]> code.delx.au - gnu-emacs/blob - src/alloc.c
* alloc.c (allocate_other_vector):
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef STDC_HEADERS
27 #include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
28 #endif
29
30 #ifdef ALLOC_DEBUG
31 #undef INLINE
32 #endif
33
34 /* Note that this declares bzero on OSF/1. How dumb. */
35
36 #include <signal.h>
37
38 #ifdef HAVE_GTK_AND_PTHREAD
39 #include <pthread.h>
40 #endif
41
42 /* This file is part of the core Lisp implementation, and thus must
43 deal with the real data structures. If the Lisp implementation is
44 replaced, this file likely will not be used. */
45
46 #undef HIDE_LISP_IMPLEMENTATION
47 #include "lisp.h"
48 #include "process.h"
49 #include "intervals.h"
50 #include "puresize.h"
51 #include "buffer.h"
52 #include "window.h"
53 #include "keyboard.h"
54 #include "frame.h"
55 #include "blockinput.h"
56 #include "charset.h"
57 #include "syssignal.h"
58 #include "termhooks.h" /* For struct terminal. */
59 #include <setjmp.h>
60
61 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
62 memory. Can do this only if using gmalloc.c. */
63
64 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
65 #undef GC_MALLOC_CHECK
66 #endif
67
68 #ifdef HAVE_UNISTD_H
69 #include <unistd.h>
70 #else
71 extern POINTER_TYPE *sbrk ();
72 #endif
73
74 #ifdef HAVE_FCNTL_H
75 #define INCLUDED_FCNTL
76 #include <fcntl.h>
77 #endif
78 #ifndef O_WRONLY
79 #define O_WRONLY 1
80 #endif
81
82 #ifdef WINDOWSNT
83 #include <fcntl.h>
84 #include "w32.h"
85 #endif
86
87 #ifdef DOUG_LEA_MALLOC
88
89 #include <malloc.h>
90 /* malloc.h #defines this as size_t, at least in glibc2. */
91 #ifndef __malloc_size_t
92 #define __malloc_size_t int
93 #endif
94
95 /* Specify maximum number of areas to mmap. It would be nice to use a
96 value that explicitly means "no limit". */
97
98 #define MMAP_MAX_AREAS 100000000
99
100 #else /* not DOUG_LEA_MALLOC */
101
102 /* The following come from gmalloc.c. */
103
104 #define __malloc_size_t size_t
105 extern __malloc_size_t _bytes_used;
106 extern __malloc_size_t __malloc_extra_blocks;
107
108 #endif /* not DOUG_LEA_MALLOC */
109
110 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
111
112 /* When GTK uses the file chooser dialog, different backends can be loaded
113 dynamically. One such a backend is the Gnome VFS backend that gets loaded
114 if you run Gnome. That backend creates several threads and also allocates
115 memory with malloc.
116
117 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
118 functions below are called from malloc, there is a chance that one
119 of these threads preempts the Emacs main thread and the hook variables
120 end up in an inconsistent state. So we have a mutex to prevent that (note
121 that the backend handles concurrent access to malloc within its own threads
122 but Emacs code running in the main thread is not included in that control).
123
124 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
125 happens in one of the backend threads we will have two threads that tries
126 to run Emacs code at once, and the code is not prepared for that.
127 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
128
129 static pthread_mutex_t alloc_mutex;
130
131 #define BLOCK_INPUT_ALLOC \
132 do \
133 { \
134 if (pthread_equal (pthread_self (), main_thread)) \
135 BLOCK_INPUT; \
136 pthread_mutex_lock (&alloc_mutex); \
137 } \
138 while (0)
139 #define UNBLOCK_INPUT_ALLOC \
140 do \
141 { \
142 pthread_mutex_unlock (&alloc_mutex); \
143 if (pthread_equal (pthread_self (), main_thread)) \
144 UNBLOCK_INPUT; \
145 } \
146 while (0)
147
148 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
149
150 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
151 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
152
153 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
154
155 /* Value of _bytes_used, when spare_memory was freed. */
156
157 static __malloc_size_t bytes_used_when_full;
158
159 static __malloc_size_t bytes_used_when_reconsidered;
160
161 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
162 to a struct Lisp_String. */
163
164 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
165 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
166 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
167
168 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
169 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
170 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
171
172 /* Value is the number of bytes/chars of S, a pointer to a struct
173 Lisp_String. This must be used instead of STRING_BYTES (S) or
174 S->size during GC, because S->size contains the mark bit for
175 strings. */
176
177 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
178 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
179
180 /* Number of bytes of consing done since the last gc. */
181
182 int consing_since_gc;
183
184 /* Count the amount of consing of various sorts of space. */
185
186 EMACS_INT cons_cells_consed;
187 EMACS_INT floats_consed;
188 EMACS_INT vector_cells_consed;
189 EMACS_INT symbols_consed;
190 EMACS_INT string_chars_consed;
191 EMACS_INT misc_objects_consed;
192 EMACS_INT intervals_consed;
193 EMACS_INT strings_consed;
194
195 /* Minimum number of bytes of consing since GC before next GC. */
196
197 EMACS_INT gc_cons_threshold;
198
199 /* Similar minimum, computed from Vgc_cons_percentage. */
200
201 EMACS_INT gc_relative_threshold;
202
203 static Lisp_Object Vgc_cons_percentage;
204
205 /* Minimum number of bytes of consing since GC before next GC,
206 when memory is full. */
207
208 EMACS_INT memory_full_cons_threshold;
209
210 /* Nonzero during GC. */
211
212 int gc_in_progress;
213
214 /* Nonzero means abort if try to GC.
215 This is for code which is written on the assumption that
216 no GC will happen, so as to verify that assumption. */
217
218 int abort_on_gc;
219
220 /* Nonzero means display messages at beginning and end of GC. */
221
222 int garbage_collection_messages;
223
224 #ifndef VIRT_ADDR_VARIES
225 extern
226 #endif /* VIRT_ADDR_VARIES */
227 int malloc_sbrk_used;
228
229 #ifndef VIRT_ADDR_VARIES
230 extern
231 #endif /* VIRT_ADDR_VARIES */
232 int malloc_sbrk_unused;
233
234 /* Number of live and free conses etc. */
235
236 static int total_conses, total_markers, total_symbols, total_vector_size;
237 static int total_free_conses, total_free_markers, total_free_symbols;
238 static int total_free_floats, total_floats;
239
240 /* Points to memory space allocated as "spare", to be freed if we run
241 out of memory. We keep one large block, four cons-blocks, and
242 two string blocks. */
243
244 static char *spare_memory[7];
245
246 /* Amount of spare memory to keep in large reserve block. */
247
248 #define SPARE_MEMORY (1 << 14)
249
250 /* Number of extra blocks malloc should get when it needs more core. */
251
252 static int malloc_hysteresis;
253
254 /* Non-nil means defun should do purecopy on the function definition. */
255
256 Lisp_Object Vpurify_flag;
257
258 /* Non-nil means we are handling a memory-full error. */
259
260 Lisp_Object Vmemory_full;
261
262 #ifndef HAVE_SHM
263
264 /* Initialize it to a nonzero value to force it into data space
265 (rather than bss space). That way unexec will remap it into text
266 space (pure), on some systems. We have not implemented the
267 remapping on more recent systems because this is less important
268 nowadays than in the days of small memories and timesharing. */
269
270 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
271 #define PUREBEG (char *) pure
272
273 #else /* HAVE_SHM */
274
275 #define pure PURE_SEG_BITS /* Use shared memory segment */
276 #define PUREBEG (char *)PURE_SEG_BITS
277
278 #endif /* HAVE_SHM */
279
280 /* Pointer to the pure area, and its size. */
281
282 static char *purebeg;
283 static size_t pure_size;
284
285 /* Number of bytes of pure storage used before pure storage overflowed.
286 If this is non-zero, this implies that an overflow occurred. */
287
288 static size_t pure_bytes_used_before_overflow;
289
290 /* Value is non-zero if P points into pure space. */
291
292 #define PURE_POINTER_P(P) \
293 (((PNTR_COMPARISON_TYPE) (P) \
294 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
295 && ((PNTR_COMPARISON_TYPE) (P) \
296 >= (PNTR_COMPARISON_TYPE) purebeg))
297
298 /* Total number of bytes allocated in pure storage. */
299
300 EMACS_INT pure_bytes_used;
301
302 /* Index in pure at which next pure Lisp object will be allocated.. */
303
304 static EMACS_INT pure_bytes_used_lisp;
305
306 /* Number of bytes allocated for non-Lisp objects in pure storage. */
307
308 static EMACS_INT pure_bytes_used_non_lisp;
309
310 /* If nonzero, this is a warning delivered by malloc and not yet
311 displayed. */
312
313 char *pending_malloc_warning;
314
315 /* Pre-computed signal argument for use when memory is exhausted. */
316
317 Lisp_Object Vmemory_signal_data;
318
319 /* Maximum amount of C stack to save when a GC happens. */
320
321 #ifndef MAX_SAVE_STACK
322 #define MAX_SAVE_STACK 16000
323 #endif
324
325 /* Buffer in which we save a copy of the C stack at each GC. */
326
327 static char *stack_copy;
328 static int stack_copy_size;
329
330 /* Non-zero means ignore malloc warnings. Set during initialization.
331 Currently not used. */
332
333 static int ignore_warnings;
334
335 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
336
337 /* Hook run after GC has finished. */
338
339 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
340
341 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
342 EMACS_INT gcs_done; /* accumulated GCs */
343
344 static void mark_buffer P_ ((Lisp_Object));
345 static void mark_terminals P_ ((void));
346 extern void mark_kboards P_ ((void));
347 extern void mark_ttys P_ ((void));
348 extern void mark_backtrace P_ ((void));
349 static void gc_sweep P_ ((void));
350 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
351 static void mark_face_cache P_ ((struct face_cache *));
352
353 #ifdef HAVE_WINDOW_SYSTEM
354 extern void mark_fringe_data P_ ((void));
355 static void mark_image P_ ((struct image *));
356 static void mark_image_cache P_ ((struct frame *));
357 #endif /* HAVE_WINDOW_SYSTEM */
358
359 static struct Lisp_String *allocate_string P_ ((void));
360 static void compact_small_strings P_ ((void));
361 static void free_large_strings P_ ((void));
362 static void sweep_strings P_ ((void));
363
364 extern int message_enable_multibyte;
365
366 /* When scanning the C stack for live Lisp objects, Emacs keeps track
367 of what memory allocated via lisp_malloc is intended for what
368 purpose. This enumeration specifies the type of memory. */
369
370 enum mem_type
371 {
372 MEM_TYPE_NON_LISP,
373 MEM_TYPE_BUFFER,
374 MEM_TYPE_CONS,
375 MEM_TYPE_STRING,
376 MEM_TYPE_MISC,
377 MEM_TYPE_SYMBOL,
378 MEM_TYPE_FLOAT,
379 /* We used to keep separate mem_types for subtypes of vectors such as
380 process, hash_table, frame, terminal, and window, but we never made
381 use of the distinction, so it only caused source-code complexity
382 and runtime slowdown. Minor but pointless. */
383 MEM_TYPE_VECTORLIKE
384 };
385
386 static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
387 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
388 void refill_memory_reserve ();
389
390
391 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
392
393 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
394 #include <stdio.h> /* For fprintf. */
395 #endif
396
397 /* A unique object in pure space used to make some Lisp objects
398 on free lists recognizable in O(1). */
399
400 static Lisp_Object Vdead;
401
402 #ifdef GC_MALLOC_CHECK
403
404 enum mem_type allocated_mem_type;
405 static int dont_register_blocks;
406
407 #endif /* GC_MALLOC_CHECK */
408
409 /* A node in the red-black tree describing allocated memory containing
410 Lisp data. Each such block is recorded with its start and end
411 address when it is allocated, and removed from the tree when it
412 is freed.
413
414 A red-black tree is a balanced binary tree with the following
415 properties:
416
417 1. Every node is either red or black.
418 2. Every leaf is black.
419 3. If a node is red, then both of its children are black.
420 4. Every simple path from a node to a descendant leaf contains
421 the same number of black nodes.
422 5. The root is always black.
423
424 When nodes are inserted into the tree, or deleted from the tree,
425 the tree is "fixed" so that these properties are always true.
426
427 A red-black tree with N internal nodes has height at most 2
428 log(N+1). Searches, insertions and deletions are done in O(log N).
429 Please see a text book about data structures for a detailed
430 description of red-black trees. Any book worth its salt should
431 describe them. */
432
433 struct mem_node
434 {
435 /* Children of this node. These pointers are never NULL. When there
436 is no child, the value is MEM_NIL, which points to a dummy node. */
437 struct mem_node *left, *right;
438
439 /* The parent of this node. In the root node, this is NULL. */
440 struct mem_node *parent;
441
442 /* Start and end of allocated region. */
443 void *start, *end;
444
445 /* Node color. */
446 enum {MEM_BLACK, MEM_RED} color;
447
448 /* Memory type. */
449 enum mem_type type;
450 };
451
452 /* Base address of stack. Set in main. */
453
454 Lisp_Object *stack_base;
455
456 /* Root of the tree describing allocated Lisp memory. */
457
458 static struct mem_node *mem_root;
459
460 /* Lowest and highest known address in the heap. */
461
462 static void *min_heap_address, *max_heap_address;
463
464 /* Sentinel node of the tree. */
465
466 static struct mem_node mem_z;
467 #define MEM_NIL &mem_z
468
469 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
470 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT));
471 static void lisp_free P_ ((POINTER_TYPE *));
472 static void mark_stack P_ ((void));
473 static int live_vector_p P_ ((struct mem_node *, void *));
474 static int live_buffer_p P_ ((struct mem_node *, void *));
475 static int live_string_p P_ ((struct mem_node *, void *));
476 static int live_cons_p P_ ((struct mem_node *, void *));
477 static int live_symbol_p P_ ((struct mem_node *, void *));
478 static int live_float_p P_ ((struct mem_node *, void *));
479 static int live_misc_p P_ ((struct mem_node *, void *));
480 static void mark_maybe_object P_ ((Lisp_Object));
481 static void mark_memory P_ ((void *, void *, int));
482 static void mem_init P_ ((void));
483 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
484 static void mem_insert_fixup P_ ((struct mem_node *));
485 static void mem_rotate_left P_ ((struct mem_node *));
486 static void mem_rotate_right P_ ((struct mem_node *));
487 static void mem_delete P_ ((struct mem_node *));
488 static void mem_delete_fixup P_ ((struct mem_node *));
489 static INLINE struct mem_node *mem_find P_ ((void *));
490
491
492 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
493 static void check_gcpros P_ ((void));
494 #endif
495
496 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
497
498 /* Recording what needs to be marked for gc. */
499
500 struct gcpro *gcprolist;
501
502 /* Addresses of staticpro'd variables. Initialize it to a nonzero
503 value; otherwise some compilers put it into BSS. */
504
505 #define NSTATICS 1280
506 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
507
508 /* Index of next unused slot in staticvec. */
509
510 static int staticidx = 0;
511
512 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
513
514
515 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
516 ALIGNMENT must be a power of 2. */
517
518 #define ALIGN(ptr, ALIGNMENT) \
519 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
520 & ~((ALIGNMENT) - 1)))
521
522
523 \f
524 /************************************************************************
525 Malloc
526 ************************************************************************/
527
528 /* Function malloc calls this if it finds we are near exhausting storage. */
529
530 void
531 malloc_warning (str)
532 char *str;
533 {
534 pending_malloc_warning = str;
535 }
536
537
538 /* Display an already-pending malloc warning. */
539
540 void
541 display_malloc_warning ()
542 {
543 call3 (intern ("display-warning"),
544 intern ("alloc"),
545 build_string (pending_malloc_warning),
546 intern ("emergency"));
547 pending_malloc_warning = 0;
548 }
549
550
551 #ifdef DOUG_LEA_MALLOC
552 # define BYTES_USED (mallinfo ().uordblks)
553 #else
554 # define BYTES_USED _bytes_used
555 #endif
556 \f
557 /* Called if we can't allocate relocatable space for a buffer. */
558
559 void
560 buffer_memory_full ()
561 {
562 /* If buffers use the relocating allocator, no need to free
563 spare_memory, because we may have plenty of malloc space left
564 that we could get, and if we don't, the malloc that fails will
565 itself cause spare_memory to be freed. If buffers don't use the
566 relocating allocator, treat this like any other failing
567 malloc. */
568
569 #ifndef REL_ALLOC
570 memory_full ();
571 #endif
572
573 /* This used to call error, but if we've run out of memory, we could
574 get infinite recursion trying to build the string. */
575 xsignal (Qnil, Vmemory_signal_data);
576 }
577
578
579 #ifdef XMALLOC_OVERRUN_CHECK
580
581 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
582 and a 16 byte trailer around each block.
583
584 The header consists of 12 fixed bytes + a 4 byte integer contaning the
585 original block size, while the trailer consists of 16 fixed bytes.
586
587 The header is used to detect whether this block has been allocated
588 through these functions -- as it seems that some low-level libc
589 functions may bypass the malloc hooks.
590 */
591
592
593 #define XMALLOC_OVERRUN_CHECK_SIZE 16
594
595 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
596 { 0x9a, 0x9b, 0xae, 0xaf,
597 0xbf, 0xbe, 0xce, 0xcf,
598 0xea, 0xeb, 0xec, 0xed };
599
600 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
601 { 0xaa, 0xab, 0xac, 0xad,
602 0xba, 0xbb, 0xbc, 0xbd,
603 0xca, 0xcb, 0xcc, 0xcd,
604 0xda, 0xdb, 0xdc, 0xdd };
605
606 /* Macros to insert and extract the block size in the header. */
607
608 #define XMALLOC_PUT_SIZE(ptr, size) \
609 (ptr[-1] = (size & 0xff), \
610 ptr[-2] = ((size >> 8) & 0xff), \
611 ptr[-3] = ((size >> 16) & 0xff), \
612 ptr[-4] = ((size >> 24) & 0xff))
613
614 #define XMALLOC_GET_SIZE(ptr) \
615 (size_t)((unsigned)(ptr[-1]) | \
616 ((unsigned)(ptr[-2]) << 8) | \
617 ((unsigned)(ptr[-3]) << 16) | \
618 ((unsigned)(ptr[-4]) << 24))
619
620
621 /* The call depth in overrun_check functions. For example, this might happen:
622 xmalloc()
623 overrun_check_malloc()
624 -> malloc -> (via hook)_-> emacs_blocked_malloc
625 -> overrun_check_malloc
626 call malloc (hooks are NULL, so real malloc is called).
627 malloc returns 10000.
628 add overhead, return 10016.
629 <- (back in overrun_check_malloc)
630 add overhead again, return 10032
631 xmalloc returns 10032.
632
633 (time passes).
634
635 xfree(10032)
636 overrun_check_free(10032)
637 decrease overhed
638 free(10016) <- crash, because 10000 is the original pointer. */
639
640 static int check_depth;
641
642 /* Like malloc, but wraps allocated block with header and trailer. */
643
644 POINTER_TYPE *
645 overrun_check_malloc (size)
646 size_t size;
647 {
648 register unsigned char *val;
649 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
650
651 val = (unsigned char *) malloc (size + overhead);
652 if (val && check_depth == 1)
653 {
654 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
655 val += XMALLOC_OVERRUN_CHECK_SIZE;
656 XMALLOC_PUT_SIZE(val, size);
657 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
658 }
659 --check_depth;
660 return (POINTER_TYPE *)val;
661 }
662
663
664 /* Like realloc, but checks old block for overrun, and wraps new block
665 with header and trailer. */
666
667 POINTER_TYPE *
668 overrun_check_realloc (block, size)
669 POINTER_TYPE *block;
670 size_t size;
671 {
672 register unsigned char *val = (unsigned char *)block;
673 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
674
675 if (val
676 && check_depth == 1
677 && bcmp (xmalloc_overrun_check_header,
678 val - XMALLOC_OVERRUN_CHECK_SIZE,
679 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
680 {
681 size_t osize = XMALLOC_GET_SIZE (val);
682 if (bcmp (xmalloc_overrun_check_trailer,
683 val + osize,
684 XMALLOC_OVERRUN_CHECK_SIZE))
685 abort ();
686 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
687 val -= XMALLOC_OVERRUN_CHECK_SIZE;
688 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
689 }
690
691 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
692
693 if (val && check_depth == 1)
694 {
695 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
696 val += XMALLOC_OVERRUN_CHECK_SIZE;
697 XMALLOC_PUT_SIZE(val, size);
698 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
699 }
700 --check_depth;
701 return (POINTER_TYPE *)val;
702 }
703
704 /* Like free, but checks block for overrun. */
705
706 void
707 overrun_check_free (block)
708 POINTER_TYPE *block;
709 {
710 unsigned char *val = (unsigned char *)block;
711
712 ++check_depth;
713 if (val
714 && check_depth == 1
715 && bcmp (xmalloc_overrun_check_header,
716 val - XMALLOC_OVERRUN_CHECK_SIZE,
717 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
718 {
719 size_t osize = XMALLOC_GET_SIZE (val);
720 if (bcmp (xmalloc_overrun_check_trailer,
721 val + osize,
722 XMALLOC_OVERRUN_CHECK_SIZE))
723 abort ();
724 #ifdef XMALLOC_CLEAR_FREE_MEMORY
725 val -= XMALLOC_OVERRUN_CHECK_SIZE;
726 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
727 #else
728 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
729 val -= XMALLOC_OVERRUN_CHECK_SIZE;
730 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
731 #endif
732 }
733
734 free (val);
735 --check_depth;
736 }
737
738 #undef malloc
739 #undef realloc
740 #undef free
741 #define malloc overrun_check_malloc
742 #define realloc overrun_check_realloc
743 #define free overrun_check_free
744 #endif
745
746 #ifdef SYNC_INPUT
747 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
748 there's no need to block input around malloc. */
749 #define MALLOC_BLOCK_INPUT ((void)0)
750 #define MALLOC_UNBLOCK_INPUT ((void)0)
751 #else
752 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
753 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
754 #endif
755
756 /* Like malloc but check for no memory and block interrupt input.. */
757
758 POINTER_TYPE *
759 xmalloc (size)
760 size_t size;
761 {
762 register POINTER_TYPE *val;
763
764 MALLOC_BLOCK_INPUT;
765 val = (POINTER_TYPE *) malloc (size);
766 MALLOC_UNBLOCK_INPUT;
767
768 if (!val && size)
769 memory_full ();
770 return val;
771 }
772
773
774 /* Like realloc but check for no memory and block interrupt input.. */
775
776 POINTER_TYPE *
777 xrealloc (block, size)
778 POINTER_TYPE *block;
779 size_t size;
780 {
781 register POINTER_TYPE *val;
782
783 MALLOC_BLOCK_INPUT;
784 /* We must call malloc explicitly when BLOCK is 0, since some
785 reallocs don't do this. */
786 if (! block)
787 val = (POINTER_TYPE *) malloc (size);
788 else
789 val = (POINTER_TYPE *) realloc (block, size);
790 MALLOC_UNBLOCK_INPUT;
791
792 if (!val && size) memory_full ();
793 return val;
794 }
795
796
797 /* Like free but block interrupt input. */
798
799 void
800 xfree (block)
801 POINTER_TYPE *block;
802 {
803 MALLOC_BLOCK_INPUT;
804 free (block);
805 MALLOC_UNBLOCK_INPUT;
806 /* We don't call refill_memory_reserve here
807 because that duplicates doing so in emacs_blocked_free
808 and the criterion should go there. */
809 }
810
811
812 /* Like strdup, but uses xmalloc. */
813
814 char *
815 xstrdup (s)
816 const char *s;
817 {
818 size_t len = strlen (s) + 1;
819 char *p = (char *) xmalloc (len);
820 bcopy (s, p, len);
821 return p;
822 }
823
824
825 /* Unwind for SAFE_ALLOCA */
826
827 Lisp_Object
828 safe_alloca_unwind (arg)
829 Lisp_Object arg;
830 {
831 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
832
833 p->dogc = 0;
834 xfree (p->pointer);
835 p->pointer = 0;
836 free_misc (arg);
837 return Qnil;
838 }
839
840
841 /* Like malloc but used for allocating Lisp data. NBYTES is the
842 number of bytes to allocate, TYPE describes the intended use of the
843 allcated memory block (for strings, for conses, ...). */
844
845 #ifndef USE_LSB_TAG
846 static void *lisp_malloc_loser;
847 #endif
848
849 static POINTER_TYPE *
850 lisp_malloc (nbytes, type)
851 size_t nbytes;
852 enum mem_type type;
853 {
854 register void *val;
855
856 MALLOC_BLOCK_INPUT;
857
858 #ifdef GC_MALLOC_CHECK
859 allocated_mem_type = type;
860 #endif
861
862 val = (void *) malloc (nbytes);
863
864 #ifndef USE_LSB_TAG
865 /* If the memory just allocated cannot be addressed thru a Lisp
866 object's pointer, and it needs to be,
867 that's equivalent to running out of memory. */
868 if (val && type != MEM_TYPE_NON_LISP)
869 {
870 Lisp_Object tem;
871 XSETCONS (tem, (char *) val + nbytes - 1);
872 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
873 {
874 lisp_malloc_loser = val;
875 free (val);
876 val = 0;
877 }
878 }
879 #endif
880
881 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
882 if (val && type != MEM_TYPE_NON_LISP)
883 mem_insert (val, (char *) val + nbytes, type);
884 #endif
885
886 MALLOC_UNBLOCK_INPUT;
887 if (!val && nbytes)
888 memory_full ();
889 return val;
890 }
891
892 /* Free BLOCK. This must be called to free memory allocated with a
893 call to lisp_malloc. */
894
895 static void
896 lisp_free (block)
897 POINTER_TYPE *block;
898 {
899 MALLOC_BLOCK_INPUT;
900 free (block);
901 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
902 mem_delete (mem_find (block));
903 #endif
904 MALLOC_UNBLOCK_INPUT;
905 }
906
907 /* Allocation of aligned blocks of memory to store Lisp data. */
908 /* The entry point is lisp_align_malloc which returns blocks of at most */
909 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
910
911 /* Use posix_memalloc if the system has it and we're using the system's
912 malloc (because our gmalloc.c routines don't have posix_memalign although
913 its memalloc could be used). */
914 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
915 #define USE_POSIX_MEMALIGN 1
916 #endif
917
918 /* BLOCK_ALIGN has to be a power of 2. */
919 #define BLOCK_ALIGN (1 << 10)
920
921 /* Padding to leave at the end of a malloc'd block. This is to give
922 malloc a chance to minimize the amount of memory wasted to alignment.
