]> code.delx.au - gnu-emacs/blob - lisp/emacs-lisp/byte-opt.el
(define-minor-mode): Use custom-set-minor-mode.
[gnu-emacs] / lisp / emacs-lisp / byte-opt.el
1 ;;; byte-opt.el --- the optimization passes of the emacs-lisp byte compiler
2
3 ;;; Copyright (c) 1991, 1994, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 ;; Author: Jamie Zawinski <jwz@lucid.com>
6 ;; Hallvard Furuseth <hbf@ulrik.uio.no>
7 ;; Maintainer: FSF
8 ;; Keywords: internal
9
10 ;; This file is part of GNU Emacs.
11
12 ;; GNU Emacs is free software; you can redistribute it and/or modify
13 ;; it under the terms of the GNU General Public License as published by
14 ;; the Free Software Foundation; either version 2, or (at your option)
15 ;; any later version.
16
17 ;; GNU Emacs is distributed in the hope that it will be useful,
18 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
19 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 ;; GNU General Public License for more details.
21
22 ;; You should have received a copy of the GNU General Public License
23 ;; along with GNU Emacs; see the file COPYING. If not, write to the
24 ;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
25 ;; Boston, MA 02111-1307, USA.
26
27 ;;; Commentary:
28
29 ;; ========================================================================
30 ;; "No matter how hard you try, you can't make a racehorse out of a pig.
31 ;; You can, however, make a faster pig."
32 ;;
33 ;; Or, to put it another way, the emacs byte compiler is a VW Bug. This code
34 ;; makes it be a VW Bug with fuel injection and a turbocharger... You're
35 ;; still not going to make it go faster than 70 mph, but it might be easier
36 ;; to get it there.
37 ;;
38
39 ;; TO DO:
40 ;;
41 ;; (apply (lambda (x &rest y) ...) 1 (foo))
42 ;;
43 ;; maintain a list of functions known not to access any global variables
44 ;; (actually, give them a 'dynamically-safe property) and then
45 ;; (let ( v1 v2 ... vM vN ) <...dynamically-safe...> ) ==>
46 ;; (let ( v1 v2 ... vM ) vN <...dynamically-safe...> )
47 ;; by recursing on this, we might be able to eliminate the entire let.
48 ;; However certain variables should never have their bindings optimized
49 ;; away, because they affect everything.
50 ;; (put 'debug-on-error 'binding-is-magic t)
51 ;; (put 'debug-on-abort 'binding-is-magic t)
52 ;; (put 'debug-on-next-call 'binding-is-magic t)
53 ;; (put 'inhibit-quit 'binding-is-magic t)
54 ;; (put 'quit-flag 'binding-is-magic t)
55 ;; (put 't 'binding-is-magic t)
56 ;; (put 'nil 'binding-is-magic t)
57 ;; possibly also
58 ;; (put 'gc-cons-threshold 'binding-is-magic t)
59 ;; (put 'track-mouse 'binding-is-magic t)
60 ;; others?
61 ;;
62 ;; Simple defsubsts often produce forms like
63 ;; (let ((v1 (f1)) (v2 (f2)) ...)
64 ;; (FN v1 v2 ...))
65 ;; It would be nice if we could optimize this to
66 ;; (FN (f1) (f2) ...)
67 ;; but we can't unless FN is dynamically-safe (it might be dynamically
68 ;; referring to the bindings that the lambda arglist established.)
69 ;; One of the uncountable lossages introduced by dynamic scope...
70 ;;
71 ;; Maybe there should be a control-structure that says "turn on
72 ;; fast-and-loose type-assumptive optimizations here." Then when
73 ;; we see a form like (car foo) we can from then on assume that
74 ;; the variable foo is of type cons, and optimize based on that.
75 ;; But, this won't win much because of (you guessed it) dynamic
76 ;; scope. Anything down the stack could change the value.
77 ;; (Another reason it doesn't work is that it is perfectly valid
78 ;; to call car with a null argument.) A better approach might
79 ;; be to allow type-specification of the form
80 ;; (put 'foo 'arg-types '(float (list integer) dynamic))
81 ;; (put 'foo 'result-type 'bool)
82 ;; It should be possible to have these types checked to a certain
83 ;; degree.
84 ;;
85 ;; collapse common subexpressions
86 ;;
87 ;; It would be nice if redundant sequences could be factored out as well,
88 ;; when they are known to have no side-effects:
89 ;; (list (+ a b c) (+ a b c)) --> a b add c add dup list-2
90 ;; but beware of traps like
91 ;; (cons (list x y) (list x y))
92 ;;
93 ;; Tail-recursion elimination is not really possible in Emacs Lisp.
