]> code.delx.au - gnu-emacs/blob - src/editfns.c
Merge from emacs-24; up to 2014-07-02T00:57:53Z!juri@jurta.org
[gnu-emacs] / src / editfns.c
1 /* Lisp functions pertaining to editing.
2
3 Copyright (C) 1985-1987, 1989, 1993-2014 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include <config.h>
22 #include <sys/types.h>
23 #include <stdio.h>
24
25 #ifdef HAVE_PWD_H
26 #include <pwd.h>
27 #include <grp.h>
28 #endif
29
30 #include <unistd.h>
31
32 #ifdef HAVE_SYS_UTSNAME_H
33 #include <sys/utsname.h>
34 #endif
35
36 #include "lisp.h"
37
38 /* systime.h includes <sys/time.h> which, on some systems, is required
39 for <sys/resource.h>; thus systime.h must be included before
40 <sys/resource.h> */
41 #include "systime.h"
42
43 #if defined HAVE_SYS_RESOURCE_H
44 #include <sys/resource.h>
45 #endif
46
47 #include <float.h>
48 #include <limits.h>
49 #include <intprops.h>
50 #include <strftime.h>
51 #include <verify.h>
52
53 #include "intervals.h"
54 #include "character.h"
55 #include "buffer.h"
56 #include "coding.h"
57 #include "frame.h"
58 #include "window.h"
59 #include "blockinput.h"
60
61 #define TM_YEAR_BASE 1900
62
63 #ifdef WINDOWSNT
64 extern Lisp_Object w32_get_internal_run_time (void);
65 #endif
66
67 static Lisp_Object format_time_string (char const *, ptrdiff_t, struct timespec,
68 bool, struct tm *);
69 static int tm_diff (struct tm *, struct tm *);
70 static void update_buffer_properties (ptrdiff_t, ptrdiff_t);
71
72 static Lisp_Object Qbuffer_access_fontify_functions;
73
74 /* Symbol for the text property used to mark fields. */
75
76 Lisp_Object Qfield;
77
78 /* A special value for Qfield properties. */
79
80 static Lisp_Object Qboundary;
81
82 /* The startup value of the TZ environment variable so it can be
83 restored if the user calls set-time-zone-rule with a nil
84 argument. If null, the TZ environment variable was unset. */
85 static char const *initial_tz;
86
87 /* True if the static variable tzvalbuf (defined in
88 set_time_zone_rule) is part of 'environ'. */
89 static bool tzvalbuf_in_environ;
90
91
92 void
93 init_editfns (void)
94 {
95 const char *user_name;
96 register char *p;
97 struct passwd *pw; /* password entry for the current user */
98 Lisp_Object tem;
99
100 /* Set up system_name even when dumping. */
101 init_system_name ();
102
103 #ifndef CANNOT_DUMP
104 /* Don't bother with this on initial start when just dumping out */
105 if (!initialized)
106 return;
107 #endif /* not CANNOT_DUMP */
108
109 initial_tz = getenv ("TZ");
110 tzvalbuf_in_environ = 0;
111
112 pw = getpwuid (getuid ());
113 #ifdef MSDOS
114 /* We let the real user name default to "root" because that's quite
115 accurate on MS-DOS and because it lets Emacs find the init file.
116 (The DVX libraries override the Djgpp libraries here.) */
117 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
118 #else
119 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
120 #endif
121
122 /* Get the effective user name, by consulting environment variables,
123 or the effective uid if those are unset. */
124 user_name = getenv ("LOGNAME");
125 if (!user_name)
126 #ifdef WINDOWSNT
127 user_name = getenv ("USERNAME"); /* it's USERNAME on NT */
128 #else /* WINDOWSNT */
129 user_name = getenv ("USER");
130 #endif /* WINDOWSNT */
131 if (!user_name)
132 {
133 pw = getpwuid (geteuid ());
134 user_name = pw ? pw->pw_name : "unknown";
135 }
136 Vuser_login_name = build_string (user_name);
137
138 /* If the user name claimed in the environment vars differs from
139 the real uid, use the claimed name to find the full name. */
140 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
141 if (! NILP (tem))
142 tem = Vuser_login_name;
143 else
144 {
145 uid_t euid = geteuid ();
146 tem = make_fixnum_or_float (euid);
147 }
148 Vuser_full_name = Fuser_full_name (tem);
149
150 p = getenv ("NAME");
151 if (p)
152 Vuser_full_name = build_string (p);
153 else if (NILP (Vuser_full_name))
154 Vuser_full_name = build_string ("unknown");
155
156 #ifdef HAVE_SYS_UTSNAME_H
157 {
158 struct utsname uts;
159 uname (&uts);
160 Voperating_system_release = build_string (uts.release);
161 }
162 #else
163 Voperating_system_release = Qnil;
164 #endif
165 }
166 \f
167 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
168 doc: /* Convert arg CHAR to a string containing that character.
169 usage: (char-to-string CHAR) */)
170 (Lisp_Object character)
171 {
172 int c, len;
173 unsigned char str[MAX_MULTIBYTE_LENGTH];
174
175 CHECK_CHARACTER (character);
176 c = XFASTINT (character);
177
178 len = CHAR_STRING (c, str);
179 return make_string_from_bytes ((char *) str, 1, len);
180 }
181
182 DEFUN ("byte-to-string", Fbyte_to_string, Sbyte_to_string, 1, 1, 0,
183 doc: /* Convert arg BYTE to a unibyte string containing that byte. */)
184 (Lisp_Object byte)
185 {
186 unsigned char b;
187 CHECK_NUMBER (byte);
188 if (XINT (byte) < 0 || XINT (byte) > 255)
189 error ("Invalid byte");
190 b = XINT (byte);
191 return make_string_from_bytes ((char *) &b, 1, 1);
192 }
193
194 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
195 doc: /* Return the first character in STRING. */)
196 (register Lisp_Object string)
197 {
198 register Lisp_Object val;
199 CHECK_STRING (string);
200 if (SCHARS (string))
201 {
202 if (STRING_MULTIBYTE (string))
203 XSETFASTINT (val, STRING_CHAR (SDATA (string)));
204 else
205 XSETFASTINT (val, SREF (string, 0));
206 }
207 else
208 XSETFASTINT (val, 0);
209 return val;
210 }
211
212 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
213 doc: /* Return value of point, as an integer.
214 Beginning of buffer is position (point-min). */)
215 (void)
216 {
217 Lisp_Object temp;
218 XSETFASTINT (temp, PT);
219 return temp;
220 }
221
222 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
223 doc: /* Return value of point, as a marker object. */)
224 (void)
225 {
226 return build_marker (current_buffer, PT, PT_BYTE);
227 }
228
229 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
230 doc: /* Set point to POSITION, a number or marker.
231 Beginning of buffer is position (point-min), end is (point-max).
232
233 The return value is POSITION. */)
234 (register Lisp_Object position)
235 {
236 if (MARKERP (position))
237 set_point_from_marker (position);
238 else if (INTEGERP (position))
239 SET_PT (clip_to_bounds (BEGV, XINT (position), ZV));
240 else
241 wrong_type_argument (Qinteger_or_marker_p, position);
242 return position;
243 }
244
245
246 /* Return the start or end position of the region.
247 BEGINNINGP means return the start.
248 If there is no region active, signal an error. */
249
250 static Lisp_Object
251 region_limit (bool beginningp)
252 {
253 Lisp_Object m;
254
255 if (!NILP (Vtransient_mark_mode)
256 && NILP (Vmark_even_if_inactive)
257 && NILP (BVAR (current_buffer, mark_active)))
258 xsignal0 (Qmark_inactive);
259
260 m = Fmarker_position (BVAR (current_buffer, mark));
261 if (NILP (m))
262 error ("The mark is not set now, so there is no region");
263
264 /* Clip to the current narrowing (bug#11770). */
265 return make_number ((PT < XFASTINT (m)) == beginningp
266 ? PT
267 : clip_to_bounds (BEGV, XFASTINT (m), ZV));
268 }
269
270 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
271 doc: /* Return the integer value of point or mark, whichever is smaller. */)
272 (void)
273 {
274 return region_limit (1);
275 }
276
277 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
278 doc: /* Return the integer value of point or mark, whichever is larger. */)
279 (void)
280 {
281 return region_limit (0);
282 }
283
284 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
285 doc: /* Return this buffer's mark, as a marker object.
286 Watch out! Moving this marker changes the mark position.
287 If you set the marker not to point anywhere, the buffer will have no mark. */)
288 (void)
289 {
290 return BVAR (current_buffer, mark);
291 }
292
293 \f
294 /* Find all the overlays in the current buffer that touch position POS.
295 Return the number found, and store them in a vector in VEC
296 of length LEN. */
297
298 static ptrdiff_t
299 overlays_around (EMACS_INT pos, Lisp_Object *vec, ptrdiff_t len)
300 {
301 Lisp_Object overlay, start, end;
302 struct Lisp_Overlay *tail;
303 ptrdiff_t startpos, endpos;
304 ptrdiff_t idx = 0;
305
306 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
307 {
308 XSETMISC (overlay, tail);
309
310 end = OVERLAY_END (overlay);
311 endpos = OVERLAY_POSITION (end);
312 if (endpos < pos)
313 break;
314 start = OVERLAY_START (overlay);
315 startpos = OVERLAY_POSITION (start);
316 if (startpos <= pos)
317 {
318 if (idx < len)
319 vec[idx] = overlay;
320 /* Keep counting overlays even if we can't return them all. */
321 idx++;
322 }
323 }
324
325 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
326 {
327 XSETMISC (overlay, tail);
328
329 start = OVERLAY_START (overlay);
330 startpos = OVERLAY_POSITION (start);
331 if (pos < startpos)
332 break;
333 end = OVERLAY_END (overlay);
334 endpos = OVERLAY_POSITION (end);
335 if (pos <= endpos)
336 {
337 if (idx < len)
338 vec[idx] = overlay;
339 idx++;
340 }
341 }
342
343 return idx;
344 }
345
346 DEFUN ("get-pos-property", Fget_pos_property, Sget_pos_property, 2, 3, 0,
347 doc: /* Return the value of POSITION's property PROP, in OBJECT.
348 Almost identical to `get-char-property' except for the following difference:
349 Whereas `get-char-property' returns the property of the char at (i.e. right
350 after) POSITION, this pays attention to properties's stickiness and overlays's
351 advancement settings, in order to find the property of POSITION itself,
352 i.e. the property that a char would inherit if it were inserted
353 at POSITION. */)
354 (Lisp_Object position, register Lisp_Object prop, Lisp_Object object)
355 {
356 CHECK_NUMBER_COERCE_MARKER (position);
357
358 if (NILP (object))
359 XSETBUFFER (object, current_buffer);
360 else if (WINDOWP (object))
361 object = XWINDOW (object)->contents;
362
363 if (!BUFFERP (object))
364 /* pos-property only makes sense in buffers right now, since strings
365 have no overlays and no notion of insertion for which stickiness
366 could be obeyed. */
367 return Fget_text_property (position, prop, object);
368 else
369 {
370 EMACS_INT posn = XINT (position);
371 ptrdiff_t noverlays;
372 Lisp_Object *overlay_vec, tem;
373 struct buffer *obuf = current_buffer;
374 USE_SAFE_ALLOCA;
375
376 set_buffer_temp (XBUFFER (object));
377
378 /* First try with room for 40 overlays. */
379 noverlays = 40;
380 overlay_vec = alloca (noverlays * sizeof *overlay_vec);
381 noverlays = overlays_around (posn, overlay_vec, noverlays);
382
383 /* If there are more than 40,
384 make enough space for all, and try again. */
385 if (noverlays > 40)
386 {
387 SAFE_ALLOCA_LISP (overlay_vec, noverlays);
388 noverlays = overlays_around (posn, overlay_vec, noverlays);
389 }
390 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
391
392 set_buffer_temp (obuf);
393
394 /* Now check the overlays in order of decreasing priority. */
395 while (--noverlays >= 0)
396 {
397 Lisp_Object ol = overlay_vec[noverlays];
398 tem = Foverlay_get (ol, prop);
399 if (!NILP (tem))
400 {
401 /* Check the overlay is indeed active at point. */
402 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
403 if ((OVERLAY_POSITION (start) == posn
404 && XMARKER (start)->insertion_type == 1)
405 || (OVERLAY_POSITION (finish) == posn
406 && XMARKER (finish)->insertion_type == 0))
407 ; /* The overlay will not cover a char inserted at point. */
408 else
409 {
410 SAFE_FREE ();
411 return tem;
412 }
413 }
414 }
415 SAFE_FREE ();
416
417 { /* Now check the text properties. */
418 int stickiness = text_property_stickiness (prop, position, object);
419 if (stickiness > 0)
420 return Fget_text_property (position, prop, object);
421 else if (stickiness < 0
422 && XINT (position) > BUF_BEGV (XBUFFER (object)))
423 return Fget_text_property (make_number (XINT (position) - 1),
424 prop, object);
425 else
426 return Qnil;
427 }
428 }
429 }
430
431 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
432 the value of point is used instead. If BEG or END is null,
433 means don't store the beginning or end of the field.
434
435 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
436 results; they do not effect boundary behavior.
437
438 If MERGE_AT_BOUNDARY is non-nil, then if POS is at the very first
439 position of a field, then the beginning of the previous field is
440 returned instead of the beginning of POS's field (since the end of a
441 field is actually also the beginning of the next input field, this
442 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
443 non-nil case, if two fields are separated by a field with the special
444 value `boundary', and POS lies within it, then the two separated
445 fields are considered to be adjacent, and POS between them, when
446 finding the beginning and ending of the "merged" field.
447
448 Either BEG or END may be 0, in which case the corresponding value
449 is not stored. */
450
451 static void
452 find_field (Lisp_Object pos, Lisp_Object merge_at_boundary,
453 Lisp_Object beg_limit,
454 ptrdiff_t *beg, Lisp_Object end_limit, ptrdiff_t *end)
455 {
456 /* Fields right before and after the point. */
457 Lisp_Object before_field, after_field;
458 /* True if POS counts as the start of a field. */
459 bool at_field_start = 0;
460 /* True if POS counts as the end of a field. */
461 bool at_field_end = 0;
462
463 if (NILP (pos))
464 XSETFASTINT (pos, PT);
465 else
466 CHECK_NUMBER_COERCE_MARKER (pos);
467
468 after_field
469 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
470 before_field
471 = (XFASTINT (pos) > BEGV
472 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
473 Qfield, Qnil, NULL)
474 /* Using nil here would be a more obvious choice, but it would
475 fail when the buffer starts with a non-sticky field. */
476 : after_field);
477
478 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
479 and POS is at beginning of a field, which can also be interpreted
480 as the end of the previous field. Note that the case where if
481 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
482 more natural one; then we avoid treating the beginning of a field
483 specially. */
484 if (NILP (merge_at_boundary))
485 {
486 Lisp_Object field = Fget_pos_property (pos, Qfield, Qnil);
487 if (!EQ (field, after_field))
488 at_field_end = 1;
489 if (!EQ (field, before_field))
490 at_field_start = 1;
491 if (NILP (field) && at_field_start && at_field_end)
492 /* If an inserted char would have a nil field while the surrounding
493 text is non-nil, we're probably not looking at a
494 zero-length field, but instead at a non-nil field that's
495 not intended for editing (such as comint's prompts). */
496 at_field_end = at_field_start = 0;
497 }
498
499 /* Note about special `boundary' fields:
500
501 Consider the case where the point (`.') is between the fields `x' and `y':
502
503 xxxx.yyyy
504
505 In this situation, if merge_at_boundary is non-nil, consider the
506 `x' and `y' fields as forming one big merged field, and so the end
507 of the field is the end of `y'.
508
509 However, if `x' and `y' are separated by a special `boundary' field
510 (a field with a `field' char-property of 'boundary), then ignore
511 this special field when merging adjacent fields. Here's the same
512 situation, but with a `boundary' field between the `x' and `y' fields:
513
514 xxx.BBBByyyy
515
516 Here, if point is at the end of `x', the beginning of `y', or
517 anywhere in-between (within the `boundary' field), merge all
518 three fields and consider the beginning as being the beginning of
519 the `x' field, and the end as being the end of the `y' field. */
520
521 if (beg)
522 {
523 if (at_field_start)
524 /* POS is at the edge of a field, and we should consider it as
525 the beginning of the following field. */
526 *beg = XFASTINT (pos);
527 else
528 /* Find the previous field boundary. */
529 {
530 Lisp_Object p = pos;
531 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
532 /* Skip a `boundary' field. */
533 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
534 beg_limit);
535
536 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
537 beg_limit);
538 *beg = NILP (p) ? BEGV : XFASTINT (p);
539 }
540 }
541
542 if (end)
543 {
544 if (at_field_end)
545 /* POS is at the edge of a field, and we should consider it as
546 the end of the previous field. */
547 *end = XFASTINT (pos);
548 else
549 /* Find the next field boundary. */
550 {
551 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
552 /* Skip a `boundary' field. */
553 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
554 end_limit);
555
556 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
557 end_limit);
558 *end = NILP (pos) ? ZV : XFASTINT (pos);
559 }
560 }
561 }
562
563 \f
564 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
565 doc: /* Delete the field surrounding POS.
566 A field is a region of text with the same `field' property.
567 If POS is nil, the value of point is used for POS. */)
568 (Lisp_Object pos)
569 {
570 ptrdiff_t beg, end;
571 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
572 if (beg != end)
573 del_range (beg, end);
574 return Qnil;
575 }
576
577 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
578 doc: /* Return the contents of the field surrounding POS as a string.
579 A field is a region of text with the same `field' property.
580 If POS is nil, the value of point is used for POS. */)
581 (Lisp_Object pos)
582 {
583 ptrdiff_t beg, end;
584 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
585 return make_buffer_string (beg, end, 1);
586 }
587
588 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
589 doc: /* Return the contents of the field around POS, without text properties.
590 A field is a region of text with the same `field' property.
591 If POS is nil, the value of point is used for POS. */)
592 (Lisp_Object pos)
593 {
594 ptrdiff_t beg, end;
595 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
596 return make_buffer_string (beg, end, 0);
597 }
598
599 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
600 doc: /* Return the beginning of the field surrounding POS.
601 A field is a region of text with the same `field' property.
602 If POS is nil, the value of point is used for POS.
603 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
604 field, then the beginning of the *previous* field is returned.
605 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
606 is before LIMIT, then LIMIT will be returned instead. */)
607 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
608 {
609 ptrdiff_t beg;
610 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
611 return make_number (beg);
612 }
613
614 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
615 doc: /* Return the end of the field surrounding POS.
616 A field is a region of text with the same `field' property.
617 If POS is nil, the value of point is used for POS.
618 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
619 then the end of the *following* field is returned.
620 If LIMIT is non-nil, it is a buffer position; if the end of the field
621 is after LIMIT, then LIMIT will be returned instead. */)
622 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
623 {
624 ptrdiff_t end;
625 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
626 return make_number (end);
627 }
628
629 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
630 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
631 A field is a region of text with the same `field' property.
632
633 If NEW-POS is nil, then use the current point instead, and move point
634 to the resulting constrained position, in addition to returning that
635 position.
636
637 If OLD-POS is at the boundary of two fields, then the allowable
638 positions for NEW-POS depends on the value of the optional argument
639 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
640 constrained to the field that has the same `field' char-property
641 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
642 is non-nil, NEW-POS is constrained to the union of the two adjacent
643 fields. Additionally, if two fields are separated by another field with
644 the special value `boundary', then any point within this special field is
645 also considered to be `on the boundary'.
646
647 If the optional argument ONLY-IN-LINE is non-nil and constraining
648 NEW-POS would move it to a different line, NEW-POS is returned
649 unconstrained. This is useful for commands that move by line, like
650 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
651 only in the case where they can still move to the right line.
652
653 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
654 a non-nil property of that name, then any field boundaries are ignored.
