]> code.delx.au - gnu-emacs/blob - src/keymap.c
*** empty log message ***
[gnu-emacs] / src / keymap.c
1 /* Manipulation of keymaps
2 Copyright (C) 1985, 86,87,88,93,94,95,98,99, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 #include <config.h>
24 #include <stdio.h>
25 #include "lisp.h"
26 #include "commands.h"
27 #include "buffer.h"
28 #include "charset.h"
29 #include "keyboard.h"
30 #include "termhooks.h"
31 #include "blockinput.h"
32 #include "puresize.h"
33 #include "intervals.h"
34 #include "keymap.h"
35
36 /* The number of elements in keymap vectors. */
37 #define DENSE_TABLE_SIZE (0200)
38
39 /* Actually allocate storage for these variables */
40
41 Lisp_Object current_global_map; /* Current global keymap */
42
43 Lisp_Object global_map; /* default global key bindings */
44
45 Lisp_Object meta_map; /* The keymap used for globally bound
46 ESC-prefixed default commands */
47
48 Lisp_Object control_x_map; /* The keymap used for globally bound
49 C-x-prefixed default commands */
50
51 /* was MinibufLocalMap */
52 Lisp_Object Vminibuffer_local_map;
53 /* The keymap used by the minibuf for local
54 bindings when spaces are allowed in the
55 minibuf */
56
57 /* was MinibufLocalNSMap */
58 Lisp_Object Vminibuffer_local_ns_map;
59 /* The keymap used by the minibuf for local
60 bindings when spaces are not encouraged
61 in the minibuf */
62
63 /* keymap used for minibuffers when doing completion */
64 /* was MinibufLocalCompletionMap */
65 Lisp_Object Vminibuffer_local_completion_map;
66
67 /* keymap used for minibuffers when doing completion and require a match */
68 /* was MinibufLocalMustMatchMap */
69 Lisp_Object Vminibuffer_local_must_match_map;
70
71 /* Alist of minor mode variables and keymaps. */
72 Lisp_Object Vminor_mode_map_alist;
73
74 /* Alist of major-mode-specific overrides for
75 minor mode variables and keymaps. */
76 Lisp_Object Vminor_mode_overriding_map_alist;
77
78 /* Keymap mapping ASCII function key sequences onto their preferred forms.
79 Initialized by the terminal-specific lisp files. See DEFVAR for more
80 documentation. */
81 Lisp_Object Vfunction_key_map;
82
83 /* Keymap mapping ASCII function key sequences onto their preferred forms. */
84 Lisp_Object Vkey_translation_map;
85
86 /* A list of all commands given new bindings since a certain time
87 when nil was stored here.
88 This is used to speed up recomputation of menu key equivalents
89 when Emacs starts up. t means don't record anything here. */
90 Lisp_Object Vdefine_key_rebound_commands;
91
92 Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii, Qmenu_item;
93
94 /* Alist of elements like (DEL . "\d"). */
95 static Lisp_Object exclude_keys;
96
97 /* A char with the CHAR_META bit set in a vector or the 0200 bit set
98 in a string key sequence is equivalent to prefixing with this
99 character. */
100 extern Lisp_Object meta_prefix_char;
101
102 extern Lisp_Object Voverriding_local_map;
103
104 /* Hash table used to cache a reverse-map to speed up calls to where-is. */
105 static Lisp_Object where_is_cache;
106 /* Which keymaps are reverse-stored in the cache. */
107 static Lisp_Object where_is_cache_keymaps;
108
109 static Lisp_Object store_in_keymap P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
110 static void fix_submap_inheritance P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
111
112 static Lisp_Object define_as_prefix P_ ((Lisp_Object, Lisp_Object));
113 static void describe_command P_ ((Lisp_Object, Lisp_Object));
114 static void describe_translation P_ ((Lisp_Object, Lisp_Object));
115 static void describe_map P_ ((Lisp_Object, Lisp_Object,
116 void (*) P_ ((Lisp_Object, Lisp_Object)),
117 int, Lisp_Object, Lisp_Object*, int));
118 static void silly_event_symbol_error P_ ((Lisp_Object));
119 \f
120 /* Keymap object support - constructors and predicates. */
121
122 DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
123 doc: /* Construct and return a new keymap, of the form (keymap CHARTABLE . ALIST).
124 CHARTABLE is a char-table that holds the bindings for the ASCII
125 characters. ALIST is an assoc-list which holds bindings for function keys,
126 mouse events, and any other things that appear in the input stream.
127 All entries in it are initially nil, meaning "command undefined".
128
129 The optional arg STRING supplies a menu name for the keymap
130 in case you use it as a menu with `x-popup-menu'. */)
131 (string)
132 Lisp_Object string;
133 {
134 Lisp_Object tail;
135 if (!NILP (string))
136 tail = Fcons (string, Qnil);
137 else
138 tail = Qnil;
139 return Fcons (Qkeymap,
140 Fcons (Fmake_char_table (Qkeymap, Qnil), tail));
141 }
142
143 DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
144 doc: /* Construct and return a new sparse keymap.
145 Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),
146 which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),
147 which binds the function key or mouse event SYMBOL to DEFINITION.
148 Initially the alist is nil.
149
150 The optional arg STRING supplies a menu name for the keymap
151 in case you use it as a menu with `x-popup-menu'. */)
152 (string)
153 Lisp_Object string;
154 {
155 if (!NILP (string))
156 return Fcons (Qkeymap, Fcons (string, Qnil));
157 return Fcons (Qkeymap, Qnil);
158 }
159
160 /* This function is used for installing the standard key bindings
161 at initialization time.
162
163 For example:
164
165 initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
166
167 void
168 initial_define_key (keymap, key, defname)
169 Lisp_Object keymap;
170 int key;
171 char *defname;
172 {
173 store_in_keymap (keymap, make_number (key), intern (defname));
174 }
175
176 void
177 initial_define_lispy_key (keymap, keyname, defname)
178 Lisp_Object keymap;
179 char *keyname;
180 char *defname;
181 {
182 store_in_keymap (keymap, intern (keyname), intern (defname));
183 }
184
185 DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
186 doc: /* Return t if OBJECT is a keymap.
187
188 A keymap is a list (keymap . ALIST),
189 or a symbol whose function definition is itself a keymap.
190 ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);
191 a vector of densely packed bindings for small character codes
192 is also allowed as an element. */)
193 (object)
194 Lisp_Object object;
195 {
196 return (KEYMAPP (object) ? Qt : Qnil);
197 }
198
199 DEFUN ("keymap-prompt", Fkeymap_prompt, Skeymap_prompt, 1, 1, 0,
200 doc: /* Return the prompt-string of a keymap MAP.
201 If non-nil, the prompt is shown in the echo-area
202 when reading a key-sequence to be looked-up in this keymap. */)
203 (map)
204 Lisp_Object map;
205 {
206 while (CONSP (map))
207 {
208 register Lisp_Object tem;
209 tem = Fcar (map);
210 if (STRINGP (tem))
211 return tem;
212 map = Fcdr (map);
213 }
214 return Qnil;
215 }
216
217 /* Check that OBJECT is a keymap (after dereferencing through any
218 symbols). If it is, return it.
219
220 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
221 is an autoload form, do the autoload and try again.
222 If AUTOLOAD is nonzero, callers must assume GC is possible.
223
224 If the map needs to be autoloaded, but AUTOLOAD is zero (and ERROR
225 is zero as well), return Qt.
226
227 ERROR controls how we respond if OBJECT isn't a keymap.
228 If ERROR is non-zero, signal an error; otherwise, just return Qnil.
229
230 Note that most of the time, we don't want to pursue autoloads.
231 Functions like Faccessible_keymaps which scan entire keymap trees
232 shouldn't load every autoloaded keymap. I'm not sure about this,
233 but it seems to me that only read_key_sequence, Flookup_key, and
234 Fdefine_key should cause keymaps to be autoloaded.
235
236 This function can GC when AUTOLOAD is non-zero, because it calls
237 do_autoload which can GC. */
238
239 Lisp_Object
240 get_keymap (object, error, autoload)
241 Lisp_Object object;
242 int error, autoload;
243 {
244 Lisp_Object tem;
245
246 autoload_retry:
247 if (NILP (object))
248 goto end;
249 if (CONSP (object) && EQ (XCAR (object), Qkeymap))
250 return object;
251
252 tem = indirect_function (object);
253 if (CONSP (tem))
254 {
255 if (EQ (XCAR (tem), Qkeymap))
256 return tem;
257
258 /* Should we do an autoload? Autoload forms for keymaps have
259 Qkeymap as their fifth element. */
260 if ((autoload || !error) && EQ (XCAR (tem), Qautoload))
261 {
262 Lisp_Object tail;
263
264 tail = Fnth (make_number (4), tem);
265 if (EQ (tail, Qkeymap))
266 {
267 if (autoload)
268 {
269 struct gcpro gcpro1, gcpro2;
270
271 GCPRO2 (tem, object);
272 do_autoload (tem, object);
273 UNGCPRO;
274
275 goto autoload_retry;
276 }
277 else
278 return Qt;
279 }
280 }
281 }
282
283 end:
284 if (error)
285 wrong_type_argument (Qkeymapp, object);
286 return Qnil;
287 }
288 \f
289 /* Return the parent map of the keymap MAP, or nil if it has none.
290 We assume that MAP is a valid keymap. */
291
292 DEFUN ("keymap-parent", Fkeymap_parent, Skeymap_parent, 1, 1, 0,
293 doc: /* Return the parent keymap of KEYMAP. */)
294 (keymap)
295 Lisp_Object keymap;
296 {
297 Lisp_Object list;
298
299 keymap = get_keymap (keymap, 1, 1);
300
301 /* Skip past the initial element `keymap'. */
302 list = XCDR (keymap);
303 for (; CONSP (list); list = XCDR (list))
304 {
305 /* See if there is another `keymap'. */
306 if (KEYMAPP (list))
307 return list;
308 }
309
310 return get_keymap (list, 0, 1);
311 }
312
313
314 /* Check whether MAP is one of MAPS parents. */
315 int
316 keymap_memberp (map, maps)
317 Lisp_Object map, maps;
318 {
319 if (NILP (map)) return 0;
320 while (KEYMAPP (maps) && !EQ (map, maps))
321 maps = Fkeymap_parent (maps);
322 return (EQ (map, maps));
323 }
324
325 /* Set the parent keymap of MAP to PARENT. */
326
327 DEFUN ("set-keymap-parent", Fset_keymap_parent, Sset_keymap_parent, 2, 2, 0,
328 doc: /* Modify KEYMAP to set its parent map to PARENT.
329 PARENT should be nil or another keymap. */)
330 (keymap, parent)
331 Lisp_Object keymap, parent;
332 {
333 Lisp_Object list, prev;
334 struct gcpro gcpro1;
335 int i;
336
337 /* Force a keymap flush for the next call to where-is.
338 Since this can be called from within where-is, we don't set where_is_cache
339 directly but only where_is_cache_keymaps, since where_is_cache shouldn't
340 be changed during where-is, while where_is_cache_keymaps is only used at
341 the very beginning of where-is and can thus be changed here without any
342 adverse effect.
343 This is a very minor correctness (rather than safety) issue. */
344 where_is_cache_keymaps = Qt;
345
346 keymap = get_keymap (keymap, 1, 1);
347 GCPRO1 (keymap);
348
349 if (!NILP (parent))
350 {
351 parent = get_keymap (parent, 1, 1);
352
353 /* Check for cycles. */
354 if (keymap_memberp (keymap, parent))
355 error ("Cyclic keymap inheritance");
356 }
357
358 /* Skip past the initial element `keymap'. */
359 prev = keymap;
360 while (1)
361 {
362 list = XCDR (prev);
363 /* If there is a parent keymap here, replace it.
364 If we came to the end, add the parent in PREV. */
365 if (!CONSP (list) || KEYMAPP (list))
366 {
367 /* If we already have the right parent, return now
368 so that we avoid the loops below. */
369 if (EQ (XCDR (prev), parent))
370 RETURN_UNGCPRO (parent);
371
372 XSETCDR (prev, parent);
373 break;
374 }
375 prev = list;
376 }
377
378 /* Scan through for submaps, and set their parents too. */
379
380 for (list = XCDR (keymap); CONSP (list); list = XCDR (list))
381 {
382 /* Stop the scan when we come to the parent. */
383 if (EQ (XCAR (list), Qkeymap))
384 break;
385
386 /* If this element holds a prefix map, deal with it. */
387 if (CONSP (XCAR (list))
388 && CONSP (XCDR (XCAR (list))))
389 fix_submap_inheritance (keymap, XCAR (XCAR (list)),
390 XCDR (XCAR (list)));
391
392 if (VECTORP (XCAR (list)))
393 for (i = 0; i < XVECTOR (XCAR (list))->size; i++)
394 if (CONSP (XVECTOR (XCAR (list))->contents[i]))
395 fix_submap_inheritance (keymap, make_number (i),
396 XVECTOR (XCAR (list))->contents[i]);
397
398 if (CHAR_TABLE_P (XCAR (list)))
399 {
400 Lisp_Object indices[3];
401
402 map_char_table (fix_submap_inheritance, Qnil, XCAR (list),
403 keymap, 0, indices);
404 }
405 }
406
407 RETURN_UNGCPRO (parent);
408 }
409
410 /* EVENT is defined in MAP as a prefix, and SUBMAP is its definition.
411 if EVENT is also a prefix in MAP's parent,
412 make sure that SUBMAP inherits that definition as its own parent. */
413
414 static void
415 fix_submap_inheritance (map, event, submap)
416 Lisp_Object map, event, submap;
417 {
418 Lisp_Object map_parent, parent_entry;
419
420 /* SUBMAP is a cons that we found as a key binding.
421 Discard the other things found in a menu key binding. */
422
423 submap = get_keymap (get_keyelt (submap, 0), 0, 0);
424
425 /* If it isn't a keymap now, there's no work to do. */
426 if (!CONSP (submap))
427 return;
428
429 map_parent = Fkeymap_parent (map);
430 if (!NILP (map_parent))
431 parent_entry =
432 get_keymap (access_keymap (map_parent, event, 0, 0, 0), 0, 0);
433 else
434 parent_entry = Qnil;
435
436 /* If MAP's parent has something other than a keymap,
437 our own submap shadows it completely. */
438 if (!CONSP (parent_entry))
439 return;
440
441 if (! EQ (parent_entry, submap))
442 {
443 Lisp_Object submap_parent;
444 submap_parent = submap;
445 while (1)
446 {
447 Lisp_Object tem;
448
449 tem = Fkeymap_parent (submap_parent);
450
451 if (KEYMAPP (tem))
452 {
453 if (keymap_memberp (tem, parent_entry))
454 /* Fset_keymap_parent could create a cycle. */
455 return;
456 submap_parent = tem;
457 }
458 else
459 break;
460 }
461 Fset_keymap_parent (submap_parent, parent_entry);
462 }
463 }
464 \f
465 /* Look up IDX in MAP. IDX may be any sort of event.
466 Note that this does only one level of lookup; IDX must be a single
467 event, not a sequence.
468
469 If T_OK is non-zero, bindings for Qt are treated as default
470 bindings; any key left unmentioned by other tables and bindings is
471 given the binding of Qt.