94 ;; Tail-recursion elimination is almost always impossible when all variables
95 ;; have dynamic scope, but given that the "return" byteop requires the
96 ;; binding stack to be empty (rather than emptying it itself), there can be
97 ;; no truly tail-recursive Emacs Lisp functions that take any arguments or
98 ;; make any bindings.
99 ;;
100 ;; Here is an example of an Emacs Lisp function which could safely be
101 ;; byte-compiled tail-recursively:
102 ;;
103 ;; (defun tail-map (fn list)
104 ;; (cond (list
105 ;; (funcall fn (car list))
106 ;; (tail-map fn (cdr list)))))
107 ;;
108 ;; However, if there was even a single let-binding around the COND,
109 ;; it could not be byte-compiled, because there would be an "unbind"
110 ;; byte-op between the final "call" and "return." Adding a
111 ;; Bunbind_all byteop would fix this.
112 ;;
113 ;; (defun foo (x y z) ... (foo a b c))
114 ;; ... (const foo) (varref a) (varref b) (varref c) (call 3) END: (return)
115 ;; ... (varref a) (varbind x) (varref b) (varbind y) (varref c) (varbind z) (goto 0) END: (unbind-all) (return)
116 ;; ... (varref a) (varset x) (varref b) (varset y) (varref c) (varset z) (goto 0) END: (return)
117 ;;
118 ;; this also can be considered tail recursion:
119 ;;
120 ;; ... (const foo) (varref a) (call 1) (goto X) ... X: (return)
121 ;; could generalize this by doing the optimization
122 ;; (goto X) ... X: (return) --> (return)
123 ;;
124 ;; But this doesn't solve all of the problems: although by doing tail-
125 ;; recursion elimination in this way, the call-stack does not grow, the
126 ;; binding-stack would grow with each recursive step, and would eventually
127 ;; overflow. I don't believe there is any way around this without lexical
128 ;; scope.
129 ;;
130 ;; Wouldn't it be nice if Emacs Lisp had lexical scope.
131 ;;
132 ;; Idea: the form (lexical-scope) in a file means that the file may be
133 ;; compiled lexically. This proclamation is file-local. Then, within
134 ;; that file, "let" would establish lexical bindings, and "let-dynamic"
135 ;; would do things the old way. (Or we could use CL "declare" forms.)
136 ;; We'd have to notice defvars and defconsts, since those variables should
137 ;; always be dynamic, and attempting to do a lexical binding of them
138 ;; should simply do a dynamic binding instead.
139 ;; But! We need to know about variables that were not necessarily defvarred
140 ;; in the file being compiled (doing a boundp check isn't good enough.)
141 ;; Fdefvar() would have to be modified to add something to the plist.
142 ;;
143 ;; A major disadvantage of this scheme is that the interpreter and compiler
144 ;; would have different semantics for files compiled with (dynamic-scope).
145 ;; Since this would be a file-local optimization, there would be no way to
146 ;; modify the interpreter to obey this (unless the loader was hacked
147 ;; in some grody way, but that's a really bad idea.)
148
149 ;; Other things to consider:
150
151 ;;;;; Associative math should recognize subcalls to identical function:
152 ;;;(disassemble (lambda (x) (+ (+ (foo) 1) (+ (bar) 2))))
153 ;;;;; This should generate the same as (1+ x) and (1- x)
154
155 ;;;(disassemble (lambda (x) (cons (+ x 1) (- x 1))))
156 ;;;;; An awful lot of functions always return a non-nil value. If they're
157 ;;;;; error free also they may act as true-constants.
158
159 ;;;(disassemble (lambda (x) (and (point) (foo))))
160 ;;;;; When
161 ;;;;; - all but one arguments to a function are constant
162 ;;;;; - the non-constant argument is an if-expression (cond-expression?)
163 ;;;;; then the outer function can be distributed. If the guarding
164 ;;;;; condition is side-effect-free [assignment-free] then the other
165 ;;;;; arguments may be any expressions. Since, however, the code size
166 ;;;;; can increase this way they should be "simple". Compare:
167
168 ;;;(disassemble (lambda (x) (eq (if (point) 'a 'b) 'c)))
169 ;;;(disassemble (lambda (x) (if (point) (eq 'a 'c) (eq 'b 'c))))
170
171 ;;;;; (car (cons A B)) -> (progn B A)
172 ;;;(disassemble (lambda (x) (car (cons (foo) 42))))
173
174 ;;;;; (cdr (cons A B)) -> (progn A B)
175 ;;;(disassemble (lambda (x) (cdr (cons 42 (foo)))))
176
177 ;;;;; (car (list A B ...)) -> (progn B ... A)
178 ;;;(disassemble (lambda (x) (car (list (foo) 42 (bar)))))
179
180 ;;;;; (cdr (list A B ...)) -> (progn A (list B ...))
