]> code.delx.au - gnu-emacs/blob - lisp/international/ccl.el
* lisp/international/ccl.el: Fix quoting.
[gnu-emacs] / lisp / international / ccl.el
1 ;;; ccl.el --- CCL (Code Conversion Language) compiler
2
3 ;; Copyright (C) 1997-1998, 2001-2015 Free Software Foundation, Inc.
4 ;; Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
5 ;; 2005, 2006, 2007, 2008, 2009, 2010, 2011
6 ;; National Institute of Advanced Industrial Science and Technology (AIST)
7 ;; Registration Number H14PRO021
8
9 ;; Keywords: CCL, mule, multilingual, character set, coding-system
10
11 ;; This file is part of GNU Emacs.
12
13 ;; GNU Emacs is free software: you can redistribute it and/or modify
14 ;; it under the terms of the GNU General Public License as published by
15 ;; the Free Software Foundation, either version 3 of the License, or
16 ;; (at your option) any later version.
17
18 ;; GNU Emacs is distributed in the hope that it will be useful,
19 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
20 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 ;; GNU General Public License for more details.
22
23 ;; You should have received a copy of the GNU General Public License
24 ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
25
26 ;;; Commentary:
27
28 ;; CCL (Code Conversion Language) is a simple programming language to
29 ;; be used for various kind of code conversion. A CCL program is
30 ;; compiled to CCL code (vector of integers) and executed by the CCL
31 ;; interpreter in Emacs.
32 ;;
33 ;; CCL is used for code conversion at process I/O and file I/O for
34 ;; non-standard coding-systems. In addition, it is used for
35 ;; calculating code points of X fonts from character codes.
36 ;; However, since CCL is designed as a powerful programming language,
37 ;; it can be used for more generic calculation. For instance,
38 ;; combination of three or more arithmetic operations can be
39 ;; calculated faster than in Emacs Lisp.
40 ;;
41 ;; The syntax and semantics of CCL programs are described in the
42 ;; documentation of `define-ccl-program'.
43
44 ;;; Code:
45
46 ;; Unused.
47 ;;; (defgroup ccl nil
48 ;;; "CCL (Code Conversion Language) compiler."
49 ;;; :prefix "ccl-"
50 ;;; :group 'i18n)
51
52 (defconst ccl-command-table
53 [if branch loop break repeat write-repeat write-read-repeat
54 read read-if read-branch write call end
55 read-multibyte-character write-multibyte-character
56 translate-character
57 iterate-multiple-map map-multiple map-single lookup-integer
58 lookup-character]
59 "Vector of CCL commands (symbols).")
60
61 ;; Put a property to each symbol of CCL commands for the compiler.
62 (let (op (i 0) (len (length ccl-command-table)))
63 (while (< i len)
64 (setq op (aref ccl-command-table i))
65 (put op 'ccl-compile-function (intern (format "ccl-compile-%s" op)))
66 (setq i (1+ i))))
67
68 (defconst ccl-code-table
69 [set-register
70 set-short-const
71 set-const
72 set-array
73 jump
74 jump-cond
75 write-register-jump
76 write-register-read-jump
77 write-const-jump
78 write-const-read-jump
79 write-string-jump
80 write-array-read-jump
81 read-jump
82 branch
83 read-register
84 write-expr-const
85 read-branch
86 write-register
87 write-expr-register
88 call
89 write-const-string
90 write-array
91 end
92 set-assign-expr-const
93 set-assign-expr-register
94 set-expr-const
95 set-expr-register
96 jump-cond-expr-const
97 jump-cond-expr-register
98 read-jump-cond-expr-const
99 read-jump-cond-expr-register
100 ex-cmd
101 ]
102 "Vector of CCL compiled codes (symbols).")
103
104 (defconst ccl-extended-code-table
105 [read-multibyte-character
106 write-multibyte-character
107 translate-character
108 translate-character-const-tbl
109 nil nil nil nil nil nil nil nil nil nil nil nil ; 0x04-0x0f
110 iterate-multiple-map
111 map-multiple
112 map-single
113 lookup-int-const-tbl
114 lookup-char-const-tbl
115 ]
116 "Vector of CCL extended compiled codes (symbols).")
117
118 ;; Put a property to each symbol of CCL codes for the disassembler.
119 (let (code (i 0) (len (length ccl-code-table)))
120 (while (< i len)
121 (setq code (aref ccl-code-table i))
122 (put code 'ccl-code i)
123 (put code 'ccl-dump-function (intern (format "ccl-dump-%s" code)))
124 (setq i (1+ i))))
125
126 (let (code (i 0) (len (length ccl-extended-code-table)))
127 (while (< i len)
128 (setq code (aref ccl-extended-code-table i))
129 (if code
130 (progn
131 (put code 'ccl-ex-code i)
132 (put code 'ccl-dump-function (intern (format "ccl-dump-%s" code)))))
133 (setq i (1+ i))))
134
135 (defconst ccl-jump-code-list
136 '(jump jump-cond write-register-jump write-register-read-jump
137 write-const-jump write-const-read-jump write-string-jump
138 write-array-read-jump read-jump))
139
140 ;; Put a property `jump-flag' to each CCL code which execute jump in
141 ;; some way.
142 (let ((l ccl-jump-code-list))
143 (while l
144 (put (car l) 'jump-flag t)
145 (setq l (cdr l))))
146
147 (defconst ccl-register-table
148 [r0 r1 r2 r3 r4 r5 r6 r7]
149 "Vector of CCL registers (symbols).")
150
151 ;; Put a property to indicate register number to each symbol of CCL.
152 ;; registers.
153 (let (reg (i 0) (len (length ccl-register-table)))
154 (while (< i len)
155 (setq reg (aref ccl-register-table i))
156 (put reg 'ccl-register-number i)
157 (setq i (1+ i))))
158
159 (defconst ccl-arith-table
160 [+ - * / % & | ^ << >> <8 >8 // nil nil nil
161 < > == <= >= != de-sjis en-sjis]
162 "Vector of CCL arithmetic/logical operators (symbols).")
163
164 ;; Put a property to each symbol of CCL operators for the compiler.
165 (let (arith (i 0) (len (length ccl-arith-table)))
166 (while (< i len)
167 (setq arith (aref ccl-arith-table i))
168 (if arith (put arith 'ccl-arith-code i))
169 (setq i (1+ i))))
170
171 (defconst ccl-assign-arith-table
172 [+= -= *= /= %= &= |= ^= <<= >>= <8= >8= //=]
173 "Vector of CCL assignment operators (symbols).")
174
175 ;; Put a property to each symbol of CCL assignment operators for the compiler.
176 (let (arith (i 0) (len (length ccl-assign-arith-table)))
177 (while (< i len)
178 (setq arith (aref ccl-assign-arith-table i))
179 (put arith 'ccl-self-arith-code i)
180 (setq i (1+ i))))
181
182 (defvar ccl-program-vector nil
183 "Working vector of CCL codes produced by CCL compiler.")
184 (defvar ccl-current-ic 0
185 "The current index for `ccl-program-vector'.")
186
187 (defun ccl-embed-data (data &optional ic)
188 "Embed integer DATA in `ccl-program-vector' at `ccl-current-ic' and
189 increment it. If IC is specified, embed DATA at IC."
190 (if ic
191 (aset ccl-program-vector ic data)
192 (let ((len (length ccl-program-vector)))
193 (if (>= ccl-current-ic len)
194 (let ((new (make-vector (* len 2) nil)))
195 (while (> len 0)
196 (setq len (1- len))
197 (aset new len (aref ccl-program-vector len)))
198 (setq ccl-program-vector new))))
199 (aset ccl-program-vector ccl-current-ic data)
200 (setq ccl-current-ic (1+ ccl-current-ic))))
201
202 (defun ccl-embed-symbol (symbol prop)
203 "Embed pair of SYMBOL and PROP where (get SYMBOL PROP) should give
204 proper index number for SYMBOL. PROP should be
205 `translation-table-id', `translation-hash-table-id'
206 `code-conversion-map-id', or `ccl-program-idx'."
207 (ccl-embed-data (cons symbol prop)))
208
209 (defun ccl-embed-string (len str)
210 "Embed string STR of length LEN in `ccl-program-vector' at
211 `ccl-current-ic'."
212 (if (> len #xFFFFF)
213 (error "CCL: String too long: %d" len))
214 (if (> (string-bytes str) len)
215 (dotimes (i len)
216 (ccl-embed-data (logior #x1000000 (aref str i))))
217 (let ((i 0))
218 (while (< i len)
219 (ccl-embed-data (logior (ash (aref str i) 16)
220 (if (< (1+ i) len)
221 (ash (aref str (1+ i)) 8)
222 0)
223 (if (< (+ i 2) len)
224 (aref str (+ i 2))
225 0)))
226 (setq i (+ i 3))))))
227
228 (defun ccl-embed-current-address (ic)
229 "Embed a relative jump address to `ccl-current-ic' in
230 `ccl-program-vector' at IC without altering the other bit field."
