]> code.delx.au - gnu-emacs/blob - src/lisp.h
Omit redundant extern decls.
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2014 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 #define ID_val (some integer preprocessor expression)
40 #if ENUMABLE (ID_val)
41 DEFINE_GDB_SYMBOL_ENUM (ID)
42 #else
43 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
44 # define ID ID_val
45 DEFINE_GDB_SYMBOL_END (ID)
46 #endif
47
48 This hack is for the benefit of compilers that do not make macro
49 definitions visible to the debugger. It's used for symbols that
50 .gdbinit needs, symbols whose values may not fit in 'int' (where an
51 enum would suffice).
52
53 Some GCC versions before GCC 4.2 omit enums in debugging output;
54 see GCC bug 23336. So don't use enums with older GCC. */
55
56 #if !defined __GNUC__ || 4 < __GNUC__ + (2 <= __GNUC_MINOR__)
57 # define ENUMABLE(val) (INT_MIN <= (val) && (val) <= INT_MAX)
58 #else
59 # define ENUMABLE(val) 0
60 #endif
61
62 #define DEFINE_GDB_SYMBOL_ENUM(id) enum { id = id##_val };
63 #if defined MAIN_PROGRAM
64 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) type const id EXTERNALLY_VISIBLE
65 # define DEFINE_GDB_SYMBOL_END(id) = id;
66 #else
67 # define DEFINE_GDB_SYMBOL_BEGIN(type, id)
68 # define DEFINE_GDB_SYMBOL_END(val)
69 #endif
70
71 /* The ubiquitous max and min macros. */
72 #undef min
73 #undef max
74 #define max(a, b) ((a) > (b) ? (a) : (b))
75 #define min(a, b) ((a) < (b) ? (a) : (b))
76
77 /* Number of elements in an array. */
78 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
79
80 /* Number of bits in a Lisp_Object tag. */
81 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
82 #define GCTYPEBITS 3
83 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
84
85 /* The number of bits needed in an EMACS_INT over and above the number
86 of bits in a pointer. This is 0 on systems where:
87 1. We can specify multiple-of-8 alignment on static variables.
88 2. We know malloc returns a multiple of 8. */
89 #if (defined alignas \
90 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
91 || defined DARWIN_OS || defined __sun || defined __MINGW32__))
92 # define NONPOINTER_BITS 0
93 #else
94 # define NONPOINTER_BITS GCTYPEBITS
95 #endif
96
97 /* EMACS_INT - signed integer wide enough to hold an Emacs value
98 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
99 pI - printf length modifier for EMACS_INT
100 EMACS_UINT - unsigned variant of EMACS_INT */
101 #ifndef EMACS_INT_MAX
102 # if INTPTR_MAX <= 0
103 # error "INTPTR_MAX misconfigured"
104 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
105 typedef int EMACS_INT;
106 typedef unsigned int EMACS_UINT;
107 # define EMACS_INT_MAX INT_MAX
108 # define pI ""
109 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
110 typedef long int EMACS_INT;
111 typedef unsigned long EMACS_UINT;
112 # define EMACS_INT_MAX LONG_MAX
113 # define pI "l"
114 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
115 In theory this is not safe, but in practice it seems to be OK. */
116 # elif INTPTR_MAX <= LLONG_MAX
117 typedef long long int EMACS_INT;
118 typedef unsigned long long int EMACS_UINT;
119 # define EMACS_INT_MAX LLONG_MAX
120 # define pI "ll"
121 # else
122 # error "INTPTR_MAX too large"
123 # endif
124 #endif
125
126 /* Number of bits to put in each character in the internal representation
127 of bool vectors. This should not vary across implementations. */
128 enum { BOOL_VECTOR_BITS_PER_CHAR =
129 #define BOOL_VECTOR_BITS_PER_CHAR 8
130 BOOL_VECTOR_BITS_PER_CHAR
131 };
132
133 /* An unsigned integer type representing a fixed-length bit sequence,
134 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
135 for speed, but it is unsigned char on weird platforms. */
136 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
137 typedef size_t bits_word;
138 # define BITS_WORD_MAX SIZE_MAX
139 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
140 #else
141 typedef unsigned char bits_word;
142 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
143 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
144 #endif
145 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
146
147 /* Number of bits in some machine integer types. */
148 enum
149 {
150 BITS_PER_CHAR = CHAR_BIT,
151 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
152 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
153 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
154 };
155
156 /* printmax_t and uprintmax_t are types for printing large integers.
157 These are the widest integers that are supported for printing.
158 pMd etc. are conversions for printing them.
159 On C99 hosts, there's no problem, as even the widest integers work.
160 Fall back on EMACS_INT on pre-C99 hosts. */
161 #ifdef PRIdMAX
162 typedef intmax_t printmax_t;
163 typedef uintmax_t uprintmax_t;
164 # define pMd PRIdMAX
165 # define pMu PRIuMAX
166 #else
167 typedef EMACS_INT printmax_t;
168 typedef EMACS_UINT uprintmax_t;
169 # define pMd pI"d"
170 # define pMu pI"u"
171 #endif
172
173 /* Use pD to format ptrdiff_t values, which suffice for indexes into
174 buffers and strings. Emacs never allocates objects larger than
175 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
176 In C99, pD can always be "t"; configure it here for the sake of
177 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
178 #if PTRDIFF_MAX == INT_MAX
179 # define pD ""
180 #elif PTRDIFF_MAX == LONG_MAX
181 # define pD "l"
182 #elif PTRDIFF_MAX == LLONG_MAX
183 # define pD "ll"
184 #else
185 # define pD "t"
186 #endif
187
188 /* Extra internal type checking? */
189
190 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
191 'assume (COND)'. COND should be free of side effects, as it may or
192 may not be evaluated.
193
194 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
195 defined and suppress_checking is false, and does nothing otherwise.
196 Emacs dies if COND is checked and is false. The suppress_checking
197 variable is initialized to 0 in alloc.c. Set it to 1 using a
198 debugger to temporarily disable aborting on detected internal
199 inconsistencies or error conditions.
200
201 In some cases, a good compiler may be able to optimize away the
202 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
203 uses eassert to test STRINGP (x), but a particular use of XSTRING
204 is invoked only after testing that STRINGP (x) is true, making the
205 test redundant.
206
207 eassume is like eassert except that it also causes the compiler to
208 assume that COND is true afterwards, regardless of whether runtime
209 checking is enabled. This can improve performance in some cases,
210 though it can degrade performance in others. It's often suboptimal
211 for COND to call external functions or access volatile storage. */
212
213 #ifndef ENABLE_CHECKING
214 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
215 # define eassume(cond) assume (cond)
216 #else /* ENABLE_CHECKING */
217
218 extern _Noreturn void die (const char *, const char *, int);
219
220 extern bool suppress_checking EXTERNALLY_VISIBLE;
221
222 # define eassert(cond) \
223 (suppress_checking || (cond) \
224 ? (void) 0 \
225 : die (# cond, __FILE__, __LINE__))
226 # define eassume(cond) \
227 (suppress_checking \
228 ? assume (cond) \
229 : (cond) \
230 ? (void) 0 \
231 : die (# cond, __FILE__, __LINE__))
232 #endif /* ENABLE_CHECKING */
233
234 \f
235 /* Use the configure flag --enable-check-lisp-object-type to make
236 Lisp_Object use a struct type instead of the default int. The flag
237 causes CHECK_LISP_OBJECT_TYPE to be defined. */
238
239 /***** Select the tagging scheme. *****/
240 /* The following option controls the tagging scheme:
241 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
242 always 0, and we can thus use them to hold tag bits, without
243 restricting our addressing space.
244
245 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
246 restricting our possible address range.
247
248 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
249 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
250 on the few static Lisp_Objects used: all the defsubr as well
251 as the two special buffers buffer_defaults and buffer_local_symbols. */
252
253 enum Lisp_Bits
254 {
255 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
256 integer constant, for MSVC. */
257 #define GCALIGNMENT 8
258
259 /* Number of bits in a Lisp_Object value, not counting the tag. */
260 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
261
262 /* Number of bits in a Lisp fixnum tag. */
263 INTTYPEBITS = GCTYPEBITS - 1,
264
265 /* Number of bits in a Lisp fixnum value, not counting the tag. */
266 FIXNUM_BITS = VALBITS + 1
267 };
268
269 #if GCALIGNMENT != 1 << GCTYPEBITS
270 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
271 #endif
272
273 /* The maximum value that can be stored in a EMACS_INT, assuming all
274 bits other than the type bits contribute to a nonnegative signed value.
275 This can be used in #if, e.g., '#if VAL_MAX < UINTPTR_MAX' below. */
276 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
277
278 /* Whether the least-significant bits of an EMACS_INT contain the tag.
279 On hosts where pointers-as-ints do not exceed VAL_MAX, USE_LSB_TAG is:
280 a. unnecessary, because the top bits of an EMACS_INT are unused, and
281 b. slower, because it typically requires extra masking.
282 So, USE_LSB_TAG is true only on hosts where it might be useful. */
283 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
284 #define USE_LSB_TAG (EMACS_INT_MAX >> GCTYPEBITS < INTPTR_MAX)
285 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
286
287 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
288 # error "USE_LSB_TAG not supported on this platform; please report this." \
289 "Try 'configure --with-wide-int' to work around the problem."
290 error !;
291 #endif
292
293 #ifndef alignas
294 # define alignas(alignment) /* empty */
295 # if USE_LSB_TAG
296 # error "USE_LSB_TAG requires alignas"
297 # endif
298 #endif
299
300
301 /* Some operations are so commonly executed that they are implemented
302 as macros, not functions, because otherwise runtime performance would
303 suffer too much when compiling with GCC without optimization.
304 There's no need to inline everything, just the operations that
305 would otherwise cause a serious performance problem.
306
307 For each such operation OP, define a macro lisp_h_OP that contains
308 the operation's implementation. That way, OP can be implemented
309 via a macro definition like this:
310
311 #define OP(x) lisp_h_OP (x)
312
313 and/or via a function definition like this:
314
315 LISP_MACRO_DEFUN (OP, Lisp_Object, (Lisp_Object x), (x))
316
317 which macro-expands to this:
318
319 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
320
321 without worrying about the implementations diverging, since
322 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
323 are intended to be private to this include file, and should not be
324 used elsewhere.
325
326 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
327 functions, once most developers have access to GCC 4.8 or later and
328 can use "gcc -Og" to debug. Maybe in the year 2016. See
329 Bug#11935.
330
331 Commentary for these macros can be found near their corresponding
332 functions, below. */
333
334 #if CHECK_LISP_OBJECT_TYPE
335 # define lisp_h_XLI(o) ((o).i)
336 # define lisp_h_XIL(i) ((Lisp_Object) { i })
337 #else
338 # define lisp_h_XLI(o) (o)
339 # define lisp_h_XIL(i) (i)
340 #endif
341 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
342 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
343 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
344 #define lisp_h_CHECK_TYPE(ok, Qxxxp, x) \
345 ((ok) ? (void) 0 : (void) wrong_type_argument (Qxxxp, x))
346 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
347 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
348 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
349 #define lisp_h_INTEGERP(x) ((XTYPE (x) & ~Lisp_Int1) == 0)
350 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
351 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
352 #define lisp_h_NILP(x) EQ (x, Qnil)
353 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
354 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
355 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
356 #define lisp_h_SYMBOL_VAL(sym) \
357 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
358 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
359 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
360 #define lisp_h_XCAR(c) XCONS (c)->car
361 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
362 #define lisp_h_XCONS(a) \
363 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
364 #define lisp_h_XHASH(a) XUINT (a)
365 #define lisp_h_XPNTR(a) ((void *) (intptr_t) (XLI (a) & VALMASK))
366 #define lisp_h_XSYMBOL(a) \
367 (eassert (SYMBOLP (a)), (struct Lisp_Symbol *) XUNTAG (a, Lisp_Symbol))
368 #ifndef GC_CHECK_CONS_LIST
369 # define lisp_h_check_cons_list() ((void) 0)
370 #endif
371 #if USE_LSB_TAG
372 # define lisp_h_make_number(n) \
373 XIL ((EMACS_INT) ((EMACS_UINT) (n) << INTTYPEBITS))
374 # define lisp_h_XFASTINT(a) XINT (a)
375 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
376 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
377 # define lisp_h_XUNTAG(a, type) ((void *) (XLI (a) - (type)))
378 #endif
379
380 /* When compiling via gcc -O0, define the key operations as macros, as
381 Emacs is too slow otherwise. To disable this optimization, compile
382 with -DINLINING=false. */
383 #if (defined __NO_INLINE__ \
384 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
385 && ! (defined INLINING && ! INLINING))
386 # define XLI(o) lisp_h_XLI (o)
387 # define XIL(i) lisp_h_XIL (i)
388 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
389 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
390 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
391 # define CHECK_TYPE(ok, Qxxxp, x) lisp_h_CHECK_TYPE (ok, Qxxxp, x)
392 # define CONSP(x) lisp_h_CONSP (x)
393 # define EQ(x, y) lisp_h_EQ (x, y)
394 # define FLOATP(x) lisp_h_FLOATP (x)
395 # define INTEGERP(x) lisp_h_INTEGERP (x)
396 # define MARKERP(x) lisp_h_MARKERP (x)
397 # define MISCP(x) lisp_h_MISCP (x)
398 # define NILP(x) lisp_h_NILP (x)
399 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
400 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
401 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
402 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
403 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
404 # define XCAR(c) lisp_h_XCAR (c)
405 # define XCDR(c) lisp_h_XCDR (c)
406 # define XCONS(a) lisp_h_XCONS (a)
407 # define XHASH(a) lisp_h_XHASH (a)
408 # define XPNTR(a) lisp_h_XPNTR (a)
409 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
410 # ifndef GC_CHECK_CONS_LIST
411 # define check_cons_list() lisp_h_check_cons_list ()
412 # endif
413 # if USE_LSB_TAG
414 # define make_number(n) lisp_h_make_number (n)
415 # define XFASTINT(a) lisp_h_XFASTINT (a)
416 # define XINT(a) lisp_h_XINT (a)
417 # define XTYPE(a) lisp_h_XTYPE (a)
418 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
419 # endif
420 #endif
421
422 /* Define NAME as a lisp.h inline function that returns TYPE and has
423 arguments declared as ARGDECLS and passed as ARGS. ARGDECLS and
424 ARGS should be parenthesized. Implement the function by calling
425 lisp_h_NAME ARGS. */
426 #define LISP_MACRO_DEFUN(name, type, argdecls, args) \
427 INLINE type (name) argdecls { return lisp_h_##name args; }
428
429 /* like LISP_MACRO_DEFUN, except NAME returns void. */
430 #define LISP_MACRO_DEFUN_VOID(name, argdecls, args) \
431 INLINE void (name) argdecls { lisp_h_##name args; }
432
433
434 /* Define the fundamental Lisp data structures. */
435
436 /* This is the set of Lisp data types. If you want to define a new
437 data type, read the comments after Lisp_Fwd_Type definition
438 below. */
439
440 /* Lisp integers use 2 tags, to give them one extra bit, thus
441 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
442 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
443 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
444
445 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
446 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
447 vociferously about them. */
448 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
449 || (defined __SUNPRO_C && __STDC__))
450 #define ENUM_BF(TYPE) unsigned int
451 #else
452 #define ENUM_BF(TYPE) enum TYPE
453 #endif
454
455
456 enum Lisp_Type
457 {
458 /* Integer. XINT (obj) is the integer value. */
459 Lisp_Int0 = 0,
460 Lisp_Int1 = USE_LSB_TAG ? 1 << INTTYPEBITS : 1,
461
462 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
463 Lisp_Symbol = 2,
464
465 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
466 whose first member indicates the subtype. */
467 Lisp_Misc = 3,
468
469 /* String. XSTRING (object) points to a struct Lisp_String.
470 The length of the string, and its contents, are stored therein. */
471 Lisp_String = USE_LSB_TAG ? 1 : 1 << INTTYPEBITS,
472
473 /* Vector of Lisp objects, or something resembling it.
474 XVECTOR (object) points to a struct Lisp_Vector, which contains
475 the size and contents. The size field also contains the type
476 information, if it's not a real vector object. */
477 Lisp_Vectorlike = 5,
478
479 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
480 Lisp_Cons = 6,
481
482 Lisp_Float = 7
483 };
484
485 /* This is the set of data types that share a common structure.
486 The first member of the structure is a type code from this set.
487 The enum values are arbitrary, but we'll use large numbers to make it
488 more likely that we'll spot the error if a random word in memory is
489 mistakenly interpreted as a Lisp_Misc. */
490 enum Lisp_Misc_Type
491 {
492 Lisp_Misc_Free = 0x5eab,
493 Lisp_Misc_Marker,
494 Lisp_Misc_Overlay,
495 Lisp_Misc_Save_Value,
496 /* Currently floats are not a misc type,
497 but let's define this in case we want to change that. */
498 Lisp_Misc_Float,
499 /* This is not a type code. It is for range checking. */
500 Lisp_Misc_Limit
501 };
502
503 /* These are the types of forwarding objects used in the value slot
504 of symbols for special built-in variables whose value is stored in
505 C variables. */
506 enum Lisp_Fwd_Type
507 {
508 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
509 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
510 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
511 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
512 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
513 };
514
515 /* If you want to define a new Lisp data type, here are some
516 instructions. See the thread at
517 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
518 for more info.
519
520 First, there are already a couple of Lisp types that can be used if
521 your new type does not need to be exposed to Lisp programs nor
522 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
523 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
524 is suitable for temporarily stashing away pointers and integers in
525 a Lisp object. The latter is useful for vector-like Lisp objects
526 that need to be used as part of other objects, but which are never
527 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
528 an example).
529
530 These two types don't look pretty when printed, so they are
531 unsuitable for Lisp objects that can be exposed to users.
532
533 To define a new data type, add one more Lisp_Misc subtype or one
534 more pseudovector subtype. Pseudovectors are more suitable for
535 objects with several slots that need to support fast random access,
536 while Lisp_Misc types are for everything else. A pseudovector object
537 provides one or more slots for Lisp objects, followed by struct
538 members that are accessible only from C. A Lisp_Misc object is a
539 wrapper for a C struct that can contain anything you like.
540
541 Explicit freeing is discouraged for Lisp objects in general. But if
542 you really need to exploit this, use Lisp_Misc (check free_misc in
543 alloc.c to see why). There is no way to free a vectorlike object.
544
545 To add a new pseudovector type, extend the pvec_type enumeration;
546 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
547
548 For a Lisp_Misc, you will also need to add your entry to union
549 Lisp_Misc (but make sure the first word has the same structure as
550 the others, starting with a 16-bit member of the Lisp_Misc_Type
551 enumeration and a 1-bit GC markbit) and make sure the overall size
552 of the union is not increased by your addition.