181 ;;;(disassemble (lambda (x) (cdr (list 42 (foo) (bar)))))
182
183
184 ;;; Code:
185
186 (require 'bytecomp)
187
188 (defun byte-compile-log-lap-1 (format &rest args)
189 (if (aref byte-code-vector 0)
190 (error "The old version of the disassembler is loaded. Reload new-bytecomp as well"))
191 (byte-compile-log-1
192 (apply 'format format
193 (let (c a)
194 (mapcar (lambda (arg)
195 (if (not (consp arg))
196 (if (and (symbolp arg)
197 (string-match "^byte-" (symbol-name arg)))
198 (intern (substring (symbol-name arg) 5))
199 arg)
200 (if (integerp (setq c (car arg)))
201 (error "non-symbolic byte-op %s" c))
202 (if (eq c 'TAG)
203 (setq c arg)
204 (setq a (cond ((memq c byte-goto-ops)
205 (car (cdr (cdr arg))))
206 ((memq c byte-constref-ops)
207 (car (cdr arg)))
208 (t (cdr arg))))
209 (setq c (symbol-name c))
210 (if (string-match "^byte-." c)
211 (setq c (intern (substring c 5)))))
212 (if (eq c 'constant) (setq c 'const))
213 (if (and (eq (cdr arg) 0)
214 (not (memq c '(unbind call const))))
215 c
216 (format "(%s %s)" c a))))
217 args)))))
218
219 (defmacro byte-compile-log-lap (format-string &rest args)
220 (list 'and
221 '(memq byte-optimize-log '(t byte))
222 (cons 'byte-compile-log-lap-1
223 (cons format-string args))))
224
225 \f
226 ;;; byte-compile optimizers to support inlining
227
228 (put 'inline 'byte-optimizer 'byte-optimize-inline-handler)
229
230 (defun byte-optimize-inline-handler (form)
231 "byte-optimize-handler for the `inline' special-form."
232 (cons 'progn
233 (mapcar
234 (lambda (sexp)
235 (let ((fn (car-safe sexp)))
236 (if (and (symbolp fn)
237 (or (cdr (assq fn byte-compile-function-environment))
238 (and (fboundp fn)
239 (not (or (cdr (assq fn byte-compile-macro-environment))
240 (and (consp (setq fn (symbol-function fn)))
241 (eq (car fn) 'macro))
242 (subrp fn))))))
243 (byte-compile-inline-expand sexp)
244 sexp)))
245 (cdr form))))
246
247
248 ;; Splice the given lap code into the current instruction stream.
249 ;; If it has any labels in it, you're responsible for making sure there
250 ;; are no collisions, and that byte-compile-tag-number is reasonable
251 ;; after this is spliced in. The provided list is destroyed.
252 (defun byte-inline-lapcode (lap)
253 (setq byte-compile-output (nconc (nreverse lap) byte-compile-output)))
254
255 (defun byte-compile-inline-expand (form)
256 (let* ((name (car form))
257 (fn (or (cdr (assq name byte-compile-function-environment))
258 (and (fboundp name) (symbol-function name)))))
259 (if (null fn)
260 (progn
261 (byte-compile-warn "attempt to inline `%s' before it was defined"
262 name)
263 form)
264 ;; else
265 (when (and (consp fn) (eq (car fn) 'autoload))
266 (load (nth 1 fn))
267 (setq fn (or (and (fboundp name) (symbol-function name))
268 (cdr (assq name byte-compile-function-environment)))))
269 (if (and (consp fn) (eq (car fn) 'autoload))
270 (error "File `%s' didn't define `%s'" (nth 1 fn) name))
271 (if (symbolp fn)
272 (byte-compile-inline-expand (cons fn (cdr form)))
273 (if (byte-code-function-p fn)
274 (let (string)
275 (fetch-bytecode fn)
276 (setq string (aref fn 1))
277 (if (fboundp 'string-as-unibyte)
278 (setq string (string-as-unibyte string)))
279 (cons (list 'lambda (aref fn 0)
280 (list 'byte-code string (aref fn 2) (aref fn 3)))
281 (cdr form)))
282 (if (eq (car-safe fn) 'lambda)
283 (cons fn (cdr form))
284 ;; Give up on inlining.
285 form))))))
286
287 ;;; ((lambda ...) ...)
