]> code.delx.au - gnu-emacs/blob - src/unexmacosx.c
Update copyright year to 2015
[gnu-emacs] / src / unexmacosx.c
1 /* Dump Emacs in Mach-O format for use on Mac OS X.
2 Copyright (C) 2001-2015 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* Contributed by Andrew Choi (akochoi@mac.com). */
20
21 /* Documentation note.
22
23 Consult the following documents/files for a description of the
24 Mach-O format: the file loader.h, man pages for Mach-O and ld, old
25 NEXTSTEP documents of the Mach-O format. The tool otool dumps the
26 mach header (-h option) and the load commands (-l option) in a
27 Mach-O file. The tool nm on Mac OS X displays the symbol table in
28 a Mach-O file. For examples of unexec for the Mach-O format, see
29 the file unexnext.c in the GNU Emacs distribution, the file
30 unexdyld.c in the Darwin port of GNU Emacs 20.7, and unexdyld.c in
31 the Darwin port of XEmacs 21.1. Also the Darwin Libc source
32 contains the source code for malloc_freezedry and malloc_jumpstart.
33 Read that to see what they do. This file was written completely
34 from scratch, making use of information from the above sources. */
35
36 /* The Mac OS X implementation of unexec makes use of Darwin's `zone'
37 memory allocator. All calls to malloc, realloc, and free in Emacs
38 are redirected to unexec_malloc, unexec_realloc, and unexec_free in
39 this file. When temacs is run, all memory requests are handled in
40 the zone EmacsZone. The Darwin memory allocator library calls
41 maintain the data structures to manage this zone. Dumping writes
42 its contents to data segments of the executable file. When emacs
43 is run, the loader recreates the contents of the zone in memory.
44 However since the initialization routine of the zone memory
45 allocator is run again, this `zone' can no longer be used as a
46 heap. That is why emacs uses the ordinary malloc system call to
47 allocate memory. Also, when a block of memory needs to be
48 reallocated and the new size is larger than the old one, a new
49 block must be obtained by malloc and the old contents copied to
50 it. */
51
52 /* Peculiarity of the Mach-O files generated by ld in Mac OS X
53 (possible causes of future bugs if changed).
54
55 The file offset of the start of the __TEXT segment is zero. Since
56 the Mach header and load commands are located at the beginning of a
57 Mach-O file, copying the contents of the __TEXT segment from the
58 input file overwrites them in the output file. Despite this,
59 unexec works fine as written below because the segment load command
60 for __TEXT appears, and is therefore processed, before all other
61 load commands except the segment load command for __PAGEZERO, which
62 remains unchanged.
63
64 Although the file offset of the start of the __TEXT segment is
65 zero, none of the sections it contains actually start there. In
66 fact, the earliest one starts a few hundred bytes beyond the end of
67 the last load command. The linker option -headerpad controls the
68 minimum size of this padding. Its setting can be changed in
69 s/darwin.h. A value of 0x690, e.g., leaves room for 30 additional
70 load commands for the newly created __DATA segments (at 56 bytes
71 each). Unexec fails if there is not enough room for these new
72 segments.
73
74 The __TEXT segment contains the sections __text, __cstring,
75 __picsymbol_stub, and __const and the __DATA segment contains the
76 sections __data, __la_symbol_ptr, __nl_symbol_ptr, __dyld, __bss,
77 and __common. The other segments do not contain any sections.
78 These sections are copied from the input file to the output file,
79 except for __data, __bss, and __common, which are dumped from
80 memory. The types of the sections __bss and __common are changed
81 from S_ZEROFILL to S_REGULAR. Note that the number of sections and
82 their relative order in the input and output files remain
83 unchanged. Otherwise all n_sect fields in the nlist records in the
84 symbol table (specified by the LC_SYMTAB load command) will have to
85 be changed accordingly.
86 */
87
88 /* config.h #define:s malloc/realloc/free and then includes stdlib.h.
89 We want the undefined versions, but if config.h includes stdlib.h
90 with the #define:s in place, the prototypes will be wrong and we get
91 warnings. To prevent that, include stdlib.h before config.h. */
92
93 #include <stdlib.h>
94 #include <config.h>
95 #undef malloc
96 #undef realloc
97 #undef free
98
99 #include "unexec.h"
100 #include "lisp.h"
101
102 #include <stdio.h>
103 #include <fcntl.h>
104 #include <stdarg.h>
105 #include <sys/types.h>
106 #include <unistd.h>
107 #include <mach/mach.h>
108 #include <mach-o/loader.h>
109 #include <mach-o/reloc.h>
110 #if defined (__ppc__)
111 #include <mach-o/ppc/reloc.h>
112 #endif
113 #ifdef HAVE_MALLOC_MALLOC_H
114 #include <malloc/malloc.h>
115 #else
116 #include <objc/malloc.h>
117 #endif
118
119 #include <assert.h>
120
121 /* LC_DATA_IN_CODE is not defined in mach-o/loader.h on OS X 10.7.
122 But it is used if we build with "Command Line Tools for Xcode 4.5
123 (OS X Lion) - September 2012". */
124 #ifndef LC_DATA_IN_CODE
125 #define LC_DATA_IN_CODE 0x29 /* table of non-instructions in __text */
126 #endif
127
128 #ifdef _LP64
129 #define mach_header mach_header_64
130 #define segment_command segment_command_64
131 #undef VM_REGION_BASIC_INFO_COUNT
132 #define VM_REGION_BASIC_INFO_COUNT VM_REGION_BASIC_INFO_COUNT_64
133 #undef VM_REGION_BASIC_INFO
134 #define VM_REGION_BASIC_INFO VM_REGION_BASIC_INFO_64
135 #undef LC_SEGMENT
136 #define LC_SEGMENT LC_SEGMENT_64
137 #define vm_region vm_region_64
138 #define section section_64
139 #undef MH_MAGIC
140 #define MH_MAGIC MH_MAGIC_64
141 #endif
142
143 #define VERBOSE 1
144
145 /* Size of buffer used to copy data from the input file to the output
146 file in function unexec_copy. */
147 #define UNEXEC_COPY_BUFSZ 1024
148
149 /* Regions with memory addresses above this value are assumed to be
150 mapped to dynamically loaded libraries and will not be dumped. */
151 #define VM_DATA_TOP (20 * 1024 * 1024)
152
153 /* Type of an element on the list of regions to be dumped. */
154 struct region_t {
155 vm_address_t address;
156 vm_size_t size;
157 vm_prot_t protection;
158 vm_prot_t max_protection;
159
160 struct region_t *next;
161 };
162
163 /* Head and tail of the list of regions to be dumped. */
164 static struct region_t *region_list_head = 0;
165 static struct region_t *region_list_tail = 0;
166
167 /* Pointer to array of load commands. */
168 static struct load_command **lca;
169
170 /* Number of load commands. */
171 static int nlc;
172
173 /* The highest VM address of segments loaded by the input file.