553
554 For a new pseudovector, it's highly desirable to limit the size
555 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
556 Otherwise you will need to change sweep_vectors (also in alloc.c).
557
558 Then you will need to add switch branches in print.c (in
559 print_object, to print your object, and possibly also in
560 print_preprocess) and to alloc.c, to mark your object (in
561 mark_object) and to free it (in gc_sweep). The latter is also the
562 right place to call any code specific to your data type that needs
563 to run when the object is recycled -- e.g., free any additional
564 resources allocated for it that are not Lisp objects. You can even
565 make a pointer to the function that frees the resources a slot in
566 your object -- this way, the same object could be used to represent
567 several disparate C structures. */
568
569 #ifdef CHECK_LISP_OBJECT_TYPE
570
571 typedef struct { EMACS_INT i; } Lisp_Object;
572
573 #define LISP_INITIALLY_ZERO {0}
574
575 #undef CHECK_LISP_OBJECT_TYPE
576 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
577 #else /* CHECK_LISP_OBJECT_TYPE */
578
579 /* If a struct type is not wanted, define Lisp_Object as just a number. */
580
581 typedef EMACS_INT Lisp_Object;
582 #define LISP_INITIALLY_ZERO 0
583 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
584 #endif /* CHECK_LISP_OBJECT_TYPE */
585
586 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
587 At the machine level, these operations are no-ops. */
588 LISP_MACRO_DEFUN (XLI, EMACS_INT, (Lisp_Object o), (o))
589 LISP_MACRO_DEFUN (XIL, Lisp_Object, (EMACS_INT i), (i))
590
591 /* In the size word of a vector, this bit means the vector has been marked. */
592
593 #define ARRAY_MARK_FLAG_val PTRDIFF_MIN
594 #if ENUMABLE (ARRAY_MARK_FLAG_val)
595 DEFINE_GDB_SYMBOL_ENUM (ARRAY_MARK_FLAG)
596 #else
597 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
598 # define ARRAY_MARK_FLAG ARRAY_MARK_FLAG_val
599 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
600 #endif
601
602 /* In the size word of a struct Lisp_Vector, this bit means it's really
603 some other vector-like object. */
604 #define PSEUDOVECTOR_FLAG_val (PTRDIFF_MAX - PTRDIFF_MAX / 2)
605 #if ENUMABLE (PSEUDOVECTOR_FLAG_val)
606 DEFINE_GDB_SYMBOL_ENUM (PSEUDOVECTOR_FLAG)
607 #else
608 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
609 # define PSEUDOVECTOR_FLAG PSEUDOVECTOR_FLAG_val
610 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
611 #endif
612
613 /* In a pseudovector, the size field actually contains a word with one
614 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
615 with PVEC_TYPE_MASK to indicate the actual type. */
616 enum pvec_type
617 {
618 PVEC_NORMAL_VECTOR,
619 PVEC_FREE,
620 PVEC_PROCESS,
621 PVEC_FRAME,
622 PVEC_WINDOW,
623 PVEC_BOOL_VECTOR,
624 PVEC_BUFFER,
625 PVEC_HASH_TABLE,
626 PVEC_TERMINAL,
627 PVEC_WINDOW_CONFIGURATION,
628 PVEC_SUBR,
629 PVEC_OTHER,
630 /* These should be last, check internal_equal to see why. */
631 PVEC_COMPILED,
632 PVEC_CHAR_TABLE,
633 PVEC_SUB_CHAR_TABLE,
634 PVEC_FONT /* Should be last because it's used for range checking. */
635 };
636
637 enum More_Lisp_Bits
638 {
639 /* For convenience, we also store the number of elements in these bits.
640 Note that this size is not necessarily the memory-footprint size, but
641 only the number of Lisp_Object fields (that need to be traced by GC).
642 The distinction is used, e.g., by Lisp_Process, which places extra
643 non-Lisp_Object fields at the end of the structure. */
644 PSEUDOVECTOR_SIZE_BITS = 12,
645 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
646
647 /* To calculate the memory footprint of the pseudovector, it's useful
648 to store the size of non-Lisp area in word_size units here. */
649 PSEUDOVECTOR_REST_BITS = 12,
650 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
651 << PSEUDOVECTOR_SIZE_BITS),
652
653 /* Used to extract pseudovector subtype information. */
654 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
655 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
656 };
657 \f
658 /* These functions extract various sorts of values from a Lisp_Object.
659 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
660 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
661 that cons. */
662
663 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
664 #define VALMASK_val (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
665 #if ENUMABLE (VALMASK_val)
666 DEFINE_GDB_SYMBOL_ENUM (VALMASK)
667 #else
668 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
669 # define VALMASK VALMASK_val
670 DEFINE_GDB_SYMBOL_END (VALMASK)
671 #endif
672
673 /* Largest and smallest representable fixnum values. These are the C
674 values. They are macros for use in static initializers. */
675 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
676 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
677
678 /* Extract the pointer hidden within A. */
679 LISP_MACRO_DEFUN (XPNTR, void *, (Lisp_Object a), (a))
680
681 #if USE_LSB_TAG
682
683 LISP_MACRO_DEFUN (make_number, Lisp_Object, (EMACS_INT n), (n))
684 LISP_MACRO_DEFUN (XINT, EMACS_INT, (Lisp_Object a), (a))
685 LISP_MACRO_DEFUN (XFASTINT, EMACS_INT, (Lisp_Object a), (a))
686 LISP_MACRO_DEFUN (XTYPE, enum Lisp_Type, (Lisp_Object a), (a))
687 LISP_MACRO_DEFUN (XUNTAG, void *, (Lisp_Object a, int type), (a, type))
688
689 #else /* ! USE_LSB_TAG */
690
691 /* Although compiled only if ! USE_LSB_TAG, the following functions
692 also work when USE_LSB_TAG; this is to aid future maintenance when
693 the lisp_h_* macros are eventually removed. */
694
695 /* Make a Lisp integer representing the value of the low order
696 bits of N. */
697 INLINE Lisp_Object
698 make_number (EMACS_INT n)
699 {
700 if (USE_LSB_TAG)
701 {
702 EMACS_UINT u = n;
703 n = u << INTTYPEBITS;
704 }
705 else
706 n &= INTMASK;
707 return XIL (n);
708 }
709
710 /* Extract A's value as a signed integer. */
711 INLINE EMACS_INT
712 XINT (Lisp_Object a)
713 {
714 EMACS_INT i = XLI (a);
715 if (! USE_LSB_TAG)
716 {
717 EMACS_UINT u = i;
718 i = u << INTTYPEBITS;
719 }
720 return i >> INTTYPEBITS;
721 }
722
723 /* Like XINT (A), but may be faster. A must be nonnegative.
724 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
725 integers have zero-bits in their tags. */
726 INLINE EMACS_INT
727 XFASTINT (Lisp_Object a)
728 {
729 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a);
730 eassert (0 <= n);
731 return n;
732 }
733
734 /* Extract A's type. */
735 INLINE enum Lisp_Type
736 XTYPE (Lisp_Object a)
737 {
738 EMACS_UINT i = XLI (a);
739 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
740 }
741
742 /* Extract A's pointer value, assuming A's type is TYPE. */
743 INLINE void *
744 XUNTAG (Lisp_Object a, int type)
745 {
746 if (USE_LSB_TAG)
747 {
748 intptr_t i = XLI (a) - type;
749 return (void *) i;
750 }
751 return XPNTR (a);
752 }
753
754 #endif /* ! USE_LSB_TAG */
755
756 /* Extract A's value as an unsigned integer. */
757 INLINE EMACS_UINT
758 XUINT (Lisp_Object a)
759 {
760 EMACS_UINT i = XLI (a);
761 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
762 }
763
764 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
765 right now, but XUINT should only be applied to objects we know are
766 integers. */
767 LISP_MACRO_DEFUN (XHASH, EMACS_INT, (Lisp_Object a), (a))
768
769 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
770 INLINE Lisp_Object
771 make_natnum (EMACS_INT n)
772 {
773 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
774 return USE_LSB_TAG ? make_number (n) : XIL (n);
775 }
776
777 /* Return true if X and Y are the same object. */
778 LISP_MACRO_DEFUN (EQ, bool, (Lisp_Object x, Lisp_Object y), (x, y))
779
780 /* Value is true if I doesn't fit into a Lisp fixnum. It is
781 written this way so that it also works if I is of unsigned
782 type or if I is a NaN. */
783
784 #define FIXNUM_OVERFLOW_P(i) \
785 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
786
787 INLINE ptrdiff_t
788 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
789 {
790 return num < lower ? lower : num <= upper ? num : upper;
791 }
792 \f
793 /* Forward declarations. */
794
795 /* Defined in this file. */
796 union Lisp_Fwd;
797 INLINE bool BOOL_VECTOR_P (Lisp_Object);
798 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
799 INLINE bool BUFFERP (Lisp_Object);
800 INLINE bool CHAR_TABLE_P (Lisp_Object);
801 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
802 INLINE bool (CONSP) (Lisp_Object);
803 INLINE bool (FLOATP) (Lisp_Object);
804 INLINE bool functionp (Lisp_Object);
805 INLINE bool (INTEGERP) (Lisp_Object);
806 INLINE bool (MARKERP) (Lisp_Object);
807 INLINE bool (MISCP) (Lisp_Object);
808 INLINE bool (NILP) (Lisp_Object);
809 INLINE bool OVERLAYP (Lisp_Object);
810 INLINE bool PROCESSP (Lisp_Object);
811 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
812 INLINE bool SAVE_VALUEP (Lisp_Object);
813 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
814 Lisp_Object);
815 INLINE bool STRINGP (Lisp_Object);
816 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
817 INLINE bool SUBRP (Lisp_Object);
818 INLINE bool (SYMBOLP) (Lisp_Object);
819 INLINE bool (VECTORLIKEP) (Lisp_Object);
820 INLINE bool WINDOWP (Lisp_Object);
821 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
822
823 /* Defined in chartab.c. */
824 extern Lisp_Object char_table_ref (Lisp_Object, int);
825 extern void char_table_set (Lisp_Object, int, Lisp_Object);
826 extern int char_table_translate (Lisp_Object, int);
827
828 /* Defined in data.c. */
829 extern Lisp_Object Qarrayp, Qbufferp, Qbuffer_or_string_p, Qchar_table_p;
830 extern Lisp_Object Qconsp, Qfloatp, Qintegerp, Qlambda, Qlistp, Qmarkerp, Qnil;
831 extern Lisp_Object Qnumberp, Qstringp, Qsymbolp, Qt, Qvectorp;
832 extern Lisp_Object Qbool_vector_p;
833 extern Lisp_Object Qvector_or_char_table_p, Qwholenump;
834 extern Lisp_Object Qwindow;
835 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
836
837 /* Defined in emacs.c. */
838 extern bool might_dump;
839 /* True means Emacs has already been initialized.
840 Used during startup to detect startup of dumped Emacs. */
841 extern bool initialized;
842
843 /* Defined in eval.c. */
844 extern Lisp_Object Qautoload;
845
846 /* Defined in floatfns.c. */
847 extern double extract_float (Lisp_Object);
848
849 /* Defined in process.c. */
850 extern Lisp_Object Qprocessp;
851
852 /* Defined in window.c. */
853 extern Lisp_Object Qwindowp;
854
855 /* Defined in xdisp.c. */
856 extern Lisp_Object Qimage;
857 \f
858
859 /* Extract a value or address from a Lisp_Object. */
860
861 LISP_MACRO_DEFUN (XCONS, struct Lisp_Cons *, (Lisp_Object a), (a))
862
863 INLINE struct Lisp_Vector *
864 XVECTOR (Lisp_Object a)
865 {
866 eassert (VECTORLIKEP (a));
867 return XUNTAG (a, Lisp_Vectorlike);
868 }
869
870 INLINE struct Lisp_String *
871 XSTRING (Lisp_Object a)
872 {
873 eassert (STRINGP (a));
874 return XUNTAG (a, Lisp_String);
875 }
876
877 LISP_MACRO_DEFUN (XSYMBOL, struct Lisp_Symbol *, (Lisp_Object a), (a))
878
879 INLINE struct Lisp_Float *
880 XFLOAT (Lisp_Object a)
881 {
882 eassert (FLOATP (a));
883 return XUNTAG (a, Lisp_Float);
884 }
885
886 /* Pseudovector types. */
887
888 INLINE struct Lisp_Process *
889 XPROCESS (Lisp_Object a)
890 {
891 eassert (PROCESSP (a));
892 return XUNTAG (a, Lisp_Vectorlike);
893 }
894
895 INLINE struct window *
896 XWINDOW (Lisp_Object a)
897 {
898 eassert (WINDOWP (a));
899 return XUNTAG (a, Lisp_Vectorlike);
900 }
901
902 INLINE struct terminal *
903 XTERMINAL (Lisp_Object a)
904 {
905 return XUNTAG (a, Lisp_Vectorlike);
906 }
907
908 INLINE struct Lisp_Subr *
909 XSUBR (Lisp_Object a)
910 {
911 eassert (SUBRP (a));
912 return XUNTAG (a, Lisp_Vectorlike);
913 }
914
915 INLINE struct buffer *
916 XBUFFER (Lisp_Object a)
917 {
918 eassert (BUFFERP (a));
919 return XUNTAG (a, Lisp_Vectorlike);
920 }
921
922 INLINE struct Lisp_Char_Table *
923 XCHAR_TABLE (Lisp_Object a)
924 {
925 eassert (CHAR_TABLE_P (a));
926 return XUNTAG (a, Lisp_Vectorlike);
927 }
928
929 INLINE struct Lisp_Sub_Char_Table *
930 XSUB_CHAR_TABLE (Lisp_Object a)
931 {
932 eassert (SUB_CHAR_TABLE_P (a));
933 return XUNTAG (a, Lisp_Vectorlike);
934 }
935
936 INLINE struct Lisp_Bool_Vector *
937 XBOOL_VECTOR (Lisp_Object a)
938 {
939 eassert (BOOL_VECTOR_P (a));
940 return XUNTAG (a, Lisp_Vectorlike);
941 }
942
943 /* Construct a Lisp_Object from a value or address. */
944
945 INLINE Lisp_Object
946 make_lisp_ptr (void *ptr, enum Lisp_Type type)
947 {
948 EMACS_UINT utype = type;
949 EMACS_UINT typebits = USE_LSB_TAG ? type : utype << VALBITS;
950 Lisp_Object a = XIL (typebits | (uintptr_t) ptr);
951 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
952 return a;
953 }
954
955 INLINE Lisp_Object
956 make_lisp_proc (struct Lisp_Process *p)
957 {
958 return make_lisp_ptr (p, Lisp_Vectorlike);
959 }
960
961 #define XSETINT(a, b) ((a) = make_number (b))
962 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
963 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
964 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
965 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
966 #define XSETSYMBOL(a, b) ((a) = make_lisp_ptr (b, Lisp_Symbol))
967 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
968 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
969
970 /* Pseudovector types. */
971
972 #define XSETPVECTYPE(v, code) \
973 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
974 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
975 ((v)->header.size = (PSEUDOVECTOR_FLAG \
976 | ((code) << PSEUDOVECTOR_AREA_BITS) \
977 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
978 | (lispsize)))
979
980 /* The cast to struct vectorlike_header * avoids aliasing issues. */
981 #define XSETPSEUDOVECTOR(a, b, code) \
982 XSETTYPED_PSEUDOVECTOR (a, b, \
983 (((struct vectorlike_header *) \
984 XUNTAG (a, Lisp_Vectorlike)) \
985 ->size), \
986 code)
987 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
988 (XSETVECTOR (a, b), \
989 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
990 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
991
992 #define XSETWINDOW_CONFIGURATION(a, b) \
993 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
994 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
995 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
996 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
997 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
998 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
999 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
1000 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1001 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1002 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1003
1004 /* Type checking. */
1005
1006 LISP_MACRO_DEFUN_VOID (CHECK_TYPE, (int ok, Lisp_Object Qxxxp, Lisp_Object x),
1007 (ok, Qxxxp, x))
1008
1009 /* Deprecated and will be removed soon. */
1010
1011 #define INTERNAL_FIELD(field) field ## _
1012
1013 /* See the macros in intervals.h. */
1014
1015 typedef struct interval *INTERVAL;
1016
1017 struct Lisp_Cons
1018 {
1019 /* Car of this cons cell. */
1020 Lisp_Object car;
1021
1022 union
1023 {
1024 /* Cdr of this cons cell. */
1025 Lisp_Object cdr;
1026
1027 /* Used to chain conses on a free list. */
1028 struct Lisp_Cons *chain;
1029 } u;
1030 };
1031
1032 /* Take the car or cdr of something known to be a cons cell. */
1033 /* The _addr functions shouldn't be used outside of the minimal set
1034 of code that has to know what a cons cell looks like. Other code not
1035 part of the basic lisp implementation should assume that the car and cdr
1036 fields are not accessible. (What if we want to switch to
1037 a copying collector someday? Cached cons cell field addresses may be
1038 invalidated at arbitrary points.) */
1039 INLINE Lisp_Object *
1040 xcar_addr (Lisp_Object c)
1041 {
1042 return &XCONS (c)->car;
1043 }
1044 INLINE Lisp_Object *
1045 xcdr_addr (Lisp_Object c)
1046 {
1047 return &XCONS (c)->u.cdr;
1048 }
1049
1050 /* Use these from normal code. */
1051 LISP_MACRO_DEFUN (XCAR, Lisp_Object, (Lisp_Object c), (c))
1052 LISP_MACRO_DEFUN (XCDR, Lisp_Object, (Lisp_Object c), (c))
1053
1054 /* Use these to set the fields of a cons cell.
1055
1056 Note that both arguments may refer to the same object, so 'n'
1057 should not be read after 'c' is first modified. */
1058 INLINE void
1059 XSETCAR (Lisp_Object c, Lisp_Object n)
1060 {
1061 *xcar_addr (c) = n;
1062 }
1063 INLINE void
1064 XSETCDR (Lisp_Object c, Lisp_Object n)
1065 {
1066 *xcdr_addr (c) = n;
1067 }
1068
1069 /* Take the car or cdr of something whose type is not known. */
1070 INLINE Lisp_Object
1071 CAR (Lisp_Object c)
1072 {
1073 return (CONSP (c) ? XCAR (c)
1074 : NILP (c) ? Qnil
1075 : wrong_type_argument (Qlistp, c));
1076 }
1077 INLINE Lisp_Object
1078 CDR (Lisp_Object c)
1079 {
1080 return (CONSP (c) ? XCDR (c)
1081 : NILP (c) ? Qnil
1082 : wrong_type_argument (Qlistp, c));
1083 }
1084
1085 /* Take the car or cdr of something whose type is not known. */
1086 INLINE Lisp_Object
1087 CAR_SAFE (Lisp_Object c)
1088 {
1089 return CONSP (c) ? XCAR (c) : Qnil;
1090 }
1091 INLINE Lisp_Object
1092 CDR_SAFE (Lisp_Object c)
1093 {
1094 return CONSP (c) ? XCDR (c) : Qnil;
1095 }
1096
1097 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1098
1099 struct Lisp_String
1100 {
1101 ptrdiff_t size;
1102 ptrdiff_t size_byte;
1103 INTERVAL intervals; /* Text properties in this string. */
1104 unsigned char *data;
1105 };
1106
1107 /* True if STR is a multibyte string. */
1108 INLINE bool
1109 STRING_MULTIBYTE (Lisp_Object str)
1110 {
1111 return 0 <= XSTRING (str)->size_byte;
1112 }
1113
1114 /* An upper bound on the number of bytes in a Lisp string, not
1115 counting the terminating null. This a tight enough bound to
1116 prevent integer overflow errors that would otherwise occur during
1117 string size calculations. A string cannot contain more bytes than
1118 a fixnum can represent, nor can it be so long that C pointer
1119 arithmetic stops working on the string plus its terminating null.
