]> code.delx.au - gnu-emacs/blob - src/alloc.c
(marker_blocks_pending_free): New var.
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985,86,88,93,94,95,97,98,1999,2000,01,02,03,2004
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
29
30 /* Note that this declares bzero on OSF/1. How dumb. */
31
32 #include <signal.h>
33
34 /* This file is part of the core Lisp implementation, and thus must
35 deal with the real data structures. If the Lisp implementation is
36 replaced, this file likely will not be used. */
37
38 #undef HIDE_LISP_IMPLEMENTATION
39 #include "lisp.h"
40 #include "process.h"
41 #include "intervals.h"
42 #include "puresize.h"
43 #include "buffer.h"
44 #include "window.h"
45 #include "keyboard.h"
46 #include "frame.h"
47 #include "blockinput.h"
48 #include "charset.h"
49 #include "syssignal.h"
50 #include <setjmp.h>
51
52 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
53 memory. Can do this only if using gmalloc.c. */
54
55 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
56 #undef GC_MALLOC_CHECK
57 #endif
58
59 #ifdef HAVE_UNISTD_H
60 #include <unistd.h>
61 #else
62 extern POINTER_TYPE *sbrk ();
63 #endif
64
65 #ifdef DOUG_LEA_MALLOC
66
67 #include <malloc.h>
68 /* malloc.h #defines this as size_t, at least in glibc2. */
69 #ifndef __malloc_size_t
70 #define __malloc_size_t int
71 #endif
72
73 /* Specify maximum number of areas to mmap. It would be nice to use a
74 value that explicitly means "no limit". */
75
76 #define MMAP_MAX_AREAS 100000000
77
78 #else /* not DOUG_LEA_MALLOC */
79
80 /* The following come from gmalloc.c. */
81
82 #define __malloc_size_t size_t
83 extern __malloc_size_t _bytes_used;
84 extern __malloc_size_t __malloc_extra_blocks;
85
86 #endif /* not DOUG_LEA_MALLOC */
87
88 /* Value of _bytes_used, when spare_memory was freed. */
89
90 static __malloc_size_t bytes_used_when_full;
91
92 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
93 to a struct Lisp_String. */
94
95 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
96 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
97 #define STRING_MARKED_P(S) ((S)->size & ARRAY_MARK_FLAG)
98
99 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
100 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
101 #define VECTOR_MARKED_P(V) ((V)->size & ARRAY_MARK_FLAG)
102
103 /* Value is the number of bytes/chars of S, a pointer to a struct
104 Lisp_String. This must be used instead of STRING_BYTES (S) or
105 S->size during GC, because S->size contains the mark bit for
106 strings. */
107
108 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
109 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
110
111 /* Number of bytes of consing done since the last gc. */
112
113 int consing_since_gc;
114
115 /* Count the amount of consing of various sorts of space. */
116
117 EMACS_INT cons_cells_consed;
118 EMACS_INT floats_consed;
119 EMACS_INT vector_cells_consed;
120 EMACS_INT symbols_consed;
121 EMACS_INT string_chars_consed;
122 EMACS_INT misc_objects_consed;
123 EMACS_INT intervals_consed;
124 EMACS_INT strings_consed;
125
126 /* Number of bytes of consing since GC before another GC should be done. */
127
128 EMACS_INT gc_cons_threshold;
129
130 /* Nonzero during GC. */
131
132 int gc_in_progress;
133
134 /* Nonzero means abort if try to GC.
135 This is for code which is written on the assumption that
136 no GC will happen, so as to verify that assumption. */
137
138 int abort_on_gc;
139
140 /* Nonzero means display messages at beginning and end of GC. */
141
142 int garbage_collection_messages;
143
144 #ifndef VIRT_ADDR_VARIES
145 extern
146 #endif /* VIRT_ADDR_VARIES */
147 int malloc_sbrk_used;
148
149 #ifndef VIRT_ADDR_VARIES
150 extern
151 #endif /* VIRT_ADDR_VARIES */
152 int malloc_sbrk_unused;
153
154 /* Two limits controlling how much undo information to keep. */
155
156 EMACS_INT undo_limit;
157 EMACS_INT undo_strong_limit;
158
159 /* Number of live and free conses etc. */
160
161 static int total_conses, total_markers, total_symbols, total_vector_size;
162 static int total_free_conses, total_free_markers, total_free_symbols;
163 static int total_free_floats, total_floats;
164
165 /* Points to memory space allocated as "spare", to be freed if we run
166 out of memory. */
167
168 static char *spare_memory;
169
170 /* Amount of spare memory to keep in reserve. */
171
172 #define SPARE_MEMORY (1 << 14)
173
174 /* Number of extra blocks malloc should get when it needs more core. */
175
176 static int malloc_hysteresis;
177
178 /* Non-nil means defun should do purecopy on the function definition. */
179
180 Lisp_Object Vpurify_flag;
181
182 /* Non-nil means we are handling a memory-full error. */
183
184 Lisp_Object Vmemory_full;
185
186 #ifndef HAVE_SHM
187
188 /* Force it into data space! Initialize it to a nonzero value;
189 otherwise some compilers put it into BSS. */
190
191 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
192 #define PUREBEG (char *) pure
193
194 #else /* HAVE_SHM */
195
196 #define pure PURE_SEG_BITS /* Use shared memory segment */
197 #define PUREBEG (char *)PURE_SEG_BITS
198
199 #endif /* HAVE_SHM */
200
201 /* Pointer to the pure area, and its size. */
202
203 static char *purebeg;
204 static size_t pure_size;
205
206 /* Number of bytes of pure storage used before pure storage overflowed.
207 If this is non-zero, this implies that an overflow occurred. */
208
209 static size_t pure_bytes_used_before_overflow;
210
211 /* Value is non-zero if P points into pure space. */
212
213 #define PURE_POINTER_P(P) \
214 (((PNTR_COMPARISON_TYPE) (P) \
215 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
216 && ((PNTR_COMPARISON_TYPE) (P) \
217 >= (PNTR_COMPARISON_TYPE) purebeg))
218
219 /* Index in pure at which next pure object will be allocated.. */
220
221 EMACS_INT pure_bytes_used;
222
223 /* If nonzero, this is a warning delivered by malloc and not yet
224 displayed. */
225
226 char *pending_malloc_warning;
227
228 /* Pre-computed signal argument for use when memory is exhausted. */
229
230 Lisp_Object Vmemory_signal_data;
231
232 /* Maximum amount of C stack to save when a GC happens. */
233
234 #ifndef MAX_SAVE_STACK
235 #define MAX_SAVE_STACK 16000
236 #endif
237
238 /* Buffer in which we save a copy of the C stack at each GC. */
239
240 char *stack_copy;
241 int stack_copy_size;
242
243 /* Non-zero means ignore malloc warnings. Set during initialization.
244 Currently not used. */
245
246 int ignore_warnings;
247
248 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
249
250 /* Hook run after GC has finished. */
251
252 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
253
254 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
255 EMACS_INT gcs_done; /* accumulated GCs */
256
257 static void mark_buffer P_ ((Lisp_Object));
258 extern void mark_kboards P_ ((void));
259 static void gc_sweep P_ ((void));
260 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
261 static void mark_face_cache P_ ((struct face_cache *));
262
263 #ifdef HAVE_WINDOW_SYSTEM
264 static void mark_image P_ ((struct image *));
265 static void mark_image_cache P_ ((struct frame *));
266 #endif /* HAVE_WINDOW_SYSTEM */
267
268 static struct Lisp_String *allocate_string P_ ((void));
269 static void compact_small_strings P_ ((void));
270 static void free_large_strings P_ ((void));
271 static void sweep_strings P_ ((void));
272
273 extern int message_enable_multibyte;
274
275 /* When scanning the C stack for live Lisp objects, Emacs keeps track
276 of what memory allocated via lisp_malloc is intended for what
277 purpose. This enumeration specifies the type of memory. */
278
279 enum mem_type
280 {
281 MEM_TYPE_NON_LISP,
282 MEM_TYPE_BUFFER,
283 MEM_TYPE_CONS,
284 MEM_TYPE_STRING,
285 MEM_TYPE_MISC,
286 MEM_TYPE_SYMBOL,
287 MEM_TYPE_FLOAT,
288 /* Keep the following vector-like types together, with
289 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
290 first. Or change the code of live_vector_p, for instance. */
291 MEM_TYPE_VECTOR,
292 MEM_TYPE_PROCESS,
293 MEM_TYPE_HASH_TABLE,
294 MEM_TYPE_FRAME,
295 MEM_TYPE_WINDOW
296 };
297
298 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
299
300 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
301 #include <stdio.h> /* For fprintf. */
302 #endif
303
304 /* A unique object in pure space used to make some Lisp objects
305 on free lists recognizable in O(1). */
306
307 Lisp_Object Vdead;
308
309 #ifdef GC_MALLOC_CHECK
310
311 enum mem_type allocated_mem_type;
312 int dont_register_blocks;
313
314 #endif /* GC_MALLOC_CHECK */
315
316 /* A node in the red-black tree describing allocated memory containing
317 Lisp data. Each such block is recorded with its start and end
318 address when it is allocated, and removed from the tree when it
319 is freed.
320
321 A red-black tree is a balanced binary tree with the following
322 properties:
323
324 1. Every node is either red or black.
325 2. Every leaf is black.
326 3. If a node is red, then both of its children are black.
327 4. Every simple path from a node to a descendant leaf contains
328 the same number of black nodes.
329 5. The root is always black.
330
331 When nodes are inserted into the tree, or deleted from the tree,
332 the tree is "fixed" so that these properties are always true.
333
334 A red-black tree with N internal nodes has height at most 2
335 log(N+1). Searches, insertions and deletions are done in O(log N).
336 Please see a text book about data structures for a detailed
337 description of red-black trees. Any book worth its salt should
338 describe them. */
339
340 struct mem_node
341 {
342 /* Children of this node. These pointers are never NULL. When there
343 is no child, the value is MEM_NIL, which points to a dummy node. */
344 struct mem_node *left, *right;
345
346 /* The parent of this node. In the root node, this is NULL. */
347 struct mem_node *parent;
348
349 /* Start and end of allocated region. */
350 void *start, *end;
351
352 /* Node color. */
353 enum {MEM_BLACK, MEM_RED} color;
354
355 /* Memory type. */
356 enum mem_type type;
357 };
358
359 /* Base address of stack. Set in main. */
360
361 Lisp_Object *stack_base;
362
363 /* Root of the tree describing allocated Lisp memory. */
364
365 static struct mem_node *mem_root;
366
367 /* Lowest and highest known address in the heap. */
368
369 static void *min_heap_address, *max_heap_address;
370
371 /* Sentinel node of the tree. */
372
373 static struct mem_node mem_z;
374 #define MEM_NIL &mem_z
375
376 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
377 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
378 static void lisp_free P_ ((POINTER_TYPE *));
379 static void mark_stack P_ ((void));
380 static int live_vector_p P_ ((struct mem_node *, void *));
381 static int live_buffer_p P_ ((struct mem_node *, void *));
382 static int live_string_p P_ ((struct mem_node *, void *));
383 static int live_cons_p P_ ((struct mem_node *, void *));
384 static int live_symbol_p P_ ((struct mem_node *, void *));
385 static int live_float_p P_ ((struct mem_node *, void *));
386 static int live_misc_p P_ ((struct mem_node *, void *));
387 static void mark_maybe_object P_ ((Lisp_Object));
388 static void mark_memory P_ ((void *, void *));
389 static void mem_init P_ ((void));
390 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
391 static void mem_insert_fixup P_ ((struct mem_node *));
392 static void mem_rotate_left P_ ((struct mem_node *));
393 static void mem_rotate_right P_ ((struct mem_node *));
394 static void mem_delete P_ ((struct mem_node *));
395 static void mem_delete_fixup P_ ((struct mem_node *));
396 static INLINE struct mem_node *mem_find P_ ((void *));
397
398 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
399 static void check_gcpros P_ ((void));
400 #endif
401
402 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
403
404 /* Recording what needs to be marked for gc. */
405
406 struct gcpro *gcprolist;
407
408 /* Addresses of staticpro'd variables. Initialize it to a nonzero
409 value; otherwise some compilers put it into BSS. */
410
411 #define NSTATICS 1280
412 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
413
414 /* Index of next unused slot in staticvec. */
415
416 int staticidx = 0;
417
418 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
419
420
421 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
422 ALIGNMENT must be a power of 2. */
423
424 #define ALIGN(ptr, ALIGNMENT) \
425 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
426 & ~((ALIGNMENT) - 1)))
427
428
429 \f
430 /************************************************************************
431 Malloc
432 ************************************************************************/
433
434 /* Function malloc calls this if it finds we are near exhausting storage. */
435
436 void
437 malloc_warning (str)
438 char *str;
439 {
440 pending_malloc_warning = str;
441 }
442
443
444 /* Display an already-pending malloc warning. */
445
446 void
447 display_malloc_warning ()
448 {
449 call3 (intern ("display-warning"),
450 intern ("alloc"),
451 build_string (pending_malloc_warning),
452 intern ("emergency"));
453 pending_malloc_warning = 0;
454 }
455
456
457 #ifdef DOUG_LEA_MALLOC
458 # define BYTES_USED (mallinfo ().arena)
459 #else
460 # define BYTES_USED _bytes_used
461 #endif
462
463
464 /* Called if malloc returns zero. */
465
466 void
467 memory_full ()
468 {
469 Vmemory_full = Qt;
470
471 #ifndef SYSTEM_MALLOC
472 bytes_used_when_full = BYTES_USED;
473 #endif
474
475 /* The first time we get here, free the spare memory. */
476 if (spare_memory)
477 {
478 free (spare_memory);
479 spare_memory = 0;
480 }
481
482 /* This used to call error, but if we've run out of memory, we could
483 get infinite recursion trying to build the string. */
484 while (1)
485 Fsignal (Qnil, Vmemory_signal_data);
486 }
487
488
489 /* Called if we can't allocate relocatable space for a buffer. */
490
491 void
492 buffer_memory_full ()
493 {
494 /* If buffers use the relocating allocator, no need to free
495 spare_memory, because we may have plenty of malloc space left
496 that we could get, and if we don't, the malloc that fails will
497 itself cause spare_memory to be freed. If buffers don't use the
498 relocating allocator, treat this like any other failing
499 malloc. */
500
501 #ifndef REL_ALLOC
502 memory_full ();
503 #endif
504
505 Vmemory_full = Qt;
506
507 /* This used to call error, but if we've run out of memory, we could
508 get infinite recursion trying to build the string. */
509 while (1)
510 Fsignal (Qnil, Vmemory_signal_data);
511 }
512
513
514 /* Like malloc but check for no memory and block interrupt input.. */
515
516 POINTER_TYPE *
517 xmalloc (size)
518 size_t size;
519 {
520 register POINTER_TYPE *val;
521
522 BLOCK_INPUT;
523 val = (POINTER_TYPE *) malloc (size);
524 UNBLOCK_INPUT;
525
526 if (!val && size)
527 memory_full ();
528 return val;
529 }
530
531
532 /* Like realloc but check for no memory and block interrupt input.. */
533
534 POINTER_TYPE *
535 xrealloc (block, size)
536 POINTER_TYPE *block;
537 size_t size;
538 {
539 register POINTER_TYPE *val;
540
541 BLOCK_INPUT;
542 /* We must call malloc explicitly when BLOCK is 0, since some
543 reallocs don't do this. */
544 if (! block)
545 val = (POINTER_TYPE *) malloc (size);
546 else
547 val = (POINTER_TYPE *) realloc (block, size);
548 UNBLOCK_INPUT;
549
550 if (!val && size) memory_full ();
551 return val;
552 }
553
554
555 /* Like free but block interrupt input. */
556
557 void
558 xfree (block)
559 POINTER_TYPE *block;
560 {
561 BLOCK_INPUT;
562 free (block);
563 UNBLOCK_INPUT;
564 }
565
566
567 /* Like strdup, but uses xmalloc. */
568
569 char *
570 xstrdup (s)
571 const char *s;
572 {
573 size_t len = strlen (s) + 1;
574 char *p = (char *) xmalloc (len);
575 bcopy (s, p, len);
576 return p;
577 }
578
579
580 /* Like malloc but used for allocating Lisp data. NBYTES is the
581 number of bytes to allocate, TYPE describes the intended use of the
582 allcated memory block (for strings, for conses, ...). */
583
584 static void *lisp_malloc_loser;
585
586 static POINTER_TYPE *
587 lisp_malloc (nbytes, type)
588 size_t nbytes;
589 enum mem_type type;
590 {
591 register void *val;
592
593 BLOCK_INPUT;
594
595 #ifdef GC_MALLOC_CHECK
596 allocated_mem_type = type;
597 #endif
598
599 val = (void *) malloc (nbytes);
600
601 #ifndef USE_LSB_TAG
602 /* If the memory just allocated cannot be addressed thru a Lisp
603 object's pointer, and it needs to be,
604 that's equivalent to running out of memory. */
605 if (val && type != MEM_TYPE_NON_LISP)
606 {
607 Lisp_Object tem;
608 XSETCONS (tem, (char *) val + nbytes - 1);
609 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
610 {
611 lisp_malloc_loser = val;
612 free (val);
613 val = 0;
614 }
615 }
616 #endif
617
618 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
619 if (val && type != MEM_TYPE_NON_LISP)
620 mem_insert (val, (char *) val + nbytes, type);
621 #endif
622
623 UNBLOCK_INPUT;
624 if (!val && nbytes)
625 memory_full ();
626 return val;
627 }
628
629 /* Free BLOCK. This must be called to free memory allocated with a
630 call to lisp_malloc. */
631
632 static void
633 lisp_free (block)
634 POINTER_TYPE *block;
635 {
636 BLOCK_INPUT;
637 free (block);
638 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
639 mem_delete (mem_find (block));
640 #endif
641 UNBLOCK_INPUT;
642 }
643
644 /* Allocation of aligned blocks of memory to store Lisp data. */
645 /* The entry point is lisp_align_malloc which returns blocks of at most */
646 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
647
648
649 /* BLOCK_ALIGN has to be a power of 2. */
650 #define BLOCK_ALIGN (1 << 10)
651
652 /* Padding to leave at the end of a malloc'd block. This is to give
653 malloc a chance to minimize the amount of memory wasted to alignment.
654 It should be tuned to the particular malloc library used.
655 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
656 posix_memalign on the other hand would ideally prefer a value of 4
657 because otherwise, there's 1020 bytes wasted between each ablocks.
658 But testing shows that those 1020 will most of the time be efficiently
659 used by malloc to place other objects, so a value of 0 is still preferable
660 unless you have a lot of cons&floats and virtually nothing else. */
661 #define BLOCK_PADDING 0
662 #define BLOCK_BYTES \
663 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
664
665 /* Internal data structures and constants. */
666
667 #define ABLOCKS_SIZE 16
668
669 /* An aligned block of memory. */
670 struct ablock
671 {
672 union
673 {
674 char payload[BLOCK_BYTES];
675 struct ablock *next_free;
676 } x;
677 /* `abase' is the aligned base of the ablocks. */
678 /* It is overloaded to hold the virtual `busy' field that counts
679 the number of used ablock in the parent ablocks.
680 The first ablock has the `busy' field, the others have the `abase'
681 field. To tell the difference, we assume that pointers will have
682 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
683 is used to tell whether the real base of the parent ablocks is `abase'
684 (if not, the word before the first ablock holds a pointer to the
685 real base). */
686 struct ablocks *abase;
687 /* The padding of all but the last ablock is unused. The padding of
688 the last ablock in an ablocks is not allocated. */
689 #if BLOCK_PADDING
690 char padding[BLOCK_PADDING];
691 #endif
692 };
693
694 /* A bunch of consecutive aligned blocks. */
695 struct ablocks
696 {
697 struct ablock blocks[ABLOCKS_SIZE];
698 };
699
700 /* Size of the block requested from malloc or memalign. */
701 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
702
703 #define ABLOCK_ABASE(block) \
704 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
705 ? (struct ablocks *)(block) \
706 : (block)->abase)
707
708 /* Virtual `busy' field. */
709 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
710
711 /* Pointer to the (not necessarily aligned) malloc block. */
712 #ifdef HAVE_POSIX_MEMALIGN
713 #define ABLOCKS_BASE(abase) (abase)
714 #else
715 #define ABLOCKS_BASE(abase) \
716 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
717 #endif
718
719 /* The list of free ablock. */
720 static struct ablock *free_ablock;
721
722 /* Allocate an aligned block of nbytes.