174 Regions with addresses beyond this are assumed to be allocated
175 dynamically and thus require dumping. */
176 static vm_address_t infile_lc_highest_addr = 0;
177
178 /* The lowest file offset used by the all sections in the __TEXT
179 segments. This leaves room at the beginning of the file to store
180 the Mach-O header. Check this value against header size to ensure
181 the added load commands for the new __DATA segments did not
182 overwrite any of the sections in the __TEXT segment. */
183 static unsigned long text_seg_lowest_offset = 0x10000000;
184
185 /* Mach header. */
186 static struct mach_header mh;
187
188 /* Offset at which the next load command should be written. */
189 static unsigned long curr_header_offset = sizeof (struct mach_header);
190
191 /* Offset at which the next segment should be written. */
192 static unsigned long curr_file_offset = 0;
193
194 static unsigned long pagesize;
195 #define ROUNDUP_TO_PAGE_BOUNDARY(x) (((x) + pagesize - 1) & ~(pagesize - 1))
196
197 static int infd, outfd;
198
199 static int in_dumped_exec = 0;
200
201 static malloc_zone_t *emacs_zone;
202
203 /* file offset of input file's data segment */
204 static off_t data_segment_old_fileoff = 0;
205
206 static struct segment_command *data_segment_scp;
207
208 /* Read N bytes from infd into memory starting at address DEST.
209 Return true if successful, false otherwise. */
210 static int
211 unexec_read (void *dest, size_t n)
212 {
213 return n == read (infd, dest, n);
214 }
215
216 /* Write COUNT bytes from memory starting at address SRC to outfd
217 starting at offset DEST. Return true if successful, false
218 otherwise. */
219 static int
220 unexec_write (off_t dest, const void *src, size_t count)
221 {
222 if (lseek (outfd, dest, SEEK_SET) != dest)
223 return 0;
224
225 return write (outfd, src, count) == count;
226 }
227
228 /* Write COUNT bytes of zeros to outfd starting at offset DEST.
229 Return true if successful, false otherwise. */
230 static int
231 unexec_write_zero (off_t dest, size_t count)
232 {
233 char buf[UNEXEC_COPY_BUFSZ];
234 ssize_t bytes;
235
236 memset (buf, 0, UNEXEC_COPY_BUFSZ);
237 if (lseek (outfd, dest, SEEK_SET) != dest)
238 return 0;
239
240 while (count > 0)
241 {
242 bytes = count > UNEXEC_COPY_BUFSZ ? UNEXEC_COPY_BUFSZ : count;
243 if (write (outfd, buf, bytes) != bytes)
244 return 0;
245 count -= bytes;
246 }
247
248 return 1;
249 }
250
251 /* Copy COUNT bytes from starting offset SRC in infd to starting
252 offset DEST in outfd. Return true if successful, false
253 otherwise. */
254 static int
255 unexec_copy (off_t dest, off_t src, ssize_t count)
256 {
257 ssize_t bytes_read;
258 ssize_t bytes_to_read;
259
260 char buf[UNEXEC_COPY_BUFSZ];
261
262 if (lseek (infd, src, SEEK_SET) != src)
263 return 0;
264
265 if (lseek (outfd, dest, SEEK_SET) != dest)
266 return 0;
267
268 while (count > 0)
269 {
270 bytes_to_read = count > UNEXEC_COPY_BUFSZ ? UNEXEC_COPY_BUFSZ : count;
271 bytes_read = read (infd, buf, bytes_to_read);
272 if (bytes_read <= 0)
273 return 0;
274 if (write (outfd, buf, bytes_read) != bytes_read)
275 return 0;
276 count -= bytes_read;
277 }
278
279 return 1;
280 }
281
282 /* Debugging and informational messages routines. */
283
284 static _Noreturn void
285 unexec_error (const char *format, ...)
286 {
287 va_list ap;
288
289 va_start (ap, format);
290 fprintf (stderr, "unexec: ");
291 vfprintf (stderr, format, ap);
292 fprintf (stderr, "\n");
293 va_end (ap);
294 exit (1);
295 }
296
297 static void
298 print_prot (vm_prot_t prot)
299 {
300 if (prot == VM_PROT_NONE)
301 printf ("none");
302 else
303 {
304 putchar (prot & VM_PROT_READ ? 'r' : ' ');
305 putchar (prot & VM_PROT_WRITE ? 'w' : ' ');
306 putchar (prot & VM_PROT_EXECUTE ? 'x' : ' ');
307 putchar (' ');
308 }
309 }
310
311 static void
312 print_region (vm_address_t address, vm_size_t size, vm_prot_t prot,
313 vm_prot_t max_prot)
314 {
315 printf ("%#10lx %#8lx ", (long) address, (long) size);
316 print_prot (prot);
317 putchar (' ');
318 print_prot (max_prot);
319 putchar ('\n');
320 }
321
322 static void
323 print_region_list (void)
324 {
325 struct region_t *r;
326
327 printf (" address size prot maxp\n");
328
329 for (r = region_list_head; r; r = r->next)
330 print_region (r->address, r->size, r->protection, r->max_protection);
331 }
332
333 static void
334 print_regions (void)
335 {
336 task_t target_task = mach_task_self ();
337 vm_address_t address = (vm_address_t) 0;
338 vm_size_t size;
339 struct vm_region_basic_info info;
340 mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT;
341 mach_port_t object_name;
342
343 printf (" address size prot maxp\n");
344
345 while (vm_region (target_task, &address, &size, VM_REGION_BASIC_INFO,
346 (vm_region_info_t) &info, &info_count, &object_name)
347 == KERN_SUCCESS && info_count == VM_REGION_BASIC_INFO_COUNT)
348 {
349 print_region (address, size, info.protection, info.max_protection);
350
351 if (object_name != MACH_PORT_NULL)
352 mach_port_deallocate (target_task, object_name);
353
354 address += size;
355 }
356 }
357
358 /* Build the list of regions that need to be dumped. Regions with
359 addresses above VM_DATA_TOP are omitted. Adjacent regions with
360 identical protection are merged. Note that non-writable regions
361 cannot be omitted because they some regions created at run time are
362 read-only. */
363 static void
364 build_region_list (void)
365 {
366 task_t target_task = mach_task_self ();
367 vm_address_t address = (vm_address_t) 0;
368 vm_size_t size;
369 struct vm_region_basic_info info;
370 mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT;
371 mach_port_t object_name;
372 struct region_t *r;
373
374 #if VERBOSE
375 printf ("--- List of All Regions ---\n");
376 printf (" address size prot maxp\n");
377 #endif
378
379 while (vm_region (target_task, &address, &size, VM_REGION_BASIC_INFO,
380 (vm_region_info_t) &info, &info_count, &object_name)
381 == KERN_SUCCESS && info_count == VM_REGION_BASIC_INFO_COUNT)
382 {
383 /* Done when we reach addresses of shared libraries, which are
