong_type_argument (Qarrayp, keys);
950
951 Fdefine_key (map, keys, function);
952 return Qnil;
953 }
954
955 DEFUN ("global-unset-key", Fglobal_unset_key, Sglobal_unset_key,
956 1, 1, "kUnset key globally: ",
957 "Remove global binding of KEY.\n\
958 KEY is a string representing a sequence of keystrokes.")
959 (keys)
960 Lisp_Object keys;
961 {
962 return Fglobal_set_key (keys, Qnil);
963 }
964
965 DEFUN ("local-unset-key", Flocal_unset_key, Slocal_unset_key, 1, 1,
966 "kUnset key locally: ",
967 "Remove local binding of KEY.\n\
968 KEY is a string representing a sequence of keystrokes.")
969 (keys)
970 Lisp_Object keys;
971 {
972 if (!NILP (current_buffer->keymap))
973 Flocal_set_key (keys, Qnil);
974 return Qnil;
975 }
976
977 DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 2, 0,
978 "Define COMMAND as a prefix command. COMMAND should be a symbol.\n\
979 A new sparse keymap is stored as COMMAND's function definition and its value.\n\
980 If a second optional argument MAPVAR is given, the map is stored as\n\
981 its value instead of as COMMAND's value; but COMMAND is still defined\n\
982 as a function.")
983 (name, mapvar)
984 Lisp_Object name, mapvar;
985 {
986 Lisp_Object map;
987 map = Fmake_sparse_keymap (Qnil);
988 Ffset (name, map);
989 if (!NILP (mapvar))
990 Fset (mapvar, map);
991 else
992 Fset (name, map);
993 return name;
994 }
995
996 DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
997 "Select KEYMAP as the global keymap.")
998 (keymap)
999 Lisp_Object keymap;
1000 {
1001 keymap = get_keymap (keymap);
1002 current_global_map = keymap;
1003 return Qnil;
1004 }
1005
1006 DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
1007 "Select KEYMAP as the local keymap.\n\
1008 If KEYMAP is nil, that means no local keymap.")
1009 (keymap)
1010 Lisp_Object keymap;
1011 {
1012 if (!NILP (keymap))
1013 keymap = get_keymap (keymap);
1014
1015 current_buffer->keymap = keymap;
1016
1017 return Qnil;
1018 }
1019
1020 DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
1021 "Return current buffer's local keymap, or nil if it has none.")
1022 ()
1023 {
1024 return current_buffer->keymap;
1025 }
1026
1027 DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
1028 "Return the current global keymap.")
1029 ()
1030 {
1031 return current_global_map;
1032 }
1033
1034 DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
1035 "Return a list of keymaps for the minor modes of the current buffer.")
1036 ()
1037 {
1038 Lisp_Object *maps;
1039 int nmaps = current_minor_maps (0, &maps);
1040
1041 return Flist (nmaps, maps);
1042 }
1043 \f
1044 /* Help functions for describing and documenting keymaps. */
1045
1046 DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
1047 1, 1, 0,
1048 "Find all keymaps accessible via prefix characters from KEYMAP.\n\
1049 Returns a list of elements of the form (KEYS . MAP), where the sequence\n\
1050 KEYS starting from KEYMAP gets you to MAP. These elements are ordered\n\
1051 so that the KEYS increase in length. The first element is (\"\" . KEYMAP).")
1052 (startmap)
1053 Lisp_Object startmap;
1054 {
1055 Lisp_Object maps, tail;
1056
1057 maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil),
1058 get_keymap (startmap)),
1059 Qnil);
1060
1061 /* For each map in the list maps,
1062 look at any other maps it points to,
1063 and stick them at the end if they are not already in the list.
1064
1065 This is a breadth-first traversal, where tail is the queue of
1066 nodes, and maps accumulates a list of all nodes visited. */
1067
1068 for (tail = maps; CONSP (tail); tail = XCONS (tail)->cdr)
1069 {
1070 register Lisp_Object thisseq = Fcar (Fcar (tail));
1071 register Lisp_Object thismap = Fcdr (Fcar (tail));
1072 Lisp_Object last = make_number (XINT (Flength (thisseq)) - 1);
1073
1074 /* Does the current sequence end in the meta-prefix-char? */
1075 int is_metized = (XINT (last) >= 0
1076 && EQ (Faref (thisseq, last), meta_prefix_char));
1077
1078 for (; CONSP (thismap); thismap = XCONS (thismap)->cdr)
1079 {
1080 Lisp_Object elt = XCONS (thismap)->car;
1081
1082 QUIT;
1083
1084 if (XTYPE (elt) == Lisp_Vector)
1085 {
1086 register int i;
1087
1088 /* Vector keymap. Scan all the elements. */
1089 for (i = 0; i < XVECTOR (elt)->size; i++)
1090 {
1091 register Lisp_Object tem;
1092 register Lisp_Object cmd;
1093
1094 cmd = get_keyelt (XVECTOR (elt)->contents[i]);
1095 if (NILP (cmd)) continue;
1096 tem = Fkeymapp (cmd);
1097 if (!NILP (tem))
1098 {
1099 cmd = get_keymap (cmd);
1100 /* Ignore keymaps that are already added to maps. */
1101 tem = Frassq (cmd, maps);
1102 if (NILP (tem))
1103 {
1104 /* If the last key in thisseq is meta-prefix-char,