923 It should be tuned to the particular malloc library used.
924 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
925 posix_memalign on the other hand would ideally prefer a value of 4
926 because otherwise, there's 1020 bytes wasted between each ablocks.
927 In Emacs, testing shows that those 1020 can most of the time be
928 efficiently used by malloc to place other objects, so a value of 0 can
929 still preferable unless you have a lot of aligned blocks and virtually
930 nothing else. */
931 #define BLOCK_PADDING 0
932 #define BLOCK_BYTES \
933 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
934
935 /* Internal data structures and constants. */
936
937 #define ABLOCKS_SIZE 16
938
939 /* An aligned block of memory. */
940 struct ablock
941 {
942 union
943 {
944 char payload[BLOCK_BYTES];
945 struct ablock *next_free;
946 } x;
947 /* `abase' is the aligned base of the ablocks. */
948 /* It is overloaded to hold the virtual `busy' field that counts
949 the number of used ablock in the parent ablocks.
950 The first ablock has the `busy' field, the others have the `abase'
951 field. To tell the difference, we assume that pointers will have
952 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
953 is used to tell whether the real base of the parent ablocks is `abase'
954 (if not, the word before the first ablock holds a pointer to the
955 real base). */
956 struct ablocks *abase;
957 /* The padding of all but the last ablock is unused. The padding of
958 the last ablock in an ablocks is not allocated. */
959 #if BLOCK_PADDING
960 char padding[BLOCK_PADDING];
961 #endif
962 };
963
964 /* A bunch of consecutive aligned blocks. */
965 struct ablocks
966 {
967 struct ablock blocks[ABLOCKS_SIZE];
968 };
969
970 /* Size of the block requested from malloc or memalign. */
971 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
972
973 #define ABLOCK_ABASE(block) \
974 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
975 ? (struct ablocks *)(block) \
976 : (block)->abase)
977
978 /* Virtual `busy' field. */
979 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
980
981 /* Pointer to the (not necessarily aligned) malloc block. */
982 #ifdef USE_POSIX_MEMALIGN
983 #define ABLOCKS_BASE(abase) (abase)
984 #else
985 #define ABLOCKS_BASE(abase) \
986 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
987 #endif
988
989 /* The list of free ablock. */
990 static struct ablock *free_ablock;
991
992 /* Allocate an aligned block of nbytes.
993 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
994 smaller or equal to BLOCK_BYTES. */
995 static POINTER_TYPE *
996 lisp_align_malloc (nbytes, type)
997 size_t nbytes;
998 enum mem_type type;
999 {
1000 void *base, *val;
1001 struct ablocks *abase;
1002
1003 eassert (nbytes <= BLOCK_BYTES);
1004
1005 MALLOC_BLOCK_INPUT;
1006
1007 #ifdef GC_MALLOC_CHECK
1008 allocated_mem_type = type;
1009 #endif
1010
1011 if (!free_ablock)
1012 {
1013 int i;
1014 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
1015
1016 #ifdef DOUG_LEA_MALLOC
1017 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1018 because mapped region contents are not preserved in
1019 a dumped Emacs. */
1020 mallopt (M_MMAP_MAX, 0);
1021 #endif
1022
1023 #ifdef USE_POSIX_MEMALIGN
1024 {
1025 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1026 if (err)
1027 base = NULL;
1028 abase = base;
1029 }
1030 #else
1031 base = malloc (ABLOCKS_BYTES);
1032 abase = ALIGN (base, BLOCK_ALIGN);
1033 #endif
1034
1035 if (base == 0)
1036 {
1037 MALLOC_UNBLOCK_INPUT;
1038 memory_full ();
1039 }
1040
1041 aligned = (base == abase);
1042 if (!aligned)
1043 ((void**)abase)[-1] = base;
1044
1045 #ifdef DOUG_LEA_MALLOC
1046 /* Back to a reasonable maximum of mmap'ed areas. */
1047 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1048 #endif
1049
1050 #ifndef USE_LSB_TAG
1051 /* If the memory just allocated cannot be addressed thru a Lisp
1052 object's pointer, and it needs to be, that's equivalent to
1053 running out of memory. */
1054 if (type != MEM_TYPE_NON_LISP)
1055 {
1056 Lisp_Object tem;
1057 char *end = (char *) base + ABLOCKS_BYTES - 1;
1058 XSETCONS (tem, end);
1059 if ((char *) XCONS (tem) != end)
1060 {
1061 lisp_malloc_loser = base;
1062 free (base);
1063 MALLOC_UNBLOCK_INPUT;
1064 memory_full ();
1065 }
1066 }
1067 #endif
1068
1069 /* Initialize the blocks and put them on the free list.
1070 Is `base' was not properly aligned, we can't use the last block. */
1071 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1072 {
1073 abase->blocks[i].abase = abase;
1074 abase->blocks[i].x.next_free = free_ablock;
1075 free_ablock = &abase->blocks[i];
1076 }
1077 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1078
1079 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1080 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1081 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1082 eassert (ABLOCKS_BASE (abase) == base);
1083 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1084 }
1085
1086 abase = ABLOCK_ABASE (free_ablock);
1087 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1088 val = free_ablock;
1089 free_ablock = free_ablock->x.next_free;
1090
1091 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1092 if (val && type != MEM_TYPE_NON_LISP)
1093 mem_insert (val, (char *) val + nbytes, type);
1094 #endif
1095
1096 MALLOC_UNBLOCK_INPUT;
1097 if (!val && nbytes)
1098 memory_full ();
1099
1100 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1101 return val;
1102 }
1103
1104 static void
1105 lisp_align_free (block)
1106 POINTER_TYPE *block;
1107 {
1108 struct ablock *ablock = block;
1109 struct ablocks *abase = ABLOCK_ABASE (ablock);
1110
1111 MALLOC_BLOCK_INPUT;
1112 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1113 mem_delete (mem_find (block));
1114 #endif
1115 /* Put on free list. */
1116 ablock->x.next_free = free_ablock;
1117 free_ablock = ablock;
1118 /* Update busy count. */
1119 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1120
1121 if (2 > (long) ABLOCKS_BUSY (abase))
1122 { /* All the blocks are free. */
1123 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1124 struct ablock **tem = &free_ablock;
1125 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1126
1127 while (*tem)
1128 {
1129 if (*tem >= (struct ablock *) abase && *tem < atop)
1130 {
1131 i++;
1132 *tem = (*tem)->x.next_free;
1133 }
1134 else
1135 tem = &(*tem)->x.next_free;
1136 }
1137 eassert ((aligned & 1) == aligned);
1138 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1139 #ifdef USE_POSIX_MEMALIGN
1140 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1141 #endif
1142 free (ABLOCKS_BASE (abase));
1143 }
1144 MALLOC_UNBLOCK_INPUT;
1145 }
1146
1147 /* Return a new buffer structure allocated from the heap with
1148 a call to lisp_malloc. */
1149
1150 struct buffer *
1151 allocate_buffer ()
1152 {
1153 struct buffer *b
1154 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1155 MEM_TYPE_BUFFER);
1156 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1157 XSETPVECTYPE (b, PVEC_BUFFER);
1158 return b;
1159 }
1160
1161 \f
1162 #ifndef SYSTEM_MALLOC
1163
1164 /* Arranging to disable input signals while we're in malloc.
1165
1166 This only works with GNU malloc. To help out systems which can't
1167 use GNU malloc, all the calls to malloc, realloc, and free
1168 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1169 pair; unfortunately, we have no idea what C library functions
1170 might call malloc, so we can't really protect them unless you're
1171 using GNU malloc. Fortunately, most of the major operating systems
1172 can use GNU malloc. */
1173
1174 #ifndef SYNC_INPUT
1175 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1176 there's no need to block input around malloc. */
1177
1178 #ifndef DOUG_LEA_MALLOC
1179 extern void * (*__malloc_hook) P_ ((size_t, const void *));
1180 extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1181 extern void (*__free_hook) P_ ((void *, const void *));
1182 /* Else declared in malloc.h, perhaps with an extra arg. */
1183 #endif /* DOUG_LEA_MALLOC */
1184 static void * (*old_malloc_hook) P_ ((size_t, const void *));
1185 static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1186 static void (*old_free_hook) P_ ((void*, const void*));
1187
1188 /* This function is used as the hook for free to call. */
1189
1190 static void
1191 emacs_blocked_free (ptr, ptr2)
1192 void *ptr;
1193 const void *ptr2;
1194 {
1195 BLOCK_INPUT_ALLOC;
1196
1197 #ifdef GC_MALLOC_CHECK
1198 if (ptr)
1199 {
1200 struct mem_node *m;
1201
1202 m = mem_find (ptr);
1203 if (m == MEM_NIL || m->start != ptr)
1204 {
1205 fprintf (stderr,
1206 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1207 abort ();
1208 }
1209 else
1210 {
1211 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1212 mem_delete (m);
1213 }
1214 }
1215 #endif /* GC_MALLOC_CHECK */
1216
1217 __free_hook = old_free_hook;
1218 free (ptr);
1219
1220 /* If we released our reserve (due to running out of memory),
1221 and we have a fair amount free once again,
1222 try to set aside another reserve in case we run out once more. */
1223 if (! NILP (Vmemory_full)
1224 /* Verify there is enough space that even with the malloc
1225 hysteresis this call won't run out again.
1226 The code here is correct as long as SPARE_MEMORY
1227 is substantially larger than the block size malloc uses. */
1228 && (bytes_used_when_full
1229 > ((bytes_used_when_reconsidered = BYTES_USED)
1230 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1231 refill_memory_reserve ();
1232
1233 __free_hook = emacs_blocked_free;
1234 UNBLOCK_INPUT_ALLOC;
1235 }
1236
1237
1238 /* This function is the malloc hook that Emacs uses. */
1239
1240 static void *
1241 emacs_blocked_malloc (size, ptr)
1242 size_t size;
1243 const void *ptr;
1244 {
1245 void *value;
1246
1247 BLOCK_INPUT_ALLOC;
1248 __malloc_hook = old_malloc_hook;
1249 #ifdef DOUG_LEA_MALLOC
1250 /* Segfaults on my system. --lorentey */
1251 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1252 #else
1253 __malloc_extra_blocks = malloc_hysteresis;
1254 #endif
1255
1256 value = (void *) malloc (size);
1257
1258 #ifdef GC_MALLOC_CHECK
1259 {
1260 struct mem_node *m = mem_find (value);
1261 if (m != MEM_NIL)
1262 {
1263 fprintf (stderr, "Malloc returned %p which is already in use\n",
1264 value);
1265 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1266 m->start, m->end, (char *) m->end - (char *) m->start,
1267 m->type);
1268 abort ();
1269 }
1270
1271 if (!dont_register_blocks)
1272 {
1273 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1274 allocated_mem_type = MEM_TYPE_NON_LISP;
1275 }
1276 }
1277 #endif /* GC_MALLOC_CHECK */
1278
1279 __malloc_hook = emacs_blocked_malloc;
1280 UNBLOCK_INPUT_ALLOC;
1281
1282 /* fprintf (stderr, "%p malloc\n", value); */
1283 return value;
1284 }
1285
1286
1287 /* This function is the realloc hook that Emacs uses. */
1288
1289 static void *
1290 emacs_blocked_realloc (ptr, size, ptr2)
1291 void *ptr;
1292 size_t size;
1293 const void *ptr2;
1294 {
1295 void *value;
1296
1297 BLOCK_INPUT_ALLOC;
1298 __realloc_hook = old_realloc_hook;
1299
1300 #ifdef GC_MALLOC_CHECK
1301 if (ptr)
1302 {
1303 struct mem_node *m = mem_find (ptr);
1304 if (m == MEM_NIL || m->start != ptr)
1305 {
1306 fprintf (stderr,
1307 "Realloc of %p which wasn't allocated with malloc\n",
1308 ptr);
1309 abort ();
1310 }
1311
1312 mem_delete (m);
1313 }
1314
1315 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1316
1317 /* Prevent malloc from registering blocks. */
1318 dont_register_blocks = 1;
1319 #endif /* GC_MALLOC_CHECK */
1320
1321 value = (void *) realloc (ptr, size);
1322
1323 #ifdef GC_MALLOC_CHECK
1324 dont_register_blocks = 0;
1325
1326 {
1327 struct mem_node *m = mem_find (value);
1328 if (m != MEM_NIL)
1329 {
1330 fprintf (stderr, "Realloc returns memory that is already in use\n");
1331 abort ();
1332 }
1333
1334 /* Can't handle zero size regions in the red-black tree. */
1335 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1336 }
1337
1338 /* fprintf (stderr, "%p <- realloc\n", value); */
1339 #endif /* GC_MALLOC_CHECK */
1340
1341 __realloc_hook = emacs_blocked_realloc;
1342 UNBLOCK_INPUT_ALLOC;
1343
1344 return value;
1345 }
1346
1347
1348 #ifdef HAVE_GTK_AND_PTHREAD
1349 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1350 normal malloc. Some thread implementations need this as they call
1351 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1352 calls malloc because it is the first call, and we have an endless loop. */
1353
1354 void
1355 reset_malloc_hooks ()
1356 {
1357 __free_hook = old_free_hook;
1358 __malloc_hook = old_malloc_hook;
1359 __realloc_hook = old_realloc_hook;
1360 }
1361 #endif /* HAVE_GTK_AND_PTHREAD */
1362
1363
1364 /* Called from main to set up malloc to use our hooks. */
1365
1366 void
1367 uninterrupt_malloc ()
1368 {
1369 #ifdef HAVE_GTK_AND_PTHREAD
1370 pthread_mutexattr_t attr;
1371
1372 /* GLIBC has a faster way to do this, but lets keep it portable.
1373 This is according to the Single UNIX Specification. */
1374 pthread_mutexattr_init (&attr);
1375 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1376 pthread_mutex_init (&alloc_mutex, &attr);
1377 #endif /* HAVE_GTK_AND_PTHREAD */
1378
1379 if (__free_hook != emacs_blocked_free)
1380 old_free_hook = __free_hook;
1381 __free_hook = emacs_blocked_free;
1382
1383 if (__malloc_hook != emacs_blocked_malloc)
1384 old_malloc_hook = __malloc_hook;
1385 __malloc_hook = emacs_blocked_malloc;
1386
1387 if (__realloc_hook != emacs_blocked_realloc)
1388 old_realloc_hook = __realloc_hook;
1389 __realloc_hook = emacs_blocked_realloc;
1390 }
1391
1392 #endif /* not SYNC_INPUT */
1393 #endif /* not SYSTEM_MALLOC */
1394
1395
1396 \f
1397 /***********************************************************************
1398 Interval Allocation
1399 ***********************************************************************/
1400
1401 /* Number of intervals allocated in an interval_block structure.
1402 The 1020 is 1024 minus malloc overhead. */
1403
1404 #define INTERVAL_BLOCK_SIZE \
1405 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1406
1407 /* Intervals are allocated in chunks in form of an interval_block
1408 structure. */
1409
1410 struct interval_block
1411 {
1412 /* Place `intervals' first, to preserve alignment. */
1413 struct interval intervals[INTERVAL_BLOCK_SIZE];
1414 struct interval_block *next;
1415 };
1416
1417 /* Current interval block. Its `next' pointer points to older
1418 blocks. */
1419
1420 static struct interval_block *interval_block;
1421
1422 /* Index in interval_block above of the next unused interval
1423 structure. */
1424
1425 static int interval_block_index;
1426
1427 /* Number of free and live intervals. */
1428
1429 static int total_free_intervals, total_intervals;
1430
1431 /* List of free intervals. */
1432
1433 INTERVAL interval_free_list;
1434
1435 /* Total number of interval blocks now in use. */
1436
1437 static int n_interval_blocks;
1438
1439
1440 /* Initialize interval allocation. */
1441
1442 static void
1443 init_intervals ()
1444 {
1445 interval_block = NULL;
1446 interval_block_index = INTERVAL_BLOCK_SIZE;
1447 interval_free_list = 0;
1448 n_interval_blocks = 0;
1449 }
1450
1451
1452 /* Return a new interval. */
1453
1454 INTERVAL
1455 make_interval ()
1456 {
1457 INTERVAL val;
1458
1459 /* eassert (!handling_signal); */
1460
1461 MALLOC_BLOCK_INPUT;
1462
1463 if (interval_free_list)
1464 {
1465 val = interval_free_list;
1466 interval_free_list = INTERVAL_PARENT (interval_free_list);
1467 }
1468 else
1469 {
1470 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1471 {
1472 register struct interval_block *newi;
1473
1474 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1475 MEM_TYPE_NON_LISP);
1476
1477 newi->next = interval_block;
1478 interval_block = newi;
1479 interval_block_index = 0;
1480 n_interval_blocks++;
1481 }
1482 val = &interval_block->intervals[interval_block_index++];
1483 }
1484
1485 MALLOC_UNBLOCK_INPUT;
1486
1487 consing_since_gc += sizeof (struct interval);
1488 intervals_consed++;
1489 RESET_INTERVAL (val);
1490 val->gcmarkbit = 0;
1491 return val;
1492 }
1493
1494
1495 /* Mark Lisp objects in interval I. */
1496
1497 static void
1498 mark_interval (i, dummy)
1499 register INTERVAL i;
1500 Lisp_Object dummy;
1501 {
1502 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1503 i->gcmarkbit = 1;
1504 mark_object (i->plist);
1505 }
1506
1507
1508 /* Mark the interval tree rooted in TREE. Don't call this directly;
1509 use the macro MARK_INTERVAL_TREE instead. */
1510
1511 static void
1512 mark_interval_tree (tree)
1513 register INTERVAL tree;
1514 {
1515 /* No need to test if this tree has been marked already; this
1516 function is always called through the MARK_INTERVAL_TREE macro,
1517 which takes care of that. */
1518
1519 traverse_intervals_noorder (tree, mark_interval, Qnil);
1520 }
1521
1522
1523 /* Mark the interval tree rooted in I. */
1524
1525 #define MARK_INTERVAL_TREE(i) \
1526 do { \
1527 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1528 mark_interval_tree (i); \
1529 } while (0)
1530
1531
1532 #define UNMARK_BALANCE_INTERVALS(i) \
1533 do { \
1534 if (! NULL_INTERVAL_P (i)) \
1535 (i) = balance_intervals (i); \
1536 } while (0)
1537
1538 \f
1539 /* Number support. If NO_UNION_TYPE isn't in effect, we
1540 can't create number objects in macros. */
1541 #ifndef make_number
1542 Lisp_Object
1543 make_number (n)
1544 EMACS_INT n;
1545 {
1546 Lisp_Object obj;
1547 obj.s.val = n;
1548 obj.s.type = Lisp_Int;
1549 return obj;
1550 }
1551 #endif
1552 \f
1553 /***********************************************************************
1554 String Allocation
1555 ***********************************************************************/
1556
1557 /* Lisp_Strings are allocated in string_block structures. When a new
1558 string_block is allocated, all the Lisp_Strings it contains are
1559 added to a free-list string_free_list. When a new Lisp_String is
1560 needed, it is taken from that list. During the sweep phase of GC,
1561 string_blocks that are entirely free are freed, except two which
1562 we keep.
1563
1564 String data is allocated from sblock structures. Strings larger
1565 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1566 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1567
1568 Sblocks consist internally of sdata structures, one for each
1569 Lisp_String. The sdata structure points to the Lisp_String it
1570 belongs to. The Lisp_String points back to the `u.data' member of
1571 its sdata structure.
1572
1573 When a Lisp_String is freed during GC, it is put back on
1574 string_free_list, and its `data' member and its sdata's `string'
1575 pointer is set to null. The size of the string is recorded in the
1576 `u.nbytes' member of the sdata. So, sdata structures that are no
1577 longer used, can be easily recognized, and it's easy to compact the
1578 sblocks of small strings which we do in compact_small_strings. */
1579
1580 /* Size in bytes of an sblock structure used for small strings. This
1581 is 8192 minus malloc overhead. */
1582
1583 #define SBLOCK_SIZE 8188
1584
1585 /* Strings larger than this are considered large strings. String data
1586 for large strings is allocated from individual sblocks. */
1587
1588 #define LARGE_STRING_BYTES 1024
1589
1590 /* Structure describing string memory sub-allocated from an sblock.