384 loaded in high memory. */
385 if (address >= VM_DATA_TOP)
386 break;
387
388 #if VERBOSE
389 print_region (address, size, info.protection, info.max_protection);
390 #endif
391
392 /* If a region immediately follows the previous one (the one
393 most recently added to the list) and has identical
394 protection, merge it with the latter. Otherwise create a
395 new list element for it. */
396 if (region_list_tail
397 && info.protection == region_list_tail->protection
398 && info.max_protection == region_list_tail->max_protection
399 && region_list_tail->address + region_list_tail->size == address)
400 {
401 region_list_tail->size += size;
402 }
403 else
404 {
405 r = malloc (sizeof *r);
406
407 if (!r)
408 unexec_error ("cannot allocate region structure");
409
410 r->address = address;
411 r->size = size;
412 r->protection = info.protection;
413 r->max_protection = info.max_protection;
414
415 r->next = 0;
416 if (region_list_head == 0)
417 {
418 region_list_head = r;
419 region_list_tail = r;
420 }
421 else
422 {
423 region_list_tail->next = r;
424 region_list_tail = r;
425 }
426
427 /* Deallocate (unused) object name returned by
428 vm_region. */
429 if (object_name != MACH_PORT_NULL)
430 mach_port_deallocate (target_task, object_name);
431 }
432
433 address += size;
434 }
435
436 printf ("--- List of Regions to be Dumped ---\n");
437 print_region_list ();
438 }
439
440
441 #define MAX_UNEXEC_REGIONS 400
442
443 static int num_unexec_regions;
444 typedef struct {
445 vm_range_t range;
446 vm_size_t filesize;
447 } unexec_region_info;
448 static unexec_region_info unexec_regions[MAX_UNEXEC_REGIONS];
449
450 static void
451 unexec_regions_recorder (task_t task, void *rr, unsigned type,
452 vm_range_t *ranges, unsigned num)
453 {
454 vm_address_t p;
455 vm_size_t filesize;
456
457 while (num && num_unexec_regions < MAX_UNEXEC_REGIONS)
458 {
459 /* Subtract the size of trailing null bytes from filesize. It
460 can be smaller than vmsize in segment commands. In such a
461 case, trailing bytes are initialized with zeros. */
462 for (p = ranges->address + ranges->size; p > ranges->address; p--)
463 if (*(((char *) p)-1))
464 break;
465 filesize = p - ranges->address;
466
467 unexec_regions[num_unexec_regions].filesize = filesize;
468 unexec_regions[num_unexec_regions++].range = *ranges;
469 printf ("%#10lx (sz: %#8lx/%#8lx)\n", (long) (ranges->address),
470 (long) filesize, (long) (ranges->size));
471 ranges++; num--;
472 }
473 }
474
475 static kern_return_t
476 unexec_reader (task_t task, vm_address_t address, vm_size_t size, void **ptr)
477 {
478 *ptr = (void *) address;
479 return KERN_SUCCESS;
480 }
481
482 static void
483 find_emacs_zone_regions (void)
484 {
485 num_unexec_regions = 0;
486
487 emacs_zone->introspect->enumerator (mach_task_self (), 0,
488 MALLOC_PTR_REGION_RANGE_TYPE
489 | MALLOC_ADMIN_REGION_RANGE_TYPE,
490 (vm_address_t) emacs_zone,
491 unexec_reader,
492 unexec_regions_recorder);
493
494 if (num_unexec_regions == MAX_UNEXEC_REGIONS)
495 unexec_error ("find_emacs_zone_regions: too many regions");
496 }
497
498 static int
499 unexec_regions_sort_compare (const void *a, const void *b)
500 {
501 vm_address_t aa = ((unexec_region_info *) a)->range.address;
502 vm_address_t bb = ((unexec_region_info *) b)->range.address;
503
504 if (aa < bb)
505 return -1;
506 else if (aa > bb)
507 return 1;
508 else
509 return 0;
510 }
511
512 static void
513 unexec_regions_merge (void)
514 {
515 int i, n;
516 unexec_region_info r;
517 vm_size_t padsize;
518
519 qsort (unexec_regions, num_unexec_regions, sizeof (unexec_regions[0]),
520 &unexec_regions_sort_compare);
521 n = 0;
522 r = unexec_regions[0];
523 padsize = r.range.address & (pagesize - 1);
524 if (padsize)
525 {
526 r.range.address -= padsize;
527 r.range.size += padsize;
528 r.filesize += padsize;
529 }
530 for (i = 1; i < num_unexec_regions; i++)
531 {
532 if (r.range.address + r.range.size == unexec_regions[i].range.address
533 && r.range.size - r.filesize < 2 * pagesize)
534 {
535 r.filesize = r.range.size + unexec_regions[i].filesize;
536 r.range.size += unexec_regions[i].range.size;
537 }
538 else
539 {
540 unexec_regions[n++] = r;
541 r = unexec_regions[i];
542 padsize = r.range.address & (pagesize - 1);
543 if (padsize)
544 {
545 if ((unexec_regions[n-1].range.address
546 + unexec_regions[n-1].range.size) == r.range.address)
547 unexec_regions[n-1].range.size -= padsize;
548
549 r.range.address -= padsize;
550 r.range.size += padsize;
551 r.filesize += padsize;
552 }
553 }
554 }
555 unexec_regions[n++] = r;
556 num_unexec_regions = n;
557 }
558
559
560 /* More informational messages routines. */
561
562 static void
563 print_load_command_name (int lc)
564 {
565 switch (lc)
566 {
567 case LC_SEGMENT:
568 #ifndef _LP64
569 printf ("LC_SEGMENT ");
570 #else
571 printf ("LC_SEGMENT_64 ");
572 #endif
573 break;
574 case LC_LOAD_DYLINKER:
575 printf ("LC_LOAD_DYLINKER ");
576 break;
577 case LC_LOAD_DYLIB:
578 printf ("LC_LOAD_DYLIB ");
579 break;
580 case LC_SYMTAB:
581 printf ("LC_SYMTAB ");
582 break;
583 case LC_DYSYMTAB:
584 printf ("LC_DYSYMTAB ");
585 break;
586 case LC_UNIXTHREAD:
587 printf ("LC_UNIXTHREAD ");
588 break;
589 case LC_PREBOUND_DYLIB:
590 printf ("LC_PREBOUND_DYLIB");
591 break;
592 case LC_TWOLEVEL_HINTS:
593 printf ("LC_TWOLEVEL_HINTS");
594 break;
595 #ifdef LC_UUID
596 case LC_UUID:
597 printf ("LC_UUID ");
598 break;
599 #endif
600 #ifdef LC_DYLD_INFO
601 case LC_DYLD_INFO:
602 printf ("LC_DYLD_INFO ");
603 break;
604 case LC_DYLD_INFO_ONLY:
605 printf ("LC_DYLD_INFO_ONLY");
606 break;
607 #endif
608 #ifdef LC_VERSION_MIN_MACOSX
609 case LC_VERSION_MIN_MACOSX:
610 printf ("LC_VERSION_MIN_MACOSX");
611 break;
612 #endif
613 #ifdef LC_FUNCTION_STARTS
614 case LC_FUNCTION_STARTS:
615 printf ("LC_FUNCTION_STARTS");
616 break;
617 #endif
618 #ifdef LC_MAIN
619 case LC_MAIN:
620 printf ("LC_MAIN ");
621 break;
622 #endif
623 #ifdef LC_DATA_IN_CODE
624 case LC_DATA_IN_CODE:
625 printf ("LC_DATA_IN_CODE ");
626 break;
627 #endif
628 #ifdef LC_SOURCE_VERSION
629 case LC_SOURCE_VERSION:
630 printf ("LC_SOURCE_VERSION");
631 break;
632 #endif
633 #ifdef LC_DYLIB_CODE_SIGN_DRS
634 case LC_DYLIB_CODE_SIGN_DRS:
635 printf ("LC_DYLIB_CODE_SIGN_DRS");
636 break;
637 #endif
638 default:
639 printf ("unknown ");
640 }
641 }
642
643 static void
644 print_load_command (struct load_command *lc)
645 {
646 print_load_command_name (lc->cmd);
647 printf ("%8d", lc->cmdsize);
648
649 if (lc->cmd == LC_SEGMENT)
650 {
651 struct segment_command *scp;
652 struct section *sectp;
653 int j;
654
655 scp = (struct segment_command *) lc;
656 printf (" %-16.16s %#10lx %#8lx\n",
657 scp->segname, (long) (scp->vmaddr), (long) (scp->vmsize));
658
659 sectp = (struct section *) (scp + 1);
660 for (j = 0; j < scp->nsects; j++)
661 {
662 printf (" %-16.16s %#10lx %#8lx\n",
663 sectp->sectname, (long) (sectp->addr), (long) (sectp->size));
664 sectp++;
665 }
666 }
667 else
668 printf ("\n");
669 }
670
671 /* Read header and load commands from input file. Store the latter in
672 the global array lca. Store the total number of load commands in
673 global variable nlc. */
674 static void
675 read_load_commands (void)
676 {
677 int i;
678
679 if (!unexec_read (&mh, sizeof (struct mach_header)))
680 unexec_error ("cannot read mach-o header");
681
682 if (mh.magic != MH_MAGIC)
683 unexec_error ("input file not in Mach-O format");
684
685 if (mh.filetype != MH_EXECUTE)
686 unexec_error ("input Mach-O file is not an executable object file");
687
688 #if VERBOSE
689 printf ("--- Header Information ---\n");
690 printf ("Magic = 0x%08x\n", mh.magic);
691 printf ("CPUType = %d\n", mh.cputype);
692 printf ("CPUSubType = %d\n", mh.cpusubtype);
693 printf ("FileType = 0x%x\n", mh.filetype);
694 printf ("NCmds = %d\n", mh.ncmds);
695 printf ("SizeOfCmds = %d\n", mh.sizeofcmds);
696 printf ("Flags = 0x%08x\n", mh.flags);
697 #endif
698
699 nlc = mh.ncmds;
700 lca = malloc (nlc * sizeof *lca);
701
702 for (i = 0; i < nlc; i++)
703 {
704 struct load_command lc;
705 /* Load commands are variable-size: so read the command type and
706 size first and then read the rest. */
707 if (!unexec_read (&lc, sizeof (struct load_command)))
708 unexec_error ("cannot read load command");
709 lca[i] = malloc (lc.cmdsize);
710 memcpy (lca[i], &lc, sizeof (struct load_command));
711 if (!unexec_read (lca[i] + 1, lc.cmdsize - sizeof (struct load_command)))
712 unexec_error ("cannot read content of load command");
713 if (lc.cmd == LC_SEGMENT)
714 {
715 struct segment_command *scp = (struct segment_command *) lca[i];
716
717 if (scp->vmaddr + scp->vmsize > infile_lc_highest_addr)
718 infile_lc_highest_addr = scp->vmaddr + scp->vmsize;
719
720 if (strncmp (scp->segname, SEG_TEXT, 16) == 0)
721 {
722 struct section *sectp = (struct section *) (scp + 1);
723 int j;
724
725 for (j = 0; j < scp->nsects; j++)
726 if (sectp->offset < text_seg_lowest_offset)
727 text_seg_lowest_offset = sectp->offset;
728 }
729 }
730 }
731
732 printf ("Highest address of load commands in input file: %#8lx\n",
733 (unsigned long)infile_lc_highest_addr);
734
735 printf ("Lowest offset of all sections in __TEXT segment: %#8lx\n",
736 text_seg_lowest_offset);
737
738 printf ("--- List of Load Commands in Input File ---\n");
739 printf ("# cmd cmdsize name address size\n");
740
741 for (i = 0; i < nlc; i++)
742 {
743 printf ("%1d ", i);
744 print_load_command (lca[i]);
745 }
746 }
747
748 /* Copy a LC_SEGMENT load command other than the __DATA segment from
749 the input file to the output file, adjusting the file offset of the
750 segment and the file offsets of sections contained in it. */
751 static void
752 copy_segment (struct load_command *lc)
753 {
754 struct segment_command *scp = (struct segment_command *) lc;
755 unsigned long old_fileoff = scp->fileoff;
756 struct section *sectp;
757 int j;
758
759 scp->fileoff = curr_file_offset;
760
761 sectp = (struct section *) (scp + 1);
762 for (j = 0; j < scp->nsects; j++)
763 {
764 sectp->offset += curr_file_offset - old_fileoff;
765 sectp++;
766 }
767
768 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
769 scp->segname, (long) (scp->fileoff), (long) (scp->filesize),
770 (long) (scp->vmsize), (long) (scp->vmaddr));
771
772 if (!unexec_copy (scp->fileoff, old_fileoff, scp->filesize))
773 unexec_error ("cannot copy segment from input to output file");
774 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (scp->filesize);
775
776 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
777 unexec_error ("cannot write load command to header");
778
779 curr_header_offset += lc->cmdsize;
780 }
781
782 /* Copy a LC_SEGMENT load command for the __DATA segment in the input
783 file to the output file. We assume that only one such segment load
784 command exists in the input file and it contains the sections
785 __data, __bss, __common, __la_symbol_ptr, __nl_symbol_ptr, and
786 __dyld. The first three of these should be dumped from memory and
787 the rest should be copied from the input file. Note that the
788 sections __bss and __common contain no data in the input file
789 because their flag fields have the value S_ZEROFILL. Dumping these
790 from memory makes it necessary to adjust file offset fields in
791 subsequently dumped load commands. Then, create new __DATA segment
792 load commands for regions on the region list other than the one
793 corresponding to the __DATA segment in the input file. */
794 static void
795 copy_data_segment (struct load_command *lc)
796 {
797 struct segment_command *scp = (struct segment_command *) lc;
798 struct section *sectp;
799 int j;
800 unsigned long header_offset, old_file_offset;
801
802 /* The new filesize of the segment is set to its vmsize because data
803 blocks for segments must start at region boundaries. Note that
804 this may leave unused locations at the end of the segment data
805 block because the total of the sizes of all sections in the
806 segment is generally smaller than vmsize. */
807 scp->filesize = scp->vmsize;
808
809 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
810 scp->segname, curr_file_offset, (long)(scp->filesize),