288 ;;;
289 (defun byte-compile-unfold-lambda (form &optional name)
290 (or name (setq name "anonymous lambda"))
291 (let ((lambda (car form))
292 (values (cdr form)))
293 (if (byte-code-function-p lambda)
294 (setq lambda (list 'lambda (aref lambda 0)
295 (list 'byte-code (aref lambda 1)
296 (aref lambda 2) (aref lambda 3)))))
297 (let ((arglist (nth 1 lambda))
298 (body (cdr (cdr lambda)))
299 optionalp restp
300 bindings)
301 (if (and (stringp (car body)) (cdr body))
302 (setq body (cdr body)))
303 (if (and (consp (car body)) (eq 'interactive (car (car body))))
304 (setq body (cdr body)))
305 (while arglist
306 (cond ((eq (car arglist) '&optional)
307 ;; ok, I'll let this slide because funcall_lambda() does...
308 ;; (if optionalp (error "multiple &optional keywords in %s" name))
309 (if restp (error "&optional found after &rest in %s" name))
310 (if (null (cdr arglist))
311 (error "nothing after &optional in %s" name))
312 (setq optionalp t))
313 ((eq (car arglist) '&rest)
314 ;; ...but it is by no stretch of the imagination a reasonable
315 ;; thing that funcall_lambda() allows (&rest x y) and
316 ;; (&rest x &optional y) in arglists.
317 (if (null (cdr arglist))
318 (error "nothing after &rest in %s" name))
319 (if (cdr (cdr arglist))
320 (error "multiple vars after &rest in %s" name))
321 (setq restp t))
322 (restp
323 (setq bindings (cons (list (car arglist)
324 (and values (cons 'list values)))
325 bindings)
326 values nil))
327 ((and (not optionalp) (null values))
328 (byte-compile-warn "attempt to open-code `%s' with too few arguments" name)
329 (setq arglist nil values 'too-few))
330 (t
331 (setq bindings (cons (list (car arglist) (car values))
332 bindings)
333 values (cdr values))))
334 (setq arglist (cdr arglist)))
335 (if values
336 (progn
337 (or (eq values 'too-few)
338 (byte-compile-warn
339 "attempt to open-code `%s' with too many arguments" name))
340 form)
341
342 ;; The following leads to infinite recursion when loading a
343 ;; file containing `(defsubst f () (f))', and then trying to
344 ;; byte-compile that file.
345 ;(setq body (mapcar 'byte-optimize-form body)))
346
347 (let ((newform
348 (if bindings
349 (cons 'let (cons (nreverse bindings) body))
350 (cons 'progn body))))
351 (byte-compile-log " %s\t==>\t%s" form newform)
352 newform)))))
353
354 \f
355 ;;; implementing source-level optimizers
356
357 (defun byte-optimize-form-code-walker (form for-effect)
358 ;;
359 ;; For normal function calls, We can just mapcar the optimizer the cdr. But
360 ;; we need to have special knowledge of the syntax of the special forms
361 ;; like let and defun (that's why they're special forms :-). (Actually,
362 ;; the important aspect is that they are subrs that don't evaluate all of
363 ;; their args.)
364 ;;
365 (let ((fn (car-safe form))
366 tmp)
367 (cond ((not (consp form))
368 (if (not (and for-effect
369 (or byte-compile-delete-errors
370 (not (symbolp form))
371 (eq form t))))
372 form))
373 ((eq fn 'quote)
374 (if (cdr (cdr form))
375 (byte-compile-warn "malformed quote form: `%s'"
376 (prin1-to-string form)))
377 ;; map (quote nil) to nil to simplify optimizer logic.
378 ;; map quoted constants to nil if for-effect (just because).
379 (and (nth 1 form)
380 (not for-effect)
381 form))
382 ((or (byte-code-function-p fn)
383 (eq 'lambda (car-safe fn)))
384 (byte-compile-unfold-lambda form))
385 ((memq fn '(let let*))
386 ;; recursively enter the optimizer for the bindings and body
387 ;; of a let or let*. This for depth-firstness: forms that
388 ;; are more deeply nested are optimized first.