1591 This is where the contents of Lisp strings are stored. */
1592
1593 struct sdata
1594 {
1595 /* Back-pointer to the string this sdata belongs to. If null, this
1596 structure is free, and the NBYTES member of the union below
1597 contains the string's byte size (the same value that STRING_BYTES
1598 would return if STRING were non-null). If non-null, STRING_BYTES
1599 (STRING) is the size of the data, and DATA contains the string's
1600 contents. */
1601 struct Lisp_String *string;
1602
1603 #ifdef GC_CHECK_STRING_BYTES
1604
1605 EMACS_INT nbytes;
1606 unsigned char data[1];
1607
1608 #define SDATA_NBYTES(S) (S)->nbytes
1609 #define SDATA_DATA(S) (S)->data
1610
1611 #else /* not GC_CHECK_STRING_BYTES */
1612
1613 union
1614 {
1615 /* When STRING in non-null. */
1616 unsigned char data[1];
1617
1618 /* When STRING is null. */
1619 EMACS_INT nbytes;
1620 } u;
1621
1622
1623 #define SDATA_NBYTES(S) (S)->u.nbytes
1624 #define SDATA_DATA(S) (S)->u.data
1625
1626 #endif /* not GC_CHECK_STRING_BYTES */
1627 };
1628
1629
1630 /* Structure describing a block of memory which is sub-allocated to
1631 obtain string data memory for strings. Blocks for small strings
1632 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1633 as large as needed. */
1634
1635 struct sblock
1636 {
1637 /* Next in list. */
1638 struct sblock *next;
1639
1640 /* Pointer to the next free sdata block. This points past the end
1641 of the sblock if there isn't any space left in this block. */
1642 struct sdata *next_free;
1643
1644 /* Start of data. */
1645 struct sdata first_data;
1646 };
1647
1648 /* Number of Lisp strings in a string_block structure. The 1020 is
1649 1024 minus malloc overhead. */
1650
1651 #define STRING_BLOCK_SIZE \
1652 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1653
1654 /* Structure describing a block from which Lisp_String structures
1655 are allocated. */
1656
1657 struct string_block
1658 {
1659 /* Place `strings' first, to preserve alignment. */
1660 struct Lisp_String strings[STRING_BLOCK_SIZE];
1661 struct string_block *next;
1662 };
1663
1664 /* Head and tail of the list of sblock structures holding Lisp string
1665 data. We always allocate from current_sblock. The NEXT pointers
1666 in the sblock structures go from oldest_sblock to current_sblock. */
1667
1668 static struct sblock *oldest_sblock, *current_sblock;
1669
1670 /* List of sblocks for large strings. */
1671
1672 static struct sblock *large_sblocks;
1673
1674 /* List of string_block structures, and how many there are. */
1675
1676 static struct string_block *string_blocks;
1677 static int n_string_blocks;
1678
1679 /* Free-list of Lisp_Strings. */
1680
1681 static struct Lisp_String *string_free_list;
1682
1683 /* Number of live and free Lisp_Strings. */
1684
1685 static int total_strings, total_free_strings;
1686
1687 /* Number of bytes used by live strings. */
1688
1689 static int total_string_size;
1690
1691 /* Given a pointer to a Lisp_String S which is on the free-list
1692 string_free_list, return a pointer to its successor in the
1693 free-list. */
1694
1695 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1696
1697 /* Return a pointer to the sdata structure belonging to Lisp string S.
1698 S must be live, i.e. S->data must not be null. S->data is actually
1699 a pointer to the `u.data' member of its sdata structure; the
1700 structure starts at a constant offset in front of that. */
1701
1702 #ifdef GC_CHECK_STRING_BYTES
1703
1704 #define SDATA_OF_STRING(S) \
1705 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1706 - sizeof (EMACS_INT)))
1707
1708 #else /* not GC_CHECK_STRING_BYTES */
1709
1710 #define SDATA_OF_STRING(S) \
1711 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1712
1713 #endif /* not GC_CHECK_STRING_BYTES */
1714
1715
1716 #ifdef GC_CHECK_STRING_OVERRUN
1717
1718 /* We check for overrun in string data blocks by appending a small
1719 "cookie" after each allocated string data block, and check for the
1720 presence of this cookie during GC. */
1721
1722 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1723 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1724 { 0xde, 0xad, 0xbe, 0xef };
1725
1726 #else
1727 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1728 #endif
1729
1730 /* Value is the size of an sdata structure large enough to hold NBYTES
1731 bytes of string data. The value returned includes a terminating
1732 NUL byte, the size of the sdata structure, and padding. */
1733
1734 #ifdef GC_CHECK_STRING_BYTES
1735
1736 #define SDATA_SIZE(NBYTES) \
1737 ((sizeof (struct Lisp_String *) \
1738 + (NBYTES) + 1 \
1739 + sizeof (EMACS_INT) \
1740 + sizeof (EMACS_INT) - 1) \
1741 & ~(sizeof (EMACS_INT) - 1))
1742
1743 #else /* not GC_CHECK_STRING_BYTES */
1744
1745 #define SDATA_SIZE(NBYTES) \
1746 ((sizeof (struct Lisp_String *) \
1747 + (NBYTES) + 1 \
1748 + sizeof (EMACS_INT) - 1) \
1749 & ~(sizeof (EMACS_INT) - 1))
1750
1751 #endif /* not GC_CHECK_STRING_BYTES */
1752
1753 /* Extra bytes to allocate for each string. */
1754
1755 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1756
1757 /* Initialize string allocation. Called from init_alloc_once. */
1758
1759 static void
1760 init_strings ()
1761 {
1762 total_strings = total_free_strings = total_string_size = 0;
1763 oldest_sblock = current_sblock = large_sblocks = NULL;
1764 string_blocks = NULL;
1765 n_string_blocks = 0;
1766 string_free_list = NULL;
1767 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1768 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1769 }
1770
1771
1772 #ifdef GC_CHECK_STRING_BYTES
1773
1774 static int check_string_bytes_count;
1775
1776 static void check_string_bytes P_ ((int));
1777 static void check_sblock P_ ((struct sblock *));
1778
1779 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1780
1781
1782 /* Like GC_STRING_BYTES, but with debugging check. */
1783
1784 int
1785 string_bytes (s)
1786 struct Lisp_String *s;
1787 {
1788 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1789 if (!PURE_POINTER_P (s)
1790 && s->data
1791 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1792 abort ();
1793 return nbytes;
1794 }
1795
1796 /* Check validity of Lisp strings' string_bytes member in B. */
1797
1798 static void
1799 check_sblock (b)
1800 struct sblock *b;
1801 {
1802 struct sdata *from, *end, *from_end;
1803
1804 end = b->next_free;
1805
1806 for (from = &b->first_data; from < end; from = from_end)
1807 {
1808 /* Compute the next FROM here because copying below may
1809 overwrite data we need to compute it. */
1810 int nbytes;
1811
1812 /* Check that the string size recorded in the string is the
1813 same as the one recorded in the sdata structure. */
1814 if (from->string)
1815 CHECK_STRING_BYTES (from->string);
1816
1817 if (from->string)
1818 nbytes = GC_STRING_BYTES (from->string);
1819 else
1820 nbytes = SDATA_NBYTES (from);
1821
1822 nbytes = SDATA_SIZE (nbytes);
1823 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1824 }
1825 }
1826
1827
1828 /* Check validity of Lisp strings' string_bytes member. ALL_P
1829 non-zero means check all strings, otherwise check only most
1830 recently allocated strings. Used for hunting a bug. */
1831
1832 static void
1833 check_string_bytes (all_p)
1834 int all_p;
1835 {
1836 if (all_p)
1837 {
1838 struct sblock *b;
1839
1840 for (b = large_sblocks; b; b = b->next)
1841 {
1842 struct Lisp_String *s = b->first_data.string;
1843 if (s)
1844 CHECK_STRING_BYTES (s);
1845 }
1846
1847 for (b = oldest_sblock; b; b = b->next)
1848 check_sblock (b);
1849 }
1850 else
1851 check_sblock (current_sblock);
1852 }
1853
1854 #endif /* GC_CHECK_STRING_BYTES */
1855
1856 #ifdef GC_CHECK_STRING_FREE_LIST
1857
1858 /* Walk through the string free list looking for bogus next pointers.
1859 This may catch buffer overrun from a previous string. */
1860
1861 static void
1862 check_string_free_list ()
1863 {
1864 struct Lisp_String *s;
1865
1866 /* Pop a Lisp_String off the free-list. */
1867 s = string_free_list;
1868 while (s != NULL)
1869 {
1870 if ((unsigned)s < 1024)
1871 abort();
1872 s = NEXT_FREE_LISP_STRING (s);
1873 }
1874 }
1875 #else
1876 #define check_string_free_list()
1877 #endif
1878
1879 /* Return a new Lisp_String. */
1880
1881 static struct Lisp_String *
1882 allocate_string ()
1883 {
1884 struct Lisp_String *s;
1885
1886 /* eassert (!handling_signal); */
1887
1888 MALLOC_BLOCK_INPUT;
1889
1890 /* If the free-list is empty, allocate a new string_block, and
1891 add all the Lisp_Strings in it to the free-list. */
1892 if (string_free_list == NULL)
1893 {
1894 struct string_block *b;
1895 int i;
1896
1897 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1898 bzero (b, sizeof *b);
1899 b->next = string_blocks;
1900 string_blocks = b;
1901 ++n_string_blocks;
1902
1903 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1904 {
1905 s = b->strings + i;
1906 NEXT_FREE_LISP_STRING (s) = string_free_list;
1907 string_free_list = s;
1908 }
1909
1910 total_free_strings += STRING_BLOCK_SIZE;
1911 }
1912
1913 check_string_free_list ();
1914
1915 /* Pop a Lisp_String off the free-list. */
1916 s = string_free_list;
1917 string_free_list = NEXT_FREE_LISP_STRING (s);
1918
1919 MALLOC_UNBLOCK_INPUT;
1920
1921 /* Probably not strictly necessary, but play it safe. */
1922 bzero (s, sizeof *s);
1923
1924 --total_free_strings;
1925 ++total_strings;
1926 ++strings_consed;
1927 consing_since_gc += sizeof *s;
1928
1929 #ifdef GC_CHECK_STRING_BYTES
1930 if (!noninteractive
1931 #ifdef MAC_OS8
1932 && current_sblock
1933 #endif
1934 )
1935 {
1936 if (++check_string_bytes_count == 200)
1937 {
1938 check_string_bytes_count = 0;
1939 check_string_bytes (1);
1940 }
1941 else
1942 check_string_bytes (0);
1943 }
1944 #endif /* GC_CHECK_STRING_BYTES */
1945
1946 return s;
1947 }
1948
1949
1950 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1951 plus a NUL byte at the end. Allocate an sdata structure for S, and
1952 set S->data to its `u.data' member. Store a NUL byte at the end of
1953 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1954 S->data if it was initially non-null. */
1955
1956 void
1957 allocate_string_data (s, nchars, nbytes)
1958 struct Lisp_String *s;
1959 int nchars, nbytes;
1960 {
1961 struct sdata *data, *old_data;
1962 struct sblock *b;
1963 int needed, old_nbytes;
1964
1965 /* Determine the number of bytes needed to store NBYTES bytes
1966 of string data. */
1967 needed = SDATA_SIZE (nbytes);
1968 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1969 old_nbytes = GC_STRING_BYTES (s);
1970
1971 MALLOC_BLOCK_INPUT;
1972
1973 if (nbytes > LARGE_STRING_BYTES)
1974 {
1975 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1976
1977 #ifdef DOUG_LEA_MALLOC
1978 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1979 because mapped region contents are not preserved in
1980 a dumped Emacs.
1981
1982 In case you think of allowing it in a dumped Emacs at the
1983 cost of not being able to re-dump, there's another reason:
1984 mmap'ed data typically have an address towards the top of the
1985 address space, which won't fit into an EMACS_INT (at least on
1986 32-bit systems with the current tagging scheme). --fx */
1987 mallopt (M_MMAP_MAX, 0);
1988 #endif
1989
1990 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1991
1992 #ifdef DOUG_LEA_MALLOC
1993 /* Back to a reasonable maximum of mmap'ed areas. */
1994 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1995 #endif
1996
1997 b->next_free = &b->first_data;
1998 b->first_data.string = NULL;
1999 b->next = large_sblocks;
2000 large_sblocks = b;
2001 }
2002 else if (current_sblock == NULL
2003 || (((char *) current_sblock + SBLOCK_SIZE
2004 - (char *) current_sblock->next_free)
2005 < (needed + GC_STRING_EXTRA)))
2006 {
2007 /* Not enough room in the current sblock. */
2008 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2009 b->next_free = &b->first_data;
2010 b->first_data.string = NULL;
2011 b->next = NULL;
2012
2013 if (current_sblock)
2014 current_sblock->next = b;
2015 else
2016 oldest_sblock = b;
2017 current_sblock = b;
2018 }
2019 else
2020 b = current_sblock;
2021
2022 data = b->next_free;
2023 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2024
2025 MALLOC_UNBLOCK_INPUT;
2026
2027 data->string = s;
2028 s->data = SDATA_DATA (data);
2029 #ifdef GC_CHECK_STRING_BYTES
2030 SDATA_NBYTES (data) = nbytes;
2031 #endif
2032 s->size = nchars;
2033 s->size_byte = nbytes;
2034 s->data[nbytes] = '\0';
2035 #ifdef GC_CHECK_STRING_OVERRUN
2036 bcopy (string_overrun_cookie, (char *) data + needed,
2037 GC_STRING_OVERRUN_COOKIE_SIZE);
2038 #endif
2039
2040 /* If S had already data assigned, mark that as free by setting its
2041 string back-pointer to null, and recording the size of the data
2042 in it. */
2043 if (old_data)
2044 {
2045 SDATA_NBYTES (old_data) = old_nbytes;
2046 old_data->string = NULL;
2047 }
2048
2049 consing_since_gc += needed;
2050 }
2051
2052
2053 /* Sweep and compact strings. */
2054
2055 static void
2056 sweep_strings ()
2057 {
2058 struct string_block *b, *next;
2059 struct string_block *live_blocks = NULL;
2060
2061 string_free_list = NULL;
2062 total_strings = total_free_strings = 0;
2063 total_string_size = 0;
2064
2065 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2066 for (b = string_blocks; b; b = next)
2067 {
2068 int i, nfree = 0;
2069 struct Lisp_String *free_list_before = string_free_list;
2070
2071 next = b->next;
2072
2073 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2074 {
2075 struct Lisp_String *s = b->strings + i;
2076
2077 if (s->data)
2078 {
2079 /* String was not on free-list before. */
2080 if (STRING_MARKED_P (s))
2081 {
2082 /* String is live; unmark it and its intervals. */
2083 UNMARK_STRING (s);
2084
2085 if (!NULL_INTERVAL_P (s->intervals))
2086 UNMARK_BALANCE_INTERVALS (s->intervals);
2087
2088 ++total_strings;
2089 total_string_size += STRING_BYTES (s);
2090 }
2091 else
2092 {
2093 /* String is dead. Put it on the free-list. */
2094 struct sdata *data = SDATA_OF_STRING (s);
2095
2096 /* Save the size of S in its sdata so that we know
2097 how large that is. Reset the sdata's string
2098 back-pointer so that we know it's free. */
2099 #ifdef GC_CHECK_STRING_BYTES
2100 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2101 abort ();
2102 #else
2103 data->u.nbytes = GC_STRING_BYTES (s);
2104 #endif
2105 data->string = NULL;
2106
2107 /* Reset the strings's `data' member so that we
2108 know it's free. */
2109 s->data = NULL;
2110
2111 /* Put the string on the free-list. */
2112 NEXT_FREE_LISP_STRING (s) = string_free_list;
2113 string_free_list = s;
2114 ++nfree;
2115 }
2116 }
2117 else
2118 {
2119 /* S was on the free-list before. Put it there again. */
2120 NEXT_FREE_LISP_STRING (s) = string_free_list;
2121 string_free_list = s;
2122 ++nfree;
2123 }
2124 }
2125
2126 /* Free blocks that contain free Lisp_Strings only, except
2127 the first two of them. */
2128 if (nfree == STRING_BLOCK_SIZE
2129 && total_free_strings > STRING_BLOCK_SIZE)
2130 {
2131 lisp_free (b);
2132 --n_string_blocks;
2133 string_free_list = free_list_before;
2134 }
2135 else
2136 {
2137 total_free_strings += nfree;
2138 b->next = live_blocks;
2139 live_blocks = b;
2140 }
2141 }
2142
2143 check_string_free_list ();
2144
2145 string_blocks = live_blocks;
2146 free_large_strings ();
2147 compact_small_strings ();
2148
2149 check_string_free_list ();
2150 }
2151
2152
2153 /* Free dead large strings. */
2154
2155 static void
2156 free_large_strings ()
2157 {
2158 struct sblock *b, *next;
2159 struct sblock *live_blocks = NULL;
2160
2161 for (b = large_sblocks; b; b = next)
2162 {
2163 next = b->next;
2164
2165 if (b->first_data.string == NULL)
2166 lisp_free (b);
2167 else
2168 {
2169 b->next = live_blocks;
2170 live_blocks = b;
2171 }
2172 }
2173
2174 large_sblocks = live_blocks;
2175 }
2176
2177
2178 /* Compact data of small strings. Free sblocks that don't contain
2179 data of live strings after compaction. */
2180
2181 static void
2182 compact_small_strings ()
2183 {
2184 struct sblock *b, *tb, *next;
2185 struct sdata *from, *to, *end, *tb_end;
2186 struct sdata *to_end, *from_end;
2187
2188 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2189 to, and TB_END is the end of TB. */
2190 tb = oldest_sblock;
2191 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2192 to = &tb->first_data;
2193
2194 /* Step through the blocks from the oldest to the youngest. We
2195 expect that old blocks will stabilize over time, so that less
2196 copying will happen this way. */
2197 for (b = oldest_sblock; b; b = b->next)
2198 {
2199 end = b->next_free;
2200 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2201
2202 for (from = &b->first_data; from < end; from = from_end)
2203 {
2204 /* Compute the next FROM here because copying below may
2205 overwrite data we need to compute it. */
2206 int nbytes;
2207
2208 #ifdef GC_CHECK_STRING_BYTES
2209 /* Check that the string size recorded in the string is the
2210 same as the one recorded in the sdata structure. */
2211 if (from->string
2212 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2213 abort ();
2214 #endif /* GC_CHECK_STRING_BYTES */
2215
2216 if (from->string)
2217 nbytes = GC_STRING_BYTES (from->string);
2218 else
2219 nbytes = SDATA_NBYTES (from);
2220
2221 if (nbytes > LARGE_STRING_BYTES)
2222 abort ();
2223
2224 nbytes = SDATA_SIZE (nbytes);
2225 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2226
2227 #ifdef GC_CHECK_STRING_OVERRUN
2228 if (bcmp (string_overrun_cookie,
2229 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2230 GC_STRING_OVERRUN_COOKIE_SIZE))
2231 abort ();
2232 #endif
2233
2234 /* FROM->string non-null means it's alive. Copy its data. */
2235 if (from->string)
2236 {
2237 /* If TB is full, proceed with the next sblock. */
2238 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2239 if (to_end > tb_end)
2240 {
2241 tb->next_free = to;
2242 tb = tb->next;
2243 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2244 to = &tb->first_data;
2245 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2246 }
2247
2248 /* Copy, and update the string's `data' pointer. */
2249 if (from != to)
2250 {
2251 xassert (tb != b || to <= from);
2252 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2253 to->string->data = SDATA_DATA (to);
2254 }
2255
2256 /* Advance past the sdata we copied to. */
2257 to = to_end;
2258 }
2259 }
2260 }
2261
2262 /* The rest of the sblocks following TB don't contain live data, so
2263 we can free them. */
2264 for (b = tb->next; b; b = next)
2265 {
2266 next = b->next;
2267 lisp_free (b);
2268 }
2269
2270 tb->next_free = to;
2271 tb->next = NULL;
2272 current_sblock = tb;
2273 }
2274
2275
2276 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2277 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2278 LENGTH must be an integer.
