]> code.delx.au - gnu-emacs/blob - src/search.c
Add description of +LINE:COLUMN.
[gnu-emacs] / src / search.c
1 /* String search routines for GNU Emacs.
2 Copyright (C) 1985, 86,87,93,94,97,98, 1999 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 #include <config.h>
23 #include "lisp.h"
24 #include "syntax.h"
25 #include "category.h"
26 #include "buffer.h"
27 #include "charset.h"
28 #include "region-cache.h"
29 #include "commands.h"
30 #include "blockinput.h"
31 #include "intervals.h"
32
33 #include <sys/types.h>
34 #include "regex.h"
35
36 #define min(a, b) ((a) < (b) ? (a) : (b))
37 #define max(a, b) ((a) > (b) ? (a) : (b))
38
39 #define REGEXP_CACHE_SIZE 20
40
41 /* If the regexp is non-nil, then the buffer contains the compiled form
42 of that regexp, suitable for searching. */
43 struct regexp_cache
44 {
45 struct regexp_cache *next;
46 Lisp_Object regexp;
47 struct re_pattern_buffer buf;
48 char fastmap[0400];
49 /* Nonzero means regexp was compiled to do full POSIX backtracking. */
50 char posix;
51 };
52
53 /* The instances of that struct. */
54 struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];
55
56 /* The head of the linked list; points to the most recently used buffer. */
57 struct regexp_cache *searchbuf_head;
58
59
60 /* Every call to re_match, etc., must pass &search_regs as the regs
61 argument unless you can show it is unnecessary (i.e., if re_match
62 is certainly going to be called again before region-around-match
63 can be called).
64
65 Since the registers are now dynamically allocated, we need to make
66 sure not to refer to the Nth register before checking that it has
67 been allocated by checking search_regs.num_regs.
68
69 The regex code keeps track of whether it has allocated the search
70 buffer using bits in the re_pattern_buffer. This means that whenever
71 you compile a new pattern, it completely forgets whether it has
72 allocated any registers, and will allocate new registers the next
73 time you call a searching or matching function. Therefore, we need
74 to call re_set_registers after compiling a new pattern or after
75 setting the match registers, so that the regex functions will be
76 able to free or re-allocate it properly. */
77 static struct re_registers search_regs;
78
79 /* The buffer in which the last search was performed, or
80 Qt if the last search was done in a string;
81 Qnil if no searching has been done yet. */
82 static Lisp_Object last_thing_searched;
83
84 /* error condition signaled when regexp compile_pattern fails */
85
86 Lisp_Object Qinvalid_regexp;
87
88 static void set_search_regs ();
89 static void save_search_regs ();
90 static int simple_search ();
91 static int boyer_moore ();
92 static int search_buffer ();
93
94 static void
95 matcher_overflow ()
96 {
97 error ("Stack overflow in regexp matcher");
98 }
99
100 /* Compile a regexp and signal a Lisp error if anything goes wrong.
101 PATTERN is the pattern to compile.
102 CP is the place to put the result.
103 TRANSLATE is a translation table for ignoring case, or nil for none.
104 REGP is the structure that says where to store the "register"
105 values that will result from matching this pattern.
106 If it is 0, we should compile the pattern not to record any
107 subexpression bounds.
108 POSIX is nonzero if we want full backtracking (POSIX style)
109 for this pattern. 0 means backtrack only enough to get a valid match.
110 MULTIBYTE is nonzero if we want to handle multibyte characters in
111 PATTERN. 0 means all multibyte characters are recognized just as
112 sequences of binary data. */
113
114 static void
115 compile_pattern_1 (cp, pattern, translate, regp, posix, multibyte)
116 struct regexp_cache *cp;
117 Lisp_Object pattern;
118 Lisp_Object translate;
119 struct re_registers *regp;
120 int posix;
121 int multibyte;
122 {
123 unsigned char *raw_pattern;
124 int raw_pattern_size;
125 char *val;
126 reg_syntax_t old;
127
128 /* MULTIBYTE says whether the text to be searched is multibyte.
129 We must convert PATTERN to match that, or we will not really
130 find things right. */
131
132 if (multibyte == STRING_MULTIBYTE (pattern))
133 {
134 raw_pattern = (unsigned char *) XSTRING (pattern)->data;
135 raw_pattern_size = STRING_BYTES (XSTRING (pattern));
136 }
137 else if (multibyte)
138 {
139 raw_pattern_size = count_size_as_multibyte (XSTRING (pattern)->data,
140 XSTRING (pattern)->size);
141 raw_pattern = (unsigned char *) alloca (raw_pattern_size + 1);
142 copy_text (XSTRING (pattern)->data, raw_pattern,
143 XSTRING (pattern)->size, 0, 1);
144 }
145 else
146 {
147 /* Converting multibyte to single-byte.
148
149 ??? Perhaps this conversion should be done in a special way
150 by subtracting nonascii-insert-offset from each non-ASCII char,
151 so that only the multibyte chars which really correspond to
152 the chosen single-byte character set can possibly match. */
153 raw_pattern_size = XSTRING (pattern)->size;
154 raw_pattern = (unsigned char *) alloca (raw_pattern_size + 1);
155 copy_text (XSTRING (pattern)->data, raw_pattern,
156 STRING_BYTES (XSTRING (pattern)), 1, 0);
157 }
158
159 cp->regexp = Qnil;
160 cp->buf.translate = (! NILP (translate) ? translate : make_number (0));
161 cp->posix = posix;
162 cp->buf.multibyte = multibyte;
163 BLOCK_INPUT;
164 old = re_set_syntax (RE_SYNTAX_EMACS
165 | (posix ? 0 : RE_NO_POSIX_BACKTRACKING));
166 val = (char *) re_compile_pattern ((char *)raw_pattern,
167 raw_pattern_size, &cp->buf);
168 re_set_syntax (old);
169 UNBLOCK_INPUT;
170 if (val)
171 Fsignal (Qinvalid_regexp, Fcons (build_string (val), Qnil));
172
173 cp->regexp = Fcopy_sequence (pattern);
174 }
175
176 /* Shrink each compiled regexp buffer in the cache
177 to the size actually used right now.
178 This is called from garbage collection. */
179
180 void
181 shrink_regexp_cache ()
182 {
183 struct regexp_cache *cp;
184
185 for (cp = searchbuf_head; cp != 0; cp = cp->next)
186 {
187 cp->buf.allocated = cp->buf.used;
188 cp->buf.buffer
189 = (unsigned char *) realloc (cp->buf.buffer, cp->buf.used);
190 }
191 }
192
193 /* Compile a regexp if necessary, but first check to see if there's one in
194 the cache.
195 PATTERN is the pattern to compile.
196 TRANSLATE is a translation table for ignoring case, or nil for none.
197 REGP is the structure that says where to store the "register"
198 values that will result from matching this pattern.
199 If it is 0, we should compile the pattern not to record any
200 subexpression bounds.
201 POSIX is nonzero if we want full backtracking (POSIX style)
202 for this pattern. 0 means backtrack only enough to get a valid match. */
203
204 struct re_pattern_buffer *
205 compile_pattern (pattern, regp, translate, posix, multibyte)
206 Lisp_Object pattern;
207 struct re_registers *regp;
208 Lisp_Object translate;
209 int posix, multibyte;
210 {
211 struct regexp_cache *cp, **cpp;
212
213 for (cpp = &searchbuf_head; ; cpp = &cp->next)
214 {
215 cp = *cpp;
216 /* Entries are initialized to nil, and may be set to nil by
217 compile_pattern_1 if the pattern isn't valid. Don't apply
218 XSTRING in those cases. However, compile_pattern_1 is only
219 applied to the cache entry we pick here to reuse. So nil
220 should never appear before a non-nil entry. */
221 if (NILP (cp->regexp))
222 goto compile_it;
223 if (XSTRING (cp->regexp)->size == XSTRING (pattern)->size
224 && STRING_MULTIBYTE (cp->regexp) == STRING_MULTIBYTE (pattern)
225 && !NILP (Fstring_equal (cp->regexp, pattern))
226 && EQ (cp->buf.translate, (! NILP (translate) ? translate : make_number (0)))
227 && cp->posix == posix
228 && cp->buf.multibyte == multibyte)
229 break;
230
231 /* If we're at the end of the cache, compile into the nil cell
232 we found, or the last (least recently used) cell with a
233 string value. */
234 if (cp->next == 0)
235 {
236 compile_it:
237 compile_pattern_1 (cp, pattern, translate, regp, posix, multibyte);
238 break;
239 }
240 }
241
242 /* When we get here, cp (aka *cpp) contains the compiled pattern,
243 either because we found it in the cache or because we just compiled it.
244 Move it to the front of the queue to mark it as most recently used. */
245 *cpp = cp->next;
246 cp->next = searchbuf_head;
247 searchbuf_head = cp;
248
249 /* Advise the searching functions about the space we have allocated
250 for register data. */
251 if (regp)
252 re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);
253
254 return &cp->buf;
255 }
256
257 /* Error condition used for failing searches */
258 Lisp_Object Qsearch_failed;
259
260 Lisp_Object
261 signal_failure (arg)
262 Lisp_Object arg;
263 {
264 Fsignal (Qsearch_failed, Fcons (arg, Qnil));
265 return Qnil;
266 }
267 \f
268 static Lisp_Object
269 looking_at_1 (string, posix)
270 Lisp_Object string;
271 int posix;
272 {
273 Lisp_Object val;
274 unsigned char *p1, *p2;
275 int s1, s2;
276 register int i;
277 struct re_pattern_buffer *bufp;
278
279 if (running_asynch_code)
280 save_search_regs ();
281
282 CHECK_STRING (string, 0);
283 bufp = compile_pattern (string, &search_regs,
284 (!NILP (current_buffer->case_fold_search)
285 ? DOWNCASE_TABLE : Qnil),
286 posix,
287 !NILP (current_buffer->enable_multibyte_characters));
288
289 immediate_quit = 1;
290 QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
291
292 /* Get pointers and sizes of the two strings
293 that make up the visible portion of the buffer. */
294
295 p1 = BEGV_ADDR;
296 s1 = GPT_BYTE - BEGV_BYTE;
297 p2 = GAP_END_ADDR;
298 s2 = ZV_BYTE - GPT_BYTE;
299 if (s1 < 0)
300 {
301 p2 = p1;
302 s2 = ZV_BYTE - BEGV_BYTE;
303 s1 = 0;
304 }
305 if (s2 < 0)
306 {
307 s1 = ZV_BYTE - BEGV_BYTE;
308 s2 = 0;
309 }
310
311 re_match_object = Qnil;
312
313 i = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
314 PT_BYTE - BEGV_BYTE, &search_regs,
315 ZV_BYTE - BEGV_BYTE);
316 immediate_quit = 0;
317
318 if (i == -2)
319 matcher_overflow ();
320
321 val = (0 <= i ? Qt : Qnil);
322 if (i >= 0)
323 for (i = 0; i < search_regs.num_regs; i++)
324 if (search_regs.start[i] >= 0)
325 {
326 search_regs.start[i]
327 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
328 search_regs.end[i]
329 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
330 }
331 XSETBUFFER (last_thing_searched, current_buffer);
332 return val;
333 }
334
335 DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
336 "Return t if text after point matches regular expression REGEXP.\n\
337 This function modifies the match data that `match-beginning',\n\
338 `match-end' and `match-data' access; save and restore the match\n\
339 data if you want to preserve them.")
340 (regexp)
341 Lisp_Object regexp;
342 {
343 return looking_at_1 (regexp, 0);
344 }
345
346 DEFUN ("posix-looking-at", Fposix_looking_at, Sposix_looking_at, 1, 1, 0,
347 "Return t if text after point matches regular expression REGEXP.\n\
348 Find the longest match, in accord with Posix regular expression rules.\n\
349 This function modifies the match data that `match-beginning',\n\
350 `match-end' and `match-data' access; save and restore the match\n\
351 data if you want to preserve them.")