231 (let ((relative (- ccl-current-ic (1+ ic))))
232 (aset ccl-program-vector ic
233 (logior (aref ccl-program-vector ic) (ash relative 8)))))
234
235 (defun ccl-embed-code (op reg data &optional reg2)
236 "Embed CCL code for the operation OP and arguments REG and DATA in
237 `ccl-program-vector' at `ccl-current-ic' in the following format.
238 |----------------- integer (28-bit) ------------------|
239 |------------ 20-bit ------------|- 3-bit --|- 5-bit -|
240 |------------- DATA -------------|-- REG ---|-- OP ---|
241 If REG2 is specified, embed a code in the following format.
242 |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
243 |-------- DATA -------|-- REG2 --|-- REG ---|-- OP ---|
244
245 If REG is a CCL register symbol (e.g. r0, r1...), the register
246 number is embedded. If OP is one of unconditional jumps, DATA is
247 changed to a relative jump address."
248 (if (and (> data 0) (get op 'jump-flag))
249 ;; DATA is an absolute jump address. Make it relative to the
250 ;; next of jump code.
251 (setq data (- data (1+ ccl-current-ic))))
252 (let ((code (logior (get op 'ccl-code)
253 (ash
254 (if (symbolp reg) (get reg 'ccl-register-number) reg) 5)
255 (if reg2
256 (logior (ash (get reg2 'ccl-register-number) 8)
257 (ash data 11))
258 (ash data 8)))))
259 (ccl-embed-data code)))
260
261 (defun ccl-embed-extended-command (ex-op reg reg2 reg3)
262 "extended ccl command format
263 |- 14-bit -|- 3-bit --|- 3-bit --|- 3-bit --|- 5-bit -|
264 |- EX-OP --|-- REG3 --|-- REG2 --|-- REG ---|-- OP ---|"
265 (let ((data (logior (ash (get ex-op 'ccl-ex-code) 3)
266 (if (symbolp reg3)
267 (get reg3 'ccl-register-number)
268 0))))
269 (ccl-embed-code 'ex-cmd reg data reg2)))
270
271 (defun ccl-increment-ic (inc)
272 "Just advance `ccl-current-ic' by INC."
273 (setq ccl-current-ic (+ ccl-current-ic inc)))
274
275 (defvar ccl-loop-head nil
276 "If non-nil, index of the start of the current loop.")
277 (defvar ccl-breaks nil
278 "If non-nil, list of absolute addresses of the breaking points of
279 the current loop.")
280
281 ;;;###autoload
282 (defun ccl-compile (ccl-program)
283 "Return the compiled code of CCL-PROGRAM as a vector of integers."
284 (unless (and (consp ccl-program)
285 (integerp (car ccl-program))
286 (listp (car (cdr ccl-program))))
287 (error "CCL: Invalid CCL program: %s" ccl-program))
288 (if (null (vectorp ccl-program-vector))
289 (setq ccl-program-vector (make-vector 8192 0)))
290 (setq ccl-loop-head nil ccl-breaks nil)
291 (setq ccl-current-ic 0)
292
293 ;; The first element is the buffer magnification.
294 (ccl-embed-data (car ccl-program))
295
296 ;; The second element is the address of the start CCL code for
297 ;; processing end of input buffer (we call it eof-processor). We
298 ;; set it later.
299 (ccl-increment-ic 1)
300
301 ;; Compile the main body of the CCL program.
302 (ccl-compile-1 (car (cdr ccl-program)))
303
304 ;; Embed the address of eof-processor.
305 (ccl-embed-data ccl-current-ic 1)
306
307 ;; Then compile eof-processor.
308 (if (nth 2 ccl-program)
309 (ccl-compile-1 (nth 2 ccl-program)))
310
311 ;; At last, embed termination code.
312 (ccl-embed-code 'end 0 0)
313
314 (let ((vec (make-vector ccl-current-ic 0))
315 (i 0))
316 (while (< i ccl-current-ic)
317 (aset vec i (aref ccl-program-vector i))
318 (setq i (1+ i)))
319 vec))
320
321 (defun ccl-syntax-error (cmd)
322 "Signal syntax error."
323 (error "CCL: Syntax error: %s" cmd))
324
325 (defun ccl-check-register (arg cmd)
326 "Check if ARG is a valid CCL register."
327 (if (get arg 'ccl-register-number)
328 arg
329 (error "CCL: Invalid register %s in %s" arg cmd)))
330
331 (defun ccl-check-compile-function (arg cmd)
332 "Check if ARG is a valid CCL command."
333 (or (get arg 'ccl-compile-function)
334 (error "CCL: Invalid command: %s" cmd)))
335
336 ;; In the following code, most ccl-compile-XXXX functions return t if
337 ;; they end with unconditional jump, else return nil.
338
339 (defun ccl-compile-1 (ccl-block)
340 "Compile CCL-BLOCK (see the syntax above)."
341 (let (unconditional-jump
342 cmd)
343 (if (or (integerp ccl-block)
344 (stringp ccl-block)
345 (and ccl-block (symbolp (car ccl-block))))
346 ;; This block consists of single statement.
347 (setq ccl-block (list ccl-block)))
348
349 ;; Now CCL-BLOCK is a list of statements. Compile them one by
350 ;; one.
351 (while ccl-block
352 (setq cmd (car ccl-block))
353 (setq unconditional-jump
354 (cond ((integerp cmd)
355 ;; SET statement for the register 0.
356 (ccl-compile-set (list 'r0 '= cmd)))
357
358 ((stringp cmd)
359 ;; WRITE statement of string argument.
360 (ccl-compile-write-string cmd))
361
362 ((listp cmd)
363 ;; The other statements.
364 (cond ((eq (nth 1 cmd) '=)
365 ;; SET statement of the form `(REG = EXPRESSION)'.
366 (ccl-compile-set cmd))
367
368 ((and (symbolp (nth 1 cmd))
369 (get (nth 1 cmd) 'ccl-self-arith-code))
370 ;; SET statement with an assignment operation.
371 (ccl-compile-self-set cmd))
372
373 (t
374 (funcall (ccl-check-compile-function (car cmd) cmd)
375 cmd))))
376
377 (t
378 (ccl-syntax-error cmd))))
379 (setq ccl-block (cdr ccl-block)))
380 unconditional-jump))
381
382 (defconst ccl-max-short-const (ash 1 19))
383 (defconst ccl-min-short-const (ash -1 19))
384
385 (defun ccl-compile-set (cmd)
386 "Compile SET statement."
387 (let ((rrr (ccl-check-register (car cmd) cmd))
388 (right (nth 2 cmd)))
389 (cond ((listp right)
390 ;; CMD has the form `(RRR = (XXX OP YYY))'.
391 (ccl-compile-expression rrr right))
392
393 ((integerp right)
394 ;; CMD has the form `(RRR = integer)'.
395 (if (and (<= right ccl-max-short-const)
396 (>= right ccl-min-short-const))
397 (ccl-embed-code 'set-short-const rrr right)
398 (ccl-embed-code 'set-const rrr 0)
399 (ccl-embed-data right)))
400
401 (t
402 ;; CMD has the form `(RRR = rrr [ array ])'.
403 (ccl-check-register right cmd)
404 (let ((ary (nth 3 cmd)))
405 (if (vectorp ary)
406 (let ((i 0) (len (length ary)))
407 (ccl-embed-code 'set-array rrr len right)
408 (while (< i len)
409 (ccl-embed-data (aref ary i))
410 (setq i (1+ i))))
411 (ccl-embed-code 'set-register rrr 0 right))))))
412 nil)
413
414 (defun ccl-compile-self-set (cmd)
415 "Compile SET statement with ASSIGNMENT_OPERATOR."
416 (let ((rrr (ccl-check-register (car cmd) cmd))
417 (right (nth 2 cmd)))
418 (if (listp right)
419 ;; CMD has the form `(RRR ASSIGN_OP (XXX OP YYY))', compile
420 ;; the right hand part as `(r7 = (XXX OP YYY))' (note: the
421 ;; register 7 can be used for storing temporary value).
422 (progn
423 (ccl-compile-expression 'r7 right)
424 (setq right 'r7)))
425 ;; Now CMD has the form `(RRR ASSIGN_OP ARG)'. Compile it as
426 ;; `(RRR = (RRR OP ARG))'.