655
656 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
657 (Lisp_Object new_pos, Lisp_Object old_pos, Lisp_Object escape_from_edge,
658 Lisp_Object only_in_line, Lisp_Object inhibit_capture_property)
659 {
660 /* If non-zero, then the original point, before re-positioning. */
661 ptrdiff_t orig_point = 0;
662 bool fwd;
663 Lisp_Object prev_old, prev_new;
664
665 if (NILP (new_pos))
666 /* Use the current point, and afterwards, set it. */
667 {
668 orig_point = PT;
669 XSETFASTINT (new_pos, PT);
670 }
671
672 CHECK_NUMBER_COERCE_MARKER (new_pos);
673 CHECK_NUMBER_COERCE_MARKER (old_pos);
674
675 fwd = (XINT (new_pos) > XINT (old_pos));
676
677 prev_old = make_number (XINT (old_pos) - 1);
678 prev_new = make_number (XINT (new_pos) - 1);
679
680 if (NILP (Vinhibit_field_text_motion)
681 && !EQ (new_pos, old_pos)
682 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
683 || !NILP (Fget_char_property (old_pos, Qfield, Qnil))
684 /* To recognize field boundaries, we must also look at the
685 previous positions; we could use `Fget_pos_property'
686 instead, but in itself that would fail inside non-sticky
687 fields (like comint prompts). */
688 || (XFASTINT (new_pos) > BEGV
689 && !NILP (Fget_char_property (prev_new, Qfield, Qnil)))
690 || (XFASTINT (old_pos) > BEGV
691 && !NILP (Fget_char_property (prev_old, Qfield, Qnil))))
692 && (NILP (inhibit_capture_property)
693 /* Field boundaries are again a problem; but now we must
694 decide the case exactly, so we need to call
695 `get_pos_property' as well. */
696 || (NILP (Fget_pos_property (old_pos, inhibit_capture_property, Qnil))
697 && (XFASTINT (old_pos) <= BEGV
698 || NILP (Fget_char_property
699 (old_pos, inhibit_capture_property, Qnil))
700 || NILP (Fget_char_property
701 (prev_old, inhibit_capture_property, Qnil))))))
702 /* It is possible that NEW_POS is not within the same field as
703 OLD_POS; try to move NEW_POS so that it is. */
704 {
705 ptrdiff_t shortage;
706 Lisp_Object field_bound;
707
708 if (fwd)
709 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
710 else
711 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
712
713 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
714 other side of NEW_POS, which would mean that NEW_POS is
715 already acceptable, and it's not necessary to constrain it
716 to FIELD_BOUND. */
717 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
718 /* NEW_POS should be constrained, but only if either
719 ONLY_IN_LINE is nil (in which case any constraint is OK),
720 or NEW_POS and FIELD_BOUND are on the same line (in which
721 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
722 && (NILP (only_in_line)
723 /* This is the ONLY_IN_LINE case, check that NEW_POS and
724 FIELD_BOUND are on the same line by seeing whether
725 there's an intervening newline or not. */
726 || (find_newline (XFASTINT (new_pos), -1,
727 XFASTINT (field_bound), -1,
728 fwd ? -1 : 1, &shortage, NULL, 1),
729 shortage != 0)))
730 /* Constrain NEW_POS to FIELD_BOUND. */
731 new_pos = field_bound;
732
733 if (orig_point && XFASTINT (new_pos) != orig_point)
734 /* The NEW_POS argument was originally nil, so automatically set PT. */
735 SET_PT (XFASTINT (new_pos));
736 }
737
738 return new_pos;
739 }
740
741 \f
742 DEFUN ("line-beginning-position",
743 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
744 doc: /* Return the character position of the first character on the current line.
745 With optional argument N, scan forward N - 1 lines first.
746 If the scan reaches the end of the buffer, return that position.
747
748 This function ignores text display directionality; it returns the
749 position of the first character in logical order, i.e. the smallest
750 character position on the line.
751
752 This function constrains the returned position to the current field
753 unless that position would be on a different line than the original,
754 unconstrained result. If N is nil or 1, and a front-sticky field
755 starts at point, the scan stops as soon as it starts. To ignore field
756 boundaries, bind `inhibit-field-text-motion' to t.
757
758 This function does not move point. */)
759 (Lisp_Object n)
760 {
761 ptrdiff_t orig, orig_byte, end;
762 ptrdiff_t count = SPECPDL_INDEX ();
763 specbind (Qinhibit_point_motion_hooks, Qt);
764
765 if (NILP (n))
766 XSETFASTINT (n, 1);
767 else
768 CHECK_NUMBER (n);
769
770 orig = PT;
771 orig_byte = PT_BYTE;
772 Fforward_line (make_number (XINT (n) - 1));
773 end = PT;
774
775 SET_PT_BOTH (orig, orig_byte);
776
777 unbind_to (count, Qnil);
778
779 /* Return END constrained to the current input field. */
780 return Fconstrain_to_field (make_number (end), make_number (orig),
781 XINT (n) != 1 ? Qt : Qnil,
782 Qt, Qnil);
783 }
784
785 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
786 doc: /* Return the character position of the last character on the current line.
787 With argument N not nil or 1, move forward N - 1 lines first.
788 If scan reaches end of buffer, return that position.
789
790 This function ignores text display directionality; it returns the
791 position of the last character in logical order, i.e. the largest
792 character position on the line.
793
794 This function constrains the returned position to the current field
795 unless that would be on a different line than the original,
796 unconstrained result. If N is nil or 1, and a rear-sticky field ends
797 at point, the scan stops as soon as it starts. To ignore field
798 boundaries bind `inhibit-field-text-motion' to t.
799
800 This function does not move point. */)
801 (Lisp_Object n)
802 {
803 ptrdiff_t clipped_n;
804 ptrdiff_t end_pos;
805 ptrdiff_t orig = PT;
806
807 if (NILP (n))
808 XSETFASTINT (n, 1);
809 else
810 CHECK_NUMBER (n);
811
812 clipped_n = clip_to_bounds (PTRDIFF_MIN + 1, XINT (n), PTRDIFF_MAX);
813 end_pos = find_before_next_newline (orig, 0, clipped_n - (clipped_n <= 0),
814 NULL);
815
816 /* Return END_POS constrained to the current input field. */
817 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
818 Qnil, Qt, Qnil);
819 }
820
821 /* Save current buffer state for `save-excursion' special form.
822 We (ab)use Lisp_Misc_Save_Value to allow explicit free and so
823 offload some work from GC. */
824
825 Lisp_Object
826 save_excursion_save (void)
827 {
828 return make_save_obj_obj_obj_obj
829 (Fpoint_marker (),
830 /* Do not copy the mark if it points to nowhere. */
831 (XMARKER (BVAR (current_buffer, mark))->buffer
832 ? Fcopy_marker (BVAR (current_buffer, mark), Qnil)
833 : Qnil),
834 /* Selected window if current buffer is shown in it, nil otherwise. */
835 (EQ (XWINDOW (selected_window)->contents, Fcurrent_buffer ())
836 ? selected_window : Qnil),
837 BVAR (current_buffer, mark_active));
838 }
839
840 /* Restore saved buffer before leaving `save-excursion' special form. */
841
842 void
843 save_excursion_restore (Lisp_Object info)
844 {
845 Lisp_Object tem, tem1, omark, nmark;
846 struct gcpro gcpro1, gcpro2, gcpro3;
847
848 tem = Fmarker_buffer (XSAVE_OBJECT (info, 0));
849 /* If we're unwinding to top level, saved buffer may be deleted. This
850 means that all of its markers are unchained and so tem is nil. */
851 if (NILP (tem))
852 goto out;
853
854 omark = nmark = Qnil;
855 GCPRO3 (info, omark, nmark);
856
857 Fset_buffer (tem);
858
859 /* Point marker. */
860 tem = XSAVE_OBJECT (info, 0);
861 Fgoto_char (tem);
862 unchain_marker (XMARKER (tem));
863
864 /* Mark marker. */
865 tem = XSAVE_OBJECT (info, 1);
866 omark = Fmarker_position (BVAR (current_buffer, mark));
867 if (NILP (tem))
868 unchain_marker (XMARKER (BVAR (current_buffer, mark)));
869 else
870 {
871 Fset_marker (BVAR (current_buffer, mark), tem, Fcurrent_buffer ());
872 nmark = Fmarker_position (tem);
873 unchain_marker (XMARKER (tem));
874 }
875
876 /* Mark active. */
877 tem = XSAVE_OBJECT (info, 3);
878 tem1 = BVAR (current_buffer, mark_active);
879 bset_mark_active (current_buffer, tem);
880
881 /* If mark is active now, and either was not active
882 or was at a different place, run the activate hook. */
883 if (! NILP (tem))
884 {
885 if (! EQ (omark, nmark))
886 {
887 tem = intern ("activate-mark-hook");
888 Frun_hooks (1, &tem);
889 }
890 }
891 /* If mark has ceased to be active, run deactivate hook. */
892 else if (! NILP (tem1))
893 {
894 tem = intern ("deactivate-mark-hook");
895 Frun_hooks (1, &tem);
896 }
897
898 /* If buffer was visible in a window, and a different window was
899 selected, and the old selected window is still showing this
900 buffer, restore point in that window. */
901 tem = XSAVE_OBJECT (info, 2);
902 if (WINDOWP (tem)
903 && !EQ (tem, selected_window)
904 && (tem1 = XWINDOW (tem)->contents,
905 (/* Window is live... */
906 BUFFERP (tem1)
907 /* ...and it shows the current buffer. */
908 && XBUFFER (tem1) == current_buffer)))
909 Fset_window_point (tem, make_number (PT));
910
911 UNGCPRO;
912
913 out:
914
915 free_misc (info);
916 }
917
918 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
919 doc: /* Save point, mark, and current buffer; execute BODY; restore those things.
920 Executes BODY just like `progn'.
921 The values of point, mark and the current buffer are restored
922 even in case of abnormal exit (throw or error).
923 The state of activation of the mark is also restored.
924
925 This construct does not save `deactivate-mark', and therefore
926 functions that change the buffer will still cause deactivation
927 of the mark at the end of the command. To prevent that, bind
928 `deactivate-mark' with `let'.
929
930 If you only want to save the current buffer but not point nor mark,
931 then just use `save-current-buffer', or even `with-current-buffer'.
932
933 usage: (save-excursion &rest BODY) */)
934 (Lisp_Object args)
935 {
936 register Lisp_Object val;
937 ptrdiff_t count = SPECPDL_INDEX ();
938
939 record_unwind_protect (save_excursion_restore, save_excursion_save ());
940
941 val = Fprogn (args);
942 return unbind_to (count, val);
943 }
944
945 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
946 doc: /* Record which buffer is current; execute BODY; make that buffer current.
947 BODY is executed just like `progn'.
948 usage: (save-current-buffer &rest BODY) */)
949 (Lisp_Object args)
950 {
951 ptrdiff_t count = SPECPDL_INDEX ();
952
953 record_unwind_current_buffer ();
954 return unbind_to (count, Fprogn (args));
955 }
956 \f
957 DEFUN ("buffer-size", Fbuffer_size, Sbuffer_size, 0, 1, 0,
958 doc: /* Return the number of characters in the current buffer.
959 If BUFFER, return the number of characters in that buffer instead. */)
960 (Lisp_Object buffer)
961 {
962 if (NILP (buffer))
963 return make_number (Z - BEG);
964 else
965 {
966 CHECK_BUFFER (buffer);
967 return make_number (BUF_Z (XBUFFER (buffer))
968 - BUF_BEG (XBUFFER (buffer)));
969 }
970 }
971
972 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
973 doc: /* Return the minimum permissible value of point in the current buffer.
974 This is 1, unless narrowing (a buffer restriction) is in effect. */)
975 (void)
976 {
977 Lisp_Object temp;
978 XSETFASTINT (temp, BEGV);
979 return temp;
980 }
981
982 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
983 doc: /* Return a marker to the minimum permissible value of point in this buffer.
984 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
985 (void)
986 {
987 return build_marker (current_buffer, BEGV, BEGV_BYTE);
988 }
989
990 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
991 doc: /* Return the maximum permissible value of point in the current buffer.
992 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
993 is in effect, in which case it is less. */)
994 (void)
995 {
996 Lisp_Object temp;
997 XSETFASTINT (temp, ZV);
998 return temp;
999 }
1000
1001 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1002 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1003 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1004 is in effect, in which case it is less. */)
1005 (void)
1006 {
1007 return build_marker (current_buffer, ZV, ZV_BYTE);
1008 }
1009
1010 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1011 doc: /* Return the position of the gap, in the current buffer.
1012 See also `gap-size'. */)
1013 (void)
1014 {
1015 Lisp_Object temp;
1016 XSETFASTINT (temp, GPT);
1017 return temp;
1018 }
1019
1020 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1021 doc: /* Return the size of the current buffer's gap.
1022 See also `gap-position'. */)
1023 (void)
1024 {
1025 Lisp_Object temp;
1026 XSETFASTINT (temp, GAP_SIZE);
1027 return temp;
1028 }
1029
1030 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1031 doc: /* Return the byte position for character position POSITION.
1032 If POSITION is out of range, the value is nil. */)
1033 (Lisp_Object position)
1034 {
1035 CHECK_NUMBER_COERCE_MARKER (position);
1036 if (XINT (position) < BEG || XINT (position) > Z)
1037 return Qnil;
1038 return make_number (CHAR_TO_BYTE (XINT (position)));
1039 }
1040
1041 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1042 doc: /* Return the character position for byte position BYTEPOS.
1043 If BYTEPOS is out of range, the value is nil. */)
1044 (Lisp_Object bytepos)
1045 {
1046 CHECK_NUMBER (bytepos);
1047 if (XINT (bytepos) < BEG_BYTE || XINT (bytepos) > Z_BYTE)
1048 return Qnil;
1049 return make_number (BYTE_TO_CHAR (XINT (bytepos)));
1050 }
1051 \f
1052 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1053 doc: /* Return the character following point, as a number.
1054 At the end of the buffer or accessible region, return 0. */)
1055 (void)
1056 {
1057 Lisp_Object temp;
1058 if (PT >= ZV)
1059 XSETFASTINT (temp, 0);
1060 else
1061 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1062 return temp;
1063 }
1064
1065 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1066 doc: /* Return the character preceding point, as a number.
1067 At the beginning of the buffer or accessible region, return 0. */)
1068 (void)
1069 {
1070 Lisp_Object temp;
1071 if (PT <= BEGV)
1072 XSETFASTINT (temp, 0);
1073 else if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1074 {
1075 ptrdiff_t pos = PT_BYTE;
1076 DEC_POS (pos);
1077 XSETFASTINT (temp, FETCH_CHAR (pos));
1078 }
1079 else
1080 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1081 return temp;
1082 }
1083
1084 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1085 doc: /* Return t if point is at the beginning of the buffer.
1086 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1087 (void)
1088 {
1089 if (PT == BEGV)
1090 return Qt;
1091 return Qnil;
1092 }
1093
1094 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1095 doc: /* Return t if point is at the end of the buffer.
1096 If the buffer is narrowed, this means the end of the narrowed part. */)
1097 (void)
1098 {
1099 if (PT == ZV)
1100 return Qt;
1101 return Qnil;
1102 }
1103
1104 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1105 doc: /* Return t if point is at the beginning of a line. */)
1106 (void)
1107 {
1108 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1109 return Qt;
1110 return Qnil;
1111 }
1112
1113 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1114 doc: /* Return t if point is at the end of a line.
1115 `End of a line' includes point being at the end of the buffer. */)
1116 (void)
1117 {
1118 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1119 return Qt;
1120 return Qnil;
1121 }
1122
1123 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1124 doc: /* Return character in current buffer at position POS.
1125 POS is an integer or a marker and defaults to point.
1126 If POS is out of range, the value is nil. */)
1127 (Lisp_Object pos)
1128 {
1129 register ptrdiff_t pos_byte;
1130
1131 if (NILP (pos))
1132 {
1133 pos_byte = PT_BYTE;
1134 XSETFASTINT (pos, PT);
1135 }
1136
1137 if (MARKERP (pos))
1138 {
1139 pos_byte = marker_byte_position (pos);
1140 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1141 return Qnil;
1142 }
1143 else
1144 {
1145 CHECK_NUMBER_COERCE_MARKER (pos);
1146 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1147 return Qnil;
1148
1149 pos_byte = CHAR_TO_BYTE (XINT (pos));
1150 }
1151
1152 return make_number (FETCH_CHAR (pos_byte));
1153 }
1154
1155 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1156 doc: /* Return character in current buffer preceding position POS.
1157 POS is an integer or a marker and defaults to point.
1158 If POS is out of range, the value is nil. */)
1159 (Lisp_Object pos)
1160 {
1161 register Lisp_Object val;
1162 register ptrdiff_t pos_byte;
1163
1164 if (NILP (pos))
1165 {
1166 pos_byte = PT_BYTE;
1167 XSETFASTINT (pos, PT);
1168 }
1169
1170 if (MARKERP (pos))
1171 {
1172 pos_byte = marker_byte_position (pos);
1173
1174 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1175 return Qnil;
1176 }
1177 else
1178 {
1179 CHECK_NUMBER_COERCE_MARKER (pos);
1180
1181 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1182 return Qnil;
1183
1184 pos_byte = CHAR_TO_BYTE (XINT (pos));
1185 }
1186
1187 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1188 {
1189 DEC_POS (pos_byte);
1190 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1191 }
1192 else
1193 {
1194 pos_byte--;
1195 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1196 }
1197 return val;
1198 }
1199 \f
1200 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1201 doc: /* Return the name under which the user logged in, as a string.
1202 This is based on the effective uid, not the real uid.
1203 Also, if the environment variables LOGNAME or USER are set,
1204 that determines the value of this function.
1205
1206 If optional argument UID is an integer or a float, return the login name
1207 of the user with that uid, or nil if there is no such user. */)
1208 (Lisp_Object uid)
1209 {
1210 struct passwd *pw;
1211 uid_t id;
1212
1213 /* Set up the user name info if we didn't do it before.
1214 (That can happen if Emacs is dumpable
1215 but you decide to run `temacs -l loadup' and not dump. */
1216 if (INTEGERP (Vuser_login_name))
1217 init_editfns ();
1218
1219 if (NILP (uid))
1220 return Vuser_login_name;
1221
1222 CONS_TO_INTEGER (uid, uid_t, id);
1223 block_input ();
1224 pw = getpwuid (id);
1225 unblock_input ();
1226 return (pw ? build_string (pw->pw_name) : Qnil);
1227 }
1228
1229 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1230 0, 0, 0,
1231 doc: /* Return the name of the user's real uid, as a string.
1232 This ignores the environment variables LOGNAME and USER, so it differs from
1233 `user-login-name' when running under `su'. */)
1234 (void)
1235 {
1236 /* Set up the user name info if we didn't do it before.
1237 (That can happen if Emacs is dumpable
1238 but you decide to run `temacs -l loadup' and not dump. */
1239 if (INTEGERP (Vuser_login_name))
1240 init_editfns ();
1241 return Vuser_real_login_name;
1242 }
1243
1244 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1245 doc: /* Return the effective uid of Emacs.
1246 Value is an integer or a float, depending on the value. */)
1247 (void)
1248 {
1249 uid_t euid = geteuid ();
1250 return make_fixnum_or_float (euid);
1251 }
1252
1253 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1254 doc: /* Return the real uid of Emacs.
1255 Value is an integer or a float, depending on the value. */)
1256 (void)
1257 {
1258 uid_t uid = getuid ();
1259 return make_fixnum_or_float (uid);
1260 }
1261
1262 DEFUN ("group-gid", Fgroup_gid, Sgroup_gid, 0, 0, 0,
1263 doc: /* Return the effective gid of Emacs.
1264 Value is an integer or a float, depending on the value. */)
1265 (void)
1266 {
1267 gid_t egid = getegid ();
1268 return make_fixnum_or_float (egid);
1269 }
1270
1271 DEFUN ("group-real-gid", Fgroup_real_gid, Sgroup_real_gid, 0, 0, 0,
1272 doc: /* Return the real gid of Emacs.
1273 Value is an integer or a float, depending on the value. */)
1274 (void)
1275 {
1276 gid_t gid = getgid ();
1277 return make_fixnum_or_float (gid);
1278 }
1279
1280 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1281 doc: /* Return the full name of the user logged in, as a string.
1282 If the full name corresponding to Emacs's userid is not known,
1283 return "unknown".
1284
1285 If optional argument UID is an integer or float, return the full name
1286 of the user with that uid, or nil if there is no such user.
1287 If UID is a string, return the full name of the user with that login
1288 name, or nil if there is no such user. */)
1289 (Lisp_Object uid)
1290 {
1291 struct passwd *pw;
1292 register char *p, *q;
1293 Lisp_Object full;
1294
1295 if (NILP (uid))
1296 return Vuser_full_name;
1297 else if (NUMBERP (uid))
1298 {
1299 uid_t u;
1300 CONS_TO_INTEGER (uid, uid_t, u);
1301 block_input ();
1302 pw = getpwuid (u);
1303 unblock_input ();
1304 }
1305 else if (STRINGP (uid))
1306 {
1307 block_input ();
1308 pw = getpwnam (SSDATA (uid));
1309 unblock_input ();
1310 }
1311 else
1312 error ("Invalid UID specification");
1313
1314 if (!pw)
1315 return Qnil;
1316
1317 p = USER_FULL_NAME;
1318 /* Chop off everything after the first comma. */
1319 q = strchr (p, ',');
1320 full = make_string (p, q ? q - p : strlen (p));
1321
1322 #ifdef AMPERSAND_FULL_NAME
1323 p = SSDATA (full);
1324 q = strchr (p, '&');
1325 /* Substitute the login name for the &, upcasing the first character. */
1326 if (q)
1327 {
1328 register char *r;
1329 Lisp_Object login;
1330
1331 login = Fuser_login_name (make_number (pw->pw_uid));
1332 r = alloca (strlen (p) + SCHARS (login) + 1);
1333 memcpy (r, p, q - p);
1334 r[q - p] = 0;
1335 strcat (r, SSDATA (login));
1336 r[q - p] = upcase ((unsigned char) r[q - p]);
1337 strcat (r, q + 1);
1338 full = build_string (r);
1339 }
1340 #endif /* AMPERSAND_FULL_NAME */
1341
1342 return full;
1343 }
1344
1345 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1346 doc: /* Return the host name of the machine you are running on, as a string. */)
1347 (void)
1348 {
1349 return Vsystem_name;
1350 }
1351
1352 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1353 doc: /* Return the process ID of Emacs, as a number. */)
1354 (void)
1355 {
1356 pid_t pid = getpid ();
1357 return make_fixnum_or_float (pid);
1358 }
1359
1360 \f
1361
1362 #ifndef TIME_T_MIN
1363 # define TIME_T_MIN TYPE_MINIMUM (time_t)
1364 #endif
1365 #ifndef TIME_T_MAX
1366 # define TIME_T_MAX TYPE_MAXIMUM (time_t)
1367 #endif
1368
1369 /* Report that a time value is out of range for Emacs. */
1370 void
1371 time_overflow (void)
1372 {
1373 error ("Specified time is not representable");
1374 }
1375
1376 /* Return the upper part of the time T (everything but the bottom 16 bits). */
1377 static EMACS_INT
1378 hi_time (time_t t)
1379 {
1380 time_t hi = t >> 16;
1381
1382 /* Check for overflow, helping the compiler for common cases where
1383 no runtime check is needed, and taking care not to convert
1384 negative numbers to unsigned before comparing them. */
1385 if (! ((! TYPE_SIGNED (time_t)
1386 || MOST_NEGATIVE_FIXNUM <= TIME_T_MIN >> 16
1387 || MOST_NEGATIVE_FIXNUM <= hi)
1388 && (TIME_T_MAX >> 16 <= MOST_POSITIVE_FIXNUM
1389 || hi <= MOST_POSITIVE_FIXNUM)))
1390 time_overflow ();
1391
1392 return hi;
1393 }
1394
1395 /* Return the bottom 16 bits of the time T. */
1396 static int
1397 lo_time (time_t t)
1398 {
1399 return t & ((1 << 16) - 1);
1400 }
1401
1402 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1403 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1404 The time is returned as a list of integers (HIGH LOW USEC PSEC).