352 (regexp)
353 Lisp_Object regexp;
354 {
355 return looking_at_1 (regexp, 1);
356 }
357 \f
358 static Lisp_Object
359 string_match_1 (regexp, string, start, posix)
360 Lisp_Object regexp, string, start;
361 int posix;
362 {
363 int val;
364 struct re_pattern_buffer *bufp;
365 int pos, pos_byte;
366 int i;
367
368 if (running_asynch_code)
369 save_search_regs ();
370
371 CHECK_STRING (regexp, 0);
372 CHECK_STRING (string, 1);
373
374 if (NILP (start))
375 pos = 0, pos_byte = 0;
376 else
377 {
378 int len = XSTRING (string)->size;
379
380 CHECK_NUMBER (start, 2);
381 pos = XINT (start);
382 if (pos < 0 && -pos <= len)
383 pos = len + pos;
384 else if (0 > pos || pos > len)
385 args_out_of_range (string, start);
386 pos_byte = string_char_to_byte (string, pos);
387 }
388
389 bufp = compile_pattern (regexp, &search_regs,
390 (!NILP (current_buffer->case_fold_search)
391 ? DOWNCASE_TABLE : Qnil),
392 posix,
393 STRING_MULTIBYTE (string));
394 immediate_quit = 1;
395 re_match_object = string;
396
397 val = re_search (bufp, (char *) XSTRING (string)->data,
398 STRING_BYTES (XSTRING (string)), pos_byte,
399 STRING_BYTES (XSTRING (string)) - pos_byte,
400 &search_regs);
401 immediate_quit = 0;
402 last_thing_searched = Qt;
403 if (val == -2)
404 matcher_overflow ();
405 if (val < 0) return Qnil;
406
407 for (i = 0; i < search_regs.num_regs; i++)
408 if (search_regs.start[i] >= 0)
409 {
410 search_regs.start[i]
411 = string_byte_to_char (string, search_regs.start[i]);
412 search_regs.end[i]
413 = string_byte_to_char (string, search_regs.end[i]);
414 }
415
416 return make_number (string_byte_to_char (string, val));
417 }
418
419 DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
420 "Return index of start of first match for REGEXP in STRING, or nil.\n\
421 Case is ignored if `case-fold-search' is non-nil in the current buffer.\n\
422 If third arg START is non-nil, start search at that index in STRING.\n\
423 For index of first char beyond the match, do (match-end 0).\n\
424 `match-end' and `match-beginning' also give indices of substrings\n\
425 matched by parenthesis constructs in the pattern.")
426 (regexp, string, start)
427 Lisp_Object regexp, string, start;
428 {
429 return string_match_1 (regexp, string, start, 0);
430 }
431
432 DEFUN ("posix-string-match", Fposix_string_match, Sposix_string_match, 2, 3, 0,
433 "Return index of start of first match for REGEXP in STRING, or nil.\n\
434 Find the longest match, in accord with Posix regular expression rules.\n\
435 Case is ignored if `case-fold-search' is non-nil in the current buffer.\n\
436 If third arg START is non-nil, start search at that index in STRING.\n\
437 For index of first char beyond the match, do (match-end 0).\n\
438 `match-end' and `match-beginning' also give indices of substrings\n\
439 matched by parenthesis constructs in the pattern.")
440 (regexp, string, start)
441 Lisp_Object regexp, string, start;
442 {
443 return string_match_1 (regexp, string, start, 1);
444 }
445
446 /* Match REGEXP against STRING, searching all of STRING,
447 and return the index of the match, or negative on failure.
448 This does not clobber the match data. */
449
450 int
451 fast_string_match (regexp, string)
452 Lisp_Object regexp, string;
453 {
454 int val;
455 struct re_pattern_buffer *bufp;
456
457 bufp = compile_pattern (regexp, 0, Qnil,
458 0, STRING_MULTIBYTE (string));
459 immediate_quit = 1;
460 re_match_object = string;
461
462 val = re_search (bufp, (char *) XSTRING (string)->data,
463 STRING_BYTES (XSTRING (string)), 0,
464 STRING_BYTES (XSTRING (string)), 0);
465 immediate_quit = 0;
466 return val;
467 }
468
469 /* Match REGEXP against STRING, searching all of STRING ignoring case,
470 and return the index of the match, or negative on failure.
471 This does not clobber the match data.
472 We assume that STRING contains single-byte characters. */
473
474 extern Lisp_Object Vascii_downcase_table;
475
476 int
477 fast_c_string_match_ignore_case (regexp, string)
478 Lisp_Object regexp;
479 char *string;
480 {
481 int val;
482 struct re_pattern_buffer *bufp;
483 int len = strlen (string);
484
485 regexp = string_make_unibyte (regexp);
486 re_match_object = Qt;
487 bufp = compile_pattern (regexp, 0,
488 Vascii_downcase_table, 0,
489 0);
490 immediate_quit = 1;
491 val = re_search (bufp, string, len, 0, len, 0);
492 immediate_quit = 0;
493 return val;
494 }
495 \f
496 /* The newline cache: remembering which sections of text have no newlines. */
497
498 /* If the user has requested newline caching, make sure it's on.
499 Otherwise, make sure it's off.
500 This is our cheezy way of associating an action with the change of
501 state of a buffer-local variable. */
502 static void
503 newline_cache_on_off (buf)
504 struct buffer *buf;
505 {
506 if (NILP (buf->cache_long_line_scans))
507 {
508 /* It should be off. */
509 if (buf->newline_cache)
510 {
511 free_region_cache (buf->newline_cache);
512 buf->newline_cache = 0;
513 }
514 }
515 else
516 {
517 /* It should be on. */
518 if (buf->newline_cache == 0)
519 buf->newline_cache = new_region_cache ();
520 }
521 }
522
523 \f
524 /* Search for COUNT instances of the character TARGET between START and END.
525
526 If COUNT is positive, search forwards; END must be >= START.
527 If COUNT is negative, search backwards for the -COUNTth instance;
528 END must be <= START.
529 If COUNT is zero, do anything you please; run rogue, for all I care.
530
531 If END is zero, use BEGV or ZV instead, as appropriate for the
532 direction indicated by COUNT.
533
534 If we find COUNT instances, set *SHORTAGE to zero, and return the
535 position after the COUNTth match. Note that for reverse motion
536 this is not the same as the usual convention for Emacs motion commands.
537
538 If we don't find COUNT instances before reaching END, set *SHORTAGE
539 to the number of TARGETs left unfound, and return END.
540
541 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
542 except when inside redisplay. */
543
544 int
545 scan_buffer (target, start, end, count, shortage, allow_quit)
546 register int target;
547 int start, end;
548 int count;
549 int *shortage;
550 int allow_quit;
551 {
552 struct region_cache *newline_cache;
553 int direction;
554
555 if (count > 0)
556 {
557 direction = 1;
558 if (! end) end = ZV;
559 }
560 else
561 {
562 direction = -1;
563 if (! end) end = BEGV;
564 }
565
566 newline_cache_on_off (current_buffer);
567 newline_cache = current_buffer->newline_cache;
568
569 if (shortage != 0)
570 *shortage = 0;
571
572 immediate_quit = allow_quit;
573
574 if (count > 0)
575 while (start != end)
576 {
577 /* Our innermost scanning loop is very simple; it doesn't know
578 about gaps, buffer ends, or the newline cache. ceiling is
579 the position of the last character before the next such
580 obstacle --- the last character the dumb search loop should
581 examine. */
582 int ceiling_byte = CHAR_TO_BYTE (end) - 1;
583 int start_byte = CHAR_TO_BYTE (start);
584 int tem;
585
586 /* If we're looking for a newline, consult the newline cache
587 to see where we can avoid some scanning. */
588 if (target == '\n' && newline_cache)
589 {
590 int next_change;
591 immediate_quit = 0;
592 while (region_cache_forward
593 (current_buffer, newline_cache, start_byte, &next_change))
594 start_byte = next_change;
595 immediate_quit = allow_quit;
596
597 /* START should never be after END. */
598 if (start_byte > ceiling_byte)
599 start_byte = ceiling_byte;
600
601 /* Now the text after start is an unknown region, and
602 next_change is the position of the next known region. */
603 ceiling_byte = min (next_change - 1, ceiling_byte);
604 }
605
606 /* The dumb loop can only scan text stored in contiguous
607 bytes. BUFFER_CEILING_OF returns the last character
608 position that is contiguous, so the ceiling is the
609 position after that. */
610 tem = BUFFER_CEILING_OF (start_byte);
611 ceiling_byte = min (tem, ceiling_byte);
612
613 {
614 /* The termination address of the dumb loop. */
615 register unsigned char *ceiling_addr
616 = BYTE_POS_ADDR (ceiling_byte) + 1;
617 register unsigned char *cursor
618 = BYTE_POS_ADDR (start_byte);
619 unsigned char *base = cursor;
620
621 while (cursor < ceiling_addr)
622 {
623 unsigned char *scan_start = cursor;
624
625 /* The dumb loop. */
626 while (*cursor != target && ++cursor < ceiling_addr)
627 ;
628
629 /* If we're looking for newlines, cache the fact that
630 the region from start to cursor is free of them. */
631 if (target == '\n' && newline_cache)
632 know_region_cache (current_buffer, newline_cache,
633 start_byte + scan_start - base,
634 start_byte + cursor - base);
635
636 /* Did we find the target character? */
637 if (cursor < ceiling_addr)
638 {
639 if (--count == 0)
640 {
641 immediate_quit = 0;
642 return BYTE_TO_CHAR (start_byte + cursor - base + 1);
643 }
644 cursor++;
645 }
646 }
647
648 start = BYTE_TO_CHAR (start_byte + cursor - base);
649 }
650 }
651 else
652 while (start > end)
653 {
654 /* The last character to check before the next obstacle. */
655 int ceiling_byte = CHAR_TO_BYTE (end);
656 int start_byte = CHAR_TO_BYTE (start);
657 int tem;
658
659 /* Consult the newline cache, if appropriate. */
660 if (target == '\n' && newline_cache)
661 {
662 int next_change;
663 immediate_quit = 0;
664 while (region_cache_backward
665 (current_buffer, newline_cache, start_byte, &next_change))
666 start_byte = next_change;
667 immediate_quit = allow_quit;
668
669 /* Start should never be at or before end. */
670 if (start_byte <= ceiling_byte)
671 start_byte = ceiling_byte + 1;
672
673 /* Now the text before start is an unknown region, and
674 next_change is the position of the next known region. */
675 ceiling_byte = max (next_change, ceiling_byte);
676 }
677
678 /* Stop scanning before the gap. */
679 tem = BUFFER_FLOOR_OF (start_byte - 1);
680 ceiling_byte = max (tem, ceiling_byte);
681
682 {
683 /* The termination address of the dumb loop. */
684 register unsigned char *ceiling_addr = BYTE_POS_ADDR (ceiling_byte);
685 register unsigned char *cursor = BYTE_POS_ADDR (start_byte - 1);
686 unsigned char *base = cursor;
687
688 while (cursor >= ceiling_addr)
689 {
690 unsigned char *scan_start = cursor;
691
692 while (*cursor != target && --cursor >= ceiling_addr)
693 ;
694
695 /* If we're looking for newlines, cache the fact that
696 the region from after the cursor to start is free of them. */
697 if (target == '\n' && newline_cache)
698 know_region_cache (current_buffer, newline_cache,
699 start_byte + cursor - base,
700 start_byte + scan_start - base);
701
702 /* Did we find the target character? */
703 if (cursor >= ceiling_addr)
704 {
705 if (++count >= 0)
706 {
707 immediate_quit = 0;
708 return BYTE_TO_CHAR (start_byte + cursor - base);
709 }
710 cursor--;
711 }
712 }
713
714 start = BYTE_TO_CHAR (start_byte + cursor - base);
715 }
716 }
717
718 immediate_quit = 0;
719 if (shortage != 0)
720 *shortage = count * direction;
721 return start;
722 }
723 \f
724 /* Search for COUNT instances of a line boundary, which means either a
725 newline or (if selective display enabled) a carriage return.
726 Start at START. If COUNT is negative, search backwards.
727
728 We report the resulting position by calling TEMP_SET_PT_BOTH.
729
730 If we find COUNT instances. we position after (always after,
731 even if scanning backwards) the COUNTth match, and return 0.
732
733 If we don't find COUNT instances before reaching the end of the
734 buffer (or the beginning, if scanning backwards), we return
735 the number of line boundaries left unfound, and position at
736 the limit we bumped up against.