811 (long)(scp->vmsize), (long) (scp->vmaddr));
812
813 /* Offsets in the output file for writing the next section structure
814 and segment data block, respectively. */
815 header_offset = curr_header_offset + sizeof (struct segment_command);
816
817 sectp = (struct section *) (scp + 1);
818 for (j = 0; j < scp->nsects; j++)
819 {
820 old_file_offset = sectp->offset;
821 sectp->offset = sectp->addr - scp->vmaddr + curr_file_offset;
822 /* The __data section is dumped from memory. The __bss and
823 __common sections are also dumped from memory but their flag
824 fields require changing (from S_ZEROFILL to S_REGULAR). The
825 other three kinds of sections are just copied from the input
826 file. */
827 if (strncmp (sectp->sectname, SECT_DATA, 16) == 0)
828 {
829 extern char my_edata[];
830 unsigned long my_size;
831
832 /* The __data section is basically dumped from memory. But
833 initialized data in statically linked libraries are
834 copied from the input file. In particular,
835 add_image_hook.names and add_image_hook.pointers stored
836 by libarclite_macosx.a, are restored so that they will be
837 reinitialized when the dumped binary is executed. */
838 my_size = (unsigned long)my_edata - sectp->addr;
839 if (!(sectp->addr <= (unsigned long)my_edata
840 && my_size <= sectp->size))
841 unexec_error ("my_edata is not in section %s", SECT_DATA);
842 if (!unexec_write (sectp->offset, (void *) sectp->addr, my_size))
843 unexec_error ("cannot write section %s", SECT_DATA);
844 if (!unexec_copy (sectp->offset + my_size, old_file_offset + my_size,
845 sectp->size - my_size))
846 unexec_error ("cannot copy section %s", SECT_DATA);
847 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
848 unexec_error ("cannot write section %s's header", SECT_DATA);
849 }
850 else if (strncmp (sectp->sectname, SECT_COMMON, 16) == 0)
851 {
852 sectp->flags = S_REGULAR;
853 if (!unexec_write (sectp->offset, (void *) sectp->addr, sectp->size))
854 unexec_error ("cannot write section %.16s", sectp->sectname);
855 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
856 unexec_error ("cannot write section %.16s's header", sectp->sectname);
857 }
858 else if (strncmp (sectp->sectname, SECT_BSS, 16) == 0)
859 {
860 extern char *my_endbss_static;
861 unsigned long my_size;
862
863 sectp->flags = S_REGULAR;
864
865 /* Clear uninitialized local variables in statically linked
866 libraries. In particular, function pointers stored by
867 libSystemStub.a, which is introduced in Mac OS X 10.4 for
868 binary compatibility with respect to long double, are
869 cleared so that they will be reinitialized when the
870 dumped binary is executed on other versions of OS. */
871 my_size = (unsigned long)my_endbss_static - sectp->addr;
872 if (!(sectp->addr <= (unsigned long)my_endbss_static
873 && my_size <= sectp->size))
874 unexec_error ("my_endbss_static is not in section %.16s",
875 sectp->sectname);
876 if (!unexec_write (sectp->offset, (void *) sectp->addr, my_size))
877 unexec_error ("cannot write section %.16s", sectp->sectname);
878 if (!unexec_write_zero (sectp->offset + my_size,
879 sectp->size - my_size))
880 unexec_error ("cannot write section %.16s", sectp->sectname);
881 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
882 unexec_error ("cannot write section %.16s's header", sectp->sectname);
883 }
884 else if (strncmp (sectp->sectname, "__bss", 5) == 0
885 || strncmp (sectp->sectname, "__pu_bss", 8) == 0)
886 {
887 sectp->flags = S_REGULAR;
888
889 /* These sections are produced by GCC 4.6+.
890
891 FIXME: We possibly ought to clear uninitialized local
892 variables in statically linked libraries like for
893 SECT_BSS (__bss) above, but setting up the markers we
894 need in lastfile.c would be rather messy. See
895 darwin_output_aligned_bss () in gcc/config/darwin.c for
896 the root of the problem, keeping in mind that the
897 sections are numbered by their alignment in GCC 4.6, but
898 by log2(alignment) in GCC 4.7. */
899
900 if (!unexec_write (sectp->offset, (void *) sectp->addr, sectp->size))
901 unexec_error ("cannot copy section %.16s", sectp->sectname);
902 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
903 unexec_error ("cannot write section %.16s's header", sectp->sectname);
904 }
905 else if (strncmp (sectp->sectname, "__la_symbol_ptr", 16) == 0
906 || strncmp (sectp->sectname, "__nl_symbol_ptr", 16) == 0
907 || strncmp (sectp->sectname, "__got", 16) == 0
908 || strncmp (sectp->sectname, "__la_sym_ptr2", 16) == 0
909 || strncmp (sectp->sectname, "__dyld", 16) == 0
910 || strncmp (sectp->sectname, "__const", 16) == 0
911 || strncmp (sectp->sectname, "__cfstring", 16) == 0
912 || strncmp (sectp->sectname, "__gcc_except_tab", 16) == 0
913 || strncmp (sectp->sectname, "__program_vars", 16) == 0
914 || strncmp (sectp->sectname, "__mod_init_func", 16) == 0
915 || strncmp (sectp->sectname, "__mod_term_func", 16) == 0
916 || strncmp (sectp->sectname, "__static_data", 16) == 0
917 || strncmp (sectp->sectname, "__objc_", 7) == 0)
918 {
919 if (!unexec_copy (sectp->offset, old_file_offset, sectp->size))
920 unexec_error ("cannot copy section %.16s", sectp->sectname);
921 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
922 unexec_error ("cannot write section %.16s's header", sectp->sectname);
923 }
924 else
925 unexec_error ("unrecognized section %.16s in __DATA segment",
926 sectp->sectname);
927
928 printf (" section %-16.16s at %#8lx - %#8lx (sz: %#8lx)\n",
929 sectp->sectname, (long) (sectp->offset),
930 (long) (sectp->offset + sectp->size), (long) (sectp->size));
931
932 header_offset += sizeof (struct section);
933 sectp++;
934 }
935
936 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (scp->filesize);
937
938 if (!unexec_write (curr_header_offset, scp, sizeof (struct segment_command)))
939 unexec_error ("cannot write header of __DATA segment");
940 curr_header_offset += lc->cmdsize;
941
942 /* Create new __DATA segment load commands for regions on the region
943 list that do not corresponding to any segment load commands in
944 the input file.