472
473 If T_OK is zero, bindings for Qt are not treated specially.
474
475 If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */
476
477 Lisp_Object
478 access_keymap (map, idx, t_ok, noinherit, autoload)
479 Lisp_Object map;
480 Lisp_Object idx;
481 int t_ok;
482 int noinherit;
483 int autoload;
484 {
485 Lisp_Object val;
486
487 /* Qunbound in VAL means we have found no binding yet. */
488 val = Qunbound;
489
490 /* If idx is a list (some sort of mouse click, perhaps?),
491 the index we want to use is the car of the list, which
492 ought to be a symbol. */
493 idx = EVENT_HEAD (idx);
494
495 /* If idx is a symbol, it might have modifiers, which need to
496 be put in the canonical order. */
497 if (SYMBOLP (idx))
498 idx = reorder_modifiers (idx);
499 else if (INTEGERP (idx))
500 /* Clobber the high bits that can be present on a machine
501 with more than 24 bits of integer. */
502 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
503
504 /* Handle the special meta -> esc mapping. */
505 if (INTEGERP (idx) && XUINT (idx) & meta_modifier)
506 {
507 /* See if there is a meta-map. If there's none, there is
508 no binding for IDX, unless a default binding exists in MAP. */
509 Lisp_Object meta_map =
510 get_keymap (access_keymap (map, meta_prefix_char,
511 t_ok, noinherit, autoload),
512 0, autoload);
513 if (CONSP (meta_map))
514 {
515 map = meta_map;
516 idx = make_number (XUINT (idx) & ~meta_modifier);
517 }
518 else if (t_ok)
519 /* Set IDX to t, so that we only find a default binding. */
520 idx = Qt;
521 else
522 /* We know there is no binding. */
523 return Qnil;
524 }
525
526 {
527 Lisp_Object tail;
528
529 /* t_binding is where we put a default binding that applies,
530 to use in case we do not find a binding specifically
531 for this key sequence. */
532
533 Lisp_Object t_binding;
534 t_binding = Qnil;
535
536 /* If `t_ok' is 2, both `t' and generic-char bindings are accepted.
537 If it is 1, only generic-char bindings are accepted.
538 Otherwise, neither are. */
539 t_ok = t_ok ? 2 : 0;
540
541 for (tail = XCDR (map);
542 (CONSP (tail)
543 || (tail = get_keymap (tail, 0, autoload), CONSP (tail)));
544 tail = XCDR (tail))
545 {
546 Lisp_Object binding;
547
548 binding = XCAR (tail);
549 if (SYMBOLP (binding))
550 {
551 /* If NOINHERIT, stop finding prefix definitions
552 after we pass a second occurrence of the `keymap' symbol. */
553 if (noinherit && EQ (binding, Qkeymap))
554 return Qnil;
555 }
556 else if (CONSP (binding))
557 {
558 Lisp_Object key = XCAR (binding);
559
560 if (EQ (key, idx))
561 val = XCDR (binding);
562 else if (t_ok
563 && INTEGERP (idx)
564 && (XINT (idx) & CHAR_MODIFIER_MASK) == 0
565 && INTEGERP (key)
566 && (XINT (key) & CHAR_MODIFIER_MASK) == 0
567 && !SINGLE_BYTE_CHAR_P (XINT (idx))
568 && !SINGLE_BYTE_CHAR_P (XINT (key))
569 && CHAR_VALID_P (XINT (key), 1)
570 && !CHAR_VALID_P (XINT (key), 0)
571 && (CHAR_CHARSET (XINT (key))
572 == CHAR_CHARSET (XINT (idx))))
573 {
574 /* KEY is the generic character of the charset of IDX.
575 Use KEY's binding if there isn't a binding for IDX
576 itself. */
577 t_binding = XCDR (binding);
578 t_ok = 0;
579 }
580 else if (t_ok > 1 && EQ (key, Qt))
581 {
582 t_binding = XCDR (binding);
583 t_ok = 1;
584 }
585 }
586 else if (VECTORP (binding))
587 {
588 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (binding))
589 val = AREF (binding, XFASTINT (idx));
590 }
591 else if (CHAR_TABLE_P (binding))
592 {
593 /* Character codes with modifiers
594 are not included in a char-table.
595 All character codes without modifiers are included. */
596 if (NATNUMP (idx) && (XFASTINT (idx) & CHAR_MODIFIER_MASK) == 0)
597 {
598 val = Faref (binding, idx);
599 /* `nil' has a special meaning for char-tables, so
600 we use something else to record an explicitly
601 unbound entry. */
602 if (NILP (val))
603 val = Qunbound;
604 }
605 }
606
607 /* If we found a binding, clean it up and return it. */
608 if (!EQ (val, Qunbound))
609 {
610 if (EQ (val, Qt))
611 /* A Qt binding is just like an explicit nil binding
612 (i.e. it shadows any parent binding but not bindings in
613 keymaps of lower precedence). */
614 val = Qnil;
615 val = get_keyelt (val, autoload);
616 if (KEYMAPP (val))
617 fix_submap_inheritance (map, idx, val);
618 return val;
619 }
620 QUIT;
621 }
622
623 return get_keyelt (t_binding, autoload);
624 }
625 }
626
627 /* Given OBJECT which was found in a slot in a keymap,
628 trace indirect definitions to get the actual definition of that slot.
629 An indirect definition is a list of the form
630 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
631 and INDEX is the object to look up in KEYMAP to yield the definition.
632
633 Also if OBJECT has a menu string as the first element,
634 remove that. Also remove a menu help string as second element.
635
636 If AUTOLOAD is nonzero, load autoloadable keymaps
637 that are referred to with indirection. */
638
639 Lisp_Object
640 get_keyelt (object, autoload)
641 register Lisp_Object object;
642 int autoload;
643 {
644 while (1)
645 {
646 if (!(CONSP (object)))
647 /* This is really the value. */
648 return object;
649
650 /* If the keymap contents looks like (keymap ...) or (lambda ...)
651 then use itself. */
652 else if (EQ (XCAR (object), Qkeymap) || EQ (XCAR (object), Qlambda))
653 return object;
654
655 /* If the keymap contents looks like (menu-item name . DEFN)
656 or (menu-item name DEFN ...) then use DEFN.
657 This is a new format menu item. */
658 else if (EQ (XCAR (object), Qmenu_item))
659 {
660 if (CONSP (XCDR (object)))
661 {
662 Lisp_Object tem;
663
664 object = XCDR (XCDR (object));
665 tem = object;
666 if (CONSP (object))
667 object = XCAR (object);
668
669 /* If there's a `:filter FILTER', apply FILTER to the
670 menu-item's definition to get the real definition to
671 use. */
672 for (; CONSP (tem) && CONSP (XCDR (tem)); tem = XCDR (tem))
673 if (EQ (XCAR (tem), QCfilter) && autoload)
674 {
675 Lisp_Object filter;
676 filter = XCAR (XCDR (tem));
677 filter = list2 (filter, list2 (Qquote, object));
678 object = menu_item_eval_property (filter);
679 break;
680 }
681 }
682 else
683 /* Invalid keymap */
684 return object;
685 }
686
687 /* If the keymap contents looks like (STRING . DEFN), use DEFN.
688 Keymap alist elements like (CHAR MENUSTRING . DEFN)
689 will be used by HierarKey menus. */
690 else if (STRINGP (XCAR (object)))
691 {
692 object = XCDR (object);
693 /* Also remove a menu help string, if any,
694 following the menu item name. */
695 if (CONSP (object) && STRINGP (XCAR (object)))
696 object = XCDR (object);
697 /* Also remove the sublist that caches key equivalences, if any. */
698 if (CONSP (object) && CONSP (XCAR (object)))
699 {
700 Lisp_Object carcar;
701 carcar = XCAR (XCAR (object));
702 if (NILP (carcar) || VECTORP (carcar))
703 object = XCDR (object);
704 }
705 }
706
707 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
708 else
709 {
710 Lisp_Object map;
711 map = get_keymap (Fcar_safe (object), 0, autoload);
712 return (!CONSP (map) ? object /* Invalid keymap */
713 : access_keymap (map, Fcdr (object), 0, 0, autoload));
714 }
715 }
716 }
717
718 static Lisp_Object
719 store_in_keymap (keymap, idx, def)
720 Lisp_Object keymap;
721 register Lisp_Object idx;
722 register Lisp_Object def;
723 {
724 /* Flush any reverse-map cache. */
725 where_is_cache = Qnil;
726 where_is_cache_keymaps = Qt;
727
728 /* If we are preparing to dump, and DEF is a menu element
729 with a menu item indicator, copy it to ensure it is not pure. */
730 if (CONSP (def) && PURE_P (def)
731 && (EQ (XCAR (def), Qmenu_item) || STRINGP (XCAR (def))))
732 def = Fcons (XCAR (def), XCDR (def));
733
734 if (!CONSP (keymap) || !EQ (XCAR (keymap), Qkeymap))
735 error ("attempt to define a key in a non-keymap");
736
737 /* If idx is a list (some sort of mouse click, perhaps?),
738 the index we want to use is the car of the list, which
739 ought to be a symbol. */
740 idx = EVENT_HEAD (idx);
741
742 /* If idx is a symbol, it might have modifiers, which need to
743 be put in the canonical order. */
744 if (SYMBOLP (idx))
745 idx = reorder_modifiers (idx);
746 else if (INTEGERP (idx))
747 /* Clobber the high bits that can be present on a machine
748 with more than 24 bits of integer. */
749 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
750
751 /* Scan the keymap for a binding of idx. */
752 {
753 Lisp_Object tail;
754
755 /* The cons after which we should insert new bindings. If the
756 keymap has a table element, we record its position here, so new
757 bindings will go after it; this way, the table will stay
758 towards the front of the alist and character lookups in dense
759 keymaps will remain fast. Otherwise, this just points at the
760 front of the keymap. */
761 Lisp_Object insertion_point;
762
763 insertion_point = keymap;
764 for (tail = XCDR (keymap); CONSP (tail); tail = XCDR (tail))
765 {
766 Lisp_Object elt;
767
768 elt = XCAR (tail);
769 if (VECTORP (elt))
770 {
771 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (elt))
772 {
773 ASET (elt, XFASTINT (idx), def);
774 return def;
775 }
776 insertion_point = tail;
777 }
778 else if (CHAR_TABLE_P (elt))
779 {
780 /* Character codes with modifiers
781 are not included in a char-table.
782 All character codes without modifiers are included. */
783 if (NATNUMP (idx) && !(XFASTINT (idx) & CHAR_MODIFIER_MASK))
784 {
785 Faset (elt, idx,
786 /* `nil' has a special meaning for char-tables, so
787 we use something else to record an explicitly
788 unbound entry. */
789 NILP (def) ? Qt : def);
790 return def;
791 }
792 insertion_point = tail;
793 }
794 else if (CONSP (elt))
795 {
796 if (EQ (idx, XCAR (elt)))
797 {
798 XSETCDR (elt, def);
799 return def;
800 }
801 }
802 else if (EQ (elt, Qkeymap))
803 /* If we find a 'keymap' symbol in the spine of KEYMAP,
804 then we must have found the start of a second keymap
805 being used as the tail of KEYMAP, and a binding for IDX
806 should be inserted before it. */
807 goto keymap_end;
808
809 QUIT;
810 }
811
812 keymap_end:
813 /* We have scanned the entire keymap, and not found a binding for
814 IDX. Let's add one. */
815 XSETCDR (insertion_point,
816 Fcons (Fcons (idx, def), XCDR (insertion_point)));
817 }
818
819 return def;
820 }
821
822 EXFUN (Fcopy_keymap, 1);
823
824 void
825 copy_keymap_1 (chartable, idx, elt)
826 Lisp_Object chartable, idx, elt;
827 {
828 if (CONSP (elt) && EQ (XCAR (elt), Qkeymap))
829 Faset (chartable, idx, Fcopy_keymap (elt));
830 }
831
832 DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
833 doc: /* Return a copy of the keymap KEYMAP.
834 The copy starts out with the same definitions of KEYMAP,
835 but changing either the copy or KEYMAP does not affect the other.
836 Any key definitions that are subkeymaps are recursively copied.
837 However, a key definition which is a symbol whose definition is a keymap
838 is not copied. */)
839 (keymap)
840 Lisp_Object keymap;
841 {
842 /* FIXME: This doesn't properly copy menu-items in vectors. */
843 /* FIXME: This also copies the parent keymap. */
844
845 register Lisp_Object copy, tail;
846
847 copy = Fcopy_alist (get_keymap (keymap, 1, 0));
848
849 for (tail = copy; CONSP (tail); tail = XCDR (tail))
850 {
851 Lisp_Object elt;
852
853 elt = XCAR (tail);
854 if (CHAR_TABLE_P (elt))
855 {
856 Lisp_Object indices[3];
857
858 elt = Fcopy_sequence (elt);
859 XSETCAR (tail, elt);
860
861 map_char_table (copy_keymap_1, Qnil, elt, elt, 0, indices);
862 }
863 else if (VECTORP (elt))
864 {
865 int i;
866
867 elt = Fcopy_sequence (elt);
868 XSETCAR (tail, elt);
869
870 for (i = 0; i < ASIZE (elt); i++)
871 if (CONSP (AREF (elt, i)) && EQ (XCAR (AREF (elt, i)), Qkeymap))
872 ASET (elt, i, Fcopy_keymap (AREF (elt, i)));
873 }
874 else if (CONSP (elt) && CONSP (XCDR (elt)))
875 {
876 Lisp_Object tem;
877 tem = XCDR (elt);
878
879 /* Is this a new format menu item. */
880 if (EQ (XCAR (tem),Qmenu_item))
881 {
882 /* Copy cell with menu-item marker. */
883 XSETCDR (elt,
884 Fcons (XCAR (tem), XCDR (tem)));
885 elt = XCDR (elt);
886 tem = XCDR (elt);
887 if (CONSP (tem))
888 {
889 /* Copy cell with menu-item name. */
890 XSETCDR (elt,
891 Fcons (XCAR (tem), XCDR (tem)));
892 elt = XCDR (elt);
893 tem = XCDR (elt);
894 };
895 if (CONSP (tem))
896 {
897 /* Copy cell with binding and if the binding is a keymap,
898 copy that. */
899 XSETCDR (elt,
900 Fcons (XCAR (tem), XCDR (tem)));
901 elt = XCDR (elt);
902 tem = XCAR (elt);
903 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
904 XSETCAR (elt, Fcopy_keymap (tem));
905 tem = XCDR (elt);
906 if (CONSP (tem) && CONSP (XCAR (tem)))
907 /* Delete cache for key equivalences. */
908 XSETCDR (elt, XCDR (tem));
909 }
910 }
911 else
912 {
913 /* It may be an old fomat menu item.
914 Skip the optional menu string.
915 */
916 if (STRINGP (XCAR (tem)))
917 {
918 /* Copy the cell, since copy-alist didn't go this deep. */
919 XSETCDR (elt,
920 Fcons (XCAR (tem), XCDR (tem)));
921 elt = XCDR (elt);
922 tem = XCDR (elt);
923 /* Also skip the optional menu help string. */
924 if (CONSP (tem) && STRINGP (XCAR (tem)))
925 {
926 XSETCDR (elt,
927 Fcons (XCAR (tem), XCDR (tem)));
928 elt = XCDR (elt);
929 tem = XCDR (elt);
930 }
931 /* There may also be a list that caches key equivalences.
932 Just delete it for the new keymap. */
933 if (CONSP (tem)
934 && CONSP (XCAR (tem))
935 && (NILP (XCAR (XCAR (tem)))
936 || VECTORP (XCAR (XCAR (tem)))))
937 XSETCDR (elt, XCDR (tem));
938 }
939 if (CONSP (elt)
940 && CONSP (XCDR (elt))
941 && EQ (XCAR (XCDR (elt)), Qkeymap))
942 XSETCDR (elt, Fcopy_keymap (XCDR (elt)));
943 }
944
945 }
946 }
947
948 return copy;
949 }
950 \f
951 /* Simple Keymap mutators and accessors. */
952
953 /* GC is possible in this function if it autoloads a keymap. */
954
955 DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
956 doc: /* Args KEYMAP, KEY, DEF. Define key sequence KEY, in KEYMAP, as DEF.
957 KEYMAP is a keymap.
958
959 KEY is a string or a vector of symbols and characters meaning a
960 sequence of keystrokes and events. Non-ASCII characters with codes
961 above 127 (such as ISO Latin-1) can be included if you use a vector.
962
963 DEF is anything that can be a key's definition:
964 nil (means key is undefined in this keymap),
965 a command (a Lisp function suitable for interactive calling)
966 a string (treated as a keyboard macro),
967 a keymap (to define a prefix key),
968 a symbol. When the key is looked up, the symbol will stand for its
969 function definition, which should at that time be one of the above,
970 or another symbol whose function definition is used, etc.