737
738 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
739 except in special cases. */
740
741 int
742 scan_newline (start, start_byte, limit, limit_byte, count, allow_quit)
743 int start, start_byte;
744 int limit, limit_byte;
745 register int count;
746 int allow_quit;
747 {
748 int direction = ((count > 0) ? 1 : -1);
749
750 register unsigned char *cursor;
751 unsigned char *base;
752
753 register int ceiling;
754 register unsigned char *ceiling_addr;
755
756 int old_immediate_quit = immediate_quit;
757
758 /* If we are not in selective display mode,
759 check only for newlines. */
760 int selective_display = (!NILP (current_buffer->selective_display)
761 && !INTEGERP (current_buffer->selective_display));
762
763 /* The code that follows is like scan_buffer
764 but checks for either newline or carriage return. */
765
766 if (allow_quit)
767 immediate_quit++;
768
769 start_byte = CHAR_TO_BYTE (start);
770
771 if (count > 0)
772 {
773 while (start_byte < limit_byte)
774 {
775 ceiling = BUFFER_CEILING_OF (start_byte);
776 ceiling = min (limit_byte - 1, ceiling);
777 ceiling_addr = BYTE_POS_ADDR (ceiling) + 1;
778 base = (cursor = BYTE_POS_ADDR (start_byte));
779 while (1)
780 {
781 while (*cursor != '\n' && ++cursor != ceiling_addr)
782 ;
783
784 if (cursor != ceiling_addr)
785 {
786 if (--count == 0)
787 {
788 immediate_quit = old_immediate_quit;
789 start_byte = start_byte + cursor - base + 1;
790 start = BYTE_TO_CHAR (start_byte);
791 TEMP_SET_PT_BOTH (start, start_byte);
792 return 0;
793 }
794 else
795 if (++cursor == ceiling_addr)
796 break;
797 }
798 else
799 break;
800 }
801 start_byte += cursor - base;
802 }
803 }
804 else
805 {
806 while (start_byte > limit_byte)
807 {
808 ceiling = BUFFER_FLOOR_OF (start_byte - 1);
809 ceiling = max (limit_byte, ceiling);
810 ceiling_addr = BYTE_POS_ADDR (ceiling) - 1;
811 base = (cursor = BYTE_POS_ADDR (start_byte - 1) + 1);
812 while (1)
813 {
814 while (--cursor != ceiling_addr && *cursor != '\n')
815 ;
816
817 if (cursor != ceiling_addr)
818 {
819 if (++count == 0)
820 {
821 immediate_quit = old_immediate_quit;
822 /* Return the position AFTER the match we found. */
823 start_byte = start_byte + cursor - base + 1;
824 start = BYTE_TO_CHAR (start_byte);
825 TEMP_SET_PT_BOTH (start, start_byte);
826 return 0;
827 }
828 }
829 else
830 break;
831 }
832 /* Here we add 1 to compensate for the last decrement
833 of CURSOR, which took it past the valid range. */
834 start_byte += cursor - base + 1;
835 }
836 }
837
838 TEMP_SET_PT_BOTH (limit, limit_byte);
839 immediate_quit = old_immediate_quit;
840
841 return count * direction;
842 }
843
844 int
845 find_next_newline_no_quit (from, cnt)
846 register int from, cnt;
847 {
848 return scan_buffer ('\n', from, 0, cnt, (int *) 0, 0);
849 }
850
851 /* Like find_next_newline, but returns position before the newline,
852 not after, and only search up to TO. This isn't just
853 find_next_newline (...)-1, because you might hit TO. */
854
855 int
856 find_before_next_newline (from, to, cnt)
857 int from, to, cnt;
858 {
859 int shortage;
860 int pos = scan_buffer ('\n', from, to, cnt, &shortage, 1);
861
862 if (shortage == 0)
863 pos--;
864
865 return pos;
866 }
867 \f
868 /* Subroutines of Lisp buffer search functions. */
869
870 static Lisp_Object
871 search_command (string, bound, noerror, count, direction, RE, posix)
872 Lisp_Object string, bound, noerror, count;
873 int direction;
874 int RE;
875 int posix;
876 {
877 register int np;
878 int lim, lim_byte;
879 int n = direction;
880
881 if (!NILP (count))
882 {
883 CHECK_NUMBER (count, 3);
884 n *= XINT (count);
885 }
886
887 CHECK_STRING (string, 0);
888 if (NILP (bound))
889 {
890 if (n > 0)
891 lim = ZV, lim_byte = ZV_BYTE;
892 else
893 lim = BEGV, lim_byte = BEGV_BYTE;
894 }
895 else
896 {
897 CHECK_NUMBER_COERCE_MARKER (bound, 1);
898 lim = XINT (bound);
899 if (n > 0 ? lim < PT : lim > PT)
900 error ("Invalid search bound (wrong side of point)");
901 if (lim > ZV)
902 lim = ZV, lim_byte = ZV_BYTE;
903 else if (lim < BEGV)
904 lim = BEGV, lim_byte = BEGV_BYTE;
905 else
906 lim_byte = CHAR_TO_BYTE (lim);
907 }
908
909 np = search_buffer (string, PT, PT_BYTE, lim, lim_byte, n, RE,
910 (!NILP (current_buffer->case_fold_search)
911 ? current_buffer->case_canon_table
912 : Qnil),
913 (!NILP (current_buffer->case_fold_search)
914 ? current_buffer->case_eqv_table
915 : Qnil),
916 posix);
917 if (np <= 0)
918 {
919 if (NILP (noerror))
920 return signal_failure (string);
921 if (!EQ (noerror, Qt))
922 {
923 if (lim < BEGV || lim > ZV)
924 abort ();
925 SET_PT_BOTH (lim, lim_byte);
926 return Qnil;
927 #if 0 /* This would be clean, but maybe programs depend on
928 a value of nil here. */
929 np = lim;
930 #endif
931 }
932 else
933 return Qnil;
934 }
935
936 if (np < BEGV || np > ZV)
937 abort ();
938
939 SET_PT (np);
940
941 return make_number (np);
942 }
943 \f
944 /* Return 1 if REGEXP it matches just one constant string. */
945
946 static int
947 trivial_regexp_p (regexp)
948 Lisp_Object regexp;
949 {
950 int len = STRING_BYTES (XSTRING (regexp));
951 unsigned char *s = XSTRING (regexp)->data;
952 while (--len >= 0)
953 {
954 switch (*s++)
955 {
956 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
957 return 0;
958 case '\\':
959 if (--len < 0)
960 return 0;
961 switch (*s++)
962 {
963 case '|': case '(': case ')': case '`': case '\'': case 'b':
964 case 'B': case '<': case '>': case 'w': case 'W': case 's':
965 case 'S': case '=':
966 case 'c': case 'C': /* for categoryspec and notcategoryspec */
967 case '1': case '2': case '3': case '4': case '5':
968 case '6': case '7': case '8': case '9':
969 return 0;
970 }
971 }
972 }
973 return 1;
974 }
975
976 /* Search for the n'th occurrence of STRING in the current buffer,
977 starting at position POS and stopping at position LIM,
978 treating STRING as a literal string if RE is false or as
979 a regular expression if RE is true.
980
981 If N is positive, searching is forward and LIM must be greater than POS.
982 If N is negative, searching is backward and LIM must be less than POS.
983
984 Returns -x if x occurrences remain to be found (x > 0),
985 or else the position at the beginning of the Nth occurrence
986 (if searching backward) or the end (if searching forward).
987
988 POSIX is nonzero if we want full backtracking (POSIX style)
989 for this pattern. 0 means backtrack only enough to get a valid match. */
990
991 #define TRANSLATE(out, trt, d) \
992 do \
993 { \
994 if (! NILP (trt)) \
995 { \
996 Lisp_Object temp; \
997 temp = Faref (trt, make_number (d)); \
998 if (INTEGERP (temp)) \
999 out = XINT (temp); \
1000 else \
1001 out = d; \
1002 } \
1003 else \
1004 out = d; \
1005 } \
1006 while (0)
1007
1008 static int
1009 search_buffer (string, pos, pos_byte, lim, lim_byte, n,
1010 RE, trt, inverse_trt, posix)
1011 Lisp_Object string;
1012 int pos;
1013 int pos_byte;
1014 int lim;
1015 int lim_byte;
1016 int n;
1017 int RE;
1018 Lisp_Object trt;
1019 Lisp_Object inverse_trt;
1020 int posix;
1021 {
1022 int len = XSTRING (string)->size;
1023 int len_byte = STRING_BYTES (XSTRING (string));
1024 register int i;
1025
1026 if (running_asynch_code)
1027 save_search_regs ();
1028
1029 /* Searching 0 times means don't move. */
1030 /* Null string is found at starting position. */
1031 if (len == 0 || n == 0)
1032 {
1033 set_search_regs (pos_byte, 0);
1034 return pos;
1035 }
1036
1037 if (RE && !trivial_regexp_p (string))
1038 {
1039 unsigned char *p1, *p2;
1040 int s1, s2;
1041 struct re_pattern_buffer *bufp;
1042
1043 bufp = compile_pattern (string, &search_regs, trt, posix,
1044 !NILP (current_buffer->enable_multibyte_characters));
1045
1046 immediate_quit = 1; /* Quit immediately if user types ^G,
1047 because letting this function finish
1048 can take too long. */
1049 QUIT; /* Do a pending quit right away,
1050 to avoid paradoxical behavior */
1051 /* Get pointers and sizes of the two strings
1052 that make up the visible portion of the buffer. */
1053
1054 p1 = BEGV_ADDR;
1055 s1 = GPT_BYTE - BEGV_BYTE;
1056 p2 = GAP_END_ADDR;
1057 s2 = ZV_BYTE - GPT_BYTE;
1058 if (s1 < 0)
1059 {
1060 p2 = p1;
1061 s2 = ZV_BYTE - BEGV_BYTE;
1062 s1 = 0;
1063 }
1064 if (s2 < 0)
1065 {
1066 s1 = ZV_BYTE - BEGV_BYTE;
1067 s2 = 0;
1068 }
1069 re_match_object = Qnil;
1070
1071 while (n < 0)
1072 {
1073 int val;
1074 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1075 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1076 &search_regs,
1077 /* Don't allow match past current point */
1078 pos_byte - BEGV_BYTE);
1079 if (val == -2)
1080 {
1081 matcher_overflow ();
1082 }
1083 if (val >= 0)
1084 {
1085 pos_byte = search_regs.start[0] + BEGV_BYTE;
1086 for (i = 0; i < search_regs.num_regs; i++)
1087 if (search_regs.start[i] >= 0)
1088 {
1089 search_regs.start[i]
1090 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1091 search_regs.end[i]
1092 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1093 }
1094 XSETBUFFER (last_thing_searched, current_buffer);
1095 /* Set pos to the new position. */
1096 pos = search_regs.start[0];
1097 }
1098 else
1099 {
1100 immediate_quit = 0;
1101 return (n);
1102 }
1103 n++;
1104 }
1105 while (n > 0)
1106 {
1107 int val;
1108 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1109 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1110 &search_regs,
1111 lim_byte - BEGV_BYTE);
1112 if (val == -2)
1113 {
1114 matcher_overflow ();
1115 }
1116 if (val >= 0)
1117 {
1118 pos_byte = search_regs.end[0] + BEGV_BYTE;
1119 for (i = 0; i < search_regs.num_regs; i++)
1120 if (search_regs.start[i] >= 0)
1121 {
1122 search_regs.start[i]
1123 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1124 search_regs.end[i]
1125 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1126 }
1127 XSETBUFFER (last_thing_searched, current_buffer);
1128 pos = search_regs.end[0];
1129 }
1130 else
1131 {
1132 immediate_quit = 0;
1133 return (0 - n);
1134 }
1135 n--;
1136 }
1137 immediate_quit = 0;
1138 return (pos);
1139 }
1140 else /* non-RE case */
1141 {
1142 unsigned char *raw_pattern, *pat;
1143 int raw_pattern_size;
1144 int raw_pattern_size_byte;
1145 unsigned char *patbuf;
1146 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
1147 unsigned char *base_pat = XSTRING (string)->data;
1148 int charset_base = -1;
1149 int boyer_moore_ok = 1;
1150
1151 /* MULTIBYTE says whether the text to be searched is multibyte.
1152 We must convert PATTERN to match that, or we will not really
1153 find things right. */
1154
1155 if (multibyte == STRING_MULTIBYTE (string))
1156 {
1157 raw_pattern = (unsigned char *) XSTRING (string)->data;
1158 raw_pattern_size = XSTRING (string)->size;
1159 raw_pattern_size_byte = STRING_BYTES (XSTRING (string));
1160 }
1161 else if (multibyte)
1162 {
1163 raw_pattern_size = XSTRING (string)->size;
1164 raw_pattern_size_byte
1165 = count_size_as_multibyte (XSTRING (string)->data,
1166 raw_pattern_size);
1167 raw_pattern = (unsigned char *) alloca (raw_pattern_size_byte + 1);
1168 copy_text (XSTRING (string)->data, raw_pattern,
1169 XSTRING (string)->size, 0, 1);
1170 }
1171 else
1172 {
1173 /* Converting multibyte to single-byte.