2279 INIT must be an integer that represents a character. */)
2280 (length, init)
2281 Lisp_Object length, init;
2282 {
2283 register Lisp_Object val;
2284 register unsigned char *p, *end;
2285 int c, nbytes;
2286
2287 CHECK_NATNUM (length);
2288 CHECK_NUMBER (init);
2289
2290 c = XINT (init);
2291 if (SINGLE_BYTE_CHAR_P (c))
2292 {
2293 nbytes = XINT (length);
2294 val = make_uninit_string (nbytes);
2295 p = SDATA (val);
2296 end = p + SCHARS (val);
2297 while (p != end)
2298 *p++ = c;
2299 }
2300 else
2301 {
2302 unsigned char str[MAX_MULTIBYTE_LENGTH];
2303 int len = CHAR_STRING (c, str);
2304
2305 nbytes = len * XINT (length);
2306 val = make_uninit_multibyte_string (XINT (length), nbytes);
2307 p = SDATA (val);
2308 end = p + nbytes;
2309 while (p != end)
2310 {
2311 bcopy (str, p, len);
2312 p += len;
2313 }
2314 }
2315
2316 *p = 0;
2317 return val;
2318 }
2319
2320
2321 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2322 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2323 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2324 (length, init)
2325 Lisp_Object length, init;
2326 {
2327 register Lisp_Object val;
2328 struct Lisp_Bool_Vector *p;
2329 int real_init, i;
2330 int length_in_chars, length_in_elts, bits_per_value;
2331
2332 CHECK_NATNUM (length);
2333
2334 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2335
2336 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2337 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2338 / BOOL_VECTOR_BITS_PER_CHAR);
2339
2340 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2341 slot `size' of the struct Lisp_Bool_Vector. */
2342 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2343
2344 /* Get rid of any bits that would cause confusion. */
2345 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2346 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2347 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2348
2349 p = XBOOL_VECTOR (val);
2350 p->size = XFASTINT (length);
2351
2352 real_init = (NILP (init) ? 0 : -1);
2353 for (i = 0; i < length_in_chars ; i++)
2354 p->data[i] = real_init;
2355
2356 /* Clear the extraneous bits in the last byte. */
2357 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2358 p->data[length_in_chars - 1]
2359 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2360
2361 return val;
2362 }
2363
2364
2365 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2366 of characters from the contents. This string may be unibyte or
2367 multibyte, depending on the contents. */
2368
2369 Lisp_Object
2370 make_string (contents, nbytes)
2371 const char *contents;
2372 int nbytes;
2373 {
2374 register Lisp_Object val;
2375 int nchars, multibyte_nbytes;
2376
2377 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2378 if (nbytes == nchars || nbytes != multibyte_nbytes)
2379 /* CONTENTS contains no multibyte sequences or contains an invalid
2380 multibyte sequence. We must make unibyte string. */
2381 val = make_unibyte_string (contents, nbytes);
2382 else
2383 val = make_multibyte_string (contents, nchars, nbytes);
2384 return val;
2385 }
2386
2387
2388 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2389
2390 Lisp_Object
2391 make_unibyte_string (contents, length)
2392 const char *contents;
2393 int length;
2394 {
2395 register Lisp_Object val;
2396 val = make_uninit_string (length);
2397 bcopy (contents, SDATA (val), length);
2398 STRING_SET_UNIBYTE (val);
2399 return val;
2400 }
2401
2402
2403 /* Make a multibyte string from NCHARS characters occupying NBYTES
2404 bytes at CONTENTS. */
2405
2406 Lisp_Object
2407 make_multibyte_string (contents, nchars, nbytes)
2408 const char *contents;
2409 int nchars, nbytes;
2410 {
2411 register Lisp_Object val;
2412 val = make_uninit_multibyte_string (nchars, nbytes);
2413 bcopy (contents, SDATA (val), nbytes);
2414 return val;
2415 }
2416
2417
2418 /* Make a string from NCHARS characters occupying NBYTES bytes at
2419 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2420
2421 Lisp_Object
2422 make_string_from_bytes (contents, nchars, nbytes)
2423 const char *contents;
2424 int nchars, nbytes;
2425 {
2426 register Lisp_Object val;
2427 val = make_uninit_multibyte_string (nchars, nbytes);
2428 bcopy (contents, SDATA (val), nbytes);
2429 if (SBYTES (val) == SCHARS (val))
2430 STRING_SET_UNIBYTE (val);
2431 return val;
2432 }
2433
2434
2435 /* Make a string from NCHARS characters occupying NBYTES bytes at
2436 CONTENTS. The argument MULTIBYTE controls whether to label the
2437 string as multibyte. If NCHARS is negative, it counts the number of
2438 characters by itself. */
2439
2440 Lisp_Object
2441 make_specified_string (contents, nchars, nbytes, multibyte)
2442 const char *contents;
2443 int nchars, nbytes;
2444 int multibyte;
2445 {
2446 register Lisp_Object val;
2447
2448 if (nchars < 0)
2449 {
2450 if (multibyte)
2451 nchars = multibyte_chars_in_text (contents, nbytes);
2452 else
2453 nchars = nbytes;
2454 }
2455 val = make_uninit_multibyte_string (nchars, nbytes);
2456 bcopy (contents, SDATA (val), nbytes);
2457 if (!multibyte)
2458 STRING_SET_UNIBYTE (val);
2459 return val;
2460 }
2461
2462
2463 /* Make a string from the data at STR, treating it as multibyte if the
2464 data warrants. */
2465
2466 Lisp_Object
2467 build_string (str)
2468 const char *str;
2469 {
2470 return make_string (str, strlen (str));
2471 }
2472
2473
2474 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2475 occupying LENGTH bytes. */
2476
2477 Lisp_Object
2478 make_uninit_string (length)
2479 int length;
2480 {
2481 Lisp_Object val;
2482
2483 if (!length)
2484 return empty_unibyte_string;
2485 val = make_uninit_multibyte_string (length, length);
2486 STRING_SET_UNIBYTE (val);
2487 return val;
2488 }
2489
2490
2491 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2492 which occupy NBYTES bytes. */
2493
2494 Lisp_Object
2495 make_uninit_multibyte_string (nchars, nbytes)
2496 int nchars, nbytes;
2497 {
2498 Lisp_Object string;
2499 struct Lisp_String *s;
2500
2501 if (nchars < 0)
2502 abort ();
2503 if (!nbytes)
2504 return empty_multibyte_string;
2505
2506 s = allocate_string ();
2507 allocate_string_data (s, nchars, nbytes);
2508 XSETSTRING (string, s);
2509 string_chars_consed += nbytes;
2510 return string;
2511 }
2512
2513
2514 \f
2515 /***********************************************************************
2516 Float Allocation
2517 ***********************************************************************/
2518
2519 /* We store float cells inside of float_blocks, allocating a new
2520 float_block with malloc whenever necessary. Float cells reclaimed
2521 by GC are put on a free list to be reallocated before allocating
2522 any new float cells from the latest float_block. */
2523
2524 #define FLOAT_BLOCK_SIZE \
2525 (((BLOCK_BYTES - sizeof (struct float_block *) \
2526 /* The compiler might add padding at the end. */ \
2527 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2528 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2529
2530 #define GETMARKBIT(block,n) \
2531 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2532 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2533 & 1)
2534
2535 #define SETMARKBIT(block,n) \
2536 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2537 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2538
2539 #define UNSETMARKBIT(block,n) \
2540 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2541 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2542
2543 #define FLOAT_BLOCK(fptr) \
2544 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2545
2546 #define FLOAT_INDEX(fptr) \
2547 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2548
2549 struct float_block
2550 {
2551 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2552 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2553 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2554 struct float_block *next;
2555 };
2556
2557 #define FLOAT_MARKED_P(fptr) \
2558 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2559
2560 #define FLOAT_MARK(fptr) \
2561 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2562
2563 #define FLOAT_UNMARK(fptr) \
2564 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2565
2566 /* Current float_block. */
2567
2568 struct float_block *float_block;
2569
2570 /* Index of first unused Lisp_Float in the current float_block. */
2571
2572 int float_block_index;
2573
2574 /* Total number of float blocks now in use. */
2575
2576 int n_float_blocks;
2577
2578 /* Free-list of Lisp_Floats. */
2579
2580 struct Lisp_Float *float_free_list;
2581
2582
2583 /* Initialize float allocation. */
2584
2585 static void
2586 init_float ()
2587 {
2588 float_block = NULL;
2589 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2590 float_free_list = 0;
2591 n_float_blocks = 0;
2592 }
2593
2594
2595 /* Explicitly free a float cell by putting it on the free-list. */
2596
2597 static void
2598 free_float (ptr)
2599 struct Lisp_Float *ptr;
2600 {
2601 ptr->u.chain = float_free_list;
2602 float_free_list = ptr;
2603 }
2604
2605
2606 /* Return a new float object with value FLOAT_VALUE. */
2607
2608 Lisp_Object
2609 make_float (float_value)
2610 double float_value;
2611 {
2612 register Lisp_Object val;
2613
2614 /* eassert (!handling_signal); */
2615
2616 MALLOC_BLOCK_INPUT;
2617
2618 if (float_free_list)
2619 {
2620 /* We use the data field for chaining the free list
2621 so that we won't use the same field that has the mark bit. */
2622 XSETFLOAT (val, float_free_list);
2623 float_free_list = float_free_list->u.chain;
2624 }
2625 else
2626 {
2627 if (float_block_index == FLOAT_BLOCK_SIZE)
2628 {
2629 register struct float_block *new;
2630
2631 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2632 MEM_TYPE_FLOAT);
2633 new->next = float_block;
2634 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2635 float_block = new;
2636 float_block_index = 0;
2637 n_float_blocks++;
2638 }
2639 XSETFLOAT (val, &float_block->floats[float_block_index]);
2640 float_block_index++;
2641 }
2642
2643 MALLOC_UNBLOCK_INPUT;
2644
2645 XFLOAT_DATA (val) = float_value;
2646 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2647 consing_since_gc += sizeof (struct Lisp_Float);
2648 floats_consed++;
2649 return val;
2650 }
2651
2652
2653 \f
2654 /***********************************************************************
2655 Cons Allocation
2656 ***********************************************************************/
2657
2658 /* We store cons cells inside of cons_blocks, allocating a new
2659 cons_block with malloc whenever necessary. Cons cells reclaimed by
2660 GC are put on a free list to be reallocated before allocating
2661 any new cons cells from the latest cons_block. */
2662
2663 #define CONS_BLOCK_SIZE \
2664 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2665 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2666
2667 #define CONS_BLOCK(fptr) \
2668 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2669
2670 #define CONS_INDEX(fptr) \
2671 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2672
2673 struct cons_block
2674 {
2675 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2676 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2677 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2678 struct cons_block *next;
2679 };
2680
2681 #define CONS_MARKED_P(fptr) \
2682 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2683
2684 #define CONS_MARK(fptr) \
2685 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2686
2687 #define CONS_UNMARK(fptr) \
2688 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2689
2690 /* Current cons_block. */
2691
2692 struct cons_block *cons_block;
2693
2694 /* Index of first unused Lisp_Cons in the current block. */
2695
2696 int cons_block_index;
2697
2698 /* Free-list of Lisp_Cons structures. */
2699
2700 struct Lisp_Cons *cons_free_list;
2701
2702 /* Total number of cons blocks now in use. */
2703
2704 static int n_cons_blocks;
2705
2706
2707 /* Initialize cons allocation. */
2708
2709 static void
2710 init_cons ()
2711 {
2712 cons_block = NULL;
2713 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2714 cons_free_list = 0;
2715 n_cons_blocks = 0;
2716 }
2717
2718
2719 /* Explicitly free a cons cell by putting it on the free-list. */
2720
2721 void
2722 free_cons (ptr)
2723 struct Lisp_Cons *ptr;
2724 {
2725 ptr->u.chain = cons_free_list;
2726 #if GC_MARK_STACK
2727 ptr->car = Vdead;
2728 #endif
2729 cons_free_list = ptr;
2730 }
2731
2732 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2733 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2734 (car, cdr)
2735 Lisp_Object car, cdr;
2736 {
2737 register Lisp_Object val;
2738
2739 /* eassert (!handling_signal); */
2740
2741 MALLOC_BLOCK_INPUT;
2742
2743 if (cons_free_list)
2744 {
2745 /* We use the cdr for chaining the free list
2746 so that we won't use the same field that has the mark bit. */
2747 XSETCONS (val, cons_free_list);
2748 cons_free_list = cons_free_list->u.chain;
2749 }
2750 else
2751 {
2752 if (cons_block_index == CONS_BLOCK_SIZE)
2753 {
2754 register struct cons_block *new;
2755 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2756 MEM_TYPE_CONS);
2757 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2758 new->next = cons_block;
2759 cons_block = new;
2760 cons_block_index = 0;
2761 n_cons_blocks++;
2762 }
2763 XSETCONS (val, &cons_block->conses[cons_block_index]);
2764 cons_block_index++;
2765 }
2766
2767 MALLOC_UNBLOCK_INPUT;
2768
2769 XSETCAR (val, car);
2770 XSETCDR (val, cdr);
2771 eassert (!CONS_MARKED_P (XCONS (val)));
2772 consing_since_gc += sizeof (struct Lisp_Cons);
2773 cons_cells_consed++;
2774 return val;
2775 }
2776
2777 /* Get an error now if there's any junk in the cons free list. */
2778 void
2779 check_cons_list ()
2780 {
2781 #ifdef GC_CHECK_CONS_LIST
2782 struct Lisp_Cons *tail = cons_free_list;
2783
2784 while (tail)
2785 tail = tail->u.chain;
2786 #endif
2787 }
2788
2789 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2790
2791 Lisp_Object
2792 list1 (arg1)
2793 Lisp_Object arg1;
2794 {
2795 return Fcons (arg1, Qnil);
2796 }
2797
2798 Lisp_Object
2799 list2 (arg1, arg2)
2800 Lisp_Object arg1, arg2;
2801 {
2802 return Fcons (arg1, Fcons (arg2, Qnil));
2803 }
2804
2805
2806 Lisp_Object
2807 list3 (arg1, arg2, arg3)
2808 Lisp_Object arg1, arg2, arg3;
2809 {
2810 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2811 }
2812
2813
2814 Lisp_Object
2815 list4 (arg1, arg2, arg3, arg4)
2816 Lisp_Object arg1, arg2, arg3, arg4;
2817 {
2818 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2819 }
2820
2821
2822 Lisp_Object
2823 list5 (arg1, arg2, arg3, arg4, arg5)
2824 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2825 {
2826 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2827 Fcons (arg5, Qnil)))));
2828 }
2829
2830
2831 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2832 doc: /* Return a newly created list with specified arguments as elements.
2833 Any number of arguments, even zero arguments, are allowed.
2834 usage: (list &rest OBJECTS) */)
2835 (nargs, args)
2836 int nargs;
2837 register Lisp_Object *args;
2838 {
2839 register Lisp_Object val;
2840 val = Qnil;
2841
2842 while (nargs > 0)
2843 {
2844 nargs--;
2845 val = Fcons (args[nargs], val);
2846 }
2847 return val;
2848 }
2849
2850
2851 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2852 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2853 (length, init)
2854 register Lisp_Object length, init;
2855 {
2856 register Lisp_Object val;
2857 register int size;
2858
2859 CHECK_NATNUM (length);
2860 size = XFASTINT (length);
2861
2862 val = Qnil;
2863 while (size > 0)
2864 {
2865 val = Fcons (init, val);
2866 --size;
2867
2868 if (size > 0)
2869 {
2870 val = Fcons (init, val);
2871 --size;
2872
2873 if (size > 0)
2874 {
2875 val = Fcons (init, val);
2876 --size;
2877
2878 if (size > 0)
2879 {
2880 val = Fcons (init, val);
2881 --size;
2882
2883 if (size > 0)
2884 {
2885 val = Fcons (init, val);
2886 --size;
2887 }
2888 }
2889 }
2890 }
2891
2892 QUIT;
2893 }
2894
2895 return val;
2896 }
2897
2898
2899 \f
2900 /***********************************************************************
2901 Vector Allocation
2902 ***********************************************************************/
2903
2904 /* Singly-linked list of all vectors. */
2905
2906 static struct Lisp_Vector *all_vectors;
2907
2908 /* Total number of vector-like objects now in use. */
2909
2910 static int n_vectors;
2911
2912
2913 /* Value is a pointer to a newly allocated Lisp_Vector structure
2914 with room for LEN Lisp_Objects. */
2915
2916 static struct Lisp_Vector *
2917 allocate_vectorlike (len)
2918 EMACS_INT len;
2919 {
2920 struct Lisp_Vector *p;
2921 size_t nbytes;
2922
2923 MALLOC_BLOCK_INPUT;
2924
2925 #ifdef DOUG_LEA_MALLOC
2926 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2927 because mapped region contents are not preserved in
2928 a dumped Emacs. */
2929 mallopt (M_MMAP_MAX, 0);
2930 #endif
2931
2932 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2933 /* eassert (!handling_signal); */
2934
2935 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2936 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2937
2938 #ifdef DOUG_LEA_MALLOC
2939 /* Back to a reasonable maximum of mmap'ed areas. */
2940 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2941 #endif
2942
2943 consing_since_gc += nbytes;
2944 vector_cells_consed += len;
2945
2946 p->next = all_vectors;
2947 all_vectors = p;
2948
2949 MALLOC_UNBLOCK_INPUT;
2950
2951 ++n_vectors;
2952 return p;
2953 }
2954
2955
2956 /* Allocate a vector with NSLOTS slots. */
2957
2958 struct Lisp_Vector *
2959 allocate_vector (nslots)
2960 EMACS_INT nslots;
2961 {
2962 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2963 v->size = nslots;
2964 return v;
2965 }
2966
2967
2968 /* Allocate other vector-like structures. */
2969
2970 struct Lisp_Vector *
2971 allocate_pseudovector (memlen, lisplen, tag)
2972 int memlen, lisplen;
2973 EMACS_INT tag;
2974 {
2975 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2976 EMACS_INT i;
2977
2978 /* Only the first lisplen slots will be traced normally by the GC. */
2979 v->size = lisplen;
2980 for (i = 0; i < lisplen; ++i)
2981 v->contents[i] = Qnil;
2982
2983 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2984 return v;
2985 }
2986
2987 struct Lisp_Hash_Table *
2988 allocate_hash_table (void)
2989 {
2990 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2991 }
2992
2993
2994 struct window *
2995 allocate_window ()
2996 {
2997 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2998 }
2999
3000
3001 struct terminal *
3002 allocate_terminal ()
3003 {
3004 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
3005 next_terminal, PVEC_TERMINAL);
3006 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3007 bzero (&(t->next_terminal),
3008 ((char*)(t+1)) - ((char*)&(t->next_terminal)));
3009
3010 return t;
3011 }
3012
3013 struct frame *
3014 allocate_frame ()
3015 {
3016 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3017 face_cache, PVEC_FRAME);
3018 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3019 bzero (&(f->face_cache),
3020 ((char*)(f+1)) - ((char*)&(f->face_cache)));
3021 return f;
3022 }
3023
3024
3025 struct Lisp_Process *
3026 allocate_process ()
3027 {
3028 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3029 }
3030
3031
3032 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3033 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3034 See also the function `vector'. */)
3035 (length, init)
3036 register Lisp_Object length, init;
3037 {
3038 Lisp_Object vector;
3039 register EMACS_INT sizei;
3040 register int index;
3041 register struct Lisp_Vector *p;
3042
3043 CHECK_NATNUM (length);
3044 sizei = XFASTINT (length);
3045
3046 p = allocate_vector (sizei);
3047 for (index = 0; index < sizei; index++)
3048 p->contents[index] = init;
3049
3050 XSETVECTOR (vector, p);
3051 return vector;
3052 }
3053
3054
3055 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
3056 doc: /* Return a newly created char-table, with purpose PURPOSE.
3057 Each element is initialized to INIT, which defaults to nil.
3058 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
3059 The property's value should be an integer between 0 and 10. */)
3060 (purpose, init)
3061 register Lisp_Object purpose, init;
3062 {
3063 Lisp_Object vector;
3064 Lisp_Object n;
3065 CHECK_SYMBOL (purpose);
3066 n = Fget (purpose, Qchar_table_extra_slots);
3067 CHECK_NUMBER (n);
3068 if (XINT (n) < 0 || XINT (n) > 10)
3069 args_out_of_range (n, Qnil);
3070 /* Add 2 to the size for the defalt and parent slots. */
3071 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
3072 init);
3073 XSETPVECTYPE (XVECTOR (vector), PVEC_CHAR_TABLE);
3074 XCHAR_TABLE (vector)->top = Qt;
3075 XCHAR_TABLE (vector)->parent = Qnil;
3076 XCHAR_TABLE (vector)->purpose = purpose;
3077 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3078 return vector;
3079 }
3080
3081
3082 /* Return a newly created sub char table with slots initialized by INIT.
3083 Since a sub char table does not appear as a top level Emacs Lisp
3084 object, we don't need a Lisp interface to make it. */
3085
3086 Lisp_Object
3087 make_sub_char_table (init)
3088 Lisp_Object init;
3089 {
3090 Lisp_Object vector
3091 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), init);
3092 XSETPVECTYPE (XVECTOR (vector), PVEC_CHAR_TABLE);
3093 XCHAR_TABLE (vector)->top = Qnil;
3094 XCHAR_TABLE (vector)->defalt = Qnil;
3095 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3096 return vector;
3097 }
3098
3099
3100 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3101 doc: /* Return a newly created vector with specified arguments as elements.
3102 Any number of arguments, even zero arguments, are allowed.
3103 usage: (vector &rest OBJECTS) */)
3104 (nargs, args)
3105 register int nargs;
3106 Lisp_Object *args;
3107 {
3108 register Lisp_Object len, val;
3109 register int index;
3110 register struct Lisp_Vector *p;
3111
3112 XSETFASTINT (len, nargs);
3113 val = Fmake_vector (len, Qnil);
3114 p = XVECTOR (val);
3115 for (index = 0; index < nargs; index++)
3116 p->contents[index] = args[index];
3117 return val;
3118 }
3119
3120
3121 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3122 doc: /* Create a byte-code object with specified arguments as elements.
3123 The arguments should be the arglist, bytecode-string, constant vector,
3124 stack size, (optional) doc string, and (optional) interactive spec.
3125 The first four arguments are required; at most six have any
3126 significance.
3127 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3128 (nargs, args)
3129 register int nargs;
3130 Lisp_Object *args;
3131 {
3132 register Lisp_Object len, val;
3133 register int index;
3134 register struct Lisp_Vector *p;
3135
3136 XSETFASTINT (len, nargs);
3137 if (!NILP (Vpurify_flag))
3138 val = make_pure_vector ((EMACS_INT) nargs);
3139 else
3140 val = Fmake_vector (len, Qnil);
3141
3142 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3143 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3144 earlier because they produced a raw 8-bit string for byte-code
3145 and now such a byte-code string is loaded as multibyte while
3146 raw 8-bit characters converted to multibyte form. Thus, now we
3147 must convert them back to the original unibyte form. */
3148 args[1] = Fstring_as_unibyte (args[1]);
3149
3150 p = XVECTOR (val);
3151 for (index = 0; index < nargs; index++)
3152 {
3153 if (!NILP (Vpurify_flag))
3154 args[index] = Fpurecopy (args[index]);
3155 p->contents[index] = args[index];
3156 }
3157 XSETPVECTYPE (p, PVEC_COMPILED);
3158 XSETCOMPILED (val, p);
3159 return val;
3160 }
3161
3162
3163 \f
3164 /***********************************************************************
3165 Symbol Allocation
3166 ***********************************************************************/
3167
3168 /* Each symbol_block is just under 1020 bytes long, since malloc
3169 really allocates in units of powers of two and uses 4 bytes for its
3170 own overhead. */
3171
3172 #define SYMBOL_BLOCK_SIZE \
3173 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3174
3175 struct symbol_block
3176 {
3177 /* Place `symbols' first, to preserve alignment. */
3178 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3179 struct symbol_block *next;
3180 };
3181
3182 /* Current symbol block and index of first unused Lisp_Symbol
3183 structure in it. */
3184
3185 static struct symbol_block *symbol_block;
3186 static int symbol_block_index;
3187
3188 /* List of free symbols. */
3189
3190 static struct Lisp_Symbol *symbol_free_list;
3191
3192 /* Total number of symbol blocks now in use. */
3193
3194 static int n_symbol_blocks;
3195
3196
3197 /* Initialize symbol allocation. */
3198
3199 static void
3200 init_symbol ()
3201 {
3202 symbol_block = NULL;
3203 symbol_block_index = SYMBOL_BLOCK_SIZE;
3204 symbol_free_list = 0;
3205 n_symbol_blocks = 0;
3206 }
3207
3208
3209 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3210 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3211 Its value and function definition are void, and its property list is nil. */)
3212 (name)
3213 Lisp_Object name;
3214 {
3215 register Lisp_Object val;
3216 register struct Lisp_Symbol *p;
3217
3218 CHECK_STRING (name);
3219
3220 /* eassert (!handling_signal); */
3221
3222 MALLOC_BLOCK_INPUT;
3223
3224 if (symbol_free_list)
3225 {
3226 XSETSYMBOL (val, symbol_free_list);
3227 symbol_free_list = symbol_free_list->next;
3228 }
3229 else
3230 {
3231 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3232 {
3233 struct symbol_block *new;
3234 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3235 MEM_TYPE_SYMBOL);
3236 new->next = symbol_block;
3237 symbol_block = new;
3238 symbol_block_index = 0;
3239 n_symbol_blocks++;
3240 }
3241 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3242 symbol_block_index++;
3243 }
3244
3245 MALLOC_UNBLOCK_INPUT;
3246
3247 p = XSYMBOL (val);
3248 p->xname = name;
3249 p->plist = Qnil;
3250 p->value = Qunbound;
3251 p->function = Qunbound;
3252 p->next = NULL;
3253 p->gcmarkbit = 0;
3254 p->interned = SYMBOL_UNINTERNED;
3255 p->constant = 0;
3256 p->indirect_variable = 0;
3257 consing_since_gc += sizeof (struct Lisp_Symbol);
3258 symbols_consed++;
3259 return val;
3260 }
3261
3262
3263 \f
3264 /***********************************************************************
3265 Marker (Misc) Allocation
3266 ***********************************************************************/
3267
3268 /* Allocation of markers and other objects that share that structure.