971 a cons (STRING . DEFN), meaning that DEFN is the definition
972 (DEFN should be a valid definition in its own right),
973 or a cons (KEYMAP . CHAR), meaning use definition of CHAR in map KEYMAP.
974
975 If KEYMAP is a sparse keymap, the pair binding KEY to DEF is added at
976 the front of KEYMAP.
977
978 KEY may also be a command name which is remapped to DEF. In this case,
979 DEF must be a symbol or nil (to remove a previous binding of KEY). */)
980 (keymap, key, def)
981 Lisp_Object keymap;
982 Lisp_Object key;
983 Lisp_Object def;
984 {
985 register int idx;
986 register Lisp_Object c;
987 register Lisp_Object cmd;
988 int metized = 0;
989 int meta_bit;
990 int length;
991 struct gcpro gcpro1, gcpro2, gcpro3;
992
993 keymap = get_keymap (keymap, 1, 1);
994
995 if (SYMBOLP (key))
996 {
997 /* A command may only be remapped to another command. */
998
999 /* I thought of using is_command_symbol above and below instead
1000 of SYMBOLP, since remapping only works for sych symbols.
1001 However, to make that a requirement would make it impossible
1002 to remap a command before it has been defined, e.g. if a minor
1003 mode were to remap a command of another minor mode which has
1004 not yet been loaded, it would fail. So just use the least
1005 restrictive sanity check here. */
1006 if (!SYMBOLP (def))
1007 key = wrong_type_argument (Qsymbolp, def);
1008 else
1009 key = Fmake_vector (make_number (1), key);
1010 }
1011 else if (!VECTORP (key) && !STRINGP (key))
1012 key = wrong_type_argument (Qarrayp, key);
1013
1014 length = XFASTINT (Flength (key));
1015 if (length == 0)
1016 return Qnil;
1017
1018 if (SYMBOLP (def) && !EQ (Vdefine_key_rebound_commands, Qt))
1019 Vdefine_key_rebound_commands = Fcons (def, Vdefine_key_rebound_commands);
1020
1021 GCPRO3 (keymap, key, def);
1022
1023 if (VECTORP (key))
1024 meta_bit = meta_modifier;
1025 else
1026 meta_bit = 0x80;
1027
1028 idx = 0;
1029 while (1)
1030 {
1031 c = Faref (key, make_number (idx));
1032
1033 if (CONSP (c) && lucid_event_type_list_p (c))
1034 c = Fevent_convert_list (c);
1035
1036 if (SYMBOLP (c))
1037 silly_event_symbol_error (c);
1038
1039 if (INTEGERP (c)
1040 && (XINT (c) & meta_bit)
1041 && !metized)
1042 {
1043 c = meta_prefix_char;
1044 metized = 1;
1045 }
1046 else
1047 {
1048 if (INTEGERP (c))
1049 XSETINT (c, XINT (c) & ~meta_bit);
1050
1051 metized = 0;
1052 idx++;
1053 }
1054
1055 if (!INTEGERP (c) && !SYMBOLP (c) && !CONSP (c))
1056 error ("Key sequence contains invalid event");
1057
1058 if (idx == length)
1059 RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
1060
1061 cmd = access_keymap (keymap, c, 0, 1, 1);
1062
1063 /* If this key is undefined, make it a prefix. */
1064 if (NILP (cmd))
1065 cmd = define_as_prefix (keymap, c);
1066
1067 keymap = get_keymap (cmd, 0, 1);
1068 if (!CONSP (keymap))
1069 /* We must use Fkey_description rather than just passing key to
1070 error; key might be a vector, not a string. */
1071 error ("Key sequence %s uses invalid prefix characters",
1072 XSTRING (Fkey_description (key))->data);
1073 }
1074 }
1075
1076 /* Value is number if KEY is too long; nil if valid but has no definition. */
1077 /* GC is possible in this function if it autoloads a keymap. */
1078
1079 DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
1080 doc: /* In keymap KEYMAP, look up key sequence KEY. Return the definition.
1081 nil means undefined. See doc of `define-key' for kinds of definitions.
1082
1083 A number as value means KEY is "too long";
1084 that is, characters or symbols in it except for the last one
1085 fail to be a valid sequence of prefix characters in KEYMAP.
1086 The number is how many characters at the front of KEY
1087 it takes to reach a non-prefix command.
1088
1089 Normally, `lookup-key' ignores bindings for t, which act as default
1090 bindings, used when nothing else in the keymap applies; this makes it
1091 usable as a general function for probing keymaps. However, if the
1092 third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will
1093 recognize the default bindings, just as `read-key-sequence' does. */)
1094 (keymap, key, accept_default)
1095 register Lisp_Object keymap;
1096 Lisp_Object key;
1097 Lisp_Object accept_default;
1098 {
1099 register int idx;
1100 register Lisp_Object cmd;
1101 register Lisp_Object c;
1102 int length;
1103 int t_ok = !NILP (accept_default);
1104 struct gcpro gcpro1;
1105
1106 keymap = get_keymap (keymap, 1, 1);
1107
1108 /* Command remapping is simple. */
1109 if (SYMBOLP (key))
1110 return access_keymap (keymap, key, t_ok, 0, 1);
1111
1112 if (!VECTORP (key) && !STRINGP (key))
1113 key = wrong_type_argument (Qarrayp, key);
1114
1115 length = XFASTINT (Flength (key));
1116 if (length == 0)
1117 return keymap;
1118
1119 GCPRO1 (key);
1120
1121 idx = 0;
1122 while (1)
1123 {
1124 c = Faref (key, make_number (idx++));
1125
1126 if (CONSP (c) && lucid_event_type_list_p (c))
1127 c = Fevent_convert_list (c);
1128
1129 /* Turn the 8th bit of string chars into a meta modifier. */
1130 if (XINT (c) & 0x80 && STRINGP (key))
1131 XSETINT (c, (XINT (c) | meta_modifier) & ~0x80);
1132
1133 if (!INTEGERP (c) && !SYMBOLP (c) && !CONSP (c))
1134 error ("Key sequence contains invalid event");
1135
1136 cmd = access_keymap (keymap, c, t_ok, 0, 1);
1137 if (idx == length)
1138 RETURN_UNGCPRO (cmd);
1139
1140 keymap = get_keymap (cmd, 0, 1);
1141 if (!CONSP (keymap))
1142 RETURN_UNGCPRO (make_number (idx));
1143
1144 QUIT;
1145 }
1146 }
1147
1148 /* Make KEYMAP define event C as a keymap (i.e., as a prefix).
1149 Assume that currently it does not define C at all.
1150 Return the keymap. */
1151
1152 static Lisp_Object
1153 define_as_prefix (keymap, c)
1154 Lisp_Object keymap, c;
1155 {
1156 Lisp_Object cmd;
1157
1158 cmd = Fmake_sparse_keymap (Qnil);
1159 /* If this key is defined as a prefix in an inherited keymap,
1160 make it a prefix in this map, and make its definition
1161 inherit the other prefix definition. */
1162 cmd = nconc2 (cmd, access_keymap (keymap, c, 0, 0, 0));
1163 store_in_keymap (keymap, c, cmd);
1164
1165 return cmd;
1166 }
1167
1168 /* Append a key to the end of a key sequence. We always make a vector. */
1169
1170 Lisp_Object
1171 append_key (key_sequence, key)
1172 Lisp_Object key_sequence, key;
1173 {
1174 Lisp_Object args[2];
1175
1176 args[0] = key_sequence;
1177
1178 args[1] = Fcons (key, Qnil);
1179 return Fvconcat (2, args);
1180 }
1181
1182 /* Given a event type C which is a symbol,
1183 signal an error if is a mistake such as RET or M-RET or C-DEL, etc. */
1184
1185 static void
1186 silly_event_symbol_error (c)
1187 Lisp_Object c;
1188 {
1189 Lisp_Object parsed, base, name, assoc;
1190 int modifiers;
1191
1192 parsed = parse_modifiers (c);
1193 modifiers = (int) XUINT (XCAR (XCDR (parsed)));
1194 base = XCAR (parsed);
1195 name = Fsymbol_name (base);
1196 /* This alist includes elements such as ("RET" . "\\r"). */
1197 assoc = Fassoc (name, exclude_keys);
1198
1199 if (! NILP (assoc))
1200 {
1201 char new_mods[sizeof ("\\A-\\C-\\H-\\M-\\S-\\s-")];
1202 char *p = new_mods;
1203 Lisp_Object keystring;
1204 if (modifiers & alt_modifier)
1205 { *p++ = '\\'; *p++ = 'A'; *p++ = '-'; }
1206 if (modifiers & ctrl_modifier)
1207 { *p++ = '\\'; *p++ = 'C'; *p++ = '-'; }
1208 if (modifiers & hyper_modifier)
1209 { *p++ = '\\'; *p++ = 'H'; *p++ = '-'; }
1210 if (modifiers & meta_modifier)
1211 { *p++ = '\\'; *p++ = 'M'; *p++ = '-'; }
1212 if (modifiers & shift_modifier)
1213 { *p++ = '\\'; *p++ = 'S'; *p++ = '-'; }
1214 if (modifiers & super_modifier)
1215 { *p++ = '\\'; *p++ = 's'; *p++ = '-'; }
1216 *p = 0;
1217
1218 c = reorder_modifiers (c);
1219 keystring = concat2 (build_string (new_mods), XCDR (assoc));
1220
1221 error ((modifiers & ~meta_modifier
1222 ? "To bind the key %s, use [?%s], not [%s]"
1223 : "To bind the key %s, use \"%s\", not [%s]"),
1224 XSYMBOL (c)->name->data, XSTRING (keystring)->data,
1225 XSYMBOL (c)->name->data);
1226 }
1227 }
1228 \f
1229 /* Global, local, and minor mode keymap stuff. */
1230
1231 /* We can't put these variables inside current_minor_maps, since under
1232 some systems, static gets macro-defined to be the empty string.
1233 Ickypoo. */
1234 static Lisp_Object *cmm_modes, *cmm_maps;
1235 static int cmm_size;
1236
1237 /* Error handler used in current_minor_maps. */
1238 static Lisp_Object
1239 current_minor_maps_error ()
1240 {
1241 return Qnil;
1242 }
1243
1244 /* Store a pointer to an array of the keymaps of the currently active
1245 minor modes in *buf, and return the number of maps it contains.
1246
1247 This function always returns a pointer to the same buffer, and may
1248 free or reallocate it, so if you want to keep it for a long time or
1249 hand it out to lisp code, copy it. This procedure will be called
1250 for every key sequence read, so the nice lispy approach (return a
1251 new assoclist, list, what have you) for each invocation would
1252 result in a lot of consing over time.
1253
1254 If we used xrealloc/xmalloc and ran out of memory, they would throw
1255 back to the command loop, which would try to read a key sequence,
1256 which would call this function again, resulting in an infinite
1257 loop. Instead, we'll use realloc/malloc and silently truncate the
1258 list, let the key sequence be read, and hope some other piece of
1259 code signals the error. */
1260 int
1261 current_minor_maps (modeptr, mapptr)
1262 Lisp_Object **modeptr, **mapptr;
1263 {
1264 int i = 0;
1265 int list_number = 0;
1266 Lisp_Object alist, assoc, var, val;
1267 Lisp_Object lists[2];
1268
1269 lists[0] = Vminor_mode_overriding_map_alist;
1270 lists[1] = Vminor_mode_map_alist;
1271
1272 for (list_number = 0; list_number < 2; list_number++)
1273 for (alist = lists[list_number];
1274 CONSP (alist);
1275 alist = XCDR (alist))
1276 if ((assoc = XCAR (alist), CONSP (assoc))
1277 && (var = XCAR (assoc), SYMBOLP (var))
1278 && (val = find_symbol_value (var), !EQ (val, Qunbound))
1279 && !NILP (val))
1280 {
1281 Lisp_Object temp;
1282
1283 /* If a variable has an entry in Vminor_mode_overriding_map_alist,
1284 and also an entry in Vminor_mode_map_alist,
1285 ignore the latter. */
1286 if (list_number == 1)
1287 {
1288 val = assq_no_quit (var, lists[0]);
1289 if (!NILP (val))
1290 continue;
1291 }
1292
1293 if (i >= cmm_size)
1294 {
1295 Lisp_Object *newmodes, *newmaps;
1296
1297 /* Use malloc/realloc here. See the comment above
1298 this function. */
1299 if (cmm_maps)
1300 {
1301 BLOCK_INPUT;
1302 cmm_size *= 2;
1303 newmodes
1304 = (Lisp_Object *) realloc (cmm_modes,
1305 cmm_size * sizeof *newmodes);
1306 newmaps
1307 = (Lisp_Object *) realloc (cmm_maps,
1308 cmm_size * sizeof *newmaps);
1309 UNBLOCK_INPUT;
1310 }
1311 else
1312 {
1313 BLOCK_INPUT;
1314 cmm_size = 30;
1315 newmodes
1316 = (Lisp_Object *) malloc (cmm_size * sizeof *newmodes);
1317 newmaps
1318 = (Lisp_Object *) malloc (cmm_size * sizeof *newmaps);
1319 UNBLOCK_INPUT;
1320 }
1321
1322 if (newmodes)
1323 cmm_modes = newmodes;
1324 if (newmaps)
1325 cmm_maps = newmaps;
1326
1327 if (newmodes == NULL || newmaps == NULL)
1328 break;
1329 }
1330
1331 /* Get the keymap definition--or nil if it is not defined. */
1332 temp = internal_condition_case_1 (Findirect_function,
1333 XCDR (assoc),
1334 Qerror, current_minor_maps_error);
1335 if (!NILP (temp))
1336 {
1337 cmm_modes[i] = var;
1338 cmm_maps [i] = temp;
1339 i++;
1340 }
1341 }
1342
1343 if (modeptr) *modeptr = cmm_modes;
1344 if (mapptr) *mapptr = cmm_maps;
1345 return i;
1346 }
1347
1348 DEFUN ("current-active-maps", Fcurrent_active_maps, Scurrent_active_maps,
1349 0, 1, 0,
1350 doc: /* Return a list of the currently active keymaps.
1351 OLP if non-nil indicates that we should obey `overriding-local-map' and
1352 `overriding-terminal-local-map'. */)
1353 (olp)
1354 Lisp_Object olp;
1355 {
1356 Lisp_Object keymaps = Fcons (current_global_map, Qnil);
1357
1358 if (!NILP (olp))
1359 {
1360 if (!NILP (Voverriding_local_map))
1361 keymaps = Fcons (Voverriding_local_map, keymaps);
1362 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1363 keymaps = Fcons (current_kboard->Voverriding_terminal_local_map, keymaps);
1364 }
1365 if (NILP (XCDR (keymaps)))
1366 {
1367 Lisp_Object local;
1368 Lisp_Object *maps;
1369 int nmaps, i;
1370
1371 local = get_local_map (PT, current_buffer, Qlocal_map);
1372 if (!NILP (local))
1373 keymaps = Fcons (local, keymaps);
1374
1375 nmaps = current_minor_maps (0, &maps);
1376
1377 for (i = --nmaps; i >= 0; i--)
1378 if (!NILP (maps[i]))
1379 keymaps = Fcons (maps[i], keymaps);
1380
1381 local = get_local_map (PT, current_buffer, Qkeymap);
1382 if (!NILP (local))
1383 keymaps = Fcons (local, keymaps);
1384 }
1385
1386 return keymaps;
1387 }
1388
1389 /* Like Fcommandp, but looks specifically for a command symbol, and
1390 doesn't signal errors. Returns 1 if FUNCTION is a command symbol. */
1391 int
1392 is_command_symbol (function)
1393 Lisp_Object function;
1394 {
1395 if (!SYMBOLP (function) || EQ (function, Qunbound))
1396 return 0;
1397
1398 function = indirect_function (function);
1399 if (SYMBOLP (function) && EQ (function, Qunbound))
1400 return 0;
1401
1402 if (SUBRP (function))
1403 return (XSUBR (function)->prompt != 0);
1404
1405 if (COMPILEDP (function))
1406 return ((ASIZE (function) & PSEUDOVECTOR_SIZE_MASK) > COMPILED_INTERACTIVE);
1407
1408 if (CONSP (function))
1409 {
1410 Lisp_Object funcar;
1411
1412 funcar = Fcar (function);
1413 if (SYMBOLP (funcar))
1414 {
1415 if (EQ (funcar, Qlambda))
1416 return !NILP (Fassq (Qinteractive, Fcdr (Fcdr (function))));
1417 if (EQ (funcar, Qautoload))
1418 return !NILP (Fcar (Fcdr (Fcdr (Fcdr (function)))));
1419 }
1420 }
1421 return 0;
1422 }
1423
1424 /* GC is possible in this function if it autoloads a keymap. */
1425
1426 DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 3, 0,
1427 doc: /* Return the binding for command KEY in current keymaps.