1174
1175 ??? Perhaps this conversion should be done in a special way
1176 by subtracting nonascii-insert-offset from each non-ASCII char,
1177 so that only the multibyte chars which really correspond to
1178 the chosen single-byte character set can possibly match. */
1179 raw_pattern_size = XSTRING (string)->size;
1180 raw_pattern_size_byte = XSTRING (string)->size;
1181 raw_pattern = (unsigned char *) alloca (raw_pattern_size + 1);
1182 copy_text (XSTRING (string)->data, raw_pattern,
1183 STRING_BYTES (XSTRING (string)), 1, 0);
1184 }
1185
1186 /* Copy and optionally translate the pattern. */
1187 len = raw_pattern_size;
1188 len_byte = raw_pattern_size_byte;
1189 patbuf = (unsigned char *) alloca (len_byte);
1190 pat = patbuf;
1191 base_pat = raw_pattern;
1192 if (multibyte)
1193 {
1194 while (--len >= 0)
1195 {
1196 unsigned char str[MAX_MULTIBYTE_LENGTH];
1197 int c, translated, inverse;
1198 int in_charlen, charlen;
1199
1200 /* If we got here and the RE flag is set, it's because we're
1201 dealing with a regexp known to be trivial, so the backslash
1202 just quotes the next character. */
1203 if (RE && *base_pat == '\\')
1204 {
1205 len--;
1206 len_byte--;
1207 base_pat++;
1208 }
1209
1210 c = STRING_CHAR_AND_LENGTH (base_pat, len_byte, in_charlen);
1211
1212 /* Translate the character, if requested. */
1213 TRANSLATE (translated, trt, c);
1214 /* If translation changed the byte-length, go back
1215 to the original character. */
1216 charlen = CHAR_STRING (translated, str);
1217 if (in_charlen != charlen)
1218 {
1219 translated = c;
1220 charlen = CHAR_STRING (c, str);
1221 }
1222
1223 /* If we are searching for something strange,
1224 an invalid multibyte code, don't use boyer-moore. */
1225 if (! ASCII_BYTE_P (translated)
1226 && (charlen == 1 /* 8bit code */
1227 || charlen != in_charlen /* invalid multibyte code */
1228 ))
1229 boyer_moore_ok = 0;
1230
1231 TRANSLATE (inverse, inverse_trt, c);
1232
1233 /* Did this char actually get translated?
1234 Would any other char get translated into it? */
1235 if (translated != c || inverse != c)
1236 {
1237 /* Keep track of which character set row
1238 contains the characters that need translation. */
1239 int charset_base_code = c & ~CHAR_FIELD3_MASK;
1240 if (charset_base == -1)
1241 charset_base = charset_base_code;
1242 else if (charset_base != charset_base_code)
1243 /* If two different rows appear, needing translation,
1244 then we cannot use boyer_moore search. */
1245 boyer_moore_ok = 0;
1246 }
1247
1248 /* Store this character into the translated pattern. */
1249 bcopy (str, pat, charlen);
1250 pat += charlen;
1251 base_pat += in_charlen;
1252 len_byte -= in_charlen;
1253 }
1254 }
1255 else
1256 {
1257 /* Unibyte buffer. */
1258 charset_base = 0;
1259 while (--len >= 0)
1260 {
1261 int c, translated;
1262
1263 /* If we got here and the RE flag is set, it's because we're
1264 dealing with a regexp known to be trivial, so the backslash
1265 just quotes the next character. */
1266 if (RE && *base_pat == '\\')
1267 {
1268 len--;
1269 base_pat++;
1270 }
1271 c = *base_pat++;
1272 TRANSLATE (translated, trt, c);
1273 *pat++ = translated;
1274 }
1275 }
1276
1277 len_byte = pat - patbuf;
1278 len = raw_pattern_size;
1279 pat = base_pat = patbuf;
1280
1281 if (boyer_moore_ok)
1282 return boyer_moore (n, pat, len, len_byte, trt, inverse_trt,
1283 pos, pos_byte, lim, lim_byte,
1284 charset_base);
1285 else
1286 return simple_search (n, pat, len, len_byte, trt,
1287 pos, pos_byte, lim, lim_byte);
1288 }
1289 }
1290 \f
1291 /* Do a simple string search N times for the string PAT,
1292 whose length is LEN/LEN_BYTE,
1293 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1294 TRT is the translation table.
1295
1296 Return the character position where the match is found.
1297 Otherwise, if M matches remained to be found, return -M.
1298
1299 This kind of search works regardless of what is in PAT and
1300 regardless of what is in TRT. It is used in cases where
1301 boyer_moore cannot work. */
1302
1303 static int
1304 simple_search (n, pat, len, len_byte, trt, pos, pos_byte, lim, lim_byte)
1305 int n;
1306 unsigned char *pat;
1307 int len, len_byte;
1308 Lisp_Object trt;
1309 int pos, pos_byte;
1310 int lim, lim_byte;
1311 {
1312 int multibyte = ! NILP (current_buffer->enable_multibyte_characters);
1313 int forward = n > 0;
1314
1315 if (lim > pos && multibyte)
1316 while (n > 0)
1317 {
1318 while (1)
1319 {
1320 /* Try matching at position POS. */
1321 int this_pos = pos;
1322 int this_pos_byte = pos_byte;
1323 int this_len = len;
1324 int this_len_byte = len_byte;
1325 unsigned char *p = pat;
1326 if (pos + len > lim)
1327 goto stop;
1328
1329 while (this_len > 0)
1330 {
1331 int charlen, buf_charlen;
1332 int pat_ch, buf_ch;
1333
1334 pat_ch = STRING_CHAR_AND_LENGTH (p, this_len_byte, charlen);
1335 buf_ch = STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte),
1336 ZV_BYTE - this_pos_byte,
1337 buf_charlen);
1338 TRANSLATE (buf_ch, trt, buf_ch);
1339
1340 if (buf_ch != pat_ch)
1341 break;
1342
1343 this_len_byte -= charlen;
1344 this_len--;
1345 p += charlen;
1346
1347 this_pos_byte += buf_charlen;
1348 this_pos++;
1349 }
1350
1351 if (this_len == 0)
1352 {
1353 pos += len;
1354 pos_byte += len_byte;
1355 break;
1356 }
1357
1358 INC_BOTH (pos, pos_byte);
1359 }
1360
1361 n--;
1362 }
1363 else if (lim > pos)
1364 while (n > 0)
1365 {
1366 while (1)
1367 {
1368 /* Try matching at position POS. */
1369 int this_pos = pos;
1370 int this_len = len;
1371 unsigned char *p = pat;
1372
1373 if (pos + len > lim)
1374 goto stop;
1375
1376 while (this_len > 0)
1377 {
1378 int pat_ch = *p++;
1379 int buf_ch = FETCH_BYTE (this_pos);
1380 TRANSLATE (buf_ch, trt, buf_ch);
1381
1382 if (buf_ch != pat_ch)
1383 break;
1384
1385 this_len--;
1386 this_pos++;
1387 }
1388
1389 if (this_len == 0)
1390 {
1391 pos += len;
1392 break;
1393 }
1394
1395 pos++;
1396 }
1397
1398 n--;
1399 }
1400 /* Backwards search. */
1401 else if (lim < pos && multibyte)
1402 while (n < 0)
1403 {
1404 while (1)
1405 {
1406 /* Try matching at position POS. */
1407 int this_pos = pos - len;
1408 int this_pos_byte = pos_byte - len_byte;
1409 int this_len = len;
1410 int this_len_byte = len_byte;
1411 unsigned char *p = pat;
1412
1413 if (pos - len < lim)
1414 goto stop;
1415
1416 while (this_len > 0)
1417 {
1418 int charlen, buf_charlen;
1419 int pat_ch, buf_ch;
1420
1421 pat_ch = STRING_CHAR_AND_LENGTH (p, this_len_byte, charlen);
1422 buf_ch = STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte),
1423 ZV_BYTE - this_pos_byte,
1424 buf_charlen);
1425 TRANSLATE (buf_ch, trt, buf_ch);
1426
1427 if (buf_ch != pat_ch)
1428 break;
1429
1430 this_len_byte -= charlen;
1431 this_len--;
1432 p += charlen;
1433 this_pos_byte += buf_charlen;
1434 this_pos++;
1435 }
1436
1437 if (this_len == 0)
1438 {
1439 pos -= len;
1440 pos_byte -= len_byte;
1441 break;
1442 }
1443
1444 DEC_BOTH (pos, pos_byte);
1445 }
1446
1447 n++;
1448 }
1449 else if (lim < pos)
1450 while (n < 0)
1451 {
1452 while (1)
1453 {
1454 /* Try matching at position POS. */
1455 int this_pos = pos - len;
1456 int this_len = len;
1457 unsigned char *p = pat;
1458
1459 if (pos - len < lim)
1460 goto stop;
1461
1462 while (this_len > 0)
1463 {
1464 int pat_ch = *p++;
1465 int buf_ch = FETCH_BYTE (this_pos);
1466 TRANSLATE (buf_ch, trt, buf_ch);
1467
1468 if (buf_ch != pat_ch)
1469 break;
1470 this_len--;
1471 this_pos++;
1472 }
1473
1474 if (this_len == 0)
1475 {
1476 pos -= len;
1477 break;
1478 }
1479
1480 pos--;
1481 }
1482
1483 n++;
1484 }
1485
1486 stop:
1487 if (n == 0)
1488 {
1489 if (forward)
1490 set_search_regs ((multibyte ? pos_byte : pos) - len_byte, len_byte);
1491 else
1492 set_search_regs (multibyte ? pos_byte : pos, len_byte);
1493
1494 return pos;
1495 }
1496 else if (n > 0)
1497 return -n;
1498 else
1499 return n;
1500 }
1501 \f
1502 /* Do Boyer-Moore search N times for the string PAT,
1503 whose length is LEN/LEN_BYTE,
1504 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1505 DIRECTION says which direction we search in.
1506 TRT and INVERSE_TRT are translation tables.
1507
1508 This kind of search works if all the characters in PAT that have
1509 nontrivial translation are the same aside from the last byte. This
1510 makes it possible to translate just the last byte of a character,
1511 and do so after just a simple test of the context.
1512
1513 If that criterion is not satisfied, do not call this function. */
1514
1515 static int
1516 boyer_moore (n, base_pat, len, len_byte, trt, inverse_trt,
1517 pos, pos_byte, lim, lim_byte, charset_base)
1518 int n;
1519 unsigned char *base_pat;
1520 int len, len_byte;
1521 Lisp_Object trt;
1522 Lisp_Object inverse_trt;
1523 int pos, pos_byte;
1524 int lim, lim_byte;
1525 int charset_base;
1526 {
1527 int direction = ((n > 0) ? 1 : -1);
1528 register int dirlen;
1529 int infinity, limit, stride_for_teases = 0;
1530 register int *BM_tab;
1531 int *BM_tab_base;
1532 register unsigned char *cursor, *p_limit;
1533 register int i, j;
1534 unsigned char *pat, *pat_end;
1535 int multibyte = ! NILP (current_buffer->enable_multibyte_characters);
1536
1537 unsigned char simple_translate[0400];
1538 int translate_prev_byte = 0;
1539 int translate_anteprev_byte = 0;
1540
1541 #ifdef C_ALLOCA
1542 int BM_tab_space[0400];
1543 BM_tab = &BM_tab_space[0];
1544 #else
1545 BM_tab = (int *) alloca (0400 * sizeof (int));
1546 #endif
1547 /* The general approach is that we are going to maintain that we know */
1548 /* the first (closest to the present position, in whatever direction */
1549 /* we're searching) character that could possibly be the last */
1550 /* (furthest from present position) character of a valid match. We */
1551 /* advance the state of our knowledge by looking at that character */
1552 /* and seeing whether it indeed matches the last character of the */
1553 /* pattern. If it does, we take a closer look. If it does not, we */
1554 /* move our pointer (to putative last characters) as far as is */
1555 /* logically possible. This amount of movement, which I call a */
1556 /* stride, will be the length of the pattern if the actual character */
1557 /* appears nowhere in the pattern, otherwise it will be the distance */
1558 /* from the last occurrence of that character to the end of the */
1559 /* pattern. */
1560 /* As a coding trick, an enormous stride is coded into the table for */
1561 /* characters that match the last character. This allows use of only */
1562 /* a single test, a test for having gone past the end of the */
1563 /* permissible match region, to test for both possible matches (when */
1564 /* the stride goes past the end immediately) and failure to */
1565 /* match (where you get nudged past the end one stride at a time). */
1566
1567 /* Here we make a "mickey mouse" BM table. The stride of the search */
1568 /* is determined only by the last character of the putative match. */
1569 /* If that character does not match, we will stride the proper */
1570 /* distance to propose a match that superimposes it on the last */
1571 /* instance of a character that matches it (per trt), or misses */
1572 /* it entirely if there is none. */
1573
1574 dirlen = len_byte * direction;
1575 infinity = dirlen - (lim_byte + pos_byte + len_byte + len_byte) * direction;
1576
1577 /* Record position after the end of the pattern. */
1578 pat_end = base_pat + len_byte;
1579 /* BASE_PAT points to a character that we start scanning from.