389 (cons fn
390 (cons
391 (mapcar (lambda (binding)
392 (if (symbolp binding)
393 binding
394 (if (cdr (cdr binding))
395 (byte-compile-warn "malformed let binding: `%s'"
396 (prin1-to-string binding)))
397 (list (car binding)
398 (byte-optimize-form (nth 1 binding) nil))))
399 (nth 1 form))
400 (byte-optimize-body (cdr (cdr form)) for-effect))))
401 ((eq fn 'cond)
402 (cons fn
403 (mapcar (lambda (clause)
404 (if (consp clause)
405 (cons
406 (byte-optimize-form (car clause) nil)
407 (byte-optimize-body (cdr clause) for-effect))
408 (byte-compile-warn "malformed cond form: `%s'"
409 (prin1-to-string clause))
410 clause))
411 (cdr form))))
412 ((eq fn 'progn)
413 ;; as an extra added bonus, this simplifies (progn <x>) --> <x>
414 (if (cdr (cdr form))
415 (progn
416 (setq tmp (byte-optimize-body (cdr form) for-effect))
417 (if (cdr tmp) (cons 'progn tmp) (car tmp)))
418 (byte-optimize-form (nth 1 form) for-effect)))
419 ((eq fn 'prog1)
420 (if (cdr (cdr form))
421 (cons 'prog1
422 (cons (byte-optimize-form (nth 1 form) for-effect)
423 (byte-optimize-body (cdr (cdr form)) t)))
424 (byte-optimize-form (nth 1 form) for-effect)))
425 ((eq fn 'prog2)
426 (cons 'prog2
427 (cons (byte-optimize-form (nth 1 form) t)
428 (cons (byte-optimize-form (nth 2 form) for-effect)
429 (byte-optimize-body (cdr (cdr (cdr form))) t)))))
430
431 ((memq fn '(save-excursion save-restriction save-current-buffer))
432 ;; those subrs which have an implicit progn; it's not quite good
433 ;; enough to treat these like normal function calls.
434 ;; This can turn (save-excursion ...) into (save-excursion) which
435 ;; will be optimized away in the lap-optimize pass.
436 (cons fn (byte-optimize-body (cdr form) for-effect)))
437
438 ((eq fn 'with-output-to-temp-buffer)
439 ;; this is just like the above, except for the first argument.
440 (cons fn
441 (cons
442 (byte-optimize-form (nth 1 form) nil)
443 (byte-optimize-body (cdr (cdr form)) for-effect))))
444
445 ((eq fn 'if)
446 (when (< (length form) 3)
447 (byte-compile-warn "too few arguments for `if'"))
448 (cons fn
449 (cons (byte-optimize-form (nth 1 form) nil)
450 (cons
451 (byte-optimize-form (nth 2 form) for-effect)
452 (byte-optimize-body (nthcdr 3 form) for-effect)))))
453
454 ((memq fn '(and or)) ; remember, and/or are control structures.
455 ;; take forms off the back until we can't any more.
456 ;; In the future it could conceivably be a problem that the
457 ;; subexpressions of these forms are optimized in the reverse
458 ;; order, but it's ok for now.
459 (if for-effect
460 (let ((backwards (reverse (cdr form))))
461 (while (and backwards
462 (null (setcar backwards
463 (byte-optimize-form (car backwards)
464 for-effect))))
465 (setq backwards (cdr backwards)))
466 (if (and (cdr form) (null backwards))
467 (byte-compile-log
468 " all subforms of %s called for effect; deleted" form))
469 (and backwards
470 (cons fn (nreverse (mapcar 'byte-optimize-form backwards)))))
471 (cons fn (mapcar 'byte-optimize-form (cdr form)))))
472
473 ((eq fn 'interactive)
474 (byte-compile-warn "misplaced interactive spec: `%s'"
475 (prin1-to-string form))
476 nil)
477
478 ((memq fn '(defun defmacro function
479 condition-case save-window-excursion))
480 ;; These forms are compiled as constants or by breaking out
481 ;; all the subexpressions and compiling them separately.
482 form)
483
484 ((eq fn 'unwind-protect)
485 ;; the "protected" part of an unwind-protect is compiled (and thus
486 ;; optimized) as a top-level form, so don't do it here. But the
487 ;; non-protected part has the same for-effect status as the
488 ;; unwind-protect itself. (The protected part is always for effect,
489 ;; but that isn't handled properly yet.)
490 (cons fn
491 (cons (byte-optimize-form (nth 1 form) for-effect)
492 (cdr (cdr form)))))
493
494 ((eq fn 'catch)
495 ;; the body of a catch is compiled (and thus optimized) as a
496 ;; top-level form, so don't do it here. The tag is never
497 ;; for-effect. The body should have the same for-effect status
498 ;; as the catch form itself, but that isn't handled properly yet.
499 (cons fn
500 (cons (byte-optimize-form (nth 1 form) nil)
501 (cdr (cdr form)))))
502
503 ((eq fn 'ignore)
504 ;; Don't treat the args to `ignore' as being
505 ;; computed for effect. We want to avoid the warnings
506 ;; that might occur if they were treated that way.
507 ;; However, don't actually bother calling `ignore'.
508 `(prog1 nil . ,(mapcar 'byte-optimize-form (cdr form))))
509
510 ;; If optimization is on, this is the only place that macros are
511 ;; expanded. If optimization is off, then macroexpansion happens
512 ;; in byte-compile-form. Otherwise, the macros are already expanded
513 ;; by the time that is reached.