1428 KEY is a string or vector, a sequence of keystrokes.
1429 The binding is probably a symbol with a function definition.
1430
1431 Normally, `key-binding' ignores bindings for t, which act as default
1432 bindings, used when nothing else in the keymap applies; this makes it
1433 usable as a general function for probing keymaps. However, if the
1434 optional second argument ACCEPT-DEFAULT is non-nil, `key-binding' does
1435 recognize the default bindings, just as `read-key-sequence' does.
1436
1437 Like the normal command loop, `key-binding' will remap the command
1438 resulting from looking up KEY by looking up the command in the
1439 currrent keymaps. However, if the optional third argument NO-REMAP
1440 is non-nil, `key-binding' returns the unmapped command. */)
1441 (key, accept_default, no_remap)
1442 Lisp_Object key, accept_default, no_remap;
1443 {
1444 Lisp_Object *maps, value;
1445 int nmaps, i;
1446 struct gcpro gcpro1;
1447
1448 GCPRO1 (key);
1449
1450 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1451 {
1452 value = Flookup_key (current_kboard->Voverriding_terminal_local_map,
1453 key, accept_default);
1454 if (! NILP (value) && !INTEGERP (value))
1455 goto done;
1456 }
1457 else if (!NILP (Voverriding_local_map))
1458 {
1459 value = Flookup_key (Voverriding_local_map, key, accept_default);
1460 if (! NILP (value) && !INTEGERP (value))
1461 goto done;
1462 }
1463 else
1464 {
1465 Lisp_Object local;
1466
1467 local = get_local_map (PT, current_buffer, Qkeymap);
1468 if (! NILP (local))
1469 {
1470 value = Flookup_key (local, key, accept_default);
1471 if (! NILP (value) && !INTEGERP (value))
1472 goto done;
1473 }
1474
1475 nmaps = current_minor_maps (0, &maps);
1476 /* Note that all these maps are GCPRO'd
1477 in the places where we found them. */
1478
1479 for (i = 0; i < nmaps; i++)
1480 if (! NILP (maps[i]))
1481 {
1482 value = Flookup_key (maps[i], key, accept_default);
1483 if (! NILP (value) && !INTEGERP (value))
1484 goto done;
1485 }
1486
1487 local = get_local_map (PT, current_buffer, Qlocal_map);
1488 if (! NILP (local))
1489 {
1490 value = Flookup_key (local, key, accept_default);
1491 if (! NILP (value) && !INTEGERP (value))
1492 goto done;
1493 }
1494 }
1495
1496 value = Flookup_key (current_global_map, key, accept_default);
1497
1498 done:
1499 UNGCPRO;
1500 if (NILP (value) || INTEGERP (value))
1501 return Qnil;
1502
1503 /* If the result of the ordinary keymap lookup is an interactive
1504 command, look for a key binding (ie. remapping) for that command. */
1505
1506 if (NILP (no_remap) && is_command_symbol (value))
1507 {
1508 Lisp_Object value1;
1509
1510 value1 = Fkey_binding (value, accept_default, Qt);
1511 if (!NILP (value1) && is_command_symbol (value1))
1512 value = value1;
1513 }
1514
1515 return value;
1516 }
1517
1518 /* GC is possible in this function if it autoloads a keymap. */
1519
1520 DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
1521 doc: /* Return the binding for command KEYS in current local keymap only.
1522 KEYS is a string, a sequence of keystrokes.
1523 The binding is probably a symbol with a function definition.
1524
1525 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1526 bindings; see the description of `lookup-key' for more details about this. */)
1527 (keys, accept_default)
1528 Lisp_Object keys, accept_default;
1529 {
1530 register Lisp_Object map;
1531 map = current_buffer->keymap;
1532 if (NILP (map))
1533 return Qnil;
1534 return Flookup_key (map, keys, accept_default);
1535 }
1536
1537 /* GC is possible in this function if it autoloads a keymap. */
1538
1539 DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
1540 doc: /* Return the binding for command KEYS in current global keymap only.
1541 KEYS is a string, a sequence of keystrokes.
1542 The binding is probably a symbol with a function definition.
1543 This function's return values are the same as those of lookup-key
1544 \(which see).
1545
1546 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1547 bindings; see the description of `lookup-key' for more details about this. */)
1548 (keys, accept_default)
1549 Lisp_Object keys, accept_default;
1550 {
1551 return Flookup_key (current_global_map, keys, accept_default);
1552 }
1553
1554 /* GC is possible in this function if it autoloads a keymap. */
1555
1556 DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
1557 doc: /* Find the visible minor mode bindings of KEY.
1558 Return an alist of pairs (MODENAME . BINDING), where MODENAME is the
1559 the symbol which names the minor mode binding KEY, and BINDING is
1560 KEY's definition in that mode. In particular, if KEY has no
1561 minor-mode bindings, return nil. If the first binding is a
1562 non-prefix, all subsequent bindings will be omitted, since they would
1563 be ignored. Similarly, the list doesn't include non-prefix bindings
1564 that come after prefix bindings.
1565
1566 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1567 bindings; see the description of `lookup-key' for more details about this. */)
1568 (key, accept_default)
1569 Lisp_Object key, accept_default;
1570 {
1571 Lisp_Object *modes, *maps;
1572 int nmaps;
1573 Lisp_Object binding;
1574 int i, j;
1575 struct gcpro gcpro1, gcpro2;
1576
1577 nmaps = current_minor_maps (&modes, &maps);
1578 /* Note that all these maps are GCPRO'd
1579 in the places where we found them. */
1580
1581 binding = Qnil;
1582 GCPRO2 (key, binding);
1583
1584 for (i = j = 0; i < nmaps; i++)
1585 if (!NILP (maps[i])
1586 && !NILP (binding = Flookup_key (maps[i], key, accept_default))
1587 && !INTEGERP (binding))
1588 {
1589 if (KEYMAPP (binding))
1590 maps[j++] = Fcons (modes[i], binding);
1591 else if (j == 0)
1592 RETURN_UNGCPRO (Fcons (Fcons (modes[i], binding), Qnil));
1593 }
1594
1595 UNGCPRO;
1596 return Flist (j, maps);
1597 }
1598
1599 DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 3, 0,
1600 doc: /* Define COMMAND as a prefix command. COMMAND should be a symbol.
1601 A new sparse keymap is stored as COMMAND's function definition and its value.
1602 If a second optional argument MAPVAR is given, the map is stored as
1603 its value instead of as COMMAND's value; but COMMAND is still defined
1604 as a function.
1605 The third optional argument NAME, if given, supplies a menu name
1606 string for the map. This is required to use the keymap as a menu. */)
1607 (command, mapvar, name)
1608 Lisp_Object command, mapvar, name;
1609 {
1610 Lisp_Object map;
1611 map = Fmake_sparse_keymap (name);
1612 Ffset (command, map);
1613 if (!NILP (mapvar))
1614 Fset (mapvar, map);
1615 else
1616 Fset (command, map);
1617 return command;
1618 }
1619
1620 DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
1621 doc: /* Select KEYMAP as the global keymap. */)
1622 (keymap)
1623 Lisp_Object keymap;
1624 {
1625 keymap = get_keymap (keymap, 1, 1);
1626 current_global_map = keymap;
1627
1628 return Qnil;
1629 }
1630
1631 DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
1632 doc: /* Select KEYMAP as the local keymap.
1633 If KEYMAP is nil, that means no local keymap. */)
1634 (keymap)
1635 Lisp_Object keymap;
1636 {
1637 if (!NILP (keymap))
1638 keymap = get_keymap (keymap, 1, 1);
1639
1640 current_buffer->keymap = keymap;
1641
1642 return Qnil;
1643 }
1644
1645 DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
1646 doc: /* Return current buffer's local keymap, or nil if it has none. */)
1647 ()
1648 {
1649 return current_buffer->keymap;
1650 }
1651
1652 DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
1653 doc: /* Return the current global keymap. */)
1654 ()
1655 {
1656 return current_global_map;
1657 }
1658
1659 DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
1660 doc: /* Return a list of keymaps for the minor modes of the current buffer. */)
1661 ()
1662 {
1663 Lisp_Object *maps;
1664 int nmaps = current_minor_maps (0, &maps);
1665
1666 return Flist (nmaps, maps);
1667 }
1668 \f
1669 /* Help functions for describing and documenting keymaps. */
1670
1671
1672 static void
1673 accessible_keymaps_1 (key, cmd, maps, tail, thisseq, is_metized)
1674 Lisp_Object maps, tail, thisseq, key, cmd;
1675 int is_metized; /* If 1, `key' is assumed to be INTEGERP. */
1676 {
1677 Lisp_Object tem;
1678
1679 cmd = get_keyelt (cmd, 0);
1680 if (NILP (cmd))
1681 return;
1682
1683 tem = get_keymap (cmd, 0, 0);
1684 if (CONSP (tem))
1685 {
1686 cmd = tem;
1687 /* Ignore keymaps that are already added to maps. */
1688 tem = Frassq (cmd, maps);
1689 if (NILP (tem))
1690 {
1691 /* If the last key in thisseq is meta-prefix-char,
1692 turn it into a meta-ized keystroke. We know
1693 that the event we're about to append is an
1694 ascii keystroke since we're processing a
1695 keymap table. */
1696 if (is_metized)
1697 {
1698 int meta_bit = meta_modifier;
1699 Lisp_Object last = make_number (XINT (Flength (thisseq)) - 1);
1700 tem = Fcopy_sequence (thisseq);
1701
1702 Faset (tem, last, make_number (XINT (key) | meta_bit));
1703
1704 /* This new sequence is the same length as
1705 thisseq, so stick it in the list right
1706 after this one. */
1707 XSETCDR (tail,
1708 Fcons (Fcons (tem, cmd), XCDR (tail)));
1709 }
1710 else
1711 {
1712 tem = append_key (thisseq, key);
1713 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1714 }
1715 }
1716 }
1717 }
1718
1719 static void
1720 accessible_keymaps_char_table (args, index, cmd)
1721 Lisp_Object args, index, cmd;
1722 {
1723 accessible_keymaps_1 (index, cmd,
1724 XCAR (XCAR (args)),
1725 XCAR (XCDR (args)),
1726 XCDR (XCDR (args)),
1727 XINT (XCDR (XCAR (args))));
1728 }
1729
1730 /* This function cannot GC. */
1731
1732 DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
1733 1, 2, 0,
1734 doc: /* Find all keymaps accessible via prefix characters from KEYMAP.
1735 Returns a list of elements of the form (KEYS . MAP), where the sequence
1736 KEYS starting from KEYMAP gets you to MAP. These elements are ordered
1737 so that the KEYS increase in length. The first element is ([] . KEYMAP).
1738 An optional argument PREFIX, if non-nil, should be a key sequence;
1739 then the value includes only maps for prefixes that start with PREFIX. */)
1740 (keymap, prefix)
1741 Lisp_Object keymap, prefix;
1742 {
1743 Lisp_Object maps, good_maps, tail;
1744 int prefixlen = 0;
1745
1746 /* no need for gcpro because we don't autoload any keymaps. */
1747
1748 if (!NILP (prefix))
1749 prefixlen = XINT (Flength (prefix));
1750
1751 if (!NILP (prefix))
1752 {
1753 /* If a prefix was specified, start with the keymap (if any) for
1754 that prefix, so we don't waste time considering other prefixes. */
1755 Lisp_Object tem;
1756 tem = Flookup_key (keymap, prefix, Qt);
1757 /* Flookup_key may give us nil, or a number,
1758 if the prefix is not defined in this particular map.
1759 It might even give us a list that isn't a keymap. */
1760 tem = get_keymap (tem, 0, 0);
1761 if (CONSP (tem))
1762 {
1763 /* Convert PREFIX to a vector now, so that later on
1764 we don't have to deal with the possibility of a string. */
1765 if (STRINGP (prefix))
1766 {
1767 int i, i_byte, c;
1768 Lisp_Object copy;
1769
1770 copy = Fmake_vector (make_number (XSTRING (prefix)->size), Qnil);
1771 for (i = 0, i_byte = 0; i < XSTRING (prefix)->size;)
1772 {
1773 int i_before = i;
1774
1775 FETCH_STRING_CHAR_ADVANCE (c, prefix, i, i_byte);
1776 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1777 c ^= 0200 | meta_modifier;
1778 ASET (copy, i_before, make_number (c));
1779 }
1780 prefix = copy;
1781 }
1782 maps = Fcons (Fcons (prefix, tem), Qnil);
1783 }
1784 else
1785 return Qnil;
1786 }
1787 else
1788 maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil),
1789 get_keymap (keymap, 1, 0)),
1790 Qnil);
1791
1792 /* For each map in the list maps,
1793 look at any other maps it points to,
1794 and stick them at the end if they are not already in the list.
1795
1796 This is a breadth-first traversal, where tail is the queue of
1797 nodes, and maps accumulates a list of all nodes visited. */
1798
1799 for (tail = maps; CONSP (tail); tail = XCDR (tail))
1800 {
1801 register Lisp_Object thisseq, thismap;
1802 Lisp_Object last;
1803 /* Does the current sequence end in the meta-prefix-char? */
1804 int is_metized;
1805
1806 thisseq = Fcar (Fcar (tail));
1807 thismap = Fcdr (Fcar (tail));
1808 last = make_number (XINT (Flength (thisseq)) - 1);
1809 is_metized = (XINT (last) >= 0
1810 /* Don't metize the last char of PREFIX. */
1811 && XINT (last) >= prefixlen
1812 && EQ (Faref (thisseq, last), meta_prefix_char));
1813
1814 for (; CONSP (thismap); thismap = XCDR (thismap))
1815 {
1816 Lisp_Object elt;
1817
1818 elt = XCAR (thismap);
1819
1820 QUIT;
1821
1822 if (CHAR_TABLE_P (elt))
1823 {
1824 Lisp_Object indices[3];
1825
1826 map_char_table (accessible_keymaps_char_table, Qnil,
1827 elt, Fcons (Fcons (maps, make_number (is_metized)),
1828 Fcons (tail, thisseq)),
1829 0, indices);
1830 }
1831 else if (VECTORP (elt))
1832 {
1833 register int i;
1834
1835 /* Vector keymap. Scan all the elements. */
1836 for (i = 0; i < ASIZE (elt); i++)
1837 accessible_keymaps_1 (make_number (i), AREF (elt, i),
1838 maps, tail, thisseq, is_metized);
1839
1840 }
1841 else if (CONSP (elt))
1842 accessible_keymaps_1 (XCAR (elt), XCDR (elt),
1843 maps, tail, thisseq,
1844 is_metized && INTEGERP (XCAR (elt)));
1845
1846 }
1847 }
1848
1849 if (NILP (prefix))
1850 return maps;
1851
1852 /* Now find just the maps whose access prefixes start with PREFIX. */
1853
1854 good_maps = Qnil;
1855 for (; CONSP (maps); maps = XCDR (maps))
1856 {
1857 Lisp_Object elt, thisseq;
1858 elt = XCAR (maps);
1859 thisseq = XCAR (elt);
1860 /* The access prefix must be at least as long as PREFIX,
1861 and the first elements must match those of PREFIX. */
1862 if (XINT (Flength (thisseq)) >= prefixlen)
1863 {
1864 int i;
1865 for (i = 0; i < prefixlen; i++)
1866 {
1867 Lisp_Object i1;
1868 XSETFASTINT (i1, i);
1869 if (!EQ (Faref (thisseq, i1), Faref (prefix, i1)))
1870 break;
1871 }
1872 if (i == prefixlen)
1873 good_maps = Fcons (elt, good_maps);
1874 }
1875 }
1876
1877 return Fnreverse (good_maps);
1878 }
1879 \f
1880 Lisp_Object Qsingle_key_description, Qkey_description;
1881
1882 /* This function cannot GC. */
1883
1884 DEFUN ("key-description", Fkey_description, Skey_description, 1, 1, 0,
1885 doc: /* Return a pretty description of key-sequence KEYS.