1580 It is the first character in a forward search,
1581 the last character in a backward search. */
1582 if (direction < 0)
1583 base_pat = pat_end - 1;
1584
1585 BM_tab_base = BM_tab;
1586 BM_tab += 0400;
1587 j = dirlen; /* to get it in a register */
1588 /* A character that does not appear in the pattern induces a */
1589 /* stride equal to the pattern length. */
1590 while (BM_tab_base != BM_tab)
1591 {
1592 *--BM_tab = j;
1593 *--BM_tab = j;
1594 *--BM_tab = j;
1595 *--BM_tab = j;
1596 }
1597
1598 /* We use this for translation, instead of TRT itself.
1599 We fill this in to handle the characters that actually
1600 occur in the pattern. Others don't matter anyway! */
1601 bzero (simple_translate, sizeof simple_translate);
1602 for (i = 0; i < 0400; i++)
1603 simple_translate[i] = i;
1604
1605 i = 0;
1606 while (i != infinity)
1607 {
1608 unsigned char *ptr = base_pat + i;
1609 i += direction;
1610 if (i == dirlen)
1611 i = infinity;
1612 if (! NILP (trt))
1613 {
1614 int ch;
1615 int untranslated;
1616 int this_translated = 1;
1617
1618 if (multibyte
1619 /* Is *PTR the last byte of a character? */
1620 && (pat_end - ptr == 1 || CHAR_HEAD_P (ptr[1])))
1621 {
1622 unsigned char *charstart = ptr;
1623 while (! CHAR_HEAD_P (*charstart))
1624 charstart--;
1625 untranslated = STRING_CHAR (charstart, ptr - charstart + 1);
1626 if (charset_base == (untranslated & ~CHAR_FIELD3_MASK))
1627 {
1628 TRANSLATE (ch, trt, untranslated);
1629 if (! CHAR_HEAD_P (*ptr))
1630 {
1631 translate_prev_byte = ptr[-1];
1632 if (! CHAR_HEAD_P (translate_prev_byte))
1633 translate_anteprev_byte = ptr[-2];
1634 }
1635 }
1636 else
1637 {
1638 this_translated = 0;
1639 ch = *ptr;
1640 }
1641 }
1642 else if (!multibyte)
1643 TRANSLATE (ch, trt, *ptr);
1644 else
1645 {
1646 ch = *ptr;
1647 this_translated = 0;
1648 }
1649
1650 if (ch > 0400)
1651 j = ((unsigned char) ch) | 0200;
1652 else
1653 j = (unsigned char) ch;
1654
1655 if (i == infinity)
1656 stride_for_teases = BM_tab[j];
1657
1658 BM_tab[j] = dirlen - i;
1659 /* A translation table is accompanied by its inverse -- see */
1660 /* comment following downcase_table for details */
1661 if (this_translated)
1662 {
1663 int starting_ch = ch;
1664 int starting_j = j;
1665 while (1)
1666 {
1667 TRANSLATE (ch, inverse_trt, ch);
1668 if (ch > 0400)
1669 j = ((unsigned char) ch) | 0200;
1670 else
1671 j = (unsigned char) ch;
1672
1673 /* For all the characters that map into CH,
1674 set up simple_translate to map the last byte
1675 into STARTING_J. */
1676 simple_translate[j] = starting_j;
1677 if (ch == starting_ch)
1678 break;
1679 BM_tab[j] = dirlen - i;
1680 }
1681 }
1682 }
1683 else
1684 {
1685 j = *ptr;
1686
1687 if (i == infinity)
1688 stride_for_teases = BM_tab[j];
1689 BM_tab[j] = dirlen - i;
1690 }
1691 /* stride_for_teases tells how much to stride if we get a */
1692 /* match on the far character but are subsequently */
1693 /* disappointed, by recording what the stride would have been */
1694 /* for that character if the last character had been */
1695 /* different. */
1696 }
1697 infinity = dirlen - infinity;
1698 pos_byte += dirlen - ((direction > 0) ? direction : 0);
1699 /* loop invariant - POS_BYTE points at where last char (first
1700 char if reverse) of pattern would align in a possible match. */
1701 while (n != 0)
1702 {
1703 int tail_end;
1704 unsigned char *tail_end_ptr;
1705
1706 /* It's been reported that some (broken) compiler thinks that
1707 Boolean expressions in an arithmetic context are unsigned.
1708 Using an explicit ?1:0 prevents this. */
1709 if ((lim_byte - pos_byte - ((direction > 0) ? 1 : 0)) * direction
1710 < 0)
1711 return (n * (0 - direction));
1712 /* First we do the part we can by pointers (maybe nothing) */
1713 QUIT;
1714 pat = base_pat;
1715 limit = pos_byte - dirlen + direction;
1716 if (direction > 0)
1717 {
1718 limit = BUFFER_CEILING_OF (limit);
1719 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1720 can take on without hitting edge of buffer or the gap. */
1721 limit = min (limit, pos_byte + 20000);
1722 limit = min (limit, lim_byte - 1);
1723 }
1724 else
1725 {
1726 limit = BUFFER_FLOOR_OF (limit);
1727 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1728 can take on without hitting edge of buffer or the gap. */
1729 limit = max (limit, pos_byte - 20000);
1730 limit = max (limit, lim_byte);
1731 }
1732 tail_end = BUFFER_CEILING_OF (pos_byte) + 1;
1733 tail_end_ptr = BYTE_POS_ADDR (tail_end);
1734
1735 if ((limit - pos_byte) * direction > 20)
1736 {
1737 unsigned char *p2;
1738
1739 p_limit = BYTE_POS_ADDR (limit);
1740 p2 = (cursor = BYTE_POS_ADDR (pos_byte));
1741 /* In this loop, pos + cursor - p2 is the surrogate for pos */
1742 while (1) /* use one cursor setting as long as i can */
1743 {
1744 if (direction > 0) /* worth duplicating */
1745 {
1746 /* Use signed comparison if appropriate
1747 to make cursor+infinity sure to be > p_limit.
1748 Assuming that the buffer lies in a range of addresses
1749 that are all "positive" (as ints) or all "negative",
1750 either kind of comparison will work as long
1751 as we don't step by infinity. So pick the kind
1752 that works when we do step by infinity. */
1753 if ((EMACS_INT) (p_limit + infinity) > (EMACS_INT) p_limit)
1754 while ((EMACS_INT) cursor <= (EMACS_INT) p_limit)
1755 cursor += BM_tab[*cursor];
1756 else
1757 while ((EMACS_UINT) cursor <= (EMACS_UINT) p_limit)
1758 cursor += BM_tab[*cursor];
1759 }
1760 else
1761 {
1762 if ((EMACS_INT) (p_limit + infinity) < (EMACS_INT) p_limit)
1763 while ((EMACS_INT) cursor >= (EMACS_INT) p_limit)
1764 cursor += BM_tab[*cursor];
1765 else
1766 while ((EMACS_UINT) cursor >= (EMACS_UINT) p_limit)
1767 cursor += BM_tab[*cursor];
1768 }
1769 /* If you are here, cursor is beyond the end of the searched region. */
1770 /* This can happen if you match on the far character of the pattern, */
1771 /* because the "stride" of that character is infinity, a number able */
1772 /* to throw you well beyond the end of the search. It can also */
1773 /* happen if you fail to match within the permitted region and would */
1774 /* otherwise try a character beyond that region */
1775 if ((cursor - p_limit) * direction <= len_byte)
1776 break; /* a small overrun is genuine */
1777 cursor -= infinity; /* large overrun = hit */
1778 i = dirlen - direction;
1779 if (! NILP (trt))
1780 {
1781 while ((i -= direction) + direction != 0)
1782 {
1783 int ch;
1784 cursor -= direction;
1785 /* Translate only the last byte of a character. */
1786 if (! multibyte
1787 || ((cursor == tail_end_ptr
1788 || CHAR_HEAD_P (cursor[1]))
1789 && (CHAR_HEAD_P (cursor[0])
1790 || (translate_prev_byte == cursor[-1]
1791 && (CHAR_HEAD_P (translate_prev_byte)
1792 || translate_anteprev_byte == cursor[-2])))))
1793 ch = simple_translate[*cursor];
1794 else
1795 ch = *cursor;
1796 if (pat[i] != ch)
1797 break;
1798 }
1799 }
1800 else
1801 {
1802 while ((i -= direction) + direction != 0)
1803 {
1804 cursor -= direction;
1805 if (pat[i] != *cursor)
1806 break;
1807 }
1808 }
1809 cursor += dirlen - i - direction; /* fix cursor */
1810 if (i + direction == 0)
1811 {
1812 int position;
1813
1814 cursor -= direction;
1815
1816 position = pos_byte + cursor - p2 + ((direction > 0)
1817 ? 1 - len_byte : 0);
1818 set_search_regs (position, len_byte);
1819
1820 if ((n -= direction) != 0)
1821 cursor += dirlen; /* to resume search */
1822 else
1823 return ((direction > 0)
1824 ? search_regs.end[0] : search_regs.start[0]);
1825 }
1826 else
1827 cursor += stride_for_teases; /* <sigh> we lose - */
1828 }
1829 pos_byte += cursor - p2;
1830 }
1831 else
1832 /* Now we'll pick up a clump that has to be done the hard */
1833 /* way because it covers a discontinuity */
1834 {
1835 limit = ((direction > 0)
1836 ? BUFFER_CEILING_OF (pos_byte - dirlen + 1)
1837 : BUFFER_FLOOR_OF (pos_byte - dirlen - 1));
1838 limit = ((direction > 0)
1839 ? min (limit + len_byte, lim_byte - 1)
1840 : max (limit - len_byte, lim_byte));
1841 /* LIMIT is now the last value POS_BYTE can have
1842 and still be valid for a possible match. */
1843 while (1)
1844 {
1845 /* This loop can be coded for space rather than */
1846 /* speed because it will usually run only once. */
1847 /* (the reach is at most len + 21, and typically */
1848 /* does not exceed len) */
1849 while ((limit - pos_byte) * direction >= 0)
1850 pos_byte += BM_tab[FETCH_BYTE (pos_byte)];
1851 /* now run the same tests to distinguish going off the */
1852 /* end, a match or a phony match. */
1853 if ((pos_byte - limit) * direction <= len_byte)
1854 break; /* ran off the end */
1855 /* Found what might be a match.
1856 Set POS_BYTE back to last (first if reverse) pos. */
1857 pos_byte -= infinity;
1858 i = dirlen - direction;
1859 while ((i -= direction) + direction != 0)
1860 {
1861 int ch;
1862 unsigned char *ptr;
1863 pos_byte -= direction;
1864 ptr = BYTE_POS_ADDR (pos_byte);
1865 /* Translate only the last byte of a character. */
1866 if (! multibyte
1867 || ((ptr == tail_end_ptr
1868 || CHAR_HEAD_P (ptr[1]))
1869 && (CHAR_HEAD_P (ptr[0])
1870 || (translate_prev_byte == ptr[-1]
1871 && (CHAR_HEAD_P (translate_prev_byte)
1872 || translate_anteprev_byte == ptr[-2])))))
1873 ch = simple_translate[*ptr];
1874 else
1875 ch = *ptr;
1876 if (pat[i] != ch)
1877 break;
1878 }
1879 /* Above loop has moved POS_BYTE part or all the way
1880 back to the first pos (last pos if reverse).
1881 Set it once again at the last (first if reverse) char. */
1882 pos_byte += dirlen - i- direction;
1883 if (i + direction == 0)
1884 {
1885 int position;
1886 pos_byte -= direction;
1887
1888 position = pos_byte + ((direction > 0) ? 1 - len_byte : 0);
1889
1890 set_search_regs (position, len_byte);
1891
1892 if ((n -= direction) != 0)
1893 pos_byte += dirlen; /* to resume search */
1894 else
1895 return ((direction > 0)
1896 ? search_regs.end[0] : search_regs.start[0]);
1897 }
1898 else
1899 pos_byte += stride_for_teases;
1900 }
1901 }
1902 /* We have done one clump. Can we continue? */
1903 if ((lim_byte - pos_byte) * direction < 0)
1904 return ((0 - n) * direction);
1905 }
1906 return BYTE_TO_CHAR (pos_byte);
1907 }
1908
1909 /* Record beginning BEG_BYTE and end BEG_BYTE + NBYTES
1910 for the overall match just found in the current buffer.