427 (ccl-compile-expression
428 rrr
429 (list rrr (intern (substring (symbol-name (nth 1 cmd)) 0 -1)) right)))
430 nil)
431
432 (defun ccl-compile-expression (rrr expr)
433 "Compile SET statement of the form `(RRR = EXPR)'."
434 (let ((left (car expr))
435 (op (get (nth 1 expr) 'ccl-arith-code))
436 (right (nth 2 expr)))
437 (if (listp left)
438 (progn
439 ;; EXPR has the form `((EXPR2 OP2 ARG) OP RIGHT)'. Compile
440 ;; the first term as `(r7 = (EXPR2 OP2 ARG)).'
441 (ccl-compile-expression 'r7 left)
442 (setq left 'r7)))
443
444 ;; Now EXPR has the form (LEFT OP RIGHT).
445 (if (and (eq rrr left)
446 (< op (length ccl-assign-arith-table)))
447 ;; Compile this SET statement as `(RRR OP= RIGHT)'.
448 (if (integerp right)
449 (progn
450 (ccl-embed-code 'set-assign-expr-const rrr (ash op 3) 'r0)
451 (ccl-embed-data right))
452 (ccl-check-register right expr)
453 (ccl-embed-code 'set-assign-expr-register rrr (ash op 3) right))
454
455 ;; Compile this SET statement as `(RRR = (LEFT OP RIGHT))'.
456 (if (integerp right)
457 (progn
458 (ccl-embed-code 'set-expr-const rrr (ash op 3) left)
459 (ccl-embed-data right))
460 (ccl-check-register right expr)
461 (ccl-embed-code 'set-expr-register
462 rrr
463 (logior (ash op 3) (get right 'ccl-register-number))
464 left)))))
465
466 (defun ccl-compile-write-string (str)
467 "Compile WRITE statement with string argument."
468 (let ((len (length str)))
469 (ccl-embed-code 'write-const-string 1 len)
470 (ccl-embed-string len str))
471 nil)
472
473 (defun ccl-compile-if (cmd &optional read-flag)
474 "Compile IF statement of the form `(if CONDITION TRUE-PART FALSE-PART)'.
475 If READ-FLAG is non-nil, this statement has the form
476 `(read-if (REG OPERATOR ARG) TRUE-PART FALSE-PART)'."
477 (if (and (/= (length cmd) 3) (/= (length cmd) 4))
478 (error "CCL: Invalid number of arguments: %s" cmd))
479 (let ((condition (nth 1 cmd))
480 (true-cmds (nth 2 cmd))
481 (false-cmds (nth 3 cmd))
482 jump-cond-address
483 false-ic)
484 (if (and (listp condition)
485 (listp (car condition)))
486 ;; If CONDITION is a nested expression, the inner expression
487 ;; should be compiled at first as SET statement, i.e.:
488 ;; `(if ((X OP2 Y) OP Z) ...)' is compiled into two statements:
489 ;; `(r7 = (X OP2 Y)) (if (r7 OP Z) ...)'.
490 (progn
491 (ccl-compile-expression 'r7 (car condition))
492 (setq condition (cons 'r7 (cdr condition)))
493 (setq cmd (cons (car cmd)
494 (cons condition (cdr (cdr cmd)))))))
495
496 (setq jump-cond-address ccl-current-ic)
497 ;; Compile CONDITION.
498 (if (symbolp condition)
499 ;; CONDITION is a register.
500 (progn
501 (ccl-check-register condition cmd)
502 (ccl-embed-code 'jump-cond condition 0))
503 ;; CONDITION is a simple expression of the form (RRR OP ARG).
504 (let ((rrr (car condition))
505 (op (get (nth 1 condition) 'ccl-arith-code))
506 (arg (nth 2 condition)))
507 (ccl-check-register rrr cmd)
508 (or (integerp op)
509 (error "CCL: invalid operator: %s" (nth 1 condition)))
510 (if (integerp arg)
511 (progn
512 (ccl-embed-code (if read-flag 'read-jump-cond-expr-const
513 'jump-cond-expr-const)
514 rrr 0)
515 (ccl-embed-data op)
516 (ccl-embed-data arg))
517 (ccl-check-register arg cmd)
518 (ccl-embed-code (if read-flag 'read-jump-cond-expr-register
519 'jump-cond-expr-register)
520 rrr 0)
521 (ccl-embed-data op)
522 (ccl-embed-data (get arg 'ccl-register-number)))))
523
524 ;; Compile TRUE-PART.
525 (let ((unconditional-jump (ccl-compile-1 true-cmds)))
526 (if (null false-cmds)
527 ;; This is the place to jump to if condition is false.
528 (progn
529 (ccl-embed-current-address jump-cond-address)
530 (setq unconditional-jump nil))
531 (let (end-true-part-address)
532 (if (not unconditional-jump)
533 (progn
534 ;; If TRUE-PART does not end with unconditional jump, we
535 ;; have to jump to the end of FALSE-PART from here.
536 (setq end-true-part-address ccl-current-ic)
537 (ccl-embed-code 'jump 0 0)))
538 ;; This is the place to jump to if CONDITION is false.
539 (ccl-embed-current-address jump-cond-address)
540 ;; Compile FALSE-PART.
541 (setq unconditional-jump
542 (and (ccl-compile-1 false-cmds) unconditional-jump))
543 (if end-true-part-address
544 ;; This is the place to jump to after the end of TRUE-PART.
545 (ccl-embed-current-address end-true-part-address))))
546 unconditional-jump)))
547
548 (defun ccl-compile-branch (cmd)
549 "Compile BRANCH statement."
550 (if (< (length cmd) 3)
551 (error "CCL: Invalid number of arguments: %s" cmd))
552 (ccl-compile-branch-blocks 'branch
553 (ccl-compile-branch-expression (nth 1 cmd) cmd)
554 (cdr (cdr cmd))))
555
556 (defun ccl-compile-read-branch (cmd)
557 "Compile READ statement of the form `(read-branch EXPR BLOCK0 BLOCK1 ...)'."
558 (if (< (length cmd) 3)
559 (error "CCL: Invalid number of arguments: %s" cmd))
560 (ccl-compile-branch-blocks 'read-branch
561 (ccl-compile-branch-expression (nth 1 cmd) cmd)
562 (cdr (cdr cmd))))
563
564 (defun ccl-compile-branch-expression (expr cmd)
565 "Compile EXPRESSION part of BRANCH statement and return register
566 which holds a value of the expression."
567 (if (listp expr)
568 ;; EXPR has the form `(EXPR2 OP ARG)'. Compile it as SET
569 ;; statement of the form `(r7 = (EXPR2 OP ARG))'.
570 (progn
571 (ccl-compile-expression 'r7 expr)
572 'r7)
573 (ccl-check-register expr cmd)))
574
575 (defun ccl-compile-branch-blocks (code rrr blocks)
576 "Compile BLOCKs of BRANCH statement. CODE is 'branch or 'read-branch.
577 REG is a register which holds a value of EXPRESSION part. BLOCKs
578 is a list of CCL-BLOCKs."
579 (let ((branches (length blocks))
580 branch-idx
581 jump-table-head-address
582 empty-block-indexes
583 block-tail-addresses
584 block-unconditional-jump)
585 (ccl-embed-code code rrr branches)
586 (setq jump-table-head-address ccl-current-ic)
587 ;; The size of jump table is the number of blocks plus 1 (for the
588 ;; case RRR is out of range).
589 (ccl-increment-ic (1+ branches))
590 (setq empty-block-indexes (list branches))
591 ;; Compile each block.
592 (setq branch-idx 0)
593 (while blocks
594 (if (null (car blocks))
595 ;; This block is empty.
596 (setq empty-block-indexes (cons branch-idx empty-block-indexes)
597 block-unconditional-jump t)
598 ;; This block is not empty.
599 (ccl-embed-data (- ccl-current-ic jump-table-head-address)
600 (+ jump-table-head-address branch-idx))
601 (setq block-unconditional-jump (ccl-compile-1 (car blocks)))
602 (if (not block-unconditional-jump)
603 (progn
604 ;; Jump address of the end of branches are embedded later.
605 ;; For the moment, just remember where to embed them.
606 (setq block-tail-addresses
607 (cons ccl-current-ic block-tail-addresses))
608 (ccl-embed-code 'jump 0 0))))
609 (setq branch-idx (1+ branch-idx))
610 (setq blocks (cdr blocks)))
611 (if (not block-unconditional-jump)
612 ;; We don't need jump code at the end of the last block.
613 (setq block-tail-addresses (cdr block-tail-addresses)
614 ccl-current-ic (1- ccl-current-ic)))
615 ;; Embed jump address at the tailing jump commands of blocks.