1886 Control characters turn into "C-foo" sequences, meta into "M-foo"
1887 spaces are put between sequence elements, etc. */)
1888 (keys)
1889 Lisp_Object keys;
1890 {
1891 int len = 0;
1892 int i, i_byte;
1893 Lisp_Object sep;
1894 Lisp_Object *args = NULL;
1895
1896 if (STRINGP (keys))
1897 {
1898 Lisp_Object vector;
1899 vector = Fmake_vector (Flength (keys), Qnil);
1900 for (i = 0, i_byte = 0; i < XSTRING (keys)->size; )
1901 {
1902 int c;
1903 int i_before = i;
1904
1905 FETCH_STRING_CHAR_ADVANCE (c, keys, i, i_byte);
1906 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1907 c ^= 0200 | meta_modifier;
1908 XSETFASTINT (AREF (vector, i_before), c);
1909 }
1910 keys = vector;
1911 }
1912
1913 if (VECTORP (keys))
1914 {
1915 /* In effect, this computes
1916 (mapconcat 'single-key-description keys " ")
1917 but we shouldn't use mapconcat because it can do GC. */
1918
1919 len = XVECTOR (keys)->size;
1920 sep = build_string (" ");
1921 /* This has one extra element at the end that we don't pass to Fconcat. */
1922 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1923
1924 for (i = 0; i < len; i++)
1925 {
1926 args[i * 2] = Fsingle_key_description (AREF (keys, i), Qnil);
1927 args[i * 2 + 1] = sep;
1928 }
1929 }
1930 else if (CONSP (keys))
1931 {
1932 /* In effect, this computes
1933 (mapconcat 'single-key-description keys " ")
1934 but we shouldn't use mapconcat because it can do GC. */
1935
1936 len = XFASTINT (Flength (keys));
1937 sep = build_string (" ");
1938 /* This has one extra element at the end that we don't pass to Fconcat. */
1939 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1940
1941 for (i = 0; i < len; i++)
1942 {
1943 args[i * 2] = Fsingle_key_description (XCAR (keys), Qnil);
1944 args[i * 2 + 1] = sep;
1945 keys = XCDR (keys);
1946 }
1947 }
1948 else
1949 keys = wrong_type_argument (Qarrayp, keys);
1950
1951 if (len == 0)
1952 return empty_string;
1953 return Fconcat (len * 2 - 1, args);
1954 }
1955
1956 char *
1957 push_key_description (c, p, force_multibyte)
1958 register unsigned int c;
1959 register char *p;
1960 int force_multibyte;
1961 {
1962 unsigned c2;
1963
1964 /* Clear all the meaningless bits above the meta bit. */
1965 c &= meta_modifier | ~ - meta_modifier;
1966 c2 = c & ~(alt_modifier | ctrl_modifier | hyper_modifier
1967 | meta_modifier | shift_modifier | super_modifier);
1968
1969 if (c & alt_modifier)
1970 {
1971 *p++ = 'A';
1972 *p++ = '-';
1973 c -= alt_modifier;
1974 }
1975 if ((c & ctrl_modifier) != 0
1976 || (c2 < ' ' && c2 != 27 && c2 != '\t' && c2 != Ctl ('M')))
1977 {
1978 *p++ = 'C';
1979 *p++ = '-';
1980 c &= ~ctrl_modifier;
1981 }
1982 if (c & hyper_modifier)
1983 {
1984 *p++ = 'H';
1985 *p++ = '-';
1986 c -= hyper_modifier;
1987 }
1988 if (c & meta_modifier)
1989 {
1990 *p++ = 'M';
1991 *p++ = '-';
1992 c -= meta_modifier;
1993 }
1994 if (c & shift_modifier)
1995 {
1996 *p++ = 'S';
1997 *p++ = '-';
1998 c -= shift_modifier;
1999 }
2000 if (c & super_modifier)
2001 {
2002 *p++ = 's';
2003 *p++ = '-';
2004 c -= super_modifier;
2005 }
2006 if (c < 040)
2007 {
2008 if (c == 033)
2009 {
2010 *p++ = 'E';
2011 *p++ = 'S';
2012 *p++ = 'C';
2013 }
2014 else if (c == '\t')
2015 {
2016 *p++ = 'T';
2017 *p++ = 'A';
2018 *p++ = 'B';
2019 }
2020 else if (c == Ctl ('M'))
2021 {
2022 *p++ = 'R';
2023 *p++ = 'E';
2024 *p++ = 'T';
2025 }
2026 else
2027 {
2028 /* `C-' already added above. */
2029 if (c > 0 && c <= Ctl ('Z'))
2030 *p++ = c + 0140;
2031 else
2032 *p++ = c + 0100;
2033 }
2034 }
2035 else if (c == 0177)
2036 {
2037 *p++ = 'D';
2038 *p++ = 'E';
2039 *p++ = 'L';
2040 }
2041 else if (c == ' ')
2042 {
2043 *p++ = 'S';
2044 *p++ = 'P';
2045 *p++ = 'C';
2046 }
2047 else if (c < 128
2048 || (NILP (current_buffer->enable_multibyte_characters)
2049 && SINGLE_BYTE_CHAR_P (c)
2050 && !force_multibyte))
2051 {
2052 *p++ = c;
2053 }
2054 else
2055 {
2056 int valid_p = SINGLE_BYTE_CHAR_P (c) || char_valid_p (c, 0);
2057
2058 if (force_multibyte && valid_p)
2059 {
2060 if (SINGLE_BYTE_CHAR_P (c))
2061 c = unibyte_char_to_multibyte (c);
2062 p += CHAR_STRING (c, p);
2063 }
2064 else if (NILP (current_buffer->enable_multibyte_characters)
2065 || valid_p)
2066 {
2067 int bit_offset;
2068 *p++ = '\\';
2069 /* The biggest character code uses 19 bits. */
2070 for (bit_offset = 18; bit_offset >= 0; bit_offset -= 3)
2071 {
2072 if (c >= (1 << bit_offset))
2073 *p++ = ((c & (7 << bit_offset)) >> bit_offset) + '0';
2074 }
2075 }
2076 else
2077 p += CHAR_STRING (c, p);
2078 }
2079
2080 return p;
2081 }
2082
2083 /* This function cannot GC. */
2084
2085 DEFUN ("single-key-description", Fsingle_key_description,
2086 Ssingle_key_description, 1, 2, 0,
2087 doc: /* Return a pretty description of command character KEY.
2088 Control characters turn into C-whatever, etc.
2089 Optional argument NO-ANGLES non-nil means don't put angle brackets
2090 around function keys and event symbols. */)
2091 (key, no_angles)
2092 Lisp_Object key, no_angles;
2093 {
2094 if (CONSP (key) && lucid_event_type_list_p (key))
2095 key = Fevent_convert_list (key);
2096
2097 key = EVENT_HEAD (key);
2098
2099 if (INTEGERP (key)) /* Normal character */
2100 {
2101 unsigned int charset, c1, c2;
2102 int without_bits = XINT (key) & ~((-1) << CHARACTERBITS);
2103
2104 if (SINGLE_BYTE_CHAR_P (without_bits))
2105 charset = 0;
2106 else
2107 SPLIT_CHAR (without_bits, charset, c1, c2);
2108
2109 if (charset
2110 && CHARSET_DEFINED_P (charset)
2111 && ((c1 >= 0 && c1 < 32)
2112 || (c2 >= 0 && c2 < 32)))
2113 {
2114 /* Handle a generic character. */
2115 Lisp_Object name;
2116 name = CHARSET_TABLE_INFO (charset, CHARSET_LONG_NAME_IDX);
2117 CHECK_STRING (name);
2118 return concat2 (build_string ("Character set "), name);
2119 }
2120 else
2121 {
2122 char tem[KEY_DESCRIPTION_SIZE], *end;
2123 int nbytes, nchars;
2124 Lisp_Object string;
2125
2126 end = push_key_description (XUINT (key), tem, 1);
2127 nbytes = end - tem;
2128 nchars = multibyte_chars_in_text (tem, nbytes);
2129 if (nchars == nbytes)
2130 {
2131 *end = '\0';
2132 string = build_string (tem);
2133 }
2134 else
2135 string = make_multibyte_string (tem, nchars, nbytes);
2136 return string;
2137 }
2138 }
2139 else if (SYMBOLP (key)) /* Function key or event-symbol */
2140 {
2141 if (NILP (no_angles))
2142 {
2143 char *buffer
2144 = (char *) alloca (STRING_BYTES (XSYMBOL (key)->name) + 5);
2145 sprintf (buffer, "<%s>", XSYMBOL (key)->name->data);
2146 return build_string (buffer);
2147 }
2148 else
2149 return Fsymbol_name (key);
2150 }
2151 else if (STRINGP (key)) /* Buffer names in the menubar. */
2152 return Fcopy_sequence (key);
2153 else
2154 error ("KEY must be an integer, cons, symbol, or string");
2155 return Qnil;
2156 }
2157
2158 char *
2159 push_text_char_description (c, p)
2160 register unsigned int c;
2161 register char *p;
2162 {
2163 if (c >= 0200)
2164 {
2165 *p++ = 'M';
2166 *p++ = '-';
2167 c -= 0200;
2168 }
2169 if (c < 040)
2170 {
2171 *p++ = '^';
2172 *p++ = c + 64; /* 'A' - 1 */
2173 }
2174 else if (c == 0177)
2175 {
2176 *p++ = '^';
2177 *p++ = '?';
2178 }
2179 else
2180 *p++ = c;
2181 return p;
2182 }
2183
2184 /* This function cannot GC. */
2185
2186 DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
2187 doc: /* Return a pretty description of file-character CHARACTER.
2188 Control characters turn into "^char", etc. */)
2189 (character)
2190 Lisp_Object character;
2191 {
2192 /* Currently MAX_MULTIBYTE_LENGTH is 4 (< 6). */
2193 unsigned char str[6];
2194 int c;
2195
2196 CHECK_NUMBER (character);
2197
2198 c = XINT (character);
2199 if (!SINGLE_BYTE_CHAR_P (c))
2200 {
2201 int len = CHAR_STRING (c, str);
2202
2203 return make_multibyte_string (str, 1, len);
2204 }
2205
2206 *push_text_char_description (c & 0377, str) = 0;
2207
2208 return build_string (str);
2209 }
2210
2211 /* Return non-zero if SEQ contains only ASCII characters, perhaps with
2212 a meta bit. */
2213 static int
2214 ascii_sequence_p (seq)
2215 Lisp_Object seq;
2216 {
2217 int i;
2218 int len = XINT (Flength (seq));
2219
2220 for (i = 0; i < len; i++)
2221 {
2222 Lisp_Object ii, elt;
2223
2224 XSETFASTINT (ii, i);
2225 elt = Faref (seq, ii);
2226
2227 if (!INTEGERP (elt)
2228 || (XUINT (elt) & ~CHAR_META) >= 0x80)
2229 return 0;
2230 }
2231
2232 return 1;
2233 }
2234
2235 \f
2236 /* where-is - finding a command in a set of keymaps. */
2237
2238 static Lisp_Object where_is_internal ();
2239 static Lisp_Object where_is_internal_1 ();
2240 static void where_is_internal_2 ();
2241
2242 /* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map.
2243 Returns the first non-nil binding found in any of those maps. */
2244
2245 static Lisp_Object
2246 shadow_lookup (shadow, key, flag)
2247 Lisp_Object shadow, key, flag;
2248 {
2249 Lisp_Object tail, value;
2250
2251 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2252 {
2253 value = Flookup_key (XCAR (tail), key, flag);
2254 if (!NILP (value) && !NATNUMP (value))
2255 return value;
2256 }
2257 return Qnil;
2258 }
2259
2260 /* This function can GC if Flookup_key autoloads any keymaps. */
2261
2262 static Lisp_Object
2263 where_is_internal (definition, keymaps, firstonly, noindirect, no_remap)
2264 Lisp_Object definition, keymaps;
2265 Lisp_Object firstonly, noindirect, no_remap;
2266 {
2267 Lisp_Object maps = Qnil;
2268 Lisp_Object found, sequences;
2269 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2270 /* 1 means ignore all menu bindings entirely. */
2271 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2272
2273 /* If this command is remapped, then it has no key bindings
2274 of its own. */
2275 if (NILP (no_remap) && is_command_symbol (definition)
2276 && !NILP (Fkey_binding (definition, Qnil, Qt)))
2277 return Qnil;
2278
2279 found = keymaps;
2280 while (CONSP (found))
2281 {
2282 maps =
2283 nconc2 (maps,
2284 Faccessible_keymaps (get_keymap (XCAR (found), 1, 0), Qnil));
2285 found = XCDR (found);
2286 }
2287
2288 GCPRO5 (definition, keymaps, maps, found, sequences);
2289 found = Qnil;
2290 sequences = Qnil;
2291
2292 for (; !NILP (maps); maps = Fcdr (maps))
2293 {
2294 /* Key sequence to reach map, and the map that it reaches */
2295 register Lisp_Object this, map;
2296
2297 /* In order to fold [META-PREFIX-CHAR CHAR] sequences into
2298 [M-CHAR] sequences, check if last character of the sequence
2299 is the meta-prefix char. */
2300 Lisp_Object last;
2301 int last_is_meta;
2302
2303 this = Fcar (Fcar (maps));
2304 map = Fcdr (Fcar (maps));
2305 last = make_number (XINT (Flength (this)) - 1);
2306 last_is_meta = (XINT (last) >= 0
2307 && EQ (Faref (this, last), meta_prefix_char));
2308
2309 /* if (nomenus && !ascii_sequence_p (this)) */
2310 if (nomenus && XINT (last) >= 0
2311 && !INTEGERP (Faref (this, make_number (0))))
2312 /* If no menu entries should be returned, skip over the
2313 keymaps bound to `menu-bar' and `tool-bar' and other
2314 non-ascii prefixes like `C-down-mouse-2'. */
2315 continue;
2316
2317 QUIT;
2318
2319 while (CONSP (map))
2320 {
2321 /* Because the code we want to run on each binding is rather
2322 large, we don't want to have two separate loop bodies for
2323 sparse keymap bindings and tables; we want to iterate one
2324 loop body over both keymap and vector bindings.