1105 turn it into a meta-ized keystroke. We know
1106 that the event we're about to append is an
1107 ascii keystroke since we're processing a
1108 keymap table. */
1109 if (is_metized)
1110 {
1111 int meta_bit = meta_modifier;
1112 tem = Fcopy_sequence (thisseq);
1113
1114 Faset (tem, last, make_number (i | meta_bit));
1115
1116 /* This new sequence is the same length as
1117 thisseq, so stick it in the list right
1118 after this one. */
1119 XCONS (tail)->cdr
1120 = Fcons (Fcons (tem, cmd), XCONS (tail)->cdr);
1121 }
1122 else
1123 {
1124 tem = append_key (thisseq, make_number (i));
1125 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1126 }
1127 }
1128 }
1129 }
1130 }
1131 else if (CONSP (elt))
1132 {
1133 register Lisp_Object cmd = get_keyelt (XCONS (elt)->cdr);
1134 register Lisp_Object tem;
1135
1136 /* Ignore definitions that aren't keymaps themselves. */
1137 tem = Fkeymapp (cmd);
1138 if (!NILP (tem))
1139 {
1140 /* Ignore keymaps that have been seen already. */
1141 cmd = get_keymap (cmd);
1142 tem = Frassq (cmd, maps);
1143 if (NILP (tem))
1144 {
1145 /* let elt be the event defined by this map entry. */
1146 elt = XCONS (elt)->car;
1147
1148 /* If the last key in thisseq is meta-prefix-char, and
1149 this entry is a binding for an ascii keystroke,
1150 turn it into a meta-ized keystroke. */
1151 if (is_metized && XTYPE (elt) == Lisp_Int)
1152 {
1153 tem = Fcopy_sequence (thisseq);
1154 Faset (tem, last,
1155 make_number (XINT (elt) | meta_modifier));
1156
1157 /* This new sequence is the same length as
1158 thisseq, so stick it in the list right
1159 after this one. */
1160 XCONS (tail)->cdr =
1161 Fcons (Fcons (tem, cmd), XCONS (tail)->cdr);
1162 }
1163 else
1164 nconc2 (tail,
1165 Fcons (Fcons (append_key (thisseq, elt), cmd),
1166 Qnil));
1167 }
1168 }
1169 }
1170 }
1171 }
1172
1173 return maps;
1174 }
1175
1176 Lisp_Object Qsingle_key_description, Qkey_description;
1177
1178 DEFUN ("key-description", Fkey_description, Skey_description, 1, 1, 0,
1179 "Return a pretty description of key-sequence KEYS.\n\
1180 Control characters turn into \"C-foo\" sequences, meta into \"M-foo\"\n\
1181 spaces are put between sequence elements, etc.")
1182 (keys)
1183 Lisp_Object keys;
1184 {
1185 if (XTYPE (keys) == Lisp_String)
1186 {
1187 Lisp_Object vector;
1188 int i;
1189 vector = Fmake_vector (Flength (keys), Qnil);
1190 for (i = 0; i < XSTRING (keys)->size; i++)
1191 {
1192 if (XSTRING (keys)->data[i] & 0x80)
1193 XFASTINT (XVECTOR (vector)->contents[i])
1194 = meta_modifier | (XSTRING (keys)->data[i] & ~0x80);
1195 else
1196 XFASTINT (XVECTOR (vector)->contents[i])
1197 = XSTRING (keys)->data[i];
1198 }
1199 keys = vector;
1200 }
1201 return Fmapconcat (Qsingle_key_description, keys, build_string (" "));
1202 }
1203
1204 char *
1205 push_key_description (c, p)
1206 register unsigned int c;
1207 register char *p;
1208 {
1209 /* Clear all the meaningless bits above the meta bit. */
1210 c &= meta_modifier | ~ - meta_modifier;
1211
1212 if (c & alt_modifier)
1213 {
1214 *p++ = 'A';
1215 *p++ = '-';
1216 c -= alt_modifier;
1217 }
1218 if (c & ctrl_modifier)
1219 {
1220 *p++ = 'C';
1221 *p++ = '-';
1222 c -= ctrl_modifier;
1223 }
1224 if (c & hyper_modifier)
1225 {
1226 *p++ = 'H';
1227 *p++ = '-';
1228 c -= hyper_modifier;
1229 }
1230 if (c & meta_modifier)
1231 {
1232 *p++ = 'M';
1233 *p++ = '-';
1234 c -= meta_modifier;
1235 }
1236 if (c & shift_modifier)
1237 {
1238 *p++ = 'S';
1239 *p++ = '-';
1240 c -= shift_modifier;
1241 }
1242 if (c & super_modifier)
1243 {
1244 *p++ = 's';
1245 *p++ = '-';
1246 c -= super_modifier;
1247 }
1248 if (c < 040)
1249 {
1250 if (c == 033)
1251 {
1252 *p++ = 'E';
1253 *p++ = 'S';
1254 *p++ = 'C';
1255 }
1256 else if (c == '\t')
1257 {
1258 *p++ = 'T';
1259 *p++ = 'A';
1260 *p++ = 'B';
1261 }
1262 else if (c == Ctl('J'))
1263 {
1264 *p++ = 'L';
1265 *p++ = 'F';
1266 *p++ = 'D';
1267 }
1268 else if (c == Ctl('M'))
1269 {
1270 *p++ = 'R';
1271 *p++ = 'E';
1272 *p++ = 'T';
1273 }
1274 else
1275 {
1276 *p++ = 'C';
1277 *p++ = '-';
1278 if (c > 0 && c <= Ctl ('Z'))
1279 *p++ = c + 0140;
1280 else
1281 *p++ = c + 0100;
1282 }
1283 }
1284 else if (c == 0177)
1285 {
1286 *p++ = 'D';
1287 *p++ = 'E';
1288 *p++ = 'L';
1289 }
1290 else if (c == ' ')
1291 {
1292 *p++ = 'S';
1293 *p++ = 'P';
1294 *p++ = 'C';
1295 }
1296 else if (c < 256)
1297 *p++ = c;
1298 else
1299 {
1300 *p++ = '\\';
1301 *p++ = (7 & (c >> 15)) + '0';
1302 *p++ = (7 & (c >> 12)) + '0';
1303 *p++ = (7 & (c >> 9)) + '0';
1304 *p++ = (7 & (c >> 6)) + '0';
1305 *p++ = (7 & (c >> 3)) + '0';
1306 *p++ = (7 & (c >> 0)) + '0';
1307 }
1308
1309 return p;