1405 HIGH has the most significant bits of the seconds, while LOW has the
1406 least significant 16 bits. USEC and PSEC are the microsecond and
1407 picosecond counts. */)
1408 (void)
1409 {
1410 return make_lisp_time (current_timespec ());
1411 }
1412
1413 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1414 0, 0, 0,
1415 doc: /* Return the current run time used by Emacs.
1416 The time is returned as a list (HIGH LOW USEC PSEC), using the same
1417 style as (current-time).
1418
1419 On systems that can't determine the run time, `get-internal-run-time'
1420 does the same thing as `current-time'. */)
1421 (void)
1422 {
1423 #ifdef HAVE_GETRUSAGE
1424 struct rusage usage;
1425 time_t secs;
1426 int usecs;
1427
1428 if (getrusage (RUSAGE_SELF, &usage) < 0)
1429 /* This shouldn't happen. What action is appropriate? */
1430 xsignal0 (Qerror);
1431
1432 /* Sum up user time and system time. */
1433 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1434 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1435 if (usecs >= 1000000)
1436 {
1437 usecs -= 1000000;
1438 secs++;
1439 }
1440 return make_lisp_time (make_timespec (secs, usecs * 1000));
1441 #else /* ! HAVE_GETRUSAGE */
1442 #ifdef WINDOWSNT
1443 return w32_get_internal_run_time ();
1444 #else /* ! WINDOWSNT */
1445 return Fcurrent_time ();
1446 #endif /* WINDOWSNT */
1447 #endif /* HAVE_GETRUSAGE */
1448 }
1449 \f
1450
1451 /* Make a Lisp list that represents the time T with fraction TAIL. */
1452 static Lisp_Object
1453 make_time_tail (time_t t, Lisp_Object tail)
1454 {
1455 return Fcons (make_number (hi_time (t)),
1456 Fcons (make_number (lo_time (t)), tail));
1457 }
1458
1459 /* Make a Lisp list that represents the system time T. */
1460 static Lisp_Object
1461 make_time (time_t t)
1462 {
1463 return make_time_tail (t, Qnil);
1464 }
1465
1466 /* Make a Lisp list that represents the Emacs time T. T may be an
1467 invalid time, with a slightly negative tv_nsec value such as
1468 UNKNOWN_MODTIME_NSECS; in that case, the Lisp list contains a
1469 correspondingly negative picosecond count. */
1470 Lisp_Object
1471 make_lisp_time (struct timespec t)
1472 {
1473 int ns = t.tv_nsec;
1474 return make_time_tail (t.tv_sec, list2i (ns / 1000, ns % 1000 * 1000));
1475 }
1476
1477 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1478 Set *PHIGH, *PLOW, *PUSEC, *PPSEC to its parts; do not check their values.
1479 Return true if successful. */
1480 static bool
1481 disassemble_lisp_time (Lisp_Object specified_time, Lisp_Object *phigh,
1482 Lisp_Object *plow, Lisp_Object *pusec,
1483 Lisp_Object *ppsec)
1484 {
1485 if (CONSP (specified_time))
1486 {
1487 Lisp_Object low = XCDR (specified_time);
1488 Lisp_Object usec = make_number (0);
1489 Lisp_Object psec = make_number (0);
1490 if (CONSP (low))
1491 {
1492 Lisp_Object low_tail = XCDR (low);
1493 low = XCAR (low);
1494 if (CONSP (low_tail))
1495 {
1496 usec = XCAR (low_tail);
1497 low_tail = XCDR (low_tail);
1498 if (CONSP (low_tail))
1499 psec = XCAR (low_tail);
1500 }
1501 else if (!NILP (low_tail))
1502 usec = low_tail;
1503 }
1504
1505 *phigh = XCAR (specified_time);
1506 *plow = low;
1507 *pusec = usec;
1508 *ppsec = psec;
1509 return 1;
1510 }
1511
1512 return 0;
1513 }
1514
1515 /* From the time components HIGH, LOW, USEC and PSEC taken from a Lisp
1516 list, generate the corresponding time value.
1517
1518 If RESULT is not null, store into *RESULT the converted time;
1519 if the converted time does not fit into struct timespec,
1520 store an invalid timespec to indicate the overflow.
1521 If *DRESULT is not null, store into *DRESULT the number of
1522 seconds since the start of the POSIX Epoch.
1523
1524 Return true if successful. */
1525 bool
1526 decode_time_components (Lisp_Object high, Lisp_Object low, Lisp_Object usec,
1527 Lisp_Object psec,
1528 struct timespec *result, double *dresult)
1529 {
1530 EMACS_INT hi, lo, us, ps;
1531 if (! (INTEGERP (high) && INTEGERP (low)
1532 && INTEGERP (usec) && INTEGERP (psec)))
1533 return false;
1534 hi = XINT (high);
1535 lo = XINT (low);
1536 us = XINT (usec);
1537 ps = XINT (psec);
1538
1539 /* Normalize out-of-range lower-order components by carrying
1540 each overflow into the next higher-order component. */
1541 us += ps / 1000000 - (ps % 1000000 < 0);
1542 lo += us / 1000000 - (us % 1000000 < 0);
1543 hi += lo >> 16;
1544 ps = ps % 1000000 + 1000000 * (ps % 1000000 < 0);
1545 us = us % 1000000 + 1000000 * (us % 1000000 < 0);
1546 lo &= (1 << 16) - 1;
1547
1548 if (result)
1549 {
1550 if ((TYPE_SIGNED (time_t) ? TIME_T_MIN >> 16 <= hi : 0 <= hi)
1551 && hi <= TIME_T_MAX >> 16)
1552 {
1553 /* Return the greatest representable time that is not greater
1554 than the requested time. */
1555 time_t sec = hi;
1556 *result = make_timespec ((sec << 16) + lo, us * 1000 + ps / 1000);
1557 }
1558 else
1559 *result = invalid_timespec ();
1560 }
1561
1562 if (dresult)
1563 *dresult = (us * 1e6 + ps) / 1e12 + lo + hi * 65536.0;
1564
1565 return true;
1566 }
1567
1568 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1569 If SPECIFIED_TIME is nil, use the current time.
1570
1571 Round the time down to the nearest struct timespec value.
1572 Return seconds since the Epoch.
1573 Signal an error if unsuccessful. */
1574 struct timespec
1575 lisp_time_argument (Lisp_Object specified_time)
1576 {
1577 if (NILP (specified_time))
1578 return current_timespec ();
1579 else
1580 {
1581 Lisp_Object high, low, usec, psec;
1582 struct timespec t;
1583 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1584 && decode_time_components (high, low, usec, psec, &t, 0)))
1585 error ("Invalid time specification");
1586 if (! timespec_valid_p (t))
1587 time_overflow ();
1588 return t;
1589 }
1590 }
1591
1592 /* Like lisp_time_argument, except decode only the seconds part,
1593 and do not check the subseconds part. */
1594 static time_t
1595 lisp_seconds_argument (Lisp_Object specified_time)
1596 {
1597 if (NILP (specified_time))
1598 return time (NULL);
1599 else
1600 {
1601 Lisp_Object high, low, usec, psec;
1602 struct timespec t;
1603 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1604 && decode_time_components (high, low, make_number (0),
1605 make_number (0), &t, 0)))
1606 error ("Invalid time specification");
1607 if (! timespec_valid_p (t))
1608 time_overflow ();
1609 return t.tv_sec;
1610 }
1611 }
1612
1613 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1614 doc: /* Return the current time, as a float number of seconds since the epoch.
1615 If SPECIFIED-TIME is given, it is the time to convert to float
1616 instead of the current time. The argument should have the form
1617 (HIGH LOW) or (HIGH LOW USEC) or (HIGH LOW USEC PSEC). Thus,
1618 you can use times from `current-time' and from `file-attributes'.
1619 SPECIFIED-TIME can also have the form (HIGH . LOW), but this is
1620 considered obsolete.
1621
1622 WARNING: Since the result is floating point, it may not be exact.
1623 If precise time stamps are required, use either `current-time',
1624 or (if you need time as a string) `format-time-string'. */)
1625 (Lisp_Object specified_time)
1626 {
1627 double t;
1628 if (NILP (specified_time))
1629 {
1630 struct timespec now = current_timespec ();
1631 t = now.tv_sec + now.tv_nsec / 1e9;
1632 }
1633 else
1634 {
1635 Lisp_Object high, low, usec, psec;
1636 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1637 && decode_time_components (high, low, usec, psec, 0, &t)))
1638 error ("Invalid time specification");
1639 }
1640 return make_float (t);
1641 }
1642
1643 /* Write information into buffer S of size MAXSIZE, according to the
1644 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1645 Default to Universal Time if UT, local time otherwise.
1646 Use NS as the number of nanoseconds in the %N directive.
1647 Return the number of bytes written, not including the terminating
1648 '\0'. If S is NULL, nothing will be written anywhere; so to
1649 determine how many bytes would be written, use NULL for S and
1650 ((size_t) -1) for MAXSIZE.
1651
1652 This function behaves like nstrftime, except it allows null
1653 bytes in FORMAT and it does not support nanoseconds. */
1654 static size_t
1655 emacs_nmemftime (char *s, size_t maxsize, const char *format,
1656 size_t format_len, const struct tm *tp, bool ut, int ns)
1657 {
1658 size_t total = 0;
1659
1660 /* Loop through all the null-terminated strings in the format
1661 argument. Normally there's just one null-terminated string, but
1662 there can be arbitrarily many, concatenated together, if the
1663 format contains '\0' bytes. nstrftime stops at the first
1664 '\0' byte so we must invoke it separately for each such string. */
1665 for (;;)
1666 {
1667 size_t len;
1668 size_t result;
1669
1670 if (s)
1671 s[0] = '\1';
1672
1673 result = nstrftime (s, maxsize, format, tp, ut, ns);
1674
1675 if (s)
1676 {
1677 if (result == 0 && s[0] != '\0')
1678 return 0;
1679 s += result + 1;
1680 }
1681
1682 maxsize -= result + 1;
1683 total += result;
1684 len = strlen (format);
1685 if (len == format_len)
1686 return total;
1687 total++;
1688 format += len + 1;
1689 format_len -= len + 1;
1690 }
1691 }
1692
1693 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1694 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1695 TIME is specified as (HIGH LOW USEC PSEC), as returned by
1696 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1697 is also still accepted.
1698 The third, optional, argument UNIVERSAL, if non-nil, means describe TIME
1699 as Universal Time; nil means describe TIME in the local time zone.
1700 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1701 by text that describes the specified date and time in TIME:
1702
1703 %Y is the year, %y within the century, %C the century.
1704 %G is the year corresponding to the ISO week, %g within the century.
1705 %m is the numeric month.
1706 %b and %h are the locale's abbreviated month name, %B the full name.
1707 (%h is not supported on MS-Windows.)
1708 %d is the day of the month, zero-padded, %e is blank-padded.
1709 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1710 %a is the locale's abbreviated name of the day of week, %A the full name.
1711 %U is the week number starting on Sunday, %W starting on Monday,
1712 %V according to ISO 8601.
1713 %j is the day of the year.
1714
1715 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1716 only blank-padded, %l is like %I blank-padded.
1717 %p is the locale's equivalent of either AM or PM.
1718 %M is the minute.
1719 %S is the second.
1720 %N is the nanosecond, %6N the microsecond, %3N the millisecond, etc.
1721 %Z is the time zone name, %z is the numeric form.
1722 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1723
1724 %c is the locale's date and time format.
1725 %x is the locale's "preferred" date format.
1726 %D is like "%m/%d/%y".
1727 %F is the ISO 8601 date format (like "%Y-%m-%d").
1728
1729 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
1730 %X is the locale's "preferred" time format.
1731
1732 Finally, %n is a newline, %t is a tab, %% is a literal %.
1733
1734 Certain flags and modifiers are available with some format controls.
1735 The flags are `_', `-', `^' and `#'. For certain characters X,
1736 %_X is like %X, but padded with blanks; %-X is like %X,
1737 but without padding. %^X is like %X, but with all textual
1738 characters up-cased; %#X is like %X, but with letter-case of
1739 all textual characters reversed.
1740 %NX (where N stands for an integer) is like %X,
1741 but takes up at least N (a number) positions.
1742 The modifiers are `E' and `O'. For certain characters X,
1743 %EX is a locale's alternative version of %X;
1744 %OX is like %X, but uses the locale's number symbols.
1745
1746 For example, to produce full ISO 8601 format, use "%FT%T%z".
1747
1748 usage: (format-time-string FORMAT-STRING &optional TIME UNIVERSAL) */)
1749 (Lisp_Object format_string, Lisp_Object timeval, Lisp_Object universal)
1750 {
1751 struct timespec t = lisp_time_argument (timeval);
1752 struct tm tm;
1753
1754 CHECK_STRING (format_string);
1755 format_string = code_convert_string_norecord (format_string,
1756 Vlocale_coding_system, 1);
1757 return format_time_string (SSDATA (format_string), SBYTES (format_string),
1758 t, ! NILP (universal), &tm);
1759 }
1760
1761 static Lisp_Object
1762 format_time_string (char const *format, ptrdiff_t formatlen,
1763 struct timespec t, bool ut, struct tm *tmp)
1764 {
1765 char buffer[4000];
1766 char *buf = buffer;
1767 ptrdiff_t size = sizeof buffer;
1768 size_t len;
1769 Lisp_Object bufstring;
1770 int ns = t.tv_nsec;
1771 struct tm *tm;
1772 USE_SAFE_ALLOCA;
1773
1774 while (1)
1775 {
1776 time_t *taddr = &t.tv_sec;
1777 block_input ();
1778
1779 synchronize_system_time_locale ();
1780
1781 tm = ut ? gmtime (taddr) : localtime (taddr);
1782 if (! tm)
1783 {
1784 unblock_input ();
1785 time_overflow ();
1786 }
1787 *tmp = *tm;
1788
1789 buf[0] = '\1';
1790 len = emacs_nmemftime (buf, size, format, formatlen, tm, ut, ns);
1791 if ((0 < len && len < size) || (len == 0 && buf[0] == '\0'))
1792 break;
1793
1794 /* Buffer was too small, so make it bigger and try again. */
1795 len = emacs_nmemftime (NULL, SIZE_MAX, format, formatlen, tm, ut, ns);
1796 unblock_input ();
1797 if (STRING_BYTES_BOUND <= len)
1798 string_overflow ();
1799 size = len + 1;
1800 buf = SAFE_ALLOCA (size);
1801 }
1802
1803 unblock_input ();
1804 bufstring = make_unibyte_string (buf, len);
1805 SAFE_FREE ();
1806 return code_convert_string_norecord (bufstring, Vlocale_coding_system, 0);
1807 }
1808
1809 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 1, 0,
1810 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST ZONE).
1811 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
1812 as from `current-time' and `file-attributes', or nil to use the
1813 current time. The obsolete form (HIGH . LOW) is also still accepted.
1814 The list has the following nine members: SEC is an integer between 0
1815 and 60; SEC is 60 for a leap second, which only some operating systems
1816 support. MINUTE is an integer between 0 and 59. HOUR is an integer
1817 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
1818 integer between 1 and 12. YEAR is an integer indicating the
1819 four-digit year. DOW is the day of week, an integer between 0 and 6,
1820 where 0 is Sunday. DST is t if daylight saving time is in effect,
1821 otherwise nil. ZONE is an integer indicating the number of seconds
1822 east of Greenwich. (Note that Common Lisp has different meanings for
1823 DOW and ZONE.) */)
1824 (Lisp_Object specified_time)
1825 {
1826 time_t time_spec = lisp_seconds_argument (specified_time);
1827 struct tm save_tm;
1828 struct tm *decoded_time;
1829 Lisp_Object list_args[9];
1830
1831 block_input ();
1832 decoded_time = localtime (&time_spec);
1833 if (decoded_time)
1834 save_tm = *decoded_time;
1835 unblock_input ();
1836 if (! (decoded_time
1837 && MOST_NEGATIVE_FIXNUM - TM_YEAR_BASE <= save_tm.tm_year
1838 && save_tm.tm_year <= MOST_POSITIVE_FIXNUM - TM_YEAR_BASE))
1839 time_overflow ();
1840 XSETFASTINT (list_args[0], save_tm.tm_sec);
1841 XSETFASTINT (list_args[1], save_tm.tm_min);
1842 XSETFASTINT (list_args[2], save_tm.tm_hour);
1843 XSETFASTINT (list_args[3], save_tm.tm_mday);
1844 XSETFASTINT (list_args[4], save_tm.tm_mon + 1);
1845 /* On 64-bit machines an int is narrower than EMACS_INT, thus the
1846 cast below avoids overflow in int arithmetics. */
1847 XSETINT (list_args[5], TM_YEAR_BASE + (EMACS_INT) save_tm.tm_year);
1848 XSETFASTINT (list_args[6], save_tm.tm_wday);
1849 list_args[7] = save_tm.tm_isdst ? Qt : Qnil;
1850
1851 block_input ();
1852 decoded_time = gmtime (&time_spec);
1853 if (decoded_time == 0)
1854 list_args[8] = Qnil;
1855 else
1856 XSETINT (list_args[8], tm_diff (&save_tm, decoded_time));
1857 unblock_input ();
1858 return Flist (9, list_args);
1859 }
1860
1861 /* Return OBJ - OFFSET, checking that OBJ is a valid fixnum and that
1862 the result is representable as an int. Assume OFFSET is small and
1863 nonnegative. */
1864 static int
1865 check_tm_member (Lisp_Object obj, int offset)
1866 {
1867 EMACS_INT n;
1868 CHECK_NUMBER (obj);
1869 n = XINT (obj);
1870 if (! (INT_MIN + offset <= n && n - offset <= INT_MAX))
1871 time_overflow ();
1872 return n - offset;
1873 }
1874
1875 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
1876 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
1877 This is the reverse operation of `decode-time', which see.
1878 ZONE defaults to the current time zone rule. This can
1879 be a string or t (as from `set-time-zone-rule'), or it can be a list
1880 \(as from `current-time-zone') or an integer (as from `decode-time')
1881 applied without consideration for daylight saving time.
1882
1883 You can pass more than 7 arguments; then the first six arguments
1884 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
1885 The intervening arguments are ignored.
1886 This feature lets (apply 'encode-time (decode-time ...)) work.
1887
1888 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
1889 for example, a DAY of 0 means the day preceding the given month.
1890 Year numbers less than 100 are treated just like other year numbers.
1891 If you want them to stand for years in this century, you must do that yourself.
1892
1893 Years before 1970 are not guaranteed to work. On some systems,
1894 year values as low as 1901 do work.