1120 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1121 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1122 would expose alloc.c internal details that we'd rather keep
1123 private.
1124
1125 This is a macro for use in static initializers. The cast to
1126 ptrdiff_t ensures that the macro is signed. */
1127 #define STRING_BYTES_BOUND \
1128 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1129
1130 /* Mark STR as a unibyte string. */
1131 #define STRING_SET_UNIBYTE(STR) \
1132 do { \
1133 if (EQ (STR, empty_multibyte_string)) \
1134 (STR) = empty_unibyte_string; \
1135 else \
1136 XSTRING (STR)->size_byte = -1; \
1137 } while (false)
1138
1139 /* Mark STR as a multibyte string. Assure that STR contains only
1140 ASCII characters in advance. */
1141 #define STRING_SET_MULTIBYTE(STR) \
1142 do { \
1143 if (EQ (STR, empty_unibyte_string)) \
1144 (STR) = empty_multibyte_string; \
1145 else \
1146 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1147 } while (false)
1148
1149 /* Convenience functions for dealing with Lisp strings. */
1150
1151 INLINE unsigned char *
1152 SDATA (Lisp_Object string)
1153 {
1154 return XSTRING (string)->data;
1155 }
1156 INLINE char *
1157 SSDATA (Lisp_Object string)
1158 {
1159 /* Avoid "differ in sign" warnings. */
1160 return (char *) SDATA (string);
1161 }
1162 INLINE unsigned char
1163 SREF (Lisp_Object string, ptrdiff_t index)
1164 {
1165 return SDATA (string)[index];
1166 }
1167 INLINE void
1168 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1169 {
1170 SDATA (string)[index] = new;
1171 }
1172 INLINE ptrdiff_t
1173 SCHARS (Lisp_Object string)
1174 {
1175 return XSTRING (string)->size;
1176 }
1177
1178 #ifdef GC_CHECK_STRING_BYTES
1179 extern ptrdiff_t string_bytes (struct Lisp_String *);
1180 #endif
1181 INLINE ptrdiff_t
1182 STRING_BYTES (struct Lisp_String *s)
1183 {
1184 #ifdef GC_CHECK_STRING_BYTES
1185 return string_bytes (s);
1186 #else
1187 return s->size_byte < 0 ? s->size : s->size_byte;
1188 #endif
1189 }
1190
1191 INLINE ptrdiff_t
1192 SBYTES (Lisp_Object string)
1193 {
1194 return STRING_BYTES (XSTRING (string));
1195 }
1196 INLINE void
1197 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1198 {
1199 XSTRING (string)->size = newsize;
1200 }
1201
1202 /* Header of vector-like objects. This documents the layout constraints on
1203 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1204 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1205 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1206 because when two such pointers potentially alias, a compiler won't
1207 incorrectly reorder loads and stores to their size fields. See
1208 Bug#8546. */
1209 struct vectorlike_header
1210 {
1211 /* The only field contains various pieces of information:
1212 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1213 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1214 vector (0) or a pseudovector (1).
1215 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1216 of slots) of the vector.
1217 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1218 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1219 - b) number of Lisp_Objects slots at the beginning of the object
1220 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1221 traced by the GC;
1222 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1223 measured in word_size units. Rest fields may also include
1224 Lisp_Objects, but these objects usually needs some special treatment
1225 during GC.
1226 There are some exceptions. For PVEC_FREE, b) is always zero. For
1227 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1228 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1229 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1230 ptrdiff_t size;
1231 };
1232
1233 /* A regular vector is just a header plus an array of Lisp_Objects. */
1234
1235 struct Lisp_Vector
1236 {
1237 struct vectorlike_header header;
1238 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1239 };
1240
1241 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1242 enum
1243 {
1244 ALIGNOF_STRUCT_LISP_VECTOR
1245 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1246 };
1247
1248 /* A boolvector is a kind of vectorlike, with contents like a string. */
1249
1250 struct Lisp_Bool_Vector
1251 {
1252 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1253 just the subtype information. */
1254 struct vectorlike_header header;
1255 /* This is the size in bits. */
1256 EMACS_INT size;
1257 /* The actual bits, packed into bytes.
1258 Zeros fill out the last word if needed.
1259 The bits are in little-endian order in the bytes, and
1260 the bytes are in little-endian order in the words. */
1261 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1262 };
1263
1264 INLINE EMACS_INT
1265 bool_vector_size (Lisp_Object a)
1266 {
1267 EMACS_INT size = XBOOL_VECTOR (a)->size;
1268 eassume (0 <= size);
1269 return size;
1270 }
1271
1272 INLINE bits_word *
1273 bool_vector_data (Lisp_Object a)
1274 {
1275 return XBOOL_VECTOR (a)->data;
1276 }
1277
1278 INLINE unsigned char *
1279 bool_vector_uchar_data (Lisp_Object a)
1280 {
1281 return (unsigned char *) bool_vector_data (a);
1282 }
1283
1284 /* The number of data words and bytes in a bool vector with SIZE bits. */
1285
1286 INLINE EMACS_INT
1287 bool_vector_words (EMACS_INT size)
1288 {
1289 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1290 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1291 }
1292
1293 INLINE EMACS_INT
1294 bool_vector_bytes (EMACS_INT size)
1295 {
1296 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1297 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1298 }
1299
1300 /* True if A's Ith bit is set. */
1301
1302 INLINE bool
1303 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1304 {
1305 eassume (0 <= i && i < bool_vector_size (a));
1306 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1307 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1308 }
1309
1310 INLINE Lisp_Object
1311 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1312 {
1313 return bool_vector_bitref (a, i) ? Qt : Qnil;
1314 }
1315
1316 /* Set A's Ith bit to B. */
1317
1318 INLINE void
1319 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1320 {
1321 unsigned char *addr;
1322
1323 eassume (0 <= i && i < bool_vector_size (a));
1324 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1325
1326 if (b)
1327 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1328 else
1329 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1330 }
1331
1332 /* Some handy constants for calculating sizes
1333 and offsets, mostly of vectorlike objects. */
1334
1335 enum
1336 {
1337 header_size = offsetof (struct Lisp_Vector, contents),
1338 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1339 word_size = sizeof (Lisp_Object)
1340 };
1341
1342 /* Conveniences for dealing with Lisp arrays. */
1343
1344 INLINE Lisp_Object
1345 AREF (Lisp_Object array, ptrdiff_t idx)
1346 {
1347 return XVECTOR (array)->contents[idx];
1348 }
1349
1350 INLINE Lisp_Object *
1351 aref_addr (Lisp_Object array, ptrdiff_t idx)
1352 {
1353 return & XVECTOR (array)->contents[idx];
1354 }
1355
1356 INLINE ptrdiff_t
1357 ASIZE (Lisp_Object array)
1358 {
1359 return XVECTOR (array)->header.size;
1360 }
1361
1362 INLINE void
1363 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1364 {
1365 eassert (0 <= idx && idx < ASIZE (array));
1366 XVECTOR (array)->contents[idx] = val;
1367 }
1368
1369 INLINE void
1370 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1371 {
1372 /* Like ASET, but also can be used in the garbage collector:
1373 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1374 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1375 XVECTOR (array)->contents[idx] = val;
1376 }
1377
1378 /* If a struct is made to look like a vector, this macro returns the length
1379 of the shortest vector that would hold that struct. */
1380
1381 #define VECSIZE(type) \
1382 ((sizeof (type) - header_size + word_size - 1) / word_size)
1383
1384 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1385 at the end and we need to compute the number of Lisp_Object fields (the
1386 ones that the GC needs to trace). */
1387
1388 #define PSEUDOVECSIZE(type, nonlispfield) \
1389 ((offsetof (type, nonlispfield) - header_size) / word_size)
1390
1391 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1392 should be integer expressions. This is not the same as
1393 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1394 returns true. For efficiency, prefer plain unsigned comparison if A
1395 and B's sizes both fit (after integer promotion). */
1396 #define UNSIGNED_CMP(a, op, b) \
1397 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1398 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1399 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1400
1401 /* True iff C is an ASCII character. */
1402 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1403
1404 /* A char-table is a kind of vectorlike, with contents are like a
1405 vector but with a few other slots. For some purposes, it makes
1406 sense to handle a char-table with type struct Lisp_Vector. An
1407 element of a char table can be any Lisp objects, but if it is a sub
1408 char-table, we treat it a table that contains information of a
1409 specific range of characters. A sub char-table has the same
1410 structure as a vector. A sub char table appears only in an element
1411 of a char-table, and there's no way to access it directly from
1412 Emacs Lisp program. */
1413
1414 enum CHARTAB_SIZE_BITS
1415 {
1416 CHARTAB_SIZE_BITS_0 = 6,
1417 CHARTAB_SIZE_BITS_1 = 4,
1418 CHARTAB_SIZE_BITS_2 = 5,
1419 CHARTAB_SIZE_BITS_3 = 7
1420 };
1421
1422 extern const int chartab_size[4];
1423
1424 struct Lisp_Char_Table
1425 {
1426 /* HEADER.SIZE is the vector's size field, which also holds the
1427 pseudovector type information. It holds the size, too.
1428 The size counts the defalt, parent, purpose, ascii,
1429 contents, and extras slots. */
1430 struct vectorlike_header header;
1431
1432 /* This holds a default value,
1433 which is used whenever the value for a specific character is nil. */
1434 Lisp_Object defalt;
1435
1436 /* This points to another char table, which we inherit from when the
1437 value for a specific character is nil. The `defalt' slot takes
1438 precedence over this. */
1439 Lisp_Object parent;
1440
1441 /* This is a symbol which says what kind of use this char-table is
1442 meant for. */
1443 Lisp_Object purpose;
1444
1445 /* The bottom sub char-table for characters of the range 0..127. It
1446 is nil if none of ASCII character has a specific value. */
1447 Lisp_Object ascii;
1448
1449 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1450
1451 /* These hold additional data. It is a vector. */
1452 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1453 };
1454
1455 struct Lisp_Sub_Char_Table
1456 {
1457 /* HEADER.SIZE is the vector's size field, which also holds the
1458 pseudovector type information. It holds the size, too. */
1459 struct vectorlike_header header;
1460
1461 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1462 char-table of depth 1 contains 16 elements, and each element
1463 covers 4096 (128*32) characters. A sub char-table of depth 2
1464 contains 32 elements, and each element covers 128 characters. A
1465 sub char-table of depth 3 contains 128 elements, and each element
1466 is for one character. */
1467 Lisp_Object depth;
1468
1469 /* Minimum character covered by the sub char-table. */
1470 Lisp_Object min_char;
1471
1472 /* Use set_sub_char_table_contents to set this. */
1473 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1474 };
1475
1476 INLINE Lisp_Object
1477 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1478 {
1479 struct Lisp_Char_Table *tbl = NULL;
1480 Lisp_Object val;
1481 do
1482 {
1483 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1484 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1485 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1486 if (NILP (val))
1487 val = tbl->defalt;
1488 }
1489 while (NILP (val) && ! NILP (tbl->parent));
1490
1491 return val;
1492 }
1493
1494 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1495 characters. Do not check validity of CT. */
1496 INLINE Lisp_Object
1497 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1498 {
1499 return (ASCII_CHAR_P (idx)
1500 ? CHAR_TABLE_REF_ASCII (ct, idx)
1501 : char_table_ref (ct, idx));
1502 }
1503
1504 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1505 8-bit European characters. Do not check validity of CT. */
1506 INLINE void
1507 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1508 {
1509 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1510 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1511 else
1512 char_table_set (ct, idx, val);
1513 }
1514
1515 /* This structure describes a built-in function.
1516 It is generated by the DEFUN macro only.
1517 defsubr makes it into a Lisp object. */
1518
1519 struct Lisp_Subr
1520 {
1521 struct vectorlike_header header;
1522 union {
1523 Lisp_Object (*a0) (void);
1524 Lisp_Object (*a1) (Lisp_Object);
1525 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1526 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1527 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1528 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1529 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1530 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1531 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1532 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1533 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1534 } function;
1535 short min_args, max_args;
1536 const char *symbol_name;
1537 const char *intspec;
1538 const char *doc;
1539 };
1540
1541 /* This is the number of slots that every char table must have. This
1542 counts the ordinary slots and the top, defalt, parent, and purpose
1543 slots. */
1544 enum CHAR_TABLE_STANDARD_SLOTS
1545 {
1546 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras)
1547 };
1548
1549 /* Return the number of "extra" slots in the char table CT. */
1550
1551 INLINE int
1552 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1553 {
1554 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1555 - CHAR_TABLE_STANDARD_SLOTS);
1556 }
1557
1558 \f
1559 /***********************************************************************
1560 Symbols
1561 ***********************************************************************/
1562
1563 /* Interned state of a symbol. */
1564
1565 enum symbol_interned
1566 {
1567 SYMBOL_UNINTERNED = 0,
1568 SYMBOL_INTERNED = 1,
1569 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
1570 };
1571
1572 enum symbol_redirect
1573 {
1574 SYMBOL_PLAINVAL = 4,
1575 SYMBOL_VARALIAS = 1,
1576 SYMBOL_LOCALIZED = 2,
1577 SYMBOL_FORWARDED = 3
1578 };
1579
1580 struct Lisp_Symbol
1581 {
1582 bool_bf gcmarkbit : 1;
1583
1584 /* Indicates where the value can be found:
1585 0 : it's a plain var, the value is in the `value' field.
1586 1 : it's a varalias, the value is really in the `alias' symbol.
1587 2 : it's a localized var, the value is in the `blv' object.
1588 3 : it's a forwarding variable, the value is in `forward'. */
1589 ENUM_BF (symbol_redirect) redirect : 3;
1590
1591 /* Non-zero means symbol is constant, i.e. changing its value
1592 should signal an error. If the value is 3, then the var
1593 can be changed, but only by `defconst'. */
1594 unsigned constant : 2;
1595
1596 /* Interned state of the symbol. This is an enumerator from
1597 enum symbol_interned. */
1598 unsigned interned : 2;
1599
1600 /* True means that this variable has been explicitly declared
1601 special (with `defvar' etc), and shouldn't be lexically bound. */
1602 bool_bf declared_special : 1;
1603
1604 /* True if pointed to from purespace and hence can't be GC'd. */
1605 bool_bf pinned : 1;
1606
1607 /* The symbol's name, as a Lisp string. */
1608 Lisp_Object name;
1609
1610 /* Value of the symbol or Qunbound if unbound. Which alternative of the
1611 union is used depends on the `redirect' field above. */
1612 union {
1613 Lisp_Object value;
1614 struct Lisp_Symbol *alias;
1615 struct Lisp_Buffer_Local_Value *blv;
1616 union Lisp_Fwd *fwd;
1617 } val;
1618
1619 /* Function value of the symbol or Qnil if not fboundp. */
1620 Lisp_Object function;
1621
1622 /* The symbol's property list. */
1623 Lisp_Object plist;
1624
1625 /* Next symbol in obarray bucket, if the symbol is interned. */
1626 struct Lisp_Symbol *next;
1627 };
1628
1629 /* Value is name of symbol. */
1630
1631 LISP_MACRO_DEFUN (SYMBOL_VAL, Lisp_Object, (struct Lisp_Symbol *sym), (sym))
1632
1633 INLINE struct Lisp_Symbol *
1634 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1635 {
1636 eassert (sym->redirect == SYMBOL_VARALIAS);
1637 return sym->val.alias;
1638 }
1639 INLINE struct Lisp_Buffer_Local_Value *
1640 SYMBOL_BLV (struct Lisp_Symbol *sym)
1641 {
1642 eassert (sym->redirect == SYMBOL_LOCALIZED);
1643 return sym->val.blv;
1644 }
1645 INLINE union Lisp_Fwd *
1646 SYMBOL_FWD (struct Lisp_Symbol *sym)
1647 {
1648 eassert (sym->redirect == SYMBOL_FORWARDED);
1649 return sym->val.fwd;
1650 }
1651
1652 LISP_MACRO_DEFUN_VOID (SET_SYMBOL_VAL,
1653 (struct Lisp_Symbol *sym, Lisp_Object v), (sym, v))
1654
1655 INLINE void
1656 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1657 {
1658 eassert (sym->redirect == SYMBOL_VARALIAS);
1659 sym->val.alias = v;
1660 }
1661 INLINE void
1662 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1663 {
1664 eassert (sym->redirect == SYMBOL_LOCALIZED);
1665 sym->val.blv = v;
1666 }
1667 INLINE void
1668 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1669 {
1670 eassert (sym->redirect == SYMBOL_FORWARDED);
1671 sym->val.fwd = v;
1672 }
1673
1674 INLINE Lisp_Object
1675 SYMBOL_NAME (Lisp_Object sym)
1676 {
1677 return XSYMBOL (sym)->name;
1678 }
1679
1680 /* Value is true if SYM is an interned symbol. */
1681
1682 INLINE bool
1683 SYMBOL_INTERNED_P (Lisp_Object sym)
1684 {
1685 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1686 }
1687
1688 /* Value is true if SYM is interned in initial_obarray. */
1689
1690 INLINE bool
1691 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1692 {
1693 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1694 }
1695
1696 /* Value is non-zero if symbol is considered a constant, i.e. its
1697 value cannot be changed (there is an exception for keyword symbols,
1698 whose value can be set to the keyword symbol itself). */
1699
1700 LISP_MACRO_DEFUN (SYMBOL_CONSTANT_P, int, (Lisp_Object sym), (sym))
1701
1702 #define DEFSYM(sym, name) \
1703 do { (sym) = intern_c_string ((name)); staticpro (&(sym)); } while (false)
1704
1705 \f
1706 /***********************************************************************
1707 Hash Tables
1708 ***********************************************************************/
1709
1710 /* The structure of a Lisp hash table. */
1711
1712 struct hash_table_test
1713 {
1714 /* Name of the function used to compare keys. */
1715 Lisp_Object name;
1716
1717 /* User-supplied hash function, or nil. */
1718 Lisp_Object user_hash_function;
1719
1720 /* User-supplied key comparison function, or nil. */
1721 Lisp_Object user_cmp_function;
1722
1723 /* C function to compare two keys. */
1724 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1725
1726 /* C function to compute hash code. */
1727 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1728 };
1729
1730 struct Lisp_Hash_Table
1731 {
1732 /* This is for Lisp; the hash table code does not refer to it. */
1733 struct vectorlike_header header;
1734
1735 /* Nil if table is non-weak. Otherwise a symbol describing the
1736 weakness of the table. */
1737 Lisp_Object weak;
1738
1739 /* When the table is resized, and this is an integer, compute the
1740 new size by adding this to the old size. If a float, compute the
1741 new size by multiplying the old size with this factor. */
1742 Lisp_Object rehash_size;
1743
1744 /* Resize hash table when number of entries/ table size is >= this
1745 ratio, a float. */
1746 Lisp_Object rehash_threshold;
1747
1748 /* Vector of hash codes. If hash[I] is nil, this means that the
1749 I-th entry is unused. */
1750 Lisp_Object hash;
1751
1752 /* Vector used to chain entries. If entry I is free, next[I] is the
1753 entry number of the next free item. If entry I is non-free,
1754 next[I] is the index of the next entry in the collision chain. */
1755 Lisp_Object next;
1756
1757 /* Index of first free entry in free list. */
1758 Lisp_Object next_free;
1759
1760 /* Bucket vector. A non-nil entry is the index of the first item in
1761 a collision chain. This vector's size can be larger than the
1762 hash table size to reduce collisions. */
1763 Lisp_Object index;
1764
1765 /* Only the fields above are traced normally by the GC. The ones below
1766 `count' are special and are either ignored by the GC or traced in
1767 a special way (e.g. because of weakness). */
1768
1769 /* Number of key/value entries in the table. */
1770 ptrdiff_t count;
1771
1772 /* Vector of keys and values. The key of item I is found at index
1773 2 * I, the value is found at index 2 * I + 1.