723 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
724 smaller or equal to BLOCK_BYTES. */
725 static POINTER_TYPE *
726 lisp_align_malloc (nbytes, type)
727 size_t nbytes;
728 enum mem_type type;
729 {
730 void *base, *val;
731 struct ablocks *abase;
732
733 eassert (nbytes <= BLOCK_BYTES);
734
735 BLOCK_INPUT;
736
737 #ifdef GC_MALLOC_CHECK
738 allocated_mem_type = type;
739 #endif
740
741 if (!free_ablock)
742 {
743 int i;
744 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
745
746 #ifdef DOUG_LEA_MALLOC
747 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
748 because mapped region contents are not preserved in
749 a dumped Emacs. */
750 mallopt (M_MMAP_MAX, 0);
751 #endif
752
753 #ifdef HAVE_POSIX_MEMALIGN
754 {
755 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
756 abase = err ? (base = NULL) : base;
757 }
758 #else
759 base = malloc (ABLOCKS_BYTES);
760 abase = ALIGN (base, BLOCK_ALIGN);
761 if (base == 0)
762 {
763 UNBLOCK_INPUT;
764 memory_full ();
765 }
766 #endif
767
768 aligned = (base == abase);
769 if (!aligned)
770 ((void**)abase)[-1] = base;
771
772 #ifdef DOUG_LEA_MALLOC
773 /* Back to a reasonable maximum of mmap'ed areas. */
774 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
775 #endif
776
777 #ifndef USE_LSB_TAG
778 /* If the memory just allocated cannot be addressed thru a Lisp
779 object's pointer, and it needs to be, that's equivalent to
780 running out of memory. */
781 if (type != MEM_TYPE_NON_LISP)
782 {
783 Lisp_Object tem;
784 char *end = (char *) base + ABLOCKS_BYTES - 1;
785 XSETCONS (tem, end);
786 if ((char *) XCONS (tem) != end)
787 {
788 lisp_malloc_loser = base;
789 free (base);
790 UNBLOCK_INPUT;
791 memory_full ();
792 }
793 }
794 #endif
795
796 /* Initialize the blocks and put them on the free list.
797 Is `base' was not properly aligned, we can't use the last block. */
798 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
799 {
800 abase->blocks[i].abase = abase;
801 abase->blocks[i].x.next_free = free_ablock;
802 free_ablock = &abase->blocks[i];
803 }
804 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
805
806 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
807 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
808 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
809 eassert (ABLOCKS_BASE (abase) == base);
810 eassert (aligned == (long) ABLOCKS_BUSY (abase));
811 }
812
813 abase = ABLOCK_ABASE (free_ablock);
814 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
815 val = free_ablock;
816 free_ablock = free_ablock->x.next_free;
817
818 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
819 if (val && type != MEM_TYPE_NON_LISP)
820 mem_insert (val, (char *) val + nbytes, type);
821 #endif
822
823 UNBLOCK_INPUT;
824 if (!val && nbytes)
825 memory_full ();
826
827 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
828 return val;
829 }
830
831 static void
832 lisp_align_free (block)
833 POINTER_TYPE *block;
834 {
835 struct ablock *ablock = block;
836 struct ablocks *abase = ABLOCK_ABASE (ablock);
837
838 BLOCK_INPUT;
839 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
840 mem_delete (mem_find (block));
841 #endif
842 /* Put on free list. */
843 ablock->x.next_free = free_ablock;
844 free_ablock = ablock;
845 /* Update busy count. */
846 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
847
848 if (2 > (long) ABLOCKS_BUSY (abase))
849 { /* All the blocks are free. */
850 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
851 struct ablock **tem = &free_ablock;
852 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
853
854 while (*tem)
855 {
856 if (*tem >= (struct ablock *) abase && *tem < atop)
857 {
858 i++;
859 *tem = (*tem)->x.next_free;
860 }
861 else
862 tem = &(*tem)->x.next_free;
863 }
864 eassert ((aligned & 1) == aligned);
865 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
866 free (ABLOCKS_BASE (abase));
867 }
868 UNBLOCK_INPUT;
869 }
870
871 /* Return a new buffer structure allocated from the heap with
872 a call to lisp_malloc. */
873
874 struct buffer *
875 allocate_buffer ()
876 {
877 struct buffer *b
878 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
879 MEM_TYPE_BUFFER);
880 return b;
881 }
882
883 \f
884 /* Arranging to disable input signals while we're in malloc.
885
886 This only works with GNU malloc. To help out systems which can't
887 use GNU malloc, all the calls to malloc, realloc, and free
888 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
889 pairs; unfortunately, we have no idea what C library functions
890 might call malloc, so we can't really protect them unless you're
891 using GNU malloc. Fortunately, most of the major operating systems
892 can use GNU malloc. */
893
894 #ifndef SYSTEM_MALLOC
895 #ifndef DOUG_LEA_MALLOC
896 extern void * (*__malloc_hook) P_ ((size_t));
897 extern void * (*__realloc_hook) P_ ((void *, size_t));
898 extern void (*__free_hook) P_ ((void *));
899 /* Else declared in malloc.h, perhaps with an extra arg. */
900 #endif /* DOUG_LEA_MALLOC */
901 static void * (*old_malloc_hook) ();
902 static void * (*old_realloc_hook) ();
903 static void (*old_free_hook) ();
904
905 /* This function is used as the hook for free to call. */
906
907 static void
908 emacs_blocked_free (ptr)
909 void *ptr;
910 {
911 BLOCK_INPUT;
912
913 #ifdef GC_MALLOC_CHECK
914 if (ptr)
915 {
916 struct mem_node *m;
917
918 m = mem_find (ptr);
919 if (m == MEM_NIL || m->start != ptr)
920 {
921 fprintf (stderr,
922 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
923 abort ();
924 }
925 else
926 {
927 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
928 mem_delete (m);
929 }
930 }
931 #endif /* GC_MALLOC_CHECK */
932
933 __free_hook = old_free_hook;
934 free (ptr);
935
936 /* If we released our reserve (due to running out of memory),
937 and we have a fair amount free once again,
938 try to set aside another reserve in case we run out once more. */
939 if (spare_memory == 0
940 /* Verify there is enough space that even with the malloc
941 hysteresis this call won't run out again.
942 The code here is correct as long as SPARE_MEMORY
943 is substantially larger than the block size malloc uses. */
944 && (bytes_used_when_full
945 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
946 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
947
948 __free_hook = emacs_blocked_free;
949 UNBLOCK_INPUT;
950 }
951
952
953 /* If we released our reserve (due to running out of memory),
954 and we have a fair amount free once again,
955 try to set aside another reserve in case we run out once more.
956
957 This is called when a relocatable block is freed in ralloc.c. */
958
959 void
960 refill_memory_reserve ()
961 {
962 if (spare_memory == 0)
963 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
964 }
965
966
967 /* This function is the malloc hook that Emacs uses. */
968
969 static void *
970 emacs_blocked_malloc (size)
971 size_t size;
972 {
973 void *value;
974
975 BLOCK_INPUT;
976 __malloc_hook = old_malloc_hook;
977 #ifdef DOUG_LEA_MALLOC
978 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
979 #else
980 __malloc_extra_blocks = malloc_hysteresis;
981 #endif
982
983 value = (void *) malloc (size);
984
985 #ifdef GC_MALLOC_CHECK
986 {
987 struct mem_node *m = mem_find (value);
988 if (m != MEM_NIL)
989 {
990 fprintf (stderr, "Malloc returned %p which is already in use\n",
991 value);
992 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
993 m->start, m->end, (char *) m->end - (char *) m->start,
994 m->type);
995 abort ();
996 }
997
998 if (!dont_register_blocks)
999 {
1000 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1001 allocated_mem_type = MEM_TYPE_NON_LISP;
1002 }
1003 }
1004 #endif /* GC_MALLOC_CHECK */
1005
1006 __malloc_hook = emacs_blocked_malloc;
1007 UNBLOCK_INPUT;
1008
1009 /* fprintf (stderr, "%p malloc\n", value); */
1010 return value;
1011 }
1012
1013
1014 /* This function is the realloc hook that Emacs uses. */
1015
1016 static void *
1017 emacs_blocked_realloc (ptr, size)
1018 void *ptr;
1019 size_t size;
1020 {
1021 void *value;
1022
1023 BLOCK_INPUT;
1024 __realloc_hook = old_realloc_hook;
1025
1026 #ifdef GC_MALLOC_CHECK
1027 if (ptr)
1028 {
1029 struct mem_node *m = mem_find (ptr);
1030 if (m == MEM_NIL || m->start != ptr)
1031 {
1032 fprintf (stderr,
1033 "Realloc of %p which wasn't allocated with malloc\n",
1034 ptr);
1035 abort ();
1036 }
1037
1038 mem_delete (m);
1039 }
1040
1041 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1042
1043 /* Prevent malloc from registering blocks. */
1044 dont_register_blocks = 1;
1045 #endif /* GC_MALLOC_CHECK */
1046
1047 value = (void *) realloc (ptr, size);
1048
1049 #ifdef GC_MALLOC_CHECK
1050 dont_register_blocks = 0;
1051
1052 {
1053 struct mem_node *m = mem_find (value);
1054 if (m != MEM_NIL)
1055 {
1056 fprintf (stderr, "Realloc returns memory that is already in use\n");
1057 abort ();
1058 }
1059
1060 /* Can't handle zero size regions in the red-black tree. */
1061 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1062 }
1063
1064 /* fprintf (stderr, "%p <- realloc\n", value); */
1065 #endif /* GC_MALLOC_CHECK */
1066
1067 __realloc_hook = emacs_blocked_realloc;
1068 UNBLOCK_INPUT;
1069
1070 return value;
1071 }
1072
1073
1074 /* Called from main to set up malloc to use our hooks. */
1075
1076 void
1077 uninterrupt_malloc ()
1078 {
1079 if (__free_hook != emacs_blocked_free)
1080 old_free_hook = __free_hook;
1081 __free_hook = emacs_blocked_free;
1082
1083 if (__malloc_hook != emacs_blocked_malloc)
1084 old_malloc_hook = __malloc_hook;
1085 __malloc_hook = emacs_blocked_malloc;
1086
1087 if (__realloc_hook != emacs_blocked_realloc)
1088 old_realloc_hook = __realloc_hook;
1089 __realloc_hook = emacs_blocked_realloc;
1090 }
1091
1092 #endif /* not SYSTEM_MALLOC */
1093
1094
1095 \f
1096 /***********************************************************************
1097 Interval Allocation
1098 ***********************************************************************/
1099
1100 /* Number of intervals allocated in an interval_block structure.
1101 The 1020 is 1024 minus malloc overhead. */
1102
1103 #define INTERVAL_BLOCK_SIZE \
1104 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1105
1106 /* Intervals are allocated in chunks in form of an interval_block
1107 structure. */
1108
1109 struct interval_block
1110 {
1111 /* Place `intervals' first, to preserve alignment. */
1112 struct interval intervals[INTERVAL_BLOCK_SIZE];
1113 struct interval_block *next;
1114 };
1115
1116 /* Current interval block. Its `next' pointer points to older
1117 blocks. */
1118
1119 struct interval_block *interval_block;
1120
1121 /* Index in interval_block above of the next unused interval
1122 structure. */
1123
1124 static int interval_block_index;
1125
1126 /* Number of free and live intervals. */
1127
1128 static int total_free_intervals, total_intervals;
1129
1130 /* List of free intervals. */
1131
1132 INTERVAL interval_free_list;
1133
1134 /* Total number of interval blocks now in use. */
1135
1136 int n_interval_blocks;
1137
1138
1139 /* Initialize interval allocation. */
1140
1141 static void
1142 init_intervals ()
1143 {
1144 interval_block = NULL;
1145 interval_block_index = INTERVAL_BLOCK_SIZE;
1146 interval_free_list = 0;
1147 n_interval_blocks = 0;
1148 }
1149
1150
1151 /* Return a new interval. */
1152
1153 INTERVAL
1154 make_interval ()
1155 {
1156 INTERVAL val;
1157
1158 if (interval_free_list)
1159 {
1160 val = interval_free_list;
1161 interval_free_list = INTERVAL_PARENT (interval_free_list);
1162 }
1163 else
1164 {
1165 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1166 {
1167 register struct interval_block *newi;
1168
1169 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1170 MEM_TYPE_NON_LISP);
1171
1172 newi->next = interval_block;
1173 interval_block = newi;
1174 interval_block_index = 0;
1175 n_interval_blocks++;
1176 }
1177 val = &interval_block->intervals[interval_block_index++];
1178 }
1179 consing_since_gc += sizeof (struct interval);
1180 intervals_consed++;
1181 RESET_INTERVAL (val);
1182 val->gcmarkbit = 0;
1183 return val;
1184 }
1185
1186
1187 /* Mark Lisp objects in interval I. */
1188
1189 static void
1190 mark_interval (i, dummy)
1191 register INTERVAL i;
1192 Lisp_Object dummy;
1193 {
1194 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1195 i->gcmarkbit = 1;
1196 mark_object (i->plist);
1197 }
1198
1199
1200 /* Mark the interval tree rooted in TREE. Don't call this directly;
1201 use the macro MARK_INTERVAL_TREE instead. */
1202
1203 static void
1204 mark_interval_tree (tree)
1205 register INTERVAL tree;
1206 {
1207 /* No need to test if this tree has been marked already; this
1208 function is always called through the MARK_INTERVAL_TREE macro,
1209 which takes care of that. */
1210
1211 traverse_intervals_noorder (tree, mark_interval, Qnil);
1212 }
1213
1214
1215 /* Mark the interval tree rooted in I. */
1216
1217 #define MARK_INTERVAL_TREE(i) \
1218 do { \
1219 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1220 mark_interval_tree (i); \
1221 } while (0)
1222
1223
1224 #define UNMARK_BALANCE_INTERVALS(i) \
1225 do { \
1226 if (! NULL_INTERVAL_P (i)) \
1227 (i) = balance_intervals (i); \
1228 } while (0)
1229
1230 \f
1231 /* Number support. If NO_UNION_TYPE isn't in effect, we
1232 can't create number objects in macros. */
1233 #ifndef make_number
1234 Lisp_Object
1235 make_number (n)
1236 int n;
1237 {
1238 Lisp_Object obj;
1239 obj.s.val = n;
1240 obj.s.type = Lisp_Int;
1241 return obj;
1242 }
1243 #endif
1244 \f
1245 /***********************************************************************
1246 String Allocation
1247 ***********************************************************************/
1248
1249 /* Lisp_Strings are allocated in string_block structures. When a new
1250 string_block is allocated, all the Lisp_Strings it contains are
1251 added to a free-list string_free_list. When a new Lisp_String is
1252 needed, it is taken from that list. During the sweep phase of GC,
1253 string_blocks that are entirely free are freed, except two which
1254 we keep.
1255
1256 String data is allocated from sblock structures. Strings larger
1257 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1258 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1259
1260 Sblocks consist internally of sdata structures, one for each
1261 Lisp_String. The sdata structure points to the Lisp_String it
1262 belongs to. The Lisp_String points back to the `u.data' member of
1263 its sdata structure.
1264
1265 When a Lisp_String is freed during GC, it is put back on
1266 string_free_list, and its `data' member and its sdata's `string'
1267 pointer is set to null. The size of the string is recorded in the
1268 `u.nbytes' member of the sdata. So, sdata structures that are no
1269 longer used, can be easily recognized, and it's easy to compact the
1270 sblocks of small strings which we do in compact_small_strings. */
1271
1272 /* Size in bytes of an sblock structure used for small strings. This
1273 is 8192 minus malloc overhead. */
1274
1275 #define SBLOCK_SIZE 8188
1276
1277 /* Strings larger than this are considered large strings. String data
1278 for large strings is allocated from individual sblocks. */
1279
1280 #define LARGE_STRING_BYTES 1024
1281
1282 /* Structure describing string memory sub-allocated from an sblock.
1283 This is where the contents of Lisp strings are stored. */
1284
1285 struct sdata
1286 {
1287 /* Back-pointer to the string this sdata belongs to. If null, this
1288 structure is free, and the NBYTES member of the union below
1289 contains the string's byte size (the same value that STRING_BYTES
1290 would return if STRING were non-null). If non-null, STRING_BYTES
1291 (STRING) is the size of the data, and DATA contains the string's
1292 contents. */
1293 struct Lisp_String *string;
1294
1295 #ifdef GC_CHECK_STRING_BYTES
1296
1297 EMACS_INT nbytes;
1298 unsigned char data[1];
1299
1300 #define SDATA_NBYTES(S) (S)->nbytes
1301 #define SDATA_DATA(S) (S)->data
1302
1303 #else /* not GC_CHECK_STRING_BYTES */
1304
1305 union
1306 {
1307 /* When STRING in non-null. */
1308 unsigned char data[1];
1309
1310 /* When STRING is null. */
1311 EMACS_INT nbytes;
1312 } u;
1313
1314
1315 #define SDATA_NBYTES(S) (S)->u.nbytes
1316 #define SDATA_DATA(S) (S)->u.data
1317
1318 #endif /* not GC_CHECK_STRING_BYTES */
1319 };
1320
1321
1322 /* Structure describing a block of memory which is sub-allocated to
1323 obtain string data memory for strings. Blocks for small strings
1324 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1325 as large as needed. */
1326
1327 struct sblock
1328 {
1329 /* Next in list. */
1330 struct sblock *next;
1331
1332 /* Pointer to the next free sdata block. This points past the end
1333 of the sblock if there isn't any space left in this block. */
1334 struct sdata *next_free;
1335
1336 /* Start of data. */
1337 struct sdata first_data;
1338 };
1339
1340 /* Number of Lisp strings in a string_block structure. The 1020 is
1341 1024 minus malloc overhead. */
1342
1343 #define STRING_BLOCK_SIZE \
1344 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1345
1346 /* Structure describing a block from which Lisp_String structures
1347 are allocated. */
1348
1349 struct string_block
1350 {
1351 /* Place `strings' first, to preserve alignment. */
1352 struct Lisp_String strings[STRING_BLOCK_SIZE];
1353 struct string_block *next;
1354 };
1355
1356 /* Head and tail of the list of sblock structures holding Lisp string
1357 data. We always allocate from current_sblock. The NEXT pointers
1358 in the sblock structures go from oldest_sblock to current_sblock. */
1359
1360 static struct sblock *oldest_sblock, *current_sblock;
1361
1362 /* List of sblocks for large strings. */
1363
1364 static struct sblock *large_sblocks;
1365
1366 /* List of string_block structures, and how many there are. */
1367
1368 static struct string_block *string_blocks;
1369 static int n_string_blocks;
1370
1371 /* Free-list of Lisp_Strings. */
1372
1373 static struct Lisp_String *string_free_list;
1374
1375 /* Number of live and free Lisp_Strings. */
1376
1377 static int total_strings, total_free_strings;
1378
1379 /* Number of bytes used by live strings. */
1380
1381 static int total_string_size;
1382
1383 /* Given a pointer to a Lisp_String S which is on the free-list
1384 string_free_list, return a pointer to its successor in the
1385 free-list. */
1386
1387 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1388
1389 /* Return a pointer to the sdata structure belonging to Lisp string S.