616 (while block-tail-addresses
617 (ccl-embed-current-address (car block-tail-addresses))
618 (setq block-tail-addresses (cdr block-tail-addresses)))
619 ;; For empty blocks, make entries in the jump table point directly here.
620 (while empty-block-indexes
621 (ccl-embed-data (- ccl-current-ic jump-table-head-address)
622 (+ jump-table-head-address (car empty-block-indexes)))
623 (setq empty-block-indexes (cdr empty-block-indexes))))
624 ;; Branch command ends by unconditional jump if RRR is out of range.
625 nil)
626
627 (defun ccl-compile-loop (cmd)
628 "Compile LOOP statement."
629 (if (< (length cmd) 2)
630 (error "CCL: Invalid number of arguments: %s" cmd))
631 (let* ((ccl-loop-head ccl-current-ic)
632 (ccl-breaks nil)
633 unconditional-jump)
634 (setq cmd (cdr cmd))
635 (if cmd
636 (progn
637 (setq unconditional-jump t)
638 (while cmd
639 (setq unconditional-jump
640 (and (ccl-compile-1 (car cmd)) unconditional-jump))
641 (setq cmd (cdr cmd)))
642 (if (not ccl-breaks)
643 unconditional-jump
644 ;; Embed jump address for break statements encountered in
645 ;; this loop.
646 (while ccl-breaks
647 (ccl-embed-current-address (car ccl-breaks))
648 (setq ccl-breaks (cdr ccl-breaks))))
649 nil))))
650
651 (defun ccl-compile-break (cmd)
652 "Compile BREAK statement."
653 (if (/= (length cmd) 1)
654 (error "CCL: Invalid number of arguments: %s" cmd))
655 (if (null ccl-loop-head)
656 (error "CCL: No outer loop: %s" cmd))
657 (setq ccl-breaks (cons ccl-current-ic ccl-breaks))
658 (ccl-embed-code 'jump 0 0)
659 t)
660
661 (defun ccl-compile-repeat (cmd)
662 "Compile REPEAT statement."
663 (if (/= (length cmd) 1)
664 (error "CCL: Invalid number of arguments: %s" cmd))
665 (if (null ccl-loop-head)
666 (error "CCL: No outer loop: %s" cmd))
667 (ccl-embed-code 'jump 0 ccl-loop-head)
668 t)
669
670 (defun ccl-compile-write-repeat (cmd)
671 "Compile WRITE-REPEAT statement."
672 (if (/= (length cmd) 2)
673 (error "CCL: Invalid number of arguments: %s" cmd))
674 (if (null ccl-loop-head)
675 (error "CCL: No outer loop: %s" cmd))
676 (let ((arg (nth 1 cmd)))
677 (cond ((integerp arg)
678 (ccl-embed-code 'write-const-jump 0 ccl-loop-head)
679 (ccl-embed-data arg))
680 ((stringp arg)
681 (let ((len (length arg))
682 (i 0))
683 (ccl-embed-code 'write-string-jump 0 ccl-loop-head)
684 (ccl-embed-data len)
685 (ccl-embed-string len arg)))
686 (t
687 (ccl-check-register arg cmd)
688 (ccl-embed-code 'write-register-jump arg ccl-loop-head))))
689 t)
690
691 (defun ccl-compile-write-read-repeat (cmd)
692 "Compile WRITE-READ-REPEAT statement."
693 (if (or (< (length cmd) 2) (> (length cmd) 3))
694 (error "CCL: Invalid number of arguments: %s" cmd))
695 (if (null ccl-loop-head)
696 (error "CCL: No outer loop: %s" cmd))
697 (let ((rrr (ccl-check-register (nth 1 cmd) cmd))
698 (arg (nth 2 cmd)))
699 (cond ((null arg)
700 (ccl-embed-code 'write-register-read-jump rrr ccl-loop-head))
701 ((integerp arg)
702 (ccl-embed-code 'write-const-read-jump rrr arg ccl-loop-head))
703 ((vectorp arg)
704 (let ((len (length arg))
705 (i 0))
706 (ccl-embed-code 'write-array-read-jump rrr ccl-loop-head)
707 (ccl-embed-data len)
708 (while (< i len)
709 (ccl-embed-data (aref arg i))
710 (setq i (1+ i)))))
711 (t
712 (error "CCL: Invalid argument %s: %s" arg cmd)))
713 (ccl-embed-code 'read-jump rrr ccl-loop-head))
714 t)
715
716 (defun ccl-compile-read (cmd)
717 "Compile READ statement."
718 (if (< (length cmd) 2)
719 (error "CCL: Invalid number of arguments: %s" cmd))
720 (let* ((args (cdr cmd))
721 (i (1- (length args))))
722 (while args
723 (let ((rrr (ccl-check-register (car args) cmd)))
724 (ccl-embed-code 'read-register rrr i)
725 (setq args (cdr args) i (1- i)))))
726 nil)
727
728 (defun ccl-compile-read-if (cmd)
729 "Compile READ-IF statement."
730 (ccl-compile-if cmd 'read))
731
732 (defun ccl-compile-write (cmd)
733 "Compile WRITE statement."
734 (if (< (length cmd) 2)
735 (error "CCL: Invalid number of arguments: %s" cmd))
736 (let ((rrr (nth 1 cmd)))
737 (cond ((integerp rrr)
738 (if (> rrr #xFFFFF)
739 (ccl-compile-write-string (string rrr))
740 (ccl-embed-code 'write-const-string 0 rrr)))
741 ((stringp rrr)
742 (ccl-compile-write-string rrr))
743 ((and (symbolp rrr) (vectorp (nth 2 cmd)))
744 (ccl-check-register rrr cmd)
745 ;; CMD has the form `(write REG ARRAY)'.
746 (let* ((arg (nth 2 cmd))
747 (len (length arg))
748 (i 0))
749 (ccl-embed-code 'write-array rrr len)
750 (while (< i len)
751 (if (not (integerp (aref arg i)))
752 (error "CCL: Invalid argument %s: %s" arg cmd))
753 (ccl-embed-data (aref arg i))
754 (setq i (1+ i)))))
755
756 ((symbolp rrr)
757 ;; CMD has the form `(write REG ...)'.
758 (let* ((args (cdr cmd))
759 (i (1- (length args))))
760 (while args
761 (setq rrr (ccl-check-register (car args) cmd))
762 (ccl-embed-code 'write-register rrr i)
763 (setq args (cdr args) i (1- i)))))
764
765 ((listp rrr)
766 ;; CMD has the form `(write (LEFT OP RIGHT))'.
767 (let ((left (car rrr))
768 (op (get (nth 1 rrr) 'ccl-arith-code))
769 (right (nth 2 rrr)))
770 (if (listp left)
771 (progn
772 ;; RRR has the form `((EXPR OP2 ARG) OP RIGHT)'.
773 ;; Compile the first term as `(r7 = (EXPR OP2 ARG))'.
774 (ccl-compile-expression 'r7 left)
775 (setq left 'r7)))
776 ;; Now RRR has the form `(ARG OP RIGHT)'.
777 (if (integerp right)
778 (progn
779 (ccl-embed-code 'write-expr-const 0 (ash op 3) left)
780 (ccl-embed-data right))
781 (ccl-check-register right rrr)
782 (ccl-embed-code 'write-expr-register 0
783 (logior (ash op 3)
784 (get right 'ccl-register-number))
785 left))))
786
787 (t
788 (error "CCL: Invalid argument: %s" cmd))))
789 nil)
790
791 (defun ccl-compile-call (cmd)
792 "Compile CALL statement."
793 (if (/= (length cmd) 2)
794 (error "CCL: Invalid number of arguments: %s" cmd))
795 (if (not (symbolp (nth 1 cmd)))
796 (error "CCL: Subroutine should be a symbol: %s" cmd))
797 (ccl-embed-code 'call 1 0)
798 (ccl-embed-symbol (nth 1 cmd) 'ccl-program-idx)
799 nil)
800
801 (defun ccl-compile-end (cmd)
802 "Compile END statement."