945 */
946 for (j = 0; j < num_unexec_regions; j++)
947 {
948 struct segment_command sc;
949
950 sc.cmd = LC_SEGMENT;
951 sc.cmdsize = sizeof (struct segment_command);
952 strncpy (sc.segname, SEG_DATA, 16);
953 sc.vmaddr = unexec_regions[j].range.address;
954 sc.vmsize = unexec_regions[j].range.size;
955 sc.fileoff = curr_file_offset;
956 sc.filesize = unexec_regions[j].filesize;
957 sc.maxprot = VM_PROT_READ | VM_PROT_WRITE;
958 sc.initprot = VM_PROT_READ | VM_PROT_WRITE;
959 sc.nsects = 0;
960 sc.flags = 0;
961
962 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
963 sc.segname, (long) (sc.fileoff), (long) (sc.filesize),
964 (long) (sc.vmsize), (long) (sc.vmaddr));
965
966 if (!unexec_write (sc.fileoff, (void *) sc.vmaddr, sc.filesize))
967 unexec_error ("cannot write new __DATA segment");
968 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (sc.filesize);
969
970 if (!unexec_write (curr_header_offset, &sc, sc.cmdsize))
971 unexec_error ("cannot write new __DATA segment's header");
972 curr_header_offset += sc.cmdsize;
973 mh.ncmds++;
974 }
975 }
976
977 /* Copy a LC_SYMTAB load command from the input file to the output
978 file, adjusting the file offset fields. */
979 static void
980 copy_symtab (struct load_command *lc, long delta)
981 {
982 struct symtab_command *stp = (struct symtab_command *) lc;
983
984 stp->symoff += delta;
985 stp->stroff += delta;
986
987 printf ("Writing LC_SYMTAB command\n");
988
989 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
990 unexec_error ("cannot write symtab command to header");
991
992 curr_header_offset += lc->cmdsize;
993 }
994
995 /* Fix up relocation entries. */
996 static void
997 unrelocate (const char *name, off_t reloff, int nrel, vm_address_t base)
998 {
999 int i, unreloc_count;
1000 struct relocation_info reloc_info;
1001 struct scattered_relocation_info *sc_reloc_info
1002 = (struct scattered_relocation_info *) &reloc_info;
1003 vm_address_t location;
1004
1005 for (unreloc_count = 0, i = 0; i < nrel; i++)
1006 {
1007 if (lseek (infd, reloff, L_SET) != reloff)
1008 unexec_error ("unrelocate: %s:%d cannot seek to reloc_info", name, i);
1009 if (!unexec_read (&reloc_info, sizeof (reloc_info)))
1010 unexec_error ("unrelocate: %s:%d cannot read reloc_info", name, i);
1011 reloff += sizeof (reloc_info);
1012
1013 if (sc_reloc_info->r_scattered == 0)
1014 switch (reloc_info.r_type)
1015 {
1016 case GENERIC_RELOC_VANILLA:
1017 location = base + reloc_info.r_address;
1018 if (location >= data_segment_scp->vmaddr
1019 && location < (data_segment_scp->vmaddr
1020 + data_segment_scp->vmsize))
1021 {
1022 off_t src_off = data_segment_old_fileoff
1023 + (location - data_segment_scp->vmaddr);
1024 off_t dst_off = data_segment_scp->fileoff
1025 + (location - data_segment_scp->vmaddr);
1026
1027 if (!unexec_copy (dst_off, src_off, 1 << reloc_info.r_length))
1028 unexec_error ("unrelocate: %s:%d cannot copy original value",
1029 name, i);
1030 unreloc_count++;
1031 }
1032 break;
1033 default:
1034 unexec_error ("unrelocate: %s:%d cannot handle type = %d",
1035 name, i, reloc_info.r_type);
1036 }
1037 else
1038 switch (sc_reloc_info->r_type)
1039 {
1040 #if defined (__ppc__)
1041 case PPC_RELOC_PB_LA_PTR:
1042 /* nothing to do for prebound lazy pointer */
1043 break;
1044 #endif
1045 default:
1046 unexec_error ("unrelocate: %s:%d cannot handle scattered type = %d",
1047 name, i, sc_reloc_info->r_type);
1048 }
1049 }
1050
1051 if (nrel > 0)
1052 printf ("Fixed up %d/%d %s relocation entries in data segment.\n",
1053 unreloc_count, nrel, name);
1054 }
1055
1056 #if __ppc64__
1057 /* Rebase r_address in the relocation table. */
1058 static void
1059 rebase_reloc_address (off_t reloff, int nrel, long linkedit_delta, long diff)
1060 {
1061 int i;
1062 struct relocation_info reloc_info;
1063 struct scattered_relocation_info *sc_reloc_info
1064 = (struct scattered_relocation_info *) &reloc_info;
1065
1066 for (i = 0; i < nrel; i++, reloff += sizeof (reloc_info))
1067 {
1068 if (lseek (infd, reloff - linkedit_delta, L_SET)
1069 != reloff - linkedit_delta)
1070 unexec_error ("rebase_reloc_table: cannot seek to reloc_info");
1071 if (!unexec_read (&reloc_info, sizeof (reloc_info)))
1072 unexec_error ("rebase_reloc_table: cannot read reloc_info");
1073
1074 if (sc_reloc_info->r_scattered == 0
1075 && reloc_info.r_type == GENERIC_RELOC_VANILLA)
1076 {
1077 reloc_info.r_address -= diff;
1078 if (!unexec_write (reloff, &reloc_info, sizeof (reloc_info)))
1079 unexec_error ("rebase_reloc_table: cannot write reloc_info");
1080 }
1081 }
1082 }
1083 #endif
1084
1085 /* Copy a LC_DYSYMTAB load command from the input file to the output
1086 file, adjusting the file offset fields. */
1087 static void
1088 copy_dysymtab (struct load_command *lc, long delta)
1089 {
1090 struct dysymtab_command *dstp = (struct dysymtab_command *) lc;
1091 vm_address_t base;
1092
1093 #ifdef _LP64
1094 #if __ppc64__
1095 {
1096 int i;
1097
1098 base = 0;
1099 for (i = 0; i < nlc; i++)
1100 if (lca[i]->cmd == LC_SEGMENT)
1101 {
1102 struct segment_command *scp = (struct segment_command *) lca[i];
1103
1104 if (scp->vmaddr + scp->vmsize > 0x100000000