1390 S must be live, i.e. S->data must not be null. S->data is actually
1391 a pointer to the `u.data' member of its sdata structure; the
1392 structure starts at a constant offset in front of that. */
1393
1394 #ifdef GC_CHECK_STRING_BYTES
1395
1396 #define SDATA_OF_STRING(S) \
1397 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1398 - sizeof (EMACS_INT)))
1399
1400 #else /* not GC_CHECK_STRING_BYTES */
1401
1402 #define SDATA_OF_STRING(S) \
1403 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1404
1405 #endif /* not GC_CHECK_STRING_BYTES */
1406
1407 /* Value is the size of an sdata structure large enough to hold NBYTES
1408 bytes of string data. The value returned includes a terminating
1409 NUL byte, the size of the sdata structure, and padding. */
1410
1411 #ifdef GC_CHECK_STRING_BYTES
1412
1413 #define SDATA_SIZE(NBYTES) \
1414 ((sizeof (struct Lisp_String *) \
1415 + (NBYTES) + 1 \
1416 + sizeof (EMACS_INT) \
1417 + sizeof (EMACS_INT) - 1) \
1418 & ~(sizeof (EMACS_INT) - 1))
1419
1420 #else /* not GC_CHECK_STRING_BYTES */
1421
1422 #define SDATA_SIZE(NBYTES) \
1423 ((sizeof (struct Lisp_String *) \
1424 + (NBYTES) + 1 \
1425 + sizeof (EMACS_INT) - 1) \
1426 & ~(sizeof (EMACS_INT) - 1))
1427
1428 #endif /* not GC_CHECK_STRING_BYTES */
1429
1430 /* Initialize string allocation. Called from init_alloc_once. */
1431
1432 void
1433 init_strings ()
1434 {
1435 total_strings = total_free_strings = total_string_size = 0;
1436 oldest_sblock = current_sblock = large_sblocks = NULL;
1437 string_blocks = NULL;
1438 n_string_blocks = 0;
1439 string_free_list = NULL;
1440 }
1441
1442
1443 #ifdef GC_CHECK_STRING_BYTES
1444
1445 static int check_string_bytes_count;
1446
1447 void check_string_bytes P_ ((int));
1448 void check_sblock P_ ((struct sblock *));
1449
1450 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1451
1452
1453 /* Like GC_STRING_BYTES, but with debugging check. */
1454
1455 int
1456 string_bytes (s)
1457 struct Lisp_String *s;
1458 {
1459 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1460 if (!PURE_POINTER_P (s)
1461 && s->data
1462 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1463 abort ();
1464 return nbytes;
1465 }
1466
1467 /* Check validity of Lisp strings' string_bytes member in B. */
1468
1469 void
1470 check_sblock (b)
1471 struct sblock *b;
1472 {
1473 struct sdata *from, *end, *from_end;
1474
1475 end = b->next_free;
1476
1477 for (from = &b->first_data; from < end; from = from_end)
1478 {
1479 /* Compute the next FROM here because copying below may
1480 overwrite data we need to compute it. */
1481 int nbytes;
1482
1483 /* Check that the string size recorded in the string is the
1484 same as the one recorded in the sdata structure. */
1485 if (from->string)
1486 CHECK_STRING_BYTES (from->string);
1487
1488 if (from->string)
1489 nbytes = GC_STRING_BYTES (from->string);
1490 else
1491 nbytes = SDATA_NBYTES (from);
1492
1493 nbytes = SDATA_SIZE (nbytes);
1494 from_end = (struct sdata *) ((char *) from + nbytes);
1495 }
1496 }
1497
1498
1499 /* Check validity of Lisp strings' string_bytes member. ALL_P
1500 non-zero means check all strings, otherwise check only most
1501 recently allocated strings. Used for hunting a bug. */
1502
1503 void
1504 check_string_bytes (all_p)
1505 int all_p;
1506 {
1507 if (all_p)
1508 {
1509 struct sblock *b;
1510
1511 for (b = large_sblocks; b; b = b->next)
1512 {
1513 struct Lisp_String *s = b->first_data.string;
1514 if (s)
1515 CHECK_STRING_BYTES (s);
1516 }
1517
1518 for (b = oldest_sblock; b; b = b->next)
1519 check_sblock (b);
1520 }
1521 else
1522 check_sblock (current_sblock);
1523 }
1524
1525 #endif /* GC_CHECK_STRING_BYTES */
1526
1527
1528 /* Return a new Lisp_String. */
1529
1530 static struct Lisp_String *
1531 allocate_string ()
1532 {
1533 struct Lisp_String *s;
1534
1535 /* If the free-list is empty, allocate a new string_block, and
1536 add all the Lisp_Strings in it to the free-list. */
1537 if (string_free_list == NULL)
1538 {
1539 struct string_block *b;
1540 int i;
1541
1542 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1543 bzero (b, sizeof *b);
1544 b->next = string_blocks;
1545 string_blocks = b;
1546 ++n_string_blocks;
1547
1548 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1549 {
1550 s = b->strings + i;
1551 NEXT_FREE_LISP_STRING (s) = string_free_list;
1552 string_free_list = s;
1553 }
1554
1555 total_free_strings += STRING_BLOCK_SIZE;
1556 }
1557
1558 /* Pop a Lisp_String off the free-list. */
1559 s = string_free_list;
1560 string_free_list = NEXT_FREE_LISP_STRING (s);
1561
1562 /* Probably not strictly necessary, but play it safe. */
1563 bzero (s, sizeof *s);
1564
1565 --total_free_strings;
1566 ++total_strings;
1567 ++strings_consed;
1568 consing_since_gc += sizeof *s;
1569
1570 #ifdef GC_CHECK_STRING_BYTES
1571 if (!noninteractive
1572 #ifdef MAC_OS8
1573 && current_sblock
1574 #endif
1575 )
1576 {
1577 if (++check_string_bytes_count == 200)
1578 {
1579 check_string_bytes_count = 0;
1580 check_string_bytes (1);
1581 }
1582 else
1583 check_string_bytes (0);
1584 }
1585 #endif /* GC_CHECK_STRING_BYTES */
1586
1587 return s;
1588 }
1589
1590
1591 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1592 plus a NUL byte at the end. Allocate an sdata structure for S, and
1593 set S->data to its `u.data' member. Store a NUL byte at the end of
1594 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1595 S->data if it was initially non-null. */
1596
1597 void
1598 allocate_string_data (s, nchars, nbytes)
1599 struct Lisp_String *s;
1600 int nchars, nbytes;
1601 {
1602 struct sdata *data, *old_data;
1603 struct sblock *b;
1604 int needed, old_nbytes;
1605
1606 /* Determine the number of bytes needed to store NBYTES bytes
1607 of string data. */
1608 needed = SDATA_SIZE (nbytes);
1609
1610 if (nbytes > LARGE_STRING_BYTES)
1611 {
1612 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1613
1614 #ifdef DOUG_LEA_MALLOC
1615 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1616 because mapped region contents are not preserved in
1617 a dumped Emacs.
1618
1619 In case you think of allowing it in a dumped Emacs at the
1620 cost of not being able to re-dump, there's another reason:
1621 mmap'ed data typically have an address towards the top of the
1622 address space, which won't fit into an EMACS_INT (at least on
1623 32-bit systems with the current tagging scheme). --fx */
1624 mallopt (M_MMAP_MAX, 0);
1625 #endif
1626
1627 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
1628
1629 #ifdef DOUG_LEA_MALLOC
1630 /* Back to a reasonable maximum of mmap'ed areas. */
1631 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1632 #endif
1633
1634 b->next_free = &b->first_data;
1635 b->first_data.string = NULL;
1636 b->next = large_sblocks;
1637 large_sblocks = b;
1638 }
1639 else if (current_sblock == NULL
1640 || (((char *) current_sblock + SBLOCK_SIZE
1641 - (char *) current_sblock->next_free)
1642 < needed))
1643 {
1644 /* Not enough room in the current sblock. */
1645 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1646 b->next_free = &b->first_data;
1647 b->first_data.string = NULL;
1648 b->next = NULL;
1649
1650 if (current_sblock)
1651 current_sblock->next = b;
1652 else
1653 oldest_sblock = b;
1654 current_sblock = b;
1655 }
1656 else
1657 b = current_sblock;
1658
1659 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1660 old_nbytes = GC_STRING_BYTES (s);
1661
1662 data = b->next_free;
1663 data->string = s;
1664 s->data = SDATA_DATA (data);
1665 #ifdef GC_CHECK_STRING_BYTES
1666 SDATA_NBYTES (data) = nbytes;
1667 #endif
1668 s->size = nchars;
1669 s->size_byte = nbytes;
1670 s->data[nbytes] = '\0';
1671 b->next_free = (struct sdata *) ((char *) data + needed);
1672
1673 /* If S had already data assigned, mark that as free by setting its
1674 string back-pointer to null, and recording the size of the data
1675 in it. */
1676 if (old_data)
1677 {
1678 SDATA_NBYTES (old_data) = old_nbytes;
1679 old_data->string = NULL;
1680 }
1681
1682 consing_since_gc += needed;
1683 }
1684
1685
1686 /* Sweep and compact strings. */
1687
1688 static void
1689 sweep_strings ()
1690 {
1691 struct string_block *b, *next;
1692 struct string_block *live_blocks = NULL;
1693
1694 string_free_list = NULL;
1695 total_strings = total_free_strings = 0;
1696 total_string_size = 0;
1697
1698 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1699 for (b = string_blocks; b; b = next)
1700 {
1701 int i, nfree = 0;
1702 struct Lisp_String *free_list_before = string_free_list;
1703
1704 next = b->next;
1705
1706 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1707 {
1708 struct Lisp_String *s = b->strings + i;
1709
1710 if (s->data)
1711 {
1712 /* String was not on free-list before. */
1713 if (STRING_MARKED_P (s))
1714 {
1715 /* String is live; unmark it and its intervals. */
1716 UNMARK_STRING (s);
1717
1718 if (!NULL_INTERVAL_P (s->intervals))
1719 UNMARK_BALANCE_INTERVALS (s->intervals);
1720
1721 ++total_strings;
1722 total_string_size += STRING_BYTES (s);
1723 }
1724 else
1725 {
1726 /* String is dead. Put it on the free-list. */
1727 struct sdata *data = SDATA_OF_STRING (s);
1728
1729 /* Save the size of S in its sdata so that we know
1730 how large that is. Reset the sdata's string
1731 back-pointer so that we know it's free. */
1732 #ifdef GC_CHECK_STRING_BYTES
1733 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1734 abort ();
1735 #else
1736 data->u.nbytes = GC_STRING_BYTES (s);
1737 #endif
1738 data->string = NULL;
1739
1740 /* Reset the strings's `data' member so that we
1741 know it's free. */
1742 s->data = NULL;
1743
1744 /* Put the string on the free-list. */
1745 NEXT_FREE_LISP_STRING (s) = string_free_list;
1746 string_free_list = s;
1747 ++nfree;
1748 }
1749 }
1750 else
1751 {
1752 /* S was on the free-list before. Put it there again. */
1753 NEXT_FREE_LISP_STRING (s) = string_free_list;
1754 string_free_list = s;
1755 ++nfree;
1756 }
1757 }
1758
1759 /* Free blocks that contain free Lisp_Strings only, except
1760 the first two of them. */
1761 if (nfree == STRING_BLOCK_SIZE
1762 && total_free_strings > STRING_BLOCK_SIZE)
1763 {
1764 lisp_free (b);
1765 --n_string_blocks;
1766 string_free_list = free_list_before;
1767 }
1768 else
1769 {
1770 total_free_strings += nfree;
1771 b->next = live_blocks;
1772 live_blocks = b;
1773 }
1774 }
1775
1776 string_blocks = live_blocks;
1777 free_large_strings ();
1778 compact_small_strings ();
1779 }
1780
1781
1782 /* Free dead large strings. */
1783
1784 static void
1785 free_large_strings ()
1786 {
1787 struct sblock *b, *next;
1788 struct sblock *live_blocks = NULL;
1789
1790 for (b = large_sblocks; b; b = next)
1791 {
1792 next = b->next;
1793
1794 if (b->first_data.string == NULL)
1795 lisp_free (b);
1796 else
1797 {
1798 b->next = live_blocks;
1799 live_blocks = b;
1800 }
1801 }
1802
1803 large_sblocks = live_blocks;
1804 }
1805
1806
1807 /* Compact data of small strings. Free sblocks that don't contain
1808 data of live strings after compaction. */
1809
1810 static void
1811 compact_small_strings ()
1812 {
1813 struct sblock *b, *tb, *next;
1814 struct sdata *from, *to, *end, *tb_end;
1815 struct sdata *to_end, *from_end;
1816
1817 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1818 to, and TB_END is the end of TB. */
1819 tb = oldest_sblock;
1820 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1821 to = &tb->first_data;
1822
1823 /* Step through the blocks from the oldest to the youngest. We
1824 expect that old blocks will stabilize over time, so that less
1825 copying will happen this way. */
1826 for (b = oldest_sblock; b; b = b->next)
1827 {
1828 end = b->next_free;
1829 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1830
1831 for (from = &b->first_data; from < end; from = from_end)
1832 {
1833 /* Compute the next FROM here because copying below may
1834 overwrite data we need to compute it. */
1835 int nbytes;
1836
1837 #ifdef GC_CHECK_STRING_BYTES
1838 /* Check that the string size recorded in the string is the
1839 same as the one recorded in the sdata structure. */
1840 if (from->string
1841 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1842 abort ();
1843 #endif /* GC_CHECK_STRING_BYTES */
1844
1845 if (from->string)
1846 nbytes = GC_STRING_BYTES (from->string);
1847 else
1848 nbytes = SDATA_NBYTES (from);
1849
1850 nbytes = SDATA_SIZE (nbytes);
1851 from_end = (struct sdata *) ((char *) from + nbytes);
1852
1853 /* FROM->string non-null means it's alive. Copy its data. */
1854 if (from->string)
1855 {
1856 /* If TB is full, proceed with the next sblock. */
1857 to_end = (struct sdata *) ((char *) to + nbytes);
1858 if (to_end > tb_end)
1859 {
1860 tb->next_free = to;
1861 tb = tb->next;
1862 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1863 to = &tb->first_data;
1864 to_end = (struct sdata *) ((char *) to + nbytes);
1865 }
1866
1867 /* Copy, and update the string's `data' pointer. */
1868 if (from != to)
1869 {
1870 xassert (tb != b || to <= from);
1871 safe_bcopy ((char *) from, (char *) to, nbytes);
1872 to->string->data = SDATA_DATA (to);
1873 }
1874
1875 /* Advance past the sdata we copied to. */
1876 to = to_end;
1877 }
1878 }
1879 }
1880
1881 /* The rest of the sblocks following TB don't contain live data, so
1882 we can free them. */
1883 for (b = tb->next; b; b = next)
1884 {
1885 next = b->next;
1886 lisp_free (b);
1887 }
1888
1889 tb->next_free = to;
1890 tb->next = NULL;
1891 current_sblock = tb;
1892 }
1893
1894
1895 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1896 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1897 LENGTH must be an integer.
1898 INIT must be an integer that represents a character. */)
1899 (length, init)
1900 Lisp_Object length, init;
1901 {
1902 register Lisp_Object val;
1903 register unsigned char *p, *end;
1904 int c, nbytes;
1905
1906 CHECK_NATNUM (length);
1907 CHECK_NUMBER (init);
1908
1909 c = XINT (init);
1910 if (SINGLE_BYTE_CHAR_P (c))
1911 {
1912 nbytes = XINT (length);
1913 val = make_uninit_string (nbytes);
1914 p = SDATA (val);
1915 end = p + SCHARS (val);
1916 while (p != end)
1917 *p++ = c;
1918 }
1919 else
1920 {
1921 unsigned char str[MAX_MULTIBYTE_LENGTH];
1922 int len = CHAR_STRING (c, str);
1923
1924 nbytes = len * XINT (length);
1925 val = make_uninit_multibyte_string (XINT (length), nbytes);
1926 p = SDATA (val);
1927 end = p + nbytes;
1928 while (p != end)
1929 {
1930 bcopy (str, p, len);
1931 p += len;
1932 }
1933 }
1934
1935 *p = 0;
1936 return val;
1937 }
1938
1939
1940 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1941 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
1942 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1943 (length, init)
1944 Lisp_Object length, init;
1945 {
1946 register Lisp_Object val;
1947 struct Lisp_Bool_Vector *p;
1948 int real_init, i;
1949 int length_in_chars, length_in_elts, bits_per_value;
1950
1951 CHECK_NATNUM (length);
1952
1953 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
1954
1955 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1956 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
1957 / BOOL_VECTOR_BITS_PER_CHAR);
1958
1959 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1960 slot `size' of the struct Lisp_Bool_Vector. */
1961 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1962 p = XBOOL_VECTOR (val);
1963
1964 /* Get rid of any bits that would cause confusion. */
1965 p->vector_size = 0;
1966 XSETBOOL_VECTOR (val, p);
1967 p->size = XFASTINT (length);
1968
1969 real_init = (NILP (init) ? 0 : -1);
1970 for (i = 0; i < length_in_chars ; i++)
1971 p->data[i] = real_init;
1972
1973 /* Clear the extraneous bits in the last byte. */
1974 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
1975 XBOOL_VECTOR (val)->data[length_in_chars - 1]
1976 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
1977
1978 return val;
1979 }
1980
1981
1982 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
1983 of characters from the contents. This string may be unibyte or
1984 multibyte, depending on the contents. */
1985
1986 Lisp_Object
1987 make_string (contents, nbytes)
1988 const char *contents;
1989 int nbytes;
1990 {
1991 register Lisp_Object val;
1992 int nchars, multibyte_nbytes;
1993
1994 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
1995 if (nbytes == nchars || nbytes != multibyte_nbytes)
1996 /* CONTENTS contains no multibyte sequences or contains an invalid
1997 multibyte sequence. We must make unibyte string. */
1998 val = make_unibyte_string (contents, nbytes);
1999 else
2000 val = make_multibyte_string (contents, nchars, nbytes);
2001 return val;
2002 }
2003
2004
2005 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2006
2007 Lisp_Object
2008 make_unibyte_string (contents, length)
2009 const char *contents;
2010 int length;
2011 {
2012 register Lisp_Object val;
2013 val = make_uninit_string (length);
2014 bcopy (contents, SDATA (val), length);
2015 STRING_SET_UNIBYTE (val);
2016 return val;
2017 }
2018
2019
2020 /* Make a multibyte string from NCHARS characters occupying NBYTES
2021 bytes at CONTENTS. */
2022
2023 Lisp_Object
2024 make_multibyte_string (contents, nchars, nbytes)
2025 const char *contents;
2026 int nchars, nbytes;
2027 {
2028 register Lisp_Object val;
2029 val = make_uninit_multibyte_string (nchars, nbytes);
2030 bcopy (contents, SDATA (val), nbytes);
2031 return val;
2032 }
2033
2034
2035 /* Make a string from NCHARS characters occupying NBYTES bytes at
2036 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2037
2038 Lisp_Object
2039 make_string_from_bytes (contents, nchars, nbytes)
2040 const char *contents;
2041 int nchars, nbytes;
2042 {
2043 register Lisp_Object val;
2044 val = make_uninit_multibyte_string (nchars, nbytes);
2045 bcopy (contents, SDATA (val), nbytes);
2046 if (SBYTES (val) == SCHARS (val))
2047 STRING_SET_UNIBYTE (val);
2048 return val;
2049 }
2050
2051
2052 /* Make a string from NCHARS characters occupying NBYTES bytes at
2053 CONTENTS. The argument MULTIBYTE controls whether to label the
2054 string as multibyte. If NCHARS is negative, it counts the number of
2055 characters by itself. */
2056
2057 Lisp_Object
2058 make_specified_string (contents, nchars, nbytes, multibyte)
2059 const char *contents;
2060 int nchars, nbytes;
2061 int multibyte;
2062 {
2063 register Lisp_Object val;
2064
2065 if (nchars < 0)
2066 {
2067 if (multibyte)
2068 nchars = multibyte_chars_in_text (contents, nbytes);
2069 else
2070 nchars = nbytes;
2071 }
2072 val = make_uninit_multibyte_string (nchars, nbytes);
2073 bcopy (contents, SDATA (val), nbytes);
2074 if (!multibyte)
2075 STRING_SET_UNIBYTE (val);
2076 return val;
2077 }
2078
2079
2080 /* Make a string from the data at STR, treating it as multibyte if the
2081 data warrants. */
2082
2083 Lisp_Object
2084 build_string (str)
2085 const char *str;
2086 {
2087 return make_string (str, strlen (str));
2088 }
2089
2090
2091 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2092 occupying LENGTH bytes. */
2093
2094 Lisp_Object
2095 make_uninit_string (length)
2096 int length;
2097 {
2098 Lisp_Object val;
2099 val = make_uninit_multibyte_string (length, length);
2100 STRING_SET_UNIBYTE (val);
2101 return val;
2102 }
2103
2104
2105 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2106 which occupy NBYTES bytes. */
2107
2108 Lisp_Object
2109 make_uninit_multibyte_string (nchars, nbytes)
2110 int nchars, nbytes;
2111 {
2112 Lisp_Object string;
2113 struct Lisp_String *s;
2114
2115 if (nchars < 0)
2116 abort ();
2117
2118 s = allocate_string ();
2119 allocate_string_data (s, nchars, nbytes);
2120 XSETSTRING (string, s);
2121 string_chars_consed += nbytes;
2122 return string;
2123 }
2124
2125
2126 \f
2127 /***********************************************************************
2128 Float Allocation
2129 ***********************************************************************/
2130
2131 /* We store float cells inside of float_blocks, allocating a new
2132 float_block with malloc whenever necessary. Float cells reclaimed
2133 by GC are put on a free list to be reallocated before allocating
2134 any new float cells from the latest float_block. */
2135
2136 #define FLOAT_BLOCK_SIZE \
2137 (((BLOCK_BYTES - sizeof (struct float_block *) \
2138 /* The compiler might add padding at the end. */ \
2139 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2140 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2141
2142 #define GETMARKBIT(block,n) \
2143 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2144 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2145 & 1)
2146
2147 #define SETMARKBIT(block,n) \
2148 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2149 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2150
2151 #define UNSETMARKBIT(block,n) \
2152 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2153 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2154
2155 #define FLOAT_BLOCK(fptr) \
2156 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2157
2158 #define FLOAT_INDEX(fptr) \
2159 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2160
2161 struct float_block
2162 {
2163 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2164 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2165 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2166 struct float_block *next;
2167 };
2168
2169 #define FLOAT_MARKED_P(fptr) \
2170 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2171
2172 #define FLOAT_MARK(fptr) \
2173 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2174
2175 #define FLOAT_UNMARK(fptr) \
2176 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2177
2178 /* Current float_block. */
2179
2180 struct float_block *float_block;
2181
2182 /* Index of first unused Lisp_Float in the current float_block. */
2183
2184 int float_block_index;
2185
2186 /* Total number of float blocks now in use. */
2187
2188 int n_float_blocks;
2189
2190 /* Free-list of Lisp_Floats. */
2191
2192 struct Lisp_Float *float_free_list;
2193
2194
2195 /* Initialize float allocation. */
2196
2197 void
2198 init_float ()
2199 {
2200 float_block = NULL;
2201 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2202 float_free_list = 0;
2203 n_float_blocks = 0;
2204 }
2205
2206
2207 /* Explicitly free a float cell by putting it on the free-list. */
2208
2209 void
2210 free_float (ptr)
2211 struct Lisp_Float *ptr;
2212 {
2213 *(struct Lisp_Float **)&ptr->data = float_free_list;
2214 float_free_list = ptr;
2215 }
2216
2217
2218 /* Return a new float object with value FLOAT_VALUE. */
2219
2220 Lisp_Object
2221 make_float (float_value)
2222 double float_value;
2223 {
2224 register Lisp_Object val;
2225
2226 if (float_free_list)
2227 {
2228 /* We use the data field for chaining the free list
2229 so that we won't use the same field that has the mark bit. */
2230 XSETFLOAT (val, float_free_list);
2231 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2232 }
2233 else
2234 {
2235 if (float_block_index == FLOAT_BLOCK_SIZE)
2236 {
2237 register struct float_block *new;
2238
2239 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2240 MEM_TYPE_FLOAT);
2241 new->next = float_block;
2242 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2243 float_block = new;
2244 float_block_index = 0;
2245 n_float_blocks++;
2246 }
2247 XSETFLOAT (val, &float_block->floats[float_block_index]);
2248 float_block_index++;
2249 }
2250
2251 XFLOAT_DATA (val) = float_value;
2252 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2253 consing_since_gc += sizeof (struct Lisp_Float);
2254 floats_consed++;
2255 return val;
2256 }
2257
2258
2259 \f
2260 /***********************************************************************
2261 Cons Allocation
2262 ***********************************************************************/
2263
2264 /* We store cons cells inside of cons_blocks, allocating a new
2265 cons_block with malloc whenever necessary. Cons cells reclaimed by
2266 GC are put on a free list to be reallocated before allocating
2267 any new cons cells from the latest cons_block. */
2268
2269 #define CONS_BLOCK_SIZE \
2270 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2271 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2272
2273 #define CONS_BLOCK(fptr) \
2274 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2275
2276 #define CONS_INDEX(fptr) \
2277 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2278
2279 struct cons_block
2280 {
2281 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2282 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2283 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2284 struct cons_block *next;
2285 };
2286
2287 #define CONS_MARKED_P(fptr) \
2288 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2289
2290 #define CONS_MARK(fptr) \
2291 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2292
2293 #define CONS_UNMARK(fptr) \
2294 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2295
2296 /* Current cons_block. */
2297
2298 struct cons_block *cons_block;
2299
2300 /* Index of first unused Lisp_Cons in the current block. */
2301
2302 int cons_block_index;
2303
2304 /* Free-list of Lisp_Cons structures. */
2305
2306 struct Lisp_Cons *cons_free_list;
2307
2308 /* Total number of cons blocks now in use. */
2309
2310 int n_cons_blocks;
2311
2312
2313 /* Initialize cons allocation. */
2314
2315 void
2316 init_cons ()
2317 {
2318 cons_block = NULL;
2319 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2320 cons_free_list = 0;
2321 n_cons_blocks = 0;
2322 }
2323
2324
2325 /* Explicitly free a cons cell by putting it on the free-list. */
2326
2327 void
2328 free_cons (ptr)
2329 struct Lisp_Cons *ptr;
2330 {
2331 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2332 #if GC_MARK_STACK
2333 ptr->car = Vdead;
2334 #endif
2335 cons_free_list = ptr;
2336 }
2337
2338 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2339 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2340 (car, cdr)
2341 Lisp_Object car, cdr;
2342 {
2343 register Lisp_Object val;
2344
2345 if (cons_free_list)
2346 {
2347 /* We use the cdr for chaining the free list
2348 so that we won't use the same field that has the mark bit. */
2349 XSETCONS (val, cons_free_list);
2350 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2351 }
2352 else
2353 {
2354 if (cons_block_index == CONS_BLOCK_SIZE)
2355 {
2356 register struct cons_block *new;
2357 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2358 MEM_TYPE_CONS);
2359 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2360 new->next = cons_block;
2361 cons_block = new;
2362 cons_block_index = 0;
2363 n_cons_blocks++;
2364 }
2365 XSETCONS (val, &cons_block->conses[cons_block_index]);
2366 cons_block_index++;
2367 }
2368
2369 XSETCAR (val, car);
2370 XSETCDR (val, cdr);
2371 eassert (!CONS_MARKED_P (XCONS (val)));
2372 consing_since_gc += sizeof (struct Lisp_Cons);
2373 cons_cells_consed++;
2374 return val;
2375 }
2376
2377
2378 /* Make a list of 2, 3, 4 or 5 specified objects. */
2379
2380 Lisp_Object
2381 list2 (arg1, arg2)
2382 Lisp_Object arg1, arg2;
2383 {
2384 return Fcons (arg1, Fcons (arg2, Qnil));
2385 }
2386
2387
2388 Lisp_Object
2389 list3 (arg1, arg2, arg3)
2390 Lisp_Object arg1, arg2, arg3;
2391 {
2392 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2393 }
2394
2395
2396 Lisp_Object
2397 list4 (arg1, arg2, arg3, arg4)
2398 Lisp_Object arg1, arg2, arg3, arg4;
2399 {
2400 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2401 }
2402
2403
2404 Lisp_Object
2405 list5 (arg1, arg2, arg3, arg4, arg5)
2406 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2407 {
2408 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2409 Fcons (arg5, Qnil)))));
2410 }
2411
2412
2413 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2414 doc: /* Return a newly created list with specified arguments as elements.