803 (if (/= (length cmd) 1)
804 (error "CCL: Invalid number of arguments: %s" cmd))
805 (ccl-embed-code 'end 0 0)
806 t)
807
808 (defun ccl-compile-read-multibyte-character (cmd)
809 "Compile read-multibyte-character"
810 (if (/= (length cmd) 3)
811 (error "CCL: Invalid number of arguments: %s" cmd))
812 (let ((RRR (nth 1 cmd))
813 (rrr (nth 2 cmd)))
814 (ccl-check-register rrr cmd)
815 (ccl-check-register RRR cmd)
816 (ccl-embed-extended-command 'read-multibyte-character rrr RRR 0))
817 nil)
818
819 (defun ccl-compile-write-multibyte-character (cmd)
820 "Compile write-multibyte-character"
821 (if (/= (length cmd) 3)
822 (error "CCL: Invalid number of arguments: %s" cmd))
823 (let ((RRR (nth 1 cmd))
824 (rrr (nth 2 cmd)))
825 (ccl-check-register rrr cmd)
826 (ccl-check-register RRR cmd)
827 (ccl-embed-extended-command 'write-multibyte-character rrr RRR 0))
828 nil)
829
830 (defun ccl-compile-translate-character (cmd)
831 "Compile translate-character."
832 (if (/= (length cmd) 4)
833 (error "CCL: Invalid number of arguments: %s" cmd))
834 (let ((Rrr (nth 1 cmd))
835 (RRR (nth 2 cmd))
836 (rrr (nth 3 cmd)))
837 (ccl-check-register rrr cmd)
838 (ccl-check-register RRR cmd)
839 (cond ((and (symbolp Rrr) (not (get Rrr 'ccl-register-number)))
840 (ccl-embed-extended-command 'translate-character-const-tbl
841 rrr RRR 0)
842 (ccl-embed-symbol Rrr 'translation-table-id))
843 (t
844 (ccl-check-register Rrr cmd)
845 (ccl-embed-extended-command 'translate-character rrr RRR Rrr))))
846 nil)
847
848 (defun ccl-compile-lookup-integer (cmd)
849 "Compile lookup-integer."
850 (if (/= (length cmd) 4)
851 (error "CCL: Invalid number of arguments: %s" cmd))
852 (let ((Rrr (nth 1 cmd))
853 (RRR (nth 2 cmd))
854 (rrr (nth 3 cmd)))
855 (ccl-check-register RRR cmd)
856 (ccl-check-register rrr cmd)
857 (cond ((and (symbolp Rrr) (not (get Rrr 'ccl-register-number)))
858 (ccl-embed-extended-command 'lookup-int-const-tbl
859 rrr RRR 0)
860 (ccl-embed-symbol Rrr 'translation-hash-table-id))
861 (t
862 (error "CCL: non-constant table: %s" cmd)
863 ;; not implemented:
864 (ccl-check-register Rrr cmd)
865 (ccl-embed-extended-command 'lookup-int rrr RRR 0))))
866 nil)
867
868 (defun ccl-compile-lookup-character (cmd)
869 "Compile lookup-character."
870 (if (/= (length cmd) 4)
871 (error "CCL: Invalid number of arguments: %s" cmd))
872 (let ((Rrr (nth 1 cmd))
873 (RRR (nth 2 cmd))
874 (rrr (nth 3 cmd)))
875 (ccl-check-register RRR cmd)
876 (ccl-check-register rrr cmd)
877 (cond ((and (symbolp Rrr) (not (get Rrr 'ccl-register-number)))
878 (ccl-embed-extended-command 'lookup-char-const-tbl
879 rrr RRR 0)
880 (ccl-embed-symbol Rrr 'translation-hash-table-id))
881 (t
882 (error "CCL: non-constant table: %s" cmd)
883 ;; not implemented:
884 (ccl-check-register Rrr cmd)
885 (ccl-embed-extended-command 'lookup-char rrr RRR 0))))
886 nil)
887
888 (defun ccl-compile-iterate-multiple-map (cmd)
889 (ccl-compile-multiple-map-function 'iterate-multiple-map cmd)
890 nil)
891
892 (defun ccl-compile-map-multiple (cmd)
893 (if (/= (length cmd) 4)
894 (error "CCL: Invalid number of arguments: %s" cmd))
895 (let (func arg)
896 (setq func
897 (lambda (arg mp)
898 (let ((len 0) result add)
899 (while arg
900 (if (consp (car arg))
901 (setq add (funcall func (car arg) t)
902 result (append result add)
903 add (+ (- (car add)) 1))
904 (setq result
905 (append result
906 (list (car arg)))
907 add 1))
908 (setq arg (cdr arg)
909 len (+ len add)))
910 (if mp
911 (cons (- len) result)
912 result))))
913 (setq arg (append (list (nth 0 cmd) (nth 1 cmd) (nth 2 cmd))
914 (funcall func (nth 3 cmd) nil)))
915 (ccl-compile-multiple-map-function 'map-multiple arg))
916 nil)
917
918 (defun ccl-compile-map-single (cmd)
919 (if (/= (length cmd) 4)
920 (error "CCL: Invalid number of arguments: %s" cmd))
921 (let ((RRR (nth 1 cmd))
922 (rrr (nth 2 cmd))
923 (map (nth 3 cmd))
924 id)
925 (ccl-check-register rrr cmd)
926 (ccl-check-register RRR cmd)
927 (ccl-embed-extended-command 'map-single rrr RRR 0)
928 (cond ((symbolp map)
929 (if (get map 'code-conversion-map)
930 (ccl-embed-symbol map 'code-conversion-map-id)
931 (error "CCL: Invalid map: %s" map)))
932 (t
933 (error "CCL: Invalid type of arguments: %s" cmd))))
934 nil)
935
936 (defun ccl-compile-multiple-map-function (command cmd)
937 (if (< (length cmd) 4)
938 (error "CCL: Invalid number of arguments: %s" cmd))
939 (let ((RRR (nth 1 cmd))
940 (rrr (nth 2 cmd))
941 (args (nthcdr 3 cmd))
942 map)
943 (ccl-check-register rrr cmd)
944 (ccl-check-register RRR cmd)
945 (ccl-embed-extended-command command rrr RRR 0)
946 (ccl-embed-data (length args))
947 (while args
948 (setq map (car args))
949 (cond ((symbolp map)
950 (if (get map 'code-conversion-map)
951 (ccl-embed-symbol map 'code-conversion-map-id)
952 (error "CCL: Invalid map: %s" map)))
953 ((numberp map)
954 (ccl-embed-data map))
955 (t
956 (error "CCL: Invalid type of arguments: %s" cmd)))
957 (setq args (cdr args)))))
958
959 \f
960 ;;; CCL dump stuff
961
962 (defvar ccl-code)
963
964 ;;;###autoload
965 (defun ccl-dump (ccl-code)
966 "Disassemble compiled CCL-CODE."
967 (let ((len (length ccl-code))
968 (buffer-mag (aref ccl-code 0)))
969 (cond ((= buffer-mag 0)
970 (insert (substitute-command-keys
971 "Don’t output anything.\n")))
972 ((= buffer-mag 1)
973 (insert "Out-buffer must be as large as in-buffer.\n"))
974 (t
975 (insert
976 (format "Out-buffer must be %d times bigger than in-buffer.\n"
977 buffer-mag))))
978 (insert "Main-body:\n")
979 (setq ccl-current-ic 2)
980 (if (> (aref ccl-code 1) 0)
981 (progn
982 (while (< ccl-current-ic (aref ccl-code 1))
983 (ccl-dump-1))
984 (insert "At EOF:\n")))
985 (while (< ccl-current-ic len)
986 (ccl-dump-1))
987 ))
988
989 (defun ccl-get-next-code ()
990 "Return a CCL code in `ccl-code' at `ccl-current-ic'."