1911 Also clear out the match data for registers 1 and up. */
1912
1913 static void
1914 set_search_regs (beg_byte, nbytes)
1915 int beg_byte, nbytes;
1916 {
1917 int i;
1918
1919 /* Make sure we have registers in which to store
1920 the match position. */
1921 if (search_regs.num_regs == 0)
1922 {
1923 search_regs.start = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
1924 search_regs.end = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
1925 search_regs.num_regs = 2;
1926 }
1927
1928 /* Clear out the other registers. */
1929 for (i = 1; i < search_regs.num_regs; i++)
1930 {
1931 search_regs.start[i] = -1;
1932 search_regs.end[i] = -1;
1933 }
1934
1935 search_regs.start[0] = BYTE_TO_CHAR (beg_byte);
1936 search_regs.end[0] = BYTE_TO_CHAR (beg_byte + nbytes);
1937 XSETBUFFER (last_thing_searched, current_buffer);
1938 }
1939 \f
1940 /* Given a string of words separated by word delimiters,
1941 compute a regexp that matches those exact words
1942 separated by arbitrary punctuation. */
1943
1944 static Lisp_Object
1945 wordify (string)
1946 Lisp_Object string;
1947 {
1948 register unsigned char *p, *o;
1949 register int i, i_byte, len, punct_count = 0, word_count = 0;
1950 Lisp_Object val;
1951 int prev_c = 0;
1952 int adjust;
1953
1954 CHECK_STRING (string, 0);
1955 p = XSTRING (string)->data;
1956 len = XSTRING (string)->size;
1957
1958 for (i = 0, i_byte = 0; i < len; )
1959 {
1960 int c;
1961
1962 FETCH_STRING_CHAR_ADVANCE (c, string, i, i_byte);
1963
1964 if (SYNTAX (c) != Sword)
1965 {
1966 punct_count++;
1967 if (i > 0 && SYNTAX (prev_c) == Sword)
1968 word_count++;
1969 }
1970
1971 prev_c = c;
1972 }
1973
1974 if (SYNTAX (prev_c) == Sword)
1975 word_count++;
1976 if (!word_count)
1977 return build_string ("");
1978
1979 adjust = - punct_count + 5 * (word_count - 1) + 4;
1980 if (STRING_MULTIBYTE (string))
1981 val = make_uninit_multibyte_string (len + adjust,
1982 STRING_BYTES (XSTRING (string))
1983 + adjust);
1984 else
1985 val = make_uninit_string (len + adjust);
1986
1987 o = XSTRING (val)->data;
1988 *o++ = '\\';
1989 *o++ = 'b';
1990 prev_c = 0;
1991
1992 for (i = 0, i_byte = 0; i < len; )
1993 {
1994 int c;
1995 int i_byte_orig = i_byte;
1996
1997 FETCH_STRING_CHAR_ADVANCE (c, string, i, i_byte);
1998
1999 if (SYNTAX (c) == Sword)
2000 {
2001 bcopy (&XSTRING (string)->data[i_byte_orig], o,
2002 i_byte - i_byte_orig);
2003 o += i_byte - i_byte_orig;
2004 }
2005 else if (i > 0 && SYNTAX (prev_c) == Sword && --word_count)
2006 {
2007 *o++ = '\\';
2008 *o++ = 'W';
2009 *o++ = '\\';
2010 *o++ = 'W';
2011 *o++ = '*';
2012 }
2013
2014 prev_c = c;
2015 }
2016
2017 *o++ = '\\';
2018 *o++ = 'b';
2019
2020 return val;
2021 }
2022 \f
2023 DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
2024 "MSearch backward: ",
2025 "Search backward from point for STRING.\n\
2026 Set point to the beginning of the occurrence found, and return point.\n\
2027 An optional second argument bounds the search; it is a buffer position.\n\
2028 The match found must not extend before that position.\n\
2029 Optional third argument, if t, means if fail just return nil (no error).\n\
2030 If not nil and not t, position at limit of search and return nil.\n\
2031 Optional fourth argument is repeat count--search for successive occurrences.\n\
2032 \n\
2033 Search case-sensitivity is determined by the value of the variable\n\
2034 `case-fold-search', which see.\n\
2035 \n\
2036 See also the functions `match-beginning', `match-end' and `replace-match'.")
2037 (string, bound, noerror, count)
2038 Lisp_Object string, bound, noerror, count;
2039 {
2040 return search_command (string, bound, noerror, count, -1, 0, 0);
2041 }
2042
2043 DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "MSearch: ",
2044 "Search forward from point for STRING.\n\
2045 Set point to the end of the occurrence found, and return point.\n\
2046 An optional second argument bounds the search; it is a buffer position.\n\
2047 The match found must not extend after that position. nil is equivalent\n\
2048 to (point-max).\n\
2049 Optional third argument, if t, means if fail just return nil (no error).\n\
2050 If not nil and not t, move to limit of search and return nil.\n\
2051 Optional fourth argument is repeat count--search for successive occurrences.\n\
2052 \n\
2053 Search case-sensitivity is determined by the value of the variable\n\
2054 `case-fold-search', which see.\n\
2055 \n\
2056 See also the functions `match-beginning', `match-end' and `replace-match'.")
2057 (string, bound, noerror, count)
2058 Lisp_Object string, bound, noerror, count;
2059 {
2060 return search_command (string, bound, noerror, count, 1, 0, 0);
2061 }
2062
2063 DEFUN ("word-search-backward", Fword_search_backward, Sword_search_backward, 1, 4,
2064 "sWord search backward: ",
2065 "Search backward from point for STRING, ignoring differences in punctuation.\n\
2066 Set point to the beginning of the occurrence found, and return point.\n\
2067 An optional second argument bounds the search; it is a buffer position.\n\
2068 The match found must not extend before that position.\n\
2069 Optional third argument, if t, means if fail just return nil (no error).\n\
2070 If not nil and not t, move to limit of search and return nil.\n\
2071 Optional fourth argument is repeat count--search for successive occurrences.")
2072 (string, bound, noerror, count)
2073 Lisp_Object string, bound, noerror, count;
2074 {
2075 return search_command (wordify (string), bound, noerror, count, -1, 1, 0);
2076 }
2077
2078 DEFUN ("word-search-forward", Fword_search_forward, Sword_search_forward, 1, 4,
2079 "sWord search: ",
2080 "Search forward from point for STRING, ignoring differences in punctuation.\n\
2081 Set point to the end of the occurrence found, and return point.\n\
2082 An optional second argument bounds the search; it is a buffer position.\n\
2083 The match found must not extend after that position.\n\
2084 Optional third argument, if t, means if fail just return nil (no error).\n\
2085 If not nil and not t, move to limit of search and return nil.\n\
2086 Optional fourth argument is repeat count--search for successive occurrences.")
2087 (string, bound, noerror, count)
2088 Lisp_Object string, bound, noerror, count;
2089 {
2090 return search_command (wordify (string), bound, noerror, count, 1, 1, 0);
2091 }
2092
2093 DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
2094 "sRE search backward: ",
2095 "Search backward from point for match for regular expression REGEXP.\n\
2096 Set point to the beginning of the match, and return point.\n\
2097 The match found is the one starting last in the buffer\n\
2098 and yet ending before the origin of the search.\n\
2099 An optional second argument bounds the search; it is a buffer position.\n\
2100 The match found must start at or after that position.\n\
2101 Optional third argument, if t, means if fail just return nil (no error).\n\
2102 If not nil and not t, move to limit of search and return nil.\n\
2103 Optional fourth argument is repeat count--search for successive occurrences.\n\
2104 See also the functions `match-beginning', `match-end', `match-string',\n\
2105 and `replace-match'.")
2106 (regexp, bound, noerror, count)
2107 Lisp_Object regexp, bound, noerror, count;
2108 {
2109 return search_command (regexp, bound, noerror, count, -1, 1, 0);
2110 }
2111
2112 DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
2113 "sRE search: ",
2114 "Search forward from point for regular expression REGEXP.\n\
2115 Set point to the end of the occurrence found, and return point.\n\
2116 An optional second argument bounds the search; it is a buffer position.\n\
2117 The match found must not extend after that position.\n\
2118 Optional third argument, if t, means if fail just return nil (no error).\n\
2119 If not nil and not t, move to limit of search and return nil.\n\
2120 Optional fourth argument is repeat count--search for successive occurrences.\n\
2121 See also the functions `match-beginning', `match-end', `match-string',\n\
2122 and `replace-match'.")
2123 (regexp, bound, noerror, count)
2124 Lisp_Object regexp, bound, noerror, count;
2125 {
2126 return search_command (regexp, bound, noerror, count, 1, 1, 0);
2127 }
2128
2129 DEFUN ("posix-search-backward", Fposix_search_backward, Sposix_search_backward, 1, 4,
2130 "sPosix search backward: ",
2131 "Search backward from point for match for regular expression REGEXP.\n\
2132 Find the longest match in accord with Posix regular expression rules.\n\
2133 Set point to the beginning of the match, and return point.\n\
2134 The match found is the one starting last in the buffer\n\
2135 and yet ending before the origin of the search.\n\
2136 An optional second argument bounds the search; it is a buffer position.\n\
2137 The match found must start at or after that position.\n\
2138 Optional third argument, if t, means if fail just return nil (no error).\n\
2139 If not nil and not t, move to limit of search and return nil.\n\
2140 Optional fourth argument is repeat count--search for successive occurrences.\n\
2141 See also the functions `match-beginning', `match-end', `match-string',\n\
2142 and `replace-match'.")
2143 (regexp, bound, noerror, count)
2144 Lisp_Object regexp, bound, noerror, count;
2145 {
2146 return search_command (regexp, bound, noerror, count, -1, 1, 1);
2147 }
2148
2149 DEFUN ("posix-search-forward", Fposix_search_forward, Sposix_search_forward, 1, 4,
2150 "sPosix search: ",
2151 "Search forward from point for regular expression REGEXP.\n\
2152 Find the longest match in accord with Posix regular expression rules.\n\
2153 Set point to the end of the occurrence found, and return point.\n\
2154 An optional second argument bounds the search; it is a buffer position.\n\
2155 The match found must not extend after that position.\n\
2156 Optional third argument, if t, means if fail just return nil (no error).\n\
2157 If not nil and not t, move to limit of search and return nil.\n\
2158 Optional fourth argument is repeat count--search for successive occurrences.\n\
2159 See also the functions `match-beginning', `match-end', `match-string',\n\
2160 and `replace-match'.")
2161 (regexp, bound, noerror, count)
2162 Lisp_Object regexp, bound, noerror, count;
2163 {
2164 return search_command (regexp, bound, noerror, count, 1, 1, 1);
2165 }
2166 \f
2167 DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 5, 0,
2168 "Replace text matched by last search with NEWTEXT.\n\
2169 If second arg FIXEDCASE is non-nil, do not alter case of replacement text.\n\
2170 Otherwise maybe capitalize the whole text, or maybe just word initials,\n\
2171 based on the replaced text.\n\
2172 If the replaced text has only capital letters\n\
2173 and has at least one multiletter word, convert NEWTEXT to all caps.\n\
2174 If the replaced text has at least one word starting with a capital letter,\n\
2175 then capitalize each word in NEWTEXT.\n\n\
2176 If third arg LITERAL is non-nil, insert NEWTEXT literally.\n\
2177 Otherwise treat `\\' as special:\n\
2178 `\\&' in NEWTEXT means substitute original matched text.\n\
2179 `\\N' means substitute what matched the Nth `\\(...\\)'.\n\
2180 If Nth parens didn't match, substitute nothing.\n\
2181 `\\\\' means insert one `\\'.\n\
2182 FIXEDCASE and LITERAL are optional arguments.\n\
2183 Leaves point at end of replacement text.\n\
2184 \n\
2185 The optional fourth argument STRING can be a string to modify.\n\
2186 In that case, this function creates and returns a new string\n\
2187 which is made by replacing the part of STRING that was matched.\n\
2188 \n\
2189 The optional fifth argument SUBEXP specifies a subexpression of the match.\n\
2190 It says to replace just that subexpression instead of the whole match.\n\
2191 This is useful only after a regular expression search or match\n\
2192 since only regular expressions have distinguished subexpressions.")