1105 && (scp->initprot & VM_PROT_WRITE) != 0)
1106 {
1107 base = data_segment_scp->vmaddr;
1108 break;
1109 }
1110 }
1111 }
1112 #else
1113 /* First writable segment address. */
1114 base = data_segment_scp->vmaddr;
1115 #endif
1116 #else
1117 /* First segment address in the file (unless MH_SPLIT_SEGS set). */
1118 base = 0;
1119 #endif
1120
1121 unrelocate ("local", dstp->locreloff, dstp->nlocrel, base);
1122 unrelocate ("external", dstp->extreloff, dstp->nextrel, base);
1123
1124 if (dstp->nextrel > 0) {
1125 dstp->extreloff += delta;
1126 }
1127
1128 if (dstp->nlocrel > 0) {
1129 dstp->locreloff += delta;
1130 }
1131
1132 if (dstp->nindirectsyms > 0)
1133 dstp->indirectsymoff += delta;
1134
1135 printf ("Writing LC_DYSYMTAB command\n");
1136
1137 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1138 unexec_error ("cannot write symtab command to header");
1139
1140 curr_header_offset += lc->cmdsize;
1141
1142 #if __ppc64__
1143 /* Check if the relocation base needs to be changed. */
1144 if (base == 0)
1145 {
1146 vm_address_t newbase = 0;
1147 int i;
1148
1149 for (i = 0; i < num_unexec_regions; i++)
1150 if (unexec_regions[i].range.address + unexec_regions[i].range.size
1151 > 0x100000000)
1152 {
1153 newbase = data_segment_scp->vmaddr;
1154 break;
1155 }
1156
1157 if (newbase)
1158 {
1159 rebase_reloc_address (dstp->locreloff, dstp->nlocrel, delta, newbase);
1160 rebase_reloc_address (dstp->extreloff, dstp->nextrel, delta, newbase);
1161 }
1162 }
1163 #endif
1164 }
1165
1166 /* Copy a LC_TWOLEVEL_HINTS load command from the input file to the output
1167 file, adjusting the file offset fields. */
1168 static void
1169 copy_twolevelhints (struct load_command *lc, long delta)
1170 {
1171 struct twolevel_hints_command *tlhp = (struct twolevel_hints_command *) lc;
1172
1173 if (tlhp->nhints > 0) {
1174 tlhp->offset += delta;
1175 }
1176
1177 printf ("Writing LC_TWOLEVEL_HINTS command\n");
1178
1179 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1180 unexec_error ("cannot write two level hint command to header");
1181
1182 curr_header_offset += lc->cmdsize;
1183 }
1184
1185 #ifdef LC_DYLD_INFO
1186 /* Copy a LC_DYLD_INFO(_ONLY) load command from the input file to the output
1187 file, adjusting the file offset fields. */
1188 static void
1189 copy_dyld_info (struct load_command *lc, long delta)
1190 {
1191 struct dyld_info_command *dip = (struct dyld_info_command *) lc;
1192
1193 if (dip->rebase_off > 0)
1194 dip->rebase_off += delta;
1195 if (dip->bind_off > 0)
1196 dip->bind_off += delta;
1197 if (dip->weak_bind_off > 0)
1198 dip->weak_bind_off += delta;
1199 if (dip->lazy_bind_off > 0)
1200 dip->lazy_bind_off += delta;
1201 if (dip->export_off > 0)
1202 dip->export_off += delta;
1203
1204 printf ("Writing ");
1205 print_load_command_name (lc->cmd);
1206 printf (" command\n");
1207
1208 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1209 unexec_error ("cannot write dyld info command to header");
1210
1211 curr_header_offset += lc->cmdsize;
1212 }
1213 #endif
1214
1215 #ifdef LC_FUNCTION_STARTS
1216 /* Copy a LC_FUNCTION_STARTS/LC_DATA_IN_CODE/LC_DYLIB_CODE_SIGN_DRS
1217 load command from the input file to the output file, adjusting the
1218 data offset field. */
1219 static void
1220 copy_linkedit_data (struct load_command *lc, long delta)
1221 {
1222 struct linkedit_data_command *ldp = (struct linkedit_data_command *) lc;
1223
1224 if (ldp->dataoff > 0)
1225 ldp->dataoff += delta;
1226
1227 printf ("Writing ");
1228 print_load_command_name (lc->cmd);
1229 printf (" command\n");
1230
1231 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1232 unexec_error ("cannot write linkedit data command to header");
1233
1234 curr_header_offset += lc->cmdsize;
1235 }
1236 #endif
1237
1238 /* Copy other kinds of load commands from the input file to the output
1239 file, ones that do not require adjustments of file offsets. */
1240 static void
1241 copy_other (struct load_command *lc)
1242 {
1243 printf ("Writing ");
1244 print_load_command_name (lc->cmd);
1245 printf (" command\n");
1246
1247 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1248 unexec_error ("cannot write symtab command to header");
1249
1250 curr_header_offset += lc->cmdsize;
1251 }
1252
1253 /* Loop through all load commands and dump them. Then write the Mach
1254 header. */
1255 static void
1256 dump_it (void)
1257 {
1258 int i;
1259 long linkedit_delta = 0;
1260
1261 printf ("--- Load Commands written to Output File ---\n");
1262
1263 for (i = 0; i < nlc; i++)
1264 switch (lca[i]->cmd)
1265 {
1266 case LC_SEGMENT:
1267 {
1268 struct segment_command *scp = (struct segment_command *) lca[i];
1269 if (strncmp (scp->segname, SEG_DATA, 16) == 0)
1270 {
1271 /* save data segment file offset and segment_command for
1272 unrelocate */
1273 if (data_segment_old_fileoff)
1274 unexec_error ("cannot handle multiple DATA segments"
1275 " in input file");
1276 data_segment_old_fileoff = scp->fileoff;
1277 data_segment_scp = scp;
1278
1279 copy_data_segment (lca[i]);
1280 }
1281 else
1282 {
1283 if (strncmp (scp->segname, SEG_LINKEDIT, 16) == 0)
1284 {