1774 This is gc_marked specially if the table is weak. */
1775 Lisp_Object key_and_value;
1776
1777 /* The comparison and hash functions. */
1778 struct hash_table_test test;
1779
1780 /* Next weak hash table if this is a weak hash table. The head
1781 of the list is in weak_hash_tables. */
1782 struct Lisp_Hash_Table *next_weak;
1783 };
1784
1785
1786 INLINE struct Lisp_Hash_Table *
1787 XHASH_TABLE (Lisp_Object a)
1788 {
1789 return XUNTAG (a, Lisp_Vectorlike);
1790 }
1791
1792 #define XSET_HASH_TABLE(VAR, PTR) \
1793 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1794
1795 INLINE bool
1796 HASH_TABLE_P (Lisp_Object a)
1797 {
1798 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1799 }
1800
1801 /* Value is the key part of entry IDX in hash table H. */
1802 INLINE Lisp_Object
1803 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1804 {
1805 return AREF (h->key_and_value, 2 * idx);
1806 }
1807
1808 /* Value is the value part of entry IDX in hash table H. */
1809 INLINE Lisp_Object
1810 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1811 {
1812 return AREF (h->key_and_value, 2 * idx + 1);
1813 }
1814
1815 /* Value is the index of the next entry following the one at IDX
1816 in hash table H. */
1817 INLINE Lisp_Object
1818 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1819 {
1820 return AREF (h->next, idx);
1821 }
1822
1823 /* Value is the hash code computed for entry IDX in hash table H. */
1824 INLINE Lisp_Object
1825 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1826 {
1827 return AREF (h->hash, idx);
1828 }
1829
1830 /* Value is the index of the element in hash table H that is the
1831 start of the collision list at index IDX in the index vector of H. */
1832 INLINE Lisp_Object
1833 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1834 {
1835 return AREF (h->index, idx);
1836 }
1837
1838 /* Value is the size of hash table H. */
1839 INLINE ptrdiff_t
1840 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1841 {
1842 return ASIZE (h->next);
1843 }
1844
1845 /* Default size for hash tables if not specified. */
1846
1847 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1848
1849 /* Default threshold specifying when to resize a hash table. The
1850 value gives the ratio of current entries in the hash table and the
1851 size of the hash table. */
1852
1853 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
1854
1855 /* Default factor by which to increase the size of a hash table. */
1856
1857 static double const DEFAULT_REHASH_SIZE = 1.5;
1858
1859 /* Combine two integers X and Y for hashing. The result might not fit
1860 into a Lisp integer. */
1861
1862 INLINE EMACS_UINT
1863 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
1864 {
1865 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
1866 }
1867
1868 /* Hash X, returning a value that fits into a fixnum. */
1869
1870 INLINE EMACS_UINT
1871 SXHASH_REDUCE (EMACS_UINT x)
1872 {
1873 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
1874 }
1875
1876 /* These structures are used for various misc types. */
1877
1878 struct Lisp_Misc_Any /* Supertype of all Misc types. */
1879 {
1880 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
1881 bool_bf gcmarkbit : 1;
1882 unsigned spacer : 15;
1883 };
1884
1885 struct Lisp_Marker
1886 {
1887 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
1888 bool_bf gcmarkbit : 1;
1889 unsigned spacer : 13;
1890 /* This flag is temporarily used in the functions
1891 decode/encode_coding_object to record that the marker position
1892 must be adjusted after the conversion. */
1893 bool_bf need_adjustment : 1;
1894 /* True means normal insertion at the marker's position
1895 leaves the marker after the inserted text. */
1896 bool_bf insertion_type : 1;
1897 /* This is the buffer that the marker points into, or 0 if it points nowhere.
1898 Note: a chain of markers can contain markers pointing into different
1899 buffers (the chain is per buffer_text rather than per buffer, so it's
1900 shared between indirect buffers). */
1901 /* This is used for (other than NULL-checking):
1902 - Fmarker_buffer
1903 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
1904 - unchain_marker: to find the list from which to unchain.
1905 - Fkill_buffer: to only unchain the markers of current indirect buffer.
1906 */
1907 struct buffer *buffer;
1908
1909 /* The remaining fields are meaningless in a marker that
1910 does not point anywhere. */
1911
1912 /* For markers that point somewhere,
1913 this is used to chain of all the markers in a given buffer. */
1914 /* We could remove it and use an array in buffer_text instead.
1915 That would also allow to preserve it ordered. */
1916 struct Lisp_Marker *next;
1917 /* This is the char position where the marker points. */
1918 ptrdiff_t charpos;
1919 /* This is the byte position.
1920 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
1921 used to implement the functionality of markers, but rather to (ab)use
1922 markers as a cache for char<->byte mappings). */
1923 ptrdiff_t bytepos;
1924 };
1925
1926 /* START and END are markers in the overlay's buffer, and
1927 PLIST is the overlay's property list. */
1928 struct Lisp_Overlay
1929 /* An overlay's real data content is:
1930 - plist
1931 - buffer (really there are two buffer pointers, one per marker,
1932 and both points to the same buffer)
1933 - insertion type of both ends (per-marker fields)
1934 - start & start byte (of start marker)
1935 - end & end byte (of end marker)
1936 - next (singly linked list of overlays)
1937 - next fields of start and end markers (singly linked list of markers).
1938 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
1939 */
1940 {
1941 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
1942 bool_bf gcmarkbit : 1;
1943 unsigned spacer : 15;
1944 struct Lisp_Overlay *next;
1945 Lisp_Object start;
1946 Lisp_Object end;
1947 Lisp_Object plist;
1948 };
1949
1950 /* Types of data which may be saved in a Lisp_Save_Value. */
1951
1952 enum
1953 {
1954 SAVE_UNUSED,
1955 SAVE_INTEGER,
1956 SAVE_FUNCPOINTER,
1957 SAVE_POINTER,
1958 SAVE_OBJECT
1959 };
1960
1961 /* Number of bits needed to store one of the above values. */
1962 enum { SAVE_SLOT_BITS = 3 };
1963
1964 /* Number of slots in a save value where save_type is nonzero. */
1965 enum { SAVE_VALUE_SLOTS = 4 };
1966
1967 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
1968
1969 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
1970
1971 enum Lisp_Save_Type
1972 {
1973 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
1974 SAVE_TYPE_INT_INT_INT
1975 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
1976 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
1977 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
1978 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
1979 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
1980 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
1981 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
1982 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
1983 SAVE_TYPE_FUNCPTR_PTR_OBJ
1984 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
1985
1986 /* This has an extra bit indicating it's raw memory. */
1987 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
1988 };
1989
1990 /* Special object used to hold a different values for later use.
1991
1992 This is mostly used to package C integers and pointers to call
1993 record_unwind_protect when two or more values need to be saved.
1994 For example:
1995
1996 ...
1997 struct my_data *md = get_my_data ();
1998 ptrdiff_t mi = get_my_integer ();
1999 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2000 ...
2001
2002 Lisp_Object my_unwind (Lisp_Object arg)
2003 {
2004 struct my_data *md = XSAVE_POINTER (arg, 0);
2005 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2006 ...
2007 }
2008
2009 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2010 saved objects and raise eassert if type of the saved object doesn't match
2011 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2012 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2013 slot 0 is a pointer. */
2014
2015 typedef void (*voidfuncptr) (void);
2016
2017 struct Lisp_Save_Value
2018 {
2019 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2020 bool_bf gcmarkbit : 1;
2021 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2022
2023 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2024 V's data entries are determined by V->save_type. E.g., if
2025 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2026 V->data[1] is an integer, and V's other data entries are unused.
2027
2028 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2029 a memory area containing V->data[1].integer potential Lisp_Objects. */
2030 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2031 union {
2032 void *pointer;
2033 voidfuncptr funcpointer;
2034 ptrdiff_t integer;
2035 Lisp_Object object;
2036 } data[SAVE_VALUE_SLOTS];
2037 };
2038
2039 /* Return the type of V's Nth saved value. */
2040 INLINE int
2041 save_type (struct Lisp_Save_Value *v, int n)
2042 {
2043 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2044 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2045 }
2046
2047 /* Get and set the Nth saved pointer. */
2048
2049 INLINE void *
2050 XSAVE_POINTER (Lisp_Object obj, int n)
2051 {
2052 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2053 return XSAVE_VALUE (obj)->data[n].pointer;
2054 }
2055 INLINE void
2056 set_save_pointer (Lisp_Object obj, int n, void *val)
2057 {
2058 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2059 XSAVE_VALUE (obj)->data[n].pointer = val;
2060 }
2061 INLINE voidfuncptr
2062 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2063 {
2064 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2065 return XSAVE_VALUE (obj)->data[n].funcpointer;
2066 }
2067
2068 /* Likewise for the saved integer. */
2069
2070 INLINE ptrdiff_t
2071 XSAVE_INTEGER (Lisp_Object obj, int n)
2072 {
2073 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2074 return XSAVE_VALUE (obj)->data[n].integer;
2075 }
2076 INLINE void
2077 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2078 {
2079 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2080 XSAVE_VALUE (obj)->data[n].integer = val;
2081 }
2082
2083 /* Extract Nth saved object. */
2084
2085 INLINE Lisp_Object
2086 XSAVE_OBJECT (Lisp_Object obj, int n)
2087 {
2088 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2089 return XSAVE_VALUE (obj)->data[n].object;
2090 }
2091
2092 /* A miscellaneous object, when it's on the free list. */
2093 struct Lisp_Free
2094 {
2095 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2096 bool_bf gcmarkbit : 1;
2097 unsigned spacer : 15;
2098 union Lisp_Misc *chain;
2099 };
2100
2101 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2102 It uses one of these struct subtypes to get the type field. */
2103
2104 union Lisp_Misc
2105 {
2106 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2107 struct Lisp_Free u_free;
2108 struct Lisp_Marker u_marker;
2109 struct Lisp_Overlay u_overlay;
2110 struct Lisp_Save_Value u_save_value;
2111 };
2112
2113 INLINE union Lisp_Misc *
2114 XMISC (Lisp_Object a)
2115 {
2116 return XUNTAG (a, Lisp_Misc);
2117 }
2118
2119 INLINE struct Lisp_Misc_Any *
2120 XMISCANY (Lisp_Object a)
2121 {
2122 eassert (MISCP (a));
2123 return & XMISC (a)->u_any;
2124 }
2125
2126 INLINE enum Lisp_Misc_Type
2127 XMISCTYPE (Lisp_Object a)
2128 {
2129 return XMISCANY (a)->type;
2130 }
2131
2132 INLINE struct Lisp_Marker *
2133 XMARKER (Lisp_Object a)
2134 {
2135 eassert (MARKERP (a));
2136 return & XMISC (a)->u_marker;
2137 }
2138
2139 INLINE struct Lisp_Overlay *
2140 XOVERLAY (Lisp_Object a)
2141 {
2142 eassert (OVERLAYP (a));
2143 return & XMISC (a)->u_overlay;
2144 }
2145
2146 INLINE struct Lisp_Save_Value *
2147 XSAVE_VALUE (Lisp_Object a)
2148 {
2149 eassert (SAVE_VALUEP (a));
2150 return & XMISC (a)->u_save_value;
2151 }
2152 \f
2153 /* Forwarding pointer to an int variable.
2154 This is allowed only in the value cell of a symbol,
2155 and it means that the symbol's value really lives in the
2156 specified int variable. */
2157 struct Lisp_Intfwd
2158 {
2159 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2160 EMACS_INT *intvar;
2161 };
2162
2163 /* Boolean forwarding pointer to an int variable.
2164 This is like Lisp_Intfwd except that the ostensible
2165 "value" of the symbol is t if the bool variable is true,
2166 nil if it is false. */
2167 struct Lisp_Boolfwd
2168 {
2169 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2170 bool *boolvar;
2171 };
2172
2173 /* Forwarding pointer to a Lisp_Object variable.
2174 This is allowed only in the value cell of a symbol,
2175 and it means that the symbol's value really lives in the
2176 specified variable. */
2177 struct Lisp_Objfwd
2178 {
2179 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2180 Lisp_Object *objvar;
2181 };
2182
2183 /* Like Lisp_Objfwd except that value lives in a slot in the
2184 current buffer. Value is byte index of slot within buffer. */
2185 struct Lisp_Buffer_Objfwd
2186 {
2187 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2188 int offset;
2189 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2190 Lisp_Object predicate;
2191 };
2192
2193 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2194 the symbol has buffer-local or frame-local bindings. (Exception:
2195 some buffer-local variables are built-in, with their values stored
2196 in the buffer structure itself. They are handled differently,
2197 using struct Lisp_Buffer_Objfwd.)
2198
2199 The `realvalue' slot holds the variable's current value, or a
2200 forwarding pointer to where that value is kept. This value is the
2201 one that corresponds to the loaded binding. To read or set the
2202 variable, you must first make sure the right binding is loaded;
2203 then you can access the value in (or through) `realvalue'.
2204
2205 `buffer' and `frame' are the buffer and frame for which the loaded
2206 binding was found. If those have changed, to make sure the right
2207 binding is loaded it is necessary to find which binding goes with
2208 the current buffer and selected frame, then load it. To load it,
2209 first unload the previous binding, then copy the value of the new
2210 binding into `realvalue' (or through it). Also update
2211 LOADED-BINDING to point to the newly loaded binding.
2212
2213 `local_if_set' indicates that merely setting the variable creates a
2214 local binding for the current buffer. Otherwise the latter, setting
2215 the variable does not do that; only make-local-variable does that. */
2216
2217 struct Lisp_Buffer_Local_Value
2218 {
2219 /* True means that merely setting the variable creates a local
2220 binding for the current buffer. */
2221 bool_bf local_if_set : 1;
2222 /* True means this variable can have frame-local bindings, otherwise, it is
2223 can have buffer-local bindings. The two cannot be combined. */
2224 bool_bf frame_local : 1;
2225 /* True means that the binding now loaded was found.
2226 Presumably equivalent to (defcell!=valcell). */
2227 bool_bf found : 1;
2228 /* If non-NULL, a forwarding to the C var where it should also be set. */
2229 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2230 /* The buffer or frame for which the loaded binding was found. */
2231 Lisp_Object where;
2232 /* A cons cell that holds the default value. It has the form
2233 (SYMBOL . DEFAULT-VALUE). */
2234 Lisp_Object defcell;
2235 /* The cons cell from `where's parameter alist.
2236 It always has the form (SYMBOL . VALUE)
2237 Note that if `forward' is non-nil, VALUE may be out of date.
2238 Also if the currently loaded binding is the default binding, then
2239 this is `eq'ual to defcell. */
2240 Lisp_Object valcell;
2241 };
2242
2243 /* Like Lisp_Objfwd except that value lives in a slot in the
2244 current kboard. */
2245 struct Lisp_Kboard_Objfwd
2246 {
2247 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2248 int offset;
2249 };
2250
2251 union Lisp_Fwd
2252 {
2253 struct Lisp_Intfwd u_intfwd;
2254 struct Lisp_Boolfwd u_boolfwd;
2255 struct Lisp_Objfwd u_objfwd;
2256 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2257 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2258 };
2259
2260 INLINE enum Lisp_Fwd_Type
2261 XFWDTYPE (union Lisp_Fwd *a)
2262 {
2263 return a->u_intfwd.type;
2264 }
2265
2266 INLINE struct Lisp_Buffer_Objfwd *
2267 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2268 {
2269 eassert (BUFFER_OBJFWDP (a));
2270 return &a->u_buffer_objfwd;
2271 }
2272 \f
2273 /* Lisp floating point type. */
2274 struct Lisp_Float
2275 {
2276 union
2277 {
2278 double data;
2279 struct Lisp_Float *chain;
2280 } u;
2281 };
2282
2283 INLINE double
2284 XFLOAT_DATA (Lisp_Object f)
2285 {
2286 return XFLOAT (f)->u.data;
2287 }
2288
2289 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2290 representations, have infinities and NaNs, and do not trap on
2291 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2292 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2293 wanted here, but is not quite right because Emacs does not require
2294 all the features of C11 Annex F (and does not require C11 at all,
2295 for that matter). */
2296 enum
2297 {
2298 IEEE_FLOATING_POINT
2299 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2300 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2301 };
2302
2303 /* A character, declared with the following typedef, is a member
2304 of some character set associated with the current buffer. */
2305 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2306 #define _UCHAR_T
2307 typedef unsigned char UCHAR;
2308 #endif
2309
2310 /* Meanings of slots in a Lisp_Compiled: */
2311
2312 enum Lisp_Compiled
2313 {
2314 COMPILED_ARGLIST = 0,
2315 COMPILED_BYTECODE = 1,
2316 COMPILED_CONSTANTS = 2,
2317 COMPILED_STACK_DEPTH = 3,
2318 COMPILED_DOC_STRING = 4,
2319 COMPILED_INTERACTIVE = 5
2320 };
2321
2322 /* Flag bits in a character. These also get used in termhooks.h.