2193 (newtext, fixedcase, literal, string, subexp)
2194 Lisp_Object newtext, fixedcase, literal, string, subexp;
2195 {
2196 enum { nochange, all_caps, cap_initial } case_action;
2197 register int pos, pos_byte;
2198 int some_multiletter_word;
2199 int some_lowercase;
2200 int some_uppercase;
2201 int some_nonuppercase_initial;
2202 register int c, prevc;
2203 int inslen;
2204 int sub;
2205 int opoint, newpoint;
2206
2207 CHECK_STRING (newtext, 0);
2208
2209 if (! NILP (string))
2210 CHECK_STRING (string, 4);
2211
2212 case_action = nochange; /* We tried an initialization */
2213 /* but some C compilers blew it */
2214
2215 if (search_regs.num_regs <= 0)
2216 error ("replace-match called before any match found");
2217
2218 if (NILP (subexp))
2219 sub = 0;
2220 else
2221 {
2222 CHECK_NUMBER (subexp, 3);
2223 sub = XINT (subexp);
2224 if (sub < 0 || sub >= search_regs.num_regs)
2225 args_out_of_range (subexp, make_number (search_regs.num_regs));
2226 }
2227
2228 if (NILP (string))
2229 {
2230 if (search_regs.start[sub] < BEGV
2231 || search_regs.start[sub] > search_regs.end[sub]
2232 || search_regs.end[sub] > ZV)
2233 args_out_of_range (make_number (search_regs.start[sub]),
2234 make_number (search_regs.end[sub]));
2235 }
2236 else
2237 {
2238 if (search_regs.start[sub] < 0
2239 || search_regs.start[sub] > search_regs.end[sub]
2240 || search_regs.end[sub] > XSTRING (string)->size)
2241 args_out_of_range (make_number (search_regs.start[sub]),
2242 make_number (search_regs.end[sub]));
2243 }
2244
2245 if (NILP (fixedcase))
2246 {
2247 /* Decide how to casify by examining the matched text. */
2248 int last;
2249
2250 pos = search_regs.start[sub];
2251 last = search_regs.end[sub];
2252
2253 if (NILP (string))
2254 pos_byte = CHAR_TO_BYTE (pos);
2255 else
2256 pos_byte = string_char_to_byte (string, pos);
2257
2258 prevc = '\n';
2259 case_action = all_caps;
2260
2261 /* some_multiletter_word is set nonzero if any original word
2262 is more than one letter long. */
2263 some_multiletter_word = 0;
2264 some_lowercase = 0;
2265 some_nonuppercase_initial = 0;
2266 some_uppercase = 0;
2267
2268 while (pos < last)
2269 {
2270 if (NILP (string))
2271 {
2272 c = FETCH_CHAR (pos_byte);
2273 INC_BOTH (pos, pos_byte);
2274 }
2275 else
2276 FETCH_STRING_CHAR_ADVANCE (c, string, pos, pos_byte);
2277
2278 if (LOWERCASEP (c))
2279 {
2280 /* Cannot be all caps if any original char is lower case */
2281
2282 some_lowercase = 1;
2283 if (SYNTAX (prevc) != Sword)
2284 some_nonuppercase_initial = 1;
2285 else
2286 some_multiletter_word = 1;
2287 }
2288 else if (!NOCASEP (c))
2289 {
2290 some_uppercase = 1;
2291 if (SYNTAX (prevc) != Sword)
2292 ;
2293 else
2294 some_multiletter_word = 1;
2295 }
2296 else
2297 {
2298 /* If the initial is a caseless word constituent,
2299 treat that like a lowercase initial. */
2300 if (SYNTAX (prevc) != Sword)
2301 some_nonuppercase_initial = 1;
2302 }
2303
2304 prevc = c;
2305 }
2306
2307 /* Convert to all caps if the old text is all caps
2308 and has at least one multiletter word. */
2309 if (! some_lowercase && some_multiletter_word)
2310 case_action = all_caps;
2311 /* Capitalize each word, if the old text has all capitalized words. */
2312 else if (!some_nonuppercase_initial && some_multiletter_word)
2313 case_action = cap_initial;
2314 else if (!some_nonuppercase_initial && some_uppercase)
2315 /* Should x -> yz, operating on X, give Yz or YZ?
2316 We'll assume the latter. */
2317 case_action = all_caps;
2318 else
2319 case_action = nochange;
2320 }
2321
2322 /* Do replacement in a string. */
2323 if (!NILP (string))
2324 {
2325 Lisp_Object before, after;
2326
2327 before = Fsubstring (string, make_number (0),
2328 make_number (search_regs.start[sub]));
2329 after = Fsubstring (string, make_number (search_regs.end[sub]), Qnil);
2330
2331 /* Substitute parts of the match into NEWTEXT
2332 if desired. */
2333 if (NILP (literal))
2334 {
2335 int lastpos = 0;
2336 int lastpos_byte = 0;
2337 /* We build up the substituted string in ACCUM. */
2338 Lisp_Object accum;
2339 Lisp_Object middle;
2340 int length = STRING_BYTES (XSTRING (newtext));
2341
2342 accum = Qnil;
2343
2344 for (pos_byte = 0, pos = 0; pos_byte < length;)
2345 {
2346 int substart = -1;
2347 int subend = 0;
2348 int delbackslash = 0;
2349
2350 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2351
2352 if (c == '\\')
2353 {
2354 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2355
2356 if (c == '&')
2357 {
2358 substart = search_regs.start[sub];
2359 subend = search_regs.end[sub];
2360 }
2361 else if (c >= '1' && c <= '9' && c <= search_regs.num_regs + '0')
2362 {
2363 if (search_regs.start[c - '0'] >= 0)
2364 {
2365 substart = search_regs.start[c - '0'];
2366 subend = search_regs.end[c - '0'];
2367 }
2368 }
2369 else if (c == '\\')
2370 delbackslash = 1;
2371 else
2372 error ("Invalid use of `\\' in replacement text");
2373 }
2374 if (substart >= 0)
2375 {
2376 if (pos - 2 != lastpos)
2377 middle = substring_both (newtext, lastpos,
2378 lastpos_byte,
2379 pos - 2, pos_byte - 2);
2380 else
2381 middle = Qnil;
2382 accum = concat3 (accum, middle,
2383 Fsubstring (string,
2384 make_number (substart),
2385 make_number (subend)));
2386 lastpos = pos;
2387 lastpos_byte = pos_byte;
2388 }
2389 else if (delbackslash)
2390 {
2391 middle = substring_both (newtext, lastpos,
2392 lastpos_byte,
2393 pos - 1, pos_byte - 1);
2394
2395 accum = concat2 (accum, middle);
2396 lastpos = pos;
2397 lastpos_byte = pos_byte;
2398 }
2399 }
2400
2401 if (pos != lastpos)
2402 middle = substring_both (newtext, lastpos,
2403 lastpos_byte,
2404 pos, pos_byte);
2405 else
2406 middle = Qnil;
2407
2408 newtext = concat2 (accum, middle);
2409 }
2410
2411 /* Do case substitution in NEWTEXT if desired. */
2412 if (case_action == all_caps)
2413 newtext = Fupcase (newtext);
2414 else if (case_action == cap_initial)
2415 newtext = Fupcase_initials (newtext);
2416
2417 return concat3 (before, newtext, after);
2418 }
2419
2420 /* Record point, the move (quietly) to the start of the match. */
2421 if (PT >= search_regs.end[sub])
2422 opoint = PT - ZV;
2423 else if (PT > search_regs.start[sub])
2424 opoint = search_regs.end[sub] - ZV;
2425 else
2426 opoint = PT;
2427
2428 TEMP_SET_PT (search_regs.start[sub]);
2429
2430 /* We insert the replacement text before the old text, and then
2431 delete the original text. This means that markers at the
2432 beginning or end of the original will float to the corresponding
2433 position in the replacement. */
2434 if (!NILP (literal))
2435 Finsert_and_inherit (1, &newtext);
2436 else
2437 {
2438 int length = STRING_BYTES (XSTRING (newtext));
2439 unsigned char *substed;
2440 int substed_alloc_size, substed_len;
2441 int buf_multibyte = !NILP (current_buffer->enable_multibyte_characters);
2442 int str_multibyte = STRING_MULTIBYTE (newtext);
2443 Lisp_Object rev_tbl;
2444
2445 rev_tbl= (!buf_multibyte && CHAR_TABLE_P (Vnonascii_translation_table)
2446 ? Fchar_table_extra_slot (Vnonascii_translation_table,
2447 make_number (0))
2448 : Qnil);
2449
2450 substed_alloc_size = length * 2 + 100;
2451 substed = (unsigned char *) xmalloc (substed_alloc_size + 1);
2452 substed_len = 0;
2453
2454 /* Go thru NEWTEXT, producing the actual text to insert in
2455 SUBSTED while adjusting multibyteness to that of the current
2456 buffer. */
2457
2458 for (pos_byte = 0, pos = 0; pos_byte < length;)
2459 {
2460 unsigned char str[MAX_MULTIBYTE_LENGTH];
2461 unsigned char *add_stuff = NULL;
2462 int add_len = 0;
2463 int idx = -1;
2464
2465 if (str_multibyte)
2466 {
2467 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext, pos, pos_byte);
2468 if (!buf_multibyte)
2469 c = multibyte_char_to_unibyte (c, rev_tbl);
2470 }
2471 else
2472 {
2473 /* Note that we don't have to increment POS. */
2474 c = XSTRING (newtext)->data[pos_byte++];
2475 if (buf_multibyte)
2476 c = unibyte_char_to_multibyte (c);
2477 }
2478
2479 /* Either set ADD_STUFF and ADD_LEN to the text to put in SUBSTED,
2480 or set IDX to a match index, which means put that part
2481 of the buffer text into SUBSTED. */
2482
2483 if (c == '\\')
2484 {
2485 if (str_multibyte)
2486 {
2487 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext,
2488 pos, pos_byte);
2489 if (!buf_multibyte && !SINGLE_BYTE_CHAR_P (c))
2490 c = multibyte_char_to_unibyte (c, rev_tbl);
2491 }
2492 else
2493 {
2494 c = XSTRING (newtext)->data[pos_byte++];
2495 if (buf_multibyte)
2496 c = unibyte_char_to_multibyte (c);
2497 }
2498
2499 if (c == '&')
2500 idx = sub;
2501 else if (c >= '1' && c <= '9' && c <= search_regs.num_regs + '0')
2502 {
2503 if (search_regs.start[c - '0'] >= 1)
2504 idx = c - '0';
2505 }
2506 else if (c == '\\')
2507 add_len = 1, add_stuff = "\\";
2508 else
2509 {
2510 xfree (substed);
2511 error ("Invalid use of `\\' in replacement text");
2512 }
2513 }
2514 else
2515 {
2516 add_len = CHAR_STRING (c, str);
2517 add_stuff = str;
2518 }
2519
2520 /* If we want to copy part of a previous match,
2521 set up ADD_STUFF and ADD_LEN to point to it. */
2522 if (idx >= 0)
2523 {
2524 int begbyte = CHAR_TO_BYTE (search_regs.start[idx]);
2525 add_len = CHAR_TO_BYTE (search_regs.end[idx]) - begbyte;
2526 if (search_regs.start[idx] < GPT && GPT < search_regs.end[idx])
2527 move_gap (search_regs.start[idx]);
2528 add_stuff = BYTE_POS_ADDR (begbyte);
2529 }
2530
2531 /* Now the stuff we want to add to SUBSTED
2532 is invariably ADD_LEN bytes starting at ADD_STUFF. */
2533
2534 /* Make sure SUBSTED is big enough. */
2535 if (substed_len + add_len >= substed_alloc_size)
2536 {
2537 substed_alloc_size = substed_len + add_len + 500;
2538 substed = (unsigned char *) xrealloc (substed,
2539 substed_alloc_size + 1);
2540 }
2541
2542 /* Now add to the end of SUBSTED. */
2543 if (add_stuff)
2544 {
2545 bcopy (add_stuff, substed + substed_len, add_len);
2546 substed_len += add_len;
2547 }
2548 }
2549
2550 /* Now insert what we accumulated. */
2551 insert_and_inherit (substed, substed_len);
2552
2553 xfree (substed);
2554 }
2555
2556 inslen = PT - (search_regs.start[sub]);
2557 del_range (search_regs.start[sub] + inslen, search_regs.end[sub] + inslen);
2558
2559 if (case_action == all_caps)
2560 Fupcase_region (make_number (PT - inslen), make_number (PT));
2561 else if (case_action == cap_initial)
2562 Fupcase_initials_region (make_number (PT - inslen), make_number (PT));
2563
2564 newpoint = PT;
2565
2566 /* Put point back where it was in the text. */
2567 if (opoint <= 0)
2568 TEMP_SET_PT (opoint + ZV);
2569 else
2570 TEMP_SET_PT (opoint);
2571
2572 /* Now move point "officially" to the start of the inserted replacement. */
2573 move_if_not_intangible (newpoint);
2574
2575 return Qnil;
2576 }
2577 \f
2578 static Lisp_Object
2579 match_limit (num, beginningp)
2580 Lisp_Object num;
2581 int beginningp;
2582 {
2583 register int n;
2584
2585 CHECK_NUMBER (num, 0);
2586 n = XINT (num);
2587 if (n < 0 || n >= search_regs.num_regs)
2588 args_out_of_range (num, make_number (search_regs.num_regs));
2589 if (search_regs.num_regs <= 0
2590 || search_regs.start[n] < 0)
2591 return Qnil;
2592 return (make_number ((beginningp) ? search_regs.start[n]
2593 : search_regs.end[n]));