1895
1896 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
1897 (ptrdiff_t nargs, Lisp_Object *args)
1898 {
1899 time_t value;
1900 struct tm tm;
1901 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
1902
1903 tm.tm_sec = check_tm_member (args[0], 0);
1904 tm.tm_min = check_tm_member (args[1], 0);
1905 tm.tm_hour = check_tm_member (args[2], 0);
1906 tm.tm_mday = check_tm_member (args[3], 0);
1907 tm.tm_mon = check_tm_member (args[4], 1);
1908 tm.tm_year = check_tm_member (args[5], TM_YEAR_BASE);
1909 tm.tm_isdst = -1;
1910
1911 if (CONSP (zone))
1912 zone = XCAR (zone);
1913 if (NILP (zone))
1914 {
1915 block_input ();
1916 value = mktime (&tm);
1917 unblock_input ();
1918 }
1919 else
1920 {
1921 static char const tzbuf_format[] = "XXX%s%"pI"d:%02d:%02d";
1922 char tzbuf[sizeof tzbuf_format + INT_STRLEN_BOUND (EMACS_INT)];
1923 char *old_tzstring;
1924 const char *tzstring;
1925 USE_SAFE_ALLOCA;
1926
1927 if (EQ (zone, Qt))
1928 tzstring = "UTC0";
1929 else if (STRINGP (zone))
1930 tzstring = SSDATA (zone);
1931 else if (INTEGERP (zone))
1932 {
1933 EMACS_INT abszone = eabs (XINT (zone));
1934 EMACS_INT zone_hr = abszone / (60*60);
1935 int zone_min = (abszone/60) % 60;
1936 int zone_sec = abszone % 60;
1937 sprintf (tzbuf, tzbuf_format, &"-"[XINT (zone) < 0],
1938 zone_hr, zone_min, zone_sec);
1939 tzstring = tzbuf;
1940 }
1941 else
1942 error ("Invalid time zone specification");
1943
1944 old_tzstring = getenv ("TZ");
1945 if (old_tzstring)
1946 {
1947 char *buf = SAFE_ALLOCA (strlen (old_tzstring) + 1);
1948 old_tzstring = strcpy (buf, old_tzstring);
1949 }
1950
1951 block_input ();
1952
1953 /* Set TZ before calling mktime; merely adjusting mktime's returned
1954 value doesn't suffice, since that would mishandle leap seconds. */
1955 set_time_zone_rule (tzstring);
1956
1957 value = mktime (&tm);
1958
1959 set_time_zone_rule (old_tzstring);
1960 #ifdef LOCALTIME_CACHE
1961 tzset ();
1962 #endif
1963 unblock_input ();
1964 SAFE_FREE ();
1965 }
1966
1967 if (value == (time_t) -1)
1968 time_overflow ();
1969
1970 return make_time (value);
1971 }
1972
1973 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, 0, 1, 0,
1974 doc: /* Return the current local time, as a human-readable string.
1975 Programs can use this function to decode a time,
1976 since the number of columns in each field is fixed
1977 if the year is in the range 1000-9999.
1978 The format is `Sun Sep 16 01:03:52 1973'.
1979 However, see also the functions `decode-time' and `format-time-string'
1980 which provide a much more powerful and general facility.
1981
1982 If SPECIFIED-TIME is given, it is a time to format instead of the
1983 current time. The argument should have the form (HIGH LOW . IGNORED).
1984 Thus, you can use times obtained from `current-time' and from
1985 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
1986 but this is considered obsolete. */)
1987 (Lisp_Object specified_time)
1988 {
1989 time_t value = lisp_seconds_argument (specified_time);
1990 struct tm *tm;
1991 char buf[sizeof "Mon Apr 30 12:49:17 " + INT_STRLEN_BOUND (int) + 1];
1992 int len IF_LINT (= 0);
1993
1994 /* Convert to a string in ctime format, except without the trailing
1995 newline, and without the 4-digit year limit. Don't use asctime
1996 or ctime, as they might dump core if the year is outside the
1997 range -999 .. 9999. */
1998 block_input ();
1999 tm = localtime (&value);
2000 if (tm)
2001 {
2002 static char const wday_name[][4] =
2003 { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
2004 static char const mon_name[][4] =
2005 { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
2006 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
2007 printmax_t year_base = TM_YEAR_BASE;
2008
2009 len = sprintf (buf, "%s %s%3d %02d:%02d:%02d %"pMd,
2010 wday_name[tm->tm_wday], mon_name[tm->tm_mon], tm->tm_mday,
2011 tm->tm_hour, tm->tm_min, tm->tm_sec,
2012 tm->tm_year + year_base);
2013 }
2014 unblock_input ();
2015 if (! tm)
2016 time_overflow ();
2017
2018 return make_unibyte_string (buf, len);
2019 }
2020
2021 /* Yield A - B, measured in seconds.
2022 This function is copied from the GNU C Library. */
2023 static int
2024 tm_diff (struct tm *a, struct tm *b)
2025 {
2026 /* Compute intervening leap days correctly even if year is negative.
2027 Take care to avoid int overflow in leap day calculations,
2028 but it's OK to assume that A and B are close to each other. */
2029 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
2030 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
2031 int a100 = a4 / 25 - (a4 % 25 < 0);
2032 int b100 = b4 / 25 - (b4 % 25 < 0);
2033 int a400 = a100 >> 2;
2034 int b400 = b100 >> 2;
2035 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
2036 int years = a->tm_year - b->tm_year;
2037 int days = (365 * years + intervening_leap_days
2038 + (a->tm_yday - b->tm_yday));
2039 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
2040 + (a->tm_min - b->tm_min))
2041 + (a->tm_sec - b->tm_sec));
2042 }
2043
2044 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 1, 0,
2045 doc: /* Return the offset and name for the local time zone.
2046 This returns a list of the form (OFFSET NAME).
2047 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
2048 A negative value means west of Greenwich.
2049 NAME is a string giving the name of the time zone.
2050 If SPECIFIED-TIME is given, the time zone offset is determined from it
2051 instead of using the current time. The argument should have the form
2052 (HIGH LOW . IGNORED). Thus, you can use times obtained from
2053 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
2054 have the form (HIGH . LOW), but this is considered obsolete.
2055
2056 Some operating systems cannot provide all this information to Emacs;
2057 in this case, `current-time-zone' returns a list containing nil for
2058 the data it can't find. */)
2059 (Lisp_Object specified_time)
2060 {
2061 struct timespec value;
2062 int offset;
2063 struct tm *t;
2064 struct tm localtm;
2065 Lisp_Object zone_offset, zone_name;
2066
2067 zone_offset = Qnil;
2068 value = make_timespec (lisp_seconds_argument (specified_time), 0);
2069 zone_name = format_time_string ("%Z", sizeof "%Z" - 1, value, 0, &localtm);
2070 block_input ();
2071 t = gmtime (&value.tv_sec);
2072 if (t)
2073 offset = tm_diff (&localtm, t);
2074 unblock_input ();
2075
2076 if (t)
2077 {
2078 zone_offset = make_number (offset);
2079 if (SCHARS (zone_name) == 0)
2080 {
2081 /* No local time zone name is available; use "+-NNNN" instead. */
2082 int m = offset / 60;
2083 int am = offset < 0 ? - m : m;
2084 char buf[sizeof "+00" + INT_STRLEN_BOUND (int)];
2085 zone_name = make_formatted_string (buf, "%c%02d%02d",
2086 (offset < 0 ? '-' : '+'),
2087 am / 60, am % 60);
2088 }
2089 }
2090
2091 return list2 (zone_offset, zone_name);
2092 }
2093
2094 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
2095 doc: /* Set the local time zone using TZ, a string specifying a time zone rule.
2096 If TZ is nil, use implementation-defined default time zone information.
2097 If TZ is t, use Universal Time.
2098
2099 Instead of calling this function, you typically want (setenv "TZ" TZ).
2100 That changes both the environment of the Emacs process and the
2101 variable `process-environment', whereas `set-time-zone-rule' affects
2102 only the former. */)
2103 (Lisp_Object tz)
2104 {
2105 const char *tzstring;
2106
2107 if (! (NILP (tz) || EQ (tz, Qt)))
2108 CHECK_STRING (tz);
2109
2110 if (NILP (tz))
2111 tzstring = initial_tz;
2112 else if (EQ (tz, Qt))
2113 tzstring = "UTC0";
2114 else
2115 tzstring = SSDATA (tz);
2116
2117 block_input ();
2118 set_time_zone_rule (tzstring);
2119 unblock_input ();
2120
2121 return Qnil;
2122 }
2123
2124 /* Set the local time zone rule to TZSTRING.
2125
2126 This function is not thread-safe, partly because putenv, unsetenv
2127 and tzset are not, and partly because of the static storage it
2128 updates. Other threads that invoke localtime etc. may be adversely
2129 affected while this function is executing. */
2130
2131 void
2132 set_time_zone_rule (const char *tzstring)
2133 {
2134 /* A buffer holding a string of the form "TZ=value", intended
2135 to be part of the environment. */
2136 static char *tzvalbuf;
2137 static ptrdiff_t tzvalbufsize;
2138
2139 int tzeqlen = sizeof "TZ=" - 1;
2140
2141 #ifdef LOCALTIME_CACHE
2142 /* These two values are known to load tz files in buggy implementations,
2143 i.e., Solaris 1 executables running under either Solaris 1 or Solaris 2.
2144 Their values shouldn't matter in non-buggy implementations.
2145 We don't use string literals for these strings,
2146 since if a string in the environment is in readonly
2147 storage, it runs afoul of bugs in SVR4 and Solaris 2.3.
2148 See Sun bugs 1113095 and 1114114, ``Timezone routines
2149 improperly modify environment''. */
2150
2151 static char set_time_zone_rule_tz[][sizeof "TZ=GMT+0"]
2152 = { "TZ=GMT+0", "TZ=GMT+1" };
2153
2154 /* In SunOS 4.1.3_U1 and 4.1.4, if TZ has a value like
2155 "US/Pacific" that loads a tz file, then changes to a value like
2156 "XXX0" that does not load a tz file, and then changes back to
2157 its original value, the last change is (incorrectly) ignored.
2158 Also, if TZ changes twice in succession to values that do
2159 not load a tz file, tzset can dump core (see Sun bug#1225179).
2160 The following code works around these bugs. */
2161
2162 if (tzstring)
2163 {
2164 /* Temporarily set TZ to a value that loads a tz file
2165 and that differs from tzstring. */
2166 bool eq0 = strcmp (tzstring, set_time_zone_rule_tz[0] + tzeqlen) == 0;
2167 xputenv (set_time_zone_rule_tz[eq0]);
2168 }
2169 else
2170 {
2171 /* The implied tzstring is unknown, so temporarily set TZ to
2172 two different values that each load a tz file. */
2173 xputenv (set_time_zone_rule_tz[0]);
2174 tzset ();
2175 xputenv (set_time_zone_rule_tz[1]);
2176 }
2177 tzset ();
2178 tzvalbuf_in_environ = 0;
2179 #endif
2180
2181 if (!tzstring)
2182 {
2183 unsetenv ("TZ");
2184 tzvalbuf_in_environ = 0;
2185 }
2186 else
2187 {
2188 ptrdiff_t tzstringlen = strlen (tzstring);
2189
2190 if (tzvalbufsize <= tzeqlen + tzstringlen)
2191 {
2192 unsetenv ("TZ");
2193 tzvalbuf_in_environ = 0;
2194 tzvalbuf = xpalloc (tzvalbuf, &tzvalbufsize,
2195 tzeqlen + tzstringlen - tzvalbufsize + 1, -1, 1);
2196 memcpy (tzvalbuf, "TZ=", tzeqlen);
2197 }
2198
2199 strcpy (tzvalbuf + tzeqlen, tzstring);
2200
2201 if (!tzvalbuf_in_environ)
2202 {
2203 xputenv (tzvalbuf);
2204 tzvalbuf_in_environ = 1;
2205 }
2206 }
2207
2208 #ifdef LOCALTIME_CACHE
2209 tzset ();
2210 #endif
2211 }
2212 \f
2213 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2214 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2215 type of object is Lisp_String). INHERIT is passed to
2216 INSERT_FROM_STRING_FUNC as the last argument. */
2217
2218 static void
2219 general_insert_function (void (*insert_func)
2220 (const char *, ptrdiff_t),
2221 void (*insert_from_string_func)
2222 (Lisp_Object, ptrdiff_t, ptrdiff_t,
2223 ptrdiff_t, ptrdiff_t, bool),
2224 bool inherit, ptrdiff_t nargs, Lisp_Object *args)
2225 {
2226 ptrdiff_t argnum;
2227 Lisp_Object val;
2228
2229 for (argnum = 0; argnum < nargs; argnum++)
2230 {
2231 val = args[argnum];
2232 if (CHARACTERP (val))
2233 {
2234 int c = XFASTINT (val);
2235 unsigned char str[MAX_MULTIBYTE_LENGTH];
2236 int len;
2237
2238 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2239 len = CHAR_STRING (c, str);
2240 else
2241 {
2242 str[0] = CHAR_TO_BYTE8 (c);
2243 len = 1;
2244 }
2245 (*insert_func) ((char *) str, len);
2246 }
2247 else if (STRINGP (val))
2248 {
2249 (*insert_from_string_func) (val, 0, 0,
2250 SCHARS (val),
2251 SBYTES (val),
2252 inherit);
2253 }
2254 else
2255 wrong_type_argument (Qchar_or_string_p, val);
2256 }
2257 }
2258
2259 void
2260 insert1 (Lisp_Object arg)
2261 {
2262 Finsert (1, &arg);
2263 }
2264
2265
2266 /* Callers passing one argument to Finsert need not gcpro the
2267 argument "array", since the only element of the array will
2268 not be used after calling insert or insert_from_string, so
2269 we don't care if it gets trashed. */
2270
2271 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2272 doc: /* Insert the arguments, either strings or characters, at point.
2273 Point and before-insertion markers move forward to end up
2274 after the inserted text.
2275 Any other markers at the point of insertion remain before the text.
2276
2277 If the current buffer is multibyte, unibyte strings are converted
2278 to multibyte for insertion (see `string-make-multibyte').
2279 If the current buffer is unibyte, multibyte strings are converted
2280 to unibyte for insertion (see `string-make-unibyte').
2281
2282 When operating on binary data, it may be necessary to preserve the
2283 original bytes of a unibyte string when inserting it into a multibyte
2284 buffer; to accomplish this, apply `string-as-multibyte' to the string
2285 and insert the result.
2286
2287 usage: (insert &rest ARGS) */)
2288 (ptrdiff_t nargs, Lisp_Object *args)
2289 {
2290 general_insert_function (insert, insert_from_string, 0, nargs, args);
2291 return Qnil;
2292 }
2293
2294 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2295 0, MANY, 0,
2296 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2297 Point and before-insertion markers move forward to end up
2298 after the inserted text.
2299 Any other markers at the point of insertion remain before the text.
2300
2301 If the current buffer is multibyte, unibyte strings are converted
2302 to multibyte for insertion (see `unibyte-char-to-multibyte').
2303 If the current buffer is unibyte, multibyte strings are converted
2304 to unibyte for insertion.
2305
2306 usage: (insert-and-inherit &rest ARGS) */)
2307 (ptrdiff_t nargs, Lisp_Object *args)
2308 {
2309 general_insert_function (insert_and_inherit, insert_from_string, 1,
2310 nargs, args);
2311 return Qnil;
2312 }
2313
2314 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2315 doc: /* Insert strings or characters at point, relocating markers after the text.
2316 Point and markers move forward to end up after the inserted text.
2317
2318 If the current buffer is multibyte, unibyte strings are converted
2319 to multibyte for insertion (see `unibyte-char-to-multibyte').
2320 If the current buffer is unibyte, multibyte strings are converted
2321 to unibyte for insertion.
2322
2323 If an overlay begins at the insertion point, the inserted text falls
2324 outside the overlay; if a nonempty overlay ends at the insertion
2325 point, the inserted text falls inside that overlay.
2326
2327 usage: (insert-before-markers &rest ARGS) */)
2328 (ptrdiff_t nargs, Lisp_Object *args)
2329 {
2330 general_insert_function (insert_before_markers,
2331 insert_from_string_before_markers, 0,
2332 nargs, args);
2333 return Qnil;
2334 }
2335
2336 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2337 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2338 doc: /* Insert text at point, relocating markers and inheriting properties.
2339 Point and markers move forward to end up after the inserted text.
2340
2341 If the current buffer is multibyte, unibyte strings are converted
2342 to multibyte for insertion (see `unibyte-char-to-multibyte').
2343 If the current buffer is unibyte, multibyte strings are converted
2344 to unibyte for insertion.
2345
2346 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2347 (ptrdiff_t nargs, Lisp_Object *args)
2348 {
2349 general_insert_function (insert_before_markers_and_inherit,
2350 insert_from_string_before_markers, 1,
2351 nargs, args);
2352 return Qnil;
2353 }
2354 \f
2355 DEFUN ("insert-char", Finsert_char, Sinsert_char, 1, 3,
2356 "(list (read-char-by-name \"Insert character (Unicode name or hex): \")\
2357 (prefix-numeric-value current-prefix-arg)\
2358 t))",
2359 doc: /* Insert COUNT copies of CHARACTER.
2360 Interactively, prompt for CHARACTER. You can specify CHARACTER in one
2361 of these ways:
2362
2363 - As its Unicode character name, e.g. \"LATIN SMALL LETTER A\".
2364 Completion is available; if you type a substring of the name
2365 preceded by an asterisk `*', Emacs shows all names which include
2366 that substring, not necessarily at the beginning of the name.
2367
2368 - As a hexadecimal code point, e.g. 263A. Note that code points in
2369 Emacs are equivalent to Unicode up to 10FFFF (which is the limit of
2370 the Unicode code space).
2371
2372 - As a code point with a radix specified with #, e.g. #o21430
2373 (octal), #x2318 (hex), or #10r8984 (decimal).
2374
2375 If called interactively, COUNT is given by the prefix argument. If
2376 omitted or nil, it defaults to 1.
2377
2378 Inserting the character(s) relocates point and before-insertion
2379 markers in the same ways as the function `insert'.
2380
2381 The optional third argument INHERIT, if non-nil, says to inherit text
2382 properties from adjoining text, if those properties are sticky. If
2383 called interactively, INHERIT is t. */)
2384 (Lisp_Object character, Lisp_Object count, Lisp_Object inherit)
2385 {
2386 int i, stringlen;
2387 register ptrdiff_t n;
2388 int c, len;
2389 unsigned char str[MAX_MULTIBYTE_LENGTH];
2390 char string[4000];
2391
2392 CHECK_CHARACTER (character);
2393 if (NILP (count))
2394 XSETFASTINT (count, 1);
2395 CHECK_NUMBER (count);
2396 c = XFASTINT (character);
2397
2398 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2399 len = CHAR_STRING (c, str);
2400 else
2401 str[0] = c, len = 1;
2402 if (XINT (count) <= 0)
2403 return Qnil;
2404 if (BUF_BYTES_MAX / len < XINT (count))
2405 buffer_overflow ();
2406 n = XINT (count) * len;
2407 stringlen = min (n, sizeof string - sizeof string % len);
2408 for (i = 0; i < stringlen; i++)
2409 string[i] = str[i % len];
2410 while (n > stringlen)
2411 {
2412 QUIT;
2413 if (!NILP (inherit))
2414 insert_and_inherit (string, stringlen);
2415 else
2416 insert (string, stringlen);
2417 n -= stringlen;
2418 }
2419 if (!NILP (inherit))
2420 insert_and_inherit (string, n);
2421 else
2422 insert (string, n);
2423 return Qnil;
2424 }
2425
2426 DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0,
2427 doc: /* Insert COUNT (second arg) copies of BYTE (first arg).
2428 Both arguments are required.
2429 BYTE is a number of the range 0..255.
2430
2431 If BYTE is 128..255 and the current buffer is multibyte, the
2432 corresponding eight-bit character is inserted.
2433
2434 Point, and before-insertion markers, are relocated as in the function `insert'.
2435 The optional third arg INHERIT, if non-nil, says to inherit text properties
2436 from adjoining text, if those properties are sticky. */)
2437 (Lisp_Object byte, Lisp_Object count, Lisp_Object inherit)
2438 {
2439 CHECK_NUMBER (byte);
2440 if (XINT (byte) < 0 || XINT (byte) > 255)
2441 args_out_of_range_3 (byte, make_number (0), make_number (255));
2442 if (XINT (byte) >= 128
2443 && ! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2444 XSETFASTINT (byte, BYTE8_TO_CHAR (XINT (byte)));
2445 return Finsert_char (byte, count, inherit);
2446 }
2447
2448 \f
2449 /* Making strings from buffer contents. */
2450
2451 /* Return a Lisp_String containing the text of the current buffer from
2452 START to END. If text properties are in use and the current buffer
2453 has properties in the range specified, the resulting string will also
2454 have them, if PROPS is true.
2455
2456 We don't want to use plain old make_string here, because it calls
2457 make_uninit_string, which can cause the buffer arena to be
2458 compacted. make_string has no way of knowing that the data has
2459 been moved, and thus copies the wrong data into the string. This
2460 doesn't effect most of the other users of make_string, so it should
2461 be left as is. But we should use this function when conjuring
2462 buffer substrings. */
2463
2464 Lisp_Object
2465 make_buffer_string (ptrdiff_t start, ptrdiff_t end, bool props)
2466 {
2467 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
2468 ptrdiff_t end_byte = CHAR_TO_BYTE (end);
2469
2470 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2471 }
2472
2473 /* Return a Lisp_String containing the text of the current buffer from
2474 START / START_BYTE to END / END_BYTE.
2475
2476 If text properties are in use and the current buffer
2477 has properties in the range specified, the resulting string will also
2478 have them, if PROPS is true.