991 (prog1
992 (aref ccl-code ccl-current-ic)
993 (setq ccl-current-ic (1+ ccl-current-ic))))
994
995 (defun ccl-dump-1 ()
996 (let* ((code (ccl-get-next-code))
997 (cmd (aref ccl-code-table (logand code 31)))
998 (rrr (ash (logand code 255) -5))
999 (cc (ash code -8)))
1000 (insert (format "%5d:[%s] " (1- ccl-current-ic) cmd))
1001 (funcall (get cmd 'ccl-dump-function) rrr cc)))
1002
1003 (defun ccl-dump-set-register (rrr cc)
1004 (insert (format "r%d = r%d\n" rrr cc)))
1005
1006 (defun ccl-dump-set-short-const (rrr cc)
1007 (insert (format "r%d = %d\n" rrr cc)))
1008
1009 (defun ccl-dump-set-const (rrr ignore)
1010 (insert (format "r%d = %d\n" rrr (ccl-get-next-code))))
1011
1012 (defun ccl-dump-set-array (rrr cc)
1013 (let ((rrr2 (logand cc 7))
1014 (len (ash cc -3))
1015 (i 0))
1016 (insert (format "r%d = array[r%d] of length %d\n\t"
1017 rrr rrr2 len))
1018 (while (< i len)
1019 (insert (format "%d " (ccl-get-next-code)))
1020 (setq i (1+ i)))
1021 (insert "\n")))
1022
1023 (defun ccl-dump-jump (ignore cc &optional address)
1024 (insert (format "jump to %d(" (+ (or address ccl-current-ic) cc)))
1025 (if (>= cc 0)
1026 (insert "+"))
1027 (insert (format "%d)\n" (1+ cc))))
1028
1029 (defun ccl-dump-jump-cond (rrr cc)
1030 (insert (format "if (r%d == 0), " rrr))
1031 (ccl-dump-jump nil cc))
1032
1033 (defun ccl-dump-write-register-jump (rrr cc)
1034 (insert (format "write r%d, " rrr))
1035 (ccl-dump-jump nil cc))
1036
1037 (defun ccl-dump-write-register-read-jump (rrr cc)
1038 (insert (format "write r%d, read r%d, " rrr rrr))
1039 (ccl-dump-jump nil cc)
1040 (ccl-get-next-code) ; Skip dummy READ-JUMP
1041 )
1042
1043 (defun ccl-extract-arith-op (cc)
1044 (aref ccl-arith-table (ash cc -6)))
1045
1046 (defun ccl-dump-write-expr-const (ignore cc)
1047 (insert (format "write (r%d %s %d)\n"
1048 (logand cc 7)
1049 (ccl-extract-arith-op cc)
1050 (ccl-get-next-code))))
1051
1052 (defun ccl-dump-write-expr-register (ignore cc)
1053 (insert (format "write (r%d %s r%d)\n"
1054 (logand cc 7)
1055 (ccl-extract-arith-op cc)
1056 (logand (ash cc -3) 7))))
1057
1058 (defun ccl-dump-insert-char (cc)
1059 (cond ((= cc ?\t) (insert " \"^I\""))
1060 ((= cc ?\n) (insert " \"^J\""))
1061 (t (insert (format " \"%c\"" cc)))))
1062
1063 (defun ccl-dump-write-const-jump (ignore cc)
1064 (let ((address ccl-current-ic))
1065 (insert "write char")
1066 (ccl-dump-insert-char (ccl-get-next-code))
1067 (insert ", ")
1068 (ccl-dump-jump nil cc address)))
1069
1070 (defun ccl-dump-write-const-read-jump (rrr cc)
1071 (let ((address ccl-current-ic))
1072 (insert "write char")
1073 (ccl-dump-insert-char (ccl-get-next-code))
1074 (insert (format ", read r%d, " rrr))
1075 (ccl-dump-jump cc address)
1076 (ccl-get-next-code) ; Skip dummy READ-JUMP
1077 ))
1078
1079 (defun ccl-dump-write-string-jump (ignore cc)
1080 (let ((address ccl-current-ic)
1081 (len (ccl-get-next-code))
1082 (i 0))
1083 (insert "write \"")
1084 (while (< i len)
1085 (let ((code (ccl-get-next-code)))
1086 (insert (ash code -16))
1087 (if (< (1+ i) len) (insert (logand (ash code -8) 255)))
1088 (if (< (+ i 2) len) (insert (logand code 255))))
1089 (setq i (+ i 3)))
1090 (insert "\", ")
1091 (ccl-dump-jump nil cc address)))
1092
1093 (defun ccl-dump-write-array-read-jump (rrr cc)
1094 (let ((address ccl-current-ic)
1095 (len (ccl-get-next-code))
1096 (i 0))
1097 (insert (format "write array[r%d] of length %d,\n\t" rrr len))
1098 (while (< i len)
1099 (ccl-dump-insert-char (ccl-get-next-code))
1100 (setq i (1+ i)))
1101 (insert (format "\n\tthen read r%d, " rrr))
1102 (ccl-dump-jump nil cc address)
1103 (ccl-get-next-code) ; Skip dummy READ-JUMP.
1104 ))
1105
1106 (defun ccl-dump-read-jump (rrr cc)
1107 (insert (format "read r%d, " rrr))
1108 (ccl-dump-jump nil cc))
1109
1110 (defun ccl-dump-branch (rrr len)
1111 (let ((jump-table-head ccl-current-ic)
1112 (i 0))
1113 (insert (format "jump to array[r%d] of length %d\n\t" rrr len))
1114 (while (<= i len)
1115 (insert (format "%d " (+ jump-table-head (ccl-get-next-code))))
1116 (setq i (1+ i)))
1117 (insert "\n")))
1118
1119 (defun ccl-dump-read-register (rrr cc)
1120 (insert (format "read r%d (%d remaining)\n" rrr cc)))
1121
1122 (defun ccl-dump-read-branch (rrr len)
1123 (insert (format "read r%d, " rrr))
1124 (ccl-dump-branch rrr len))
1125
1126 (defun ccl-dump-write-register (rrr cc)
1127 (insert (format "write r%d (%d remaining)\n" rrr cc)))
1128
1129 (defun ccl-dump-call (ignore cc)
1130 (let ((subroutine (car (ccl-get-next-code))))
1131 (insert (format-message "call subroutine `%s'\n" subroutine))))
1132
1133 (defun ccl-dump-write-const-string (rrr cc)
1134 (if (= rrr 0)
1135 (progn
1136 (insert "write char")
1137 (ccl-dump-insert-char cc)
1138 (newline))
1139 (let ((len cc)
1140 (i 0))
1141 (insert "write \"")
1142 (while (< i len)
1143 (let ((code (ccl-get-next-code)))
1144 (if (/= (logand code #x1000000) 0)
1145 (progn
1146 (insert (logand code #xFFFFFF))
1147 (setq i (1+ i)))
1148 (insert (format "%c" (lsh code -16)))
1149 (if (< (1+ i) len)
1150 (insert (format "%c" (logand (lsh code -8) 255))))
1151 (if (< (+ i 2) len)
1152 (insert (format "%c" (logand code 255))))
1153 (setq i (+ i 3)))))
1154 (insert "\"\n"))))
1155
1156 (defun ccl-dump-write-array (rrr cc)
1157 (let ((i 0))
1158 (insert (format "write array[r%d] of length %d\n\t" rrr cc))
1159 (while (< i cc)
1160 (ccl-dump-insert-char (ccl-get-next-code))
1161 (setq i (1+ i)))
1162 (insert "\n")))
1163
1164 (defun ccl-dump-end (&rest ignore)
1165 (insert "end\n"))
1166
1167 (defun ccl-dump-set-assign-expr-const (rrr cc)
1168 (insert (format "r%d %s= %d\n"
1169 rrr
1170 (ccl-extract-arith-op cc)
1171 (ccl-get-next-code))))
1172
1173 (defun ccl-dump-set-assign-expr-register (rrr cc)
1174 (insert (format "r%d %s= r%d\n"
1175 rrr
1176 (ccl-extract-arith-op cc)
1177 (logand cc 7))))
1178
1179 (defun ccl-dump-set-expr-const (rrr cc)
1180 (insert (format "r%d = r%d %s %d\n"
1181 rrr
1182 (logand cc 7)
1183 (ccl-extract-arith-op cc)
1184 (ccl-get-next-code))))
1185
1186 (defun ccl-dump-set-expr-register (rrr cc)
1187 (insert (format "r%d = r%d %s r%d\n"
1188 rrr
1189 (logand cc 7)
1190 (ccl-extract-arith-op cc)
1191 (logand (ash cc -3) 7))))
1192
1193 (defun ccl-dump-jump-cond-expr-const (rrr cc)
1194 (let ((address ccl-current-ic))
1195 (insert (format "if !(r%d %s %d), "
1196 rrr
1197 (aref ccl-arith-table (ccl-get-next-code))
1198 (ccl-get-next-code)))
1199 (ccl-dump-jump nil cc address)))
1200
1201 (defun ccl-dump-jump-cond-expr-register (rrr cc)
1202 (let ((address ccl-current-ic))
1203 (insert (format "if !(r%d %s r%d), "
1204 rrr
1205 (aref ccl-arith-table (ccl-get-next-code))
1206 (ccl-get-next-code)))
1207 (ccl-dump-jump nil cc address)))
1208
1209 (defun ccl-dump-read-jump-cond-expr-const (rrr cc)
1210 (insert (format "read r%d, " rrr))