1310 }
1311
1312 DEFUN ("single-key-description", Fsingle_key_description, Ssingle_key_description, 1, 1, 0,
1313 "Return a pretty description of command character KEY.\n\
1314 Control characters turn into C-whatever, etc.")
1315 (key)
1316 Lisp_Object key;
1317 {
1318 char tem[20];
1319
1320 key = EVENT_HEAD (key);
1321
1322 switch (XTYPE (key))
1323 {
1324 case Lisp_Int: /* Normal character */
1325 *push_key_description (XUINT (key), tem) = 0;
1326 return build_string (tem);
1327
1328 case Lisp_Symbol: /* Function key or event-symbol */
1329 return Fsymbol_name (key);
1330
1331 default:
1332 error ("KEY must be an integer, cons, or symbol.");
1333 }
1334 }
1335
1336 char *
1337 push_text_char_description (c, p)
1338 register unsigned int c;
1339 register char *p;
1340 {
1341 if (c >= 0200)
1342 {
1343 *p++ = 'M';
1344 *p++ = '-';
1345 c -= 0200;
1346 }
1347 if (c < 040)
1348 {
1349 *p++ = '^';
1350 *p++ = c + 64; /* 'A' - 1 */
1351 }
1352 else if (c == 0177)
1353 {
1354 *p++ = '^';
1355 *p++ = '?';
1356 }
1357 else
1358 *p++ = c;
1359 return p;
1360 }
1361
1362 DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
1363 "Return a pretty description of file-character CHAR.\n\
1364 Control characters turn into \"^char\", etc.")
1365 (chr)
1366 Lisp_Object chr;
1367 {
1368 char tem[6];
1369
1370 CHECK_NUMBER (chr, 0);
1371
1372 *push_text_char_description (XINT (chr) & 0377, tem) = 0;
1373
1374 return build_string (tem);
1375 }
1376
1377 /* Return non-zero if SEQ contains only ASCII characters, perhaps with
1378 a meta bit. */
1379 static int
1380 ascii_sequence_p (seq)
1381 Lisp_Object seq;
1382 {
1383 Lisp_Object i;
1384 int len = XINT (Flength (seq));
1385
1386 for (XFASTINT (i) = 0; XFASTINT (i) < len; XFASTINT (i)++)
1387 {
1388 Lisp_Object elt = Faref (seq, i);
1389
1390 if (XTYPE (elt) != Lisp_Int
1391 || (XUINT (elt) & ~CHAR_META) >= 0x80)
1392 return 0;
1393 }
1394
1395 return 1;
1396 }
1397
1398 \f
1399 /* where-is - finding a command in a set of keymaps. */
1400
1401 DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 5, 0,
1402 "Return list of keys that invoke DEFINITION in KEYMAP or KEYMAP1.\n\
1403 If KEYMAP is nil, search only KEYMAP1.\n\
1404 If KEYMAP1 is nil, use the current global map.\n\
1405 \n\
1406 If optional 4th arg FIRSTONLY is non-nil, return a string representing\n\
1407 the first key sequence found, rather than a list of all possible key\n\
1408 sequences. If FIRSTONLY is t, avoid key sequences which use non-ASCII\n\
1409 keys and therefore may not be usable on ASCII terminals. If FIRSTONLY\n\
1410 is the symbol `non-ascii', return the first binding found, no matter\n\
1411 what its components.\n\
1412 \n\
1413 If optional 5th arg NOINDIRECT is non-nil, don't follow indirections\n\
1414 to other keymaps or slots. This makes it possible to search for an\n\
1415 indirect definition itself.")