2479
2480 We don't want to use plain old make_string here, because it calls
2481 make_uninit_string, which can cause the buffer arena to be
2482 compacted. make_string has no way of knowing that the data has
2483 been moved, and thus copies the wrong data into the string. This
2484 doesn't effect most of the other users of make_string, so it should
2485 be left as is. But we should use this function when conjuring
2486 buffer substrings. */
2487
2488 Lisp_Object
2489 make_buffer_string_both (ptrdiff_t start, ptrdiff_t start_byte,
2490 ptrdiff_t end, ptrdiff_t end_byte, bool props)
2491 {
2492 Lisp_Object result, tem, tem1;
2493
2494 if (start < GPT && GPT < end)
2495 move_gap_both (start, start_byte);
2496
2497 if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2498 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2499 else
2500 result = make_uninit_string (end - start);
2501 memcpy (SDATA (result), BYTE_POS_ADDR (start_byte), end_byte - start_byte);
2502
2503 /* If desired, update and copy the text properties. */
2504 if (props)
2505 {
2506 update_buffer_properties (start, end);
2507
2508 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2509 tem1 = Ftext_properties_at (make_number (start), Qnil);
2510
2511 if (XINT (tem) != end || !NILP (tem1))
2512 copy_intervals_to_string (result, current_buffer, start,
2513 end - start);
2514 }
2515
2516 return result;
2517 }
2518
2519 /* Call Vbuffer_access_fontify_functions for the range START ... END
2520 in the current buffer, if necessary. */
2521
2522 static void
2523 update_buffer_properties (ptrdiff_t start, ptrdiff_t end)
2524 {
2525 /* If this buffer has some access functions,
2526 call them, specifying the range of the buffer being accessed. */
2527 if (!NILP (Vbuffer_access_fontify_functions))
2528 {
2529 Lisp_Object args[3];
2530 Lisp_Object tem;
2531
2532 args[0] = Qbuffer_access_fontify_functions;
2533 XSETINT (args[1], start);
2534 XSETINT (args[2], end);
2535
2536 /* But don't call them if we can tell that the work
2537 has already been done. */
2538 if (!NILP (Vbuffer_access_fontified_property))
2539 {
2540 tem = Ftext_property_any (args[1], args[2],
2541 Vbuffer_access_fontified_property,
2542 Qnil, Qnil);
2543 if (! NILP (tem))
2544 Frun_hook_with_args (3, args);
2545 }
2546 else
2547 Frun_hook_with_args (3, args);
2548 }
2549 }
2550
2551 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2552 doc: /* Return the contents of part of the current buffer as a string.
2553 The two arguments START and END are character positions;
2554 they can be in either order.
2555 The string returned is multibyte if the buffer is multibyte.
2556
2557 This function copies the text properties of that part of the buffer
2558 into the result string; if you don't want the text properties,
2559 use `buffer-substring-no-properties' instead. */)
2560 (Lisp_Object start, Lisp_Object end)
2561 {
2562 register ptrdiff_t b, e;
2563
2564 validate_region (&start, &end);
2565 b = XINT (start);
2566 e = XINT (end);
2567
2568 return make_buffer_string (b, e, 1);
2569 }
2570
2571 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2572 Sbuffer_substring_no_properties, 2, 2, 0,
2573 doc: /* Return the characters of part of the buffer, without the text properties.
2574 The two arguments START and END are character positions;
2575 they can be in either order. */)
2576 (Lisp_Object start, Lisp_Object end)
2577 {
2578 register ptrdiff_t b, e;
2579
2580 validate_region (&start, &end);
2581 b = XINT (start);
2582 e = XINT (end);
2583
2584 return make_buffer_string (b, e, 0);
2585 }
2586
2587 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2588 doc: /* Return the contents of the current buffer as a string.
2589 If narrowing is in effect, this function returns only the visible part
2590 of the buffer. */)
2591 (void)
2592 {
2593 return make_buffer_string_both (BEGV, BEGV_BYTE, ZV, ZV_BYTE, 1);
2594 }
2595
2596 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2597 1, 3, 0,
2598 doc: /* Insert before point a substring of the contents of BUFFER.
2599 BUFFER may be a buffer or a buffer name.
2600 Arguments START and END are character positions specifying the substring.
2601 They default to the values of (point-min) and (point-max) in BUFFER. */)
2602 (Lisp_Object buffer, Lisp_Object start, Lisp_Object end)
2603 {
2604 register EMACS_INT b, e, temp;
2605 register struct buffer *bp, *obuf;
2606 Lisp_Object buf;
2607
2608 buf = Fget_buffer (buffer);
2609 if (NILP (buf))
2610 nsberror (buffer);
2611 bp = XBUFFER (buf);
2612 if (!BUFFER_LIVE_P (bp))
2613 error ("Selecting deleted buffer");
2614
2615 if (NILP (start))
2616 b = BUF_BEGV (bp);
2617 else
2618 {
2619 CHECK_NUMBER_COERCE_MARKER (start);
2620 b = XINT (start);
2621 }
2622 if (NILP (end))
2623 e = BUF_ZV (bp);
2624 else
2625 {
2626 CHECK_NUMBER_COERCE_MARKER (end);
2627 e = XINT (end);
2628 }
2629
2630 if (b > e)
2631 temp = b, b = e, e = temp;
2632
2633 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2634 args_out_of_range (start, end);
2635
2636 obuf = current_buffer;
2637 set_buffer_internal_1 (bp);
2638 update_buffer_properties (b, e);
2639 set_buffer_internal_1 (obuf);
2640
2641 insert_from_buffer (bp, b, e - b, 0);
2642 return Qnil;
2643 }
2644
2645 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2646 6, 6, 0,
2647 doc: /* Compare two substrings of two buffers; return result as number.
2648 Return -N if first string is less after N-1 chars, +N if first string is
2649 greater after N-1 chars, or 0 if strings match. Each substring is
2650 represented as three arguments: BUFFER, START and END. That makes six
2651 args in all, three for each substring.
2652
2653 The value of `case-fold-search' in the current buffer
2654 determines whether case is significant or ignored. */)
2655 (Lisp_Object buffer1, Lisp_Object start1, Lisp_Object end1, Lisp_Object buffer2, Lisp_Object start2, Lisp_Object end2)
2656 {
2657 register EMACS_INT begp1, endp1, begp2, endp2, temp;
2658 register struct buffer *bp1, *bp2;
2659 register Lisp_Object trt
2660 = (!NILP (BVAR (current_buffer, case_fold_search))
2661 ? BVAR (current_buffer, case_canon_table) : Qnil);
2662 ptrdiff_t chars = 0;
2663 ptrdiff_t i1, i2, i1_byte, i2_byte;
2664
2665 /* Find the first buffer and its substring. */
2666
2667 if (NILP (buffer1))
2668 bp1 = current_buffer;
2669 else
2670 {
2671 Lisp_Object buf1;
2672 buf1 = Fget_buffer (buffer1);
2673 if (NILP (buf1))
2674 nsberror (buffer1);
2675 bp1 = XBUFFER (buf1);
2676 if (!BUFFER_LIVE_P (bp1))
2677 error ("Selecting deleted buffer");
2678 }
2679
2680 if (NILP (start1))
2681 begp1 = BUF_BEGV (bp1);
2682 else
2683 {
2684 CHECK_NUMBER_COERCE_MARKER (start1);
2685 begp1 = XINT (start1);
2686 }
2687 if (NILP (end1))
2688 endp1 = BUF_ZV (bp1);
2689 else
2690 {
2691 CHECK_NUMBER_COERCE_MARKER (end1);
2692 endp1 = XINT (end1);
2693 }
2694
2695 if (begp1 > endp1)
2696 temp = begp1, begp1 = endp1, endp1 = temp;
2697
2698 if (!(BUF_BEGV (bp1) <= begp1
2699 && begp1 <= endp1
2700 && endp1 <= BUF_ZV (bp1)))
2701 args_out_of_range (start1, end1);
2702
2703 /* Likewise for second substring. */
2704
2705 if (NILP (buffer2))
2706 bp2 = current_buffer;
2707 else
2708 {
2709 Lisp_Object buf2;
2710 buf2 = Fget_buffer (buffer2);
2711 if (NILP (buf2))
2712 nsberror (buffer2);
2713 bp2 = XBUFFER (buf2);
2714 if (!BUFFER_LIVE_P (bp2))
2715 error ("Selecting deleted buffer");
2716 }
2717
2718 if (NILP (start2))
2719 begp2 = BUF_BEGV (bp2);
2720 else
2721 {
2722 CHECK_NUMBER_COERCE_MARKER (start2);
2723 begp2 = XINT (start2);
2724 }
2725 if (NILP (end2))
2726 endp2 = BUF_ZV (bp2);
2727 else
2728 {
2729 CHECK_NUMBER_COERCE_MARKER (end2);
2730 endp2 = XINT (end2);
2731 }
2732
2733 if (begp2 > endp2)
2734 temp = begp2, begp2 = endp2, endp2 = temp;
2735
2736 if (!(BUF_BEGV (bp2) <= begp2
2737 && begp2 <= endp2
2738 && endp2 <= BUF_ZV (bp2)))
2739 args_out_of_range (start2, end2);
2740
2741 i1 = begp1;
2742 i2 = begp2;
2743 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2744 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2745
2746 while (i1 < endp1 && i2 < endp2)
2747 {
2748 /* When we find a mismatch, we must compare the
2749 characters, not just the bytes. */
2750 int c1, c2;
2751
2752 QUIT;
2753
2754 if (! NILP (BVAR (bp1, enable_multibyte_characters)))
2755 {
2756 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2757 BUF_INC_POS (bp1, i1_byte);
2758 i1++;
2759 }
2760 else
2761 {
2762 c1 = BUF_FETCH_BYTE (bp1, i1);
2763 MAKE_CHAR_MULTIBYTE (c1);
2764 i1++;
2765 }
2766
2767 if (! NILP (BVAR (bp2, enable_multibyte_characters)))
2768 {
2769 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
2770 BUF_INC_POS (bp2, i2_byte);
2771 i2++;
2772 }
2773 else
2774 {
2775 c2 = BUF_FETCH_BYTE (bp2, i2);
2776 MAKE_CHAR_MULTIBYTE (c2);
2777 i2++;
2778 }
2779
2780 if (!NILP (trt))
2781 {
2782 c1 = char_table_translate (trt, c1);
2783 c2 = char_table_translate (trt, c2);
2784 }
2785 if (c1 < c2)
2786 return make_number (- 1 - chars);
2787 if (c1 > c2)
2788 return make_number (chars + 1);
2789
2790 chars++;
2791 }
2792
2793 /* The strings match as far as they go.
2794 If one is shorter, that one is less. */
2795 if (chars < endp1 - begp1)
2796 return make_number (chars + 1);
2797 else if (chars < endp2 - begp2)
2798 return make_number (- chars - 1);
2799
2800 /* Same length too => they are equal. */
2801 return make_number (0);
2802 }
2803 \f
2804 static void
2805 subst_char_in_region_unwind (Lisp_Object arg)
2806 {
2807 bset_undo_list (current_buffer, arg);
2808 }
2809
2810 static void
2811 subst_char_in_region_unwind_1 (Lisp_Object arg)
2812 {
2813 bset_filename (current_buffer, arg);
2814 }
2815
2816 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
2817 Ssubst_char_in_region, 4, 5, 0,
2818 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
2819 If optional arg NOUNDO is non-nil, don't record this change for undo
2820 and don't mark the buffer as really changed.
2821 Both characters must have the same length of multi-byte form. */)
2822 (Lisp_Object start, Lisp_Object end, Lisp_Object fromchar, Lisp_Object tochar, Lisp_Object noundo)
2823 {
2824 register ptrdiff_t pos, pos_byte, stop, i, len, end_byte;
2825 /* Keep track of the first change in the buffer:
2826 if 0 we haven't found it yet.
2827 if < 0 we've found it and we've run the before-change-function.
2828 if > 0 we've actually performed it and the value is its position. */
2829 ptrdiff_t changed = 0;
2830 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
2831 unsigned char *p;
2832 ptrdiff_t count = SPECPDL_INDEX ();
2833 #define COMBINING_NO 0
2834 #define COMBINING_BEFORE 1
2835 #define COMBINING_AFTER 2
2836 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
2837 int maybe_byte_combining = COMBINING_NO;
2838 ptrdiff_t last_changed = 0;
2839 bool multibyte_p
2840 = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2841 int fromc, toc;
2842
2843 restart:
2844
2845 validate_region (&start, &end);
2846 CHECK_CHARACTER (fromchar);
2847 CHECK_CHARACTER (tochar);
2848 fromc = XFASTINT (fromchar);
2849 toc = XFASTINT (tochar);
2850
2851 if (multibyte_p)
2852 {
2853 len = CHAR_STRING (fromc, fromstr);
2854 if (CHAR_STRING (toc, tostr) != len)
2855 error ("Characters in `subst-char-in-region' have different byte-lengths");
2856 if (!ASCII_CHAR_P (*tostr))
2857 {
2858 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
2859 complete multibyte character, it may be combined with the
2860 after bytes. If it is in the range 0xA0..0xFF, it may be
2861 combined with the before and after bytes. */
2862 if (!CHAR_HEAD_P (*tostr))
2863 maybe_byte_combining = COMBINING_BOTH;
2864 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
2865 maybe_byte_combining = COMBINING_AFTER;
2866 }
2867 }
2868 else
2869 {
2870 len = 1;
2871 fromstr[0] = fromc;
2872 tostr[0] = toc;
2873 }
2874
2875 pos = XINT (start);
2876 pos_byte = CHAR_TO_BYTE (pos);
2877 stop = CHAR_TO_BYTE (XINT (end));
2878 end_byte = stop;
2879
2880 /* If we don't want undo, turn off putting stuff on the list.
2881 That's faster than getting rid of things,
2882 and it prevents even the entry for a first change.
2883 Also inhibit locking the file. */
2884 if (!changed && !NILP (noundo))
2885 {
2886 record_unwind_protect (subst_char_in_region_unwind,
2887 BVAR (current_buffer, undo_list));
2888 bset_undo_list (current_buffer, Qt);
2889 /* Don't do file-locking. */
2890 record_unwind_protect (subst_char_in_region_unwind_1,
2891 BVAR (current_buffer, filename));
2892 bset_filename (current_buffer, Qnil);
2893 }
2894
2895 if (pos_byte < GPT_BYTE)
2896 stop = min (stop, GPT_BYTE);
2897 while (1)
2898 {
2899 ptrdiff_t pos_byte_next = pos_byte;
2900
2901 if (pos_byte >= stop)
2902 {
2903 if (pos_byte >= end_byte) break;
2904 stop = end_byte;
2905 }
2906 p = BYTE_POS_ADDR (pos_byte);
2907 if (multibyte_p)
2908 INC_POS (pos_byte_next);
2909 else
2910 ++pos_byte_next;
2911 if (pos_byte_next - pos_byte == len
2912 && p[0] == fromstr[0]
2913 && (len == 1
2914 || (p[1] == fromstr[1]
2915 && (len == 2 || (p[2] == fromstr[2]
2916 && (len == 3 || p[3] == fromstr[3]))))))
2917 {
2918 if (changed < 0)
2919 /* We've already seen this and run the before-change-function;
2920 this time we only need to record the actual position. */
2921 changed = pos;
2922 else if (!changed)
2923 {
2924 changed = -1;
2925 modify_text (pos, XINT (end));
2926
2927 if (! NILP (noundo))
2928 {
2929 if (MODIFF - 1 == SAVE_MODIFF)
2930 SAVE_MODIFF++;
2931 if (MODIFF - 1 == BUF_AUTOSAVE_MODIFF (current_buffer))
2932 BUF_AUTOSAVE_MODIFF (current_buffer)++;
2933 }
2934
2935 /* The before-change-function may have moved the gap
2936 or even modified the buffer so we should start over. */
2937 goto restart;
2938 }
2939
2940 /* Take care of the case where the new character
2941 combines with neighboring bytes. */
2942 if (maybe_byte_combining
2943 && (maybe_byte_combining == COMBINING_AFTER
2944 ? (pos_byte_next < Z_BYTE
2945 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2946 : ((pos_byte_next < Z_BYTE
2947 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2948 || (pos_byte > BEG_BYTE
2949 && ! ASCII_CHAR_P (FETCH_BYTE (pos_byte - 1))))))
2950 {
2951 Lisp_Object tem, string;
2952
2953 struct gcpro gcpro1;
2954
2955 tem = BVAR (current_buffer, undo_list);
2956 GCPRO1 (tem);
2957
2958 /* Make a multibyte string containing this single character. */
2959 string = make_multibyte_string ((char *) tostr, 1, len);
2960 /* replace_range is less efficient, because it moves the gap,
2961 but it handles combining correctly. */
2962 replace_range (pos, pos + 1, string,
2963 0, 0, 1);
2964 pos_byte_next = CHAR_TO_BYTE (pos);
2965 if (pos_byte_next > pos_byte)
2966 /* Before combining happened. We should not increment
2967 POS. So, to cancel the later increment of POS,
2968 decrease it now. */
2969 pos--;
2970 else
2971 INC_POS (pos_byte_next);
2972
2973 if (! NILP (noundo))
2974 bset_undo_list (current_buffer, tem);
2975
2976 UNGCPRO;
2977 }
2978 else
2979 {
2980 if (NILP (noundo))
2981 record_change (pos, 1);
2982 for (i = 0; i < len; i++) *p++ = tostr[i];
2983 }
2984 last_changed = pos + 1;
2985 }
2986 pos_byte = pos_byte_next;
2987 pos++;
2988 }
2989
2990 if (changed > 0)
2991 {
2992 signal_after_change (changed,
2993 last_changed - changed, last_changed - changed);
2994 update_compositions (changed, last_changed, CHECK_ALL);
2995 }
2996
2997 unbind_to (count, Qnil);
2998 return Qnil;
2999 }
3000
3001
3002 static Lisp_Object check_translation (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3003 Lisp_Object);
3004
3005 /* Helper function for Ftranslate_region_internal.
3006
3007 Check if a character sequence at POS (POS_BYTE) matches an element
3008 of VAL. VAL is a list (([FROM-CHAR ...] . TO) ...). If a matching
3009 element is found, return it. Otherwise return Qnil. */
3010
3011 static Lisp_Object
3012 check_translation (ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t end,
3013 Lisp_Object val)
3014 {
3015 int buf_size = 16, buf_used = 0;
3016 int *buf = alloca (sizeof (int) * buf_size);
3017
3018 for (; CONSP (val); val = XCDR (val))
3019 {
3020 Lisp_Object elt;
3021 ptrdiff_t len, i;
3022
3023 elt = XCAR (val);
3024 if (! CONSP (elt))
3025 continue;
3026 elt = XCAR (elt);
3027 if (! VECTORP (elt))
3028 continue;
3029 len = ASIZE (elt);
3030 if (len <= end - pos)
3031 {
3032 for (i = 0; i < len; i++)
3033 {
3034 if (buf_used <= i)
3035 {
3036 unsigned char *p = BYTE_POS_ADDR (pos_byte);
3037 int len1;
3038
3039 if (buf_used == buf_size)
3040 {
3041 int *newbuf;
3042
3043 buf_size += 16;
3044 newbuf = alloca (sizeof (int) * buf_size);
3045 memcpy (newbuf, buf, sizeof (int) * buf_used);
3046 buf = newbuf;
3047 }
3048 buf[buf_used++] = STRING_CHAR_AND_LENGTH (p, len1);
3049 pos_byte += len1;
3050 }
3051 if (XINT (AREF (elt, i)) != buf[i])
3052 break;
3053 }
3054 if (i == len)
3055 return XCAR (val);
3056 }
3057 }
3058 return Qnil;
3059 }
3060
3061
3062 DEFUN ("translate-region-internal", Ftranslate_region_internal,
3063 Stranslate_region_internal, 3, 3, 0,
3064 doc: /* Internal use only.
3065 From START to END, translate characters according to TABLE.
3066 TABLE is a string or a char-table; the Nth character in it is the
3067 mapping for the character with code N.