2323 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2324 (MUlti-Lingual Emacs) might need 22 bits for the character value
2325 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2326 enum char_bits
2327 {
2328 CHAR_ALT = 0x0400000,
2329 CHAR_SUPER = 0x0800000,
2330 CHAR_HYPER = 0x1000000,
2331 CHAR_SHIFT = 0x2000000,
2332 CHAR_CTL = 0x4000000,
2333 CHAR_META = 0x8000000,
2334
2335 CHAR_MODIFIER_MASK =
2336 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2337
2338 /* Actually, the current Emacs uses 22 bits for the character value
2339 itself. */
2340 CHARACTERBITS = 22
2341 };
2342 \f
2343 /* Data type checking. */
2344
2345 LISP_MACRO_DEFUN (NILP, bool, (Lisp_Object x), (x))
2346
2347 INLINE bool
2348 NUMBERP (Lisp_Object x)
2349 {
2350 return INTEGERP (x) || FLOATP (x);
2351 }
2352 INLINE bool
2353 NATNUMP (Lisp_Object x)
2354 {
2355 return INTEGERP (x) && 0 <= XINT (x);
2356 }
2357
2358 INLINE bool
2359 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2360 {
2361 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2362 }
2363
2364 #define TYPE_RANGED_INTEGERP(type, x) \
2365 (INTEGERP (x) \
2366 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2367 && XINT (x) <= TYPE_MAXIMUM (type))
2368
2369 LISP_MACRO_DEFUN (CONSP, bool, (Lisp_Object x), (x))
2370 LISP_MACRO_DEFUN (FLOATP, bool, (Lisp_Object x), (x))
2371 LISP_MACRO_DEFUN (MISCP, bool, (Lisp_Object x), (x))
2372 LISP_MACRO_DEFUN (SYMBOLP, bool, (Lisp_Object x), (x))
2373 LISP_MACRO_DEFUN (INTEGERP, bool, (Lisp_Object x), (x))
2374 LISP_MACRO_DEFUN (VECTORLIKEP, bool, (Lisp_Object x), (x))
2375 LISP_MACRO_DEFUN (MARKERP, bool, (Lisp_Object x), (x))
2376
2377 INLINE bool
2378 STRINGP (Lisp_Object x)
2379 {
2380 return XTYPE (x) == Lisp_String;
2381 }
2382 INLINE bool
2383 VECTORP (Lisp_Object x)
2384 {
2385 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2386 }
2387 INLINE bool
2388 OVERLAYP (Lisp_Object x)
2389 {
2390 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2391 }
2392 INLINE bool
2393 SAVE_VALUEP (Lisp_Object x)
2394 {
2395 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2396 }
2397
2398 INLINE bool
2399 AUTOLOADP (Lisp_Object x)
2400 {
2401 return CONSP (x) && EQ (Qautoload, XCAR (x));
2402 }
2403
2404 INLINE bool
2405 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2406 {
2407 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2408 }
2409
2410 INLINE bool
2411 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2412 {
2413 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2414 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2415 }
2416
2417 /* True if A is a pseudovector whose code is CODE. */
2418 INLINE bool
2419 PSEUDOVECTORP (Lisp_Object a, int code)
2420 {
2421 if (! VECTORLIKEP (a))
2422 return false;
2423 else
2424 {
2425 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2426 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2427 return PSEUDOVECTOR_TYPEP (h, code);
2428 }
2429 }
2430
2431
2432 /* Test for specific pseudovector types. */
2433
2434 INLINE bool
2435 WINDOW_CONFIGURATIONP (Lisp_Object a)
2436 {
2437 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2438 }
2439
2440 INLINE bool
2441 PROCESSP (Lisp_Object a)
2442 {
2443 return PSEUDOVECTORP (a, PVEC_PROCESS);
2444 }
2445
2446 INLINE bool
2447 WINDOWP (Lisp_Object a)
2448 {
2449 return PSEUDOVECTORP (a, PVEC_WINDOW);
2450 }
2451
2452 INLINE bool
2453 TERMINALP (Lisp_Object a)
2454 {
2455 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2456 }
2457
2458 INLINE bool
2459 SUBRP (Lisp_Object a)
2460 {
2461 return PSEUDOVECTORP (a, PVEC_SUBR);
2462 }
2463
2464 INLINE bool
2465 COMPILEDP (Lisp_Object a)
2466 {
2467 return PSEUDOVECTORP (a, PVEC_COMPILED);
2468 }
2469
2470 INLINE bool
2471 BUFFERP (Lisp_Object a)
2472 {
2473 return PSEUDOVECTORP (a, PVEC_BUFFER);
2474 }
2475
2476 INLINE bool
2477 CHAR_TABLE_P (Lisp_Object a)
2478 {
2479 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2480 }
2481
2482 INLINE bool
2483 SUB_CHAR_TABLE_P (Lisp_Object a)
2484 {
2485 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2486 }
2487
2488 INLINE bool
2489 BOOL_VECTOR_P (Lisp_Object a)
2490 {
2491 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2492 }
2493
2494 INLINE bool
2495 FRAMEP (Lisp_Object a)
2496 {
2497 return PSEUDOVECTORP (a, PVEC_FRAME);
2498 }
2499
2500 /* Test for image (image . spec) */
2501 INLINE bool
2502 IMAGEP (Lisp_Object x)
2503 {
2504 return CONSP (x) && EQ (XCAR (x), Qimage);
2505 }
2506
2507 /* Array types. */
2508 INLINE bool
2509 ARRAYP (Lisp_Object x)
2510 {
2511 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2512 }
2513 \f
2514 INLINE void
2515 CHECK_LIST (Lisp_Object x)
2516 {
2517 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2518 }
2519
2520 LISP_MACRO_DEFUN_VOID (CHECK_LIST_CONS, (Lisp_Object x, Lisp_Object y), (x, y))
2521 LISP_MACRO_DEFUN_VOID (CHECK_SYMBOL, (Lisp_Object x), (x))
2522 LISP_MACRO_DEFUN_VOID (CHECK_NUMBER, (Lisp_Object x), (x))
2523
2524 INLINE void
2525 CHECK_STRING (Lisp_Object x)
2526 {
2527 CHECK_TYPE (STRINGP (x), Qstringp, x);
2528 }
2529 INLINE void
2530 CHECK_STRING_CAR (Lisp_Object x)
2531 {
2532 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2533 }
2534 INLINE void
2535 CHECK_CONS (Lisp_Object x)
2536 {
2537 CHECK_TYPE (CONSP (x), Qconsp, x);
2538 }
2539 INLINE void
2540 CHECK_VECTOR (Lisp_Object x)
2541 {
2542 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2543 }
2544 INLINE void
2545 CHECK_BOOL_VECTOR (Lisp_Object x)
2546 {
2547 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2548 }
2549 INLINE void
2550 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2551 {
2552 CHECK_TYPE (VECTORP (x) || STRINGP (x), Qarrayp, x);
2553 }
2554 INLINE void
2555 CHECK_ARRAY (Lisp_Object x, Lisp_Object Qxxxp)
2556 {
2557 CHECK_TYPE (ARRAYP (x), Qxxxp, x);
2558 }
2559 INLINE void
2560 CHECK_BUFFER (Lisp_Object x)
2561 {
2562 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2563 }
2564 INLINE void
2565 CHECK_WINDOW (Lisp_Object x)
2566 {
2567 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2568 }
2569 #ifdef subprocesses
2570 INLINE void
2571 CHECK_PROCESS (Lisp_Object x)
2572 {
2573 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2574 }
2575 #endif
2576 INLINE void
2577 CHECK_NATNUM (Lisp_Object x)
2578 {
2579 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2580 }
2581
2582 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2583 do { \
2584 CHECK_NUMBER (x); \
2585 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2586 args_out_of_range_3 \
2587 (x, \
2588 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2589 ? MOST_NEGATIVE_FIXNUM \
2590 : (lo)), \
2591 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2592 } while (false)
2593 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2594 do { \
2595 if (TYPE_SIGNED (type)) \
2596 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2597 else \
2598 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2599 } while (false)
2600
2601 #define CHECK_NUMBER_COERCE_MARKER(x) \
2602 do { \
2603 if (MARKERP ((x))) \
2604 XSETFASTINT (x, marker_position (x)); \
2605 else \
2606 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2607 } while (false)
2608
2609 INLINE double
2610 XFLOATINT (Lisp_Object n)
2611 {
2612 return extract_float (n);
2613 }
2614
2615 INLINE void
2616 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2617 {
2618 CHECK_TYPE (FLOATP (x) || INTEGERP (x), Qnumberp, x);
2619 }
2620
2621 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2622 do { \
2623 if (MARKERP (x)) \
2624 XSETFASTINT (x, marker_position (x)); \
2625 else \
2626 CHECK_TYPE (INTEGERP (x) || FLOATP (x), Qnumber_or_marker_p, x); \
2627 } while (false)
2628
2629 /* Since we can't assign directly to the CAR or CDR fields of a cons
2630 cell, use these when checking that those fields contain numbers. */
2631 INLINE void
2632 CHECK_NUMBER_CAR (Lisp_Object x)
2633 {
2634 Lisp_Object tmp = XCAR (x);
2635 CHECK_NUMBER (tmp);
2636 XSETCAR (x, tmp);
2637 }
2638
2639 INLINE void
2640 CHECK_NUMBER_CDR (Lisp_Object x)
2641 {
2642 Lisp_Object tmp = XCDR (x);
2643 CHECK_NUMBER (tmp);
2644 XSETCDR (x, tmp);
2645 }
2646 \f
2647 /* Define a built-in function for calling from Lisp.
2648 `lname' should be the name to give the function in Lisp,
2649 as a null-terminated C string.
2650 `fnname' should be the name of the function in C.
2651 By convention, it starts with F.
2652 `sname' should be the name for the C constant structure
2653 that records information on this function for internal use.
2654 By convention, it should be the same as `fnname' but with S instead of F.
2655 It's too bad that C macros can't compute this from `fnname'.
2656 `minargs' should be a number, the minimum number of arguments allowed.
2657 `maxargs' should be a number, the maximum number of arguments allowed,
2658 or else MANY or UNEVALLED.
2659 MANY means pass a vector of evaluated arguments,
2660 in the form of an integer number-of-arguments
2661 followed by the address of a vector of Lisp_Objects
2662 which contains the argument values.
2663 UNEVALLED means pass the list of unevaluated arguments
2664 `intspec' says how interactive arguments are to be fetched.
2665 If the string starts with a `(', `intspec' is evaluated and the resulting
2666 list is the list of arguments.
2667 If it's a string that doesn't start with `(', the value should follow
2668 the one of the doc string for `interactive'.
2669 A null string means call interactively with no arguments.
2670 `doc' is documentation for the user. */
2671
2672 /* This version of DEFUN declares a function prototype with the right
2673 arguments, so we can catch errors with maxargs at compile-time. */
2674 #ifdef _MSC_VER
2675 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2676 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2677 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2678 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2679 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2680 { (Lisp_Object (__cdecl *)(void))fnname }, \
2681 minargs, maxargs, lname, intspec, 0}; \
2682 Lisp_Object fnname
2683 #else /* not _MSC_VER */
2684 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2685 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2686 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2687 { .a ## maxargs = fnname }, \
2688 minargs, maxargs, lname, intspec, 0}; \
2689 Lisp_Object fnname
2690 #endif
2691
2692 /* Note that the weird token-substitution semantics of ANSI C makes
2693 this work for MANY and UNEVALLED. */
2694 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
2695 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
2696 #define DEFUN_ARGS_0 (void)
2697 #define DEFUN_ARGS_1 (Lisp_Object)
2698 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
2699 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
2700 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
2701 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2702 Lisp_Object)
2703 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2704 Lisp_Object, Lisp_Object)
2705 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2706 Lisp_Object, Lisp_Object, Lisp_Object)
2707 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2708 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
2709
2710 /* True if OBJ is a Lisp function. */
2711 INLINE bool
2712 FUNCTIONP (Lisp_Object obj)
2713 {
2714 return functionp (obj);
2715 }
2716
2717 /* defsubr (Sname);
2718 is how we define the symbol for function `name' at start-up time. */
2719 extern void defsubr (struct Lisp_Subr *);
2720
2721 enum maxargs
2722 {
2723 MANY = -2,
2724 UNEVALLED = -1
2725 };
2726
2727 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2728 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2729 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2730 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2731 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2732
2733 /* Macros we use to define forwarded Lisp variables.
2734 These are used in the syms_of_FILENAME functions.
2735
2736 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2737 lisp variable is actually a field in `struct emacs_globals'. The
2738 field's name begins with "f_", which is a convention enforced by
2739 these macros. Each such global has a corresponding #define in
2740 globals.h; the plain name should be used in the code.
2741
2742 E.g., the global "cons_cells_consed" is declared as "int
2743 f_cons_cells_consed" in globals.h, but there is a define:
2744
2745 #define cons_cells_consed globals.f_cons_cells_consed
2746
2747 All C code uses the `cons_cells_consed' name. This is all done
2748 this way to support indirection for multi-threaded Emacs. */
2749
2750 #define DEFVAR_LISP(lname, vname, doc) \
2751 do { \
2752 static struct Lisp_Objfwd o_fwd; \
2753 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
2754 } while (false)
2755 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
2756 do { \
2757 static struct Lisp_Objfwd o_fwd; \
2758 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
2759 } while (false)
2760 #define DEFVAR_BOOL(lname, vname, doc) \
2761 do { \
2762 static struct Lisp_Boolfwd b_fwd; \
2763 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
2764 } while (false)
2765 #define DEFVAR_INT(lname, vname, doc) \
2766 do { \
2767 static struct Lisp_Intfwd i_fwd; \
2768 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
2769 } while (false)
2770
2771 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
2772 do { \
2773 static struct Lisp_Objfwd o_fwd; \
2774 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
2775 } while (false)
2776
2777 #define DEFVAR_KBOARD(lname, vname, doc) \
2778 do { \
2779 static struct Lisp_Kboard_Objfwd ko_fwd; \
2780 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
2781 } while (false)
2782 \f
2783 /* Save and restore the instruction and environment pointers,
2784 without affecting the signal mask. */
2785
2786 #ifdef HAVE__SETJMP
2787 typedef jmp_buf sys_jmp_buf;
2788 # define sys_setjmp(j) _setjmp (j)
2789 # define sys_longjmp(j, v) _longjmp (j, v)
2790 #elif defined HAVE_SIGSETJMP
2791 typedef sigjmp_buf sys_jmp_buf;
2792 # define sys_setjmp(j) sigsetjmp (j, 0)
2793 # define sys_longjmp(j, v) siglongjmp (j, v)
2794 #else
2795 /* A platform that uses neither _longjmp nor siglongjmp; assume
2796 longjmp does not affect the sigmask. */
2797 typedef jmp_buf sys_jmp_buf;
2798 # define sys_setjmp(j) setjmp (j)
2799 # define sys_longjmp(j, v) longjmp (j, v)
2800 #endif
2801
2802 \f
2803 /* Elisp uses several stacks:
2804 - the C stack.
2805 - the bytecode stack: used internally by the bytecode interpreter.
2806 Allocated from the C stack.
2807 - The specpdl stack: keeps track of active unwind-protect and
2808 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
2809 managed stack.
2810 - The handler stack: keeps track of active catch tags and condition-case
2811 handlers. Allocated in a manually managed stack implemented by a
2812 doubly-linked list allocated via xmalloc and never freed. */
2813
2814 /* Structure for recording Lisp call stack for backtrace purposes. */
2815
2816 /* The special binding stack holds the outer values of variables while
2817 they are bound by a function application or a let form, stores the
2818 code to be executed for unwind-protect forms.
2819
2820 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
2821 used all over the place, needs to be fast, and needs to know the size of
2822 union specbinding. But only eval.c should access it. */
2823
2824 enum specbind_tag {
2825 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
2826 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
2827 SPECPDL_UNWIND_INT, /* Likewise, on int. */
2828 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
2829 SPECPDL_BACKTRACE, /* An element of the backtrace. */
2830 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
2831 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
2832 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
2833 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
2834 };
2835
2836 union specbinding
2837 {
2838 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2839 struct {
2840 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2841 void (*func) (Lisp_Object);
2842 Lisp_Object arg;
2843 } unwind;
2844 struct {
2845 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2846 void (*func) (void *);
2847 void *arg;
2848 } unwind_ptr;
2849 struct {
2850 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2851 void (*func) (int);
2852 int arg;
2853 } unwind_int;
2854 struct {
2855 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2856 void (*func) (void);
2857 } unwind_void;
2858 struct {
2859 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2860 /* `where' is not used in the case of SPECPDL_LET. */
2861 Lisp_Object symbol, old_value, where;
2862 } let;
2863 struct {
2864 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2865 bool_bf debug_on_exit : 1;
2866 Lisp_Object function;
2867 Lisp_Object *args;
2868 ptrdiff_t nargs;
2869 } bt;
2870 };
2871
2872 extern union specbinding *specpdl;
2873 extern union specbinding *specpdl_ptr;
2874 extern ptrdiff_t specpdl_size;
2875
2876 INLINE ptrdiff_t
2877 SPECPDL_INDEX (void)
2878 {
2879 return specpdl_ptr - specpdl;
2880 }
2881
2882 /* This structure helps implement the `catch/throw' and `condition-case/signal'
2883 control structures. A struct handler contains all the information needed to
2884 restore the state of the interpreter after a non-local jump.
2885
2886 handler structures are chained together in a doubly linked list; the `next'
2887 member points to the next outer catchtag and the `nextfree' member points in
2888 the other direction to the next inner element (which is typically the next
2889 free element since we mostly use it on the deepest handler).
2890
2891 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
2892 member is TAG, and then unbinds to it. The `val' member is used to
2893 hold VAL while the stack is unwound; `val' is returned as the value
2894 of the catch form.
2895
2896 All the other members are concerned with restoring the interpreter
2897 state.
2898
2899 Members are volatile if their values need to survive _longjmp when
2900 a 'struct handler' is a local variable. */
2901
2902 enum handlertype { CATCHER, CONDITION_CASE };
2903
2904 struct handler
2905 {
2906 enum handlertype type;
2907 Lisp_Object tag_or_ch;
2908 Lisp_Object val;
2909 struct handler *next;
2910 struct handler *nextfree;
2911
2912 /* The bytecode interpreter can have several handlers active at the same
2913 time, so when we longjmp to one of them, it needs to know which handler
2914 this was and what was the corresponding internal state. This is stored
2915 here, and when we longjmp we make sure that handlerlist points to the
2916 proper handler. */
2917 Lisp_Object *bytecode_top;
2918 int bytecode_dest;
2919
2920 /* Most global vars are reset to their value via the specpdl mechanism,
2921 but a few others are handled by storing their value here. */
2922 #if true /* GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS, but defined later. */
2923 struct gcpro *gcpro;
2924 #endif
2925 sys_jmp_buf jmp;
2926 EMACS_INT lisp_eval_depth;
2927 ptrdiff_t pdlcount;
2928 int poll_suppress_count;
2929 int interrupt_input_blocked;
2930 struct byte_stack *byte_stack;
2931 };
2932
2933 /* Fill in the components of c, and put it on the list. */
2934 #define PUSH_HANDLER(c, tag_ch_val, handlertype) \
2935 if (handlerlist->nextfree) \
2936 (c) = handlerlist->nextfree; \
2937 else \
2938 { \
2939 (c) = xmalloc (sizeof (struct handler)); \
2940 (c)->nextfree = NULL; \
2941 handlerlist->nextfree = (c); \
2942 } \
2943 (c)->type = (handlertype); \
2944 (c)->tag_or_ch = (tag_ch_val); \
2945 (c)->val = Qnil; \
2946 (c)->next = handlerlist; \
2947 (c)->lisp_eval_depth = lisp_eval_depth; \
2948 (c)->pdlcount = SPECPDL_INDEX (); \
2949 (c)->poll_suppress_count = poll_suppress_count; \
2950 (c)->interrupt_input_blocked = interrupt_input_blocked;\
2951 (c)->gcpro = gcprolist; \
2952 (c)->byte_stack = byte_stack_list; \
2953 handlerlist = (c);
2954
2955
2956 extern Lisp_Object memory_signal_data;
2957
2958 /* An address near the bottom of the stack.