1416 (definition, local_keymap, global_keymap, firstonly, noindirect)
1417 Lisp_Object definition, local_keymap, global_keymap;
1418 Lisp_Object firstonly, noindirect;
1419 {
1420 register Lisp_Object maps;
1421 Lisp_Object found;
1422
1423 if (NILP (global_keymap))
1424 global_keymap = current_global_map;
1425
1426 if (!NILP (local_keymap))
1427 maps = nconc2 (Faccessible_keymaps (get_keymap (local_keymap)),
1428 Faccessible_keymaps (get_keymap (global_keymap)));
1429 else
1430 maps = Faccessible_keymaps (get_keymap (global_keymap));
1431
1432 found = Qnil;
1433
1434 for (; !NILP (maps); maps = Fcdr (maps))
1435 {
1436 /* Key sequence to reach map */
1437 register Lisp_Object this = Fcar (Fcar (maps));
1438
1439 /* The map that it reaches */
1440 register Lisp_Object map = Fcdr (Fcar (maps));
1441
1442 /* If Fcar (map) is a VECTOR, the current element within that vector. */
1443 int i = 0;
1444
1445 /* In order to fold [META-PREFIX-CHAR CHAR] sequences into
1446 [M-CHAR] sequences, check if last character of the sequence
1447 is the meta-prefix char. */
1448 Lisp_Object last = make_number (XINT (Flength (this)) - 1);
1449 int last_is_meta = (XINT (last) >= 0
1450 && EQ (Faref (this, last), meta_prefix_char));
1451
1452 QUIT;
1453
1454 while (CONSP (map))
1455 {
1456 /* Because the code we want to run on each binding is rather
1457 large, we don't want to have two separate loop bodies for
1458 sparse keymap bindings and tables; we want to iterate one
1459 loop body over both keymap and vector bindings.
1460
1461 For this reason, if Fcar (map) is a vector, we don't
1462 advance map to the next element until i indicates that we
1463 have finished off the vector. */
1464
1465 Lisp_Object elt = XCONS (map)->car;
1466 Lisp_Object key, binding, sequence;
1467
1468 QUIT;
1469
1470 /* Set key and binding to the current key and binding, and
1471 advance map and i to the next binding. */
1472 if (XTYPE (elt) == Lisp_Vector)
1473 {
1474 /* In a vector, look at each element. */
1475 binding = XVECTOR (elt)->contents[i];
1476 XFASTINT (key) = i;
1477 i++;
1478
1479 /* If we've just finished scanning a vector, advance map
1480 to the next element, and reset i in anticipation of the
1481 next vector we may find. */
1482 if (i >= XVECTOR (elt)->size)
1483 {
1484 map = XCONS (map)->cdr;
1485 i = 0;
1486 }
1487 }
1488 else if (CONSP (elt))
1489 {
1490 key = Fcar (Fcar (map));
1491 binding = Fcdr (Fcar (map));
1492
1493 map = XCONS (map)->cdr;
1494 }
1495 else
1496 /* We want to ignore keymap elements that are neither
1497 vectors nor conses. */
1498 {
1499 map = XCONS (map)->cdr;
1500 continue;
1501 }
1502
1503 /* Search through indirections unless that's not wanted. */
1504 if (NILP (noindirect))
1505 binding = get_keyelt (binding);
1506
1507 /* End this iteration if this element does not match
1508 the target. */
1509
1510 if (XTYPE (definition) == Lisp_Cons)
1511 {
1512 Lisp_Object tem;
1513 tem = Fequal (binding, definition);
1514 if (NILP (tem))
1515 continue;
1516 }
1517 else
1518 if (!EQ (binding, definition))
1519 continue;
1520
1521 /* We have found a match.
1522 Construct the key sequence where we found it. */
1523 if (XTYPE (key) == Lisp_Int && last_is_meta)
1524 {
1525 sequence = Fcopy_sequence (this);
1526 Faset (sequence, last, make_number (XINT (key) | meta_modifier));
1527 }
1528 else
1529 sequence = append_key (this, key);
1530
1531 /* Verify that this key binding is not shadowed by another
1532 binding for the same key, before we say it exists.
1533
1534 Mechanism: look for local definition of this key and if
1535 it is defined and does not match what we found then
1536 ignore this key.
1537
1538 Either nil or number as value from Flookup_key
1539 means undefined. */
1540 if (!NILP (local_keymap))
1541 {
1542 binding = Flookup_key (local_keymap, sequence, Qnil);
1543 if (!NILP (binding) && XTYPE (binding) != Lisp_Int)
1544 {
1545 if (XTYPE (definition) == Lisp_Cons)
1546 {
1547 Lisp_Object tem;
1548 tem = Fequal (binding, definition);
1549 if (NILP (tem))
1550 continue;
1551 }
1552 else
1553 if (!EQ (binding, definition))
1554 continue;
1555 }
1556 }
1557
1558 /* It is a true unshadowed match. Record it. */
1559 found = Fcons (sequence, found);
1560
1561 /* If firstonly is Qnon_ascii, then we can return the first
1562 binding we find. If firstonly is not Qnon_ascii but not
1563 nil, then we should return the first ascii-only binding
1564 we find. */
1565 if (EQ (firstonly, Qnon_ascii))
1566 return sequence;
1567 else if (! NILP (firstonly) && ascii_sequence_p (sequence))
1568 return sequence;
1569 }
1570 }
1571
1572 found = Fnreverse (found);
1573
1574 /* firstonly may have been t, but we may have gone all the way through
1575 the keymaps without finding an all-ASCII key sequence. So just
1576 return the best we could find. */
1577 if (! NILP (firstonly))
1578 return Fcar (found);
1579
1580 return found;
1581 }
1582
1583 /* Return a string listing the keys and buttons that run DEFINITION. */
1584
1585 static Lisp_Object
1586 where_is_string (definition)
1587 Lisp_Object definition;
1588 {
1589 register Lisp_Object keys, keys1;
1590
1591 keys = Fwhere_is_internal (definition,
1592 current_buffer->keymap, Qnil, Qnil, Qnil);
1593 keys1 = Fmapconcat (Qkey_description, keys, build_string (", "));
1594
1595 return keys1;