3068 It returns the number of characters changed. */)
3069 (Lisp_Object start, Lisp_Object end, register Lisp_Object table)
3070 {
3071 register unsigned char *tt; /* Trans table. */
3072 register int nc; /* New character. */
3073 int cnt; /* Number of changes made. */
3074 ptrdiff_t size; /* Size of translate table. */
3075 ptrdiff_t pos, pos_byte, end_pos;
3076 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3077 bool string_multibyte IF_LINT (= 0);
3078
3079 validate_region (&start, &end);
3080 if (CHAR_TABLE_P (table))
3081 {
3082 if (! EQ (XCHAR_TABLE (table)->purpose, Qtranslation_table))
3083 error ("Not a translation table");
3084 size = MAX_CHAR;
3085 tt = NULL;
3086 }
3087 else
3088 {
3089 CHECK_STRING (table);
3090
3091 if (! multibyte && (SCHARS (table) < SBYTES (table)))
3092 table = string_make_unibyte (table);
3093 string_multibyte = SCHARS (table) < SBYTES (table);
3094 size = SBYTES (table);
3095 tt = SDATA (table);
3096 }
3097
3098 pos = XINT (start);
3099 pos_byte = CHAR_TO_BYTE (pos);
3100 end_pos = XINT (end);
3101 modify_text (pos, end_pos);
3102
3103 cnt = 0;
3104 for (; pos < end_pos; )
3105 {
3106 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
3107 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
3108 int len, str_len;
3109 int oc;
3110 Lisp_Object val;
3111
3112 if (multibyte)
3113 oc = STRING_CHAR_AND_LENGTH (p, len);
3114 else
3115 oc = *p, len = 1;
3116 if (oc < size)
3117 {
3118 if (tt)
3119 {
3120 /* Reload as signal_after_change in last iteration may GC. */
3121 tt = SDATA (table);
3122 if (string_multibyte)
3123 {
3124 str = tt + string_char_to_byte (table, oc);
3125 nc = STRING_CHAR_AND_LENGTH (str, str_len);
3126 }
3127 else
3128 {
3129 nc = tt[oc];
3130 if (! ASCII_CHAR_P (nc) && multibyte)
3131 {
3132 str_len = BYTE8_STRING (nc, buf);
3133 str = buf;
3134 }
3135 else
3136 {
3137 str_len = 1;
3138 str = tt + oc;
3139 }
3140 }
3141 }
3142 else
3143 {
3144 nc = oc;
3145 val = CHAR_TABLE_REF (table, oc);
3146 if (CHARACTERP (val))
3147 {
3148 nc = XFASTINT (val);
3149 str_len = CHAR_STRING (nc, buf);
3150 str = buf;
3151 }
3152 else if (VECTORP (val) || (CONSP (val)))
3153 {
3154 /* VAL is [TO_CHAR ...] or (([FROM-CHAR ...] . TO) ...)
3155 where TO is TO-CHAR or [TO-CHAR ...]. */
3156 nc = -1;
3157 }
3158 }
3159
3160 if (nc != oc && nc >= 0)
3161 {
3162 /* Simple one char to one char translation. */
3163 if (len != str_len)
3164 {
3165 Lisp_Object string;
3166
3167 /* This is less efficient, because it moves the gap,
3168 but it should handle multibyte characters correctly. */
3169 string = make_multibyte_string ((char *) str, 1, str_len);
3170 replace_range (pos, pos + 1, string, 1, 0, 1);
3171 len = str_len;
3172 }
3173 else
3174 {
3175 record_change (pos, 1);
3176 while (str_len-- > 0)
3177 *p++ = *str++;
3178 signal_after_change (pos, 1, 1);
3179 update_compositions (pos, pos + 1, CHECK_BORDER);
3180 }
3181 ++cnt;
3182 }
3183 else if (nc < 0)
3184 {
3185 Lisp_Object string;
3186
3187 if (CONSP (val))
3188 {
3189 val = check_translation (pos, pos_byte, end_pos, val);
3190 if (NILP (val))
3191 {
3192 pos_byte += len;
3193 pos++;
3194 continue;
3195 }
3196 /* VAL is ([FROM-CHAR ...] . TO). */
3197 len = ASIZE (XCAR (val));
3198 val = XCDR (val);
3199 }
3200 else
3201 len = 1;
3202
3203 if (VECTORP (val))
3204 {
3205 string = Fconcat (1, &val);
3206 }
3207 else
3208 {
3209 string = Fmake_string (make_number (1), val);
3210 }
3211 replace_range (pos, pos + len, string, 1, 0, 1);
3212 pos_byte += SBYTES (string);
3213 pos += SCHARS (string);
3214 cnt += SCHARS (string);
3215 end_pos += SCHARS (string) - len;
3216 continue;
3217 }
3218 }
3219 pos_byte += len;
3220 pos++;
3221 }
3222
3223 return make_number (cnt);
3224 }
3225
3226 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
3227 doc: /* Delete the text between START and END.
3228 If called interactively, delete the region between point and mark.
3229 This command deletes buffer text without modifying the kill ring. */)
3230 (Lisp_Object start, Lisp_Object end)
3231 {
3232 validate_region (&start, &end);
3233 del_range (XINT (start), XINT (end));
3234 return Qnil;
3235 }
3236
3237 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
3238 Sdelete_and_extract_region, 2, 2, 0,
3239 doc: /* Delete the text between START and END and return it. */)
3240 (Lisp_Object start, Lisp_Object end)
3241 {
3242 validate_region (&start, &end);
3243 if (XINT (start) == XINT (end))
3244 return empty_unibyte_string;
3245 return del_range_1 (XINT (start), XINT (end), 1, 1);
3246 }
3247 \f
3248 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3249 doc: /* Remove restrictions (narrowing) from current buffer.
3250 This allows the buffer's full text to be seen and edited. */)
3251 (void)
3252 {
3253 if (BEG != BEGV || Z != ZV)
3254 current_buffer->clip_changed = 1;
3255 BEGV = BEG;
3256 BEGV_BYTE = BEG_BYTE;
3257 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3258 /* Changing the buffer bounds invalidates any recorded current column. */
3259 invalidate_current_column ();
3260 return Qnil;
3261 }
3262
3263 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3264 doc: /* Restrict editing in this buffer to the current region.
3265 The rest of the text becomes temporarily invisible and untouchable
3266 but is not deleted; if you save the buffer in a file, the invisible
3267 text is included in the file. \\[widen] makes all visible again.
3268 See also `save-restriction'.
3269
3270 When calling from a program, pass two arguments; positions (integers
3271 or markers) bounding the text that should remain visible. */)
3272 (register Lisp_Object start, Lisp_Object end)
3273 {
3274 CHECK_NUMBER_COERCE_MARKER (start);
3275 CHECK_NUMBER_COERCE_MARKER (end);
3276
3277 if (XINT (start) > XINT (end))
3278 {
3279 Lisp_Object tem;
3280 tem = start; start = end; end = tem;
3281 }
3282
3283 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3284 args_out_of_range (start, end);
3285
3286 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3287 current_buffer->clip_changed = 1;
3288
3289 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3290 SET_BUF_ZV (current_buffer, XFASTINT (end));
3291 if (PT < XFASTINT (start))
3292 SET_PT (XFASTINT (start));
3293 if (PT > XFASTINT (end))
3294 SET_PT (XFASTINT (end));
3295 /* Changing the buffer bounds invalidates any recorded current column. */
3296 invalidate_current_column ();
3297 return Qnil;
3298 }
3299
3300 Lisp_Object
3301 save_restriction_save (void)
3302 {
3303 if (BEGV == BEG && ZV == Z)
3304 /* The common case that the buffer isn't narrowed.
3305 We return just the buffer object, which save_restriction_restore
3306 recognizes as meaning `no restriction'. */
3307 return Fcurrent_buffer ();
3308 else
3309 /* We have to save a restriction, so return a pair of markers, one
3310 for the beginning and one for the end. */
3311 {
3312 Lisp_Object beg, end;
3313
3314 beg = build_marker (current_buffer, BEGV, BEGV_BYTE);
3315 end = build_marker (current_buffer, ZV, ZV_BYTE);
3316
3317 /* END must move forward if text is inserted at its exact location. */
3318 XMARKER (end)->insertion_type = 1;
3319
3320 return Fcons (beg, end);
3321 }
3322 }
3323
3324 void
3325 save_restriction_restore (Lisp_Object data)
3326 {
3327 struct buffer *cur = NULL;
3328 struct buffer *buf = (CONSP (data)
3329 ? XMARKER (XCAR (data))->buffer
3330 : XBUFFER (data));
3331
3332 if (buf && buf != current_buffer && !NILP (BVAR (buf, pt_marker)))
3333 { /* If `buf' uses markers to keep track of PT, BEGV, and ZV (as
3334 is the case if it is or has an indirect buffer), then make
3335 sure it is current before we update BEGV, so
3336 set_buffer_internal takes care of managing those markers. */
3337 cur = current_buffer;
3338 set_buffer_internal (buf);
3339 }
3340
3341 if (CONSP (data))
3342 /* A pair of marks bounding a saved restriction. */
3343 {
3344 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3345 struct Lisp_Marker *end = XMARKER (XCDR (data));
3346 eassert (buf == end->buffer);
3347
3348 if (buf /* Verify marker still points to a buffer. */
3349 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3350 /* The restriction has changed from the saved one, so restore
3351 the saved restriction. */
3352 {
3353 ptrdiff_t pt = BUF_PT (buf);
3354
3355 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3356 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3357
3358 if (pt < beg->charpos || pt > end->charpos)
3359 /* The point is outside the new visible range, move it inside. */
3360 SET_BUF_PT_BOTH (buf,
3361 clip_to_bounds (beg->charpos, pt, end->charpos),
3362 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3363 end->bytepos));
3364
3365 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3366 }
3367 /* These aren't needed anymore, so don't wait for GC. */
3368 free_marker (XCAR (data));
3369 free_marker (XCDR (data));
3370 free_cons (XCONS (data));
3371 }
3372 else
3373 /* A buffer, which means that there was no old restriction. */
3374 {
3375 if (buf /* Verify marker still points to a buffer. */
3376 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3377 /* The buffer has been narrowed, get rid of the narrowing. */
3378 {
3379 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3380 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3381
3382 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3383 }
3384 }
3385
3386 /* Changing the buffer bounds invalidates any recorded current column. */
3387 invalidate_current_column ();
3388
3389 if (cur)
3390 set_buffer_internal (cur);
3391 }
3392
3393 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3394 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3395 The buffer's restrictions make parts of the beginning and end invisible.
3396 \(They are set up with `narrow-to-region' and eliminated with `widen'.)
3397 This special form, `save-restriction', saves the current buffer's restrictions
3398 when it is entered, and restores them when it is exited.
3399 So any `narrow-to-region' within BODY lasts only until the end of the form.
3400 The old restrictions settings are restored
3401 even in case of abnormal exit (throw or error).
3402
3403 The value returned is the value of the last form in BODY.
3404
3405 Note: if you are using both `save-excursion' and `save-restriction',
3406 use `save-excursion' outermost:
3407 (save-excursion (save-restriction ...))
3408
3409 usage: (save-restriction &rest BODY) */)
3410 (Lisp_Object body)
3411 {
3412 register Lisp_Object val;
3413 ptrdiff_t count = SPECPDL_INDEX ();
3414
3415 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3416 val = Fprogn (body);
3417 return unbind_to (count, val);
3418 }
3419 \f
3420 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3421 doc: /* Display a message at the bottom of the screen.
3422 The message also goes into the `*Messages*' buffer, if `message-log-max'
3423 is non-nil. (In keyboard macros, that's all it does.)
3424 Return the message.
3425
3426 In batch mode, the message is printed to the standard error stream,
3427 followed by a newline.
3428
3429 The first argument is a format control string, and the rest are data
3430 to be formatted under control of the string. See `format' for details.
3431
3432 Note: Use (message "%s" VALUE) to print the value of expressions and
3433 variables to avoid accidentally interpreting `%' as format specifiers.
3434
3435 If the first argument is nil or the empty string, the function clears
3436 any existing message; this lets the minibuffer contents show. See
3437 also `current-message'.
3438
3439 usage: (message FORMAT-STRING &rest ARGS) */)
3440 (ptrdiff_t nargs, Lisp_Object *args)
3441 {
3442 if (NILP (args[0])
3443 || (STRINGP (args[0])
3444 && SBYTES (args[0]) == 0))
3445 {
3446 message1 (0);
3447 return args[0];
3448 }
3449 else
3450 {
3451 register Lisp_Object val;
3452 val = Fformat (nargs, args);
3453 message3 (val);
3454 return val;
3455 }
3456 }
3457
3458 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3459 doc: /* Display a message, in a dialog box if possible.
3460 If a dialog box is not available, use the echo area.
3461 The first argument is a format control string, and the rest are data
3462 to be formatted under control of the string. See `format' for details.
3463
3464 If the first argument is nil or the empty string, clear any existing
3465 message; let the minibuffer contents show.
3466
3467 usage: (message-box FORMAT-STRING &rest ARGS) */)
3468 (ptrdiff_t nargs, Lisp_Object *args)
3469 {
3470 if (NILP (args[0]))
3471 {
3472 message1 (0);
3473 return Qnil;
3474 }
3475 else
3476 {
3477 Lisp_Object val = Fformat (nargs, args);
3478 Lisp_Object pane, menu;
3479 struct gcpro gcpro1;
3480
3481 pane = list1 (Fcons (build_string ("OK"), Qt));
3482 GCPRO1 (pane);
3483 menu = Fcons (val, pane);
3484 Fx_popup_dialog (Qt, menu, Qt);
3485 UNGCPRO;
3486 return val;
3487 }
3488 }
3489
3490 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3491 doc: /* Display a message in a dialog box or in the echo area.
3492 If this command was invoked with the mouse, use a dialog box if
3493 `use-dialog-box' is non-nil.
3494 Otherwise, use the echo area.
3495 The first argument is a format control string, and the rest are data
3496 to be formatted under control of the string. See `format' for details.
3497
3498 If the first argument is nil or the empty string, clear any existing
3499 message; let the minibuffer contents show.
3500
3501 usage: (message-or-box FORMAT-STRING &rest ARGS) */)
3502 (ptrdiff_t nargs, Lisp_Object *args)
3503 {
3504 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3505 && use_dialog_box)
3506 return Fmessage_box (nargs, args);
3507 return Fmessage (nargs, args);
3508 }
3509
3510 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3511 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3512 (void)
3513 {
3514 return current_message ();
3515 }
3516
3517
3518 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3519 doc: /* Return a copy of STRING with text properties added.
3520 First argument is the string to copy.
3521 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3522 properties to add to the result.
3523 usage: (propertize STRING &rest PROPERTIES) */)
3524 (ptrdiff_t nargs, Lisp_Object *args)
3525 {
3526 Lisp_Object properties, string;
3527 struct gcpro gcpro1, gcpro2;
3528 ptrdiff_t i;
3529
3530 /* Number of args must be odd. */
3531 if ((nargs & 1) == 0)
3532 error ("Wrong number of arguments");
3533
3534 properties = string = Qnil;
3535 GCPRO2 (properties, string);
3536
3537 /* First argument must be a string. */
3538 CHECK_STRING (args[0]);
3539 string = Fcopy_sequence (args[0]);
3540
3541 for (i = 1; i < nargs; i += 2)
3542 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3543
3544 Fadd_text_properties (make_number (0),
3545 make_number (SCHARS (string)),
3546 properties, string);
3547 RETURN_UNGCPRO (string);
3548 }
3549
3550 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3551 doc: /* Format a string out of a format-string and arguments.
3552 The first argument is a format control string.
3553 The other arguments are substituted into it to make the result, a string.
3554
3555 The format control string may contain %-sequences meaning to substitute
3556 the next available argument:
3557
3558 %s means print a string argument. Actually, prints any object, with `princ'.
3559 %d means print as number in decimal (%o octal, %x hex).
3560 %X is like %x, but uses upper case.
3561 %e means print a number in exponential notation.
3562 %f means print a number in decimal-point notation.
3563 %g means print a number in exponential notation
3564 or decimal-point notation, whichever uses fewer characters.
3565 %c means print a number as a single character.
3566 %S means print any object as an s-expression (using `prin1').
3567
3568 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3569 Use %% to put a single % into the output.
3570
3571 A %-sequence may contain optional flag, width, and precision
3572 specifiers, as follows:
3573
3574 %<flags><width><precision>character
3575
3576 where flags is [+ #-0]+, width is [0-9]+, and precision is .[0-9]+
3577
3578 The + flag character inserts a + before any positive number, while a
3579 space inserts a space before any positive number; these flags only
3580 affect %d, %e, %f, and %g sequences, and the + flag takes precedence.
3581 The - and 0 flags affect the width specifier, as described below.
3582
3583 The # flag means to use an alternate display form for %o, %x, %X, %e,
3584 %f, and %g sequences: for %o, it ensures that the result begins with
3585 \"0\"; for %x and %X, it prefixes the result with \"0x\" or \"0X\";
3586 for %e, %f, and %g, it causes a decimal point to be included even if
3587 the precision is zero.
3588
3589 The width specifier supplies a lower limit for the length of the
3590 printed representation. The padding, if any, normally goes on the
3591 left, but it goes on the right if the - flag is present. The padding
3592 character is normally a space, but it is 0 if the 0 flag is present.
3593 The 0 flag is ignored if the - flag is present, or the format sequence
3594 is something other than %d, %e, %f, and %g.
3595
3596 For %e, %f, and %g sequences, the number after the "." in the
3597 precision specifier says how many decimal places to show; if zero, the
3598 decimal point itself is omitted. For %s and %S, the precision
3599 specifier truncates the string to the given width.
3600
3601 usage: (format STRING &rest OBJECTS) */)
3602 (ptrdiff_t nargs, Lisp_Object *args)
3603 {
3604 ptrdiff_t n; /* The number of the next arg to substitute. */
3605 char initial_buffer[4000];
3606 char *buf = initial_buffer;
3607 ptrdiff_t bufsize = sizeof initial_buffer;
3608 ptrdiff_t max_bufsize = STRING_BYTES_BOUND + 1;
3609 char *p;
3610 ptrdiff_t buf_save_value_index IF_LINT (= 0);
3611 char *format, *end, *format_start;
3612 ptrdiff_t formatlen, nchars;
3613 /* True if the format is multibyte. */
3614 bool multibyte_format = 0;
3615 /* True if the output should be a multibyte string,
3616 which is true if any of the inputs is one. */
3617 bool multibyte = 0;
3618 /* When we make a multibyte string, we must pay attention to the
3619 byte combining problem, i.e., a byte may be combined with a
3620 multibyte character of the previous string. This flag tells if we
3621 must consider such a situation or not. */
3622 bool maybe_combine_byte;
3623 Lisp_Object val;
3624 bool arg_intervals = 0;
3625 USE_SAFE_ALLOCA;
3626
3627 /* discarded[I] is 1 if byte I of the format
3628 string was not copied into the output.
3629 It is 2 if byte I was not the first byte of its character. */
3630 char *discarded;
3631
3632 /* Each element records, for one argument,
3633 the start and end bytepos in the output string,
3634 whether the argument has been converted to string (e.g., due to "%S"),
3635 and whether the argument is a string with intervals.
3636 info[0] is unused. Unused elements have -1 for start. */
3637 struct info
3638 {
3639 ptrdiff_t start, end;
3640 bool_bf converted_to_string : 1;
3641 bool_bf intervals : 1;
3642 } *info = 0;
3643
3644 /* It should not be necessary to GCPRO ARGS, because
3645 the caller in the interpreter should take care of that. */
3646
3647 CHECK_STRING (args[0]);
3648 format_start = SSDATA (args[0]);
3649 formatlen = SBYTES (args[0]);
3650
3651 /* Allocate the info and discarded tables. */
3652 {
3653 ptrdiff_t i;
3654 if ((SIZE_MAX - formatlen) / sizeof (struct info) <= nargs)
3655 memory_full (SIZE_MAX);
3656 info = SAFE_ALLOCA ((nargs + 1) * sizeof *info + formatlen);
3657 discarded = (char *) &info[nargs + 1];
3658 for (i = 0; i < nargs + 1; i++)
3659 {
3660 info[i].start = -1;
3661 info[i].intervals = info[i].converted_to_string = 0;
3662 }
3663 memset (discarded, 0, formatlen);
3664 }
3665
3666 /* Try to determine whether the result should be multibyte.
3667 This is not always right; sometimes the result needs to be multibyte
3668 because of an object that we will pass through prin1,
3669 and in that case, we won't know it here. */
3670 multibyte_format = STRING_MULTIBYTE (args[0]);
3671 multibyte = multibyte_format;
3672 for (n = 1; !multibyte && n < nargs; n++)
3673 if (STRINGP (args[n]) && STRING_MULTIBYTE (args[n]))
3674 multibyte = 1;
3675
3676 /* If we start out planning a unibyte result,
3677 then discover it has to be multibyte, we jump back to retry. */
3678 retry:
3679
3680 p = buf;
3681 nchars = 0;
3682 n = 0;
3683
3684 /* Scan the format and store result in BUF. */
3685 format = format_start;
3686 end = format + formatlen;
3687 maybe_combine_byte = 0;
3688
3689 while (format != end)
3690 {
3691 /* The values of N and FORMAT when the loop body is entered. */
3692 ptrdiff_t n0 = n;
3693 char *format0 = format;
3694
3695 /* Bytes needed to represent the output of this conversion. */
3696 ptrdiff_t convbytes;
3697
3698 if (*format == '%')
3699 {
3700 /* General format specifications look like
3701
3702 '%' [flags] [field-width] [precision] format
3703
3704 where
3705
3706 flags ::= [-+0# ]+
3707 field-width ::= [0-9]+
3708 precision ::= '.' [0-9]*
3709
3710 If a field-width is specified, it specifies to which width
3711 the output should be padded with blanks, if the output
3712 string is shorter than field-width.
3713
3714 If precision is specified, it specifies the number of
3715 digits to print after the '.' for floats, or the max.