514 ((not (eq form
515 (setq form (macroexpand form
516 byte-compile-macro-environment))))
517 (byte-optimize-form form for-effect))
518
519 ;; Support compiler macros as in cl.el.
520 ((and (fboundp 'compiler-macroexpand)
521 (symbolp (car-safe form))
522 (get (car-safe form) 'cl-compiler-macro)
523 (not (eq form
524 (setq form (compiler-macroexpand form)))))
525 (byte-optimize-form form for-effect))
526
527 ((not (symbolp fn))
528 (byte-compile-warn "`%s' is a malformed function"
529 (prin1-to-string fn))
530 form)
531
532 ((and for-effect (setq tmp (get fn 'side-effect-free))
533 (or byte-compile-delete-errors
534 (eq tmp 'error-free)
535 ;; Detect the expansion of (pop foo).
536 ;; There is no need to compile the call to `car' there.
537 (and (eq fn 'car)
538 (eq (car-safe (cadr form)) 'prog1)
539 (let ((var (cadr (cadr form)))
540 (last (nth 2 (cadr form))))
541 (and (symbolp var)
542 (null (nthcdr 3 (cadr form)))
543 (eq (car-safe last) 'setq)
544 (eq (cadr last) var)
545 (eq (car-safe (nth 2 last)) 'cdr)
546 (eq (cadr (nth 2 last)) var))))
547 (progn
548 (byte-compile-warn "`%s' called for effect"
549 (prin1-to-string (car form)))
550 nil)))
551 (byte-compile-log " %s called for effect; deleted" fn)
552 ;; appending a nil here might not be necessary, but it can't hurt.
553 (byte-optimize-form
554 (cons 'progn (append (cdr form) '(nil))) t))
555
556 (t
557 ;; Otherwise, no args can be considered to be for-effect,
558 ;; even if the called function is for-effect, because we
559 ;; don't know anything about that function.
560 (cons fn (mapcar 'byte-optimize-form (cdr form)))))))
561
562
563 (defun byte-optimize-form (form &optional for-effect)
564 "The source-level pass of the optimizer."
565 ;;
566 ;; First, optimize all sub-forms of this one.
567 (setq form (byte-optimize-form-code-walker form for-effect))
568 ;;
569 ;; after optimizing all subforms, optimize this form until it doesn't
570 ;; optimize any further. This means that some forms will be passed through
571 ;; the optimizer many times, but that's necessary to make the for-effect
572 ;; processing do as much as possible.
573 ;;
574 (let (opt new)
575 (if (and (consp form)
576 (symbolp (car form))
577 (or (and for-effect
578 ;; we don't have any of these yet, but we might.
579 (setq opt (get (car form) 'byte-for-effect-optimizer)))
580 (setq opt (get (car form) 'byte-optimizer)))
581 (not (eq form (setq new (funcall opt form)))))
582 (progn
583 ;; (if (equal form new) (error "bogus optimizer -- %s" opt))
584 (byte-compile-log " %s\t==>\t%s" form new)
585 (setq new (byte-optimize-form new for-effect))
586 new)
587 form)))
588
589
590 (defun byte-optimize-body (forms all-for-effect)
591 ;; optimize the cdr of a progn or implicit progn; all forms is a list of
592 ;; forms, all but the last of which are optimized with the assumption that
593 ;; they are being called for effect. the last is for-effect as well if
594 ;; all-for-effect is true. returns a new list of forms.
595 (let ((rest forms)
596 (result nil)
597 fe new)
598 (while rest
599 (setq fe (or all-for-effect (cdr rest)))
600 (setq new (and (car rest) (byte-optimize-form (car rest) fe)))
601 (if (or new (not fe))
602 (setq result (cons new result)))
603 (setq rest (cdr rest)))
604 (nreverse result)))
605
606 \f
607 ;;; some source-level optimizers
608 ;;;
609 ;;; when writing optimizers, be VERY careful that the optimizer returns
610 ;;; something not EQ to its argument if and ONLY if it has made a change.
611 ;;; This implies that you cannot simply destructively modify the list;
612 ;;; you must return something not EQ to it if you make an optimization.
613 ;;;
614 ;;; It is now safe to optimize code such that it introduces new bindings.
615
616 ;; I'd like this to be a defsubst, but let's not be self-referential...
617 (defmacro byte-compile-trueconstp (form)
618 ;; Returns non-nil if FORM is a non-nil constant.
619 `(cond ((consp ,form) (eq (car ,form) 'quote))
620 ((not (symbolp ,form)))
621 ((eq ,form t))
622 ((keywordp ,form))))
623
624 ;; If the function is being called with constant numeric args,
625 ;; evaluate as much as possible at compile-time. This optimizer
626 ;; assumes that the function is associative, like + or *.