2415 Any number of arguments, even zero arguments, are allowed.
2416 usage: (list &rest OBJECTS) */)
2417 (nargs, args)
2418 int nargs;
2419 register Lisp_Object *args;
2420 {
2421 register Lisp_Object val;
2422 val = Qnil;
2423
2424 while (nargs > 0)
2425 {
2426 nargs--;
2427 val = Fcons (args[nargs], val);
2428 }
2429 return val;
2430 }
2431
2432
2433 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2434 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2435 (length, init)
2436 register Lisp_Object length, init;
2437 {
2438 register Lisp_Object val;
2439 register int size;
2440
2441 CHECK_NATNUM (length);
2442 size = XFASTINT (length);
2443
2444 val = Qnil;
2445 while (size > 0)
2446 {
2447 val = Fcons (init, val);
2448 --size;
2449
2450 if (size > 0)
2451 {
2452 val = Fcons (init, val);
2453 --size;
2454
2455 if (size > 0)
2456 {
2457 val = Fcons (init, val);
2458 --size;
2459
2460 if (size > 0)
2461 {
2462 val = Fcons (init, val);
2463 --size;
2464
2465 if (size > 0)
2466 {
2467 val = Fcons (init, val);
2468 --size;
2469 }
2470 }
2471 }
2472 }
2473
2474 QUIT;
2475 }
2476
2477 return val;
2478 }
2479
2480
2481 \f
2482 /***********************************************************************
2483 Vector Allocation
2484 ***********************************************************************/
2485
2486 /* Singly-linked list of all vectors. */
2487
2488 struct Lisp_Vector *all_vectors;
2489
2490 /* Total number of vector-like objects now in use. */
2491
2492 int n_vectors;
2493
2494
2495 /* Value is a pointer to a newly allocated Lisp_Vector structure
2496 with room for LEN Lisp_Objects. */
2497
2498 static struct Lisp_Vector *
2499 allocate_vectorlike (len, type)
2500 EMACS_INT len;
2501 enum mem_type type;
2502 {
2503 struct Lisp_Vector *p;
2504 size_t nbytes;
2505
2506 #ifdef DOUG_LEA_MALLOC
2507 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2508 because mapped region contents are not preserved in
2509 a dumped Emacs. */
2510 BLOCK_INPUT;
2511 mallopt (M_MMAP_MAX, 0);
2512 UNBLOCK_INPUT;
2513 #endif
2514
2515 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2516 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2517
2518 #ifdef DOUG_LEA_MALLOC
2519 /* Back to a reasonable maximum of mmap'ed areas. */
2520 BLOCK_INPUT;
2521 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2522 UNBLOCK_INPUT;
2523 #endif
2524
2525 consing_since_gc += nbytes;
2526 vector_cells_consed += len;
2527
2528 p->next = all_vectors;
2529 all_vectors = p;
2530 ++n_vectors;
2531 return p;
2532 }
2533
2534
2535 /* Allocate a vector with NSLOTS slots. */
2536
2537 struct Lisp_Vector *
2538 allocate_vector (nslots)
2539 EMACS_INT nslots;
2540 {
2541 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2542 v->size = nslots;
2543 return v;
2544 }
2545
2546
2547 /* Allocate other vector-like structures. */
2548
2549 struct Lisp_Hash_Table *
2550 allocate_hash_table ()
2551 {
2552 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2553 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2554 EMACS_INT i;
2555
2556 v->size = len;
2557 for (i = 0; i < len; ++i)
2558 v->contents[i] = Qnil;
2559
2560 return (struct Lisp_Hash_Table *) v;
2561 }
2562
2563
2564 struct window *
2565 allocate_window ()
2566 {
2567 EMACS_INT len = VECSIZE (struct window);
2568 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2569 EMACS_INT i;
2570
2571 for (i = 0; i < len; ++i)
2572 v->contents[i] = Qnil;
2573 v->size = len;
2574
2575 return (struct window *) v;
2576 }
2577
2578
2579 struct frame *
2580 allocate_frame ()
2581 {
2582 EMACS_INT len = VECSIZE (struct frame);
2583 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2584 EMACS_INT i;
2585
2586 for (i = 0; i < len; ++i)
2587 v->contents[i] = make_number (0);
2588 v->size = len;
2589 return (struct frame *) v;
2590 }
2591
2592
2593 struct Lisp_Process *
2594 allocate_process ()
2595 {
2596 EMACS_INT len = VECSIZE (struct Lisp_Process);
2597 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2598 EMACS_INT i;
2599
2600 for (i = 0; i < len; ++i)
2601 v->contents[i] = Qnil;
2602 v->size = len;
2603
2604 return (struct Lisp_Process *) v;
2605 }
2606
2607
2608 struct Lisp_Vector *
2609 allocate_other_vector (len)
2610 EMACS_INT len;
2611 {
2612 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2613 EMACS_INT i;
2614
2615 for (i = 0; i < len; ++i)
2616 v->contents[i] = Qnil;
2617 v->size = len;
2618
2619 return v;
2620 }
2621
2622
2623 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2624 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2625 See also the function `vector'. */)
2626 (length, init)
2627 register Lisp_Object length, init;
2628 {
2629 Lisp_Object vector;
2630 register EMACS_INT sizei;
2631 register int index;
2632 register struct Lisp_Vector *p;
2633
2634 CHECK_NATNUM (length);
2635 sizei = XFASTINT (length);
2636
2637 p = allocate_vector (sizei);
2638 for (index = 0; index < sizei; index++)
2639 p->contents[index] = init;
2640
2641 XSETVECTOR (vector, p);
2642 return vector;
2643 }
2644
2645
2646 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
2647 doc: /* Return a newly created char-table, with purpose PURPOSE.
2648 Each element is initialized to INIT, which defaults to nil.
2649 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
2650 The property's value should be an integer between 0 and 10. */)
2651 (purpose, init)
2652 register Lisp_Object purpose, init;
2653 {
2654 Lisp_Object vector;
2655 Lisp_Object n;
2656 CHECK_SYMBOL (purpose);
2657 n = Fget (purpose, Qchar_table_extra_slots);
2658 CHECK_NUMBER (n);
2659 if (XINT (n) < 0 || XINT (n) > 10)
2660 args_out_of_range (n, Qnil);
2661 /* Add 2 to the size for the defalt and parent slots. */
2662 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2663 init);
2664 XCHAR_TABLE (vector)->top = Qt;
2665 XCHAR_TABLE (vector)->parent = Qnil;
2666 XCHAR_TABLE (vector)->purpose = purpose;
2667 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2668 return vector;
2669 }
2670
2671
2672 /* Return a newly created sub char table with default value DEFALT.
2673 Since a sub char table does not appear as a top level Emacs Lisp
2674 object, we don't need a Lisp interface to make it. */
2675
2676 Lisp_Object
2677 make_sub_char_table (defalt)
2678 Lisp_Object defalt;
2679 {
2680 Lisp_Object vector
2681 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2682 XCHAR_TABLE (vector)->top = Qnil;
2683 XCHAR_TABLE (vector)->defalt = defalt;
2684 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2685 return vector;
2686 }
2687
2688
2689 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2690 doc: /* Return a newly created vector with specified arguments as elements.
2691 Any number of arguments, even zero arguments, are allowed.
2692 usage: (vector &rest OBJECTS) */)
2693 (nargs, args)
2694 register int nargs;
2695 Lisp_Object *args;
2696 {
2697 register Lisp_Object len, val;
2698 register int index;
2699 register struct Lisp_Vector *p;
2700
2701 XSETFASTINT (len, nargs);
2702 val = Fmake_vector (len, Qnil);
2703 p = XVECTOR (val);
2704 for (index = 0; index < nargs; index++)
2705 p->contents[index] = args[index];
2706 return val;
2707 }
2708
2709
2710 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2711 doc: /* Create a byte-code object with specified arguments as elements.
2712 The arguments should be the arglist, bytecode-string, constant vector,
2713 stack size, (optional) doc string, and (optional) interactive spec.
2714 The first four arguments are required; at most six have any
2715 significance.
2716 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2717 (nargs, args)
2718 register int nargs;
2719 Lisp_Object *args;
2720 {
2721 register Lisp_Object len, val;
2722 register int index;
2723 register struct Lisp_Vector *p;
2724
2725 XSETFASTINT (len, nargs);
2726 if (!NILP (Vpurify_flag))
2727 val = make_pure_vector ((EMACS_INT) nargs);
2728 else
2729 val = Fmake_vector (len, Qnil);
2730
2731 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2732 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2733 earlier because they produced a raw 8-bit string for byte-code
2734 and now such a byte-code string is loaded as multibyte while
2735 raw 8-bit characters converted to multibyte form. Thus, now we
2736 must convert them back to the original unibyte form. */
2737 args[1] = Fstring_as_unibyte (args[1]);
2738
2739 p = XVECTOR (val);
2740 for (index = 0; index < nargs; index++)
2741 {
2742 if (!NILP (Vpurify_flag))
2743 args[index] = Fpurecopy (args[index]);
2744 p->contents[index] = args[index];
2745 }
2746 XSETCOMPILED (val, p);
2747 return val;
2748 }
2749
2750
2751 \f
2752 /***********************************************************************
2753 Symbol Allocation
2754 ***********************************************************************/
2755
2756 /* Each symbol_block is just under 1020 bytes long, since malloc
2757 really allocates in units of powers of two and uses 4 bytes for its
2758 own overhead. */
2759
2760 #define SYMBOL_BLOCK_SIZE \
2761 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2762
2763 struct symbol_block
2764 {
2765 /* Place `symbols' first, to preserve alignment. */
2766 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2767 struct symbol_block *next;
2768 };
2769
2770 /* Current symbol block and index of first unused Lisp_Symbol
2771 structure in it. */
2772
2773 struct symbol_block *symbol_block;
2774 int symbol_block_index;
2775
2776 /* List of free symbols. */
2777
2778 struct Lisp_Symbol *symbol_free_list;
2779
2780 /* Total number of symbol blocks now in use. */
2781
2782 int n_symbol_blocks;
2783
2784
2785 /* Initialize symbol allocation. */
2786
2787 void
2788 init_symbol ()
2789 {
2790 symbol_block = NULL;
2791 symbol_block_index = SYMBOL_BLOCK_SIZE;
2792 symbol_free_list = 0;
2793 n_symbol_blocks = 0;
2794 }
2795
2796
2797 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
2798 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
2799 Its value and function definition are void, and its property list is nil. */)
2800 (name)
2801 Lisp_Object name;
2802 {
2803 register Lisp_Object val;
2804 register struct Lisp_Symbol *p;
2805
2806 CHECK_STRING (name);
2807
2808 if (symbol_free_list)
2809 {
2810 XSETSYMBOL (val, symbol_free_list);
2811 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
2812 }
2813 else
2814 {
2815 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2816 {
2817 struct symbol_block *new;
2818 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2819 MEM_TYPE_SYMBOL);
2820 new->next = symbol_block;
2821 symbol_block = new;
2822 symbol_block_index = 0;
2823 n_symbol_blocks++;
2824 }
2825 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
2826 symbol_block_index++;
2827 }
2828
2829 p = XSYMBOL (val);
2830 p->xname = name;
2831 p->plist = Qnil;
2832 p->value = Qunbound;
2833 p->function = Qunbound;
2834 p->next = NULL;
2835 p->gcmarkbit = 0;
2836 p->interned = SYMBOL_UNINTERNED;
2837 p->constant = 0;
2838 p->indirect_variable = 0;
2839 consing_since_gc += sizeof (struct Lisp_Symbol);
2840 symbols_consed++;
2841 return val;
2842 }
2843
2844
2845 \f
2846 /***********************************************************************
2847 Marker (Misc) Allocation
2848 ***********************************************************************/
2849
2850 /* Allocation of markers and other objects that share that structure.
2851 Works like allocation of conses. */
2852
2853 #define MARKER_BLOCK_SIZE \
2854 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2855
2856 struct marker_block
2857 {
2858 /* Place `markers' first, to preserve alignment. */
2859 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
2860 struct marker_block *next;
2861 };
2862
2863 struct marker_block *marker_block;
2864 int marker_block_index;
2865
2866 union Lisp_Misc *marker_free_list;
2867
2868 /* Marker blocks which should be freed at end of GC. */
2869
2870 struct marker_block *marker_blocks_pending_free;
2871
2872 /* Total number of marker blocks now in use. */
2873
2874 int n_marker_blocks;
2875
2876 void
2877 init_marker ()
2878 {
2879 marker_block = NULL;
2880 marker_block_index = MARKER_BLOCK_SIZE;
2881 marker_free_list = 0;
2882 marker_blocks_pending_free = 0;
2883 n_marker_blocks = 0;
2884 }
2885
2886 /* Return a newly allocated Lisp_Misc object, with no substructure. */
2887
2888 Lisp_Object
2889 allocate_misc ()
2890 {
2891 Lisp_Object val;
2892
2893 if (marker_free_list)
2894 {
2895 XSETMISC (val, marker_free_list);
2896 marker_free_list = marker_free_list->u_free.chain;
2897 }
2898 else
2899 {
2900 if (marker_block_index == MARKER_BLOCK_SIZE)
2901 {
2902 struct marker_block *new;
2903 new = (struct marker_block *) lisp_malloc (sizeof *new,
2904 MEM_TYPE_MISC);
2905 new->next = marker_block;
2906 marker_block = new;
2907 marker_block_index = 0;
2908 n_marker_blocks++;
2909 }
2910 XSETMISC (val, &marker_block->markers[marker_block_index]);
2911 marker_block_index++;
2912 }
2913
2914 consing_since_gc += sizeof (union Lisp_Misc);
2915 misc_objects_consed++;
2916 XMARKER (val)->gcmarkbit = 0;
2917 return val;
2918 }
2919
2920 /* Return a Lisp_Misc_Save_Value object containing POINTER and
2921 INTEGER. This is used to package C values to call record_unwind_protect.
2922 The unwind function can get the C values back using XSAVE_VALUE. */
2923
2924 Lisp_Object
2925 make_save_value (pointer, integer)
2926 void *pointer;
2927 int integer;
2928 {
2929 register Lisp_Object val;
2930 register struct Lisp_Save_Value *p;
2931
2932 val = allocate_misc ();
2933 XMISCTYPE (val) = Lisp_Misc_Save_Value;
2934 p = XSAVE_VALUE (val);
2935 p->pointer = pointer;
2936 p->integer = integer;
2937 return val;
2938 }
2939
2940 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
2941 doc: /* Return a newly allocated marker which does not point at any place. */)
2942 ()
2943 {
2944 register Lisp_Object val;
2945 register struct Lisp_Marker *p;
2946
2947 val = allocate_misc ();
2948 XMISCTYPE (val) = Lisp_Misc_Marker;
2949 p = XMARKER (val);
2950 p->buffer = 0;
2951 p->bytepos = 0;
2952 p->charpos = 0;
2953 p->next = NULL;
2954 p->insertion_type = 0;
2955 return val;
2956 }
2957
2958 /* Put MARKER back on the free list after using it temporarily. */
2959
2960 void
2961 free_marker (marker)
2962 Lisp_Object marker;
2963 {
2964 unchain_marker (XMARKER (marker));
2965
2966 XMISC (marker)->u_marker.type = Lisp_Misc_Free;
2967 XMISC (marker)->u_free.chain = marker_free_list;
2968 marker_free_list = XMISC (marker);
2969
2970 total_free_markers++;
2971 }
2972
2973 \f
2974 /* Return a newly created vector or string with specified arguments as
2975 elements. If all the arguments are characters that can fit
2976 in a string of events, make a string; otherwise, make a vector.