1211 (ccl-dump-jump-cond-expr-const rrr cc))
1212
1213 (defun ccl-dump-read-jump-cond-expr-register (rrr cc)
1214 (insert (format "read r%d, " rrr))
1215 (ccl-dump-jump-cond-expr-register rrr cc))
1216
1217 (defun ccl-dump-binary (ccl-code)
1218 (let ((len (length ccl-code))
1219 (i 2))
1220 (while (< i len)
1221 (let ((code (aref ccl-code i))
1222 (j 27))
1223 (while (>= j 0)
1224 (insert (if (= (logand code (ash 1 j)) 0) ?0 ?1))
1225 (setq j (1- j)))
1226 (setq code (logand code 31))
1227 (if (< code (length ccl-code-table))
1228 (insert (format ":%s" (aref ccl-code-table code))))
1229 (insert "\n"))
1230 (setq i (1+ i)))))
1231
1232 (defun ccl-dump-ex-cmd (rrr cc)
1233 (let* ((RRR (logand cc ?\x7))
1234 (Rrr (logand (ash cc -3) ?\x7))
1235 (ex-op (aref ccl-extended-code-table (logand (ash cc -6) ?\x3fff))))
1236 (insert (format "<%s> " ex-op))
1237 (funcall (get ex-op 'ccl-dump-function) rrr RRR Rrr)))
1238
1239 (defun ccl-dump-read-multibyte-character (rrr RRR Rrr)
1240 (insert (format "read-multibyte-character r%d r%d\n" RRR rrr)))
1241
1242 (defun ccl-dump-write-multibyte-character (rrr RRR Rrr)
1243 (insert (format "write-multibyte-character r%d r%d\n" RRR rrr)))
1244
1245 (defun ccl-dump-translate-character (rrr RRR Rrr)
1246 (insert (format "translation table(r%d) r%d r%d\n" Rrr RRR rrr)))
1247
1248 (defun ccl-dump-translate-character-const-tbl (rrr RRR Rrr)
1249 (let ((tbl (ccl-get-next-code)))
1250 (insert (format "translation table(%S) r%d r%d\n" tbl RRR rrr))))
1251
1252 (defun ccl-dump-lookup-int-const-tbl (rrr RRR Rrr)
1253 (let ((tbl (ccl-get-next-code)))
1254 (insert (format "hash table(%S) r%d r%d\n" tbl RRR rrr))))
1255
1256 (defun ccl-dump-lookup-char-const-tbl (rrr RRR Rrr)
1257 (let ((tbl (ccl-get-next-code)))
1258 (insert (format "hash table(%S) r%d r%d\n" tbl RRR rrr))))
1259
1260 (defun ccl-dump-iterate-multiple-map (rrr RRR Rrr)
1261 (let ((notbl (ccl-get-next-code))
1262 (i 0) id)
1263 (insert (format "iterate-multiple-map r%d r%d\n" RRR rrr))
1264 (insert (format "\tnumber of maps is %d .\n\t [" notbl))
1265 (while (< i notbl)
1266 (setq id (ccl-get-next-code))
1267 (insert (format "%S" id))
1268 (setq i (1+ i)))
1269 (insert "]\n")))
1270
1271 (defun ccl-dump-map-multiple (rrr RRR Rrr)
1272 (let ((notbl (ccl-get-next-code))
1273 (i 0) id)
1274 (insert (format "map-multiple r%d r%d\n" RRR rrr))
1275 (insert (format "\tnumber of maps and separators is %d\n\t [" notbl))
1276 (while (< i notbl)
1277 (setq id (ccl-get-next-code))
1278 (if (= id -1)
1279 (insert "]\n\t [")
1280 (insert (format "%S " id)))
1281 (setq i (1+ i)))
1282 (insert "]\n")))
1283
1284 (defun ccl-dump-map-single (rrr RRR Rrr)
1285 (let ((id (ccl-get-next-code)))
1286 (insert (format "map-single r%d r%d map(%S)\n" RRR rrr id))))
1287
1288 \f
1289 ;; CCL emulation staffs
1290
1291 ;; Not yet implemented.
1292 \f
1293 ;; Auto-loaded functions.
1294
1295 ;;;###autoload
1296 (defmacro declare-ccl-program (name &optional vector)
1297 "Declare NAME as a name of CCL program.
1298
1299 This macro exists for backward compatibility. In the old version of
1300 Emacs, to compile a CCL program which calls another CCL program not
1301 yet defined, it must be declared as a CCL program in advance. But,
1302 now CCL program names are resolved not at compile time but before
1303 execution.
1304
1305 Optional arg VECTOR is a compiled CCL code of the CCL program."
1306 `(put ',name 'ccl-program-idx (register-ccl-program ',name ,vector)))
1307
1308 ;;;###autoload
1309 (defmacro define-ccl-program (name ccl-program &optional doc)
1310 "Set NAME the compiled code of CCL-PROGRAM.
1311
1312 CCL-PROGRAM has this form:
1313 (BUFFER_MAGNIFICATION
1314 CCL_MAIN_CODE
1315 [ CCL_EOF_CODE ])
1316
1317 BUFFER_MAGNIFICATION is an integer value specifying the approximate
1318 output buffer magnification size compared with the bytes of input data
1319 text. It is assured that the actual output buffer has 256 bytes
1320 more than the size calculated by BUFFER_MAGNIFICATION.
1321 If the value is zero, the CCL program can't execute `read' and
1322 `write' commands.
1323
1324 CCL_MAIN_CODE and CCL_EOF_CODE are CCL program codes. CCL_MAIN_CODE
1325 executed at first. If there's no more input data when `read' command
1326 is executed in CCL_MAIN_CODE, CCL_EOF_CODE is executed. If
1327 CCL_MAIN_CODE is terminated, CCL_EOF_CODE is not executed.
1328
1329 Here's the syntax of CCL program code in BNF notation. The lines
1330 starting by two semicolons (and optional leading spaces) describe the
1331 semantics.
1332
1333 CCL_MAIN_CODE := CCL_BLOCK
1334
1335 CCL_EOF_CODE := CCL_BLOCK
1336
1337 CCL_BLOCK := STATEMENT | (STATEMENT [STATEMENT ...])
1338
1339 STATEMENT :=
1340 SET | IF | BRANCH | LOOP | REPEAT | BREAK | READ | WRITE | CALL
1341 | TRANSLATE | MAP | LOOKUP | END
1342
1343 SET := (REG = EXPRESSION)
1344 | (REG ASSIGNMENT_OPERATOR EXPRESSION)
1345 ;; The following form is the same as (r0 = integer).
1346 | integer
1347
1348 EXPRESSION := ARG | (EXPRESSION OPERATOR ARG)
1349
1350 ;; Evaluate EXPRESSION. If the result is nonzero, execute
1351 ;; CCL_BLOCK_0. Otherwise, execute CCL_BLOCK_1.
1352 IF := (if EXPRESSION CCL_BLOCK_0 CCL_BLOCK_1)
1353
1354 ;; Evaluate EXPRESSION. Provided that the result is N, execute
1355 ;; CCL_BLOCK_N.
1356 BRANCH := (branch EXPRESSION CCL_BLOCK_0 [CCL_BLOCK_1 ...])
1357
1358 ;; Execute STATEMENTs until (break) or (end) is executed.
1359
1360 ;; Create a block of STATEMENTs for repeating. The STATEMENTs
1361 ;; are executed sequentially until REPEAT or BREAK is executed.
1362 ;; If REPEAT statement is executed, STATEMENTs are executed from the
1363 ;; start again. If BREAK statements is executed, the execution
1364 ;; exits from the block. If neither REPEAT nor BREAK is
1365 ;; executed, the execution exits from the block after executing the
1366 ;; last STATEMENT.
1367 LOOP := (loop STATEMENT [STATEMENT ...])
1368
1369 ;; Terminate the most inner loop.
1370 BREAK := (break)
1371
1372 REPEAT :=
1373 ;; Jump to the head of the most inner loop.
1374 (repeat)
1375 ;; Same as: ((write [REG | integer | string])
1376 ;; (repeat))
1377 | (write-repeat [REG | integer | string])
1378 ;; Same as: ((write REG [ARRAY])
1379 ;; (read REG)
1380 ;; (repeat))
1381 | (write-read-repeat REG [ARRAY])
1382 ;; Same as: ((write integer)
1383 ;; (read REG)
1384 ;; (repeat))
1385 | (write-read-repeat REG integer)
1386
1387 READ := ;; Set REG_0 to a byte read from the input text, set REG_1
1388 ;; to the next byte read, and so on.
1389 (read REG_0 [REG_1 ...])
1390 ;; Same as: ((read REG)
1391 ;; (if (REG OPERATOR ARG) CCL_BLOCK_0 CCL_BLOCK_1))
1392 | (read-if (REG OPERATOR ARG) CCL_BLOCK_0 CCL_BLOCK_1)
1393 ;; Same as: ((read REG)
1394 ;; (branch REG CCL_BLOCK_0 [CCL_BLOCK_1 ...]))
1395 | (read-branch REG CCL_BLOCK_0 [CCL_BLOCK_1 ...])