627 (defun byte-optimize-associative-math (form)
628 (let ((args nil)
629 (constants nil)
630 (rest (cdr form)))
631 (while rest
632 (if (numberp (car rest))
633 (setq constants (cons (car rest) constants))
634 (setq args (cons (car rest) args)))
635 (setq rest (cdr rest)))
636 (if (cdr constants)
637 (if args
638 (list (car form)
639 (apply (car form) constants)
640 (if (cdr args)
641 (cons (car form) (nreverse args))
642 (car args)))
643 (apply (car form) constants))
644 form)))
645
646 ;; If the function is being called with constant numeric args,
647 ;; evaluate as much as possible at compile-time. This optimizer
648 ;; assumes that the function satisfies
649 ;; (op x1 x2 ... xn) == (op ...(op (op x1 x2) x3) ...xn)
650 ;; like - and /.
651 (defun byte-optimize-nonassociative-math (form)
652 (if (or (not (numberp (car (cdr form))))
653 (not (numberp (car (cdr (cdr form))))))
654 form
655 (let ((constant (car (cdr form)))
656 (rest (cdr (cdr form))))
657 (while (numberp (car rest))
658 (setq constant (funcall (car form) constant (car rest))
659 rest (cdr rest)))
660 (if rest
661 (cons (car form) (cons constant rest))
662 constant))))
663
664 ;;(defun byte-optimize-associative-two-args-math (form)
665 ;; (setq form (byte-optimize-associative-math form))
666 ;; (if (consp form)
667 ;; (byte-optimize-two-args-left form)
668 ;; form))
669
670 ;;(defun byte-optimize-nonassociative-two-args-math (form)
671 ;; (setq form (byte-optimize-nonassociative-math form))
672 ;; (if (consp form)
673 ;; (byte-optimize-two-args-right form)
674 ;; form))
675
676 (defun byte-optimize-approx-equal (x y)
677 (<= (* (abs (- x y)) 100) (abs (+ x y))))
678
679 ;; Collect all the constants from FORM, after the STARTth arg,
680 ;; and apply FUN to them to make one argument at the end.
681 ;; For functions that can handle floats, that optimization
682 ;; can be incorrect because reordering can cause an overflow
683 ;; that would otherwise be avoided by encountering an arg that is a float.
684 ;; We avoid this problem by (1) not moving float constants and
685 ;; (2) not moving anything if it would cause an overflow.
686 (defun byte-optimize-delay-constants-math (form start fun)
687 ;; Merge all FORM's constants from number START, call FUN on them
688 ;; and put the result at the end.
689 (let ((rest (nthcdr (1- start) form))
690 (orig form)
691 ;; t means we must check for overflow.
692 (overflow (memq fun '(+ *))))
693 (while (cdr (setq rest (cdr rest)))
694 (if (integerp (car rest))
695 (let (constants)
696 (setq form (copy-sequence form)
697 rest (nthcdr (1- start) form))
698 (while (setq rest (cdr rest))
699 (cond ((integerp (car rest))
700 (setq constants (cons (car rest) constants))
701 (setcar rest nil))))
702 ;; If necessary, check now for overflow
703 ;; that might be caused by reordering.
704 (if (and overflow
705 ;; We have overflow if the result of doing the arithmetic
706 ;; on floats is not even close to the result
707 ;; of doing it on integers.
708 (not (byte-optimize-approx-equal
709 (apply fun (mapcar 'float constants))
710 (float (apply fun constants)))))
711 (setq form orig)
712 (setq form (nconc (delq nil form)
713 (list (apply fun (nreverse constants)))))))))
714 form))
715
716 (defun byte-optimize-plus (form)
717 (setq form (byte-optimize-delay-constants-math form 1 '+))
718 (if (memq 0 form) (setq form (delq 0 (copy-sequence form))))
719 ;;(setq form (byte-optimize-associative-two-args-math form))
720 (cond ((null (cdr form))
721 (condition-case ()
722 (eval form)
723 (error form)))
724 ;;; It is not safe to delete the function entirely
725 ;;; (actually, it would be safe if we know the sole arg
726 ;;; is not a marker).
727 ;; ((null (cdr (cdr form))) (nth 1 form))
728 ((null (cddr form))
729 (if (numberp (nth 1 form))
730 (nth 1 form)
731 form))
732 ((and (null (nthcdr 3 form))
733 (or (memq (nth 1 form) '(1 -1))
734 (memq (nth 2 form) '(1 -1))))
735 ;; Optimize (+ x 1) into (1+ x) and (+ x -1) into (1- x).