2977
2978 Any number of arguments, even zero arguments, are allowed. */
2979
2980 Lisp_Object
2981 make_event_array (nargs, args)
2982 register int nargs;
2983 Lisp_Object *args;
2984 {
2985 int i;
2986
2987 for (i = 0; i < nargs; i++)
2988 /* The things that fit in a string
2989 are characters that are in 0...127,
2990 after discarding the meta bit and all the bits above it. */
2991 if (!INTEGERP (args[i])
2992 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
2993 return Fvector (nargs, args);
2994
2995 /* Since the loop exited, we know that all the things in it are
2996 characters, so we can make a string. */
2997 {
2998 Lisp_Object result;
2999
3000 result = Fmake_string (make_number (nargs), make_number (0));
3001 for (i = 0; i < nargs; i++)
3002 {
3003 SSET (result, i, XINT (args[i]));
3004 /* Move the meta bit to the right place for a string char. */
3005 if (XINT (args[i]) & CHAR_META)
3006 SSET (result, i, SREF (result, i) | 0x80);
3007 }
3008
3009 return result;
3010 }
3011 }
3012
3013
3014 \f
3015 /************************************************************************
3016 C Stack Marking
3017 ************************************************************************/
3018
3019 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3020
3021 /* Conservative C stack marking requires a method to identify possibly
3022 live Lisp objects given a pointer value. We do this by keeping
3023 track of blocks of Lisp data that are allocated in a red-black tree
3024 (see also the comment of mem_node which is the type of nodes in
3025 that tree). Function lisp_malloc adds information for an allocated
3026 block to the red-black tree with calls to mem_insert, and function
3027 lisp_free removes it with mem_delete. Functions live_string_p etc
3028 call mem_find to lookup information about a given pointer in the
3029 tree, and use that to determine if the pointer points to a Lisp
3030 object or not. */
3031
3032 /* Initialize this part of alloc.c. */
3033
3034 static void
3035 mem_init ()
3036 {
3037 mem_z.left = mem_z.right = MEM_NIL;
3038 mem_z.parent = NULL;
3039 mem_z.color = MEM_BLACK;
3040 mem_z.start = mem_z.end = NULL;
3041 mem_root = MEM_NIL;
3042 }
3043
3044
3045 /* Value is a pointer to the mem_node containing START. Value is
3046 MEM_NIL if there is no node in the tree containing START. */
3047
3048 static INLINE struct mem_node *
3049 mem_find (start)
3050 void *start;
3051 {
3052 struct mem_node *p;
3053
3054 if (start < min_heap_address || start > max_heap_address)
3055 return MEM_NIL;
3056
3057 /* Make the search always successful to speed up the loop below. */
3058 mem_z.start = start;
3059 mem_z.end = (char *) start + 1;
3060
3061 p = mem_root;
3062 while (start < p->start || start >= p->end)
3063 p = start < p->start ? p->left : p->right;
3064 return p;
3065 }
3066
3067
3068 /* Insert a new node into the tree for a block of memory with start
3069 address START, end address END, and type TYPE. Value is a
3070 pointer to the node that was inserted. */
3071
3072 static struct mem_node *
3073 mem_insert (start, end, type)
3074 void *start, *end;
3075 enum mem_type type;
3076 {
3077 struct mem_node *c, *parent, *x;
3078
3079 if (start < min_heap_address)
3080 min_heap_address = start;
3081 if (end > max_heap_address)
3082 max_heap_address = end;
3083
3084 /* See where in the tree a node for START belongs. In this
3085 particular application, it shouldn't happen that a node is already
3086 present. For debugging purposes, let's check that. */
3087 c = mem_root;
3088 parent = NULL;
3089
3090 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3091
3092 while (c != MEM_NIL)
3093 {
3094 if (start >= c->start && start < c->end)
3095 abort ();
3096 parent = c;
3097 c = start < c->start ? c->left : c->right;
3098 }
3099
3100 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3101
3102 while (c != MEM_NIL)
3103 {
3104 parent = c;
3105 c = start < c->start ? c->left : c->right;
3106 }
3107
3108 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3109
3110 /* Create a new node. */
3111 #ifdef GC_MALLOC_CHECK
3112 x = (struct mem_node *) _malloc_internal (sizeof *x);
3113 if (x == NULL)
3114 abort ();
3115 #else
3116 x = (struct mem_node *) xmalloc (sizeof *x);
3117 #endif
3118 x->start = start;
3119 x->end = end;
3120 x->type = type;
3121 x->parent = parent;
3122 x->left = x->right = MEM_NIL;
3123 x->color = MEM_RED;
3124
3125 /* Insert it as child of PARENT or install it as root. */
3126 if (parent)
3127 {
3128 if (start < parent->start)
3129 parent->left = x;
3130 else
3131 parent->right = x;
3132 }
3133 else
3134 mem_root = x;
3135
3136 /* Re-establish red-black tree properties. */
3137 mem_insert_fixup (x);
3138
3139 return x;
3140 }
3141
3142
3143 /* Re-establish the red-black properties of the tree, and thereby
3144 balance the tree, after node X has been inserted; X is always red. */
3145
3146 static void
3147 mem_insert_fixup (x)
3148 struct mem_node *x;
3149 {
3150 while (x != mem_root && x->parent->color == MEM_RED)
3151 {
3152 /* X is red and its parent is red. This is a violation of
3153 red-black tree property #3. */
3154
3155 if (x->parent == x->parent->parent->left)
3156 {
3157 /* We're on the left side of our grandparent, and Y is our
3158 "uncle". */
3159 struct mem_node *y = x->parent->parent->right;
3160
3161 if (y->color == MEM_RED)
3162 {
3163 /* Uncle and parent are red but should be black because
3164 X is red. Change the colors accordingly and proceed
3165 with the grandparent. */
3166 x->parent->color = MEM_BLACK;
3167 y->color = MEM_BLACK;
3168 x->parent->parent->color = MEM_RED;
3169 x = x->parent->parent;
3170 }
3171 else
3172 {
3173 /* Parent and uncle have different colors; parent is
3174 red, uncle is black. */
3175 if (x == x->parent->right)
3176 {
3177 x = x->parent;
3178 mem_rotate_left (x);
3179 }
3180
3181 x->parent->color = MEM_BLACK;
3182 x->parent->parent->color = MEM_RED;
3183 mem_rotate_right (x->parent->parent);
3184 }
3185 }
3186 else
3187 {
3188 /* This is the symmetrical case of above. */
3189 struct mem_node *y = x->parent->parent->left;
3190
3191 if (y->color == MEM_RED)
3192 {
3193 x->parent->color = MEM_BLACK;
3194 y->color = MEM_BLACK;
3195 x->parent->parent->color = MEM_RED;
3196 x = x->parent->parent;
3197 }
3198 else
3199 {
3200 if (x == x->parent->left)
3201 {
3202 x = x->parent;
3203 mem_rotate_right (x);
3204 }
3205
3206 x->parent->color = MEM_BLACK;
3207 x->parent->parent->color = MEM_RED;
3208 mem_rotate_left (x->parent->parent);
3209 }
3210 }
3211 }
3212
3213 /* The root may have been changed to red due to the algorithm. Set
3214 it to black so that property #5 is satisfied. */
3215 mem_root->color = MEM_BLACK;
3216 }
3217
3218
3219 /* (x) (y)
3220 / \ / \
3221 a (y) ===> (x) c
3222 / \ / \
3223 b c a b */
3224
3225 static void
3226 mem_rotate_left (x)
3227 struct mem_node *x;
3228 {
3229 struct mem_node *y;
3230
3231 /* Turn y's left sub-tree into x's right sub-tree. */
3232 y = x->right;
3233 x->right = y->left;
3234 if (y->left != MEM_NIL)
3235 y->left->parent = x;
3236
3237 /* Y's parent was x's parent. */
3238 if (y != MEM_NIL)
3239 y->parent = x->parent;
3240
3241 /* Get the parent to point to y instead of x. */
3242 if (x->parent)
3243 {
3244 if (x == x->parent->left)
3245 x->parent->left = y;
3246 else
3247 x->parent->right = y;
3248 }
3249 else
3250 mem_root = y;
3251
3252 /* Put x on y's left. */
3253 y->left = x;
3254 if (x != MEM_NIL)
3255 x->parent = y;
3256 }
3257
3258
3259 /* (x) (Y)
3260 / \ / \
3261 (y) c ===> a (x)
3262 / \ / \
3263 a b b c */
3264
3265 static void
3266 mem_rotate_right (x)
3267 struct mem_node *x;
3268 {
3269 struct mem_node *y = x->left;
3270
3271 x->left = y->right;
3272 if (y->right != MEM_NIL)
3273 y->right->parent = x;
3274
3275 if (y != MEM_NIL)
3276 y->parent = x->parent;
3277 if (x->parent)
3278 {
3279 if (x == x->parent->right)
3280 x->parent->right = y;
3281 else
3282 x->parent->left = y;
3283 }
3284 else
3285 mem_root = y;
3286
3287 y->right = x;
3288 if (x != MEM_NIL)
3289 x->parent = y;
3290 }
3291
3292
3293 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3294
3295 static void
3296 mem_delete (z)
3297 struct mem_node *z;
3298 {
3299 struct mem_node *x, *y;
3300
3301 if (!z || z == MEM_NIL)
3302 return;
3303
3304 if (z->left == MEM_NIL || z->right == MEM_NIL)
3305 y = z;
3306 else
3307 {
3308 y = z->right;
3309 while (y->left != MEM_NIL)
3310 y = y->left;
3311 }
3312
3313 if (y->left != MEM_NIL)
3314 x = y->left;
3315 else
3316 x = y->right;
3317
3318 x->parent = y->parent;
3319 if (y->parent)
3320 {
3321 if (y == y->parent->left)
3322 y->parent->left = x;
3323 else
3324 y->parent->right = x;
3325 }
3326 else
3327 mem_root = x;
3328
3329 if (y != z)
3330 {
3331 z->start = y->start;
3332 z->end = y->end;
3333 z->type = y->type;
3334 }
3335
3336 if (y->color == MEM_BLACK)
3337 mem_delete_fixup (x);
3338
3339 #ifdef GC_MALLOC_CHECK
3340 _free_internal (y);
3341 #else
3342 xfree (y);
3343 #endif
3344 }
3345
3346
3347 /* Re-establish the red-black properties of the tree, after a
3348 deletion. */
3349
3350 static void
3351 mem_delete_fixup (x)
3352 struct mem_node *x;
3353 {
3354 while (x != mem_root && x->color == MEM_BLACK)
3355 {
3356 if (x == x->parent->left)
3357 {
3358 struct mem_node *w = x->parent->right;
3359
3360 if (w->color == MEM_RED)
3361 {
3362 w->color = MEM_BLACK;
3363 x->parent->color = MEM_RED;
3364 mem_rotate_left (x->parent);
3365 w = x->parent->right;
3366 }
3367
3368 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3369 {
3370 w->color = MEM_RED;
3371 x = x->parent;
3372 }
3373 else
3374 {
3375 if (w->right->color == MEM_BLACK)
3376 {
3377 w->left->color = MEM_BLACK;
3378 w->color = MEM_RED;
3379 mem_rotate_right (w);
3380 w = x->parent->right;
3381 }
3382 w->color = x->parent->color;
3383 x->parent->color = MEM_BLACK;
3384 w->right->color = MEM_BLACK;
3385 mem_rotate_left (x->parent);
3386 x = mem_root;
3387 }
3388 }
3389 else
3390 {
3391 struct mem_node *w = x->parent->left;
3392
3393 if (w->color == MEM_RED)
3394 {
3395 w->color = MEM_BLACK;
3396 x->parent->color = MEM_RED;
3397 mem_rotate_right (x->parent);
3398 w = x->parent->left;
3399 }
3400
3401 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3402 {
3403 w->color = MEM_RED;
3404 x = x->parent;
3405 }
3406 else
3407 {
3408 if (w->left->color == MEM_BLACK)
3409 {
3410 w->right->color = MEM_BLACK;
3411 w->color = MEM_RED;
3412 mem_rotate_left (w);
3413 w = x->parent->left;
3414 }
3415
3416 w->color = x->parent->color;
3417 x->parent->color = MEM_BLACK;
3418 w->left->color = MEM_BLACK;
3419 mem_rotate_right (x->parent);
3420 x = mem_root;
3421 }
3422 }
3423 }
3424
3425 x->color = MEM_BLACK;
3426 }
3427
3428
3429 /* Value is non-zero if P is a pointer to a live Lisp string on
3430 the heap. M is a pointer to the mem_block for P. */
3431
3432 static INLINE int
3433 live_string_p (m, p)
3434 struct mem_node *m;
3435 void *p;
3436 {
3437 if (m->type == MEM_TYPE_STRING)
3438 {
3439 struct string_block *b = (struct string_block *) m->start;
3440 int offset = (char *) p - (char *) &b->strings[0];
3441
3442 /* P must point to the start of a Lisp_String structure, and it
3443 must not be on the free-list. */
3444 return (offset >= 0
3445 && offset % sizeof b->strings[0] == 0
3446 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3447 && ((struct Lisp_String *) p)->data != NULL);
3448 }
3449 else
3450 return 0;
3451 }
3452
3453
3454 /* Value is non-zero if P is a pointer to a live Lisp cons on
3455 the heap. M is a pointer to the mem_block for P. */
3456
3457 static INLINE int
3458 live_cons_p (m, p)
3459 struct mem_node *m;
3460 void *p;
3461 {
3462 if (m->type == MEM_TYPE_CONS)
3463 {
3464 struct cons_block *b = (struct cons_block *) m->start;
3465 int offset = (char *) p - (char *) &b->conses[0];
3466
3467 /* P must point to the start of a Lisp_Cons, not be
3468 one of the unused cells in the current cons block,
3469 and not be on the free-list. */
3470 return (offset >= 0
3471 && offset % sizeof b->conses[0] == 0
3472 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3473 && (b != cons_block
3474 || offset / sizeof b->conses[0] < cons_block_index)
3475 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3476 }
3477 else
3478 return 0;
3479 }
3480
3481
3482 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3483 the heap. M is a pointer to the mem_block for P. */
3484
3485 static INLINE int
3486 live_symbol_p (m, p)
3487 struct mem_node *m;
3488 void *p;
3489 {
3490 if (m->type == MEM_TYPE_SYMBOL)
3491 {
3492 struct symbol_block *b = (struct symbol_block *) m->start;
3493 int offset = (char *) p - (char *) &b->symbols[0];
3494
3495 /* P must point to the start of a Lisp_Symbol, not be
3496 one of the unused cells in the current symbol block,
3497 and not be on the free-list. */
3498 return (offset >= 0
3499 && offset % sizeof b->symbols[0] == 0
3500 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3501 && (b != symbol_block
3502 || offset / sizeof b->symbols[0] < symbol_block_index)
3503 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3504 }
3505 else
3506 return 0;
3507 }
3508
3509
3510 /* Value is non-zero if P is a pointer to a live Lisp float on
3511 the heap. M is a pointer to the mem_block for P. */
3512
3513 static INLINE int
3514 live_float_p (m, p)
3515 struct mem_node *m;
3516 void *p;
3517 {
3518 if (m->type == MEM_TYPE_FLOAT)
3519 {
3520 struct float_block *b = (struct float_block *) m->start;
3521 int offset = (char *) p - (char *) &b->floats[0];
3522
3523 /* P must point to the start of a Lisp_Float and not be
3524 one of the unused cells in the current float block. */
3525 return (offset >= 0
3526 && offset % sizeof b->floats[0] == 0
3527 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3528 && (b != float_block
3529 || offset / sizeof b->floats[0] < float_block_index));
3530 }
3531 else
3532 return 0;
3533 }
3534
3535
3536 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3537 the heap. M is a pointer to the mem_block for P. */
3538
3539 static INLINE int
3540 live_misc_p (m, p)
3541 struct mem_node *m;
3542 void *p;
3543 {
3544 if (m->type == MEM_TYPE_MISC)
3545 {
3546 struct marker_block *b = (struct marker_block *) m->start;
3547 int offset = (char *) p - (char *) &b->markers[0];
3548
3549 /* P must point to the start of a Lisp_Misc, not be
3550 one of the unused cells in the current misc block,
3551 and not be on the free-list. */
3552 return (offset >= 0
3553 && offset % sizeof b->markers[0] == 0
3554 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3555 && (b != marker_block
3556 || offset / sizeof b->markers[0] < marker_block_index)
3557 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3558 }
3559 else
3560 return 0;
3561 }
3562
3563
3564 /* Value is non-zero if P is a pointer to a live vector-like object.