3269 Works like allocation of conses. */
3270
3271 #define MARKER_BLOCK_SIZE \
3272 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3273
3274 struct marker_block
3275 {
3276 /* Place `markers' first, to preserve alignment. */
3277 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3278 struct marker_block *next;
3279 };
3280
3281 static struct marker_block *marker_block;
3282 static int marker_block_index;
3283
3284 static union Lisp_Misc *marker_free_list;
3285
3286 /* Total number of marker blocks now in use. */
3287
3288 static int n_marker_blocks;
3289
3290 static void
3291 init_marker ()
3292 {
3293 marker_block = NULL;
3294 marker_block_index = MARKER_BLOCK_SIZE;
3295 marker_free_list = 0;
3296 n_marker_blocks = 0;
3297 }
3298
3299 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3300
3301 Lisp_Object
3302 allocate_misc ()
3303 {
3304 Lisp_Object val;
3305
3306 /* eassert (!handling_signal); */
3307
3308 MALLOC_BLOCK_INPUT;
3309
3310 if (marker_free_list)
3311 {
3312 XSETMISC (val, marker_free_list);
3313 marker_free_list = marker_free_list->u_free.chain;
3314 }
3315 else
3316 {
3317 if (marker_block_index == MARKER_BLOCK_SIZE)
3318 {
3319 struct marker_block *new;
3320 new = (struct marker_block *) lisp_malloc (sizeof *new,
3321 MEM_TYPE_MISC);
3322 new->next = marker_block;
3323 marker_block = new;
3324 marker_block_index = 0;
3325 n_marker_blocks++;
3326 total_free_markers += MARKER_BLOCK_SIZE;
3327 }
3328 XSETMISC (val, &marker_block->markers[marker_block_index]);
3329 marker_block_index++;
3330 }
3331
3332 MALLOC_UNBLOCK_INPUT;
3333
3334 --total_free_markers;
3335 consing_since_gc += sizeof (union Lisp_Misc);
3336 misc_objects_consed++;
3337 XMISCANY (val)->gcmarkbit = 0;
3338 return val;
3339 }
3340
3341 /* Free a Lisp_Misc object */
3342
3343 void
3344 free_misc (misc)
3345 Lisp_Object misc;
3346 {
3347 XMISCTYPE (misc) = Lisp_Misc_Free;
3348 XMISC (misc)->u_free.chain = marker_free_list;
3349 marker_free_list = XMISC (misc);
3350
3351 total_free_markers++;
3352 }
3353
3354 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3355 INTEGER. This is used to package C values to call record_unwind_protect.
3356 The unwind function can get the C values back using XSAVE_VALUE. */
3357
3358 Lisp_Object
3359 make_save_value (pointer, integer)
3360 void *pointer;
3361 int integer;
3362 {
3363 register Lisp_Object val;
3364 register struct Lisp_Save_Value *p;
3365
3366 val = allocate_misc ();
3367 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3368 p = XSAVE_VALUE (val);
3369 p->pointer = pointer;
3370 p->integer = integer;
3371 p->dogc = 0;
3372 return val;
3373 }
3374
3375 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3376 doc: /* Return a newly allocated marker which does not point at any place. */)
3377 ()
3378 {
3379 register Lisp_Object val;
3380 register struct Lisp_Marker *p;
3381
3382 val = allocate_misc ();
3383 XMISCTYPE (val) = Lisp_Misc_Marker;
3384 p = XMARKER (val);
3385 p->buffer = 0;
3386 p->bytepos = 0;
3387 p->charpos = 0;
3388 p->next = NULL;
3389 p->insertion_type = 0;
3390 return val;
3391 }
3392
3393 /* Put MARKER back on the free list after using it temporarily. */
3394
3395 void
3396 free_marker (marker)
3397 Lisp_Object marker;
3398 {
3399 unchain_marker (XMARKER (marker));
3400 free_misc (marker);
3401 }
3402
3403 \f
3404 /* Return a newly created vector or string with specified arguments as
3405 elements. If all the arguments are characters that can fit
3406 in a string of events, make a string; otherwise, make a vector.
3407
3408 Any number of arguments, even zero arguments, are allowed. */
3409
3410 Lisp_Object
3411 make_event_array (nargs, args)
3412 register int nargs;
3413 Lisp_Object *args;
3414 {
3415 int i;
3416
3417 for (i = 0; i < nargs; i++)
3418 /* The things that fit in a string
3419 are characters that are in 0...127,
3420 after discarding the meta bit and all the bits above it. */
3421 if (!INTEGERP (args[i])
3422 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3423 return Fvector (nargs, args);
3424
3425 /* Since the loop exited, we know that all the things in it are
3426 characters, so we can make a string. */
3427 {
3428 Lisp_Object result;
3429
3430 result = Fmake_string (make_number (nargs), make_number (0));
3431 for (i = 0; i < nargs; i++)
3432 {
3433 SSET (result, i, XINT (args[i]));
3434 /* Move the meta bit to the right place for a string char. */
3435 if (XINT (args[i]) & CHAR_META)
3436 SSET (result, i, SREF (result, i) | 0x80);
3437 }
3438
3439 return result;
3440 }
3441 }
3442
3443
3444 \f
3445 /************************************************************************
3446 Memory Full Handling
3447 ************************************************************************/
3448
3449
3450 /* Called if malloc returns zero. */
3451
3452 void
3453 memory_full ()
3454 {
3455 int i;
3456
3457 Vmemory_full = Qt;
3458
3459 memory_full_cons_threshold = sizeof (struct cons_block);
3460
3461 /* The first time we get here, free the spare memory. */
3462 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3463 if (spare_memory[i])
3464 {
3465 if (i == 0)
3466 free (spare_memory[i]);
3467 else if (i >= 1 && i <= 4)
3468 lisp_align_free (spare_memory[i]);
3469 else
3470 lisp_free (spare_memory[i]);
3471 spare_memory[i] = 0;
3472 }
3473
3474 /* Record the space now used. When it decreases substantially,
3475 we can refill the memory reserve. */
3476 #ifndef SYSTEM_MALLOC
3477 bytes_used_when_full = BYTES_USED;
3478 #endif
3479
3480 /* This used to call error, but if we've run out of memory, we could
3481 get infinite recursion trying to build the string. */
3482 xsignal (Qnil, Vmemory_signal_data);
3483 }
3484
3485 /* If we released our reserve (due to running out of memory),
3486 and we have a fair amount free once again,
3487 try to set aside another reserve in case we run out once more.
3488
3489 This is called when a relocatable block is freed in ralloc.c,
3490 and also directly from this file, in case we're not using ralloc.c. */
3491
3492 void
3493 refill_memory_reserve ()
3494 {
3495 #ifndef SYSTEM_MALLOC
3496 if (spare_memory[0] == 0)
3497 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3498 if (spare_memory[1] == 0)
3499 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3500 MEM_TYPE_CONS);
3501 if (spare_memory[2] == 0)
3502 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3503 MEM_TYPE_CONS);
3504 if (spare_memory[3] == 0)
3505 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3506 MEM_TYPE_CONS);
3507 if (spare_memory[4] == 0)
3508 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3509 MEM_TYPE_CONS);
3510 if (spare_memory[5] == 0)
3511 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3512 MEM_TYPE_STRING);
3513 if (spare_memory[6] == 0)
3514 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3515 MEM_TYPE_STRING);
3516 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3517 Vmemory_full = Qnil;
3518 #endif
3519 }
3520 \f
3521 /************************************************************************
3522 C Stack Marking
3523 ************************************************************************/
3524
3525 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3526
3527 /* Conservative C stack marking requires a method to identify possibly
3528 live Lisp objects given a pointer value. We do this by keeping
3529 track of blocks of Lisp data that are allocated in a red-black tree
3530 (see also the comment of mem_node which is the type of nodes in
3531 that tree). Function lisp_malloc adds information for an allocated
3532 block to the red-black tree with calls to mem_insert, and function
3533 lisp_free removes it with mem_delete. Functions live_string_p etc
3534 call mem_find to lookup information about a given pointer in the
3535 tree, and use that to determine if the pointer points to a Lisp
3536 object or not. */
3537
3538 /* Initialize this part of alloc.c. */
3539
3540 static void
3541 mem_init ()
3542 {
3543 mem_z.left = mem_z.right = MEM_NIL;
3544 mem_z.parent = NULL;
3545 mem_z.color = MEM_BLACK;
3546 mem_z.start = mem_z.end = NULL;
3547 mem_root = MEM_NIL;
3548 }
3549
3550
3551 /* Value is a pointer to the mem_node containing START. Value is
3552 MEM_NIL if there is no node in the tree containing START. */
3553
3554 static INLINE struct mem_node *
3555 mem_find (start)
3556 void *start;
3557 {
3558 struct mem_node *p;
3559
3560 if (start < min_heap_address || start > max_heap_address)
3561 return MEM_NIL;
3562
3563 /* Make the search always successful to speed up the loop below. */
3564 mem_z.start = start;
3565 mem_z.end = (char *) start + 1;
3566
3567 p = mem_root;
3568 while (start < p->start || start >= p->end)
3569 p = start < p->start ? p->left : p->right;
3570 return p;
3571 }
3572
3573
3574 /* Insert a new node into the tree for a block of memory with start
3575 address START, end address END, and type TYPE. Value is a
3576 pointer to the node that was inserted. */
3577
3578 static struct mem_node *
3579 mem_insert (start, end, type)
3580 void *start, *end;
3581 enum mem_type type;
3582 {
3583 struct mem_node *c, *parent, *x;
3584
3585 if (min_heap_address == NULL || start < min_heap_address)
3586 min_heap_address = start;
3587 if (max_heap_address == NULL || end > max_heap_address)
3588 max_heap_address = end;
3589
3590 /* See where in the tree a node for START belongs. In this
3591 particular application, it shouldn't happen that a node is already
3592 present. For debugging purposes, let's check that. */
3593 c = mem_root;
3594 parent = NULL;
3595
3596 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3597
3598 while (c != MEM_NIL)
3599 {
3600 if (start >= c->start && start < c->end)
3601 abort ();
3602 parent = c;
3603 c = start < c->start ? c->left : c->right;
3604 }
3605
3606 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3607
3608 while (c != MEM_NIL)
3609 {
3610 parent = c;
3611 c = start < c->start ? c->left : c->right;
3612 }
3613
3614 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3615
3616 /* Create a new node. */
3617 #ifdef GC_MALLOC_CHECK
3618 x = (struct mem_node *) _malloc_internal (sizeof *x);
3619 if (x == NULL)
3620 abort ();
3621 #else
3622 x = (struct mem_node *) xmalloc (sizeof *x);
3623 #endif
3624 x->start = start;
3625 x->end = end;
3626 x->type = type;
3627 x->parent = parent;
3628 x->left = x->right = MEM_NIL;
3629 x->color = MEM_RED;
3630
3631 /* Insert it as child of PARENT or install it as root. */
3632 if (parent)
3633 {
3634 if (start < parent->start)
3635 parent->left = x;
3636 else
3637 parent->right = x;
3638 }
3639 else
3640 mem_root = x;
3641
3642 /* Re-establish red-black tree properties. */
3643 mem_insert_fixup (x);
3644
3645 return x;
3646 }
3647
3648
3649 /* Re-establish the red-black properties of the tree, and thereby
3650 balance the tree, after node X has been inserted; X is always red. */
3651
3652 static void
3653 mem_insert_fixup (x)
3654 struct mem_node *x;
3655 {
3656 while (x != mem_root && x->parent->color == MEM_RED)
3657 {
3658 /* X is red and its parent is red. This is a violation of
3659 red-black tree property #3. */
3660
3661 if (x->parent == x->parent->parent->left)
3662 {
3663 /* We're on the left side of our grandparent, and Y is our
3664 "uncle". */
3665 struct mem_node *y = x->parent->parent->right;
3666
3667 if (y->color == MEM_RED)
3668 {
3669 /* Uncle and parent are red but should be black because
3670 X is red. Change the colors accordingly and proceed
3671 with the grandparent. */
3672 x->parent->color = MEM_BLACK;
3673 y->color = MEM_BLACK;
3674 x->parent->parent->color = MEM_RED;
3675 x = x->parent->parent;
3676 }
3677 else
3678 {
3679 /* Parent and uncle have different colors; parent is
3680 red, uncle is black. */
3681 if (x == x->parent->right)
3682 {
3683 x = x->parent;
3684 mem_rotate_left (x);
3685 }
3686
3687 x->parent->color = MEM_BLACK;
3688 x->parent->parent->color = MEM_RED;
3689 mem_rotate_right (x->parent->parent);
3690 }
3691 }
3692 else
3693 {
3694 /* This is the symmetrical case of above. */
3695 struct mem_node *y = x->parent->parent->left;
3696
3697 if (y->color == MEM_RED)
3698 {
3699 x->parent->color = MEM_BLACK;
3700 y->color = MEM_BLACK;
3701 x->parent->parent->color = MEM_RED;
3702 x = x->parent->parent;
3703 }
3704 else
3705 {
3706 if (x == x->parent->left)
3707 {
3708 x = x->parent;
3709 mem_rotate_right (x);
3710 }
3711
3712 x->parent->color = MEM_BLACK;
3713 x->parent->parent->color = MEM_RED;
3714 mem_rotate_left (x->parent->parent);
3715 }
3716 }
3717 }
3718
3719 /* The root may have been changed to red due to the algorithm. Set
3720 it to black so that property #5 is satisfied. */
3721 mem_root->color = MEM_BLACK;
3722 }
3723
3724
3725 /* (x) (y)
3726 / \ / \
3727 a (y) ===> (x) c
3728 / \ / \
3729 b c a b */
3730
3731 static void
3732 mem_rotate_left (x)
3733 struct mem_node *x;
3734 {
3735 struct mem_node *y;
3736
3737 /* Turn y's left sub-tree into x's right sub-tree. */
3738 y = x->right;
3739 x->right = y->left;
3740 if (y->left != MEM_NIL)
3741 y->left->parent = x;
3742
3743 /* Y's parent was x's parent. */
3744 if (y != MEM_NIL)
3745 y->parent = x->parent;
3746
3747 /* Get the parent to point to y instead of x. */
3748 if (x->parent)
3749 {
3750 if (x == x->parent->left)
3751 x->parent->left = y;
3752 else
3753 x->parent->right = y;
3754 }
3755 else
3756 mem_root = y;
3757
3758 /* Put x on y's left. */
3759 y->left = x;
3760 if (x != MEM_NIL)
3761 x->parent = y;
3762 }
3763
3764
3765 /* (x) (Y)
3766 / \ / \
3767 (y) c ===> a (x)
3768 / \ / \
3769 a b b c */
3770
3771 static void
3772 mem_rotate_right (x)
3773 struct mem_node *x;
3774 {
3775 struct mem_node *y = x->left;
3776
3777 x->left = y->right;
3778 if (y->right != MEM_NIL)
3779 y->right->parent = x;
3780
3781 if (y != MEM_NIL)
3782 y->parent = x->parent;
3783 if (x->parent)
3784 {
3785 if (x == x->parent->right)
3786 x->parent->right = y;
3787 else
3788 x->parent->left = y;
3789 }
3790 else
3791 mem_root = y;
3792
3793 y->right = x;
3794 if (x != MEM_NIL)
3795 x->parent = y;
3796 }
3797
3798
3799 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3800
3801 static void
3802 mem_delete (z)
3803 struct mem_node *z;
3804 {
3805 struct mem_node *x, *y;
3806
3807 if (!z || z == MEM_NIL)
3808 return;
3809
3810 if (z->left == MEM_NIL || z->right == MEM_NIL)
3811 y = z;
3812 else
3813 {
3814 y = z->right;
3815 while (y->left != MEM_NIL)
3816 y = y->left;
3817 }
3818
3819 if (y->left != MEM_NIL)
3820 x = y->left;
3821 else
3822 x = y->right;
3823
3824 x->parent = y->parent;
3825 if (y->parent)
3826 {
3827 if (y == y->parent->left)
3828 y->parent->left = x;
3829 else
3830 y->parent->right = x;
3831 }
3832 else
3833 mem_root = x;
3834
3835 if (y != z)
3836 {
3837 z->start = y->start;
3838 z->end = y->end;
3839 z->type = y->type;
3840 }
3841
3842 if (y->color == MEM_BLACK)
3843 mem_delete_fixup (x);
3844
3845 #ifdef GC_MALLOC_CHECK
3846 _free_internal (y);
3847 #else
3848 xfree (y);
3849 #endif
3850 }
3851
3852
3853 /* Re-establish the red-black properties of the tree, after a
3854 deletion. */
3855
3856 static void
3857 mem_delete_fixup (x)
3858 struct mem_node *x;
3859 {
3860 while (x != mem_root && x->color == MEM_BLACK)
3861 {
3862 if (x == x->parent->left)
3863 {
3864 struct mem_node *w = x->parent->right;
3865
3866 if (w->color == MEM_RED)
3867 {
3868 w->color = MEM_BLACK;
3869 x->parent->color = MEM_RED;
3870 mem_rotate_left (x->parent);
3871 w = x->parent->right;
3872 }
3873
3874 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3875 {
3876 w->color = MEM_RED;
3877 x = x->parent;
3878 }
3879 else
3880 {
3881 if (w->right->color == MEM_BLACK)
3882 {
3883 w->left->color = MEM_BLACK;
3884 w->color = MEM_RED;
3885 mem_rotate_right (w);
3886 w = x->parent->right;
3887 }
3888 w->color = x->parent->color;
3889 x->parent->color = MEM_BLACK;
3890 w->right->color = MEM_BLACK;
3891 mem_rotate_left (x->parent);
3892 x = mem_root;
3893 }
3894 }
3895 else
3896 {
3897 struct mem_node *w = x->parent->left;
3898
3899 if (w->color == MEM_RED)
3900 {
3901 w->color = MEM_BLACK;
3902 x->parent->color = MEM_RED;
3903 mem_rotate_right (x->parent);
3904 w = x->parent->left;
3905 }
3906
3907 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3908 {
3909 w->color = MEM_RED;
3910 x = x->parent;
3911 }
3912 else
3913 {
3914 if (w->left->color == MEM_BLACK)
3915 {
3916 w->right->color = MEM_BLACK;
3917 w->color = MEM_RED;
3918 mem_rotate_left (w);
3919 w = x->parent->left;
3920 }
3921
3922 w->color = x->parent->color;
3923 x->parent->color = MEM_BLACK;
3924 w->left->color = MEM_BLACK;
3925 mem_rotate_right (x->parent);
3926 x = mem_root;
3927 }
3928 }
3929 }
3930
3931 x->color = MEM_BLACK;
3932 }
3933
3934
3935 /* Value is non-zero if P is a pointer to a live Lisp string on
3936 the heap. M is a pointer to the mem_block for P. */
3937
3938 static INLINE int
3939 live_string_p (m, p)
3940 struct mem_node *m;
3941 void *p;
3942 {
3943 if (m->type == MEM_TYPE_STRING)
3944 {
3945 struct string_block *b = (struct string_block *) m->start;
3946 int offset = (char *) p - (char *) &b->strings[0];
3947
3948 /* P must point to the start of a Lisp_String structure, and it
3949 must not be on the free-list. */
3950 return (offset >= 0
3951 && offset % sizeof b->strings[0] == 0
3952 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3953 && ((struct Lisp_String *) p)->data != NULL);
3954 }
3955 else
3956 return 0;
3957 }
3958
3959
3960 /* Value is non-zero if P is a pointer to a live Lisp cons on
3961 the heap. M is a pointer to the mem_block for P. */
3962
3963 static INLINE int
3964 live_cons_p (m, p)
3965 struct mem_node *m;
3966 void *p;
3967 {
3968 if (m->type == MEM_TYPE_CONS)
3969 {
3970 struct cons_block *b = (struct cons_block *) m->start;
3971 int offset = (char *) p - (char *) &b->conses[0];
3972
3973 /* P must point to the start of a Lisp_Cons, not be
3974 one of the unused cells in the current cons block,
3975 and not be on the free-list. */
3976 return (offset >= 0
3977 && offset % sizeof b->conses[0] == 0
3978 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3979 && (b != cons_block
3980 || offset / sizeof b->conses[0] < cons_block_index)
3981 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3982 }
3983 else
3984 return 0;
3985 }
3986
3987
3988 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3989 the heap. M is a pointer to the mem_block for P. */
3990
3991 static INLINE int
3992 live_symbol_p (m, p)
3993 struct mem_node *m;
3994 void *p;
3995 {
3996 if (m->type == MEM_TYPE_SYMBOL)
3997 {
3998 struct symbol_block *b = (struct symbol_block *) m->start;
3999 int offset = (char *) p - (char *) &b->symbols[0];
4000
4001 /* P must point to the start of a Lisp_Symbol, not be
4002 one of the unused cells in the current symbol block,
4003 and not be on the free-list. */
4004 return (offset >= 0
4005 && offset % sizeof b->symbols[0] == 0
4006 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4007 && (b != symbol_block
4008 || offset / sizeof b->symbols[0] < symbol_block_index)
4009 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4010 }
4011 else
4012 return 0;
4013 }
4014
4015
4016 /* Value is non-zero if P is a pointer to a live Lisp float on
4017 the heap. M is a pointer to the mem_block for P. */
4018
4019 static INLINE int
4020 live_float_p (m, p)
4021 struct mem_node *m;
4022 void *p;
4023 {
4024 if (m->type == MEM_TYPE_FLOAT)
4025 {
4026 struct float_block *b = (struct float_block *) m->start;
4027 int offset = (char *) p - (char *) &b->floats[0];
4028
4029 /* P must point to the start of a Lisp_Float and not be
4030 one of the unused cells in the current float block. */
4031 return (offset >= 0
4032 && offset % sizeof b->floats[0] == 0
4033 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4034 && (b != float_block
4035 || offset / sizeof b->floats[0] < float_block_index));
4036 }
4037 else
4038 return 0;
4039 }
4040
4041
4042 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4043 the heap. M is a pointer to the mem_block for P. */
4044
4045 static INLINE int
4046 live_misc_p (m, p)
4047 struct mem_node *m;
4048 void *p;
4049 {
4050 if (m->type == MEM_TYPE_MISC)
4051 {
4052 struct marker_block *b = (struct marker_block *) m->start;
4053 int offset = (char *) p - (char *) &b->markers[0];
4054
4055 /* P must point to the start of a Lisp_Misc, not be
4056 one of the unused cells in the current misc block,
4057 and not be on the free-list. */
4058 return (offset >= 0
4059 && offset % sizeof b->markers[0] == 0
4060 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4061 && (b != marker_block
4062 || offset / sizeof b->markers[0] < marker_block_index)
4063 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4064 }
4065 else
4066 return 0;
4067 }
4068
4069
4070 /* Value is non-zero if P is a pointer to a live vector-like object.