1596 }
1597
1598 DEFUN ("where-is", Fwhere_is, Swhere_is, 1, 1, "CWhere is command: ",
1599 "Print message listing key sequences that invoke specified command.\n\
1600 Argument is a command definition, usually a symbol with a function definition.")
1601 (definition)
1602 Lisp_Object definition;
1603 {
1604 register Lisp_Object string;
1605
1606 CHECK_SYMBOL (definition, 0);
1607 string = where_is_string (definition);
1608
1609 if (XSTRING (string)->size)
1610 message ("%s is on %s", XSYMBOL (definition)->name->data,
1611 XSTRING (string)->data);
1612 else
1613 message ("%s is not on any key", XSYMBOL (definition)->name->data);
1614 return Qnil;
1615 }
1616 \f
1617 /* describe-bindings - summarizing all the bindings in a set of keymaps. */
1618
1619 DEFUN ("describe-bindings", Fdescribe_bindings, Sdescribe_bindings, 0, 0, "",
1620 "Show a list of all defined keys, and their definitions.\n\
1621 The list is put in a buffer, which is displayed.")
1622 ()
1623 {
1624 register Lisp_Object thisbuf;
1625 XSET (thisbuf, Lisp_Buffer, current_buffer);
1626 internal_with_output_to_temp_buffer ("*Help*",
1627 describe_buffer_bindings,
1628 thisbuf);
1629 return Qnil;
1630 }
1631
1632 static Lisp_Object
1633 describe_buffer_bindings (descbuf)
1634 Lisp_Object descbuf;
1635 {
1636 register Lisp_Object start1, start2;
1637
1638 char *key_heading
1639 = "\
1640 key binding\n\
1641 --- -------\n";
1642 char *alternate_heading
1643 = "\
1644 Alternate Characters (use anywhere the nominal character is listed):\n\
1645 nominal alternate\n\
1646 ------- ---------\n";
1647
1648 Fset_buffer (Vstandard_output);
1649
1650 /* Report on alternates for keys. */
1651 if (XTYPE (Vkeyboard_translate_table) == Lisp_String)
1652 {
1653 int c;
1654 unsigned char *translate = XSTRING (Vkeyboard_translate_table)->data;
1655 int translate_len = XSTRING (Vkeyboard_translate_table)->size;
1656
1657 for (c = 0; c < translate_len; c++)
1658 if (translate[c] != c)
1659 {
1660 char buf[20];
1661 char *bufend;
1662
1663 if (alternate_heading)
1664 {
1665 insert_string (alternate_heading);
1666 alternate_heading = 0;
1667 }
1668
1669 bufend = push_key_description (translate[c], buf);
1670 insert (buf, bufend - buf);
1671 Findent_to (make_number (16), make_number (1));
1672 bufend = push_key_description (c, buf);
1673 insert (buf, bufend - buf);
1674
1675 insert ("\n", 1);
1676 }
1677
1678 insert ("\n", 1);
1679 }
1680
1681 {
1682 int i, nmaps;
1683 Lisp_Object *modes, *maps;
1684
1685 /* Temporarily switch to descbuf, so that we can get that buffer's
1686 minor modes correctly. */
1687 Fset_buffer (descbuf);
1688 nmaps = current_minor_maps (&modes, &maps);
1689 Fset_buffer (Vstandard_output);
1690
1691 for (i = 0; i < nmaps; i++)
1692 {
1693 if (XTYPE (modes[i]) == Lisp_Symbol)
1694 {
1695 insert_char ('`');
1696 insert_string (XSYMBOL (modes[i])->name->data);
1697 insert_char ('\'');
1698 }
1699 else
1700 insert_string ("Strangely Named");
1701 insert_string (" Minor Mode Bindings:\n");
1702 insert_string (key_heading);
1703 describe_map_tree (maps[i], 0, Qnil);
1704 insert_char ('\n');
1705 }
1706 }
1707
1708 start1 = XBUFFER (descbuf)->keymap;
1709 if (!NILP (start1))
1710 {
1711 insert_string ("Local Bindings:\n");
1712 insert_string (key_heading);
1713 describe_map_tree (start1, 0, Qnil);
1714 insert_string ("\n");
1715 }
1716
1717 insert_string ("Global Bindings:\n");
1718 if (NILP (start1))
1719 insert_string (key_heading);
1720
1721 describe_map_tree (current_global_map, 0, XBUFFER (descbuf)->keymap);
1722
1723 Fset_buffer (descbuf);
1724 return Qnil;
1725 }
1726
1727 /* Insert a desription of the key bindings in STARTMAP,
1728 followed by those of all maps reachable through STARTMAP.
1729 If PARTIAL is nonzero, omit certain "uninteresting" commands
1730 (such as `undefined').