3565 M is a pointer to the mem_block for P. */
3566
3567 static INLINE int
3568 live_vector_p (m, p)
3569 struct mem_node *m;
3570 void *p;
3571 {
3572 return (p == m->start
3573 && m->type >= MEM_TYPE_VECTOR
3574 && m->type <= MEM_TYPE_WINDOW);
3575 }
3576
3577
3578 /* Value is non-zero if P is a pointer to a live buffer. M is a
3579 pointer to the mem_block for P. */
3580
3581 static INLINE int
3582 live_buffer_p (m, p)
3583 struct mem_node *m;
3584 void *p;
3585 {
3586 /* P must point to the start of the block, and the buffer
3587 must not have been killed. */
3588 return (m->type == MEM_TYPE_BUFFER
3589 && p == m->start
3590 && !NILP (((struct buffer *) p)->name));
3591 }
3592
3593 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3594
3595 #if GC_MARK_STACK
3596
3597 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3598
3599 /* Array of objects that are kept alive because the C stack contains
3600 a pattern that looks like a reference to them . */
3601
3602 #define MAX_ZOMBIES 10
3603 static Lisp_Object zombies[MAX_ZOMBIES];
3604
3605 /* Number of zombie objects. */
3606
3607 static int nzombies;
3608
3609 /* Number of garbage collections. */
3610
3611 static int ngcs;
3612
3613 /* Average percentage of zombies per collection. */
3614
3615 static double avg_zombies;
3616
3617 /* Max. number of live and zombie objects. */
3618
3619 static int max_live, max_zombies;
3620
3621 /* Average number of live objects per GC. */
3622
3623 static double avg_live;
3624
3625 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3626 doc: /* Show information about live and zombie objects. */)
3627 ()
3628 {
3629 Lisp_Object args[8], zombie_list = Qnil;
3630 int i;
3631 for (i = 0; i < nzombies; i++)
3632 zombie_list = Fcons (zombies[i], zombie_list);
3633 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3634 args[1] = make_number (ngcs);
3635 args[2] = make_float (avg_live);
3636 args[3] = make_float (avg_zombies);
3637 args[4] = make_float (avg_zombies / avg_live / 100);
3638 args[5] = make_number (max_live);
3639 args[6] = make_number (max_zombies);
3640 args[7] = zombie_list;
3641 return Fmessage (8, args);
3642 }
3643
3644 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3645
3646
3647 /* Mark OBJ if we can prove it's a Lisp_Object. */
3648
3649 static INLINE void
3650 mark_maybe_object (obj)
3651 Lisp_Object obj;
3652 {
3653 void *po = (void *) XPNTR (obj);
3654 struct mem_node *m = mem_find (po);
3655
3656 if (m != MEM_NIL)
3657 {
3658 int mark_p = 0;
3659
3660 switch (XGCTYPE (obj))
3661 {
3662 case Lisp_String:
3663 mark_p = (live_string_p (m, po)
3664 && !STRING_MARKED_P ((struct Lisp_String *) po));
3665 break;
3666
3667 case Lisp_Cons:
3668 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3669 break;
3670
3671 case Lisp_Symbol:
3672 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3673 break;
3674
3675 case Lisp_Float:
3676 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3677 break;
3678
3679 case Lisp_Vectorlike:
3680 /* Note: can't check GC_BUFFERP before we know it's a
3681 buffer because checking that dereferences the pointer
3682 PO which might point anywhere. */
3683 if (live_vector_p (m, po))
3684 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3685 else if (live_buffer_p (m, po))
3686 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3687 break;
3688
3689 case Lisp_Misc:
3690 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
3691 break;
3692
3693 case Lisp_Int:
3694 case Lisp_Type_Limit:
3695 break;
3696 }
3697
3698 if (mark_p)
3699 {
3700 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3701 if (nzombies < MAX_ZOMBIES)
3702 zombies[nzombies] = obj;
3703 ++nzombies;
3704 #endif
3705 mark_object (obj);
3706 }
3707 }
3708 }
3709
3710
3711 /* If P points to Lisp data, mark that as live if it isn't already
3712 marked. */
3713
3714 static INLINE void
3715 mark_maybe_pointer (p)
3716 void *p;
3717 {
3718 struct mem_node *m;
3719
3720 /* Quickly rule out some values which can't point to Lisp data. We
3721 assume that Lisp data is aligned on even addresses. */
3722 if ((EMACS_INT) p & 1)
3723 return;
3724
3725 m = mem_find (p);
3726 if (m != MEM_NIL)
3727 {
3728 Lisp_Object obj = Qnil;
3729
3730 switch (m->type)
3731 {
3732 case MEM_TYPE_NON_LISP:
3733 /* Nothing to do; not a pointer to Lisp memory. */
3734 break;
3735
3736 case MEM_TYPE_BUFFER:
3737 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
3738 XSETVECTOR (obj, p);
3739 break;
3740
3741 case MEM_TYPE_CONS:
3742 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
3743 XSETCONS (obj, p);
3744 break;
3745
3746 case MEM_TYPE_STRING:
3747 if (live_string_p (m, p)
3748 && !STRING_MARKED_P ((struct Lisp_String *) p))
3749 XSETSTRING (obj, p);
3750 break;
3751
3752 case MEM_TYPE_MISC:
3753 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
3754 XSETMISC (obj, p);
3755 break;
3756
3757 case MEM_TYPE_SYMBOL:
3758 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
3759 XSETSYMBOL (obj, p);
3760 break;
3761
3762 case MEM_TYPE_FLOAT:
3763 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
3764 XSETFLOAT (obj, p);
3765 break;
3766
3767 case MEM_TYPE_VECTOR:
3768 case MEM_TYPE_PROCESS:
3769 case MEM_TYPE_HASH_TABLE:
3770 case MEM_TYPE_FRAME:
3771 case MEM_TYPE_WINDOW:
3772 if (live_vector_p (m, p))
3773 {
3774 Lisp_Object tem;
3775 XSETVECTOR (tem, p);
3776 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
3777 obj = tem;
3778 }
3779 break;
3780
3781 default:
3782 abort ();
3783 }
3784
3785 if (!GC_NILP (obj))
3786 mark_object (obj);
3787 }
3788 }
3789
3790
3791 /* Mark Lisp objects referenced from the address range START..END. */
3792
3793 static void
3794 mark_memory (start, end)
3795 void *start, *end;
3796 {
3797 Lisp_Object *p;
3798 void **pp;
3799
3800 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3801 nzombies = 0;
3802 #endif
3803
3804 /* Make START the pointer to the start of the memory region,
3805 if it isn't already. */
3806 if (end < start)
3807 {
3808 void *tem = start;
3809 start = end;
3810 end = tem;
3811 }
3812
3813 /* Mark Lisp_Objects. */
3814 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
3815 mark_maybe_object (*p);
3816
3817 /* Mark Lisp data pointed to. This is necessary because, in some
3818 situations, the C compiler optimizes Lisp objects away, so that
3819 only a pointer to them remains. Example:
3820
3821 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
3822 ()
3823 {
3824 Lisp_Object obj = build_string ("test");
3825 struct Lisp_String *s = XSTRING (obj);
3826 Fgarbage_collect ();
3827 fprintf (stderr, "test `%s'\n", s->data);
3828 return Qnil;
3829 }
3830
3831 Here, `obj' isn't really used, and the compiler optimizes it
3832 away. The only reference to the life string is through the
3833 pointer `s'. */
3834
3835 for (pp = (void **) start; (void *) pp < end; ++pp)
3836 mark_maybe_pointer (*pp);
3837 }
3838
3839 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
3840 the GCC system configuration. In gcc 3.2, the only systems for
3841 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
3842 by others?) and ns32k-pc532-min. */
3843
3844 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3845
3846 static int setjmp_tested_p, longjmps_done;
3847
3848 #define SETJMP_WILL_LIKELY_WORK "\
3849 \n\
3850 Emacs garbage collector has been changed to use conservative stack\n\
3851 marking. Emacs has determined that the method it uses to do the\n\
3852 marking will likely work on your system, but this isn't sure.\n\
3853 \n\
3854 If you are a system-programmer, or can get the help of a local wizard\n\
3855 who is, please take a look at the function mark_stack in alloc.c, and\n\
3856 verify that the methods used are appropriate for your system.\n\
3857 \n\
3858 Please mail the result to <emacs-devel@gnu.org>.\n\
3859 "
3860
3861 #define SETJMP_WILL_NOT_WORK "\
3862 \n\
3863 Emacs garbage collector has been changed to use conservative stack\n\
3864 marking. Emacs has determined that the default method it uses to do the\n\
3865 marking will not work on your system. We will need a system-dependent\n\
3866 solution for your system.\n\
3867 \n\
3868 Please take a look at the function mark_stack in alloc.c, and\n\
3869 try to find a way to make it work on your system.\n\
3870 \n\
3871 Note that you may get false negatives, depending on the compiler.\n\
3872 In particular, you need to use -O with GCC for this test.\n\
3873 \n\
3874 Please mail the result to <emacs-devel@gnu.org>.\n\
3875 "
3876
3877
3878 /* Perform a quick check if it looks like setjmp saves registers in a
3879 jmp_buf. Print a message to stderr saying so. When this test
3880 succeeds, this is _not_ a proof that setjmp is sufficient for
3881 conservative stack marking. Only the sources or a disassembly
3882 can prove that. */
3883
3884 static void
3885 test_setjmp ()
3886 {
3887 char buf[10];
3888 register int x;
3889 jmp_buf jbuf;
3890 int result = 0;
3891
3892 /* Arrange for X to be put in a register. */
3893 sprintf (buf, "1");
3894 x = strlen (buf);
3895 x = 2 * x - 1;
3896
3897 setjmp (jbuf);
3898 if (longjmps_done == 1)
3899 {
3900 /* Came here after the longjmp at the end of the function.
3901
3902 If x == 1, the longjmp has restored the register to its
3903 value before the setjmp, and we can hope that setjmp
3904 saves all such registers in the jmp_buf, although that
3905 isn't sure.
3906
3907 For other values of X, either something really strange is
3908 taking place, or the setjmp just didn't save the register. */
3909
3910 if (x == 1)
3911 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3912 else
3913 {
3914 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3915 exit (1);
3916 }
3917 }
3918
3919 ++longjmps_done;
3920 x = 2;
3921 if (longjmps_done == 1)
3922 longjmp (jbuf, 1);
3923 }
3924
3925 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3926
3927
3928 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3929
3930 /* Abort if anything GCPRO'd doesn't survive the GC. */
3931
3932 static void
3933 check_gcpros ()
3934 {
3935 struct gcpro *p;
3936 int i;
3937
3938 for (p = gcprolist; p; p = p->next)
3939 for (i = 0; i < p->nvars; ++i)
3940 if (!survives_gc_p (p->var[i]))
3941 /* FIXME: It's not necessarily a bug. It might just be that the
3942 GCPRO is unnecessary or should release the object sooner. */
3943 abort ();
3944 }
3945
3946 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3947
3948 static void
3949 dump_zombies ()
3950 {
3951 int i;
3952
3953 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3954 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3955 {
3956 fprintf (stderr, " %d = ", i);
3957 debug_print (zombies[i]);
3958 }
3959 }
3960
3961 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3962
3963
3964 /* Mark live Lisp objects on the C stack.
3965
3966 There are several system-dependent problems to consider when
3967 porting this to new architectures:
3968
3969 Processor Registers
3970
3971 We have to mark Lisp objects in CPU registers that can hold local
3972 variables or are used to pass parameters.
3973
3974 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3975 something that either saves relevant registers on the stack, or
3976 calls mark_maybe_object passing it each register's contents.
3977
3978 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3979 implementation assumes that calling setjmp saves registers we need
3980 to see in a jmp_buf which itself lies on the stack. This doesn't
3981 have to be true! It must be verified for each system, possibly
3982 by taking a look at the source code of setjmp.
3983
3984 Stack Layout
3985
3986 Architectures differ in the way their processor stack is organized.
3987 For example, the stack might look like this
3988
3989 +----------------+
3990 | Lisp_Object | size = 4
3991 +----------------+
3992 | something else | size = 2
3993 +----------------+
3994 | Lisp_Object | size = 4
3995 +----------------+
3996 | ... |
3997
3998 In such a case, not every Lisp_Object will be aligned equally. To
3999 find all Lisp_Object on the stack it won't be sufficient to walk
4000 the stack in steps of 4 bytes. Instead, two passes will be
4001 necessary, one starting at the start of the stack, and a second
4002 pass starting at the start of the stack + 2. Likewise, if the
4003 minimal alignment of Lisp_Objects on the stack is 1, four passes
4004 would be necessary, each one starting with one byte more offset
4005 from the stack start.
4006
4007 The current code assumes by default that Lisp_Objects are aligned
4008 equally on the stack. */
4009
4010 static void
4011 mark_stack ()
4012 {
4013 int i;
4014 jmp_buf j;
4015 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4016 void *end;
4017
4018 /* This trick flushes the register windows so that all the state of
4019 the process is contained in the stack. */
4020 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4021 needed on ia64 too. See mach_dep.c, where it also says inline
4022 assembler doesn't work with relevant proprietary compilers. */
4023 #ifdef sparc
4024 asm ("ta 3");
4025 #endif
4026
4027 /* Save registers that we need to see on the stack. We need to see
4028 registers used to hold register variables and registers used to
4029 pass parameters. */
4030 #ifdef GC_SAVE_REGISTERS_ON_STACK
4031 GC_SAVE_REGISTERS_ON_STACK (end);
4032 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4033
4034 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4035 setjmp will definitely work, test it
4036 and print a message with the result
4037 of the test. */
4038 if (!setjmp_tested_p)
4039 {
4040 setjmp_tested_p = 1;
4041 test_setjmp ();
4042 }
4043 #endif /* GC_SETJMP_WORKS */
4044
4045 setjmp (j);
4046 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4047 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4048
4049 /* This assumes that the stack is a contiguous region in memory. If
4050 that's not the case, something has to be done here to iterate
4051 over the stack segments. */
4052 #ifndef GC_LISP_OBJECT_ALIGNMENT
4053 #ifdef __GNUC__
4054 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4055 #else
4056 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4057 #endif
4058 #endif
4059 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4060 mark_memory ((char *) stack_base + i, end);
4061
4062 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4063 check_gcpros ();
4064 #endif
4065 }
4066
4067
4068 #endif /* GC_MARK_STACK != 0 */
4069
4070
4071 \f
4072 /***********************************************************************
4073 Pure Storage Management
4074 ***********************************************************************/
4075
4076 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4077 pointer to it. TYPE is the Lisp type for which the memory is
4078 allocated. TYPE < 0 means it's not used for a Lisp object.
4079
4080 If store_pure_type_info is set and TYPE is >= 0, the type of
4081 the allocated object is recorded in pure_types. */
4082
4083 static POINTER_TYPE *
4084 pure_alloc (size, type)
4085 size_t size;
4086 int type;
4087 {
4088 POINTER_TYPE *result;
4089 #ifdef USE_LSB_TAG
4090 size_t alignment = (1 << GCTYPEBITS);
4091 #else
4092 size_t alignment = sizeof (EMACS_INT);
4093
4094 /* Give Lisp_Floats an extra alignment. */
4095 if (type == Lisp_Float)
4096 {
4097 #if defined __GNUC__ && __GNUC__ >= 2
4098 alignment = __alignof (struct Lisp_Float);
4099 #else
4100 alignment = sizeof (struct Lisp_Float);
4101 #endif
4102 }
4103 #endif
4104
4105 again:
4106 result = ALIGN (purebeg + pure_bytes_used, alignment);
4107 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4108
4109 if (pure_bytes_used <= pure_size)
4110 return result;
4111
4112 /* Don't allocate a large amount here,
4113 because it might get mmap'd and then its address
4114 might not be usable. */
4115 purebeg = (char *) xmalloc (10000);
4116 pure_size = 10000;
4117 pure_bytes_used_before_overflow += pure_bytes_used - size;
4118 pure_bytes_used = 0;
4119 goto again;
4120 }
4121
4122
4123 /* Print a warning if PURESIZE is too small. */
4124
4125 void
4126 check_pure_size ()
4127 {
4128 if (pure_bytes_used_before_overflow)
4129 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4130 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4131 }
4132
4133
4134 /* Return a string allocated in pure space. DATA is a buffer holding
4135 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4136 non-zero means make the result string multibyte.
4137
4138 Must get an error if pure storage is full, since if it cannot hold
4139 a large string it may be able to hold conses that point to that
4140 string; then the string is not protected from gc. */
4141
4142 Lisp_Object
4143 make_pure_string (data, nchars, nbytes, multibyte)
4144 char *data;
4145 int nchars, nbytes;
4146 int multibyte;
4147 {
4148 Lisp_Object string;
4149 struct Lisp_String *s;
4150
4151 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4152 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4153 s->size = nchars;
4154 s->size_byte = multibyte ? nbytes : -1;
4155 bcopy (data, s->data, nbytes);
4156 s->data[nbytes] = '\0';
4157 s->intervals = NULL_INTERVAL;
4158 XSETSTRING (string, s);
4159 return string;
4160 }
4161
4162
4163 /* Return a cons allocated from pure space. Give it pure copies
4164 of CAR as car and CDR as cdr. */
4165
4166 Lisp_Object
4167 pure_cons (car, cdr)
4168 Lisp_Object car, cdr;
4169 {
4170 register Lisp_Object new;
4171 struct Lisp_Cons *p;
4172
4173 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4174 XSETCONS (new, p);
4175 XSETCAR (new, Fpurecopy (car));
4176 XSETCDR (new, Fpurecopy (cdr));
4177 return new;
4178 }
4179
4180
4181 /* Value is a float object with value NUM allocated from pure space. */
4182
4183 Lisp_Object
4184 make_pure_float (num)
4185 double num;
4186 {
4187 register Lisp_Object new;
4188 struct Lisp_Float *p;
4189
4190 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4191 XSETFLOAT (new, p);
4192 XFLOAT_DATA (new) = num;
4193 return new;
4194 }
4195
4196
4197 /* Return a vector with room for LEN Lisp_Objects allocated from
4198 pure space. */
4199
4200 Lisp_Object
4201 make_pure_vector (len)
4202 EMACS_INT len;
4203 {
4204 Lisp_Object new;
4205 struct Lisp_Vector *p;
4206 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4207
4208 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4209 XSETVECTOR (new, p);
4210 XVECTOR (new)->size = len;
4211 return new;
4212 }
4213
4214
4215 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4216 doc: /* Make a copy of OBJECT in pure storage.
4217 Recursively copies contents of vectors and cons cells.
4218 Does not copy symbols. Copies strings without text properties. */)
4219 (obj)
4220 register Lisp_Object obj;
4221 {
4222 if (NILP (Vpurify_flag))
4223 return obj;
4224
4225 if (PURE_POINTER_P (XPNTR (obj)))
4226 return obj;
4227
4228 if (CONSP (obj))
4229 return pure_cons (XCAR (obj), XCDR (obj));
4230 else if (FLOATP (obj))
4231 return make_pure_float (XFLOAT_DATA (obj));
4232 else if (STRINGP (obj))
4233 return make_pure_string (SDATA (obj), SCHARS (obj),
4234 SBYTES (obj),
4235 STRING_MULTIBYTE (obj));
4236 else if (COMPILEDP (obj) || VECTORP (obj))
4237 {
4238 register struct Lisp_Vector *vec;
4239 register int i;
4240 EMACS_INT size;
4241
4242 size = XVECTOR (obj)->size;
4243 if (size & PSEUDOVECTOR_FLAG)
4244 size &= PSEUDOVECTOR_SIZE_MASK;
4245 vec = XVECTOR (make_pure_vector (size));
4246 for (i = 0; i < size; i++)
4247 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4248 if (COMPILEDP (obj))
4249 XSETCOMPILED (obj, vec);
4250 else
4251 XSETVECTOR (obj, vec);
4252 return obj;
4253 }
4254 else if (MARKERP (obj))
4255 error ("Attempt to copy a marker to pure storage");
4256
4257 return obj;
4258 }
4259
4260
4261 \f
4262 /***********************************************************************
4263 Protection from GC
4264 ***********************************************************************/
4265
4266 /* Put an entry in staticvec, pointing at the variable with address
4267 VARADDRESS. */
4268
4269 void
4270 staticpro (varaddress)
4271 Lisp_Object *varaddress;
4272 {
4273 staticvec[staticidx++] = varaddress;
4274 if (staticidx >= NSTATICS)
4275 abort ();
4276 }
4277
4278 struct catchtag
4279 {
4280 Lisp_Object tag;
4281 Lisp_Object val;
4282 struct catchtag *next;
4283 };
4284
4285 struct backtrace
4286 {
4287 struct backtrace *next;
4288 Lisp_Object *function;
4289 Lisp_Object *args; /* Points to vector of args. */
4290 int nargs; /* Length of vector. */
4291 /* If nargs is UNEVALLED, args points to slot holding list of
4292 unevalled args. */
4293 char evalargs;
4294 /* Nonzero means call value of debugger when done with this operation. */
4295 char debug_on_exit;
4296 };
4297
4298
4299 \f
4300 /***********************************************************************
4301 Protection from GC
4302 ***********************************************************************/
4303
4304 /* Temporarily prevent garbage collection. */
4305
4306 int
4307 inhibit_garbage_collection ()
4308 {
4309 int count = SPECPDL_INDEX ();
4310 int nbits = min (VALBITS, BITS_PER_INT);
4311
4312 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4313 return count;
4314 }
4315
4316
4317 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4318 doc: /* Reclaim storage for Lisp objects no longer needed.
4319 Garbage collection happens automatically if you cons more than
4320 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4321 `garbage-collect' normally returns a list with info on amount of space in use:
4322 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4323 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4324 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4325 (USED-STRINGS . FREE-STRINGS))
4326 However, if there was overflow in pure space, `garbage-collect'
4327 returns nil, because real GC can't be done. */)
4328 ()
4329 {
4330 register struct specbinding *bind;
4331 struct catchtag *catch;
4332 struct handler *handler;
4333 register struct backtrace *backlist;
4334 char stack_top_variable;
4335 register int i;
4336 int message_p;
4337 Lisp_Object total[8];
4338 int count = SPECPDL_INDEX ();
4339 EMACS_TIME t1, t2, t3;
4340
4341 if (abort_on_gc)
4342 abort ();
4343
4344 EMACS_GET_TIME (t1);
4345
4346 /* Can't GC if pure storage overflowed because we can't determine
4347 if something is a pure object or not. */
4348 if (pure_bytes_used_before_overflow)
4349 return Qnil;
4350
4351 /* In case user calls debug_print during GC,
4352 don't let that cause a recursive GC. */
4353 consing_since_gc = 0;
4354
4355 /* Save what's currently displayed in the echo area. */
4356 message_p = push_message ();
4357 record_unwind_protect (pop_message_unwind, Qnil);
4358
4359 /* Save a copy of the contents of the stack, for debugging. */
4360 #if MAX_SAVE_STACK > 0
4361 if (NILP (Vpurify_flag))
4362 {
4363 i = &stack_top_variable - stack_bottom;
4364 if (i < 0) i = -i;
4365 if (i < MAX_SAVE_STACK)
4366 {
4367 if (stack_copy == 0)
4368 stack_copy = (char *) xmalloc (stack_copy_size = i);
4369 else if (stack_copy_size < i)
4370 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4371 if (stack_copy)
4372 {
4373 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4374 bcopy (stack_bottom, stack_copy, i);
4375 else
4376 bcopy (&stack_top_variable, stack_copy, i);
4377 }
4378 }
4379 }
4380 #endif /* MAX_SAVE_STACK > 0 */
4381
4382 if (garbage_collection_messages)
4383 message1_nolog ("Garbage collecting...");
4384
4385 BLOCK_INPUT;
4386
4387 shrink_regexp_cache ();
4388
4389 /* Don't keep undo information around forever. */
4390 {
4391 register struct buffer *nextb = all_buffers;
4392
4393 while (nextb)