2959 Tells GC how to save a copy of the stack. */
2960 extern char *stack_bottom;
2961
2962 /* Check quit-flag and quit if it is non-nil.
2963 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
2964 So the program needs to do QUIT at times when it is safe to quit.
2965 Every loop that might run for a long time or might not exit
2966 ought to do QUIT at least once, at a safe place.
2967 Unless that is impossible, of course.
2968 But it is very desirable to avoid creating loops where QUIT is impossible.
2969
2970 Exception: if you set immediate_quit to true,
2971 then the handler that responds to the C-g does the quit itself.
2972 This is a good thing to do around a loop that has no side effects
2973 and (in particular) cannot call arbitrary Lisp code.
2974
2975 If quit-flag is set to `kill-emacs' the SIGINT handler has received
2976 a request to exit Emacs when it is safe to do. */
2977
2978 extern void process_pending_signals (void);
2979 extern bool volatile pending_signals;
2980
2981 extern void process_quit_flag (void);
2982 #define QUIT \
2983 do { \
2984 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
2985 process_quit_flag (); \
2986 else if (pending_signals) \
2987 process_pending_signals (); \
2988 } while (false)
2989
2990
2991 /* True if ought to quit now. */
2992
2993 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
2994 \f
2995 extern Lisp_Object Vascii_downcase_table;
2996 extern Lisp_Object Vascii_canon_table;
2997 \f
2998 /* Structure for recording stack slots that need marking. */
2999
3000 /* This is a chain of structures, each of which points at a Lisp_Object
3001 variable whose value should be marked in garbage collection.
3002 Normally every link of the chain is an automatic variable of a function,
3003 and its `val' points to some argument or local variable of the function.
3004 On exit to the function, the chain is set back to the value it had on entry.
3005 This way, no link remains in the chain when the stack frame containing the
3006 link disappears.
3007
3008 Every function that can call Feval must protect in this fashion all
3009 Lisp_Object variables whose contents will be used again. */
3010
3011 extern struct gcpro *gcprolist;
3012
3013 struct gcpro
3014 {
3015 struct gcpro *next;
3016
3017 /* Address of first protected variable. */
3018 volatile Lisp_Object *var;
3019
3020 /* Number of consecutive protected variables. */
3021 ptrdiff_t nvars;
3022
3023 #ifdef DEBUG_GCPRO
3024 int level;
3025 #endif
3026 };
3027
3028 /* Values of GC_MARK_STACK during compilation:
3029
3030 0 Use GCPRO as before
3031 1 Do the real thing, make GCPROs and UNGCPRO no-ops.
3032 2 Mark the stack, and check that everything GCPRO'd is
3033 marked.
3034 3 Mark using GCPRO's, mark stack last, and count how many
3035 dead objects are kept alive.
3036
3037 Formerly, method 0 was used. Currently, method 1 is used unless
3038 otherwise specified by hand when building, e.g.,
3039 "make CPPFLAGS='-DGC_MARK_STACK=GC_USE_GCPROS_AS_BEFORE'".
3040 Methods 2 and 3 are present mainly to debug the transition from 0 to 1. */
3041
3042 #define GC_USE_GCPROS_AS_BEFORE 0
3043 #define GC_MAKE_GCPROS_NOOPS 1
3044 #define GC_MARK_STACK_CHECK_GCPROS 2
3045 #define GC_USE_GCPROS_CHECK_ZOMBIES 3
3046
3047 #ifndef GC_MARK_STACK
3048 #define GC_MARK_STACK GC_MAKE_GCPROS_NOOPS
3049 #endif
3050
3051 /* Whether we do the stack marking manually. */
3052 #define BYTE_MARK_STACK !(GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
3053 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
3054
3055
3056 #if GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS
3057
3058 /* Do something silly with gcproN vars just so gcc shuts up. */
3059 /* You get warnings from MIPSPro... */
3060
3061 #define GCPRO1(varname) ((void) gcpro1)
3062 #define GCPRO2(varname1, varname2) ((void) gcpro2, (void) gcpro1)
3063 #define GCPRO3(varname1, varname2, varname3) \
3064 ((void) gcpro3, (void) gcpro2, (void) gcpro1)
3065 #define GCPRO4(varname1, varname2, varname3, varname4) \
3066 ((void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3067 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3068 ((void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3069 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3070 ((void) gcpro6, (void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, \
3071 (void) gcpro1)
3072 #define GCPRO7(a, b, c, d, e, f, g) (GCPRO6 (a, b, c, d, e, f), (void) gcpro7)
3073 #define UNGCPRO ((void) 0)
3074
3075 #else /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3076
3077 #ifndef DEBUG_GCPRO
3078
3079 #define GCPRO1(varname) \
3080 {gcpro1.next = gcprolist; gcpro1.var = &varname; gcpro1.nvars = 1; \
3081 gcprolist = &gcpro1; }
3082
3083 #define GCPRO2(varname1, varname2) \
3084 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3085 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3086 gcprolist = &gcpro2; }
3087
3088 #define GCPRO3(varname1, varname2, varname3) \
3089 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3090 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3091 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3092 gcprolist = &gcpro3; }
3093
3094 #define GCPRO4(varname1, varname2, varname3, varname4) \
3095 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3096 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3097 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3098 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3099 gcprolist = &gcpro4; }
3100
3101 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3102 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3103 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3104 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3105 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3106 gcpro5.next = &gcpro4; gcpro5.var = &varname5; gcpro5.nvars = 1; \
3107 gcprolist = &gcpro5; }
3108
3109 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3110 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3111 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3112 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3113 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3114 gcpro5.next = &gcpro4; gcpro5.var = &varname5; gcpro5.nvars = 1; \
3115 gcpro6.next = &gcpro5; gcpro6.var = &varname6; gcpro6.nvars = 1; \
3116 gcprolist = &gcpro6; }
3117
3118 #define GCPRO7(a, b, c, d, e, f, g) \
3119 {gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3120 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3121 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3122 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3123 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3124 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3125 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3126 gcprolist = &gcpro7; }
3127
3128 #define UNGCPRO (gcprolist = gcpro1.next)
3129
3130 #else
3131
3132 extern int gcpro_level;
3133
3134 #define GCPRO1(varname) \
3135 {gcpro1.next = gcprolist; gcpro1.var = &varname; gcpro1.nvars = 1; \
3136 gcpro1.level = gcpro_level++; \
3137 gcprolist = &gcpro1; }
3138
3139 #define GCPRO2(varname1, varname2) \
3140 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3141 gcpro1.level = gcpro_level; \
3142 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3143 gcpro2.level = gcpro_level++; \
3144 gcprolist = &gcpro2; }
3145
3146 #define GCPRO3(varname1, varname2, varname3) \
3147 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3148 gcpro1.level = gcpro_level; \
3149 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3150 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3151 gcpro3.level = gcpro_level++; \
3152 gcprolist = &gcpro3; }
3153
3154 #define GCPRO4(varname1, varname2, varname3, varname4) \
3155 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3156 gcpro1.level = gcpro_level; \
3157 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3158 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3159 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3160 gcpro4.level = gcpro_level++; \
3161 gcprolist = &gcpro4; }
3162
3163 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3164 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3165 gcpro1.level = gcpro_level; \
3166 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3167 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3168 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3169 gcpro5.next = &gcpro4; gcpro5.var = &varname5; gcpro5.nvars = 1; \
3170 gcpro5.level = gcpro_level++; \
3171 gcprolist = &gcpro5; }
3172
3173 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3174 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3175 gcpro1.level = gcpro_level; \
3176 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3177 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3178 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3179 gcpro5.next = &gcpro4; gcpro5.var = &varname5; gcpro5.nvars = 1; \
3180 gcpro6.next = &gcpro5; gcpro6.var = &varname6; gcpro6.nvars = 1; \
3181 gcpro6.level = gcpro_level++; \
3182 gcprolist = &gcpro6; }
3183
3184 #define GCPRO7(a, b, c, d, e, f, g) \
3185 {gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3186 gcpro1.level = gcpro_level; \
3187 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3188 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3189 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3190 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3191 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3192 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3193 gcpro7.level = gcpro_level++; \
3194 gcprolist = &gcpro7; }
3195
3196 #define UNGCPRO \
3197 (--gcpro_level != gcpro1.level \
3198 ? emacs_abort () \
3199 : (void) (gcprolist = gcpro1.next))
3200
3201 #endif /* DEBUG_GCPRO */
3202 #endif /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3203
3204
3205 /* Evaluate expr, UNGCPRO, and then return the value of expr. */
3206 #define RETURN_UNGCPRO(expr) \
3207 do \
3208 { \
3209 Lisp_Object ret_ungc_val; \
3210 ret_ungc_val = (expr); \
3211 UNGCPRO; \
3212 return ret_ungc_val; \
3213 } \
3214 while (false)
3215
3216 /* Call staticpro (&var) to protect static variable `var'. */
3217
3218 void staticpro (Lisp_Object *);
3219 \f
3220 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
3221 meaning as in the DEFUN macro, and is used to construct a prototype. */
3222 /* We can use the same trick as in the DEFUN macro to generate the
3223 appropriate prototype. */
3224 #define EXFUN(fnname, maxargs) \
3225 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
3226
3227 #include "globals.h"
3228
3229 /* Forward declarations for prototypes. */
3230 struct window;
3231 struct frame;
3232
3233 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3234
3235 INLINE void
3236 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3237 {
3238 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3239 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3240 }
3241
3242 /* Functions to modify hash tables. */
3243
3244 INLINE void
3245 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3246 {
3247 gc_aset (h->key_and_value, 2 * idx, val);
3248 }
3249
3250 INLINE void
3251 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3252 {
3253 gc_aset (h->key_and_value, 2 * idx + 1, val);
3254 }
3255
3256 /* Use these functions to set Lisp_Object
3257 or pointer slots of struct Lisp_Symbol. */
3258
3259 INLINE void
3260 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3261 {
3262 XSYMBOL (sym)->function = function;
3263 }
3264
3265 INLINE void
3266 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3267 {
3268 XSYMBOL (sym)->plist = plist;
3269 }
3270
3271 INLINE void
3272 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3273 {
3274 XSYMBOL (sym)->next = next;
3275 }
3276
3277 /* Buffer-local (also frame-local) variable access functions. */
3278
3279 INLINE int
3280 blv_found (struct Lisp_Buffer_Local_Value *blv)
3281 {
3282 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3283 return blv->found;
3284 }
3285
3286 /* Set overlay's property list. */
3287
3288 INLINE void
3289 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3290 {
3291 XOVERLAY (overlay)->plist = plist;
3292 }
3293
3294 /* Get text properties of S. */
3295
3296 INLINE INTERVAL
3297 string_intervals (Lisp_Object s)
3298 {
3299 return XSTRING (s)->intervals;
3300 }
3301
3302 /* Set text properties of S to I. */
3303
3304 INLINE void
3305 set_string_intervals (Lisp_Object s, INTERVAL i)
3306 {
3307 XSTRING (s)->intervals = i;
3308 }
3309
3310 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3311 of setting slots directly. */
3312
3313 INLINE void
3314 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3315 {
3316 XCHAR_TABLE (table)->defalt = val;
3317 }
3318 INLINE void
3319 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3320 {
3321 XCHAR_TABLE (table)->purpose = val;
3322 }
3323
3324 /* Set different slots in (sub)character tables. */
3325
3326 INLINE void
3327 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3328 {
3329 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3330 XCHAR_TABLE (table)->extras[idx] = val;
3331 }
3332
3333 INLINE void
3334 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3335 {
3336 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3337 XCHAR_TABLE (table)->contents[idx] = val;
3338 }
3339
3340 INLINE void
3341 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3342 {
3343 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3344 }
3345
3346 /* Defined in data.c. */
3347 extern Lisp_Object Qquote, Qunbound;
3348 extern Lisp_Object Qerror_conditions, Qerror_message, Qtop_level;
3349 extern Lisp_Object Qerror, Qquit, Qargs_out_of_range;
3350 extern Lisp_Object Qvoid_variable, Qvoid_function;
3351 extern Lisp_Object Qinvalid_read_syntax;
3352 extern Lisp_Object Qinvalid_function, Qwrong_number_of_arguments, Qno_catch;
3353 extern Lisp_Object Quser_error, Qend_of_file, Qarith_error, Qmark_inactive;
3354 extern Lisp_Object Qbeginning_of_buffer, Qend_of_buffer, Qbuffer_read_only;
3355 extern Lisp_Object Qtext_read_only;
3356 extern Lisp_Object Qinteractive_form;
3357 extern Lisp_Object Qcircular_list;
3358 extern Lisp_Object Qsequencep;
3359 extern Lisp_Object Qchar_or_string_p, Qinteger_or_marker_p;
3360 extern Lisp_Object Qfboundp;
3361
3362 extern Lisp_Object Qcdr;
3363
3364 extern Lisp_Object Qrange_error, Qoverflow_error;
3365
3366 extern Lisp_Object Qnumber_or_marker_p;
3367
3368 extern Lisp_Object Qbuffer, Qinteger, Qsymbol;
3369
3370 /* Defined in data.c. */
3371 extern Lisp_Object indirect_function (Lisp_Object);
3372 extern Lisp_Object find_symbol_value (Lisp_Object);
3373 enum Arith_Comparison {
3374 ARITH_EQUAL,
3375 ARITH_NOTEQUAL,
3376 ARITH_LESS,
3377 ARITH_GRTR,
3378 ARITH_LESS_OR_EQUAL,
3379 ARITH_GRTR_OR_EQUAL
3380 };
3381 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3382 enum Arith_Comparison comparison);
3383
3384 /* Convert the integer I to an Emacs representation, either the integer
3385 itself, or a cons of two or three integers, or if all else fails a float.