1731 If SHADOW is non-nil, it is another map;
1732 don't mention keys which would be shadowed by it. */
1733
1734 void
1735 describe_map_tree (startmap, partial, shadow)
1736 Lisp_Object startmap, shadow;
1737 int partial;
1738 {
1739 register Lisp_Object elt, sh;
1740 Lisp_Object maps;
1741 struct gcpro gcpro1;
1742
1743 maps = Faccessible_keymaps (startmap);
1744 GCPRO1 (maps);
1745
1746 for (; !NILP (maps); maps = Fcdr (maps))
1747 {
1748 elt = Fcar (maps);
1749 sh = Fcar (elt);
1750
1751 /* If there is no shadow keymap given, don't shadow. */
1752 if (NILP (shadow))
1753 sh = Qnil;
1754
1755 /* If the sequence by which we reach this keymap is zero-length,
1756 then the shadow map for this keymap is just SHADOW. */
1757 else if ((XTYPE (sh) == Lisp_String
1758 && XSTRING (sh)->size == 0)
1759 || (XTYPE (sh) == Lisp_Vector
1760 && XVECTOR (sh)->size == 0))
1761 sh = shadow;
1762
1763 /* If the sequence by which we reach this keymap actually has
1764 some elements, then the sequence's definition in SHADOW is
1765 what we should use. */
1766 else
1767 {
1768 sh = Flookup_key (shadow, Fcar (elt), Qt);
1769 if (XTYPE (sh) == Lisp_Int)
1770 sh = Qnil;
1771 }
1772
1773 /* If sh is null (meaning that the current map is not shadowed),
1774 or a keymap (meaning that bindings from the current map might
1775 show through), describe the map. Otherwise, sh is a command
1776 that completely shadows the current map, and we shouldn't
1777 bother. */
1778 if (NILP (sh) || !NILP (Fkeymapp (sh)))
1779 describe_map (Fcdr (elt), Fcar (elt), partial, sh);
1780 }
1781
1782 UNGCPRO;
1783 }
1784
1785 static void
1786 describe_command (definition)
1787 Lisp_Object definition;
1788 {
1789 register Lisp_Object tem1;
1790
1791 Findent_to (make_number (16), make_number (1));
1792
1793 if (XTYPE (definition) == Lisp_Symbol)
1794 {
1795 XSET (tem1, Lisp_String, XSYMBOL (definition)->name);
1796 insert1 (tem1);
1797 insert_string ("\n");
1798 }
1799 else
1800 {
1801 tem1 = Fkeymapp (definition);
1802 if (!NILP (tem1))
1803 insert_string ("Prefix Command\n");
1804 else
1805 insert_string ("??\n");
1806 }
1807 }
1808
1809 /* Describe the contents of map MAP, assuming that this map itself is
1810 reached by the sequence of prefix keys KEYS (a string or vector).
1811 PARTIAL, SHADOW is as in `describe_map_tree' above. */
1812
1813 static void
1814 describe_map (map, keys, partial, shadow)
1815 Lisp_Object map, keys;
1816 int partial;
1817 Lisp_Object shadow;
1818 {
1819 register Lisp_Object keysdesc;
1820
1821 if (!NILP (keys) && XFASTINT (Flength (keys)) > 0)
1822 {
1823 Lisp_Object tem;
1824 /* Call Fkey_description first, to avoid GC bug for the other string. */
1825 tem = Fkey_description (keys);
1826 keysdesc = concat2 (tem, build_string (" "));
1827 }
1828 else
1829 keysdesc = Qnil;
1830
1831 describe_map_2 (map, keysdesc, describe_command, partial, shadow);
1832 }
1833
1834 /* Insert a description of KEYMAP into the current buffer. */
1835
1836 static void
1837 describe_map_2 (keymap, elt_prefix, elt_describer, partial, shadow)
1838 register Lisp_Object keymap;
1839 Lisp_Object elt_prefix;
1840 int (*elt_describer) ();
1841 int partial;
1842 Lisp_Object shadow;
1843 {
1844 Lisp_Object this;
1845 Lisp_Object tem1, tem2 = Qnil;
1846 Lisp_Object suppress;
1847 Lisp_Object kludge;
1848 int first = 1;
1849 struct gcpro gcpro1, gcpro2, gcpro3;
1850
1851 if (partial)
1852 suppress = intern ("suppress-keymap");
1853
1854 /* This vector gets used to present single keys to Flookup_key. Since
1855 that is done once per keymap element, we don't want to cons up a
1856 fresh vector every time. */
1857 kludge = Fmake_vector (make_number (1), Qnil);
1858
1859 GCPRO3 (elt_prefix, tem2, kludge);
1860
1861 for (; CONSP (keymap); keymap = Fcdr (keymap))
1862 {
1863 QUIT;
1864
1865 if (XTYPE (XCONS (keymap)->car) == Lisp_Vector)
1866 describe_vector (XCONS (keymap)->car,
1867 elt_prefix, elt_describer, partial, shadow);
1868 else
1869 {
1870 tem1 = Fcar_safe (Fcar (keymap));
1871 tem2 = get_keyelt (Fcdr_safe (Fcar (keymap)));
1872
1873 /* Don't show undefined commands or suppressed commands. */
1874 if (NILP (tem2)) continue;
1875 if (XTYPE (tem2) == Lisp_Symbol && partial)
1876 {
1877 this = Fget (tem2, suppress);
1878 if (!NILP (this))
1879 continue;
1880 }
1881
1882 /* Don't show a command that isn't really visible
1883 because a local definition of the same key shadows it. */
1884
1885 if (!NILP (shadow))
1886 {
1887 Lisp_Object tem;
1888
1889 XVECTOR (kludge)->contents[0] = tem1;
1890 tem = Flookup_key (shadow, kludge, Qt);
1891 if (!NILP (tem)) continue;
1892 }
1893
1894 if (first)
1895 {
1896 insert ("\n", 1);
1897 first = 0;
1898 }
1899
1900 if (!NILP (elt_prefix))
1901 insert1 (elt_prefix);
1902
1903 /* THIS gets the string to describe the character TEM1. */
1904 this = Fsingle_key_description (tem1);
1905 insert1 (this);
1906
1907 /* Print a description of the definition of this character.