1285 if (linkedit_delta)
1286 unexec_error ("cannot handle multiple LINKEDIT segments"
1287 " in input file");
1288 linkedit_delta = curr_file_offset - scp->fileoff;
1289 }
1290
1291 copy_segment (lca[i]);
1292 }
1293 }
1294 break;
1295 case LC_SYMTAB:
1296 copy_symtab (lca[i], linkedit_delta);
1297 break;
1298 case LC_DYSYMTAB:
1299 copy_dysymtab (lca[i], linkedit_delta);
1300 break;
1301 case LC_TWOLEVEL_HINTS:
1302 copy_twolevelhints (lca[i], linkedit_delta);
1303 break;
1304 #ifdef LC_DYLD_INFO
1305 case LC_DYLD_INFO:
1306 case LC_DYLD_INFO_ONLY:
1307 copy_dyld_info (lca[i], linkedit_delta);
1308 break;
1309 #endif
1310 #ifdef LC_FUNCTION_STARTS
1311 case LC_FUNCTION_STARTS:
1312 #ifdef LC_DATA_IN_CODE
1313 case LC_DATA_IN_CODE:
1314 #endif
1315 #ifdef LC_DYLIB_CODE_SIGN_DRS
1316 case LC_DYLIB_CODE_SIGN_DRS:
1317 #endif
1318 copy_linkedit_data (lca[i], linkedit_delta);
1319 break;
1320 #endif
1321 default:
1322 copy_other (lca[i]);
1323 break;
1324 }
1325
1326 if (curr_header_offset > text_seg_lowest_offset)
1327 unexec_error ("not enough room for load commands for new __DATA segments"
1328 " (increase headerpad_extra in configure.in to at least %lX)",
1329 num_unexec_regions * sizeof (struct segment_command));
1330
1331 printf ("%ld unused bytes follow Mach-O header\n",
1332 text_seg_lowest_offset - curr_header_offset);
1333
1334 mh.sizeofcmds = curr_header_offset - sizeof (struct mach_header);
1335 if (!unexec_write (0, &mh, sizeof (struct mach_header)))
1336 unexec_error ("cannot write final header contents");
1337 }
1338
1339 /* Take a snapshot of Emacs and make a Mach-O format executable file
1340 from it. The file names of the output and input files are outfile
1341 and infile, respectively. The three other parameters are
1342 ignored. */
1343 void
1344 unexec (const char *outfile, const char *infile)
1345 {
1346 if (in_dumped_exec)
1347 unexec_error ("Unexec from a dumped executable is not supported.");
1348
1349 pagesize = getpagesize ();
1350 infd = emacs_open (infile, O_RDONLY, 0);
1351 if (infd < 0)
1352 {
1353 unexec_error ("cannot open input file `%s'", infile);
1354 }
1355
1356 outfd = emacs_open (outfile, O_WRONLY | O_TRUNC | O_CREAT, 0755);
1357 if (outfd < 0)
1358 {
1359 emacs_close (infd);
1360 unexec_error ("cannot open output file `%s'", outfile);
1361 }
1362
1363 build_region_list ();
1364 read_load_commands ();
1365
1366 find_emacs_zone_regions ();
1367 unexec_regions_merge ();
1368
1369 in_dumped_exec = 1;
1370
1371 dump_it ();
1372
1373 emacs_close (outfd);
1374 }
1375
1376
1377 void
1378 unexec_init_emacs_zone (void)
1379 {
1380 emacs_zone = malloc_create_zone (0, 0);
1381 malloc_set_zone_name (emacs_zone, "EmacsZone");
1382 }
1383
1384 #ifndef MACOSX_MALLOC_MULT16
1385 #define MACOSX_MALLOC_MULT16 1
1386 #endif
1387
1388 typedef struct unexec_malloc_header {
1389 union {
1390 char c[8];
1391 size_t size;
1392 } u;
1393 } unexec_malloc_header_t;
1394
1395 #if MACOSX_MALLOC_MULT16
1396
1397 #define ptr_in_unexec_regions(p) ((((vm_address_t) (p)) & 8) != 0)
1398
1399 #else
1400
1401 int
1402 ptr_in_unexec_regions (void *ptr)
1403 {
1404 int i;
1405
1406 for (i = 0; i < num_unexec_regions; i++)
1407 if ((vm_address_t) ptr - unexec_regions[i].range.address
1408 < unexec_regions[i].range.size)
1409 return 1;
1410
1411 return 0;
1412 }
1413
1414 #endif
1415
1416 void *
1417 unexec_malloc (size_t size)
1418 {
1419 if (in_dumped_exec)
1420 {
1421 void *p;
1422
1423 p = malloc (size);
1424 #if MACOSX_MALLOC_MULT16
1425 assert (((vm_address_t) p % 16) == 0);
1426 #endif
1427 return p;
1428 }
1429 else
1430 {
1431 unexec_malloc_header_t *ptr;
1432
1433 ptr = (unexec_malloc_header_t *)
1434 malloc_zone_malloc (emacs_zone, size + sizeof (unexec_malloc_header_t));
1435 ptr->u.size = size;
1436 ptr++;
1437 #if MACOSX_MALLOC_MULT16
1438 assert (((vm_address_t) ptr % 16) == 8);
1439 #endif
1440 return (void *) ptr;
1441 }
1442 }
1443
1444 void *
1445 unexec_realloc (void *old_ptr, size_t new_size)
1446 {
1447 if (in_dumped_exec)
1448 {
1449 void *p;
1450
1451 if (ptr_in_unexec_regions (old_ptr))
1452 {
1453 size_t old_size = ((unexec_malloc_header_t *) old_ptr)[-1].u.size;
1454 size_t size = new_size > old_size ? old_size : new_size;
1455
1456 p = malloc (new_size);
1457 if (size)
1458 memcpy (p, old_ptr, size);
1459 }
1460 else
1461 {
1462 p = realloc (old_ptr, new_size);
1463 }
1464 #if MACOSX_MALLOC_MULT16
1465 assert (((vm_address_t) p % 16) == 0);
1466 #endif
1467 return p;
1468 }
1469 else
1470 {
1471 unexec_malloc_header_t *ptr;
1472
1473 ptr = (unexec_malloc_header_t *)
1474 malloc_zone_realloc (emacs_zone, (unexec_malloc_header_t *) old_ptr - 1,
1475 new_size + sizeof (unexec_malloc_header_t));
1476 ptr->u.size = new_size;
1477 ptr++;
1478 #if MACOSX_MALLOC_MULT16
1479 assert (((vm_address_t) ptr % 16) == 8);
1480 #endif
1481 return (void *) ptr;
1482 }
1483 }
1484
1485 void
1486 unexec_free (void *ptr)
1487 {
1488 if (ptr == NULL)
1489 return;
1490 if (in_dumped_exec)
1491 {
1492 if (!ptr_in_unexec_regions (ptr))
1493 free (ptr);
1494 }
1495 else
1496 malloc_zone_free (emacs_zone, (unexec_malloc_header_t *) ptr - 1);
1497 }