3386 I should not have side effects. */
3387 #define INTEGER_TO_CONS(i) \
3388 (! FIXNUM_OVERFLOW_P (i) \
3389 ? make_number (i) \
3390 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16) \
3391 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16)) \
3392 && FIXNUM_OVERFLOW_P ((i) >> 16)) \
3393 ? Fcons (make_number ((i) >> 16), make_number ((i) & 0xffff)) \
3394 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16 >> 24) \
3395 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16 >> 24)) \
3396 && FIXNUM_OVERFLOW_P ((i) >> 16 >> 24)) \
3397 ? Fcons (make_number ((i) >> 16 >> 24), \
3398 Fcons (make_number ((i) >> 16 & 0xffffff), \
3399 make_number ((i) & 0xffff))) \
3400 : make_float (i))
3401
3402 /* Convert the Emacs representation CONS back to an integer of type
3403 TYPE, storing the result the variable VAR. Signal an error if CONS
3404 is not a valid representation or is out of range for TYPE. */
3405 #define CONS_TO_INTEGER(cons, type, var) \
3406 (TYPE_SIGNED (type) \
3407 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3408 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3409 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3410 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3411
3412 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3413 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3414 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3415 Lisp_Object);
3416 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3417 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3418 extern void syms_of_data (void);
3419 extern void swap_in_global_binding (struct Lisp_Symbol *);
3420
3421 /* Defined in cmds.c */
3422 extern void syms_of_cmds (void);
3423 extern void keys_of_cmds (void);
3424
3425 /* Defined in coding.c. */
3426 extern Lisp_Object Qcharset;
3427 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3428 ptrdiff_t, bool, bool, Lisp_Object);
3429 extern void init_coding (void);
3430 extern void init_coding_once (void);
3431 extern void syms_of_coding (void);
3432
3433 /* Defined in character.c. */
3434 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3435 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3436 extern int multibyte_char_to_unibyte (int) ATTRIBUTE_CONST;
3437 extern int multibyte_char_to_unibyte_safe (int) ATTRIBUTE_CONST;
3438 extern void syms_of_character (void);
3439
3440 /* Defined in charset.c. */
3441 extern void init_charset (void);
3442 extern void init_charset_once (void);
3443 extern void syms_of_charset (void);
3444 /* Structure forward declarations. */
3445 struct charset;
3446
3447 /* Defined in syntax.c. */
3448 extern void init_syntax_once (void);
3449 extern void syms_of_syntax (void);
3450
3451 /* Defined in fns.c. */
3452 extern Lisp_Object QCrehash_size, QCrehash_threshold;
3453 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3454 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3455 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3456 extern void sweep_weak_hash_tables (void);
3457 extern Lisp_Object Qcursor_in_echo_area;
3458 extern Lisp_Object Qstring_lessp;
3459 extern Lisp_Object QCsize, QCtest, QCweakness, Qequal, Qeq;
3460 EMACS_UINT hash_string (char const *, ptrdiff_t);
3461 EMACS_UINT sxhash (Lisp_Object, int);
3462 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3463 Lisp_Object, Lisp_Object);
3464 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3465 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3466 EMACS_UINT);
3467 extern struct hash_table_test hashtest_eql, hashtest_equal;
3468
3469 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3470 ptrdiff_t, ptrdiff_t);
3471 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3472 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3473 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3474 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3475 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3476 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3477 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3478 extern void clear_string_char_byte_cache (void);
3479 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3480 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3481 extern Lisp_Object string_to_multibyte (Lisp_Object);
3482 extern Lisp_Object string_make_unibyte (Lisp_Object);
3483 extern void syms_of_fns (void);
3484
3485 /* Defined in floatfns.c. */
3486 extern void syms_of_floatfns (void);
3487 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3488
3489 /* Defined in fringe.c. */
3490 extern void syms_of_fringe (void);
3491 extern void init_fringe (void);
3492 #ifdef HAVE_WINDOW_SYSTEM
3493 extern void mark_fringe_data (void);
3494 extern void init_fringe_once (void);
3495 #endif /* HAVE_WINDOW_SYSTEM */
3496
3497 /* Defined in image.c. */
3498 extern Lisp_Object QCascent, QCmargin, QCrelief;
3499 extern Lisp_Object QCconversion;
3500 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3501 extern void reset_image_types (void);
3502 extern void syms_of_image (void);
3503
3504 /* Defined in insdel.c. */
3505 extern Lisp_Object Qinhibit_modification_hooks;
3506 extern Lisp_Object Qregion_extract_function;
3507 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3508 extern _Noreturn void buffer_overflow (void);
3509 extern void make_gap (ptrdiff_t);
3510 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3511 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3512 ptrdiff_t, bool, bool);
3513 extern int count_combining_before (const unsigned char *,
3514 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3515 extern int count_combining_after (const unsigned char *,
3516 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3517 extern void insert (const char *, ptrdiff_t);
3518 extern void insert_and_inherit (const char *, ptrdiff_t);
3519 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3520 bool, bool, bool);
3521 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3522 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3523 ptrdiff_t, ptrdiff_t, bool);
3524 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3525 extern void insert_char (int);
3526 extern void insert_string (const char *);
3527 extern void insert_before_markers (const char *, ptrdiff_t);
3528 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3529 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3530 ptrdiff_t, ptrdiff_t,
3531 ptrdiff_t, bool);
3532 extern void del_range (ptrdiff_t, ptrdiff_t);
3533 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3534 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3535 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3536 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3537 ptrdiff_t, ptrdiff_t, bool);
3538 extern void modify_text (ptrdiff_t, ptrdiff_t);
3539 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3540 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3541 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3542 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3543 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3544 ptrdiff_t, ptrdiff_t);
3545 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3546 ptrdiff_t, ptrdiff_t);
3547 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3548 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3549 const char *, ptrdiff_t, ptrdiff_t, bool);
3550 extern void syms_of_insdel (void);
3551
3552 /* Defined in dispnew.c. */
3553 #if (defined PROFILING \
3554 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3555 _Noreturn void __executable_start (void);
3556 #endif
3557 extern Lisp_Object Vwindow_system;
3558 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3559
3560 /* Defined in xdisp.c. */
3561 extern Lisp_Object Qinhibit_point_motion_hooks;
3562 extern Lisp_Object Qinhibit_redisplay;
3563 extern Lisp_Object Qmenu_bar_update_hook;
3564 extern Lisp_Object Qwindow_scroll_functions;
3565 extern Lisp_Object Qoverriding_local_map, Qoverriding_terminal_local_map;
3566 extern Lisp_Object Qtext, Qboth, Qboth_horiz, Qtext_image_horiz;
3567 extern Lisp_Object Qspace, Qcenter, QCalign_to;
3568 extern Lisp_Object Qbar, Qhbar, Qhollow;
3569 extern Lisp_Object Qleft_margin, Qright_margin;
3570 extern Lisp_Object QCdata, QCfile;
3571 extern Lisp_Object QCmap;
3572 extern Lisp_Object Qrisky_local_variable;
3573 extern bool noninteractive_need_newline;
3574 extern Lisp_Object echo_area_buffer[2];
3575 extern void add_to_log (const char *, Lisp_Object, Lisp_Object);
3576 extern void check_message_stack (void);
3577 extern void setup_echo_area_for_printing (int);
3578 extern bool push_message (void);
3579 extern void pop_message_unwind (void);
3580 extern Lisp_Object restore_message_unwind (Lisp_Object);
3581 extern void restore_message (void);
3582 extern Lisp_Object current_message (void);
3583 extern void clear_message (bool, bool);
3584 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3585 extern void message1 (const char *);
3586 extern void message1_nolog (const char *);
3587 extern void message3 (Lisp_Object);
3588 extern void message3_nolog (Lisp_Object);
3589 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3590 extern void message_with_string (const char *, Lisp_Object, int);
3591 extern void message_log_maybe_newline (void);
3592 extern void update_echo_area (void);
3593 extern void truncate_echo_area (ptrdiff_t);
3594 extern void redisplay (void);
3595
3596 void set_frame_cursor_types (struct frame *, Lisp_Object);
3597 extern void syms_of_xdisp (void);
3598 extern void init_xdisp (void);
3599 extern Lisp_Object safe_eval (Lisp_Object);
3600 extern int pos_visible_p (struct window *, ptrdiff_t, int *,
3601 int *, int *, int *, int *, int *);
3602
3603 /* Defined in xsettings.c. */
3604 extern void syms_of_xsettings (void);
3605
3606 /* Defined in vm-limit.c. */
3607 extern void memory_warnings (void *, void (*warnfun) (const char *));
3608
3609 /* Defined in alloc.c. */
3610 extern void check_pure_size (void);
3611 extern void free_misc (Lisp_Object);
3612 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3613 extern void malloc_warning (const char *);
3614 extern _Noreturn void memory_full (size_t);
3615 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3616 extern bool survives_gc_p (Lisp_Object);
3617 extern void mark_object (Lisp_Object);
3618 #if defined REL_ALLOC && !defined SYSTEM_MALLOC
3619 extern void refill_memory_reserve (void);
3620 #endif
3621 extern const char *pending_malloc_warning;
3622 extern Lisp_Object zero_vector;
3623 extern Lisp_Object *stack_base;
3624 extern EMACS_INT consing_since_gc;
3625 extern EMACS_INT gc_relative_threshold;
3626 extern EMACS_INT memory_full_cons_threshold;
3627 extern Lisp_Object list1 (Lisp_Object);
3628 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3629 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3630 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3631 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3632 Lisp_Object);
3633 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3634 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3635
3636 /* Build a frequently used 2/3/4-integer lists. */
3637
3638 INLINE Lisp_Object
3639 list2i (EMACS_INT x, EMACS_INT y)
3640 {
3641 return list2 (make_number (x), make_number (y));
3642 }
3643
3644 INLINE Lisp_Object
3645 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3646 {
3647 return list3 (make_number (x), make_number (y), make_number (w));
3648 }
3649
3650 INLINE Lisp_Object
3651 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3652 {
3653 return list4 (make_number (x), make_number (y),
3654 make_number (w), make_number (h));
3655 }
3656
3657 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3658 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3659 extern _Noreturn void string_overflow (void);
3660 extern Lisp_Object make_string (const char *, ptrdiff_t);
3661 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3662 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3663 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3664
3665 /* Make unibyte string from C string when the length isn't known. */
3666
3667 INLINE Lisp_Object
3668 build_unibyte_string (const char *str)
3669 {
3670 return make_unibyte_string (str, strlen (str));
3671 }
3672
3673 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3674 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3675 extern Lisp_Object make_uninit_string (EMACS_INT);
3676 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3677 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3678 extern Lisp_Object make_specified_string (const char *,
3679 ptrdiff_t, ptrdiff_t, bool);
3680 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3681 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3682
3683 /* Make a string allocated in pure space, use STR as string data. */
3684
3685 INLINE Lisp_Object
3686 build_pure_c_string (const char *str)
3687 {
3688 return make_pure_c_string (str, strlen (str));
3689 }
3690
3691 /* Make a string from the data at STR, treating it as multibyte if the
3692 data warrants. */
3693
3694 INLINE Lisp_Object
3695 build_string (const char *str)
3696 {
3697 return make_string (str, strlen (str));
3698 }
3699
3700 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3701 extern void make_byte_code (struct Lisp_Vector *);
3702 extern Lisp_Object Qautomatic_gc;
3703 extern Lisp_Object Qchar_table_extra_slots;
3704 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3705
3706 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3707 be sure that GC cannot happen until the vector is completely
3708 initialized. E.g. the following code is likely to crash:
3709
3710 v = make_uninit_vector (3);
3711 ASET (v, 0, obj0);
3712 ASET (v, 1, Ffunction_can_gc ());
3713 ASET (v, 2, obj1); */
3714
3715 INLINE Lisp_Object
3716 make_uninit_vector (ptrdiff_t size)
3717 {
3718 Lisp_Object v;
3719 struct Lisp_Vector *p;
3720
3721 p = allocate_vector (size);
3722 XSETVECTOR (v, p);
3723 return v;
3724 }
3725
3726 extern struct Lisp_Vector *allocate_pseudovector (int, int, enum pvec_type);
3727 #define ALLOCATE_PSEUDOVECTOR(typ,field,tag) \
3728 ((typ*) \
3729 allocate_pseudovector \
3730 (VECSIZE (typ), PSEUDOVECSIZE (typ, field), tag))
3731 extern struct Lisp_Hash_Table *allocate_hash_table (void);
3732 extern struct window *allocate_window (void);
3733 extern struct frame *allocate_frame (void);
3734 extern struct Lisp_Process *allocate_process (void);
3735 extern struct terminal *allocate_terminal (void);
3736 extern bool gc_in_progress;
3737 extern bool abort_on_gc;
3738 extern Lisp_Object make_float (double);
3739 extern void display_malloc_warning (void);
3740 extern ptrdiff_t inhibit_garbage_collection (void);
3741 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3742 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3743 Lisp_Object, Lisp_Object);
3744 extern Lisp_Object make_save_ptr (void *);
3745 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3746 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3747 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3748 Lisp_Object);
3749 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3750 extern void free_save_value (Lisp_Object);
3751 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3752 extern void free_marker (Lisp_Object);
3753 extern void free_cons (struct Lisp_Cons *);
3754 extern void init_alloc_once (void);
3755 extern void init_alloc (void);
3756 extern void syms_of_alloc (void);
3757 extern struct buffer * allocate_buffer (void);
3758 extern int valid_lisp_object_p (Lisp_Object);
3759 extern int relocatable_string_data_p (const char *);
3760 #ifdef GC_CHECK_CONS_LIST
3761 extern void check_cons_list (void);
3762 #else
3763 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3764 #endif
3765
3766 #ifdef REL_ALLOC
3767 /* Defined in ralloc.c. */
3768 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3769 extern void r_alloc_free (void **);
3770 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3771 extern void r_alloc_reset_variable (void **, void **);
3772 extern void r_alloc_inhibit_buffer_relocation (int);
3773 #endif
3774
3775 /* Defined in chartab.c. */
3776 extern Lisp_Object copy_char_table (Lisp_Object);
3777 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3778 int *, int *);
3779 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3780 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3781 Lisp_Object),
3782 Lisp_Object, Lisp_Object, Lisp_Object);
3783 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3784 Lisp_Object, Lisp_Object,
3785 Lisp_Object, struct charset *,
3786 unsigned, unsigned);
3787 extern Lisp_Object uniprop_table (Lisp_Object);
3788 extern void syms_of_chartab (void);
3789
3790 /* Defined in print.c. */
3791 extern Lisp_Object Vprin1_to_string_buffer;
3792 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3793 extern Lisp_Object Qstandard_output;
3794 extern Lisp_Object Qexternal_debugging_output;
3795 extern void temp_output_buffer_setup (const char *);
3796 extern int print_level;
3797 extern Lisp_Object Qprint_escape_newlines;
3798 extern void write_string (const char *, int);
3799 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3800 Lisp_Object);
3801 extern Lisp_Object internal_with_output_to_temp_buffer
3802 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3803 #define FLOAT_TO_STRING_BUFSIZE 350
3804 extern int float_to_string (char *, double);
3805 extern void init_print_once (void);
3806 extern void syms_of_print (void);
3807
3808 /* Defined in doprnt.c. */
3809 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3810 va_list);
3811 extern ptrdiff_t esprintf (char *, char const *, ...)
3812 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3813 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3814 char const *, ...)
3815 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3816 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3817 char const *, va_list)
3818 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3819
3820 /* Defined in lread.c. */
3821 extern Lisp_Object Qvariable_documentation, Qstandard_input;
3822 extern Lisp_Object Qbackquote, Qcomma, Qcomma_at, Qcomma_dot, Qfunction;
3823 extern Lisp_Object Qlexical_binding;
3824 extern Lisp_Object check_obarray (Lisp_Object);
3825 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3826 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3827 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3828 INLINE void
3829 LOADHIST_ATTACH (Lisp_Object x)
3830 {
3831 if (initialized)
3832 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3833 }
3834 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3835 Lisp_Object *, Lisp_Object, bool);
3836 extern Lisp_Object string_to_number (char const *, int, bool);
3837 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3838 Lisp_Object);
3839 extern void dir_warning (const char *, Lisp_Object);
3840 extern void init_obarray (void);
3841 extern void init_lread (void);
3842 extern void syms_of_lread (void);
3843
3844 INLINE Lisp_Object
3845 intern (const char *str)
3846 {
3847 return intern_1 (str, strlen (str));
3848 }
3849
3850 INLINE Lisp_Object
3851 intern_c_string (const char *str)
3852 {
3853 return intern_c_string_1 (str, strlen (str));
3854 }
3855
3856 /* Defined in eval.c. */
3857 extern Lisp_Object Qexit, Qinteractive, Qcommandp, Qmacro;
3858 extern Lisp_Object Qinhibit_quit, Qinternal_interpreter_environment, Qclosure;
3859 extern Lisp_Object Qand_rest;
3860 extern Lisp_Object Vautoload_queue;
3861 extern Lisp_Object Vsignaling_function;
3862 extern Lisp_Object inhibit_lisp_code;
3863 extern struct handler *handlerlist;
3864
3865 /* To run a normal hook, use the appropriate function from the list below.
3866 The calling convention:
3867
3868 if (!NILP (Vrun_hooks))
3869 call1 (Vrun_hooks, Qmy_funny_hook);
3870
3871 should no longer be used. */
3872 extern Lisp_Object Vrun_hooks;
3873 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3874 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3875 Lisp_Object (*funcall)
3876 (ptrdiff_t nargs, Lisp_Object *args));
3877 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3878 extern _Noreturn void xsignal0 (Lisp_Object);
3879 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3880 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3881 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3882 Lisp_Object);
3883 extern _Noreturn void signal_error (const char *, Lisp_Object);
3884 extern Lisp_Object eval_sub (Lisp_Object form);
3885 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3886 extern Lisp_Object call0 (Lisp_Object);
3887 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3888 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3889 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3890 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3891 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3892 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3893 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3894 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3895 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3896 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3897 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3898 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3899 extern Lisp_Object internal_condition_case_n
3900 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3901 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3902 extern void specbind (Lisp_Object, Lisp_Object);
3903 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3904 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3905 extern void record_unwind_protect_int (void (*) (int), int);
3906 extern void record_unwind_protect_void (void (*) (void));
3907 extern void record_unwind_protect_nothing (void);
3908 extern void clear_unwind_protect (ptrdiff_t);
3909 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3910 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3911 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3912 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3913 extern _Noreturn void verror (const char *, va_list)
3914 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3915 extern void un_autoload (Lisp_Object);
3916 extern Lisp_Object call_debugger (Lisp_Object arg);
3917 extern void init_eval_once (void);
3918 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3919 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
3920 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3921 extern void init_eval (void);
3922 extern void syms_of_eval (void);
3923 extern void unwind_body (Lisp_Object);