1908 elt_describer will take care of spacing out far enough
1909 for alignment purposes. */
1910 (*elt_describer) (tem2);
1911 }
1912 }
1913
1914 UNGCPRO;
1915 }
1916
1917 static int
1918 describe_vector_princ (elt)
1919 Lisp_Object elt;
1920 {
1921 Findent_to (make_number (16), make_number (1));
1922 Fprinc (elt, Qnil);
1923 Fterpri (Qnil);
1924 }
1925
1926 DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 1, 0,
1927 "Insert a description of contents of VECTOR.\n\
1928 This is text showing the elements of vector matched against indices.")
1929 (vector)
1930 Lisp_Object vector;
1931 {
1932 int count = specpdl_ptr - specpdl;
1933
1934 specbind (Qstandard_output, Fcurrent_buffer ());
1935 CHECK_VECTOR (vector, 0);
1936 describe_vector (vector, Qnil, describe_vector_princ, 0, Qnil);
1937
1938 return unbind_to (count, Qnil);
1939 }
1940
1941 describe_vector (vector, elt_prefix, elt_describer, partial, shadow)
1942 register Lisp_Object vector;
1943 Lisp_Object elt_prefix;
1944 int (*elt_describer) ();
1945 int partial;
1946 Lisp_Object shadow;
1947 {
1948 Lisp_Object this;
1949 Lisp_Object dummy;
1950 Lisp_Object tem1, tem2;
1951 register int i;
1952 Lisp_Object suppress;
1953 Lisp_Object kludge;
1954 int first = 1;
1955 struct gcpro gcpro1, gcpro2, gcpro3;
1956
1957 tem1 = Qnil;
1958
1959 /* This vector gets used to present single keys to Flookup_key. Since
1960 that is done once per vector element, we don't want to cons up a
1961 fresh vector every time. */
1962 kludge = Fmake_vector (make_number (1), Qnil);
1963 GCPRO3 (elt_prefix, tem1, kludge);
1964
1965 if (partial)
1966 suppress = intern ("suppress-keymap");
1967
1968 for (i = 0; i < XVECTOR (vector)->size; i++)
1969 {
1970 QUIT;
1971 tem1 = get_keyelt (XVECTOR (vector)->contents[i]);
1972
1973 if (NILP (tem1)) continue;
1974
1975 /* Don't mention suppressed commands. */
1976 if (XTYPE (tem1) == Lisp_Symbol && partial)
1977 {
1978 this = Fget (tem1, suppress);
1979 if (!NILP (this))
1980 continue;
1981 }
1982
1983 /* If this command in this map is shadowed by some other map,
1984 ignore it. */
1985 if (!NILP (shadow))
1986 {
1987 Lisp_Object tem;
1988
1989 XVECTOR (kludge)->contents[0] = make_number (i);
1990 tem = Flookup_key (shadow, kludge, Qt);
1991
1992 if (!NILP (tem)) continue;
1993 }
1994
1995 if (first)
1996 {
1997 insert ("\n", 1);
1998 first = 0;
1999 }
2000
2001 /* Output the prefix that applies to every entry in this map. */
2002 if (!NILP (elt_prefix))
2003 insert1 (elt_prefix);
2004
2005 /* Get the string to describe the character I, and print it. */
2006 XFASTINT (dummy) = i;
2007
2008 /* THIS gets the string to describe the character DUMMY. */
2009 this = Fsingle_key_description (dummy);
2010 insert1 (this);
2011
2012 /* Find all consecutive characters that have the same definition. */
2013 while (i + 1 < XVECTOR (vector)->size
2014 && (tem2 = get_keyelt (XVECTOR (vector)->contents[i+1]),
2015 EQ (tem2, tem1)))
2016 i++;
2017
2018 /* If we have a range of more than one character,
2019 print where the range reaches to. */
2020
2021 if (i != XINT (dummy))
2022 {
2023 insert (" .. ", 4);
2024 if (!NILP (elt_prefix))
2025 insert1 (elt_prefix);
2026
2027 XFASTINT (dummy) = i;
2028 insert1 (Fsingle_key_description (dummy));
2029 }
2030
2031 /* Print a description of the definition of this character.
2032 elt_describer will take care of spacing out far enough
2033 for alignment purposes. */
2034 (*elt_describer) (tem1);
2035 }
2036
2037 UNGCPRO;
2038 }
2039 \f
2040 /* Apropos - finding all symbols whose names match a regexp. */
2041 Lisp_Object apropos_predicate;
2042 Lisp_Object apropos_accumulate;
2043
2044 static void
2045 apropos_accum (symbol, string)
2046 Lisp_Object symbol, string;
2047 {
2048 register Lisp_Object tem;
2049
2050 tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
2051 if (!NILP (tem) && !NILP (apropos_predicate))
2052 tem = call1 (apropos_predicate, symbol);
2053 if (!NILP (tem))
2054 apropos_accumulate = Fcons (symbol, apropos_accumulate);
2055 }
2056
2057 DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
2058 "Show all symbols whose names contain match for REGEXP.\n\
2059 If optional 2nd arg PRED is non-nil, (funcall PRED SYM) is done\n\
2060 for each symbol and a symbol is mentioned only if that returns non-nil.\n\
2061 Return list of symbols found.")
2062 (string, pred)
2063 Lisp_Object string, pred;
2064 {
2065 struct gcpro gcpro1, gcpro2;
2066 CHECK_STRING (string, 0);
2067 apropos_predicate = pred;
2068 GCPRO2 (apropos_predicate, apropos_accumulate);
2069 apropos_accumulate = Qnil;
2070 map_obarray (Vobarray, apropos_accum, string);
2071 apropos_accumulate = Fsort (apropos_accumulate, Qstring_lessp);
2072 UNGCPRO;
2073 return apropos_accumulate;
2074 }
2075 \f
2076 syms_of_keymap ()
2077 {
2078 Lisp_Object tem;
2079
2080 Qkeymap = intern ("keymap");
2081 staticpro (&Qkeymap);
2082
2083 /* Initialize the keymaps standardly used.