4394 {
4395 /* If a buffer's undo list is Qt, that means that undo is
4396 turned off in that buffer. Calling truncate_undo_list on
4397 Qt tends to return NULL, which effectively turns undo back on.
4398 So don't call truncate_undo_list if undo_list is Qt. */
4399 if (! EQ (nextb->undo_list, Qt))
4400 nextb->undo_list
4401 = truncate_undo_list (nextb->undo_list, undo_limit,
4402 undo_strong_limit);
4403
4404 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4405 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4406 {
4407 /* If a buffer's gap size is more than 10% of the buffer
4408 size, or larger than 2000 bytes, then shrink it
4409 accordingly. Keep a minimum size of 20 bytes. */
4410 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4411
4412 if (nextb->text->gap_size > size)
4413 {
4414 struct buffer *save_current = current_buffer;
4415 current_buffer = nextb;
4416 make_gap (-(nextb->text->gap_size - size));
4417 current_buffer = save_current;
4418 }
4419 }
4420
4421 nextb = nextb->next;
4422 }
4423 }
4424
4425 gc_in_progress = 1;
4426
4427 /* clear_marks (); */
4428
4429 /* Mark all the special slots that serve as the roots of accessibility. */
4430
4431 for (i = 0; i < staticidx; i++)
4432 mark_object (*staticvec[i]);
4433
4434 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4435 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4436 mark_stack ();
4437 #else
4438 {
4439 register struct gcpro *tail;
4440 for (tail = gcprolist; tail; tail = tail->next)
4441 for (i = 0; i < tail->nvars; i++)
4442 mark_object (tail->var[i]);
4443 }
4444 #endif
4445
4446 mark_byte_stack ();
4447 for (bind = specpdl; bind != specpdl_ptr; bind++)
4448 {
4449 mark_object (bind->symbol);
4450 mark_object (bind->old_value);
4451 }
4452 for (catch = catchlist; catch; catch = catch->next)
4453 {
4454 mark_object (catch->tag);
4455 mark_object (catch->val);
4456 }
4457 for (handler = handlerlist; handler; handler = handler->next)
4458 {
4459 mark_object (handler->handler);
4460 mark_object (handler->var);
4461 }
4462 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4463 {
4464 mark_object (*backlist->function);
4465
4466 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4467 i = 0;
4468 else
4469 i = backlist->nargs - 1;
4470 for (; i >= 0; i--)
4471 mark_object (backlist->args[i]);
4472 }
4473 mark_kboards ();
4474
4475 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4476 mark_stack ();
4477 #endif
4478
4479 #ifdef USE_GTK
4480 {
4481 extern void xg_mark_data ();
4482 xg_mark_data ();
4483 }
4484 #endif
4485
4486 gc_sweep ();
4487
4488 /* Look thru every buffer's undo list for elements that used to
4489 contain update markers that were changed to Lisp_Misc_Free
4490 objects and delete them. This may leave a few cons cells
4491 unchained, but we will get those on the next sweep. */
4492 {
4493 register struct buffer *nextb = all_buffers;
4494
4495 while (nextb)
4496 {
4497 /* If a buffer's undo list is Qt, that means that undo is
4498 turned off in that buffer. */
4499 if (! EQ (nextb->undo_list, Qt))
4500 {
4501 Lisp_Object tail, prev, elt, car;
4502 tail = nextb->undo_list;
4503 prev = Qnil;
4504 while (CONSP (tail))
4505 {
4506 if ((elt = XCAR (tail), GC_CONSP (elt))
4507 && (car = XCAR (elt), GC_MISCP (car))
4508 && XMISCTYPE (car) == Lisp_Misc_Free)
4509 {
4510 Lisp_Object cdr = XCDR (tail);
4511 /* Do not use free_cons here, as we don't know if
4512 anybody else has a pointer to these conses. */
4513 XSETCAR (elt, Qnil);
4514 XSETCDR (elt, Qnil);
4515 XSETCAR (tail, Qnil);
4516 XSETCDR (tail, Qnil);
4517 if (NILP (prev))
4518 nextb->undo_list = tail = cdr;
4519 else
4520 {
4521 tail = cdr;
4522 XSETCDR (prev, tail);
4523 }
4524 }
4525 else
4526 {
4527 prev = tail;
4528 tail = XCDR (tail);
4529 }
4530 }
4531 }
4532
4533 nextb = nextb->next;
4534 }
4535 }
4536
4537 /* Undo lists have been cleaned up, so we can free marker blocks now. */
4538
4539 {
4540 struct marker_block *mblk;
4541
4542 while ((mblk = marker_blocks_pending_free) != 0)
4543 {
4544 marker_blocks_pending_free = mblk->next;
4545 lisp_free (mblk);
4546 }
4547 }
4548
4549 /* Clear the mark bits that we set in certain root slots. */
4550
4551 unmark_byte_stack ();
4552 VECTOR_UNMARK (&buffer_defaults);
4553 VECTOR_UNMARK (&buffer_local_symbols);
4554
4555 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4556 dump_zombies ();
4557 #endif
4558
4559 UNBLOCK_INPUT;
4560
4561 /* clear_marks (); */
4562 gc_in_progress = 0;
4563
4564 consing_since_gc = 0;
4565 if (gc_cons_threshold < 10000)
4566 gc_cons_threshold = 10000;
4567
4568 if (garbage_collection_messages)
4569 {
4570 if (message_p || minibuf_level > 0)
4571 restore_message ();
4572 else
4573 message1_nolog ("Garbage collecting...done");
4574 }
4575
4576 unbind_to (count, Qnil);
4577
4578 total[0] = Fcons (make_number (total_conses),
4579 make_number (total_free_conses));
4580 total[1] = Fcons (make_number (total_symbols),
4581 make_number (total_free_symbols));
4582 total[2] = Fcons (make_number (total_markers),
4583 make_number (total_free_markers));
4584 total[3] = make_number (total_string_size);
4585 total[4] = make_number (total_vector_size);
4586 total[5] = Fcons (make_number (total_floats),
4587 make_number (total_free_floats));
4588 total[6] = Fcons (make_number (total_intervals),
4589 make_number (total_free_intervals));
4590 total[7] = Fcons (make_number (total_strings),
4591 make_number (total_free_strings));
4592
4593 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4594 {
4595 /* Compute average percentage of zombies. */
4596 double nlive = 0;
4597
4598 for (i = 0; i < 7; ++i)
4599 if (CONSP (total[i]))
4600 nlive += XFASTINT (XCAR (total[i]));
4601
4602 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4603 max_live = max (nlive, max_live);
4604 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4605 max_zombies = max (nzombies, max_zombies);
4606 ++ngcs;
4607 }
4608 #endif
4609
4610 if (!NILP (Vpost_gc_hook))
4611 {
4612 int count = inhibit_garbage_collection ();
4613 safe_run_hooks (Qpost_gc_hook);
4614 unbind_to (count, Qnil);
4615 }
4616
4617 /* Accumulate statistics. */
4618 EMACS_GET_TIME (t2);
4619 EMACS_SUB_TIME (t3, t2, t1);
4620 if (FLOATP (Vgc_elapsed))
4621 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4622 EMACS_SECS (t3) +
4623 EMACS_USECS (t3) * 1.0e-6);
4624 gcs_done++;
4625
4626 return Flist (sizeof total / sizeof *total, total);
4627 }
4628
4629
4630 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4631 only interesting objects referenced from glyphs are strings. */
4632
4633 static void
4634 mark_glyph_matrix (matrix)
4635 struct glyph_matrix *matrix;
4636 {
4637 struct glyph_row *row = matrix->rows;
4638 struct glyph_row *end = row + matrix->nrows;
4639
4640 for (; row < end; ++row)
4641 if (row->enabled_p)
4642 {
4643 int area;
4644 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4645 {
4646 struct glyph *glyph = row->glyphs[area];
4647 struct glyph *end_glyph = glyph + row->used[area];
4648
4649 for (; glyph < end_glyph; ++glyph)
4650 if (GC_STRINGP (glyph->object)
4651 && !STRING_MARKED_P (XSTRING (glyph->object)))
4652 mark_object (glyph->object);
4653 }
4654 }
4655 }
4656
4657
4658 /* Mark Lisp faces in the face cache C. */
4659
4660 static void
4661 mark_face_cache (c)
4662 struct face_cache *c;
4663 {
4664 if (c)
4665 {
4666 int i, j;
4667 for (i = 0; i < c->used; ++i)
4668 {
4669 struct face *face = FACE_FROM_ID (c->f, i);
4670
4671 if (face)
4672 {
4673 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4674 mark_object (face->lface[j]);
4675 }
4676 }
4677 }
4678 }
4679
4680
4681 #ifdef HAVE_WINDOW_SYSTEM
4682
4683 /* Mark Lisp objects in image IMG. */
4684
4685 static void
4686 mark_image (img)
4687 struct image *img;
4688 {
4689 mark_object (img->spec);
4690
4691 if (!NILP (img->data.lisp_val))
4692 mark_object (img->data.lisp_val);
4693 }
4694
4695
4696 /* Mark Lisp objects in image cache of frame F. It's done this way so
4697 that we don't have to include xterm.h here. */
4698
4699 static void
4700 mark_image_cache (f)
4701 struct frame *f;
4702 {
4703 forall_images_in_image_cache (f, mark_image);
4704 }
4705
4706 #endif /* HAVE_X_WINDOWS */
4707
4708
4709 \f
4710 /* Mark reference to a Lisp_Object.
4711 If the object referred to has not been seen yet, recursively mark
4712 all the references contained in it. */
4713
4714 #define LAST_MARKED_SIZE 500
4715 Lisp_Object last_marked[LAST_MARKED_SIZE];
4716 int last_marked_index;
4717
4718 /* For debugging--call abort when we cdr down this many
4719 links of a list, in mark_object. In debugging,
4720 the call to abort will hit a breakpoint.
4721 Normally this is zero and the check never goes off. */
4722 int mark_object_loop_halt;
4723
4724 void
4725 mark_object (arg)
4726 Lisp_Object arg;
4727 {
4728 register Lisp_Object obj = arg;
4729 #ifdef GC_CHECK_MARKED_OBJECTS
4730 void *po;
4731 struct mem_node *m;
4732 #endif
4733 int cdr_count = 0;
4734
4735 loop:
4736
4737 if (PURE_POINTER_P (XPNTR (obj)))
4738 return;
4739
4740 last_marked[last_marked_index++] = obj;
4741 if (last_marked_index == LAST_MARKED_SIZE)
4742 last_marked_index = 0;
4743
4744 /* Perform some sanity checks on the objects marked here. Abort if
4745 we encounter an object we know is bogus. This increases GC time
4746 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4747 #ifdef GC_CHECK_MARKED_OBJECTS
4748
4749 po = (void *) XPNTR (obj);
4750
4751 /* Check that the object pointed to by PO is known to be a Lisp
4752 structure allocated from the heap. */
4753 #define CHECK_ALLOCATED() \
4754 do { \
4755 m = mem_find (po); \
4756 if (m == MEM_NIL) \
4757 abort (); \
4758 } while (0)
4759
4760 /* Check that the object pointed to by PO is live, using predicate
4761 function LIVEP. */
4762 #define CHECK_LIVE(LIVEP) \
4763 do { \
4764 if (!LIVEP (m, po)) \
4765 abort (); \
4766 } while (0)
4767
4768 /* Check both of the above conditions. */
4769 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4770 do { \
4771 CHECK_ALLOCATED (); \
4772 CHECK_LIVE (LIVEP); \
4773 } while (0) \
4774
4775 #else /* not GC_CHECK_MARKED_OBJECTS */
4776
4777 #define CHECK_ALLOCATED() (void) 0
4778 #define CHECK_LIVE(LIVEP) (void) 0
4779 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
4780
4781 #endif /* not GC_CHECK_MARKED_OBJECTS */
4782
4783 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
4784 {
4785 case Lisp_String:
4786 {
4787 register struct Lisp_String *ptr = XSTRING (obj);
4788 CHECK_ALLOCATED_AND_LIVE (live_string_p);
4789 MARK_INTERVAL_TREE (ptr->intervals);
4790 MARK_STRING (ptr);
4791 #ifdef GC_CHECK_STRING_BYTES
4792 /* Check that the string size recorded in the string is the
4793 same as the one recorded in the sdata structure. */
4794 CHECK_STRING_BYTES (ptr);
4795 #endif /* GC_CHECK_STRING_BYTES */
4796 }
4797 break;
4798
4799 case Lisp_Vectorlike:
4800 #ifdef GC_CHECK_MARKED_OBJECTS
4801 m = mem_find (po);
4802 if (m == MEM_NIL && !GC_SUBRP (obj)
4803 && po != &buffer_defaults
4804 && po != &buffer_local_symbols)
4805 abort ();
4806 #endif /* GC_CHECK_MARKED_OBJECTS */
4807
4808 if (GC_BUFFERP (obj))
4809 {
4810 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4811 {
4812 #ifdef GC_CHECK_MARKED_OBJECTS
4813 if (po != &buffer_defaults && po != &buffer_local_symbols)
4814 {
4815 struct buffer *b;
4816 for (b = all_buffers; b && b != po; b = b->next)
4817 ;
4818 if (b == NULL)
4819 abort ();
4820 }
4821 #endif /* GC_CHECK_MARKED_OBJECTS */
4822 mark_buffer (obj);
4823 }
4824 }
4825 else if (GC_SUBRP (obj))
4826 break;
4827 else if (GC_COMPILEDP (obj))
4828 /* We could treat this just like a vector, but it is better to
4829 save the COMPILED_CONSTANTS element for last and avoid
4830 recursion there. */
4831 {
4832 register struct Lisp_Vector *ptr = XVECTOR (obj);
4833 register EMACS_INT size = ptr->size;
4834 register int i;
4835
4836 if (VECTOR_MARKED_P (ptr))
4837 break; /* Already marked */
4838
4839 CHECK_LIVE (live_vector_p);
4840 VECTOR_MARK (ptr); /* Else mark it */
4841 size &= PSEUDOVECTOR_SIZE_MASK;
4842 for (i = 0; i < size; i++) /* and then mark its elements */
4843 {
4844 if (i != COMPILED_CONSTANTS)
4845 mark_object (ptr->contents[i]);
4846 }
4847 obj = ptr->contents[COMPILED_CONSTANTS];
4848 goto loop;
4849 }
4850 else if (GC_FRAMEP (obj))
4851 {
4852 register struct frame *ptr = XFRAME (obj);
4853
4854 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4855 VECTOR_MARK (ptr); /* Else mark it */
4856
4857 CHECK_LIVE (live_vector_p);
4858 mark_object (ptr->name);
4859 mark_object (ptr->icon_name);
4860 mark_object (ptr->title);
4861 mark_object (ptr->focus_frame);
4862 mark_object (ptr->selected_window);
4863 mark_object (ptr->minibuffer_window);
4864 mark_object (ptr->param_alist);
4865 mark_object (ptr->scroll_bars);
4866 mark_object (ptr->condemned_scroll_bars);
4867 mark_object (ptr->menu_bar_items);
4868 mark_object (ptr->face_alist);
4869 mark_object (ptr->menu_bar_vector);
4870 mark_object (ptr->buffer_predicate);
4871 mark_object (ptr->buffer_list);
4872 mark_object (ptr->menu_bar_window);
4873 mark_object (ptr->tool_bar_window);
4874 mark_face_cache (ptr->face_cache);
4875 #ifdef HAVE_WINDOW_SYSTEM
4876 mark_image_cache (ptr);
4877 mark_object (ptr->tool_bar_items);
4878 mark_object (ptr->desired_tool_bar_string);
4879 mark_object (ptr->current_tool_bar_string);
4880 #endif /* HAVE_WINDOW_SYSTEM */
4881 }
4882 else if (GC_BOOL_VECTOR_P (obj))
4883 {
4884 register struct Lisp_Vector *ptr = XVECTOR (obj);
4885
4886 if (VECTOR_MARKED_P (ptr))
4887 break; /* Already marked */
4888 CHECK_LIVE (live_vector_p);
4889 VECTOR_MARK (ptr); /* Else mark it */
4890 }
4891 else if (GC_WINDOWP (obj))
4892 {
4893 register struct Lisp_Vector *ptr = XVECTOR (obj);
4894 struct window *w = XWINDOW (obj);
4895 register int i;
4896
4897 /* Stop if already marked. */
4898 if (VECTOR_MARKED_P (ptr))
4899 break;
4900
4901 /* Mark it. */
4902 CHECK_LIVE (live_vector_p);
4903 VECTOR_MARK (ptr);
4904
4905 /* There is no Lisp data above The member CURRENT_MATRIX in
4906 struct WINDOW. Stop marking when that slot is reached. */
4907 for (i = 0;
4908 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
4909 i++)
4910 mark_object (ptr->contents[i]);
4911
4912 /* Mark glyphs for leaf windows. Marking window matrices is
4913 sufficient because frame matrices use the same glyph
4914 memory. */
4915 if (NILP (w->hchild)
4916 && NILP (w->vchild)
4917 && w->current_matrix)
4918 {
4919 mark_glyph_matrix (w->current_matrix);
4920 mark_glyph_matrix (w->desired_matrix);
4921 }
4922 }
4923 else if (GC_HASH_TABLE_P (obj))
4924 {
4925 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
4926
4927 /* Stop if already marked. */
4928 if (VECTOR_MARKED_P (h))
4929 break;
4930
4931 /* Mark it. */
4932 CHECK_LIVE (live_vector_p);
4933 VECTOR_MARK (h);
4934
4935 /* Mark contents. */
4936 /* Do not mark next_free or next_weak.
4937 Being in the next_weak chain
4938 should not keep the hash table alive.
4939 No need to mark `count' since it is an integer. */
4940 mark_object (h->test);
4941 mark_object (h->weak);
4942 mark_object (h->rehash_size);
4943 mark_object (h->rehash_threshold);
4944 mark_object (h->hash);
4945 mark_object (h->next);
4946 mark_object (h->index);
4947 mark_object (h->user_hash_function);
4948 mark_object (h->user_cmp_function);
4949
4950 /* If hash table is not weak, mark all keys and values.
4951 For weak tables, mark only the vector. */
4952 if (GC_NILP (h->weak))
4953 mark_object (h->key_and_value);
4954 else
4955 VECTOR_MARK (XVECTOR (h->key_and_value));
4956 }
4957 else
4958 {
4959 register struct Lisp_Vector *ptr = XVECTOR (obj);
4960 register EMACS_INT size = ptr->size;
4961 register int i;
4962
4963 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4964 CHECK_LIVE (live_vector_p);
4965 VECTOR_MARK (ptr); /* Else mark it */
4966 if (size & PSEUDOVECTOR_FLAG)
4967 size &= PSEUDOVECTOR_SIZE_MASK;
4968
4969 for (i = 0; i < size; i++) /* and then mark its elements */
4970 mark_object (ptr->contents[i]);
4971 }
4972 break;
4973
4974 case Lisp_Symbol:
4975 {
4976 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
4977 struct Lisp_Symbol *ptrx;
4978
4979 if (ptr->gcmarkbit) break;
4980 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
4981 ptr->gcmarkbit = 1;
4982 mark_object (ptr->value);
4983 mark_object (ptr->function);
4984 mark_object (ptr->plist);
4985
4986 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
4987 MARK_STRING (XSTRING (ptr->xname));
4988 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
4989
4990 /* Note that we do not mark the obarray of the symbol.
4991 It is safe not to do so because nothing accesses that
4992 slot except to check whether it is nil. */
4993 ptr = ptr->next;
4994 if (ptr)
4995 {
4996 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
4997 XSETSYMBOL (obj, ptrx);
4998 goto loop;
4999 }
5000 }
5001 break;
5002
5003 case Lisp_Misc:
5004 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5005 if (XMARKER (obj)->gcmarkbit)
5006 break;
5007 XMARKER (obj)->gcmarkbit = 1;
5008 switch (XMISCTYPE (obj))
5009 {
5010 case Lisp_Misc_Buffer_Local_Value:
5011 case Lisp_Misc_Some_Buffer_Local_Value:
5012 {
5013 register struct Lisp_Buffer_Local_Value *ptr
5014 = XBUFFER_LOCAL_VALUE (obj);
5015 /* If the cdr is nil, avoid recursion for the car. */
5016 if (EQ (ptr->cdr, Qnil))
5017 {
5018 obj = ptr->realvalue;
5019 goto loop;
5020 }
5021 mark_object (ptr->realvalue);
5022 mark_object (ptr->buffer);
5023 mark_object (ptr->frame);
5024 obj = ptr->cdr;
5025 goto loop;
5026 }
5027
5028 case Lisp_Misc_Marker:
5029 /* DO NOT mark thru the marker's chain.