4071 M is a pointer to the mem_block for P. */
4072
4073 static INLINE int
4074 live_vector_p (m, p)
4075 struct mem_node *m;
4076 void *p;
4077 {
4078 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
4079 }
4080
4081
4082 /* Value is non-zero if P is a pointer to a live buffer. M is a
4083 pointer to the mem_block for P. */
4084
4085 static INLINE int
4086 live_buffer_p (m, p)
4087 struct mem_node *m;
4088 void *p;
4089 {
4090 /* P must point to the start of the block, and the buffer
4091 must not have been killed. */
4092 return (m->type == MEM_TYPE_BUFFER
4093 && p == m->start
4094 && !NILP (((struct buffer *) p)->name));
4095 }
4096
4097 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4098
4099 #if GC_MARK_STACK
4100
4101 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4102
4103 /* Array of objects that are kept alive because the C stack contains
4104 a pattern that looks like a reference to them . */
4105
4106 #define MAX_ZOMBIES 10
4107 static Lisp_Object zombies[MAX_ZOMBIES];
4108
4109 /* Number of zombie objects. */
4110
4111 static int nzombies;
4112
4113 /* Number of garbage collections. */
4114
4115 static int ngcs;
4116
4117 /* Average percentage of zombies per collection. */
4118
4119 static double avg_zombies;
4120
4121 /* Max. number of live and zombie objects. */
4122
4123 static int max_live, max_zombies;
4124
4125 /* Average number of live objects per GC. */
4126
4127 static double avg_live;
4128
4129 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4130 doc: /* Show information about live and zombie objects. */)
4131 ()
4132 {
4133 Lisp_Object args[8], zombie_list = Qnil;
4134 int i;
4135 for (i = 0; i < nzombies; i++)
4136 zombie_list = Fcons (zombies[i], zombie_list);
4137 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4138 args[1] = make_number (ngcs);
4139 args[2] = make_float (avg_live);
4140 args[3] = make_float (avg_zombies);
4141 args[4] = make_float (avg_zombies / avg_live / 100);
4142 args[5] = make_number (max_live);
4143 args[6] = make_number (max_zombies);
4144 args[7] = zombie_list;
4145 return Fmessage (8, args);
4146 }
4147
4148 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4149
4150
4151 /* Mark OBJ if we can prove it's a Lisp_Object. */
4152
4153 static INLINE void
4154 mark_maybe_object (obj)
4155 Lisp_Object obj;
4156 {
4157 void *po = (void *) XPNTR (obj);
4158 struct mem_node *m = mem_find (po);
4159
4160 if (m != MEM_NIL)
4161 {
4162 int mark_p = 0;
4163
4164 switch (XGCTYPE (obj))
4165 {
4166 case Lisp_String:
4167 mark_p = (live_string_p (m, po)
4168 && !STRING_MARKED_P ((struct Lisp_String *) po));
4169 break;
4170
4171 case Lisp_Cons:
4172 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4173 break;
4174
4175 case Lisp_Symbol:
4176 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4177 break;
4178
4179 case Lisp_Float:
4180 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4181 break;
4182
4183 case Lisp_Vectorlike:
4184 /* Note: can't check GC_BUFFERP before we know it's a
4185 buffer because checking that dereferences the pointer
4186 PO which might point anywhere. */
4187 if (live_vector_p (m, po))
4188 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4189 else if (live_buffer_p (m, po))
4190 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4191 break;
4192
4193 case Lisp_Misc:
4194 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4195 break;
4196
4197 case Lisp_Int:
4198 case Lisp_Type_Limit:
4199 break;
4200 }
4201
4202 if (mark_p)
4203 {
4204 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4205 if (nzombies < MAX_ZOMBIES)
4206 zombies[nzombies] = obj;
4207 ++nzombies;
4208 #endif
4209 mark_object (obj);
4210 }
4211 }
4212 }
4213
4214
4215 /* If P points to Lisp data, mark that as live if it isn't already
4216 marked. */
4217
4218 static INLINE void
4219 mark_maybe_pointer (p)
4220 void *p;
4221 {
4222 struct mem_node *m;
4223
4224 /* Quickly rule out some values which can't point to Lisp data. */
4225 if ((EMACS_INT) p %
4226 #ifdef USE_LSB_TAG
4227 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4228 #else
4229 2 /* We assume that Lisp data is aligned on even addresses. */
4230 #endif
4231 )
4232 return;
4233
4234 m = mem_find (p);
4235 if (m != MEM_NIL)
4236 {
4237 Lisp_Object obj = Qnil;
4238
4239 switch (m->type)
4240 {
4241 case MEM_TYPE_NON_LISP:
4242 /* Nothing to do; not a pointer to Lisp memory. */
4243 break;
4244
4245 case MEM_TYPE_BUFFER:
4246 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4247 XSETVECTOR (obj, p);
4248 break;
4249
4250 case MEM_TYPE_CONS:
4251 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4252 XSETCONS (obj, p);
4253 break;
4254
4255 case MEM_TYPE_STRING:
4256 if (live_string_p (m, p)
4257 && !STRING_MARKED_P ((struct Lisp_String *) p))
4258 XSETSTRING (obj, p);
4259 break;
4260
4261 case MEM_TYPE_MISC:
4262 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4263 XSETMISC (obj, p);
4264 break;
4265
4266 case MEM_TYPE_SYMBOL:
4267 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4268 XSETSYMBOL (obj, p);
4269 break;
4270
4271 case MEM_TYPE_FLOAT:
4272 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4273 XSETFLOAT (obj, p);
4274 break;
4275
4276 case MEM_TYPE_VECTORLIKE:
4277 if (live_vector_p (m, p))
4278 {
4279 Lisp_Object tem;
4280 XSETVECTOR (tem, p);
4281 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4282 obj = tem;
4283 }
4284 break;
4285
4286 default:
4287 abort ();
4288 }
4289
4290 if (!GC_NILP (obj))
4291 mark_object (obj);
4292 }
4293 }
4294
4295
4296 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4297 or END+OFFSET..START. */
4298
4299 static void
4300 mark_memory (start, end, offset)
4301 void *start, *end;
4302 int offset;
4303 {
4304 Lisp_Object *p;
4305 void **pp;
4306
4307 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4308 nzombies = 0;
4309 #endif
4310
4311 /* Make START the pointer to the start of the memory region,
4312 if it isn't already. */
4313 if (end < start)
4314 {
4315 void *tem = start;
4316 start = end;
4317 end = tem;
4318 }
4319
4320 /* Mark Lisp_Objects. */
4321 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4322 mark_maybe_object (*p);
4323
4324 /* Mark Lisp data pointed to. This is necessary because, in some
4325 situations, the C compiler optimizes Lisp objects away, so that
4326 only a pointer to them remains. Example:
4327
4328 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4329 ()
4330 {
4331 Lisp_Object obj = build_string ("test");
4332 struct Lisp_String *s = XSTRING (obj);
4333 Fgarbage_collect ();
4334 fprintf (stderr, "test `%s'\n", s->data);
4335 return Qnil;
4336 }
4337
4338 Here, `obj' isn't really used, and the compiler optimizes it
4339 away. The only reference to the life string is through the
4340 pointer `s'. */
4341
4342 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4343 mark_maybe_pointer (*pp);
4344 }
4345
4346 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4347 the GCC system configuration. In gcc 3.2, the only systems for
4348 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4349 by others?) and ns32k-pc532-min. */
4350
4351 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4352
4353 static int setjmp_tested_p, longjmps_done;
4354
4355 #define SETJMP_WILL_LIKELY_WORK "\
4356 \n\
4357 Emacs garbage collector has been changed to use conservative stack\n\
4358 marking. Emacs has determined that the method it uses to do the\n\
4359 marking will likely work on your system, but this isn't sure.\n\
4360 \n\
4361 If you are a system-programmer, or can get the help of a local wizard\n\
4362 who is, please take a look at the function mark_stack in alloc.c, and\n\
4363 verify that the methods used are appropriate for your system.\n\
4364 \n\
4365 Please mail the result to <emacs-devel@gnu.org>.\n\
4366 "
4367
4368 #define SETJMP_WILL_NOT_WORK "\
4369 \n\
4370 Emacs garbage collector has been changed to use conservative stack\n\
4371 marking. Emacs has determined that the default method it uses to do the\n\
4372 marking will not work on your system. We will need a system-dependent\n\
4373 solution for your system.\n\
4374 \n\
4375 Please take a look at the function mark_stack in alloc.c, and\n\
4376 try to find a way to make it work on your system.\n\
4377 \n\
4378 Note that you may get false negatives, depending on the compiler.\n\
4379 In particular, you need to use -O with GCC for this test.\n\
4380 \n\
4381 Please mail the result to <emacs-devel@gnu.org>.\n\
4382 "
4383
4384
4385 /* Perform a quick check if it looks like setjmp saves registers in a
4386 jmp_buf. Print a message to stderr saying so. When this test
4387 succeeds, this is _not_ a proof that setjmp is sufficient for
4388 conservative stack marking. Only the sources or a disassembly
4389 can prove that. */
4390
4391 static void
4392 test_setjmp ()
4393 {
4394 char buf[10];
4395 register int x;
4396 jmp_buf jbuf;
4397 int result = 0;
4398
4399 /* Arrange for X to be put in a register. */
4400 sprintf (buf, "1");
4401 x = strlen (buf);
4402 x = 2 * x - 1;
4403
4404 setjmp (jbuf);
4405 if (longjmps_done == 1)
4406 {
4407 /* Came here after the longjmp at the end of the function.
4408
4409 If x == 1, the longjmp has restored the register to its
4410 value before the setjmp, and we can hope that setjmp
4411 saves all such registers in the jmp_buf, although that
4412 isn't sure.
4413
4414 For other values of X, either something really strange is
4415 taking place, or the setjmp just didn't save the register. */
4416
4417 if (x == 1)
4418 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4419 else
4420 {
4421 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4422 exit (1);
4423 }
4424 }
4425
4426 ++longjmps_done;
4427 x = 2;
4428 if (longjmps_done == 1)
4429 longjmp (jbuf, 1);
4430 }
4431
4432 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4433
4434
4435 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4436
4437 /* Abort if anything GCPRO'd doesn't survive the GC. */
4438
4439 static void
4440 check_gcpros ()
4441 {
4442 struct gcpro *p;
4443 int i;
4444
4445 for (p = gcprolist; p; p = p->next)
4446 for (i = 0; i < p->nvars; ++i)
4447 if (!survives_gc_p (p->var[i]))
4448 /* FIXME: It's not necessarily a bug. It might just be that the
4449 GCPRO is unnecessary or should release the object sooner. */
4450 abort ();
4451 }
4452
4453 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4454
4455 static void
4456 dump_zombies ()
4457 {
4458 int i;
4459
4460 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4461 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4462 {
4463 fprintf (stderr, " %d = ", i);
4464 debug_print (zombies[i]);
4465 }
4466 }
4467
4468 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4469
4470
4471 /* Mark live Lisp objects on the C stack.
4472
4473 There are several system-dependent problems to consider when
4474 porting this to new architectures:
4475
4476 Processor Registers
4477
4478 We have to mark Lisp objects in CPU registers that can hold local
4479 variables or are used to pass parameters.
4480
4481 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4482 something that either saves relevant registers on the stack, or
4483 calls mark_maybe_object passing it each register's contents.
4484
4485 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4486 implementation assumes that calling setjmp saves registers we need
4487 to see in a jmp_buf which itself lies on the stack. This doesn't
4488 have to be true! It must be verified for each system, possibly
4489 by taking a look at the source code of setjmp.
4490
4491 Stack Layout
4492
4493 Architectures differ in the way their processor stack is organized.
4494 For example, the stack might look like this
4495
4496 +----------------+
4497 | Lisp_Object | size = 4
4498 +----------------+
4499 | something else | size = 2
4500 +----------------+
4501 | Lisp_Object | size = 4
4502 +----------------+
4503 | ... |
4504
4505 In such a case, not every Lisp_Object will be aligned equally. To
4506 find all Lisp_Object on the stack it won't be sufficient to walk
4507 the stack in steps of 4 bytes. Instead, two passes will be
4508 necessary, one starting at the start of the stack, and a second
4509 pass starting at the start of the stack + 2. Likewise, if the
4510 minimal alignment of Lisp_Objects on the stack is 1, four passes
4511 would be necessary, each one starting with one byte more offset
4512 from the stack start.
4513
4514 The current code assumes by default that Lisp_Objects are aligned
4515 equally on the stack. */
4516
4517 static void
4518 mark_stack ()
4519 {
4520 int i;
4521 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4522 union aligned_jmpbuf {
4523 Lisp_Object o;
4524 jmp_buf j;
4525 } j;
4526 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4527 void *end;
4528
4529 /* This trick flushes the register windows so that all the state of
4530 the process is contained in the stack. */
4531 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4532 needed on ia64 too. See mach_dep.c, where it also says inline
4533 assembler doesn't work with relevant proprietary compilers. */
4534 #ifdef sparc
4535 asm ("ta 3");
4536 #endif
4537
4538 /* Save registers that we need to see on the stack. We need to see
4539 registers used to hold register variables and registers used to
4540 pass parameters. */
4541 #ifdef GC_SAVE_REGISTERS_ON_STACK
4542 GC_SAVE_REGISTERS_ON_STACK (end);
4543 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4544
4545 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4546 setjmp will definitely work, test it
4547 and print a message with the result
4548 of the test. */
4549 if (!setjmp_tested_p)
4550 {
4551 setjmp_tested_p = 1;
4552 test_setjmp ();
4553 }
4554 #endif /* GC_SETJMP_WORKS */
4555
4556 setjmp (j.j);
4557 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4558 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4559
4560 /* This assumes that the stack is a contiguous region in memory. If
4561 that's not the case, something has to be done here to iterate
4562 over the stack segments. */
4563 #ifndef GC_LISP_OBJECT_ALIGNMENT
4564 #ifdef __GNUC__
4565 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4566 #else
4567 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4568 #endif
4569 #endif
4570 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4571 mark_memory (stack_base, end, i);
4572 /* Allow for marking a secondary stack, like the register stack on the
4573 ia64. */
4574 #ifdef GC_MARK_SECONDARY_STACK
4575 GC_MARK_SECONDARY_STACK ();
4576 #endif
4577
4578 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4579 check_gcpros ();
4580 #endif
4581 }
4582
4583 #endif /* GC_MARK_STACK != 0 */
4584
4585
4586 /* Determine whether it is safe to access memory at address P. */
4587 static int
4588 valid_pointer_p (p)
4589 void *p;
4590 {
4591 #ifdef WINDOWSNT
4592 return w32_valid_pointer_p (p, 16);
4593 #else
4594 int fd;
4595
4596 /* Obviously, we cannot just access it (we would SEGV trying), so we
4597 trick the o/s to tell us whether p is a valid pointer.
4598 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4599 not validate p in that case. */
4600
4601 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4602 {
4603 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4604 emacs_close (fd);
4605 unlink ("__Valid__Lisp__Object__");
4606 return valid;
4607 }
4608
4609 return -1;
4610 #endif
4611 }
4612
4613 /* Return 1 if OBJ is a valid lisp object.
4614 Return 0 if OBJ is NOT a valid lisp object.
4615 Return -1 if we cannot validate OBJ.
4616 This function can be quite slow,
4617 so it should only be used in code for manual debugging. */
4618
4619 int
4620 valid_lisp_object_p (obj)
4621 Lisp_Object obj;
4622 {
4623 void *p;
4624 #if GC_MARK_STACK
4625 struct mem_node *m;
4626 #endif
4627
4628 if (INTEGERP (obj))
4629 return 1;
4630
4631 p = (void *) XPNTR (obj);
4632 if (PURE_POINTER_P (p))
4633 return 1;
4634
4635 #if !GC_MARK_STACK
4636 return valid_pointer_p (p);
4637 #else
4638
4639 m = mem_find (p);
4640
4641 if (m == MEM_NIL)
4642 {
4643 int valid = valid_pointer_p (p);
4644 if (valid <= 0)
4645 return valid;
4646
4647 if (SUBRP (obj))
4648 return 1;
4649
4650 return 0;
4651 }
4652
4653 switch (m->type)
4654 {
4655 case MEM_TYPE_NON_LISP:
4656 return 0;
4657
4658 case MEM_TYPE_BUFFER:
4659 return live_buffer_p (m, p);
4660
4661 case MEM_TYPE_CONS:
4662 return live_cons_p (m, p);
4663
4664 case MEM_TYPE_STRING:
4665 return live_string_p (m, p);
4666
4667 case MEM_TYPE_MISC:
4668 return live_misc_p (m, p);
4669
4670 case MEM_TYPE_SYMBOL:
4671 return live_symbol_p (m, p);
4672
4673 case MEM_TYPE_FLOAT:
4674 return live_float_p (m, p);
4675
4676 case MEM_TYPE_VECTORLIKE:
4677 return live_vector_p (m, p);
4678
4679 default:
4680 break;
4681 }
4682
4683 return 0;
4684 #endif
4685 }
4686
4687
4688
4689 \f
4690 /***********************************************************************
4691 Pure Storage Management
4692 ***********************************************************************/
4693
4694 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4695 pointer to it. TYPE is the Lisp type for which the memory is
4696 allocated. TYPE < 0 means it's not used for a Lisp object. */
4697
4698 static POINTER_TYPE *
4699 pure_alloc (size, type)
4700 size_t size;
4701 int type;
4702 {
4703 POINTER_TYPE *result;
4704 #ifdef USE_LSB_TAG
4705 size_t alignment = (1 << GCTYPEBITS);
4706 #else
4707 size_t alignment = sizeof (EMACS_INT);
4708
4709 /* Give Lisp_Floats an extra alignment. */
4710 if (type == Lisp_Float)
4711 {
4712 #if defined __GNUC__ && __GNUC__ >= 2
4713 alignment = __alignof (struct Lisp_Float);
4714 #else
4715 alignment = sizeof (struct Lisp_Float);
4716 #endif
4717 }
4718 #endif
4719
4720 again:
4721 if (type >= 0)
4722 {
4723 /* Allocate space for a Lisp object from the beginning of the free
4724 space with taking account of alignment. */
4725 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4726 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4727 }
4728 else
4729 {
4730 /* Allocate space for a non-Lisp object from the end of the free
4731 space. */
4732 pure_bytes_used_non_lisp += size;
4733 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4734 }
4735 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4736
4737 if (pure_bytes_used <= pure_size)
4738 return result;
4739
4740 /* Don't allocate a large amount here,
4741 because it might get mmap'd and then its address
4742 might not be usable. */
4743 purebeg = (char *) xmalloc (10000);
4744 pure_size = 10000;
4745 pure_bytes_used_before_overflow += pure_bytes_used - size;
4746 pure_bytes_used = 0;
4747 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4748 goto again;
4749 }
4750
4751
4752 /* Print a warning if PURESIZE is too small. */
4753
4754 void
4755 check_pure_size ()
4756 {
4757 if (pure_bytes_used_before_overflow)
4758 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4759 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4760 }
4761
4762
4763 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4764 the non-Lisp data pool of the pure storage, and return its start
4765 address. Return NULL if not found. */
4766
4767 static char *
4768 find_string_data_in_pure (data, nbytes)
4769 char *data;
4770 int nbytes;
4771 {
4772 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4773 unsigned char *p;
4774 char *non_lisp_beg;
4775
4776 if (pure_bytes_used_non_lisp < nbytes + 1)
4777 return NULL;
4778
4779 /* Set up the Boyer-Moore table. */
4780 skip = nbytes + 1;
4781 for (i = 0; i < 256; i++)
4782 bm_skip[i] = skip;
4783
4784 p = (unsigned char *) data;
4785 while (--skip > 0)
4786 bm_skip[*p++] = skip;
4787
4788 last_char_skip = bm_skip['\0'];
4789
4790 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4791 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4792
4793 /* See the comments in the function `boyer_moore' (search.c) for the
4794 use of `infinity'. */
4795 infinity = pure_bytes_used_non_lisp + 1;
4796 bm_skip['\0'] = infinity;
4797
4798 p = (unsigned char *) non_lisp_beg + nbytes;
4799 start = 0;
4800 do
4801 {
4802 /* Check the last character (== '\0'). */
4803 do
4804 {
4805 start += bm_skip[*(p + start)];
4806 }
4807 while (start <= start_max);
4808
4809 if (start < infinity)
4810 /* Couldn't find the last character. */
4811 return NULL;
4812
4813 /* No less than `infinity' means we could find the last
4814 character at `p[start - infinity]'. */
4815 start -= infinity;
4816
4817 /* Check the remaining characters. */
4818 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4819 /* Found. */
4820 return non_lisp_beg + start;
4821
4822 start += last_char_skip;
4823 }
4824 while (start <= start_max);
4825
4826 return NULL;
4827 }
4828
4829
4830 /* Return a string allocated in pure space. DATA is a buffer holding
4831 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4832 non-zero means make the result string multibyte.
4833
4834 Must get an error if pure storage is full, since if it cannot hold
4835 a large string it may be able to hold conses that point to that
4836 string; then the string is not protected from gc. */
4837
4838 Lisp_Object
4839 make_pure_string (data, nchars, nbytes, multibyte)
4840 char *data;
4841 int nchars, nbytes;
4842 int multibyte;
4843 {
4844 Lisp_Object string;
4845 struct Lisp_String *s;
4846
4847 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4848 s->data = find_string_data_in_pure (data, nbytes);
4849 if (s->data == NULL)
4850 {
4851 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4852 bcopy (data, s->data, nbytes);
4853 s->data[nbytes] = '\0';
4854 }
4855 s->size = nchars;
4856 s->size_byte = multibyte ? nbytes : -1;
4857 s->intervals = NULL_INTERVAL;
4858 XSETSTRING (string, s);
4859 return string;
4860 }
4861
4862
4863 /* Return a cons allocated from pure space. Give it pure copies
4864 of CAR as car and CDR as cdr. */
4865
4866 Lisp_Object
4867 pure_cons (car, cdr)
4868 Lisp_Object car, cdr;
4869 {
4870 register Lisp_Object new;
4871 struct Lisp_Cons *p;
4872
4873 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4874 XSETCONS (new, p);
4875 XSETCAR (new, Fpurecopy (car));
4876 XSETCDR (new, Fpurecopy (cdr));
4877 return new;
4878 }
4879
4880
4881 /* Value is a float object with value NUM allocated from pure space. */
4882
4883 static Lisp_Object
4884 make_pure_float (num)
4885 double num;
4886 {
4887 register Lisp_Object new;
4888 struct Lisp_Float *p;
4889
4890 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4891 XSETFLOAT (new, p);
4892 XFLOAT_DATA (new) = num;
4893 return new;
4894 }
4895
4896
4897 /* Return a vector with room for LEN Lisp_Objects allocated from
4898 pure space. */
4899
4900 Lisp_Object
4901 make_pure_vector (len)
4902 EMACS_INT len;
4903 {
4904 Lisp_Object new;
4905 struct Lisp_Vector *p;
4906 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4907
4908 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4909 XSETVECTOR (new, p);
4910 XVECTOR (new)->size = len;
4911 return new;
4912 }
4913
4914
4915 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4916 doc: /* Make a copy of object OBJ in pure storage.