2325
2326 For this reason, if Fcar (map) is a vector, we don't
2327 advance map to the next element until i indicates that we
2328 have finished off the vector. */
2329 Lisp_Object elt, key, binding;
2330 elt = XCAR (map);
2331 map = XCDR (map);
2332
2333 sequences = Qnil;
2334
2335 QUIT;
2336
2337 /* Set key and binding to the current key and binding, and
2338 advance map and i to the next binding. */
2339 if (VECTORP (elt))
2340 {
2341 Lisp_Object sequence;
2342 int i;
2343 /* In a vector, look at each element. */
2344 for (i = 0; i < XVECTOR (elt)->size; i++)
2345 {
2346 binding = AREF (elt, i);
2347 XSETFASTINT (key, i);
2348 sequence = where_is_internal_1 (binding, key, definition,
2349 noindirect, this,
2350 last, nomenus, last_is_meta);
2351 if (!NILP (sequence))
2352 sequences = Fcons (sequence, sequences);
2353 }
2354 }
2355 else if (CHAR_TABLE_P (elt))
2356 {
2357 Lisp_Object indices[3];
2358 Lisp_Object args;
2359
2360 args = Fcons (Fcons (Fcons (definition, noindirect),
2361 Qnil), /* Result accumulator. */
2362 Fcons (Fcons (this, last),
2363 Fcons (make_number (nomenus),
2364 make_number (last_is_meta))));
2365 map_char_table (where_is_internal_2, Qnil, elt, args,
2366 0, indices);
2367 sequences = XCDR (XCAR (args));
2368 }
2369 else if (CONSP (elt))
2370 {
2371 Lisp_Object sequence;
2372
2373 key = XCAR (elt);
2374 binding = XCDR (elt);
2375
2376 sequence = where_is_internal_1 (binding, key, definition,
2377 noindirect, this,
2378 last, nomenus, last_is_meta);
2379 if (!NILP (sequence))
2380 sequences = Fcons (sequence, sequences);
2381 }
2382
2383
2384 while (!NILP (sequences))
2385 {
2386 Lisp_Object sequence;
2387 Lisp_Object remapped;
2388
2389 sequence = XCAR (sequences);
2390 sequences = XCDR (sequences);
2391
2392 /* If the current sequence is of the form [command],
2393 this may be a remapped command, so look for the key
2394 sequences which run that command, and return those
2395 sequences instead. */
2396 remapped = Qnil;
2397 if (NILP (no_remap)
2398 && VECTORP (sequence) && XVECTOR (sequence)->size == 1)
2399 {
2400 Lisp_Object function;
2401
2402 function = AREF (sequence, 0);
2403 if (is_command_symbol (function))
2404 {
2405 Lisp_Object remapped1;
2406 remapped1 = where_is_internal (function, keymaps, firstonly, noindirect, Qt);
2407 if (CONSP (remapped1))
2408 {
2409 /* Verify that this key binding actually maps to the
2410 remapped command (see below). */
2411 if (!EQ (shadow_lookup (keymaps, XCAR (remapped1), Qnil), function))
2412 continue;
2413 sequence = XCAR (remapped1);
2414 remapped = XCDR (remapped1);
2415 goto record_sequence;
2416 }
2417 }
2418 }
2419
2420 /* Verify that this key binding is not shadowed by another
2421 binding for the same key, before we say it exists.
2422
2423 Mechanism: look for local definition of this key and if
2424 it is defined and does not match what we found then
2425 ignore this key.
2426
2427 Either nil or number as value from Flookup_key
2428 means undefined. */
2429 if (!EQ (shadow_lookup (keymaps, sequence, Qnil), definition))
2430 continue;
2431
2432 record_sequence:
2433 /* It is a true unshadowed match. Record it, unless it's already
2434 been seen (as could happen when inheriting keymaps). */
2435 if (NILP (Fmember (sequence, found)))
2436 found = Fcons (sequence, found);
2437
2438 /* If firstonly is Qnon_ascii, then we can return the first
2439 binding we find. If firstonly is not Qnon_ascii but not
2440 nil, then we should return the first ascii-only binding
2441 we find. */
2442 if (EQ (firstonly, Qnon_ascii))
2443 RETURN_UNGCPRO (sequence);
2444 else if (!NILP (firstonly) && ascii_sequence_p (sequence))
2445 RETURN_UNGCPRO (sequence);
2446
2447 if (CONSP (remapped))
2448 {
2449 sequence = XCAR (remapped);
2450 remapped = XCDR (remapped);
2451 goto record_sequence;
2452 }
2453 }
2454 }
2455 }
2456
2457 UNGCPRO;
2458
2459 found = Fnreverse (found);
2460
2461 /* firstonly may have been t, but we may have gone all the way through
2462 the keymaps without finding an all-ASCII key sequence. So just
2463 return the best we could find. */
2464 if (!NILP (firstonly))
2465 return Fcar (found);
2466
2467 return found;
2468 }
2469
2470 DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 5, 0,
2471 doc: /* Return list of keys that invoke DEFINITION.
2472 If KEYMAP is non-nil, search only KEYMAP and the global keymap.
2473 If KEYMAP is nil, search all the currently active keymaps.
2474 If KEYMAP is a list of keymaps, search only those keymaps.
2475
2476 If optional 3rd arg FIRSTONLY is non-nil, return the first key sequence found,
2477 rather than a list of all possible key sequences.
2478 If FIRSTONLY is the symbol `non-ascii', return the first binding found,
2479 no matter what it is.
2480 If FIRSTONLY has another non-nil value, prefer sequences of ASCII characters,
2481 and entirely reject menu bindings.
2482
2483 If optional 4th arg NOINDIRECT is non-nil, don't follow indirections
2484 to other keymaps or slots. This makes it possible to search for an
2485 indirect definition itself.
2486
2487 If optional 5th arg NO-REMAP is non-nil, don't search for key sequences
2488 that invoke a command which is remapped to DEFINITION, but include the
2489 remapped command in the returned list. */)
2490 (definition, keymap, firstonly, noindirect, no_remap)
2491 Lisp_Object definition, keymap;
2492 Lisp_Object firstonly, noindirect, no_remap;
2493 {
2494 Lisp_Object sequences, keymaps;
2495 /* 1 means ignore all menu bindings entirely. */
2496 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2497 Lisp_Object result;
2498
2499 /* Find the relevant keymaps. */
2500 if (CONSP (keymap) && KEYMAPP (XCAR (keymap)))
2501 keymaps = keymap;
2502 else if (!NILP (keymap))
2503 keymaps = Fcons (keymap, Fcons (current_global_map, Qnil));
2504 else
2505 keymaps = Fcurrent_active_maps (Qnil);
2506
2507 /* Only use caching for the menubar (i.e. called with (def nil t nil).
2508 We don't really need to check `keymap'. */
2509 if (nomenus && NILP (noindirect) && NILP (keymap))
2510 {
2511 Lisp_Object *defns;
2512 int i, j, n;
2513 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2514
2515 /* Check heuristic-consistency of the cache. */
2516 if (NILP (Fequal (keymaps, where_is_cache_keymaps)))
2517 where_is_cache = Qnil;
2518
2519 if (NILP (where_is_cache))
2520 {
2521 /* We need to create the cache. */
2522 Lisp_Object args[2];
2523 where_is_cache = Fmake_hash_table (0, args);
2524 where_is_cache_keymaps = Qt;
2525
2526 /* Fill in the cache. */
2527 GCPRO5 (definition, keymaps, firstonly, noindirect, no_remap);
2528 where_is_internal (definition, keymaps, firstonly, noindirect, no_remap);
2529 UNGCPRO;
2530
2531 where_is_cache_keymaps = keymaps;
2532 }
2533
2534 /* We want to process definitions from the last to the first.
2535 Instead of consing, copy definitions to a vector and step
2536 over that vector. */
2537 sequences = Fgethash (definition, where_is_cache, Qnil);
2538 n = XINT (Flength (sequences));
2539 defns = (Lisp_Object *) alloca (n * sizeof *defns);
2540 for (i = 0; CONSP (sequences); sequences = XCDR (sequences))
2541 defns[i++] = XCAR (sequences);
2542
2543 /* Verify that the key bindings are not shadowed. Note that
2544 the following can GC. */
2545 GCPRO2 (definition, keymaps);
2546 result = Qnil;
2547 j = -1;
2548 for (i = n - 1; i >= 0; --i)
2549 if (EQ (shadow_lookup (keymaps, defns[i], Qnil), definition))
2550 {
2551 if (ascii_sequence_p (defns[i]))
2552 break;
2553 else if (j < 0)
2554 j = i;
2555 }
2556
2557 result = i >= 0 ? defns[i] : (j >= 0 ? defns[j] : Qnil);
2558 UNGCPRO;
2559 }
2560 else
2561 {
2562 /* Kill the cache so that where_is_internal_1 doesn't think
2563 we're filling it up. */
2564 where_is_cache = Qnil;
2565 result = where_is_internal (definition, keymaps, firstonly, noindirect, no_remap);
2566 }
2567
2568 return result;
2569 }
2570
2571 /* This is the function that Fwhere_is_internal calls using map_char_table.
2572 ARGS has the form
2573 (((DEFINITION . NOINDIRECT) . (KEYMAP . RESULT))
2574 .
2575 ((THIS . LAST) . (NOMENUS . LAST_IS_META)))
2576 Since map_char_table doesn't really use the return value from this function,
2577 we the result append to RESULT, the slot in ARGS.
2578
2579 This function can GC because it calls where_is_internal_1 which can
2580 GC. */
2581
2582 static void
2583 where_is_internal_2 (args, key, binding)
2584 Lisp_Object args, key, binding;
2585 {
2586 Lisp_Object definition, noindirect, this, last;
2587 Lisp_Object result, sequence;
2588 int nomenus, last_is_meta;
2589 struct gcpro gcpro1, gcpro2, gcpro3;
2590
2591 GCPRO3 (args, key, binding);
2592 result = XCDR (XCAR (args));
2593 definition = XCAR (XCAR (XCAR (args)));
2594 noindirect = XCDR (XCAR (XCAR (args)));
2595 this = XCAR (XCAR (XCDR (args)));
2596 last = XCDR (XCAR (XCDR (args)));
2597 nomenus = XFASTINT (XCAR (XCDR (XCDR (args))));
2598 last_is_meta = XFASTINT (XCDR (XCDR (XCDR (args))));
2599
2600 sequence = where_is_internal_1 (binding, key, definition, noindirect,
2601 this, last, nomenus, last_is_meta);
2602
2603 if (!NILP (sequence))
2604 XSETCDR (XCAR (args), Fcons (sequence, result));
2605
2606 UNGCPRO;
2607 }
2608
2609
2610 /* This function cannot GC. */
2611
2612 static Lisp_Object
2613 where_is_internal_1 (binding, key, definition, noindirect, this, last,
2614 nomenus, last_is_meta)
2615 Lisp_Object binding, key, definition, noindirect, this, last;
2616 int nomenus, last_is_meta;
2617 {
2618 Lisp_Object sequence;
2619
2620 /* Search through indirections unless that's not wanted. */
2621 if (NILP (noindirect))
2622 binding = get_keyelt (binding, 0);
2623
2624 /* End this iteration if this element does not match
2625 the target. */
2626
2627 if (!(!NILP (where_is_cache) /* everything "matches" during cache-fill. */
2628 || EQ (binding, definition)
2629 || (CONSP (definition) && !NILP (Fequal (binding, definition)))))
2630 /* Doesn't match. */
2631 return Qnil;
2632
2633 /* We have found a match. Construct the key sequence where we found it. */
2634 if (INTEGERP (key) && last_is_meta)
2635 {
2636 sequence = Fcopy_sequence (this);
2637 Faset (sequence, last, make_number (XINT (key) | meta_modifier));
2638 }
2639 else
2640 sequence = append_key (this, key);
2641
2642 if (!NILP (where_is_cache))
2643 {
2644 Lisp_Object sequences = Fgethash (binding, where_is_cache, Qnil);
2645 Fputhash (binding, Fcons (sequence, sequences), where_is_cache);
2646 return Qnil;
2647 }
2648 else
2649 return sequence;
2650 }
2651 \f
2652 /* describe-bindings - summarizing all the bindings in a set of keymaps. */
2653
2654 DEFUN ("describe-buffer-bindings", Fdescribe_buffer_bindings, Sdescribe_buffer_bindings, 1, 3, 0,
2655 doc: /* Insert the list of all defined keys and their definitions.
2656 The list is inserted in the current buffer, while the bindings are
2657 looked up in BUFFER.
2658 The optional argument PREFIX, if non-nil, should be a key sequence;
2659 then we display only bindings that start with that prefix.
2660 The optional argument MENUS, if non-nil, says to mention menu bindings.
2661 \(Ordinarily these are omitted from the output.) */)
2662 (buffer, prefix, menus)
2663 Lisp_Object buffer, prefix, menus;
2664 {
2665 Lisp_Object outbuf, shadow;
2666 int nomenu = NILP (menus);
2667 register Lisp_Object start1;
2668 struct gcpro gcpro1;
2669
2670 char *alternate_heading
2671 = "\
2672 Keyboard translations:\n\n\
2673 You type Translation\n\
2674 -------- -----------\n";
2675
2676 shadow = Qnil;
2677 GCPRO1 (shadow);
2678
2679 outbuf = Fcurrent_buffer ();
2680
2681 /* Report on alternates for keys. */
2682 if (STRINGP (Vkeyboard_translate_table) && !NILP (prefix))
2683 {
2684 int c;
2685 unsigned char *translate = XSTRING (Vkeyboard_translate_table)->data;
2686 int translate_len = XSTRING (Vkeyboard_translate_table)->size;
2687
2688 for (c = 0; c < translate_len; c++)
2689 if (translate[c] != c)
2690 {
2691 char buf[KEY_DESCRIPTION_SIZE];
2692 char *bufend;
2693
2694 if (alternate_heading)
2695 {
2696 insert_string (alternate_heading);
2697 alternate_heading = 0;
2698 }
2699
2700 bufend = push_key_description (translate[c], buf, 1);
2701 insert (buf, bufend - buf);
2702 Findent_to (make_number (16), make_number (1));
2703 bufend = push_key_description (c, buf, 1);
2704 insert (buf, bufend - buf);
2705
2706 insert ("\n", 1);
2707 }
2708
2709 insert ("\n", 1);
2710 }
2711
2712 if (!NILP (Vkey_translation_map))
2713 describe_map_tree (Vkey_translation_map, 0, Qnil, prefix,
2714 "Key translations", nomenu, 1, 0);
2715
2716
2717 /* Print the (major mode) local map. */
2718 start1 = Qnil;
2719 if (!NILP (current_kboard->Voverriding_terminal_local_map))
2720 start1 = current_kboard->Voverriding_terminal_local_map;
2721 else if (!NILP (Voverriding_local_map))
2722 start1 = Voverriding_local_map;
2723
2724 if (!NILP (start1))
2725 {
2726 describe_map_tree (start1, 1, shadow, prefix,
2727 "\f\nOverriding Bindings", nomenu, 0, 0);
2728 shadow = Fcons (start1, shadow);
2729 }
2730 else
2731 {
2732 /* Print the minor mode and major mode keymaps. */
2733 int i, nmaps;
2734 Lisp_Object *modes, *maps;
2735
2736 /* Temporarily switch to `buffer', so that we can get that buffer's
2737 minor modes correctly. */
2738 Fset_buffer (buffer);
2739
2740 nmaps = current_minor_maps (&modes, &maps);
2741 Fset_buffer (outbuf);
2742
2743 start1 = get_local_map (BUF_PT (XBUFFER (buffer)),
2744 XBUFFER (buffer), Qkeymap);
2745 if (!NILP (start1))
2746 {
2747 describe_map_tree (start1, 1, shadow, prefix,
2748 "\f\n`keymap' Property Bindings", nomenu, 0, 0);
2749 shadow = Fcons (start1, shadow);
2750 }
2751
2752 /* Print the minor mode maps. */
2753 for (i = 0; i < nmaps; i++)
2754 {
2755 /* The title for a minor mode keymap
2756 is constructed at run time.
2757 We let describe_map_tree do the actual insertion
2758 because it takes care of other features when doing so. */
2759 char *title, *p;
2760
2761 if (!SYMBOLP (modes[i]))
2762 abort();
2763
2764 p = title = (char *) alloca (42 + XSYMBOL (modes[i])->name->size);
2765 *p++ = '\f';
2766 *p++ = '\n';
2767 *p++ = '`';
2768 bcopy (XSYMBOL (modes[i])->name->data, p,
2769 XSYMBOL (modes[i])->name->size);
2770 p += XSYMBOL (modes[i])->name->size;
2771 *p++ = '\'';
2772 bcopy (" Minor Mode Bindings", p, sizeof (" Minor Mode Bindings") - 1);
2773 p += sizeof (" Minor Mode Bindings") - 1;
2774 *p = 0;
2775
2776 describe_map_tree (maps[i], 1, shadow, prefix, title, nomenu, 0, 0);
2777 shadow = Fcons (maps[i], shadow);
2778 }
2779
2780 start1 = get_local_map (BUF_PT (XBUFFER (buffer)),
2781 XBUFFER (buffer), Qlocal_map);
2782 if (!NILP (start1))
2783 {
2784 if (EQ (start1, XBUFFER (buffer)->keymap))
2785 describe_map_tree (start1, 1, shadow, prefix,
2786 "\f\nMajor Mode Bindings", nomenu, 0, 0);
2787 else
2788 describe_map_tree (start1, 1, shadow, prefix,
2789 "\f\n`local-map' Property Bindings",
2790 nomenu, 0, 0);
2791
2792 shadow = Fcons (start1, shadow);
2793 }
2794 }
2795
2796 describe_map_tree (current_global_map, 1, shadow, prefix,
2797 "\f\nGlobal Bindings", nomenu, 0, 1);
2798
2799 /* Print the function-key-map translations under this prefix. */
2800 if (!NILP (Vfunction_key_map))
2801 describe_map_tree (Vfunction_key_map, 0, Qnil, prefix,
2802 "\f\nFunction key map translations", nomenu, 1, 0);
2803
2804 UNGCPRO;
2805 return Qnil;
2806 }
2807
2808 /* Insert a description of the key bindings in STARTMAP,
2809 followed by those of all maps reachable through STARTMAP.