1396 ;; Read a character from the input text while parsing
1397 ;; multibyte representation, set REG_0 to the charset ID of
1398 ;; the character, set REG_1 to the code point of the
1399 ;; character. If the dimension of charset is two, set REG_1
1400 ;; to ((CODE0 << 7) | CODE1), where CODE0 is the first code
1401 ;; point and CODE1 is the second code point.
1402 | (read-multibyte-character REG_0 REG_1)
1403
1404 WRITE :=
1405 ;; Write REG_0, REG_1, ... to the output buffer. If REG_N is
1406 ;; a multibyte character, write the corresponding multibyte
1407 ;; representation.
1408 (write REG_0 [REG_1 ...])
1409 ;; Same as: ((r7 = EXPRESSION)
1410 ;; (write r7))
1411 | (write EXPRESSION)
1412 ;; Write the value of `integer' to the output buffer. If it
1413 ;; is a multibyte character, write the corresponding multibyte
1414 ;; representation.
1415 | (write integer)
1416 ;; Write the byte sequence of `string' as is to the output
1417 ;; buffer.
1418 | (write string)
1419 ;; Same as: (write string)
1420 | string
1421 ;; Provided that the value of REG is N, write Nth element of
1422 ;; ARRAY to the output buffer. If it is a multibyte
1423 ;; character, write the corresponding multibyte
1424 ;; representation.
1425 | (write REG ARRAY)
1426 ;; Write a multibyte representation of a character whose
1427 ;; charset ID is REG_0 and code point is REG_1. If the
1428 ;; dimension of the charset is two, REG_1 should be ((CODE0 <<
1429 ;; 7) | CODE1), where CODE0 is the first code point and CODE1
1430 ;; is the second code point of the character.
1431 | (write-multibyte-character REG_0 REG_1)
1432
1433 ;; Call CCL program whose name is ccl-program-name.
1434 CALL := (call ccl-program-name)
1435
1436 ;; Terminate the CCL program.
1437 END := (end)
1438
1439 ;; CCL registers that can contain any integer value. As r7 is also
1440 ;; used by CCL interpreter, its value is changed unexpectedly.
1441 REG := r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7
1442
1443 ARG := REG | integer
1444
1445 OPERATOR :=
1446 ;; Normal arithmetic operators (same meaning as C code).
1447 + | - | * | / | %
1448
1449 ;; Bitwise operators (same meaning as C code)
1450 | & | `|' | ^
1451
1452 ;; Shifting operators (same meaning as C code)
1453 | << | >>
1454
1455 ;; (REG = ARG_0 <8 ARG_1) means:
1456 ;; (REG = ((ARG_0 << 8) | ARG_1))
1457 | <8
1458
1459 ;; (REG = ARG_0 >8 ARG_1) means:
1460 ;; ((REG = (ARG_0 >> 8))
1461 ;; (r7 = (ARG_0 & 255)))
1462 | >8
1463
1464 ;; (REG = ARG_0 // ARG_1) means:
1465 ;; ((REG = (ARG_0 / ARG_1))
1466 ;; (r7 = (ARG_0 % ARG_1)))
1467 | //
1468
1469 ;; Normal comparing operators (same meaning as C code)
1470 | < | > | == | <= | >= | !=
1471
1472 ;; If ARG_0 and ARG_1 are higher and lower byte of Shift-JIS
1473 ;; code, and CHAR is the corresponding JISX0208 character,
1474 ;; (REG = ARG_0 de-sjis ARG_1) means:
1475 ;; ((REG = CODE0)
1476 ;; (r7 = CODE1))
1477 ;; where CODE0 is the first code point of CHAR, CODE1 is the
1478 ;; second code point of CHAR.
1479 | de-sjis
1480
1481 ;; If ARG_0 and ARG_1 are the first and second code point of
1482 ;; JISX0208 character CHAR, and SJIS is the corresponding
1483 ;; Shift-JIS code,
1484 ;; (REG = ARG_0 en-sjis ARG_1) means:
1485 ;; ((REG = HIGH)
1486 ;; (r7 = LOW))
1487 ;; where HIGH is the higher byte of SJIS, LOW is the lower
1488 ;; byte of SJIS.
1489 | en-sjis
1490
1491 ASSIGNMENT_OPERATOR :=
1492 ;; Same meaning as C code
1493 += | -= | *= | /= | %= | &= | `|=' | ^= | <<= | >>=
1494
1495 ;; (REG <8= ARG) is the same as:
1496 ;; ((REG <<= 8)
1497 ;; (REG |= ARG))
1498 | <8=
1499
1500 ;; (REG >8= ARG) is the same as:
1501 ;; ((r7 = (REG & 255))
1502 ;; (REG >>= 8))
1503
1504 ;; (REG //= ARG) is the same as:
1505 ;; ((r7 = (REG % ARG))
1506 ;; (REG /= ARG))
1507 | //=
1508
1509 ARRAY := `[' integer ... `]'
1510
1511
1512 TRANSLATE :=
1513 ;; Decode character SRC, translate it by translate table
1514 ;; TABLE, and encode it back to DST. TABLE is specified
1515 ;; by its id number in REG_0, SRC is specified by its
1516 ;; charset id number and codepoint in REG_1 and REG_2
1517 ;; respectively.
1518 ;; On encoding, the charset of highest priority is selected.
1519 ;; After the execution, DST is specified by its charset
1520 ;; id number and codepoint in REG_1 and REG_2 respectively.
1521 (translate-character REG_0 REG_1 REG_2)
1522
1523 ;; Same as above except for SYMBOL specifying the name of
1524 ;; the translate table defined by `define-translation-table'.
1525 | (translate-character SYMBOL REG_1 REG_2)
1526
1527 LOOKUP :=
1528 ;; Look up character SRC in hash table TABLE. TABLE is
1529 ;; specified by its name in SYMBOL, and SRC is specified by
1530 ;; its charset id number and codepoint in REG_1 and REG_2
1531 ;; respectively.
1532 ;; If its associated value is an integer, set REG_1 to that
1533 ;; value, and set r7 to 1. Otherwise, set r7 to 0.
1534 (lookup-character SYMBOL REG_1 REG_2)
1535
1536 ;; Look up integer value N in hash table TABLE. TABLE is
1537 ;; specified by its name in SYMBOL and N is specified in
1538 ;; REG.
1539 ;; If its associated value is a character, set REG to that
1540 ;; value, and set r7 to 1. Otherwise, set r7 to 0.
1541 | (lookup-integer SYMBOL REG(integer))
1542
1543 MAP :=
1544 ;; The following statements are for internal use only.
1545 (iterate-multiple-map REG REG MAP-IDs)
1546 | (map-multiple REG REG (MAP-SET))
1547 | (map-single REG REG MAP-ID)
1548
1549 MAP-IDs := MAP-ID ...
1550 MAP-SET := MAP-IDs | (MAP-IDs) MAP-SET
1551 MAP-ID := integer
1552 "
1553 (declare (doc-string 3))
1554 `(let ((prog ,(unwind-protect
1555 (progn
1556 ;; To make ,(charset-id CHARSET) works well.
1557 (fset 'charset-id 'charset-id-internal)
1558 (ccl-compile (eval ccl-program)))
1559 (fmakunbound 'charset-id))))
1560 (defconst ,name prog ,doc)
1561 (put ',name 'ccl-program-idx (register-ccl-program ',name prog))
1562 nil))
1563
1564 ;;;###autoload
1565 (defmacro check-ccl-program (ccl-program &optional name)
1566 "Check validity of CCL-PROGRAM.
1567 If CCL-PROGRAM is a symbol denoting a CCL program, return
1568 CCL-PROGRAM, else return nil.
1569 If CCL-PROGRAM is a vector and optional arg NAME (symbol) is supplied,
1570 register CCL-PROGRAM by name NAME, and return NAME."
1571 `(if (ccl-program-p ,ccl-program)
1572 (if (vectorp ,ccl-program)
1573 (progn
1574 (register-ccl-program ,name ,ccl-program)
1575 ,name)
1576 ,ccl-program)))
1577
1578 ;;;###autoload
1579 (defun ccl-execute-with-args (ccl-prog &rest args)
1580 "Execute CCL-PROGRAM with registers initialized by the remaining args.
1581 The return value is a vector of resulting CCL registers.
1582
1583 See the documentation of `define-ccl-program' for the detail of CCL program."
1584 (let ((reg (make-vector 8 0))
1585 (i 0))
1586 (while (and args (< i 8))
1587 (if (not (integerp (car args)))
1588 (error "Arguments should be integer"))
1589 (aset reg i (car args))
1590 (setq args (cdr args) i (1+ i)))
1591 (ccl-execute ccl-prog reg)
1592 reg))
1593
1594 (provide 'ccl)
1595
1596 ;;; ccl.el ends here