2084 Each one is the value of a Lisp variable, and is also
2085 pointed to by a C variable */
2086
2087 global_map = Fcons (Qkeymap,
2088 Fcons (Fmake_vector (make_number (0400), Qnil), Qnil));
2089 Fset (intern ("global-map"), global_map);
2090
2091 meta_map = Fmake_keymap (Qnil);
2092 Fset (intern ("esc-map"), meta_map);
2093 Ffset (intern ("ESC-prefix"), meta_map);
2094
2095 control_x_map = Fmake_keymap (Qnil);
2096 Fset (intern ("ctl-x-map"), control_x_map);
2097 Ffset (intern ("Control-X-prefix"), control_x_map);
2098
2099 DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map,
2100 "Default keymap to use when reading from the minibuffer.");
2101 Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
2102
2103 DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map,
2104 "Local keymap for the minibuffer when spaces are not allowed.");
2105 Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
2106
2107 DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map,
2108 "Local keymap for minibuffer input with completion.");
2109 Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil);
2110
2111 DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map,
2112 "Local keymap for minibuffer input with completion, for exact match.");
2113 Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil);
2114
2115 current_global_map = global_map;
2116
2117 DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist,
2118 "Alist of keymaps to use for minor modes.\n\
2119 Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read\n\
2120 key sequences and look up bindings iff VARIABLE's value is non-nil.\n\
2121 If two active keymaps bind the same key, the keymap appearing earlier\n\
2122 in the list takes precedence.");
2123 Vminor_mode_map_alist = Qnil;
2124
2125 DEFVAR_LISP ("function-key-map", &Vfunction_key_map,
2126 "Keymap mapping ASCII function key sequences onto their preferred forms.\n\
2127 This allows Emacs to recognize function keys sent from ASCII\n\
2128 terminals at any point in a key sequence.\n\
2129 \n\
2130 The read-key-sequence function replaces subsequences bound by\n\
2131 function-key-map with their bindings. When the current local and global\n\
2132 keymaps have no binding for the current key sequence but\n\
2133 function-key-map binds a suffix of the sequence to a vector,\n\
2134 read-key-sequence replaces the matching suffix with its binding, and\n\
2135 continues with the new sequence.\n\
2136 \n\
2137 For example, suppose function-key-map binds `ESC O P' to [pf1].\n\
2138 Typing `ESC O P' to read-key-sequence would return [pf1]. Typing\n\
2139 `C-x ESC O P' would return [?\C-x pf1]. If [pf1] were a prefix\n\
2140 key, typing `ESC O P x' would return [pf1 x].");
2141 Vfunction_key_map = Fmake_sparse_keymap (Qnil);
2142
2143 Qsingle_key_description = intern ("single-key-description");
2144 staticpro (&Qsingle_key_description);
2145
2146 Qkey_description = intern ("key-description");
2147 staticpro (&Qkey_description);
2148
2149 Qkeymapp = intern ("keymapp");
2150 staticpro (&Qkeymapp);
2151
2152 Qnon_ascii = intern ("non-ascii");
2153 staticpro (&Qnon_ascii);
2154
2155 defsubr (&Skeymapp);
2156 defsubr (&Smake_keymap);
2157 defsubr (&Smake_sparse_keymap);
2158 defsubr (&Scopy_keymap);
2159 defsubr (&Skey_binding);
2160 defsubr (&Slocal_key_binding);
2161 defsubr (&Sglobal_key_binding);
2162 defsubr (&Sminor_mode_key_binding);
2163 defsubr (&Sglobal_set_key);
2164 defsubr (&Slocal_set_key);
2165 defsubr (&Sdefine_key);
2166 defsubr (&Slookup_key);
2167 defsubr (&Sglobal_unset_key);
2168 defsubr (&Slocal_unset_key);
2169 defsubr (&Sdefine_prefix_command);
2170 defsubr (&Suse_global_map);
2171 defsubr (&Suse_local_map);
2172 defsubr (&Scurrent_local_map);
2173 defsubr (&Scurrent_global_map);
2174 defsubr (&Scurrent_minor_mode_maps);
2175 defsubr (&Saccessible_keymaps);
2176 defsubr (&Skey_description);
2177 defsubr (&Sdescribe_vector);
2178 defsubr (&Ssingle_key_description);
2179 defsubr (&Stext_char_description);
2180 defsubr (&Swhere_is_internal);
2181 defsubr (&Swhere_is);
2182 defsubr (&Sdescribe_bindings);
2183 defsubr (&Sapropos_internal);
2184 }
2185
2186 keys_of_keymap ()
2187 {
2188 Lisp_Object tem;
2189
2190 initial_define_key (global_map, 033, "ESC-prefix");
2191 initial_define_key (global_map, Ctl('X'), "Control-X-prefix");
2192 }