5030 The buffer's markers chain does not preserve markers from gc;
5031 instead, markers are removed from the chain when freed by gc. */
5032 case Lisp_Misc_Intfwd:
5033 case Lisp_Misc_Boolfwd:
5034 case Lisp_Misc_Objfwd:
5035 case Lisp_Misc_Buffer_Objfwd:
5036 case Lisp_Misc_Kboard_Objfwd:
5037 /* Don't bother with Lisp_Buffer_Objfwd,
5038 since all markable slots in current buffer marked anyway. */
5039 /* Don't need to do Lisp_Objfwd, since the places they point
5040 are protected with staticpro. */
5041 case Lisp_Misc_Save_Value:
5042 break;
5043
5044 case Lisp_Misc_Overlay:
5045 {
5046 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5047 mark_object (ptr->start);
5048 mark_object (ptr->end);
5049 mark_object (ptr->plist);
5050 if (ptr->next)
5051 {
5052 XSETMISC (obj, ptr->next);
5053 goto loop;
5054 }
5055 }
5056 break;
5057
5058 default:
5059 abort ();
5060 }
5061 break;
5062
5063 case Lisp_Cons:
5064 {
5065 register struct Lisp_Cons *ptr = XCONS (obj);
5066 if (CONS_MARKED_P (ptr)) break;
5067 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5068 CONS_MARK (ptr);
5069 /* If the cdr is nil, avoid recursion for the car. */
5070 if (EQ (ptr->cdr, Qnil))
5071 {
5072 obj = ptr->car;
5073 cdr_count = 0;
5074 goto loop;
5075 }
5076 mark_object (ptr->car);
5077 obj = ptr->cdr;
5078 cdr_count++;
5079 if (cdr_count == mark_object_loop_halt)
5080 abort ();
5081 goto loop;
5082 }
5083
5084 case Lisp_Float:
5085 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5086 FLOAT_MARK (XFLOAT (obj));
5087 break;
5088
5089 case Lisp_Int:
5090 break;
5091
5092 default:
5093 abort ();
5094 }
5095
5096 #undef CHECK_LIVE
5097 #undef CHECK_ALLOCATED
5098 #undef CHECK_ALLOCATED_AND_LIVE
5099 }
5100
5101 /* Mark the pointers in a buffer structure. */
5102
5103 static void
5104 mark_buffer (buf)
5105 Lisp_Object buf;
5106 {
5107 register struct buffer *buffer = XBUFFER (buf);
5108 register Lisp_Object *ptr, tmp;
5109 Lisp_Object base_buffer;
5110
5111 VECTOR_MARK (buffer);
5112
5113 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5114
5115 if (CONSP (buffer->undo_list))
5116 {
5117 Lisp_Object tail;
5118 tail = buffer->undo_list;
5119
5120 /* We mark the undo list specially because
5121 its pointers to markers should be weak. */
5122
5123 while (CONSP (tail))
5124 {
5125 register struct Lisp_Cons *ptr = XCONS (tail);
5126
5127 if (CONS_MARKED_P (ptr))
5128 break;
5129 CONS_MARK (ptr);
5130 if (GC_CONSP (ptr->car)
5131 && !CONS_MARKED_P (XCONS (ptr->car))
5132 && GC_MARKERP (XCAR (ptr->car)))
5133 {
5134 CONS_MARK (XCONS (ptr->car));
5135 mark_object (XCDR (ptr->car));
5136 }
5137 else
5138 mark_object (ptr->car);
5139
5140 if (CONSP (ptr->cdr))
5141 tail = ptr->cdr;
5142 else
5143 break;
5144 }
5145
5146 mark_object (XCDR (tail));
5147 }
5148 else
5149 mark_object (buffer->undo_list);
5150
5151 if (buffer->overlays_before)
5152 {
5153 XSETMISC (tmp, buffer->overlays_before);
5154 mark_object (tmp);
5155 }
5156 if (buffer->overlays_after)
5157 {
5158 XSETMISC (tmp, buffer->overlays_after);
5159 mark_object (tmp);
5160 }
5161
5162 for (ptr = &buffer->name;
5163 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5164 ptr++)
5165 mark_object (*ptr);
5166
5167 /* If this is an indirect buffer, mark its base buffer. */
5168 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5169 {
5170 XSETBUFFER (base_buffer, buffer->base_buffer);
5171 mark_buffer (base_buffer);
5172 }
5173 }
5174
5175
5176 /* Value is non-zero if OBJ will survive the current GC because it's
5177 either marked or does not need to be marked to survive. */
5178
5179 int
5180 survives_gc_p (obj)
5181 Lisp_Object obj;
5182 {
5183 int survives_p;
5184
5185 switch (XGCTYPE (obj))
5186 {
5187 case Lisp_Int:
5188 survives_p = 1;
5189 break;
5190
5191 case Lisp_Symbol:
5192 survives_p = XSYMBOL (obj)->gcmarkbit;
5193 break;
5194
5195 case Lisp_Misc:
5196 survives_p = XMARKER (obj)->gcmarkbit;
5197 break;
5198
5199 case Lisp_String:
5200 survives_p = STRING_MARKED_P (XSTRING (obj));
5201 break;
5202
5203 case Lisp_Vectorlike:
5204 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5205 break;
5206
5207 case Lisp_Cons:
5208 survives_p = CONS_MARKED_P (XCONS (obj));
5209 break;
5210
5211 case Lisp_Float:
5212 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5213 break;
5214
5215 default:
5216 abort ();
5217 }
5218
5219 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5220 }
5221
5222
5223 \f
5224 /* Sweep: find all structures not marked, and free them. */
5225
5226 static void
5227 gc_sweep ()
5228 {
5229 /* Put all unmarked conses on free list */
5230 {
5231 register struct cons_block *cblk;
5232 struct cons_block **cprev = &cons_block;
5233 register int lim = cons_block_index;
5234 register int num_free = 0, num_used = 0;
5235
5236 cons_free_list = 0;
5237
5238 for (cblk = cons_block; cblk; cblk = *cprev)
5239 {
5240 register int i;
5241 int this_free = 0;
5242 for (i = 0; i < lim; i++)
5243 if (!CONS_MARKED_P (&cblk->conses[i]))
5244 {
5245 this_free++;
5246 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5247 cons_free_list = &cblk->conses[i];
5248 #if GC_MARK_STACK
5249 cons_free_list->car = Vdead;
5250 #endif
5251 }
5252 else
5253 {
5254 num_used++;
5255 CONS_UNMARK (&cblk->conses[i]);
5256 }
5257 lim = CONS_BLOCK_SIZE;
5258 /* If this block contains only free conses and we have already
5259 seen more than two blocks worth of free conses then deallocate
5260 this block. */
5261 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5262 {
5263 *cprev = cblk->next;
5264 /* Unhook from the free list. */
5265 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5266 lisp_align_free (cblk);
5267 n_cons_blocks--;
5268 }
5269 else
5270 {
5271 num_free += this_free;
5272 cprev = &cblk->next;
5273 }
5274 }
5275 total_conses = num_used;
5276 total_free_conses = num_free;
5277 }
5278
5279 /* Remove or mark entries in weak hash tables.
5280 This must be done before any object is unmarked. */
5281 sweep_weak_hash_tables ();
5282
5283 sweep_strings ();
5284 #ifdef GC_CHECK_STRING_BYTES
5285 if (!noninteractive)
5286 check_string_bytes (1);
5287 #endif
5288
5289 /* Put all unmarked floats on free list */
5290 {
5291 register struct float_block *fblk;
5292 struct float_block **fprev = &float_block;
5293 register int lim = float_block_index;
5294 register int num_free = 0, num_used = 0;
5295
5296 float_free_list = 0;
5297
5298 for (fblk = float_block; fblk; fblk = *fprev)
5299 {
5300 register int i;
5301 int this_free = 0;
5302 for (i = 0; i < lim; i++)
5303 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5304 {
5305 this_free++;
5306 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5307 float_free_list = &fblk->floats[i];
5308 }
5309 else
5310 {
5311 num_used++;
5312 FLOAT_UNMARK (&fblk->floats[i]);
5313 }
5314 lim = FLOAT_BLOCK_SIZE;
5315 /* If this block contains only free floats and we have already
5316 seen more than two blocks worth of free floats then deallocate
5317 this block. */
5318 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5319 {
5320 *fprev = fblk->next;
5321 /* Unhook from the free list. */
5322 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5323 lisp_align_free (fblk);
5324 n_float_blocks--;
5325 }
5326 else
5327 {
5328 num_free += this_free;
5329 fprev = &fblk->next;
5330 }
5331 }
5332 total_floats = num_used;
5333 total_free_floats = num_free;
5334 }
5335
5336 /* Put all unmarked intervals on free list */
5337 {
5338 register struct interval_block *iblk;
5339 struct interval_block **iprev = &interval_block;
5340 register int lim = interval_block_index;
5341 register int num_free = 0, num_used = 0;
5342
5343 interval_free_list = 0;
5344
5345 for (iblk = interval_block; iblk; iblk = *iprev)
5346 {
5347 register int i;
5348 int this_free = 0;
5349
5350 for (i = 0; i < lim; i++)
5351 {
5352 if (!iblk->intervals[i].gcmarkbit)
5353 {
5354 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5355 interval_free_list = &iblk->intervals[i];
5356 this_free++;
5357 }
5358 else
5359 {
5360 num_used++;
5361 iblk->intervals[i].gcmarkbit = 0;
5362 }
5363 }
5364 lim = INTERVAL_BLOCK_SIZE;
5365 /* If this block contains only free intervals and we have already
5366 seen more than two blocks worth of free intervals then
5367 deallocate this block. */
5368 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5369 {
5370 *iprev = iblk->next;
5371 /* Unhook from the free list. */
5372 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5373 lisp_free (iblk);
5374 n_interval_blocks--;
5375 }
5376 else
5377 {
5378 num_free += this_free;
5379 iprev = &iblk->next;
5380 }
5381 }
5382 total_intervals = num_used;
5383 total_free_intervals = num_free;
5384 }
5385
5386 /* Put all unmarked symbols on free list */
5387 {
5388 register struct symbol_block *sblk;
5389 struct symbol_block **sprev = &symbol_block;
5390 register int lim = symbol_block_index;
5391 register int num_free = 0, num_used = 0;
5392
5393 symbol_free_list = NULL;
5394
5395 for (sblk = symbol_block; sblk; sblk = *sprev)
5396 {
5397 int this_free = 0;
5398 struct Lisp_Symbol *sym = sblk->symbols;
5399 struct Lisp_Symbol *end = sym + lim;
5400
5401 for (; sym < end; ++sym)
5402 {
5403 /* Check if the symbol was created during loadup. In such a case
5404 it might be pointed to by pure bytecode which we don't trace,
5405 so we conservatively assume that it is live. */
5406 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5407
5408 if (!sym->gcmarkbit && !pure_p)
5409 {
5410 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5411 symbol_free_list = sym;
5412 #if GC_MARK_STACK
5413 symbol_free_list->function = Vdead;
5414 #endif
5415 ++this_free;
5416 }
5417 else
5418 {
5419 ++num_used;
5420 if (!pure_p)
5421 UNMARK_STRING (XSTRING (sym->xname));
5422 sym->gcmarkbit = 0;
5423 }
5424 }
5425
5426 lim = SYMBOL_BLOCK_SIZE;
5427 /* If this block contains only free symbols and we have already
5428 seen more than two blocks worth of free symbols then deallocate
5429 this block. */
5430 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5431 {
5432 *sprev = sblk->next;
5433 /* Unhook from the free list. */
5434 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5435 lisp_free (sblk);
5436 n_symbol_blocks--;
5437 }
5438 else
5439 {
5440 num_free += this_free;
5441 sprev = &sblk->next;
5442 }
5443 }
5444 total_symbols = num_used;
5445 total_free_symbols = num_free;
5446 }
5447
5448 /* Put all unmarked misc's on free list.
5449 For a marker, first unchain it from the buffer it points into. */
5450 {
5451 register struct marker_block *mblk;
5452 struct marker_block **mprev = &marker_block;
5453 register int lim = marker_block_index;
5454 register int num_free = 0, num_used = 0;
5455
5456 marker_free_list = 0;
5457 marker_blocks_pending_free = 0;
5458
5459 for (mblk = marker_block; mblk; mblk = *mprev)
5460 {
5461 register int i;
5462 int this_free = 0;
5463
5464 for (i = 0; i < lim; i++)
5465 {
5466 if (!mblk->markers[i].u_marker.gcmarkbit)
5467 {
5468 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5469 unchain_marker (&mblk->markers[i].u_marker);
5470 /* Set the type of the freed object to Lisp_Misc_Free.
5471 We could leave the type alone, since nobody checks it,
5472 but this might catch bugs faster. */
5473 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5474 mblk->markers[i].u_free.chain = marker_free_list;
5475 marker_free_list = &mblk->markers[i];
5476 this_free++;
5477 }
5478 else
5479 {
5480 num_used++;
5481 mblk->markers[i].u_marker.gcmarkbit = 0;
5482 }
5483 }
5484 lim = MARKER_BLOCK_SIZE;
5485 /* If this block contains only free markers and we have already
5486 seen more than two blocks worth of free markers then deallocate
5487 this block. */
5488 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5489 {
5490 *mprev = mblk->next;
5491 /* Unhook from the free list. */
5492 marker_free_list = mblk->markers[0].u_free.chain;
5493 n_marker_blocks--;
5494
5495 /* It is not safe to free the marker block at this stage,
5496 since there may still be pointers to these markers from
5497 a buffer's undo list. KFS 2004-05-25. */
5498 mblk->next = marker_blocks_pending_free;
5499 marker_blocks_pending_free = mblk;
5500 }
5501 else
5502 {
5503 num_free += this_free;
5504 mprev = &mblk->next;
5505 }
5506 }
5507
5508 total_markers = num_used;
5509 total_free_markers = num_free;
5510 }
5511
5512 /* Free all unmarked buffers */
5513 {
5514 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5515
5516 while (buffer)
5517 if (!VECTOR_MARKED_P (buffer))
5518 {
5519 if (prev)
5520 prev->next = buffer->next;
5521 else
5522 all_buffers = buffer->next;
5523 next = buffer->next;
5524 lisp_free (buffer);
5525 buffer = next;
5526 }
5527 else
5528 {
5529 VECTOR_UNMARK (buffer);
5530 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5531 prev = buffer, buffer = buffer->next;
5532 }
5533 }
5534
5535 /* Free all unmarked vectors */
5536 {
5537 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5538 total_vector_size = 0;
5539
5540 while (vector)
5541 if (!VECTOR_MARKED_P (vector))
5542 {
5543 if (prev)
5544 prev->next = vector->next;
5545 else
5546 all_vectors = vector->next;
5547 next = vector->next;
5548 lisp_free (vector);
5549 n_vectors--;
5550 vector = next;
5551
5552 }
5553 else
5554 {
5555 VECTOR_UNMARK (vector);
5556 if (vector->size & PSEUDOVECTOR_FLAG)
5557 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5558 else
5559 total_vector_size += vector->size;
5560 prev = vector, vector = vector->next;
5561 }
5562 }
5563
5564 #ifdef GC_CHECK_STRING_BYTES
5565 if (!noninteractive)
5566 check_string_bytes (1);
5567 #endif
5568 }
5569
5570
5571
5572 \f
5573 /* Debugging aids. */
5574
5575 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5576 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5577 This may be helpful in debugging Emacs's memory usage.
5578 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5579 ()
5580 {
5581 Lisp_Object end;
5582
5583 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5584
5585 return end;
5586 }
5587
5588 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5589 doc: /* Return a list of counters that measure how much consing there has been.
5590 Each of these counters increments for a certain kind of object.
5591 The counters wrap around from the largest positive integer to zero.
5592 Garbage collection does not decrease them.
5593 The elements of the value are as follows:
5594 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5595 All are in units of 1 = one object consed
5596 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5597 objects consed.
5598 MISCS include overlays, markers, and some internal types.
5599 Frames, windows, buffers, and subprocesses count as vectors
5600 (but the contents of a buffer's text do not count here). */)
5601 ()
5602 {
5603 Lisp_Object consed[8];
5604
5605 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5606 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5607 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5608 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5609 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5610 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5611 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5612 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5613
5614 return Flist (8, consed);
5615 }
5616
5617 int suppress_checking;
5618 void
5619 die (msg, file, line)
5620 const char *msg;
5621 const char *file;
5622 int line;
5623 {
5624 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5625 file, line, msg);
5626 abort ();
5627 }
5628 \f
5629 /* Initialization */
5630
5631 void
5632 init_alloc_once ()
5633 {
5634 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5635 purebeg = PUREBEG;
5636 pure_size = PURESIZE;
5637 pure_bytes_used = 0;
5638 pure_bytes_used_before_overflow = 0;
5639
5640 /* Initialize the list of free aligned blocks. */
5641 free_ablock = NULL;
5642
5643 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5644 mem_init ();
5645 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5646 #endif
5647
5648 all_vectors = 0;
5649 ignore_warnings = 1;
5650 #ifdef DOUG_LEA_MALLOC
5651 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5652 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5653 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5654 #endif
5655 init_strings ();
5656 init_cons ();
5657 init_symbol ();
5658 init_marker ();
5659 init_float ();
5660 init_intervals ();
5661
5662 #ifdef REL_ALLOC
5663 malloc_hysteresis = 32;
5664 #else
5665 malloc_hysteresis = 0;
5666 #endif
5667
5668 spare_memory = (char *) malloc (SPARE_MEMORY);
5669
5670 ignore_warnings = 0;
5671 gcprolist = 0;
5672 byte_stack_list = 0;
5673 staticidx = 0;
5674 consing_since_gc = 0;
5675 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5676 #ifdef VIRT_ADDR_VARIES
5677 malloc_sbrk_unused = 1<<22; /* A large number */
5678 malloc_sbrk_used = 100000; /* as reasonable as any number */
5679 #endif /* VIRT_ADDR_VARIES */
5680 }
5681
5682 void
5683 init_alloc ()
5684 {
5685 gcprolist = 0;
5686 byte_stack_list = 0;
5687 #if GC_MARK_STACK
5688 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5689 setjmp_tested_p = longjmps_done = 0;
5690 #endif
5691 #endif
5692 Vgc_elapsed = make_float (0.0);
5693 gcs_done = 0;
5694 }
5695
5696 void
5697 syms_of_alloc ()
5698 {
5699 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5700 doc: /* *Number of bytes of consing between garbage collections.
5701 Garbage collection can happen automatically once this many bytes have been
5702 allocated since the last garbage collection. All data types count.
5703
5704 Garbage collection happens automatically only when `eval' is called.
5705
5706 By binding this temporarily to a large number, you can effectively
5707 prevent garbage collection during a part of the program. */);
5708
5709 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
5710 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
5711
5712 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
5713 doc: /* Number of cons cells that have been consed so far. */);
5714
5715 DEFVAR_INT ("floats-consed", &floats_consed,
5716 doc: /* Number of floats that have been consed so far. */);
5717
5718 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
5719 doc: /* Number of vector cells that have been consed so far. */);
5720
5721 DEFVAR_INT ("symbols-consed", &symbols_consed,
5722 doc: /* Number of symbols that have been consed so far. */);
5723
5724 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
5725 doc: /* Number of string characters that have been consed so far. */);
5726
5727 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
5728 doc: /* Number of miscellaneous objects that have been consed so far. */);
5729
5730 DEFVAR_INT ("intervals-consed", &intervals_consed,
5731 doc: /* Number of intervals that have been consed so far. */);
5732
5733 DEFVAR_INT ("strings-consed", &strings_consed,
5734 doc: /* Number of strings that have been consed so far. */);
5735
5736 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
5737 doc: /* Non-nil means loading Lisp code in order to dump an executable.
5738 This means that certain objects should be allocated in shared (pure) space. */);
5739
5740 DEFVAR_INT ("undo-limit", &undo_limit,
5741 doc: /* Keep no more undo information once it exceeds this size.
5742 This limit is applied when garbage collection happens.
5743 The size is counted as the number of bytes occupied,
5744 which includes both saved text and other data. */);
5745 undo_limit = 20000;
5746
5747 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
5748 doc: /* Don't keep more than this much size of undo information.
5749 A command which pushes past this size is itself forgotten.
5750 This limit is applied when garbage collection happens.
5751 The size is counted as the number of bytes occupied,
5752 which includes both saved text and other data. */);
5753 undo_strong_limit = 30000;
5754
5755 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
5756 doc: /* Non-nil means display messages at start and end of garbage collection. */);
5757 garbage_collection_messages = 0;
5758
5759 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
5760 doc: /* Hook run after garbage collection has finished. */);
5761 Vpost_gc_hook = Qnil;
5762 Qpost_gc_hook = intern ("post-gc-hook");
5763 staticpro (&Qpost_gc_hook);
5764
5765 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
5766 doc: /* Precomputed `signal' argument for memory-full error. */);
5767 /* We build this in advance because if we wait until we need it, we might
5768 not be able to allocate the memory to hold it. */
5769 Vmemory_signal_data
5770 = list2 (Qerror,
5771 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5772
5773 DEFVAR_LISP ("memory-full", &Vmemory_full,
5774 doc: /* Non-nil means we are handling a memory-full error. */);
5775 Vmemory_full = Qnil;
5776
5777 staticpro (&Qgc_cons_threshold);
5778 Qgc_cons_threshold = intern ("gc-cons-threshold");
5779
5780 staticpro (&Qchar_table_extra_slots);
5781 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5782
5783 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
5784 doc: /* Accumulated time elapsed in garbage collections.
5785 The time is in seconds as a floating point value. */);
5786 DEFVAR_INT ("gcs-done", &gcs_done,
5787 doc: /* Accumulated number of garbage collections done. */);
5788
5789 defsubr (&Scons);
5790 defsubr (&Slist);
5791 defsubr (&Svector);
5792 defsubr (&Smake_byte_code);
5793 defsubr (&Smake_list);
5794 defsubr (&Smake_vector);
5795 defsubr (&Smake_char_table);
5796 defsubr (&Smake_string);
5797 defsubr (&Smake_bool_vector);
5798 defsubr (&Smake_symbol);
5799 defsubr (&Smake_marker);
5800 defsubr (&Spurecopy);
5801 defsubr (&Sgarbage_collect);
5802 defsubr (&Smemory_limit);
5803 defsubr (&Smemory_use_counts);
5804
5805 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5806 defsubr (&Sgc_status);
5807 #endif
5808 }
5809
5810 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
5811 (do not change this comment) */