3924 extern void record_in_backtrace (Lisp_Object function,
3925 Lisp_Object *args, ptrdiff_t nargs);
3926 extern void mark_specpdl (void);
3927 extern void get_backtrace (Lisp_Object array);
3928 Lisp_Object backtrace_top_function (void);
3929 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
3930 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
3931
3932
3933 /* Defined in editfns.c. */
3934 extern Lisp_Object Qfield;
3935 extern void insert1 (Lisp_Object);
3936 extern Lisp_Object format2 (const char *, Lisp_Object, Lisp_Object);
3937 extern Lisp_Object save_excursion_save (void);
3938 extern Lisp_Object save_restriction_save (void);
3939 extern void save_excursion_restore (Lisp_Object);
3940 extern void save_restriction_restore (Lisp_Object);
3941 extern _Noreturn void time_overflow (void);
3942 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
3943 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3944 ptrdiff_t, bool);
3945 extern void init_editfns (void);
3946 extern void syms_of_editfns (void);
3947 extern void set_time_zone_rule (const char *);
3948
3949 /* Defined in buffer.c. */
3950 extern bool mouse_face_overlay_overlaps (Lisp_Object);
3951 extern _Noreturn void nsberror (Lisp_Object);
3952 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
3953 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
3954 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
3955 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
3956 Lisp_Object, Lisp_Object, Lisp_Object);
3957 extern bool overlay_touches_p (ptrdiff_t);
3958 extern Lisp_Object other_buffer_safely (Lisp_Object);
3959 extern Lisp_Object get_truename_buffer (Lisp_Object);
3960 extern void init_buffer_once (void);
3961 extern void init_buffer (int);
3962 extern void syms_of_buffer (void);
3963 extern void keys_of_buffer (void);
3964
3965 /* Defined in marker.c. */
3966
3967 extern ptrdiff_t marker_position (Lisp_Object);
3968 extern ptrdiff_t marker_byte_position (Lisp_Object);
3969 extern void clear_charpos_cache (struct buffer *);
3970 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
3971 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
3972 extern void unchain_marker (struct Lisp_Marker *marker);
3973 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
3974 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
3975 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
3976 ptrdiff_t, ptrdiff_t);
3977 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
3978 extern void syms_of_marker (void);
3979
3980 /* Defined in fileio.c. */
3981
3982 extern Lisp_Object Qfile_error;
3983 extern Lisp_Object Qfile_notify_error;
3984 extern Lisp_Object Qfile_exists_p;
3985 extern Lisp_Object Qfile_directory_p;
3986 extern Lisp_Object Qinsert_file_contents;
3987 extern Lisp_Object Qfile_name_history;
3988 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
3989 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
3990 Lisp_Object, Lisp_Object, Lisp_Object,
3991 Lisp_Object, int);
3992 extern void close_file_unwind (int);
3993 extern void fclose_unwind (void *);
3994 extern void restore_point_unwind (Lisp_Object);
3995 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
3996 extern _Noreturn void report_file_error (const char *, Lisp_Object);
3997 extern bool internal_delete_file (Lisp_Object);
3998 extern Lisp_Object emacs_readlinkat (int, const char *);
3999 extern bool file_directory_p (const char *);
4000 extern bool file_accessible_directory_p (const char *);
4001 extern void init_fileio (void);
4002 extern void syms_of_fileio (void);
4003 extern Lisp_Object make_temp_name (Lisp_Object, bool);
4004 extern Lisp_Object Qdelete_file;
4005
4006 /* Defined in search.c. */
4007 extern void shrink_regexp_cache (void);
4008 extern void restore_search_regs (void);
4009 extern void record_unwind_save_match_data (void);
4010 struct re_registers;
4011 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4012 struct re_registers *,
4013 Lisp_Object, bool, bool);
4014 extern ptrdiff_t fast_string_match (Lisp_Object, Lisp_Object);
4015 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4016 ptrdiff_t);
4017 extern ptrdiff_t fast_string_match_ignore_case (Lisp_Object, Lisp_Object);
4018 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4019 ptrdiff_t, ptrdiff_t, Lisp_Object);
4020 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4021 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4022 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4023 ptrdiff_t, bool);
4024 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4025 ptrdiff_t, ptrdiff_t *);
4026 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4027 ptrdiff_t, ptrdiff_t *);
4028 extern void syms_of_search (void);
4029 extern void clear_regexp_cache (void);
4030
4031 /* Defined in minibuf.c. */
4032
4033 extern Lisp_Object Qcompletion_ignore_case;
4034 extern Lisp_Object Vminibuffer_list;
4035 extern Lisp_Object last_minibuf_string;
4036 extern Lisp_Object get_minibuffer (EMACS_INT);
4037 extern void init_minibuf_once (void);
4038 extern void syms_of_minibuf (void);
4039
4040 /* Defined in callint.c. */
4041
4042 extern Lisp_Object Qminus, Qplus;
4043 extern Lisp_Object Qprogn;
4044 extern Lisp_Object Qwhen;
4045 extern Lisp_Object Qmouse_leave_buffer_hook;
4046 extern void syms_of_callint (void);
4047
4048 /* Defined in casefiddle.c. */
4049
4050 extern Lisp_Object Qidentity;
4051 extern void syms_of_casefiddle (void);
4052 extern void keys_of_casefiddle (void);
4053
4054 /* Defined in casetab.c. */
4055
4056 extern void init_casetab_once (void);
4057 extern void syms_of_casetab (void);
4058
4059 /* Defined in keyboard.c. */
4060
4061 extern Lisp_Object echo_message_buffer;
4062 extern struct kboard *echo_kboard;
4063 extern void cancel_echoing (void);
4064 extern Lisp_Object Qdisabled, QCfilter;
4065 extern Lisp_Object Qup, Qdown;
4066 extern Lisp_Object last_undo_boundary;
4067 extern bool input_pending;
4068 extern Lisp_Object menu_bar_items (Lisp_Object);
4069 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4070 extern void discard_mouse_events (void);
4071 #ifdef USABLE_SIGIO
4072 void handle_input_available_signal (int);
4073 #endif
4074 extern Lisp_Object pending_funcalls;
4075 extern bool detect_input_pending (void);
4076 extern bool detect_input_pending_ignore_squeezables (void);
4077 extern bool detect_input_pending_run_timers (bool);
4078 extern void safe_run_hooks (Lisp_Object);
4079 extern void cmd_error_internal (Lisp_Object, const char *);
4080 extern Lisp_Object command_loop_1 (void);
4081 extern Lisp_Object read_menu_command (void);
4082 extern Lisp_Object recursive_edit_1 (void);
4083 extern void record_auto_save (void);
4084 extern void force_auto_save_soon (void);
4085 extern void init_keyboard (void);
4086 extern void syms_of_keyboard (void);
4087 extern void keys_of_keyboard (void);
4088
4089 /* Defined in indent.c. */
4090 extern ptrdiff_t current_column (void);
4091 extern void invalidate_current_column (void);
4092 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4093 extern void syms_of_indent (void);
4094
4095 /* Defined in frame.c. */
4096 extern Lisp_Object Qonly, Qnone;
4097 extern void set_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4098 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4099 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4100 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4101 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4102 extern void frames_discard_buffer (Lisp_Object);
4103 extern void syms_of_frame (void);
4104
4105 /* Defined in emacs.c. */
4106 extern char **initial_argv;
4107 extern int initial_argc;
4108 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4109 extern bool display_arg;
4110 #endif
4111 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4112 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4113 extern Lisp_Object Qfile_name_handler_alist;
4114 extern _Noreturn void terminate_due_to_signal (int, int);
4115 extern Lisp_Object Qkill_emacs;
4116 #ifdef WINDOWSNT
4117 extern Lisp_Object Vlibrary_cache;
4118 #endif
4119 #if HAVE_SETLOCALE
4120 void fixup_locale (void);
4121 void synchronize_system_messages_locale (void);
4122 void synchronize_system_time_locale (void);
4123 #else
4124 INLINE void fixup_locale (void) {}
4125 INLINE void synchronize_system_messages_locale (void) {}
4126 INLINE void synchronize_system_time_locale (void) {}
4127 #endif
4128 extern void shut_down_emacs (int, Lisp_Object);
4129
4130 /* True means don't do interactive redisplay and don't change tty modes. */
4131 extern bool noninteractive;
4132
4133 /* True means remove site-lisp directories from load-path. */
4134 extern bool no_site_lisp;
4135
4136 /* Pipe used to send exit notification to the daemon parent at
4137 startup. */
4138 extern int daemon_pipe[2];
4139 #define IS_DAEMON (daemon_pipe[1] != 0)
4140
4141 /* True if handling a fatal error already. */
4142 extern bool fatal_error_in_progress;
4143
4144 /* True means don't do use window-system-specific display code. */
4145 extern bool inhibit_window_system;
4146 /* True means that a filter or a sentinel is running. */
4147 extern bool running_asynch_code;
4148
4149 /* Defined in process.c. */
4150 extern Lisp_Object QCtype, Qlocal;
4151 extern void kill_buffer_processes (Lisp_Object);
4152 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4153 struct Lisp_Process *, int);
4154 /* Max value for the first argument of wait_reading_process_output. */
4155 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4156 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4157 The bug merely causes a bogus warning, but the warning is annoying. */
4158 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4159 #else
4160 # define WAIT_READING_MAX INTMAX_MAX
4161 #endif
4162 extern void add_keyboard_wait_descriptor (int);
4163 extern void delete_keyboard_wait_descriptor (int);
4164 #ifdef HAVE_GPM
4165 extern void add_gpm_wait_descriptor (int);
4166 extern void delete_gpm_wait_descriptor (int);
4167 #endif
4168 extern void init_process_emacs (void);
4169 extern void syms_of_process (void);
4170 extern void setup_process_coding_systems (Lisp_Object);
4171
4172 /* Defined in callproc.c. */
4173 #ifndef DOS_NT
4174 _Noreturn
4175 #endif
4176 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4177 extern void init_callproc_1 (void);
4178 extern void init_callproc (void);
4179 extern void set_initial_environment (void);
4180 extern void syms_of_callproc (void);
4181
4182 /* Defined in doc.c. */
4183 extern Lisp_Object Qfunction_documentation;
4184 extern Lisp_Object read_doc_string (Lisp_Object);
4185 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4186 extern void syms_of_doc (void);
4187 extern int read_bytecode_char (bool);
4188
4189 /* Defined in bytecode.c. */
4190 extern void syms_of_bytecode (void);
4191 extern struct byte_stack *byte_stack_list;
4192 #if BYTE_MARK_STACK
4193 extern void mark_byte_stack (void);
4194 #endif
4195 extern void unmark_byte_stack (void);
4196 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4197 Lisp_Object, ptrdiff_t, Lisp_Object *);
4198
4199 /* Defined in macros.c. */
4200 extern void init_macros (void);
4201 extern void syms_of_macros (void);
4202
4203 /* Defined in undo.c. */
4204 extern Lisp_Object Qapply;
4205 extern Lisp_Object Qinhibit_read_only;
4206 extern void truncate_undo_list (struct buffer *);
4207 extern void record_insert (ptrdiff_t, ptrdiff_t);
4208 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4209 extern void record_first_change (void);
4210 extern void record_change (ptrdiff_t, ptrdiff_t);
4211 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4212 Lisp_Object, Lisp_Object,
4213 Lisp_Object);
4214 extern void syms_of_undo (void);
4215 /* Defined in textprop.c. */
4216 extern Lisp_Object Qmouse_face;
4217 extern Lisp_Object Qinsert_in_front_hooks, Qinsert_behind_hooks;
4218 extern Lisp_Object Qminibuffer_prompt;
4219
4220 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4221
4222 /* Defined in menu.c. */
4223 extern void syms_of_menu (void);
4224
4225 /* Defined in xmenu.c. */
4226 extern void syms_of_xmenu (void);
4227
4228 /* Defined in termchar.h. */
4229 struct tty_display_info;
4230
4231 /* Defined in termhooks.h. */
4232 struct terminal;
4233
4234 /* Defined in sysdep.c. */
4235 #ifndef HAVE_GET_CURRENT_DIR_NAME
4236 extern char *get_current_dir_name (void);
4237 #endif
4238 extern void stuff_char (char c);
4239 extern void init_foreground_group (void);
4240 extern void sys_subshell (void);
4241 extern void sys_suspend (void);
4242 extern void discard_tty_input (void);
4243 extern void init_sys_modes (struct tty_display_info *);
4244 extern void reset_sys_modes (struct tty_display_info *);
4245 extern void init_all_sys_modes (void);
4246 extern void reset_all_sys_modes (void);
4247 extern void child_setup_tty (int);
4248 extern void setup_pty (int);
4249 extern int set_window_size (int, int, int);
4250 extern EMACS_INT get_random (void);
4251 extern void seed_random (void *, ptrdiff_t);
4252 extern void init_random (void);
4253 extern void emacs_backtrace (int);
4254 extern _Noreturn void emacs_abort (void) NO_INLINE;
4255 extern int emacs_open (const char *, int, int);
4256 extern int emacs_pipe (int[2]);
4257 extern int emacs_close (int);
4258 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4259 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4260 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4261 extern void emacs_perror (char const *);
4262
4263 extern void unlock_all_files (void);
4264 extern void lock_file (Lisp_Object);
4265 extern void unlock_file (Lisp_Object);
4266 extern void unlock_buffer (struct buffer *);
4267 extern void syms_of_filelock (void);
4268
4269 /* Defined in sound.c. */
4270 extern void syms_of_sound (void);
4271
4272 /* Defined in category.c. */
4273 extern void init_category_once (void);
4274 extern Lisp_Object char_category_set (int);
4275 extern void syms_of_category (void);
4276
4277 /* Defined in ccl.c. */
4278 extern void syms_of_ccl (void);
4279
4280 /* Defined in dired.c. */
4281 extern void syms_of_dired (void);
4282 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4283 Lisp_Object, Lisp_Object,
4284 bool, Lisp_Object);
4285
4286 /* Defined in term.c. */
4287 extern int *char_ins_del_vector;
4288 extern void syms_of_term (void);
4289 extern _Noreturn void fatal (const char *msgid, ...)
4290 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4291
4292 /* Defined in terminal.c. */
4293 extern void syms_of_terminal (void);
4294
4295 /* Defined in font.c. */
4296 extern void syms_of_font (void);
4297 extern void init_font (void);
4298
4299 #ifdef HAVE_WINDOW_SYSTEM
4300 /* Defined in fontset.c. */
4301 extern void syms_of_fontset (void);
4302
4303 /* Defined in xfns.c, w32fns.c, or macfns.c. */
4304 extern Lisp_Object Qfont_param;
4305 #endif
4306
4307 /* Defined in gfilenotify.c */
4308 #ifdef HAVE_GFILENOTIFY
4309 extern void globals_of_gfilenotify (void);
4310 extern void syms_of_gfilenotify (void);
4311 #endif
4312
4313 /* Defined in inotify.c */
4314 #ifdef HAVE_INOTIFY
4315 extern void syms_of_inotify (void);
4316 #endif
4317
4318 #ifdef HAVE_W32NOTIFY
4319 /* Defined on w32notify.c. */
4320 extern void syms_of_w32notify (void);
4321 #endif
4322
4323 /* Defined in xfaces.c. */
4324 extern Lisp_Object Qdefault, Qfringe;
4325 extern Lisp_Object Qscroll_bar, Qcursor;
4326 extern Lisp_Object Qmode_line_inactive;
4327 extern Lisp_Object Qface;
4328 extern Lisp_Object Qnormal;
4329 extern Lisp_Object QCfamily, QCweight, QCslant;
4330 extern Lisp_Object QCheight, QCname, QCwidth, QCforeground, QCbackground;
4331 extern Lisp_Object Qextra_light, Qlight, Qsemi_light, Qsemi_bold;
4332 extern Lisp_Object Qbold, Qextra_bold, Qultra_bold;
4333 extern Lisp_Object Qoblique, Qitalic;
4334 extern Lisp_Object Vface_alternative_font_family_alist;
4335 extern Lisp_Object Vface_alternative_font_registry_alist;
4336 extern void syms_of_xfaces (void);
4337
4338 #ifdef HAVE_X_WINDOWS
4339 /* Defined in xfns.c. */
4340 extern void syms_of_xfns (void);
4341
4342 /* Defined in xsmfns.c. */
4343 extern void syms_of_xsmfns (void);
4344
4345 /* Defined in xselect.c. */
4346 extern void syms_of_xselect (void);
4347
4348 /* Defined in xterm.c. */
4349 extern void syms_of_xterm (void);
4350 #endif /* HAVE_X_WINDOWS */
4351
4352 #ifdef HAVE_WINDOW_SYSTEM
4353 /* Defined in xterm.c, nsterm.m, w32term.c. */
4354 extern char *x_get_keysym_name (int);
4355 #endif /* HAVE_WINDOW_SYSTEM */
4356
4357 #ifdef HAVE_LIBXML2
4358 /* Defined in xml.c. */
4359 extern void syms_of_xml (void);
4360 extern void xml_cleanup_parser (void);
4361 #endif
4362
4363 #ifdef HAVE_ZLIB
4364 /* Defined in decompress.c. */
4365 extern void syms_of_decompress (void);
4366 #endif
4367
4368 #ifdef HAVE_DBUS
4369 /* Defined in dbusbind.c. */
4370 void syms_of_dbusbind (void);
4371 #endif
4372
4373
4374 /* Defined in profiler.c. */
4375 extern bool profiler_memory_running;
4376 extern void malloc_probe (size_t);
4377 extern void syms_of_profiler (void);
4378
4379
4380 #ifdef DOS_NT
4381 /* Defined in msdos.c, w32.c. */
4382 extern char *emacs_root_dir (void);
4383 #endif /* DOS_NT */
4384
4385 /* True means ^G can quit instantly. */
4386 extern bool immediate_quit;
4387
4388 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4389 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4390 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4391 extern void xfree (void *);
4392 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4393 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4394 ATTRIBUTE_ALLOC_SIZE ((2,3));
4395 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4396
4397 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4398 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4399 extern void dupstring (char **, char const *);
4400 extern void xputenv (const char *);
4401
4402 extern char *egetenv (const char *);
4403
4404 /* Copy Lisp string to temporary (allocated on stack) C string. */
4405
4406 #define xlispstrdupa(string) \
4407 memcpy (alloca (SBYTES (string) + 1), \
4408 SSDATA (string), SBYTES (string) + 1)
4409
4410 /* Set up the name of the machine we're running on. */
4411 extern void init_system_name (void);
4412
4413 /* Return the absolute value of X. X should be a signed integer
4414 expression without side effects, and X's absolute value should not
4415 exceed the maximum for its promoted type. This is called 'eabs'
4416 because 'abs' is reserved by the C standard. */
4417 #define eabs(x) ((x) < 0 ? -(x) : (x))
4418
4419 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4420 fixnum. */
4421
4422 #define make_fixnum_or_float(val) \
4423 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4424
4425 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4426 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4427
4428 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4429
4430 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4431
4432 #define USE_SAFE_ALLOCA \
4433 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4434
4435 /* SAFE_ALLOCA allocates a simple buffer. */
4436
4437 #define SAFE_ALLOCA(size) ((size) < MAX_ALLOCA \
4438 ? alloca (size) \
4439 : (sa_must_free = true, record_xmalloc (size)))
4440
4441 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4442 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4443 positive. The code is tuned for MULTIPLIER being a constant. */
4444
4445 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4446 do { \
4447 if ((nitems) <= MAX_ALLOCA / sizeof *(buf) / (multiplier)) \
4448 (buf) = alloca (sizeof *(buf) * (multiplier) * (nitems)); \
4449 else \
4450 { \
4451 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4452 sa_must_free = true; \
4453 record_unwind_protect_ptr (xfree, buf); \
4454 } \
4455 } while (false)
4456
4457 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4458
4459 #define SAFE_FREE() \
4460 do { \
4461 if (sa_must_free) { \
4462 sa_must_free = false; \
4463 unbind_to (sa_count, Qnil); \
4464 } \
4465 } while (false)
4466
4467
4468 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4469
4470 #define SAFE_ALLOCA_LISP(buf, nelt) \
4471 do { \
4472 if ((nelt) < MAX_ALLOCA / word_size) \
4473 (buf) = alloca ((nelt) * word_size); \
4474 else if ((nelt) < min (PTRDIFF_MAX, SIZE_MAX) / word_size) \
4475 { \
4476 Lisp_Object arg_; \
4477 (buf) = xmalloc ((nelt) * word_size); \
4478 arg_ = make_save_memory (buf, nelt); \
4479 sa_must_free = true; \
4480 record_unwind_protect (free_save_value, arg_); \
4481 } \
4482 else \
4483 memory_full (SIZE_MAX); \
4484 } while (false)
4485
4486 /* Loop over all tails of a list, checking for cycles.
4487 FIXME: Make tortoise and n internal declarations.
4488 FIXME: Unroll the loop body so we don't need `n'. */
4489 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4490 for ((tortoise) = (hare) = (list), (n) = true; \
4491 CONSP (hare); \
4492 (hare = XCDR (hare), (n) = !(n), \
4493 ((n) \
4494 ? (EQ (hare, tortoise) \
4495 ? xsignal1 (Qcircular_list, list) \
4496 : (void) 0) \
4497 /* Move tortoise before the next iteration, in case */ \
4498 /* the next iteration does an Fsetcdr. */ \
4499 : (void) ((tortoise) = XCDR (tortoise)))))
4500
4501 /* Do a `for' loop over alist values. */
4502
4503 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4504 for ((list_var) = (head_var); \
4505 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4506 (list_var) = XCDR (list_var))
4507
4508 /* Check whether it's time for GC, and run it if so. */
4509
4510 INLINE void
4511 maybe_gc (void)
4512 {
4513 if ((consing_since_gc > gc_cons_threshold
4514 && consing_since_gc > gc_relative_threshold)
4515 || (!NILP (Vmemory_full)
4516 && consing_since_gc > memory_full_cons_threshold))
4517 Fgarbage_collect ();
4518 }
4519
4520 INLINE bool
4521 functionp (Lisp_Object object)
4522 {
4523 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4524 {
4525 object = Findirect_function (object, Qt);
4526
4527 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4528 {
4529 /* Autoloaded symbols are functions, except if they load
4530 macros or keymaps. */
4531 int i;
4532 for (i = 0; i < 4 && CONSP (object); i++)
4533 object = XCDR (object);
4534
4535 return ! (CONSP (object) && !NILP (XCAR (object)));
4536 }
4537 }
4538
4539 if (SUBRP (object))
4540 return XSUBR (object)->max_args != UNEVALLED;
4541 else if (COMPILEDP (object))
4542 return true;
4543 else if (CONSP (object))
4544 {
4545 Lisp_Object car = XCAR (object);
4546 return EQ (car, Qlambda) || EQ (car, Qclosure);
4547 }
4548 else
4549 return false;
4550 }
4551
4552 INLINE_HEADER_END
4553
4554 #endif /* EMACS_LISP_H */