3716 number of chars to print from a string. */
3717
3718 bool minus_flag = 0;
3719 bool plus_flag = 0;
3720 bool space_flag = 0;
3721 bool sharp_flag = 0;
3722 bool zero_flag = 0;
3723 ptrdiff_t field_width;
3724 bool precision_given;
3725 uintmax_t precision = UINTMAX_MAX;
3726 char *num_end;
3727 char conversion;
3728
3729 while (1)
3730 {
3731 switch (*++format)
3732 {
3733 case '-': minus_flag = 1; continue;
3734 case '+': plus_flag = 1; continue;
3735 case ' ': space_flag = 1; continue;
3736 case '#': sharp_flag = 1; continue;
3737 case '0': zero_flag = 1; continue;
3738 }
3739 break;
3740 }
3741
3742 /* Ignore flags when sprintf ignores them. */
3743 space_flag &= ~ plus_flag;
3744 zero_flag &= ~ minus_flag;
3745
3746 {
3747 uintmax_t w = strtoumax (format, &num_end, 10);
3748 if (max_bufsize <= w)
3749 string_overflow ();
3750 field_width = w;
3751 }
3752 precision_given = *num_end == '.';
3753 if (precision_given)
3754 precision = strtoumax (num_end + 1, &num_end, 10);
3755 format = num_end;
3756
3757 if (format == end)
3758 error ("Format string ends in middle of format specifier");
3759
3760 memset (&discarded[format0 - format_start], 1, format - format0);
3761 conversion = *format;
3762 if (conversion == '%')
3763 goto copy_char;
3764 discarded[format - format_start] = 1;
3765 format++;
3766
3767 ++n;
3768 if (! (n < nargs))
3769 error ("Not enough arguments for format string");
3770
3771 /* For 'S', prin1 the argument, and then treat like 's'.
3772 For 's', princ any argument that is not a string or
3773 symbol. But don't do this conversion twice, which might
3774 happen after retrying. */
3775 if ((conversion == 'S'
3776 || (conversion == 's'
3777 && ! STRINGP (args[n]) && ! SYMBOLP (args[n]))))
3778 {
3779 if (! info[n].converted_to_string)
3780 {
3781 Lisp_Object noescape = conversion == 'S' ? Qnil : Qt;
3782 args[n] = Fprin1_to_string (args[n], noescape);
3783 info[n].converted_to_string = 1;
3784 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3785 {
3786 multibyte = 1;
3787 goto retry;
3788 }
3789 }
3790 conversion = 's';
3791 }
3792 else if (conversion == 'c')
3793 {
3794 if (FLOATP (args[n]))
3795 {
3796 double d = XFLOAT_DATA (args[n]);
3797 args[n] = make_number (FIXNUM_OVERFLOW_P (d) ? -1 : d);
3798 }
3799
3800 if (INTEGERP (args[n]) && ! ASCII_CHAR_P (XINT (args[n])))
3801 {
3802 if (!multibyte)
3803 {
3804 multibyte = 1;
3805 goto retry;
3806 }
3807 args[n] = Fchar_to_string (args[n]);
3808 info[n].converted_to_string = 1;
3809 }
3810
3811 if (info[n].converted_to_string)
3812 conversion = 's';
3813 zero_flag = 0;
3814 }
3815
3816 if (SYMBOLP (args[n]))
3817 {
3818 args[n] = SYMBOL_NAME (args[n]);
3819 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3820 {
3821 multibyte = 1;
3822 goto retry;
3823 }
3824 }
3825
3826 if (conversion == 's')
3827 {
3828 /* handle case (precision[n] >= 0) */
3829
3830 ptrdiff_t width, padding, nbytes;
3831 ptrdiff_t nchars_string;
3832
3833 ptrdiff_t prec = -1;
3834 if (precision_given && precision <= TYPE_MAXIMUM (ptrdiff_t))
3835 prec = precision;
3836
3837 /* lisp_string_width ignores a precision of 0, but GNU
3838 libc functions print 0 characters when the precision
3839 is 0. Imitate libc behavior here. Changing
3840 lisp_string_width is the right thing, and will be
3841 done, but meanwhile we work with it. */
3842
3843 if (prec == 0)
3844 width = nchars_string = nbytes = 0;
3845 else
3846 {
3847 ptrdiff_t nch, nby;
3848 width = lisp_string_width (args[n], prec, &nch, &nby);
3849 if (prec < 0)
3850 {
3851 nchars_string = SCHARS (args[n]);
3852 nbytes = SBYTES (args[n]);
3853 }
3854 else
3855 {
3856 nchars_string = nch;
3857 nbytes = nby;
3858 }
3859 }
3860
3861 convbytes = nbytes;
3862 if (convbytes && multibyte && ! STRING_MULTIBYTE (args[n]))
3863 convbytes = count_size_as_multibyte (SDATA (args[n]), nbytes);
3864
3865 padding = width < field_width ? field_width - width : 0;
3866
3867 if (max_bufsize - padding <= convbytes)
3868 string_overflow ();
3869 convbytes += padding;
3870 if (convbytes <= buf + bufsize - p)
3871 {
3872 if (! minus_flag)
3873 {
3874 memset (p, ' ', padding);
3875 p += padding;
3876 nchars += padding;
3877 }
3878
3879 if (p > buf
3880 && multibyte
3881 && !ASCII_CHAR_P (*((unsigned char *) p - 1))
3882 && STRING_MULTIBYTE (args[n])
3883 && !CHAR_HEAD_P (SREF (args[n], 0)))
3884 maybe_combine_byte = 1;
3885
3886 p += copy_text (SDATA (args[n]), (unsigned char *) p,
3887 nbytes,
3888 STRING_MULTIBYTE (args[n]), multibyte);
3889
3890 info[n].start = nchars;
3891 nchars += nchars_string;
3892 info[n].end = nchars;
3893
3894 if (minus_flag)
3895 {
3896 memset (p, ' ', padding);
3897 p += padding;
3898 nchars += padding;
3899 }
3900
3901 /* If this argument has text properties, record where
3902 in the result string it appears. */
3903 if (string_intervals (args[n]))
3904 info[n].intervals = arg_intervals = 1;
3905
3906 continue;
3907 }
3908 }
3909 else if (! (conversion == 'c' || conversion == 'd'
3910 || conversion == 'e' || conversion == 'f'
3911 || conversion == 'g' || conversion == 'i'
3912 || conversion == 'o' || conversion == 'x'
3913 || conversion == 'X'))
3914 error ("Invalid format operation %%%c",
3915 STRING_CHAR ((unsigned char *) format - 1));
3916 else if (! (INTEGERP (args[n]) || FLOATP (args[n])))
3917 error ("Format specifier doesn't match argument type");
3918 else
3919 {
3920 enum
3921 {
3922 /* Maximum precision for a %f conversion such that the
3923 trailing output digit might be nonzero. Any precision
3924 larger than this will not yield useful information. */
3925 USEFUL_PRECISION_MAX =
3926 ((1 - DBL_MIN_EXP)
3927 * (FLT_RADIX == 2 || FLT_RADIX == 10 ? 1
3928 : FLT_RADIX == 16 ? 4
3929 : -1)),
3930
3931 /* Maximum number of bytes generated by any format, if
3932 precision is no more than USEFUL_PRECISION_MAX.
3933 On all practical hosts, %f is the worst case. */
3934 SPRINTF_BUFSIZE =
3935 sizeof "-." + (DBL_MAX_10_EXP + 1) + USEFUL_PRECISION_MAX,
3936
3937 /* Length of pM (that is, of pMd without the
3938 trailing "d"). */
3939 pMlen = sizeof pMd - 2
3940 };
3941 verify (USEFUL_PRECISION_MAX > 0);
3942
3943 int prec;
3944 ptrdiff_t padding, sprintf_bytes;
3945 uintmax_t excess_precision, numwidth;
3946 uintmax_t leading_zeros = 0, trailing_zeros = 0;
3947
3948 char sprintf_buf[SPRINTF_BUFSIZE];
3949
3950 /* Copy of conversion specification, modified somewhat.
3951 At most three flags F can be specified at once. */
3952 char convspec[sizeof "%FFF.*d" + pMlen];
3953
3954 /* Avoid undefined behavior in underlying sprintf. */
3955 if (conversion == 'd' || conversion == 'i')
3956 sharp_flag = 0;
3957
3958 /* Create the copy of the conversion specification, with
3959 any width and precision removed, with ".*" inserted,
3960 and with pM inserted for integer formats. */
3961 {
3962 char *f = convspec;
3963 *f++ = '%';
3964 *f = '-'; f += minus_flag;
3965 *f = '+'; f += plus_flag;
3966 *f = ' '; f += space_flag;
3967 *f = '#'; f += sharp_flag;
3968 *f = '0'; f += zero_flag;
3969 *f++ = '.';
3970 *f++ = '*';
3971 if (conversion == 'd' || conversion == 'i'
3972 || conversion == 'o' || conversion == 'x'
3973 || conversion == 'X')
3974 {
3975 memcpy (f, pMd, pMlen);
3976 f += pMlen;
3977 zero_flag &= ~ precision_given;
3978 }
3979 *f++ = conversion;
3980 *f = '\0';
3981 }
3982
3983 prec = -1;
3984 if (precision_given)
3985 prec = min (precision, USEFUL_PRECISION_MAX);
3986
3987 /* Use sprintf to format this number into sprintf_buf. Omit
3988 padding and excess precision, though, because sprintf limits
3989 output length to INT_MAX.
3990
3991 There are four types of conversion: double, unsigned
3992 char (passed as int), wide signed int, and wide
3993 unsigned int. Treat them separately because the
3994 sprintf ABI is sensitive to which type is passed. Be
3995 careful about integer overflow, NaNs, infinities, and
3996 conversions; for example, the min and max macros are
3997 not suitable here. */
3998 if (conversion == 'e' || conversion == 'f' || conversion == 'g')
3999 {
4000 double x = (INTEGERP (args[n])
4001 ? XINT (args[n])
4002 : XFLOAT_DATA (args[n]));
4003 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4004 }
4005 else if (conversion == 'c')
4006 {
4007 /* Don't use sprintf here, as it might mishandle prec. */
4008 sprintf_buf[0] = XINT (args[n]);
4009 sprintf_bytes = prec != 0;
4010 }
4011 else if (conversion == 'd')
4012 {
4013 /* For float, maybe we should use "%1.0f"
4014 instead so it also works for values outside
4015 the integer range. */
4016 printmax_t x;
4017 if (INTEGERP (args[n]))
4018 x = XINT (args[n]);
4019 else
4020 {
4021 double d = XFLOAT_DATA (args[n]);
4022 if (d < 0)
4023 {
4024 x = TYPE_MINIMUM (printmax_t);
4025 if (x < d)
4026 x = d;
4027 }
4028 else
4029 {
4030 x = TYPE_MAXIMUM (printmax_t);
4031 if (d < x)
4032 x = d;
4033 }
4034 }
4035 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4036 }
4037 else
4038 {
4039 /* Don't sign-extend for octal or hex printing. */
4040 uprintmax_t x;
4041 if (INTEGERP (args[n]))
4042 x = XUINT (args[n]);
4043 else
4044 {
4045 double d = XFLOAT_DATA (args[n]);
4046 if (d < 0)
4047 x = 0;
4048 else
4049 {
4050 x = TYPE_MAXIMUM (uprintmax_t);
4051 if (d < x)
4052 x = d;
4053 }
4054 }
4055 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4056 }
4057
4058 /* Now the length of the formatted item is known, except it omits
4059 padding and excess precision. Deal with excess precision
4060 first. This happens only when the format specifies
4061 ridiculously large precision. */
4062 excess_precision = precision - prec;
4063 if (excess_precision)
4064 {
4065 if (conversion == 'e' || conversion == 'f'
4066 || conversion == 'g')
4067 {
4068 if ((conversion == 'g' && ! sharp_flag)
4069 || ! ('0' <= sprintf_buf[sprintf_bytes - 1]
4070 && sprintf_buf[sprintf_bytes - 1] <= '9'))
4071 excess_precision = 0;
4072 else
4073 {
4074 if (conversion == 'g')
4075 {
4076 char *dot = strchr (sprintf_buf, '.');
4077 if (!dot)
4078 excess_precision = 0;
4079 }
4080 }
4081 trailing_zeros = excess_precision;
4082 }
4083 else
4084 leading_zeros = excess_precision;
4085 }
4086
4087 /* Compute the total bytes needed for this item, including
4088 excess precision and padding. */
4089 numwidth = sprintf_bytes + excess_precision;
4090 padding = numwidth < field_width ? field_width - numwidth : 0;
4091 if (max_bufsize - sprintf_bytes <= excess_precision
4092 || max_bufsize - padding <= numwidth)
4093 string_overflow ();
4094 convbytes = numwidth + padding;
4095
4096 if (convbytes <= buf + bufsize - p)
4097 {
4098 /* Copy the formatted item from sprintf_buf into buf,
4099 inserting padding and excess-precision zeros. */
4100
4101 char *src = sprintf_buf;
4102 char src0 = src[0];
4103 int exponent_bytes = 0;
4104 bool signedp = src0 == '-' || src0 == '+' || src0 == ' ';
4105 int significand_bytes;
4106 if (zero_flag
4107 && ((src[signedp] >= '0' && src[signedp] <= '9')
4108 || (src[signedp] >= 'a' && src[signedp] <= 'f')
4109 || (src[signedp] >= 'A' && src[signedp] <= 'F')))
4110 {
4111 leading_zeros += padding;
4112 padding = 0;
4113 }
4114
4115 if (excess_precision
4116 && (conversion == 'e' || conversion == 'g'))
4117 {
4118 char *e = strchr (src, 'e');
4119 if (e)
4120 exponent_bytes = src + sprintf_bytes - e;
4121 }
4122
4123 if (! minus_flag)
4124 {
4125 memset (p, ' ', padding);
4126 p += padding;
4127 nchars += padding;
4128 }
4129
4130 *p = src0;
4131 src += signedp;
4132 p += signedp;
4133 memset (p, '0', leading_zeros);
4134 p += leading_zeros;
4135 significand_bytes = sprintf_bytes - signedp - exponent_bytes;
4136 memcpy (p, src, significand_bytes);
4137 p += significand_bytes;
4138 src += significand_bytes;
4139 memset (p, '0', trailing_zeros);
4140 p += trailing_zeros;
4141 memcpy (p, src, exponent_bytes);
4142 p += exponent_bytes;
4143
4144 info[n].start = nchars;
4145 nchars += leading_zeros + sprintf_bytes + trailing_zeros;
4146 info[n].end = nchars;
4147
4148 if (minus_flag)
4149 {
4150 memset (p, ' ', padding);
4151 p += padding;
4152 nchars += padding;
4153 }
4154
4155 continue;
4156 }
4157 }
4158 }
4159 else
4160 copy_char:
4161 {
4162 /* Copy a single character from format to buf. */
4163
4164 char *src = format;
4165 unsigned char str[MAX_MULTIBYTE_LENGTH];
4166
4167 if (multibyte_format)
4168 {
4169 /* Copy a whole multibyte character. */
4170 if (p > buf
4171 && !ASCII_CHAR_P (*((unsigned char *) p - 1))
4172 && !CHAR_HEAD_P (*format))
4173 maybe_combine_byte = 1;
4174
4175 do
4176 format++;
4177 while (! CHAR_HEAD_P (*format));
4178
4179 convbytes = format - src;
4180 memset (&discarded[src + 1 - format_start], 2, convbytes - 1);
4181 }
4182 else
4183 {
4184 unsigned char uc = *format++;
4185 if (! multibyte || ASCII_CHAR_P (uc))
4186 convbytes = 1;
4187 else
4188 {
4189 int c = BYTE8_TO_CHAR (uc);
4190 convbytes = CHAR_STRING (c, str);
4191 src = (char *) str;
4192 }
4193 }
4194
4195 if (convbytes <= buf + bufsize - p)
4196 {
4197 memcpy (p, src, convbytes);
4198 p += convbytes;
4199 nchars++;
4200 continue;
4201 }
4202 }
4203
4204 /* There wasn't enough room to store this conversion or single
4205 character. CONVBYTES says how much room is needed. Allocate
4206 enough room (and then some) and do it again. */
4207 {
4208 ptrdiff_t used = p - buf;
4209
4210 if (max_bufsize - used < convbytes)
4211 string_overflow ();
4212 bufsize = used + convbytes;
4213 bufsize = bufsize < max_bufsize / 2 ? bufsize * 2 : max_bufsize;
4214
4215 if (buf == initial_buffer)
4216 {
4217 buf = xmalloc (bufsize);
4218 sa_must_free = true;
4219 buf_save_value_index = SPECPDL_INDEX ();
4220 record_unwind_protect_ptr (xfree, buf);
4221 memcpy (buf, initial_buffer, used);
4222 }
4223 else
4224 {
4225 buf = xrealloc (buf, bufsize);
4226 set_unwind_protect_ptr (buf_save_value_index, xfree, buf);
4227 }
4228
4229 p = buf + used;
4230 }
4231
4232 format = format0;
4233 n = n0;
4234 }
4235
4236 if (bufsize < p - buf)
4237 emacs_abort ();
4238
4239 if (maybe_combine_byte)
4240 nchars = multibyte_chars_in_text ((unsigned char *) buf, p - buf);
4241 val = make_specified_string (buf, nchars, p - buf, multibyte);
4242
4243 /* If we allocated BUF with malloc, free it too. */
4244 SAFE_FREE ();
4245
4246 /* If the format string has text properties, or any of the string
4247 arguments has text properties, set up text properties of the
4248 result string. */
4249
4250 if (string_intervals (args[0]) || arg_intervals)
4251 {
4252 Lisp_Object len, new_len, props;
4253 struct gcpro gcpro1;
4254
4255 /* Add text properties from the format string. */
4256 len = make_number (SCHARS (args[0]));
4257 props = text_property_list (args[0], make_number (0), len, Qnil);
4258 GCPRO1 (props);
4259
4260 if (CONSP (props))
4261 {
4262 ptrdiff_t bytepos = 0, position = 0, translated = 0;
4263 ptrdiff_t argn = 1;
4264 Lisp_Object list;
4265
4266 /* Adjust the bounds of each text property
4267 to the proper start and end in the output string. */
4268
4269 /* Put the positions in PROPS in increasing order, so that
4270 we can do (effectively) one scan through the position
4271 space of the format string. */
4272 props = Fnreverse (props);
4273
4274 /* BYTEPOS is the byte position in the format string,
4275 POSITION is the untranslated char position in it,
4276 TRANSLATED is the translated char position in BUF,
4277 and ARGN is the number of the next arg we will come to. */
4278 for (list = props; CONSP (list); list = XCDR (list))
4279 {
4280 Lisp_Object item;
4281 ptrdiff_t pos;
4282
4283 item = XCAR (list);
4284
4285 /* First adjust the property start position. */
4286 pos = XINT (XCAR (item));
4287
4288 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
4289 up to this position. */
4290 for (; position < pos; bytepos++)
4291 {
4292 if (! discarded[bytepos])
4293 position++, translated++;
4294 else if (discarded[bytepos] == 1)
4295 {
4296 position++;
4297 if (translated == info[argn].start)
4298 {
4299 translated += info[argn].end - info[argn].start;
4300 argn++;
4301 }
4302 }
4303 }
4304
4305 XSETCAR (item, make_number (translated));
4306
4307 /* Likewise adjust the property end position. */
4308 pos = XINT (XCAR (XCDR (item)));
4309
4310 for (; position < pos; bytepos++)
4311 {
4312 if (! discarded[bytepos])
4313 position++, translated++;
4314 else if (discarded[bytepos] == 1)
4315 {
4316 position++;
4317 if (translated == info[argn].start)
4318 {
4319 translated += info[argn].end - info[argn].start;
4320 argn++;
4321 }
4322 }
4323 }
4324
4325 XSETCAR (XCDR (item), make_number (translated));
4326 }
4327
4328 add_text_properties_from_list (val, props, make_number (0));
4329 }
4330
4331 /* Add text properties from arguments. */
4332 if (arg_intervals)
4333 for (n = 1; n < nargs; ++n)
4334 if (info[n].intervals)
4335 {
4336 len = make_number (SCHARS (args[n]));
4337 new_len = make_number (info[n].end - info[n].start);
4338 props = text_property_list (args[n], make_number (0), len, Qnil);
4339 props = extend_property_ranges (props, new_len);
4340 /* If successive arguments have properties, be sure that
4341 the value of `composition' property be the copy. */
4342 if (n > 1 && info[n - 1].end)
4343 make_composition_value_copy (props);
4344 add_text_properties_from_list (val, props,
4345 make_number (info[n].start));
4346 }
4347
4348 UNGCPRO;
4349 }
4350
4351 return val;
4352 }
4353
4354 Lisp_Object
4355 format2 (const char *string1, Lisp_Object arg0, Lisp_Object arg1)
4356 {
4357 Lisp_Object args[3];
4358 args[0] = build_string (string1);
4359 args[1] = arg0;
4360 args[2] = arg1;
4361 return Fformat (3, args);
4362 }
4363 \f
4364 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
4365 doc: /* Return t if two characters match, optionally ignoring case.