4917 Recursively copies contents of vectors and cons cells.
4918 Does not copy symbols. Copies strings without text properties. */)
4919 (obj)
4920 register Lisp_Object obj;
4921 {
4922 if (NILP (Vpurify_flag))
4923 return obj;
4924
4925 if (PURE_POINTER_P (XPNTR (obj)))
4926 return obj;
4927
4928 if (CONSP (obj))
4929 return pure_cons (XCAR (obj), XCDR (obj));
4930 else if (FLOATP (obj))
4931 return make_pure_float (XFLOAT_DATA (obj));
4932 else if (STRINGP (obj))
4933 return make_pure_string (SDATA (obj), SCHARS (obj),
4934 SBYTES (obj),
4935 STRING_MULTIBYTE (obj));
4936 else if (COMPILEDP (obj) || VECTORP (obj))
4937 {
4938 register struct Lisp_Vector *vec;
4939 register int i;
4940 EMACS_INT size;
4941
4942 size = XVECTOR (obj)->size;
4943 if (size & PSEUDOVECTOR_FLAG)
4944 size &= PSEUDOVECTOR_SIZE_MASK;
4945 vec = XVECTOR (make_pure_vector (size));
4946 for (i = 0; i < size; i++)
4947 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4948 if (COMPILEDP (obj))
4949 {
4950 XSETPVECTYPE (vec, PVEC_COMPILED);
4951 XSETCOMPILED (obj, vec);
4952 }
4953 else
4954 XSETVECTOR (obj, vec);
4955 return obj;
4956 }
4957 else if (MARKERP (obj))
4958 error ("Attempt to copy a marker to pure storage");
4959
4960 return obj;
4961 }
4962
4963
4964 \f
4965 /***********************************************************************
4966 Protection from GC
4967 ***********************************************************************/
4968
4969 /* Put an entry in staticvec, pointing at the variable with address
4970 VARADDRESS. */
4971
4972 void
4973 staticpro (varaddress)
4974 Lisp_Object *varaddress;
4975 {
4976 staticvec[staticidx++] = varaddress;
4977 if (staticidx >= NSTATICS)
4978 abort ();
4979 }
4980
4981 struct catchtag
4982 {
4983 Lisp_Object tag;
4984 Lisp_Object val;
4985 struct catchtag *next;
4986 };
4987
4988 \f
4989 /***********************************************************************
4990 Protection from GC
4991 ***********************************************************************/
4992
4993 /* Temporarily prevent garbage collection. */
4994
4995 int
4996 inhibit_garbage_collection ()
4997 {
4998 int count = SPECPDL_INDEX ();
4999 int nbits = min (VALBITS, BITS_PER_INT);
5000
5001 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
5002 return count;
5003 }
5004
5005
5006 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5007 doc: /* Reclaim storage for Lisp objects no longer needed.
5008 Garbage collection happens automatically if you cons more than
5009 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5010 `garbage-collect' normally returns a list with info on amount of space in use:
5011 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
5012 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
5013 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
5014 (USED-STRINGS . FREE-STRINGS))
5015 However, if there was overflow in pure space, `garbage-collect'
5016 returns nil, because real GC can't be done. */)
5017 ()
5018 {
5019 register struct specbinding *bind;
5020 struct catchtag *catch;
5021 struct handler *handler;
5022 char stack_top_variable;
5023 register int i;
5024 int message_p;
5025 Lisp_Object total[8];
5026 int count = SPECPDL_INDEX ();
5027 EMACS_TIME t1, t2, t3;
5028
5029 if (abort_on_gc)
5030 abort ();
5031
5032 /* Can't GC if pure storage overflowed because we can't determine
5033 if something is a pure object or not. */
5034 if (pure_bytes_used_before_overflow)
5035 return Qnil;
5036
5037 CHECK_CONS_LIST ();
5038
5039 /* Don't keep undo information around forever.
5040 Do this early on, so it is no problem if the user quits. */
5041 {
5042 register struct buffer *nextb = all_buffers;
5043
5044 while (nextb)
5045 {
5046 /* If a buffer's undo list is Qt, that means that undo is
5047 turned off in that buffer. Calling truncate_undo_list on
5048 Qt tends to return NULL, which effectively turns undo back on.
5049 So don't call truncate_undo_list if undo_list is Qt. */
5050 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
5051 truncate_undo_list (nextb);
5052
5053 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5054 if (nextb->base_buffer == 0 && !NILP (nextb->name))
5055 {
5056 /* If a buffer's gap size is more than 10% of the buffer
5057 size, or larger than 2000 bytes, then shrink it
5058 accordingly. Keep a minimum size of 20 bytes. */
5059 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5060
5061 if (nextb->text->gap_size > size)
5062 {
5063 struct buffer *save_current = current_buffer;
5064 current_buffer = nextb;
5065 make_gap (-(nextb->text->gap_size - size));
5066 current_buffer = save_current;
5067 }
5068 }
5069
5070 nextb = nextb->next;
5071 }
5072 }
5073
5074 EMACS_GET_TIME (t1);
5075
5076 /* In case user calls debug_print during GC,
5077 don't let that cause a recursive GC. */
5078 consing_since_gc = 0;
5079
5080 /* Save what's currently displayed in the echo area. */
5081 message_p = push_message ();
5082 record_unwind_protect (pop_message_unwind, Qnil);
5083
5084 /* Save a copy of the contents of the stack, for debugging. */
5085 #if MAX_SAVE_STACK > 0
5086 if (NILP (Vpurify_flag))
5087 {
5088 i = &stack_top_variable - stack_bottom;
5089 if (i < 0) i = -i;
5090 if (i < MAX_SAVE_STACK)
5091 {
5092 if (stack_copy == 0)
5093 stack_copy = (char *) xmalloc (stack_copy_size = i);
5094 else if (stack_copy_size < i)
5095 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
5096 if (stack_copy)
5097 {
5098 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
5099 bcopy (stack_bottom, stack_copy, i);
5100 else
5101 bcopy (&stack_top_variable, stack_copy, i);
5102 }
5103 }
5104 }
5105 #endif /* MAX_SAVE_STACK > 0 */
5106
5107 if (garbage_collection_messages)
5108 message1_nolog ("Garbage collecting...");
5109
5110 BLOCK_INPUT;
5111
5112 shrink_regexp_cache ();
5113
5114 gc_in_progress = 1;
5115
5116 /* clear_marks (); */
5117
5118 /* Mark all the special slots that serve as the roots of accessibility. */
5119
5120 for (i = 0; i < staticidx; i++)
5121 mark_object (*staticvec[i]);
5122
5123 for (bind = specpdl; bind != specpdl_ptr; bind++)
5124 {
5125 mark_object (bind->symbol);
5126 mark_object (bind->old_value);
5127 }
5128 mark_terminals ();
5129 mark_kboards ();
5130 mark_ttys ();
5131
5132 #ifdef USE_GTK
5133 {
5134 extern void xg_mark_data ();
5135 xg_mark_data ();
5136 }
5137 #endif
5138
5139 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5140 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5141 mark_stack ();
5142 #else
5143 {
5144 register struct gcpro *tail;
5145 for (tail = gcprolist; tail; tail = tail->next)
5146 for (i = 0; i < tail->nvars; i++)
5147 mark_object (tail->var[i]);
5148 }
5149 #endif
5150
5151 mark_byte_stack ();
5152 for (catch = catchlist; catch; catch = catch->next)
5153 {
5154 mark_object (catch->tag);
5155 mark_object (catch->val);
5156 }
5157 for (handler = handlerlist; handler; handler = handler->next)
5158 {
5159 mark_object (handler->handler);
5160 mark_object (handler->var);
5161 }
5162 mark_backtrace ();
5163
5164 #ifdef HAVE_WINDOW_SYSTEM
5165 mark_fringe_data ();
5166 #endif
5167
5168 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5169 mark_stack ();
5170 #endif
5171
5172 /* Everything is now marked, except for the things that require special
5173 finalization, i.e. the undo_list.
5174 Look thru every buffer's undo list
5175 for elements that update markers that were not marked,
5176 and delete them. */
5177 {
5178 register struct buffer *nextb = all_buffers;
5179
5180 while (nextb)
5181 {
5182 /* If a buffer's undo list is Qt, that means that undo is
5183 turned off in that buffer. Calling truncate_undo_list on
5184 Qt tends to return NULL, which effectively turns undo back on.
5185 So don't call truncate_undo_list if undo_list is Qt. */
5186 if (! EQ (nextb->undo_list, Qt))
5187 {
5188 Lisp_Object tail, prev;
5189 tail = nextb->undo_list;
5190 prev = Qnil;
5191 while (CONSP (tail))
5192 {
5193 if (GC_CONSP (XCAR (tail))
5194 && GC_MARKERP (XCAR (XCAR (tail)))
5195 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5196 {
5197 if (NILP (prev))
5198 nextb->undo_list = tail = XCDR (tail);
5199 else
5200 {
5201 tail = XCDR (tail);
5202 XSETCDR (prev, tail);
5203 }
5204 }
5205 else
5206 {
5207 prev = tail;
5208 tail = XCDR (tail);
5209 }
5210 }
5211 }
5212 /* Now that we have stripped the elements that need not be in the
5213 undo_list any more, we can finally mark the list. */
5214 mark_object (nextb->undo_list);
5215
5216 nextb = nextb->next;
5217 }
5218 }
5219
5220 gc_sweep ();
5221
5222 /* Clear the mark bits that we set in certain root slots. */
5223
5224 unmark_byte_stack ();
5225 VECTOR_UNMARK (&buffer_defaults);
5226 VECTOR_UNMARK (&buffer_local_symbols);
5227
5228 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5229 dump_zombies ();
5230 #endif
5231
5232 UNBLOCK_INPUT;
5233
5234 CHECK_CONS_LIST ();
5235
5236 /* clear_marks (); */
5237 gc_in_progress = 0;
5238
5239 consing_since_gc = 0;
5240 if (gc_cons_threshold < 10000)
5241 gc_cons_threshold = 10000;
5242
5243 if (FLOATP (Vgc_cons_percentage))
5244 { /* Set gc_cons_combined_threshold. */
5245 EMACS_INT total = 0;
5246
5247 total += total_conses * sizeof (struct Lisp_Cons);
5248 total += total_symbols * sizeof (struct Lisp_Symbol);
5249 total += total_markers * sizeof (union Lisp_Misc);
5250 total += total_string_size;
5251 total += total_vector_size * sizeof (Lisp_Object);
5252 total += total_floats * sizeof (struct Lisp_Float);
5253 total += total_intervals * sizeof (struct interval);
5254 total += total_strings * sizeof (struct Lisp_String);
5255
5256 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5257 }
5258 else
5259 gc_relative_threshold = 0;
5260
5261 if (garbage_collection_messages)
5262 {
5263 if (message_p || minibuf_level > 0)
5264 restore_message ();
5265 else
5266 message1_nolog ("Garbage collecting...done");
5267 }
5268
5269 unbind_to (count, Qnil);
5270
5271 total[0] = Fcons (make_number (total_conses),
5272 make_number (total_free_conses));
5273 total[1] = Fcons (make_number (total_symbols),
5274 make_number (total_free_symbols));
5275 total[2] = Fcons (make_number (total_markers),
5276 make_number (total_free_markers));
5277 total[3] = make_number (total_string_size);
5278 total[4] = make_number (total_vector_size);
5279 total[5] = Fcons (make_number (total_floats),
5280 make_number (total_free_floats));
5281 total[6] = Fcons (make_number (total_intervals),
5282 make_number (total_free_intervals));
5283 total[7] = Fcons (make_number (total_strings),
5284 make_number (total_free_strings));
5285
5286 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5287 {
5288 /* Compute average percentage of zombies. */
5289 double nlive = 0;
5290
5291 for (i = 0; i < 7; ++i)
5292 if (CONSP (total[i]))
5293 nlive += XFASTINT (XCAR (total[i]));
5294
5295 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5296 max_live = max (nlive, max_live);
5297 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5298 max_zombies = max (nzombies, max_zombies);
5299 ++ngcs;
5300 }
5301 #endif
5302
5303 if (!NILP (Vpost_gc_hook))
5304 {
5305 int count = inhibit_garbage_collection ();
5306 safe_run_hooks (Qpost_gc_hook);
5307 unbind_to (count, Qnil);
5308 }
5309
5310 /* Accumulate statistics. */
5311 EMACS_GET_TIME (t2);
5312 EMACS_SUB_TIME (t3, t2, t1);
5313 if (FLOATP (Vgc_elapsed))
5314 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5315 EMACS_SECS (t3) +
5316 EMACS_USECS (t3) * 1.0e-6);
5317 gcs_done++;
5318
5319 return Flist (sizeof total / sizeof *total, total);
5320 }
5321
5322
5323 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5324 only interesting objects referenced from glyphs are strings. */
5325
5326 static void
5327 mark_glyph_matrix (matrix)
5328 struct glyph_matrix *matrix;
5329 {
5330 struct glyph_row *row = matrix->rows;
5331 struct glyph_row *end = row + matrix->nrows;
5332
5333 for (; row < end; ++row)
5334 if (row->enabled_p)
5335 {
5336 int area;
5337 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5338 {
5339 struct glyph *glyph = row->glyphs[area];
5340 struct glyph *end_glyph = glyph + row->used[area];
5341
5342 for (; glyph < end_glyph; ++glyph)
5343 if (GC_STRINGP (glyph->object)
5344 && !STRING_MARKED_P (XSTRING (glyph->object)))
5345 mark_object (glyph->object);
5346 }
5347 }
5348 }
5349
5350
5351 /* Mark Lisp faces in the face cache C. */
5352
5353 static void
5354 mark_face_cache (c)
5355 struct face_cache *c;
5356 {
5357 if (c)
5358 {
5359 int i, j;
5360 for (i = 0; i < c->used; ++i)
5361 {
5362 struct face *face = FACE_FROM_ID (c->f, i);
5363
5364 if (face)
5365 {
5366 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5367 mark_object (face->lface[j]);
5368 }
5369 }
5370 }
5371 }
5372
5373
5374 #ifdef HAVE_WINDOW_SYSTEM
5375
5376 /* Mark Lisp objects in image IMG. */
5377
5378 static void
5379 mark_image (img)
5380 struct image *img;
5381 {
5382 mark_object (img->spec);
5383
5384 if (!NILP (img->data.lisp_val))
5385 mark_object (img->data.lisp_val);
5386 }
5387
5388
5389 /* Mark Lisp objects in image cache of frame F. It's done this way so
5390 that we don't have to include xterm.h here. */
5391
5392 static void
5393 mark_image_cache (f)
5394 struct frame *f;
5395 {
5396 forall_images_in_image_cache (f, mark_image);
5397 }
5398
5399 #endif /* HAVE_X_WINDOWS */
5400
5401
5402 \f
5403 /* Mark reference to a Lisp_Object.
5404 If the object referred to has not been seen yet, recursively mark
5405 all the references contained in it. */
5406
5407 #define LAST_MARKED_SIZE 500
5408 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5409 int last_marked_index;
5410
5411 /* For debugging--call abort when we cdr down this many
5412 links of a list, in mark_object. In debugging,
5413 the call to abort will hit a breakpoint.
5414 Normally this is zero and the check never goes off. */
5415 static int mark_object_loop_halt;
5416
5417 /* Return non-zero if the object was not yet marked. */
5418 static int
5419 mark_vectorlike (ptr)
5420 struct Lisp_Vector *ptr;
5421 {
5422 register EMACS_INT size = ptr->size;
5423 register int i;
5424
5425 if (VECTOR_MARKED_P (ptr))
5426 return 0; /* Already marked */
5427 VECTOR_MARK (ptr); /* Else mark it */
5428 if (size & PSEUDOVECTOR_FLAG)
5429 size &= PSEUDOVECTOR_SIZE_MASK;
5430
5431 /* Note that this size is not the memory-footprint size, but only
5432 the number of Lisp_Object fields that we should trace.
5433 The distinction is used e.g. by Lisp_Process which places extra
5434 non-Lisp_Object fields at the end of the structure. */
5435 for (i = 0; i < size; i++) /* and then mark its elements */
5436 mark_object (ptr->contents[i]);
5437 return 1;
5438 }
5439
5440 void
5441 mark_object (arg)
5442 Lisp_Object arg;
5443 {
5444 register Lisp_Object obj = arg;
5445 #ifdef GC_CHECK_MARKED_OBJECTS
5446 void *po;
5447 struct mem_node *m;
5448 #endif
5449 int cdr_count = 0;
5450
5451 loop:
5452
5453 if (PURE_POINTER_P (XPNTR (obj)))
5454 return;
5455
5456 last_marked[last_marked_index++] = obj;
5457 if (last_marked_index == LAST_MARKED_SIZE)
5458 last_marked_index = 0;
5459
5460 /* Perform some sanity checks on the objects marked here. Abort if
5461 we encounter an object we know is bogus. This increases GC time
5462 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5463 #ifdef GC_CHECK_MARKED_OBJECTS
5464
5465 po = (void *) XPNTR (obj);
5466
5467 /* Check that the object pointed to by PO is known to be a Lisp
5468 structure allocated from the heap. */
5469 #define CHECK_ALLOCATED() \
5470 do { \
5471 m = mem_find (po); \
5472 if (m == MEM_NIL) \
5473 abort (); \
5474 } while (0)
5475
5476 /* Check that the object pointed to by PO is live, using predicate
5477 function LIVEP. */
5478 #define CHECK_LIVE(LIVEP) \
5479 do { \
5480 if (!LIVEP (m, po)) \
5481 abort (); \
5482 } while (0)
5483
5484 /* Check both of the above conditions. */
5485 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5486 do { \
5487 CHECK_ALLOCATED (); \
5488 CHECK_LIVE (LIVEP); \
5489 } while (0) \
5490
5491 #else /* not GC_CHECK_MARKED_OBJECTS */
5492
5493 #define CHECK_ALLOCATED() (void) 0
5494 #define CHECK_LIVE(LIVEP) (void) 0
5495 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5496
5497 #endif /* not GC_CHECK_MARKED_OBJECTS */
5498
5499 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
5500 {
5501 case Lisp_String:
5502 {
5503 register struct Lisp_String *ptr = XSTRING (obj);
5504 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5505 MARK_INTERVAL_TREE (ptr->intervals);
5506 MARK_STRING (ptr);
5507 #ifdef GC_CHECK_STRING_BYTES
5508 /* Check that the string size recorded in the string is the
5509 same as the one recorded in the sdata structure. */
5510 CHECK_STRING_BYTES (ptr);
5511 #endif /* GC_CHECK_STRING_BYTES */
5512 }
5513 break;
5514
5515 case Lisp_Vectorlike:
5516 #ifdef GC_CHECK_MARKED_OBJECTS
5517 m = mem_find (po);
5518 if (m == MEM_NIL && !GC_SUBRP (obj)
5519 && po != &buffer_defaults
5520 && po != &buffer_local_symbols)
5521 abort ();
5522 #endif /* GC_CHECK_MARKED_OBJECTS */
5523
5524 if (GC_BUFFERP (obj))
5525 {
5526 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5527 {
5528 #ifdef GC_CHECK_MARKED_OBJECTS
5529 if (po != &buffer_defaults && po != &buffer_local_symbols)
5530 {
5531 struct buffer *b;
5532 for (b = all_buffers; b && b != po; b = b->next)
5533 ;
5534 if (b == NULL)
5535 abort ();
5536 }
5537 #endif /* GC_CHECK_MARKED_OBJECTS */
5538 mark_buffer (obj);
5539 }
5540 }
5541 else if (GC_SUBRP (obj))
5542 break;
5543 else if (GC_COMPILEDP (obj))
5544 /* We could treat this just like a vector, but it is better to
5545 save the COMPILED_CONSTANTS element for last and avoid
5546 recursion there. */
5547 {
5548 register struct Lisp_Vector *ptr = XVECTOR (obj);
5549 register EMACS_INT size = ptr->size;
5550 register int i;
5551
5552 if (VECTOR_MARKED_P (ptr))
5553 break; /* Already marked */
5554
5555 CHECK_LIVE (live_vector_p);
5556 VECTOR_MARK (ptr); /* Else mark it */
5557 size &= PSEUDOVECTOR_SIZE_MASK;
5558 for (i = 0; i < size; i++) /* and then mark its elements */
5559 {
5560 if (i != COMPILED_CONSTANTS)
5561 mark_object (ptr->contents[i]);
5562 }
5563 obj = ptr->contents[COMPILED_CONSTANTS];
5564 goto loop;
5565 }
5566 else if (GC_FRAMEP (obj))
5567 {
5568 register struct frame *ptr = XFRAME (obj);
5569 if (mark_vectorlike (XVECTOR (obj)))
5570 {
5571 mark_face_cache (ptr->face_cache);
5572 #ifdef HAVE_WINDOW_SYSTEM
5573 mark_image_cache (ptr);
5574 #endif /* HAVE_WINDOW_SYSTEM */
5575 }
5576 }
5577 else if (GC_WINDOWP (obj))
5578 {
5579 register struct Lisp_Vector *ptr = XVECTOR (obj);
5580 struct window *w = XWINDOW (obj);
5581 if (mark_vectorlike (ptr))
5582 {
5583 /* Mark glyphs for leaf windows. Marking window matrices is
5584 sufficient because frame matrices use the same glyph
5585 memory. */
5586 if (NILP (w->hchild)
5587 && NILP (w->vchild)
5588 && w->current_matrix)
5589 {
5590 mark_glyph_matrix (w->current_matrix);
5591 mark_glyph_matrix (w->desired_matrix);
5592 }
5593 }
5594 }
5595 else if (GC_HASH_TABLE_P (obj))
5596 {
5597 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5598 if (mark_vectorlike ((struct Lisp_Vector *)h))
5599 { /* If hash table is not weak, mark all keys and values.
5600 For weak tables, mark only the vector. */
5601 if (GC_NILP (h->weak))
5602 mark_object (h->key_and_value);
5603 else
5604 VECTOR_MARK (XVECTOR (h->key_and_value));
5605 }
5606 }
5607 else
5608 mark_vectorlike (XVECTOR (obj));
5609 break;
5610
5611 case Lisp_Symbol:
5612 {
5613 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5614 struct Lisp_Symbol *ptrx;
5615
5616 if (ptr->gcmarkbit) break;
5617 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5618 ptr->gcmarkbit = 1;
5619 mark_object (ptr->value);
5620 mark_object (ptr->function);
5621 mark_object (ptr->plist);
5622
5623 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5624 MARK_STRING (XSTRING (ptr->xname));
5625 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5626
5627 /* Note that we do not mark the obarray of the symbol.
5628 It is safe not to do so because nothing accesses that
5629 slot except to check whether it is nil. */
5630 ptr = ptr->next;
5631 if (ptr)
5632 {
5633 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5634 XSETSYMBOL (obj, ptrx);
5635 goto loop;
5636 }
5637 }
5638 break;
5639
5640 case Lisp_Misc:
5641 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5642 if (XMISCANY (obj)->gcmarkbit)
5643 break;
5644 XMISCANY (obj)->gcmarkbit = 1;
5645
5646 switch (XMISCTYPE (obj))
5647 {
5648 case Lisp_Misc_Buffer_Local_Value:
5649 {
5650 register struct Lisp_Buffer_Local_Value *ptr
5651 = XBUFFER_LOCAL_VALUE (obj);
5652 /* If the cdr is nil, avoid recursion for the car. */
5653 if (EQ (ptr->cdr, Qnil))
5654 {
5655 obj = ptr->realvalue;
5656 goto loop;
5657 }
5658 mark_object (ptr->realvalue);
5659 mark_object (ptr->buffer);
5660 mark_object (ptr->frame);
5661 obj = ptr->cdr;
5662 goto loop;
5663 }
5664
5665 case Lisp_Misc_Marker:
5666 /* DO NOT mark thru the marker's chain.