2594 }
2595
2596 DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
2597 "Return position of start of text matched by last search.\n\
2598 SUBEXP, a number, specifies which parenthesized expression in the last\n\
2599 regexp.\n\
2600 Value is nil if SUBEXPth pair didn't match, or there were less than\n\
2601 SUBEXP pairs.\n\
2602 Zero means the entire text matched by the whole regexp or whole string.")
2603 (subexp)
2604 Lisp_Object subexp;
2605 {
2606 return match_limit (subexp, 1);
2607 }
2608
2609 DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
2610 "Return position of end of text matched by last search.\n\
2611 SUBEXP, a number, specifies which parenthesized expression in the last\n\
2612 regexp.\n\
2613 Value is nil if SUBEXPth pair didn't match, or there were less than\n\
2614 SUBEXP pairs.\n\
2615 Zero means the entire text matched by the whole regexp or whole string.")
2616 (subexp)
2617 Lisp_Object subexp;
2618 {
2619 return match_limit (subexp, 0);
2620 }
2621
2622 DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 2, 0,
2623 "Return a list containing all info on what the last search matched.\n\
2624 Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.\n\
2625 All the elements are markers or nil (nil if the Nth pair didn't match)\n\
2626 if the last match was on a buffer; integers or nil if a string was matched.\n\
2627 Use `store-match-data' to reinstate the data in this list.\n\
2628 \n\
2629 If INTEGERS (the optional first argument) is non-nil, always use integers\n\
2630 \(rather than markers) to represent buffer positions.\n\
2631 If REUSE is a list, reuse it as part of the value. If REUSE is long enough\n\
2632 to hold all the values, and if INTEGERS is non-nil, no consing is done.")
2633 (integers, reuse)
2634 Lisp_Object integers, reuse;
2635 {
2636 Lisp_Object tail, prev;
2637 Lisp_Object *data;
2638 int i, len;
2639
2640 if (NILP (last_thing_searched))
2641 return Qnil;
2642
2643 prev = Qnil;
2644
2645 data = (Lisp_Object *) alloca ((2 * search_regs.num_regs)
2646 * sizeof (Lisp_Object));
2647
2648 len = -1;
2649 for (i = 0; i < search_regs.num_regs; i++)
2650 {
2651 int start = search_regs.start[i];
2652 if (start >= 0)
2653 {
2654 if (EQ (last_thing_searched, Qt)
2655 || ! NILP (integers))
2656 {
2657 XSETFASTINT (data[2 * i], start);
2658 XSETFASTINT (data[2 * i + 1], search_regs.end[i]);
2659 }
2660 else if (BUFFERP (last_thing_searched))
2661 {
2662 data[2 * i] = Fmake_marker ();
2663 Fset_marker (data[2 * i],
2664 make_number (start),
2665 last_thing_searched);
2666 data[2 * i + 1] = Fmake_marker ();
2667 Fset_marker (data[2 * i + 1],
2668 make_number (search_regs.end[i]),
2669 last_thing_searched);
2670 }
2671 else
2672 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
2673 abort ();
2674
2675 len = i;
2676 }
2677 else
2678 data[2 * i] = data [2 * i + 1] = Qnil;
2679 }
2680
2681 /* If REUSE is not usable, cons up the values and return them. */
2682 if (! CONSP (reuse))
2683 return Flist (2 * len + 2, data);
2684
2685 /* If REUSE is a list, store as many value elements as will fit
2686 into the elements of REUSE. */
2687 for (i = 0, tail = reuse; CONSP (tail);
2688 i++, tail = XCDR (tail))
2689 {
2690 if (i < 2 * len + 2)
2691 XCAR (tail) = data[i];
2692 else
2693 XCAR (tail) = Qnil;
2694 prev = tail;
2695 }
2696
2697 /* If we couldn't fit all value elements into REUSE,
2698 cons up the rest of them and add them to the end of REUSE. */
2699 if (i < 2 * len + 2)
2700 XCDR (prev) = Flist (2 * len + 2 - i, data + i);
2701
2702 return reuse;
2703 }
2704
2705
2706 DEFUN ("set-match-data", Fset_match_data, Sset_match_data, 1, 1, 0,
2707 "Set internal data on last search match from elements of LIST.\n\
2708 LIST should have been created by calling `match-data' previously.")
2709 (list)
2710 register Lisp_Object list;
2711 {
2712 register int i;
2713 register Lisp_Object marker;
2714
2715 if (running_asynch_code)
2716 save_search_regs ();
2717
2718 if (!CONSP (list) && !NILP (list))
2719 list = wrong_type_argument (Qconsp, list);
2720
2721 /* Unless we find a marker with a buffer in LIST, assume that this
2722 match data came from a string. */
2723 last_thing_searched = Qt;
2724
2725 /* Allocate registers if they don't already exist. */
2726 {
2727 int length = XFASTINT (Flength (list)) / 2;
2728
2729 if (length > search_regs.num_regs)
2730 {
2731 if (search_regs.num_regs == 0)
2732 {
2733 search_regs.start
2734 = (regoff_t *) xmalloc (length * sizeof (regoff_t));
2735 search_regs.end
2736 = (regoff_t *) xmalloc (length * sizeof (regoff_t));
2737 }
2738 else
2739 {
2740 search_regs.start
2741 = (regoff_t *) xrealloc (search_regs.start,
2742 length * sizeof (regoff_t));
2743 search_regs.end
2744 = (regoff_t *) xrealloc (search_regs.end,
2745 length * sizeof (regoff_t));
2746 }
2747
2748 for (i = search_regs.num_regs; i < length; i++)
2749 search_regs.start[i] = -1;
2750
2751 search_regs.num_regs = length;
2752 }
2753 }
2754
2755 for (i = 0; i < search_regs.num_regs; i++)
2756 {
2757 marker = Fcar (list);
2758 if (NILP (marker))
2759 {
2760 search_regs.start[i] = -1;
2761 list = Fcdr (list);
2762 }
2763 else
2764 {
2765 int from;
2766
2767 if (MARKERP (marker))
2768 {
2769 if (XMARKER (marker)->buffer == 0)
2770 XSETFASTINT (marker, 0);
2771 else
2772 XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
2773 }
2774
2775 CHECK_NUMBER_COERCE_MARKER (marker, 0);
2776 from = XINT (marker);
2777 list = Fcdr (list);
2778
2779 marker = Fcar (list);
2780 if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
2781 XSETFASTINT (marker, 0);
2782
2783 CHECK_NUMBER_COERCE_MARKER (marker, 0);
2784 search_regs.start[i] = from;
2785 search_regs.end[i] = XINT (marker);
2786 }
2787 list = Fcdr (list);
2788 }
2789
2790 return Qnil;
2791 }
2792
2793 /* If non-zero the match data have been saved in saved_search_regs
2794 during the execution of a sentinel or filter. */
2795 static int search_regs_saved;
2796 static struct re_registers saved_search_regs;
2797
2798 /* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
2799 if asynchronous code (filter or sentinel) is running. */
2800 static void
2801 save_search_regs ()
2802 {
2803 if (!search_regs_saved)
2804 {
2805 saved_search_regs.num_regs = search_regs.num_regs;
2806 saved_search_regs.start = search_regs.start;
2807 saved_search_regs.end = search_regs.end;
2808 search_regs.num_regs = 0;
2809 search_regs.start = 0;
2810 search_regs.end = 0;
2811
2812 search_regs_saved = 1;
2813 }
2814 }
2815
2816 /* Called upon exit from filters and sentinels. */
2817 void
2818 restore_match_data ()
2819 {
2820 if (search_regs_saved)
2821 {
2822 if (search_regs.num_regs > 0)
2823 {
2824 xfree (search_regs.start);
2825 xfree (search_regs.end);
2826 }
2827 search_regs.num_regs = saved_search_regs.num_regs;
2828 search_regs.start = saved_search_regs.start;
2829 search_regs.end = saved_search_regs.end;
2830
2831 search_regs_saved = 0;
2832 }
2833 }
2834
2835 /* Quote a string to inactivate reg-expr chars */
2836
2837 DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
2838 "Return a regexp string which matches exactly STRING and nothing else.")
2839 (string)
2840 Lisp_Object string;
2841 {
2842 register unsigned char *in, *out, *end;
2843 register unsigned char *temp;
2844 int backslashes_added = 0;
2845
2846 CHECK_STRING (string, 0);
2847
2848 temp = (unsigned char *) alloca (STRING_BYTES (XSTRING (string)) * 2);
2849
2850 /* Now copy the data into the new string, inserting escapes. */
2851
2852 in = XSTRING (string)->data;
2853 end = in + STRING_BYTES (XSTRING (string));
2854 out = temp;
2855
2856 for (; in != end; in++)
2857 {
2858 if (*in == '[' || *in == ']'
2859 || *in == '*' || *in == '.' || *in == '\\'
2860 || *in == '?' || *in == '+'
2861 || *in == '^' || *in == '$')
2862 *out++ = '\\', backslashes_added++;
2863 *out++ = *in;
2864 }
2865
2866 return make_specified_string (temp,
2867 XSTRING (string)->size + backslashes_added,
2868 out - temp,
2869 STRING_MULTIBYTE (string));
2870 }
2871 \f
2872 void
2873 syms_of_search ()
2874 {
2875 register int i;
2876
2877 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
2878 {
2879 searchbufs[i].buf.allocated = 100;
2880 searchbufs[i].buf.buffer = (unsigned char *) malloc (100);
2881 searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
2882 searchbufs[i].regexp = Qnil;
2883 staticpro (&searchbufs[i].regexp);
2884 searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
2885 }
2886 searchbuf_head = &searchbufs[0];
2887
2888 Qsearch_failed = intern ("search-failed");
2889 staticpro (&Qsearch_failed);
2890 Qinvalid_regexp = intern ("invalid-regexp");
2891 staticpro (&Qinvalid_regexp);
2892
2893 Fput (Qsearch_failed, Qerror_conditions,
2894 Fcons (Qsearch_failed, Fcons (Qerror, Qnil)));
2895 Fput (Qsearch_failed, Qerror_message,
2896 build_string ("Search failed"));
2897
2898 Fput (Qinvalid_regexp, Qerror_conditions,
2899 Fcons (Qinvalid_regexp, Fcons (Qerror, Qnil)));
2900 Fput (Qinvalid_regexp, Qerror_message,
2901 build_string ("Invalid regexp"));
2902
2903 last_thing_searched = Qnil;
2904 staticpro (&last_thing_searched);
2905
2906 defsubr (&Slooking_at);
2907 defsubr (&Sposix_looking_at);
2908 defsubr (&Sstring_match);
2909 defsubr (&Sposix_string_match);
2910 defsubr (&Ssearch_forward);
2911 defsubr (&Ssearch_backward);
2912 defsubr (&Sword_search_forward);
2913 defsubr (&Sword_search_backward);
2914 defsubr (&Sre_search_forward);
2915 defsubr (&Sre_search_backward);
2916 defsubr (&Sposix_search_forward);
2917 defsubr (&Sposix_search_backward);
2918 defsubr (&Sreplace_match);
2919 defsubr (&Smatch_beginning);
2920 defsubr (&Smatch_end);
2921 defsubr (&Smatch_data);
2922 defsubr (&Sset_match_data);
2923 defsubr (&Sregexp_quote);
2924 }