4366 Both arguments must be characters (i.e. integers).
4367 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
4368 (register Lisp_Object c1, Lisp_Object c2)
4369 {
4370 int i1, i2;
4371 /* Check they're chars, not just integers, otherwise we could get array
4372 bounds violations in downcase. */
4373 CHECK_CHARACTER (c1);
4374 CHECK_CHARACTER (c2);
4375
4376 if (XINT (c1) == XINT (c2))
4377 return Qt;
4378 if (NILP (BVAR (current_buffer, case_fold_search)))
4379 return Qnil;
4380
4381 i1 = XFASTINT (c1);
4382 i2 = XFASTINT (c2);
4383
4384 /* FIXME: It is possible to compare multibyte characters even when
4385 the current buffer is unibyte. Unfortunately this is ambiguous
4386 for characters between 128 and 255, as they could be either
4387 eight-bit raw bytes or Latin-1 characters. Assume the former for
4388 now. See Bug#17011, and also see casefiddle.c's casify_object,
4389 which has a similar problem. */
4390 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4391 {
4392 if (SINGLE_BYTE_CHAR_P (i1))
4393 i1 = UNIBYTE_TO_CHAR (i1);
4394 if (SINGLE_BYTE_CHAR_P (i2))
4395 i2 = UNIBYTE_TO_CHAR (i2);
4396 }
4397
4398 return (downcase (i1) == downcase (i2) ? Qt : Qnil);
4399 }
4400 \f
4401 /* Transpose the markers in two regions of the current buffer, and
4402 adjust the ones between them if necessary (i.e.: if the regions
4403 differ in size).
4404
4405 START1, END1 are the character positions of the first region.
4406 START1_BYTE, END1_BYTE are the byte positions.
4407 START2, END2 are the character positions of the second region.
4408 START2_BYTE, END2_BYTE are the byte positions.
4409
4410 Traverses the entire marker list of the buffer to do so, adding an
4411 appropriate amount to some, subtracting from some, and leaving the
4412 rest untouched. Most of this is copied from adjust_markers in insdel.c.
4413
4414 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
4415
4416 static void
4417 transpose_markers (ptrdiff_t start1, ptrdiff_t end1,
4418 ptrdiff_t start2, ptrdiff_t end2,
4419 ptrdiff_t start1_byte, ptrdiff_t end1_byte,
4420 ptrdiff_t start2_byte, ptrdiff_t end2_byte)
4421 {
4422 register ptrdiff_t amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
4423 register struct Lisp_Marker *marker;
4424
4425 /* Update point as if it were a marker. */
4426 if (PT < start1)
4427 ;
4428 else if (PT < end1)
4429 TEMP_SET_PT_BOTH (PT + (end2 - end1),
4430 PT_BYTE + (end2_byte - end1_byte));
4431 else if (PT < start2)
4432 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
4433 (PT_BYTE + (end2_byte - start2_byte)
4434 - (end1_byte - start1_byte)));
4435 else if (PT < end2)
4436 TEMP_SET_PT_BOTH (PT - (start2 - start1),
4437 PT_BYTE - (start2_byte - start1_byte));
4438
4439 /* We used to adjust the endpoints here to account for the gap, but that
4440 isn't good enough. Even if we assume the caller has tried to move the
4441 gap out of our way, it might still be at start1 exactly, for example;
4442 and that places it `inside' the interval, for our purposes. The amount
4443 of adjustment is nontrivial if there's a `denormalized' marker whose
4444 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4445 the dirty work to Fmarker_position, below. */
4446
4447 /* The difference between the region's lengths */
4448 diff = (end2 - start2) - (end1 - start1);
4449 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4450
4451 /* For shifting each marker in a region by the length of the other
4452 region plus the distance between the regions. */
4453 amt1 = (end2 - start2) + (start2 - end1);
4454 amt2 = (end1 - start1) + (start2 - end1);
4455 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4456 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4457
4458 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4459 {
4460 mpos = marker->bytepos;
4461 if (mpos >= start1_byte && mpos < end2_byte)
4462 {
4463 if (mpos < end1_byte)
4464 mpos += amt1_byte;
4465 else if (mpos < start2_byte)
4466 mpos += diff_byte;
4467 else
4468 mpos -= amt2_byte;
4469 marker->bytepos = mpos;
4470 }
4471 mpos = marker->charpos;
4472 if (mpos >= start1 && mpos < end2)
4473 {
4474 if (mpos < end1)
4475 mpos += amt1;
4476 else if (mpos < start2)
4477 mpos += diff;
4478 else
4479 mpos -= amt2;
4480 }
4481 marker->charpos = mpos;
4482 }
4483 }
4484
4485 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4486 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
4487 The regions should not be overlapping, because the size of the buffer is
4488 never changed in a transposition.
4489
4490 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
4491 any markers that happen to be located in the regions.
4492
4493 Transposing beyond buffer boundaries is an error. */)
4494 (Lisp_Object startr1, Lisp_Object endr1, Lisp_Object startr2, Lisp_Object endr2, Lisp_Object leave_markers)
4495 {
4496 register ptrdiff_t start1, end1, start2, end2;
4497 ptrdiff_t start1_byte, start2_byte, len1_byte, len2_byte, end2_byte;
4498 ptrdiff_t gap, len1, len_mid, len2;
4499 unsigned char *start1_addr, *start2_addr, *temp;
4500
4501 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2, tmp_interval3;
4502 Lisp_Object buf;
4503
4504 XSETBUFFER (buf, current_buffer);
4505 cur_intv = buffer_intervals (current_buffer);
4506
4507 validate_region (&startr1, &endr1);
4508 validate_region (&startr2, &endr2);
4509
4510 start1 = XFASTINT (startr1);
4511 end1 = XFASTINT (endr1);
4512 start2 = XFASTINT (startr2);
4513 end2 = XFASTINT (endr2);
4514 gap = GPT;
4515
4516 /* Swap the regions if they're reversed. */
4517 if (start2 < end1)
4518 {
4519 register ptrdiff_t glumph = start1;
4520 start1 = start2;
4521 start2 = glumph;
4522 glumph = end1;
4523 end1 = end2;
4524 end2 = glumph;
4525 }
4526
4527 len1 = end1 - start1;
4528 len2 = end2 - start2;
4529
4530 if (start2 < end1)
4531 error ("Transposed regions overlap");
4532 /* Nothing to change for adjacent regions with one being empty */
4533 else if ((start1 == end1 || start2 == end2) && end1 == start2)
4534 return Qnil;
4535
4536 /* The possibilities are:
4537 1. Adjacent (contiguous) regions, or separate but equal regions
4538 (no, really equal, in this case!), or
4539 2. Separate regions of unequal size.
4540
4541 The worst case is usually No. 2. It means that (aside from
4542 potential need for getting the gap out of the way), there also
4543 needs to be a shifting of the text between the two regions. So
4544 if they are spread far apart, we are that much slower... sigh. */
4545
4546 /* It must be pointed out that the really studly thing to do would
4547 be not to move the gap at all, but to leave it in place and work
4548 around it if necessary. This would be extremely efficient,
4549 especially considering that people are likely to do
4550 transpositions near where they are working interactively, which
4551 is exactly where the gap would be found. However, such code
4552 would be much harder to write and to read. So, if you are
4553 reading this comment and are feeling squirrely, by all means have
4554 a go! I just didn't feel like doing it, so I will simply move
4555 the gap the minimum distance to get it out of the way, and then
4556 deal with an unbroken array. */
4557
4558 start1_byte = CHAR_TO_BYTE (start1);
4559 end2_byte = CHAR_TO_BYTE (end2);
4560
4561 /* Make sure the gap won't interfere, by moving it out of the text
4562 we will operate on. */
4563 if (start1 < gap && gap < end2)
4564 {
4565 if (gap - start1 < end2 - gap)
4566 move_gap_both (start1, start1_byte);
4567 else
4568 move_gap_both (end2, end2_byte);
4569 }
4570
4571 start2_byte = CHAR_TO_BYTE (start2);
4572 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4573 len2_byte = end2_byte - start2_byte;
4574
4575 #ifdef BYTE_COMBINING_DEBUG
4576 if (end1 == start2)
4577 {
4578 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4579 len2_byte, start1, start1_byte)
4580 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4581 len1_byte, end2, start2_byte + len2_byte)
4582 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4583 len1_byte, end2, start2_byte + len2_byte))
4584 emacs_abort ();
4585 }
4586 else
4587 {
4588 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4589 len2_byte, start1, start1_byte)
4590 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4591 len1_byte, start2, start2_byte)
4592 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4593 len2_byte, end1, start1_byte + len1_byte)
4594 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4595 len1_byte, end2, start2_byte + len2_byte))
4596 emacs_abort ();
4597 }
4598 #endif
4599
4600 /* Hmmm... how about checking to see if the gap is large
4601 enough to use as the temporary storage? That would avoid an
4602 allocation... interesting. Later, don't fool with it now. */
4603
4604 /* Working without memmove, for portability (sigh), so must be
4605 careful of overlapping subsections of the array... */
4606
4607 if (end1 == start2) /* adjacent regions */
4608 {
4609 modify_text (start1, end2);
4610 record_change (start1, len1 + len2);
4611
4612 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4613 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4614 /* Don't use Fset_text_properties: that can cause GC, which can
4615 clobber objects stored in the tmp_intervals. */
4616 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4617 if (tmp_interval3)
4618 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4619
4620 /* First region smaller than second. */
4621 if (len1_byte < len2_byte)
4622 {
4623 USE_SAFE_ALLOCA;
4624
4625 temp = SAFE_ALLOCA (len2_byte);
4626
4627 /* Don't precompute these addresses. We have to compute them
4628 at the last minute, because the relocating allocator might
4629 have moved the buffer around during the xmalloc. */
4630 start1_addr = BYTE_POS_ADDR (start1_byte);
4631 start2_addr = BYTE_POS_ADDR (start2_byte);
4632
4633 memcpy (temp, start2_addr, len2_byte);
4634 memcpy (start1_addr + len2_byte, start1_addr, len1_byte);
4635 memcpy (start1_addr, temp, len2_byte);
4636 SAFE_FREE ();
4637 }
4638 else
4639 /* First region not smaller than second. */
4640 {
4641 USE_SAFE_ALLOCA;
4642
4643 temp = SAFE_ALLOCA (len1_byte);
4644 start1_addr = BYTE_POS_ADDR (start1_byte);
4645 start2_addr = BYTE_POS_ADDR (start2_byte);
4646 memcpy (temp, start1_addr, len1_byte);
4647 memcpy (start1_addr, start2_addr, len2_byte);
4648 memcpy (start1_addr + len2_byte, temp, len1_byte);
4649 SAFE_FREE ();
4650 }
4651 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4652 len1, current_buffer, 0);
4653 graft_intervals_into_buffer (tmp_interval2, start1,
4654 len2, current_buffer, 0);
4655 update_compositions (start1, start1 + len2, CHECK_BORDER);
4656 update_compositions (start1 + len2, end2, CHECK_TAIL);
4657 }
4658 /* Non-adjacent regions, because end1 != start2, bleagh... */
4659 else
4660 {
4661 len_mid = start2_byte - (start1_byte + len1_byte);
4662
4663 if (len1_byte == len2_byte)
4664 /* Regions are same size, though, how nice. */
4665 {
4666 USE_SAFE_ALLOCA;
4667
4668 modify_text (start1, end1);
4669 modify_text (start2, end2);
4670 record_change (start1, len1);
4671 record_change (start2, len2);
4672 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4673 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4674
4675 tmp_interval3 = validate_interval_range (buf, &startr1, &endr1, 0);
4676 if (tmp_interval3)
4677 set_text_properties_1 (startr1, endr1, Qnil, buf, tmp_interval3);
4678
4679 tmp_interval3 = validate_interval_range (buf, &startr2, &endr2, 0);
4680 if (tmp_interval3)
4681 set_text_properties_1 (startr2, endr2, Qnil, buf, tmp_interval3);
4682
4683 temp = SAFE_ALLOCA (len1_byte);
4684 start1_addr = BYTE_POS_ADDR (start1_byte);
4685 start2_addr = BYTE_POS_ADDR (start2_byte);
4686 memcpy (temp, start1_addr, len1_byte);
4687 memcpy (start1_addr, start2_addr, len2_byte);
4688 memcpy (start2_addr, temp, len1_byte);
4689 SAFE_FREE ();
4690
4691 graft_intervals_into_buffer (tmp_interval1, start2,
4692 len1, current_buffer, 0);
4693 graft_intervals_into_buffer (tmp_interval2, start1,
4694 len2, current_buffer, 0);
4695 }
4696
4697 else if (len1_byte < len2_byte) /* Second region larger than first */
4698 /* Non-adjacent & unequal size, area between must also be shifted. */
4699 {
4700 USE_SAFE_ALLOCA;
4701
4702 modify_text (start1, end2);
4703 record_change (start1, (end2 - start1));
4704 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4705 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4706 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4707
4708 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4709 if (tmp_interval3)
4710 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4711
4712 /* holds region 2 */
4713 temp = SAFE_ALLOCA (len2_byte);
4714 start1_addr = BYTE_POS_ADDR (start1_byte);
4715 start2_addr = BYTE_POS_ADDR (start2_byte);
4716 memcpy (temp, start2_addr, len2_byte);
4717 memcpy (start1_addr + len_mid + len2_byte, start1_addr, len1_byte);
4718 memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4719 memcpy (start1_addr, temp, len2_byte);
4720 SAFE_FREE ();
4721
4722 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4723 len1, current_buffer, 0);
4724 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4725 len_mid, current_buffer, 0);
4726 graft_intervals_into_buffer (tmp_interval2, start1,
4727 len2, current_buffer, 0);
4728 }
4729 else
4730 /* Second region smaller than first. */
4731 {
4732 USE_SAFE_ALLOCA;
4733
4734 record_change (start1, (end2 - start1));
4735 modify_text (start1, end2);
4736
4737 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4738 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4739 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4740
4741 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4742 if (tmp_interval3)
4743 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4744
4745 /* holds region 1 */
4746 temp = SAFE_ALLOCA (len1_byte);
4747 start1_addr = BYTE_POS_ADDR (start1_byte);
4748 start2_addr = BYTE_POS_ADDR (start2_byte);
4749 memcpy (temp, start1_addr, len1_byte);
4750 memcpy (start1_addr, start2_addr, len2_byte);
4751 memcpy (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4752 memcpy (start1_addr + len2_byte + len_mid, temp, len1_byte);
4753 SAFE_FREE ();
4754
4755 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4756 len1, current_buffer, 0);
4757 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4758 len_mid, current_buffer, 0);
4759 graft_intervals_into_buffer (tmp_interval2, start1,
4760 len2, current_buffer, 0);
4761 }
4762
4763 update_compositions (start1, start1 + len2, CHECK_BORDER);
4764 update_compositions (end2 - len1, end2, CHECK_BORDER);
4765 }
4766
4767 /* When doing multiple transpositions, it might be nice
4768 to optimize this. Perhaps the markers in any one buffer
4769 should be organized in some sorted data tree. */
4770 if (NILP (leave_markers))
4771 {
4772 transpose_markers (start1, end1, start2, end2,
4773 start1_byte, start1_byte + len1_byte,
4774 start2_byte, start2_byte + len2_byte);
4775 fix_start_end_in_overlays (start1, end2);
4776 }
4777
4778 signal_after_change (start1, end2 - start1, end2 - start1);
4779 return Qnil;
4780 }
4781
4782 \f
4783 void
4784 syms_of_editfns (void)
4785 {
4786 DEFSYM (Qbuffer_access_fontify_functions, "buffer-access-fontify-functions");
4787
4788 DEFVAR_LISP ("inhibit-field-text-motion", Vinhibit_field_text_motion,
4789 doc: /* Non-nil means text motion commands don't notice fields. */);
4790 Vinhibit_field_text_motion = Qnil;
4791
4792 DEFVAR_LISP ("buffer-access-fontify-functions",
4793 Vbuffer_access_fontify_functions,
4794 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
4795 Each function is called with two arguments which specify the range
4796 of the buffer being accessed. */);
4797 Vbuffer_access_fontify_functions = Qnil;
4798
4799 {
4800 Lisp_Object obuf;
4801 obuf = Fcurrent_buffer ();
4802 /* Do this here, because init_buffer_once is too early--it won't work. */
4803 Fset_buffer (Vprin1_to_string_buffer);
4804 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
4805 Fset (Fmake_local_variable (intern_c_string ("buffer-access-fontify-functions")),
4806 Qnil);
4807 Fset_buffer (obuf);
4808 }
4809
4810 DEFVAR_LISP ("buffer-access-fontified-property",
4811 Vbuffer_access_fontified_property,
4812 doc: /* Property which (if non-nil) indicates text has been fontified.
4813 `buffer-substring' need not call the `buffer-access-fontify-functions'
4814 functions if all the text being accessed has this property. */);
4815 Vbuffer_access_fontified_property = Qnil;
4816
4817 DEFVAR_LISP ("system-name", Vsystem_name,
4818 doc: /* The host name of the machine Emacs is running on. */);
4819
4820 DEFVAR_LISP ("user-full-name", Vuser_full_name,
4821 doc: /* The full name of the user logged in. */);
4822
4823 DEFVAR_LISP ("user-login-name", Vuser_login_name,
4824 doc: /* The user's name, taken from environment variables if possible. */);
4825
4826 DEFVAR_LISP ("user-real-login-name", Vuser_real_login_name,
4827 doc: /* The user's name, based upon the real uid only. */);
4828
4829 DEFVAR_LISP ("operating-system-release", Voperating_system_release,
4830 doc: /* The release of the operating system Emacs is running on. */);
4831
4832 defsubr (&Spropertize);
4833 defsubr (&Schar_equal);
4834 defsubr (&Sgoto_char);
4835 defsubr (&Sstring_to_char);
4836 defsubr (&Schar_to_string);
4837 defsubr (&Sbyte_to_string);
4838 defsubr (&Sbuffer_substring);
4839 defsubr (&Sbuffer_substring_no_properties);
4840 defsubr (&Sbuffer_string);
4841 defsubr (&Sget_pos_property);
4842
4843 defsubr (&Spoint_marker);
4844 defsubr (&Smark_marker);
4845 defsubr (&Spoint);
4846 defsubr (&Sregion_beginning);
4847 defsubr (&Sregion_end);
4848
4849 DEFSYM (Qfield, "field");
4850 DEFSYM (Qboundary, "boundary");
4851 defsubr (&Sfield_beginning);
4852 defsubr (&Sfield_end);
4853 defsubr (&Sfield_string);
4854 defsubr (&Sfield_string_no_properties);
4855 defsubr (&Sdelete_field);
4856 defsubr (&Sconstrain_to_field);
4857
4858 defsubr (&Sline_beginning_position);
4859 defsubr (&Sline_end_position);
4860
4861 defsubr (&Ssave_excursion);
4862 defsubr (&Ssave_current_buffer);
4863
4864 defsubr (&Sbuffer_size);
4865 defsubr (&Spoint_max);
4866 defsubr (&Spoint_min);
4867 defsubr (&Spoint_min_marker);
4868 defsubr (&Spoint_max_marker);
4869 defsubr (&Sgap_position);
4870 defsubr (&Sgap_size);
4871 defsubr (&Sposition_bytes);
4872 defsubr (&Sbyte_to_position);
4873
4874 defsubr (&Sbobp);
4875 defsubr (&Seobp);
4876 defsubr (&Sbolp);
4877 defsubr (&Seolp);
4878 defsubr (&Sfollowing_char);
4879 defsubr (&Sprevious_char);
4880 defsubr (&Schar_after);
4881 defsubr (&Schar_before);
4882 defsubr (&Sinsert);
4883 defsubr (&Sinsert_before_markers);
4884 defsubr (&Sinsert_and_inherit);
4885 defsubr (&Sinsert_and_inherit_before_markers);
4886 defsubr (&Sinsert_char);
4887 defsubr (&Sinsert_byte);
4888
4889 defsubr (&Suser_login_name);
4890 defsubr (&Suser_real_login_name);
4891 defsubr (&Suser_uid);
4892 defsubr (&Suser_real_uid);
4893 defsubr (&Sgroup_gid);
4894 defsubr (&Sgroup_real_gid);
4895 defsubr (&Suser_full_name);
4896 defsubr (&Semacs_pid);
4897 defsubr (&Scurrent_time);
4898 defsubr (&Sget_internal_run_time);
4899 defsubr (&Sformat_time_string);
4900 defsubr (&Sfloat_time);
4901 defsubr (&Sdecode_time);
4902 defsubr (&Sencode_time);
4903 defsubr (&Scurrent_time_string);
4904 defsubr (&Scurrent_time_zone);
4905 defsubr (&Sset_time_zone_rule);
4906 defsubr (&Ssystem_name);
4907 defsubr (&Smessage);
4908 defsubr (&Smessage_box);
4909 defsubr (&Smessage_or_box);
4910 defsubr (&Scurrent_message);
4911 defsubr (&Sformat);
4912
4913 defsubr (&Sinsert_buffer_substring);
4914 defsubr (&Scompare_buffer_substrings);
4915 defsubr (&Ssubst_char_in_region);
4916 defsubr (&Stranslate_region_internal);
4917 defsubr (&Sdelete_region);
4918 defsubr (&Sdelete_and_extract_region);
4919 defsubr (&Swiden);
4920 defsubr (&Snarrow_to_region);
4921 defsubr (&Ssave_restriction);
4922 defsubr (&Stranspose_regions);
4923 }