5667 The buffer's markers chain does not preserve markers from gc;
5668 instead, markers are removed from the chain when freed by gc. */
5669 break;
5670
5671 case Lisp_Misc_Intfwd:
5672 case Lisp_Misc_Boolfwd:
5673 case Lisp_Misc_Objfwd:
5674 case Lisp_Misc_Buffer_Objfwd:
5675 case Lisp_Misc_Kboard_Objfwd:
5676 /* Don't bother with Lisp_Buffer_Objfwd,
5677 since all markable slots in current buffer marked anyway. */
5678 /* Don't need to do Lisp_Objfwd, since the places they point
5679 are protected with staticpro. */
5680 break;
5681
5682 case Lisp_Misc_Save_Value:
5683 #if GC_MARK_STACK
5684 {
5685 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5686 /* If DOGC is set, POINTER is the address of a memory
5687 area containing INTEGER potential Lisp_Objects. */
5688 if (ptr->dogc)
5689 {
5690 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5691 int nelt;
5692 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5693 mark_maybe_object (*p);
5694 }
5695 }
5696 #endif
5697 break;
5698
5699 case Lisp_Misc_Overlay:
5700 {
5701 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5702 mark_object (ptr->start);
5703 mark_object (ptr->end);
5704 mark_object (ptr->plist);
5705 if (ptr->next)
5706 {
5707 XSETMISC (obj, ptr->next);
5708 goto loop;
5709 }
5710 }
5711 break;
5712
5713 default:
5714 abort ();
5715 }
5716 break;
5717
5718 case Lisp_Cons:
5719 {
5720 register struct Lisp_Cons *ptr = XCONS (obj);
5721 if (CONS_MARKED_P (ptr)) break;
5722 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5723 CONS_MARK (ptr);
5724 /* If the cdr is nil, avoid recursion for the car. */
5725 if (EQ (ptr->u.cdr, Qnil))
5726 {
5727 obj = ptr->car;
5728 cdr_count = 0;
5729 goto loop;
5730 }
5731 mark_object (ptr->car);
5732 obj = ptr->u.cdr;
5733 cdr_count++;
5734 if (cdr_count == mark_object_loop_halt)
5735 abort ();
5736 goto loop;
5737 }
5738
5739 case Lisp_Float:
5740 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5741 FLOAT_MARK (XFLOAT (obj));
5742 break;
5743
5744 case Lisp_Int:
5745 break;
5746
5747 default:
5748 abort ();
5749 }
5750
5751 #undef CHECK_LIVE
5752 #undef CHECK_ALLOCATED
5753 #undef CHECK_ALLOCATED_AND_LIVE
5754 }
5755
5756 /* Mark the pointers in a buffer structure. */
5757
5758 static void
5759 mark_buffer (buf)
5760 Lisp_Object buf;
5761 {
5762 register struct buffer *buffer = XBUFFER (buf);
5763 register Lisp_Object *ptr, tmp;
5764 Lisp_Object base_buffer;
5765
5766 VECTOR_MARK (buffer);
5767
5768 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5769
5770 /* For now, we just don't mark the undo_list. It's done later in
5771 a special way just before the sweep phase, and after stripping
5772 some of its elements that are not needed any more. */
5773
5774 if (buffer->overlays_before)
5775 {
5776 XSETMISC (tmp, buffer->overlays_before);
5777 mark_object (tmp);
5778 }
5779 if (buffer->overlays_after)
5780 {
5781 XSETMISC (tmp, buffer->overlays_after);
5782 mark_object (tmp);
5783 }
5784
5785 for (ptr = &buffer->name;
5786 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5787 ptr++)
5788 mark_object (*ptr);
5789
5790 /* If this is an indirect buffer, mark its base buffer. */
5791 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5792 {
5793 XSETBUFFER (base_buffer, buffer->base_buffer);
5794 mark_buffer (base_buffer);
5795 }
5796 }
5797
5798 /* Mark the Lisp pointers in the terminal objects.
5799 Called by the Fgarbage_collector. */
5800
5801 static void
5802 mark_terminals (void)
5803 {
5804 struct terminal *t;
5805 for (t = terminal_list; t; t = t->next_terminal)
5806 {
5807 eassert (t->name != NULL);
5808 mark_vectorlike ((struct Lisp_Vector *)t);
5809 }
5810 }
5811
5812
5813
5814 /* Value is non-zero if OBJ will survive the current GC because it's
5815 either marked or does not need to be marked to survive. */
5816
5817 int
5818 survives_gc_p (obj)
5819 Lisp_Object obj;
5820 {
5821 int survives_p;
5822
5823 switch (XGCTYPE (obj))
5824 {
5825 case Lisp_Int:
5826 survives_p = 1;
5827 break;
5828
5829 case Lisp_Symbol:
5830 survives_p = XSYMBOL (obj)->gcmarkbit;
5831 break;
5832
5833 case Lisp_Misc:
5834 survives_p = XMISCANY (obj)->gcmarkbit;
5835 break;
5836
5837 case Lisp_String:
5838 survives_p = STRING_MARKED_P (XSTRING (obj));
5839 break;
5840
5841 case Lisp_Vectorlike:
5842 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5843 break;
5844
5845 case Lisp_Cons:
5846 survives_p = CONS_MARKED_P (XCONS (obj));
5847 break;
5848
5849 case Lisp_Float:
5850 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5851 break;
5852
5853 default:
5854 abort ();
5855 }
5856
5857 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5858 }
5859
5860
5861 \f
5862 /* Sweep: find all structures not marked, and free them. */
5863
5864 static void
5865 gc_sweep ()
5866 {
5867 /* Remove or mark entries in weak hash tables.
5868 This must be done before any object is unmarked. */
5869 sweep_weak_hash_tables ();
5870
5871 sweep_strings ();
5872 #ifdef GC_CHECK_STRING_BYTES
5873 if (!noninteractive)
5874 check_string_bytes (1);
5875 #endif
5876
5877 /* Put all unmarked conses on free list */
5878 {
5879 register struct cons_block *cblk;
5880 struct cons_block **cprev = &cons_block;
5881 register int lim = cons_block_index;
5882 register int num_free = 0, num_used = 0;
5883
5884 cons_free_list = 0;
5885
5886 for (cblk = cons_block; cblk; cblk = *cprev)
5887 {
5888 register int i = 0;
5889 int this_free = 0;
5890 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5891
5892 /* Scan the mark bits an int at a time. */
5893 for (i = 0; i <= ilim; i++)
5894 {
5895 if (cblk->gcmarkbits[i] == -1)
5896 {
5897 /* Fast path - all cons cells for this int are marked. */
5898 cblk->gcmarkbits[i] = 0;
5899 num_used += BITS_PER_INT;
5900 }
5901 else
5902 {
5903 /* Some cons cells for this int are not marked.
5904 Find which ones, and free them. */
5905 int start, pos, stop;
5906
5907 start = i * BITS_PER_INT;
5908 stop = lim - start;
5909 if (stop > BITS_PER_INT)
5910 stop = BITS_PER_INT;
5911 stop += start;
5912
5913 for (pos = start; pos < stop; pos++)
5914 {
5915 if (!CONS_MARKED_P (&cblk->conses[pos]))
5916 {
5917 this_free++;
5918 cblk->conses[pos].u.chain = cons_free_list;
5919 cons_free_list = &cblk->conses[pos];
5920 #if GC_MARK_STACK
5921 cons_free_list->car = Vdead;
5922 #endif
5923 }
5924 else
5925 {
5926 num_used++;
5927 CONS_UNMARK (&cblk->conses[pos]);
5928 }
5929 }
5930 }
5931 }
5932
5933 lim = CONS_BLOCK_SIZE;
5934 /* If this block contains only free conses and we have already
5935 seen more than two blocks worth of free conses then deallocate
5936 this block. */
5937 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5938 {
5939 *cprev = cblk->next;
5940 /* Unhook from the free list. */
5941 cons_free_list = cblk->conses[0].u.chain;
5942 lisp_align_free (cblk);
5943 n_cons_blocks--;
5944 }
5945 else
5946 {
5947 num_free += this_free;
5948 cprev = &cblk->next;
5949 }
5950 }
5951 total_conses = num_used;
5952 total_free_conses = num_free;
5953 }
5954
5955 /* Put all unmarked floats on free list */
5956 {
5957 register struct float_block *fblk;
5958 struct float_block **fprev = &float_block;
5959 register int lim = float_block_index;
5960 register int num_free = 0, num_used = 0;
5961
5962 float_free_list = 0;
5963
5964 for (fblk = float_block; fblk; fblk = *fprev)
5965 {
5966 register int i;
5967 int this_free = 0;
5968 for (i = 0; i < lim; i++)
5969 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5970 {
5971 this_free++;
5972 fblk->floats[i].u.chain = float_free_list;
5973 float_free_list = &fblk->floats[i];
5974 }
5975 else
5976 {
5977 num_used++;
5978 FLOAT_UNMARK (&fblk->floats[i]);
5979 }
5980 lim = FLOAT_BLOCK_SIZE;
5981 /* If this block contains only free floats and we have already
5982 seen more than two blocks worth of free floats then deallocate
5983 this block. */
5984 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5985 {
5986 *fprev = fblk->next;
5987 /* Unhook from the free list. */
5988 float_free_list = fblk->floats[0].u.chain;
5989 lisp_align_free (fblk);
5990 n_float_blocks--;
5991 }
5992 else
5993 {
5994 num_free += this_free;
5995 fprev = &fblk->next;
5996 }
5997 }
5998 total_floats = num_used;
5999 total_free_floats = num_free;
6000 }
6001
6002 /* Put all unmarked intervals on free list */
6003 {
6004 register struct interval_block *iblk;
6005 struct interval_block **iprev = &interval_block;
6006 register int lim = interval_block_index;
6007 register int num_free = 0, num_used = 0;
6008
6009 interval_free_list = 0;
6010
6011 for (iblk = interval_block; iblk; iblk = *iprev)
6012 {
6013 register int i;
6014 int this_free = 0;
6015
6016 for (i = 0; i < lim; i++)
6017 {
6018 if (!iblk->intervals[i].gcmarkbit)
6019 {
6020 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6021 interval_free_list = &iblk->intervals[i];
6022 this_free++;
6023 }
6024 else
6025 {
6026 num_used++;
6027 iblk->intervals[i].gcmarkbit = 0;
6028 }
6029 }
6030 lim = INTERVAL_BLOCK_SIZE;
6031 /* If this block contains only free intervals and we have already
6032 seen more than two blocks worth of free intervals then
6033 deallocate this block. */
6034 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6035 {
6036 *iprev = iblk->next;
6037 /* Unhook from the free list. */
6038 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6039 lisp_free (iblk);
6040 n_interval_blocks--;
6041 }
6042 else
6043 {
6044 num_free += this_free;
6045 iprev = &iblk->next;
6046 }
6047 }
6048 total_intervals = num_used;
6049 total_free_intervals = num_free;
6050 }
6051
6052 /* Put all unmarked symbols on free list */
6053 {
6054 register struct symbol_block *sblk;
6055 struct symbol_block **sprev = &symbol_block;
6056 register int lim = symbol_block_index;
6057 register int num_free = 0, num_used = 0;
6058
6059 symbol_free_list = NULL;
6060
6061 for (sblk = symbol_block; sblk; sblk = *sprev)
6062 {
6063 int this_free = 0;
6064 struct Lisp_Symbol *sym = sblk->symbols;
6065 struct Lisp_Symbol *end = sym + lim;
6066
6067 for (; sym < end; ++sym)
6068 {
6069 /* Check if the symbol was created during loadup. In such a case
6070 it might be pointed to by pure bytecode which we don't trace,
6071 so we conservatively assume that it is live. */
6072 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
6073
6074 if (!sym->gcmarkbit && !pure_p)
6075 {
6076 sym->next = symbol_free_list;
6077 symbol_free_list = sym;
6078 #if GC_MARK_STACK
6079 symbol_free_list->function = Vdead;
6080 #endif
6081 ++this_free;
6082 }
6083 else
6084 {
6085 ++num_used;
6086 if (!pure_p)
6087 UNMARK_STRING (XSTRING (sym->xname));
6088 sym->gcmarkbit = 0;
6089 }
6090 }
6091
6092 lim = SYMBOL_BLOCK_SIZE;
6093 /* If this block contains only free symbols and we have already
6094 seen more than two blocks worth of free symbols then deallocate
6095 this block. */
6096 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6097 {
6098 *sprev = sblk->next;
6099 /* Unhook from the free list. */
6100 symbol_free_list = sblk->symbols[0].next;
6101 lisp_free (sblk);
6102 n_symbol_blocks--;
6103 }
6104 else
6105 {
6106 num_free += this_free;
6107 sprev = &sblk->next;
6108 }
6109 }
6110 total_symbols = num_used;
6111 total_free_symbols = num_free;
6112 }
6113
6114 /* Put all unmarked misc's on free list.
6115 For a marker, first unchain it from the buffer it points into. */
6116 {
6117 register struct marker_block *mblk;
6118 struct marker_block **mprev = &marker_block;
6119 register int lim = marker_block_index;
6120 register int num_free = 0, num_used = 0;
6121
6122 marker_free_list = 0;
6123
6124 for (mblk = marker_block; mblk; mblk = *mprev)
6125 {
6126 register int i;
6127 int this_free = 0;
6128
6129 for (i = 0; i < lim; i++)
6130 {
6131 if (!mblk->markers[i].u_any.gcmarkbit)
6132 {
6133 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
6134 unchain_marker (&mblk->markers[i].u_marker);
6135 /* Set the type of the freed object to Lisp_Misc_Free.
6136 We could leave the type alone, since nobody checks it,
6137 but this might catch bugs faster. */
6138 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6139 mblk->markers[i].u_free.chain = marker_free_list;
6140 marker_free_list = &mblk->markers[i];
6141 this_free++;
6142 }
6143 else
6144 {
6145 num_used++;
6146 mblk->markers[i].u_any.gcmarkbit = 0;
6147 }
6148 }
6149 lim = MARKER_BLOCK_SIZE;
6150 /* If this block contains only free markers and we have already
6151 seen more than two blocks worth of free markers then deallocate
6152 this block. */
6153 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6154 {
6155 *mprev = mblk->next;
6156 /* Unhook from the free list. */
6157 marker_free_list = mblk->markers[0].u_free.chain;
6158 lisp_free (mblk);
6159 n_marker_blocks--;
6160 }
6161 else
6162 {
6163 num_free += this_free;
6164 mprev = &mblk->next;
6165 }
6166 }
6167
6168 total_markers = num_used;
6169 total_free_markers = num_free;
6170 }
6171
6172 /* Free all unmarked buffers */
6173 {
6174 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6175
6176 while (buffer)
6177 if (!VECTOR_MARKED_P (buffer))
6178 {
6179 if (prev)
6180 prev->next = buffer->next;
6181 else
6182 all_buffers = buffer->next;
6183 next = buffer->next;
6184 lisp_free (buffer);
6185 buffer = next;
6186 }
6187 else
6188 {
6189 VECTOR_UNMARK (buffer);
6190 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6191 prev = buffer, buffer = buffer->next;
6192 }
6193 }
6194
6195 /* Free all unmarked vectors */
6196 {
6197 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6198 total_vector_size = 0;
6199
6200 while (vector)
6201 if (!VECTOR_MARKED_P (vector))
6202 {
6203 if (prev)
6204 prev->next = vector->next;
6205 else
6206 all_vectors = vector->next;
6207 next = vector->next;
6208 lisp_free (vector);
6209 n_vectors--;
6210 vector = next;
6211
6212 }
6213 else
6214 {
6215 VECTOR_UNMARK (vector);
6216 if (vector->size & PSEUDOVECTOR_FLAG)
6217 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6218 else
6219 total_vector_size += vector->size;
6220 prev = vector, vector = vector->next;
6221 }
6222 }
6223
6224 #ifdef GC_CHECK_STRING_BYTES
6225 if (!noninteractive)
6226 check_string_bytes (1);
6227 #endif
6228 }
6229
6230
6231
6232 \f
6233 /* Debugging aids. */
6234
6235 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6236 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6237 This may be helpful in debugging Emacs's memory usage.
6238 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6239 ()
6240 {
6241 Lisp_Object end;
6242
6243 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6244
6245 return end;
6246 }
6247
6248 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6249 doc: /* Return a list of counters that measure how much consing there has been.
6250 Each of these counters increments for a certain kind of object.
6251 The counters wrap around from the largest positive integer to zero.
6252 Garbage collection does not decrease them.
6253 The elements of the value are as follows:
6254 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6255 All are in units of 1 = one object consed
6256 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6257 objects consed.
6258 MISCS include overlays, markers, and some internal types.
6259 Frames, windows, buffers, and subprocesses count as vectors
6260 (but the contents of a buffer's text do not count here). */)
6261 ()
6262 {
6263 Lisp_Object consed[8];
6264
6265 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6266 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6267 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6268 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6269 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6270 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6271 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6272 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6273
6274 return Flist (8, consed);
6275 }
6276
6277 int suppress_checking;
6278
6279 void
6280 die (msg, file, line)
6281 const char *msg;
6282 const char *file;
6283 int line;
6284 {
6285 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6286 file, line, msg);
6287 abort ();
6288 }
6289 \f
6290 /* Initialization */
6291
6292 void
6293 init_alloc_once ()
6294 {
6295 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6296 purebeg = PUREBEG;
6297 pure_size = PURESIZE;
6298 pure_bytes_used = 0;
6299 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6300 pure_bytes_used_before_overflow = 0;
6301
6302 /* Initialize the list of free aligned blocks. */
6303 free_ablock = NULL;
6304
6305 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6306 mem_init ();
6307 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6308 #endif
6309
6310 all_vectors = 0;
6311 ignore_warnings = 1;
6312 #ifdef DOUG_LEA_MALLOC
6313 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6314 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6315 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6316 #endif
6317 init_strings ();
6318 init_cons ();
6319 init_symbol ();
6320 init_marker ();
6321 init_float ();
6322 init_intervals ();
6323
6324 #ifdef REL_ALLOC
6325 malloc_hysteresis = 32;
6326 #else
6327 malloc_hysteresis = 0;
6328 #endif
6329
6330 refill_memory_reserve ();
6331
6332 ignore_warnings = 0;
6333 gcprolist = 0;
6334 byte_stack_list = 0;
6335 staticidx = 0;
6336 consing_since_gc = 0;
6337 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6338 gc_relative_threshold = 0;
6339
6340 #ifdef VIRT_ADDR_VARIES
6341 malloc_sbrk_unused = 1<<22; /* A large number */
6342 malloc_sbrk_used = 100000; /* as reasonable as any number */
6343 #endif /* VIRT_ADDR_VARIES */
6344 }
6345
6346 void
6347 init_alloc ()
6348 {
6349 gcprolist = 0;
6350 byte_stack_list = 0;
6351 #if GC_MARK_STACK
6352 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6353 setjmp_tested_p = longjmps_done = 0;
6354 #endif
6355 #endif
6356 Vgc_elapsed = make_float (0.0);
6357 gcs_done = 0;
6358 }
6359
6360 void
6361 syms_of_alloc ()
6362 {
6363 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6364 doc: /* *Number of bytes of consing between garbage collections.
6365 Garbage collection can happen automatically once this many bytes have been
6366 allocated since the last garbage collection. All data types count.
6367
6368 Garbage collection happens automatically only when `eval' is called.
6369
6370 By binding this temporarily to a large number, you can effectively
6371 prevent garbage collection during a part of the program.
6372 See also `gc-cons-percentage'. */);
6373
6374 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6375 doc: /* *Portion of the heap used for allocation.
6376 Garbage collection can happen automatically once this portion of the heap
6377 has been allocated since the last garbage collection.
6378 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6379 Vgc_cons_percentage = make_float (0.1);
6380
6381 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6382 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6383
6384 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6385 doc: /* Number of cons cells that have been consed so far. */);
6386
6387 DEFVAR_INT ("floats-consed", &floats_consed,
6388 doc: /* Number of floats that have been consed so far. */);
6389
6390 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6391 doc: /* Number of vector cells that have been consed so far. */);
6392
6393 DEFVAR_INT ("symbols-consed", &symbols_consed,
6394 doc: /* Number of symbols that have been consed so far. */);
6395
6396 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6397 doc: /* Number of string characters that have been consed so far. */);
6398
6399 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6400 doc: /* Number of miscellaneous objects that have been consed so far. */);
6401
6402 DEFVAR_INT ("intervals-consed", &intervals_consed,
6403 doc: /* Number of intervals that have been consed so far. */);
6404
6405 DEFVAR_INT ("strings-consed", &strings_consed,
6406 doc: /* Number of strings that have been consed so far. */);
6407
6408 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6409 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6410 This means that certain objects should be allocated in shared (pure) space. */);
6411
6412 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6413 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6414 garbage_collection_messages = 0;
6415
6416 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6417 doc: /* Hook run after garbage collection has finished. */);
6418 Vpost_gc_hook = Qnil;
6419 Qpost_gc_hook = intern ("post-gc-hook");
6420 staticpro (&Qpost_gc_hook);
6421
6422 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6423 doc: /* Precomputed `signal' argument for memory-full error. */);
6424 /* We build this in advance because if we wait until we need it, we might
6425 not be able to allocate the memory to hold it. */
6426 Vmemory_signal_data
6427 = list2 (Qerror,
6428 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6429
6430 DEFVAR_LISP ("memory-full", &Vmemory_full,
6431 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6432 Vmemory_full = Qnil;
6433
6434 staticpro (&Qgc_cons_threshold);
6435 Qgc_cons_threshold = intern ("gc-cons-threshold");
6436
6437 staticpro (&Qchar_table_extra_slots);
6438 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6439
6440 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6441 doc: /* Accumulated time elapsed in garbage collections.
6442 The time is in seconds as a floating point value. */);
6443 DEFVAR_INT ("gcs-done", &gcs_done,
6444 doc: /* Accumulated number of garbage collections done. */);
6445
6446 defsubr (&Scons);
6447 defsubr (&Slist);
6448 defsubr (&Svector);
6449 defsubr (&Smake_byte_code);
6450 defsubr (&Smake_list);
6451 defsubr (&Smake_vector);
6452 defsubr (&Smake_char_table);
6453 defsubr (&Smake_string);
6454 defsubr (&Smake_bool_vector);
6455 defsubr (&Smake_symbol);
6456 defsubr (&Smake_marker);
6457 defsubr (&Spurecopy);
6458 defsubr (&Sgarbage_collect);
6459 defsubr (&Smemory_limit);
6460 defsubr (&Smemory_use_counts);
6461
6462 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6463 defsubr (&Sgc_status);
6464 #endif
6465 }
6466
6467 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6468 (do not change this comment) */