2810 If PARTIAL is nonzero, omit certain "uninteresting" commands
2811 (such as `undefined').
2812 If SHADOW is non-nil, it is a list of maps;
2813 don't mention keys which would be shadowed by any of them.
2814 PREFIX, if non-nil, says mention only keys that start with PREFIX.
2815 TITLE, if not 0, is a string to insert at the beginning.
2816 TITLE should not end with a colon or a newline; we supply that.
2817 If NOMENU is not 0, then omit menu-bar commands.
2818
2819 If TRANSL is nonzero, the definitions are actually key translations
2820 so print strings and vectors differently.
2821
2822 If ALWAYS_TITLE is nonzero, print the title even if there are no maps
2823 to look through. */
2824
2825 void
2826 describe_map_tree (startmap, partial, shadow, prefix, title, nomenu, transl,
2827 always_title)
2828 Lisp_Object startmap, shadow, prefix;
2829 int partial;
2830 char *title;
2831 int nomenu;
2832 int transl;
2833 int always_title;
2834 {
2835 Lisp_Object maps, orig_maps, seen, sub_shadows;
2836 struct gcpro gcpro1, gcpro2, gcpro3;
2837 int something = 0;
2838 char *key_heading
2839 = "\
2840 key binding\n\
2841 --- -------\n";
2842
2843 orig_maps = maps = Faccessible_keymaps (startmap, prefix);
2844 seen = Qnil;
2845 sub_shadows = Qnil;
2846 GCPRO3 (maps, seen, sub_shadows);
2847
2848 if (nomenu)
2849 {
2850 Lisp_Object list;
2851
2852 /* Delete from MAPS each element that is for the menu bar. */
2853 for (list = maps; !NILP (list); list = XCDR (list))
2854 {
2855 Lisp_Object elt, prefix, tem;
2856
2857 elt = Fcar (list);
2858 prefix = Fcar (elt);
2859 if (XVECTOR (prefix)->size >= 1)
2860 {
2861 tem = Faref (prefix, make_number (0));
2862 if (EQ (tem, Qmenu_bar))
2863 maps = Fdelq (elt, maps);
2864 }
2865 }
2866 }
2867
2868 if (!NILP (maps) || always_title)
2869 {
2870 if (title)
2871 {
2872 insert_string (title);
2873 if (!NILP (prefix))
2874 {
2875 insert_string (" Starting With ");
2876 insert1 (Fkey_description (prefix));
2877 }
2878 insert_string (":\n");
2879 }
2880 insert_string (key_heading);
2881 something = 1;
2882 }
2883
2884 for (; !NILP (maps); maps = Fcdr (maps))
2885 {
2886 register Lisp_Object elt, prefix, tail;
2887
2888 elt = Fcar (maps);
2889 prefix = Fcar (elt);
2890
2891 sub_shadows = Qnil;
2892
2893 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2894 {
2895 Lisp_Object shmap;
2896
2897 shmap = XCAR (tail);
2898
2899 /* If the sequence by which we reach this keymap is zero-length,
2900 then the shadow map for this keymap is just SHADOW. */
2901 if ((STRINGP (prefix) && XSTRING (prefix)->size == 0)
2902 || (VECTORP (prefix) && XVECTOR (prefix)->size == 0))
2903 ;
2904 /* If the sequence by which we reach this keymap actually has
2905 some elements, then the sequence's definition in SHADOW is
2906 what we should use. */
2907 else
2908 {
2909 shmap = Flookup_key (shmap, Fcar (elt), Qt);
2910 if (INTEGERP (shmap))
2911 shmap = Qnil;
2912 }
2913
2914 /* If shmap is not nil and not a keymap,
2915 it completely shadows this map, so don't
2916 describe this map at all. */
2917 if (!NILP (shmap) && !KEYMAPP (shmap))
2918 goto skip;
2919
2920 if (!NILP (shmap))
2921 sub_shadows = Fcons (shmap, sub_shadows);
2922 }
2923
2924 /* Maps we have already listed in this loop shadow this map. */
2925 for (tail = orig_maps; !EQ (tail, maps); tail = XCDR (tail))
2926 {
2927 Lisp_Object tem;
2928 tem = Fequal (Fcar (XCAR (tail)), prefix);
2929 if (!NILP (tem))
2930 sub_shadows = Fcons (XCDR (XCAR (tail)), sub_shadows);
2931 }
2932
2933 describe_map (Fcdr (elt), prefix,
2934 transl ? describe_translation : describe_command,
2935 partial, sub_shadows, &seen, nomenu);
2936
2937 skip: ;
2938 }
2939
2940 if (something)
2941 insert_string ("\n");
2942
2943 UNGCPRO;
2944 }
2945
2946 static int previous_description_column;
2947
2948 static void
2949 describe_command (definition, args)
2950 Lisp_Object definition, args;
2951 {
2952 register Lisp_Object tem1;
2953 int column = current_column ();
2954 int description_column;
2955
2956 /* If column 16 is no good, go to col 32;
2957 but don't push beyond that--go to next line instead. */
2958 if (column > 30)
2959 {
2960 insert_char ('\n');
2961 description_column = 32;
2962 }
2963 else if (column > 14 || (column > 10 && previous_description_column == 32))
2964 description_column = 32;
2965 else
2966 description_column = 16;
2967
2968 Findent_to (make_number (description_column), make_number (1));
2969 previous_description_column = description_column;
2970
2971 if (SYMBOLP (definition))
2972 {
2973 XSETSTRING (tem1, XSYMBOL (definition)->name);
2974 insert1 (tem1);
2975 insert_string ("\n");
2976 }
2977 else if (STRINGP (definition) || VECTORP (definition))
2978 insert_string ("Keyboard Macro\n");
2979 else if (KEYMAPP (definition))
2980 insert_string ("Prefix Command\n");
2981 else
2982 insert_string ("??\n");
2983 }
2984
2985 static void
2986 describe_translation (definition, args)
2987 Lisp_Object definition, args;
2988 {
2989 register Lisp_Object tem1;
2990
2991 Findent_to (make_number (16), make_number (1));
2992
2993 if (SYMBOLP (definition))
2994 {
2995 XSETSTRING (tem1, XSYMBOL (definition)->name);
2996 insert1 (tem1);
2997 insert_string ("\n");
2998 }
2999 else if (STRINGP (definition) || VECTORP (definition))
3000 {
3001 insert1 (Fkey_description (definition));
3002 insert_string ("\n");
3003 }
3004 else if (KEYMAPP (definition))
3005 insert_string ("Prefix Command\n");
3006 else
3007 insert_string ("??\n");
3008 }
3009
3010 /* Describe the contents of map MAP, assuming that this map itself is
3011 reached by the sequence of prefix keys KEYS (a string or vector).
3012 PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */
3013
3014 static void
3015 describe_map (map, keys, elt_describer, partial, shadow, seen, nomenu)
3016 register Lisp_Object map;
3017 Lisp_Object keys;
3018 void (*elt_describer) P_ ((Lisp_Object, Lisp_Object));
3019 int partial;
3020 Lisp_Object shadow;
3021 Lisp_Object *seen;
3022 int nomenu;
3023 {
3024 Lisp_Object elt_prefix;
3025 Lisp_Object tail, definition, event;
3026 Lisp_Object tem;
3027 Lisp_Object suppress;
3028 Lisp_Object kludge;
3029 int first = 1;
3030 struct gcpro gcpro1, gcpro2, gcpro3;
3031
3032 suppress = Qnil;
3033
3034 if (!NILP (keys) && XFASTINT (Flength (keys)) > 0)
3035 {
3036 /* Call Fkey_description first, to avoid GC bug for the other string. */
3037 tem = Fkey_description (keys);
3038 elt_prefix = concat2 (tem, build_string (" "));
3039 }
3040 else
3041 elt_prefix = Qnil;
3042
3043 if (partial)
3044 suppress = intern ("suppress-keymap");
3045
3046 /* This vector gets used to present single keys to Flookup_key. Since
3047 that is done once per keymap element, we don't want to cons up a
3048 fresh vector every time. */
3049 kludge = Fmake_vector (make_number (1), Qnil);
3050 definition = Qnil;
3051
3052 GCPRO3 (elt_prefix, definition, kludge);
3053
3054 for (tail = map; CONSP (tail); tail = XCDR (tail))
3055 {
3056 QUIT;
3057
3058 if (VECTORP (XCAR (tail))
3059 || CHAR_TABLE_P (XCAR (tail)))
3060 describe_vector (XCAR (tail),
3061 elt_prefix, Qnil, elt_describer, partial, shadow, map,
3062 (int *)0, 0);
3063 else if (CONSP (XCAR (tail)))
3064 {
3065 event = XCAR (XCAR (tail));
3066
3067 /* Ignore bindings whose "keys" are not really valid events.
3068 (We get these in the frames and buffers menu.) */
3069 if (!(SYMBOLP (event) || INTEGERP (event)))
3070 continue;
3071
3072 if (nomenu && EQ (event, Qmenu_bar))
3073 continue;
3074
3075 definition = get_keyelt (XCDR (XCAR (tail)), 0);
3076
3077 /* Don't show undefined commands or suppressed commands. */
3078 if (NILP (definition)) continue;
3079 if (SYMBOLP (definition) && partial)
3080 {
3081 tem = Fget (definition, suppress);
3082 if (!NILP (tem))
3083 continue;
3084 }
3085
3086 /* Don't show a command that isn't really visible
3087 because a local definition of the same key shadows it. */
3088
3089 ASET (kludge, 0, event);
3090 if (!NILP (shadow))
3091 {
3092 tem = shadow_lookup (shadow, kludge, Qt);
3093 if (!NILP (tem)) continue;
3094 }
3095
3096 tem = Flookup_key (map, kludge, Qt);
3097 if (!EQ (tem, definition)) continue;
3098
3099 if (first)
3100 {
3101 previous_description_column = 0;
3102 insert ("\n", 1);
3103 first = 0;
3104 }
3105
3106 if (!NILP (elt_prefix))
3107 insert1 (elt_prefix);
3108
3109 /* THIS gets the string to describe the character EVENT. */
3110 insert1 (Fsingle_key_description (event, Qnil));
3111
3112 /* Print a description of the definition of this character.
3113 elt_describer will take care of spacing out far enough
3114 for alignment purposes. */
3115 (*elt_describer) (definition, Qnil);
3116 }
3117 else if (EQ (XCAR (tail), Qkeymap))
3118 {
3119 /* The same keymap might be in the structure twice, if we're
3120 using an inherited keymap. So skip anything we've already
3121 encountered. */
3122 tem = Fassq (tail, *seen);
3123 if (CONSP (tem) && !NILP (Fequal (XCAR (tem), keys)))
3124 break;
3125 *seen = Fcons (Fcons (tail, keys), *seen);
3126 }
3127 }
3128
3129 UNGCPRO;
3130 }
3131
3132 static void
3133 describe_vector_princ (elt, fun)
3134 Lisp_Object elt, fun;
3135 {
3136 Findent_to (make_number (16), make_number (1));
3137 call1 (fun, elt);
3138 Fterpri (Qnil);
3139 }
3140
3141 DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 2, 0,
3142 doc: /* Insert a description of contents of VECTOR.
3143 This is text showing the elements of vector matched against indices. */)
3144 (vector, describer)
3145 Lisp_Object vector, describer;
3146 {
3147 int count = specpdl_ptr - specpdl;
3148 if (NILP (describer))
3149 describer = intern ("princ");
3150 specbind (Qstandard_output, Fcurrent_buffer ());
3151 CHECK_VECTOR_OR_CHAR_TABLE (vector);
3152 describe_vector (vector, Qnil, describer, describe_vector_princ, 0,
3153 Qnil, Qnil, (int *)0, 0);
3154
3155 return unbind_to (count, Qnil);
3156 }
3157
3158 /* Insert in the current buffer a description of the contents of VECTOR.
3159 We call ELT_DESCRIBER to insert the description of one value found
3160 in VECTOR.
3161
3162 ELT_PREFIX describes what "comes before" the keys or indices defined
3163 by this vector. This is a human-readable string whose size
3164 is not necessarily related to the situation.
3165
3166 If the vector is in a keymap, ELT_PREFIX is a prefix key which
3167 leads to this keymap.
3168
3169 If the vector is a chartable, ELT_PREFIX is the vector
3170 of bytes that lead to the character set or portion of a character
3171 set described by this chartable.
3172
3173 If PARTIAL is nonzero, it means do not mention suppressed commands
3174 (that assumes the vector is in a keymap).
3175
3176 SHADOW is a list of keymaps that shadow this map.
3177 If it is non-nil, then we look up the key in those maps
3178 and we don't mention it now if it is defined by any of them.
3179
3180 ENTIRE_MAP is the keymap in which this vector appears.
3181 If the definition in effect in the whole map does not match
3182 the one in this vector, we ignore this one.
3183
3184 When describing a sub-char-table, INDICES is a list of
3185 indices at higher levels in this char-table,
3186 and CHAR_TABLE_DEPTH says how many levels down we have gone.
3187
3188 ARGS is simply passed as the second argument to ELT_DESCRIBER. */
3189
3190 void
3191 describe_vector (vector, elt_prefix, args, elt_describer,
3192 partial, shadow, entire_map,
3193 indices, char_table_depth)
3194 register Lisp_Object vector;
3195 Lisp_Object elt_prefix, args;
3196 void (*elt_describer) P_ ((Lisp_Object, Lisp_Object));
3197 int partial;
3198 Lisp_Object shadow;
3199 Lisp_Object entire_map;
3200 int *indices;
3201 int char_table_depth;
3202 {
3203 Lisp_Object definition;
3204 Lisp_Object tem2;
3205 register int i;
3206 Lisp_Object suppress;
3207 Lisp_Object kludge;
3208 int first = 1;
3209 struct gcpro gcpro1, gcpro2, gcpro3;
3210 /* Range of elements to be handled. */
3211 int from, to;
3212 /* A flag to tell if a leaf in this level of char-table is not a
3213 generic character (i.e. a complete multibyte character). */
3214 int complete_char;
3215 int character;
3216 int starting_i;
3217
3218 suppress = Qnil;
3219
3220 if (indices == 0)
3221 indices = (int *) alloca (3 * sizeof (int));
3222
3223 definition = Qnil;
3224
3225 /* This vector gets used to present single keys to Flookup_key. Since
3226 that is done once per vector element, we don't want to cons up a
3227 fresh vector every time. */
3228 kludge = Fmake_vector (make_number (1), Qnil);
3229 GCPRO3 (elt_prefix, definition, kludge);
3230
3231 if (partial)
3232 suppress = intern ("suppress-keymap");
3233
3234 if (CHAR_TABLE_P (vector))
3235 {
3236 if (char_table_depth == 0)
3237 {
3238 /* VECTOR is a top level char-table. */
3239 complete_char = 1;
3240 from = 0;
3241 to = CHAR_TABLE_ORDINARY_SLOTS;
3242 }
3243 else
3244 {
3245 /* VECTOR is a sub char-table. */
3246 if (char_table_depth >= 3)
3247 /* A char-table is never that deep. */
3248 error ("Too deep char table");
3249
3250 complete_char
3251 = (CHARSET_VALID_P (indices[0])
3252 && ((CHARSET_DIMENSION (indices[0]) == 1
3253 && char_table_depth == 1)
3254 || char_table_depth == 2));
3255
3256 /* Meaningful elements are from 32th to 127th. */
3257 from = 32;
3258 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
3259 }
3260 }
3261 else
3262 {
3263 /* This does the right thing for ordinary vectors. */
3264
3265 complete_char = 1;
3266 from = 0;
3267 to = XVECTOR (vector)->size;
3268 }
3269
3270 for (i = from; i < to; i++)
3271 {
3272 QUIT;
3273
3274 if (CHAR_TABLE_P (vector))
3275 {
3276 if (char_table_depth == 0 && i >= CHAR_TABLE_SINGLE_BYTE_SLOTS)
3277 complete_char = 0;
3278
3279 if (i >= CHAR_TABLE_SINGLE_BYTE_SLOTS
3280 && !CHARSET_DEFINED_P (i - 128))
3281 continue;
3282
3283 definition
3284 = get_keyelt (XCHAR_TABLE (vector)->contents[i], 0);
3285 }
3286 else
3287 definition = get_keyelt (AREF (vector, i), 0);
3288
3289 if (NILP (definition)) continue;
3290
3291 /* Don't mention suppressed commands. */
3292 if (SYMBOLP (definition) && partial)
3293 {
3294 Lisp_Object tem;
3295
3296 tem = Fget (definition, suppress);
3297
3298 if (!NILP (tem)) continue;
3299 }
3300
3301 /* Set CHARACTER to the character this entry describes, if any.
3302 Also update *INDICES. */
3303 if (CHAR_TABLE_P (vector))
3304 {
3305 indices[char_table_depth] = i;
3306
3307 if (char_table_depth == 0)
3308 {
3309 character = i;
3310 indices[0] = i - 128;
3311 }
3312 else if (complete_char)
3313 {
3314 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3315 }
3316 else
3317 character = 0;
3318 }
3319 else
3320 character = i;
3321
3322 /* If this binding is shadowed by some other map, ignore it. */
3323 if (!NILP (shadow) && complete_char)
3324 {
3325 Lisp_Object tem;
3326
3327 ASET (kludge, 0, make_number (character));
3328 tem = shadow_lookup (shadow, kludge, Qt);
3329
3330 if (!NILP (tem)) continue;
3331 }
3332
3333 /* Ignore this definition if it is shadowed by an earlier
3334 one in the same keymap. */
3335 if (!NILP (entire_map) && complete_char)
3336 {
3337 Lisp_Object tem;
3338
3339 ASET (kludge, 0, make_number (character));
3340 tem = Flookup_key (entire_map, kludge, Qt);
3341
3342 if (!EQ (tem, definition))
3343 continue;
3344 }
3345
3346 if (first)
3347 {
3348 if (char_table_depth == 0)
3349 insert ("\n", 1);
3350 first = 0;
3351 }
3352
3353 /* For a sub char-table, show the depth by indentation.
3354 CHAR_TABLE_DEPTH can be greater than 0 only for a char-table. */
3355 if (char_table_depth > 0)
3356 insert (" ", char_table_depth * 2); /* depth is 1 or 2. */
3357
3358 /* Output the prefix that applies to every entry in this map. */
3359 if (!NILP (elt_prefix))
3360 insert1 (elt_prefix);
3361
3362 /* Insert or describe the character this slot is for,
3363 or a description of what it is for. */
3364 if (SUB_CHAR_TABLE_P (vector))
3365 {
3366 if (complete_char)
3367 insert_char (character);
3368 else
3369 {
3370 /* We need an octal representation for this block of
3371 characters. */
3372 char work[16];
3373 sprintf (work, "(row %d)", i);
3374 insert (work, strlen (work));
3375 }
3376 }
3377 else if (CHAR_TABLE_P (vector))
3378 {
3379 if (complete_char)
3380 insert1 (Fsingle_key_description (make_number (character), Qnil));
3381 else
3382 {
3383 /* Print the information for this character set. */
3384 insert_string ("<");
3385 tem2 = CHARSET_TABLE_INFO (i - 128, CHARSET_SHORT_NAME_IDX);
3386 if (STRINGP (tem2))
3387 insert_from_string (tem2, 0, 0, XSTRING (tem2)->size,
3388 STRING_BYTES (XSTRING (tem2)), 0);
3389 else
3390 insert ("?", 1);
3391 insert (">", 1);
3392 }
3393 }
3394 else
3395 {
3396 insert1 (Fsingle_key_description (make_number (character), Qnil));
3397 }
3398
3399 /* If we find a sub char-table within a char-table,
3400 scan it recursively; it defines the details for
3401 a character set or a portion of a character set. */
3402 if (CHAR_TABLE_P (vector) && SUB_CHAR_TABLE_P (definition))
3403 {
3404 insert ("\n", 1);
3405 describe_vector (definition, elt_prefix, args, elt_describer,
3406 partial, shadow, entire_map,
3407 indices, char_table_depth + 1);
3408 continue;
3409 }
3410
3411 starting_i = i;
3412
3413 /* Find all consecutive characters or rows that have the same
3414 definition. But, for elements of a top level char table, if
3415 they are for charsets, we had better describe one by one even
3416 if they have the same definition. */
3417 if (CHAR_TABLE_P (vector))
3418 {
3419 int limit = to;
3420
3421 if (char_table_depth == 0)
3422 limit = CHAR_TABLE_SINGLE_BYTE_SLOTS;
3423
3424 while (i + 1 < limit
3425 && (tem2 = get_keyelt (XCHAR_TABLE (vector)->contents[i + 1], 0),
3426 !NILP (tem2))
3427 && !NILP (Fequal (tem2, definition)))
3428 i++;
3429 }
3430 else
3431 while (i + 1 < to
3432 && (tem2 = get_keyelt (AREF (vector, i + 1), 0),
3433 !NILP (tem2))
3434 && !NILP (Fequal (tem2, definition)))
3435 i++;
3436
3437
3438 /* If we have a range of more than one character,
3439 print where the range reaches to. */
3440
3441 if (i != starting_i)
3442 {
3443 insert (" .. ", 4);
3444
3445 if (!NILP (elt_prefix))
3446 insert1 (elt_prefix);
3447
3448 if (CHAR_TABLE_P (vector))
3449 {
3450 if (char_table_depth == 0)
3451 {
3452 insert1 (Fsingle_key_description (make_number (i), Qnil));
3453 }
3454 else if (complete_char)
3455 {
3456 indices[char_table_depth] = i;
3457 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3458 insert_char (character);
3459 }
3460 else
3461 {
3462 /* We need an octal representation for this block of
3463 characters. */
3464 char work[16];
3465 sprintf (work, "(row %d)", i);
3466 insert (work, strlen (work));
3467 }
3468 }
3469 else
3470 {
3471 insert1 (Fsingle_key_description (make_number (i), Qnil));
3472 }
3473 }
3474
3475 /* Print a description of the definition of this character.
3476 elt_describer will take care of spacing out far enough
3477 for alignment purposes. */
3478 (*elt_describer) (definition, args);
3479 }
3480
3481 /* For (sub) char-table, print `defalt' slot at last. */
3482 if (CHAR_TABLE_P (vector) && !NILP (XCHAR_TABLE (vector)->defalt))
3483 {
3484 insert (" ", char_table_depth * 2);
3485 insert_string ("<<default>>");
3486 (*elt_describer) (XCHAR_TABLE (vector)->defalt, args);
3487 }
3488
3489 UNGCPRO;
3490 }
3491 \f
3492 /* Apropos - finding all symbols whose names match a regexp. */
3493 Lisp_Object apropos_predicate;
3494 Lisp_Object apropos_accumulate;
3495
3496 static void
3497 apropos_accum (symbol, string)
3498 Lisp_Object symbol, string;
3499 {
3500 register Lisp_Object tem;
3501
3502 tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
3503 if (!NILP (tem) && !NILP (apropos_predicate))
3504 tem = call1 (apropos_predicate, symbol);
3505 if (!NILP (tem))
3506 apropos_accumulate = Fcons (symbol, apropos_accumulate);
3507 }
3508
3509 DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
3510 doc: /* Show all symbols whose names contain match for REGEXP.
3511 If optional 2nd arg PREDICATE is non-nil, (funcall PREDICATE SYMBOL) is done
3512 for each symbol and a symbol is mentioned only if that returns non-nil.
3513 Return list of symbols found. */)
3514 (regexp, predicate)
3515 Lisp_Object regexp, predicate;
3516 {
3517 struct gcpro gcpro1, gcpro2;
3518 CHECK_STRING (regexp);
3519 apropos_predicate = predicate;
3520 GCPRO2 (apropos_predicate, apropos_accumulate);
3521 apropos_accumulate = Qnil;
3522 map_obarray (Vobarray, apropos_accum, regexp);
3523 apropos_accumulate = Fsort (apropos_accumulate, Qstring_lessp);
3524 UNGCPRO;
3525 return apropos_accumulate;
3526 }
3527 \f
3528 void
3529 syms_of_keymap ()
3530 {
3531 Qkeymap = intern ("keymap");
3532 staticpro (&Qkeymap);
3533
3534 /* Now we are ready to set up this property, so we can
3535 create char tables. */
3536 Fput (Qkeymap, Qchar_table_extra_slots, make_number (0));
3537
3538 /* Initialize the keymaps standardly used.
3539 Each one is the value of a Lisp variable, and is also
3540 pointed to by a C variable */
3541
3542 global_map = Fmake_keymap (Qnil);
3543 Fset (intern ("global-map"), global_map);
3544
3545 current_global_map = global_map;
3546 staticpro (&global_map);
3547 staticpro (&current_global_map);
3548
3549 meta_map = Fmake_keymap (Qnil);
3550 Fset (intern ("esc-map"), meta_map);
3551 Ffset (intern ("ESC-prefix"), meta_map);
3552
3553 control_x_map = Fmake_keymap (Qnil);
3554 Fset (intern ("ctl-x-map"), control_x_map);
3555 Ffset (intern ("Control-X-prefix"), control_x_map);
3556
3557 exclude_keys
3558 = Fcons (Fcons (build_string ("DEL"), build_string ("\\d")),
3559 Fcons (Fcons (build_string ("TAB"), build_string ("\\t")),
3560 Fcons (Fcons (build_string ("RET"), build_string ("\\r")),
3561 Fcons (Fcons (build_string ("ESC"), build_string ("\\e")),
3562 Fcons (Fcons (build_string ("SPC"), build_string (" ")),
3563 Qnil)))));
3564 staticpro (&exclude_keys);
3565
3566 DEFVAR_LISP ("define-key-rebound-commands", &Vdefine_key_rebound_commands,
3567 doc: /* List of commands given new key bindings recently.
3568 This is used for internal purposes during Emacs startup;
3569 don't alter it yourself. */);
3570 Vdefine_key_rebound_commands = Qt;
3571
3572 DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map,
3573 doc: /* Default keymap to use when reading from the minibuffer. */);
3574 Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
3575
3576 DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map,
3577 doc: /* Local keymap for the minibuffer when spaces are not allowed. */);
3578 Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
3579 Fset_keymap_parent (Vminibuffer_local_ns_map, Vminibuffer_local_map);
3580
3581 DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map,
3582 doc: /* Local keymap for minibuffer input with completion. */);
3583 Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil);
3584 Fset_keymap_parent (Vminibuffer_local_completion_map, Vminibuffer_local_map);
3585
3586 DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map,
3587 doc: /* Local keymap for minibuffer input with completion, for exact match. */);
3588 Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil);
3589 Fset_keymap_parent (Vminibuffer_local_must_match_map,
3590 Vminibuffer_local_completion_map);
3591
3592 DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist,
3593 doc: /* Alist of keymaps to use for minor modes.
3594 Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read
3595 key sequences and look up bindings iff VARIABLE's value is non-nil.
3596 If two active keymaps bind the same key, the keymap appearing earlier
3597 in the list takes precedence. */);
3598 Vminor_mode_map_alist = Qnil;
3599
3600 DEFVAR_LISP ("minor-mode-overriding-map-alist", &Vminor_mode_overriding_map_alist,
3601 doc: /* Alist of keymaps to use for minor modes, in current major mode.
3602 This variable is a alist just like `minor-mode-map-alist', and it is
3603 used the same way (and before `minor-mode-map-alist'); however,
3604 it is provided for major modes to bind locally. */);
3605 Vminor_mode_overriding_map_alist = Qnil;
3606
3607 DEFVAR_LISP ("function-key-map", &Vfunction_key_map,
3608 doc: /* Keymap mapping ASCII function key sequences onto their preferred forms.
3609 This allows Emacs to recognize function keys sent from ASCII
3610 terminals at any point in a key sequence.
3611
3612 The `read-key-sequence' function replaces any subsequence bound by
3613 `function-key-map' with its binding. More precisely, when the active
3614 keymaps have no binding for the current key sequence but
3615 `function-key-map' binds a suffix of the sequence to a vector or string,
3616 `read-key-sequence' replaces the matching suffix with its binding, and
3617 continues with the new sequence.
3618
3619 The events that come from bindings in `function-key-map' are not
3620 themselves looked up in `function-key-map'.
3621
3622 For example, suppose `function-key-map' binds `ESC O P' to [f1].
3623 Typing `ESC O P' to `read-key-sequence' would return [f1]. Typing
3624 `C-x ESC O P' would return [?\\C-x f1]. If [f1] were a prefix
3625 key, typing `ESC O P x' would return [f1 x]. */);
3626 Vfunction_key_map = Fmake_sparse_keymap (Qnil);
3627
3628 DEFVAR_LISP ("key-translation-map", &Vkey_translation_map,
3629 doc: /* Keymap of key translations that can override keymaps.
3630 This keymap works like `function-key-map', but comes after that,
3631 and applies even for keys that have ordinary bindings. */);
3632 Vkey_translation_map = Qnil;
3633
3634 Qsingle_key_description = intern ("single-key-description");
3635 staticpro (&Qsingle_key_description);
3636
3637 Qkey_description = intern ("key-description");
3638 staticpro (&Qkey_description);
3639
3640 Qkeymapp = intern ("keymapp");
3641 staticpro (&Qkeymapp);
3642
3643 Qnon_ascii = intern ("non-ascii");
3644 staticpro (&Qnon_ascii);
3645
3646 Qmenu_item = intern ("menu-item");
3647 staticpro (&Qmenu_item);
3648
3649 where_is_cache_keymaps = Qt;
3650 where_is_cache = Qnil;
3651 staticpro (&where_is_cache);
3652 staticpro (&where_is_cache_keymaps);
3653
3654 defsubr (&Skeymapp);
3655 defsubr (&Skeymap_parent);
3656 defsubr (&Skeymap_prompt);
3657 defsubr (&Sset_keymap_parent);
3658 defsubr (&Smake_keymap);
3659 defsubr (&Smake_sparse_keymap);
3660 defsubr (&Scopy_keymap);
3661 defsubr (&Skey_binding);
3662 defsubr (&Slocal_key_binding);
3663 defsubr (&Sglobal_key_binding);
3664 defsubr (&Sminor_mode_key_binding);
3665 defsubr (&Sdefine_key);
3666 defsubr (&Slookup_key);
3667 defsubr (&Sdefine_prefix_command);
3668 defsubr (&Suse_global_map);
3669 defsubr (&Suse_local_map);
3670 defsubr (&Scurrent_local_map);
3671 defsubr (&Scurrent_global_map);
3672 defsubr (&Scurrent_minor_mode_maps);
3673 defsubr (&Scurrent_active_maps);
3674 defsubr (&Saccessible_keymaps);
3675 defsubr (&Skey_description);
3676 defsubr (&Sdescribe_vector);
3677 defsubr (&Ssingle_key_description);
3678 defsubr (&Stext_char_description);
3679 defsubr (&Swhere_is_internal);
3680 defsubr (&Sdescribe_buffer_bindings);
3681 defsubr (&Sapropos_internal);
3682 }
3683
3684 void
3685 keys_of_keymap ()
3686 {
3687 initial_define_key (global_map, 033, "ESC-prefix");
3688 initial_define_key (global_map, Ctl('X'), "Control-X-prefix");
3689 }