736 (let ((integer
737 (if (memq (nth 1 form) '(1 -1))
738 (nth 1 form)
739 (nth 2 form)))
740 (other
741 (if (memq (nth 1 form) '(1 -1))
742 (nth 2 form)
743 (nth 1 form))))
744 (list (if (eq integer 1) '1+ '1-)
745 other)))
746 (t form)))
747
748 (defun byte-optimize-minus (form)
749 ;; Put constants at the end, except the last constant.
750 (setq form (byte-optimize-delay-constants-math form 2 '+))
751 ;; Now only first and last element can be a number.
752 (let ((last (car (reverse (nthcdr 3 form)))))
753 (cond ((eq 0 last)
754 ;; (- x y ... 0) --> (- x y ...)
755 (setq form (copy-sequence form))
756 (setcdr (cdr (cdr form)) (delq 0 (nthcdr 3 form))))
757 ((equal (nthcdr 2 form) '(1))
758 (setq form (list '1- (nth 1 form))))
759 ((equal (nthcdr 2 form) '(-1))
760 (setq form (list '1+ (nth 1 form))))
761 ;; If form is (- CONST foo... CONST), merge first and last.
762 ((and (numberp (nth 1 form))
763 (numberp last))
764 (setq form (nconc (list '- (- (nth 1 form) last) (nth 2 form))
765 (delq last (copy-sequence (nthcdr 3 form))))))))
766 ;;; It is not safe to delete the function entirely
767 ;;; (actually, it would be safe if we know the sole arg
768 ;;; is not a marker).
769 ;;; (if (eq (nth 2 form) 0)
770 ;;; (nth 1 form) ; (- x 0) --> x
771 (byte-optimize-predicate
772 (if (and (null (cdr (cdr (cdr form))))
773 (eq (nth 1 form) 0)) ; (- 0 x) --> (- x)
774 (cons (car form) (cdr (cdr form)))
775 form))
776 ;;; )
777 )
778
779 (defun byte-optimize-multiply (form)
780 (setq form (byte-optimize-delay-constants-math form 1 '*))
781 ;; If there is a constant in FORM, it is now the last element.
782 (cond ((null (cdr form)) 1)
783 ;;; It is not safe to delete the function entirely
784 ;;; (actually, it would be safe if we know the sole arg
785 ;;; is not a marker or if it appears in other arithmetic).
786 ;;; ((null (cdr (cdr form))) (nth 1 form))
787 ((let ((last (car (reverse form))))
788 (cond ((eq 0 last) (cons 'progn (cdr form)))
789 ((eq 1 last) (delq 1 (copy-sequence form)))
790 ((eq -1 last) (list '- (delq -1 (copy-sequence form))))
791 ((and (eq 2 last)
792 (memq t (mapcar 'symbolp (cdr form))))
793 (prog1 (setq form (delq 2 (copy-sequence form)))
794 (while (not (symbolp (car (setq form (cdr form))))))
795 (setcar form (list '+ (car form) (car form)))))
796 (form))))))
797
798 (defsubst byte-compile-butlast (form)
799 (nreverse (cdr (reverse form))))
800
801 (defun byte-optimize-divide (form)
802 (setq form (byte-optimize-delay-constants-math form 2 '*))
803 (let ((last (car (reverse (cdr (cdr form))))))
804 (if (numberp last)
805 (cond ((= (length form) 3)
806 (if (and (numberp (nth 1 form))
807 (not (zerop last))
808 (condition-case nil
809 (/ (nth 1 form) last)
810 (error nil)))
811 (setq form (list 'progn (/ (nth 1 form) last)))))
812 ((= last 1)
813 (setq form (byte-compile-butlast form)))
814 ((numberp (nth 1 form))
815 (setq form (cons (car form)
816 (cons (/ (nth 1 form) last)
817 (byte-compile-butlast (cdr (cdr form)))))
818 last nil))))
819 (cond
820 ;;; ((null (cdr (cdr form)))
821 ;;; (nth 1 form))
822 ((eq (nth 1 form) 0)
823 (append '(progn) (cdr (cdr form)) '(0)))
824 ((eq last -1)
825 (list '- (if (nthcdr 3 form)
826 (byte-compile-butlast form)
827 (nth 1 form))))
828 (form))))
829
830 (defun byte-optimize-logmumble (form)
831 (setq form (byte-optimize-delay-constants-math form 1 (car form)))
832 (byte-optimize-predicate
833 (cond ((memq 0 form)
834 (setq form (if (eq (car form) 'logand)
835 (cons 'progn (cdr form))
836 (delq 0 (copy-sequence form)))))
837 ((and (eq (car-safe form) 'logior)
838 (memq -1 form))
839 (cons 'progn (cdr form)))
840 (form))))
841
842
843 (defun byte-optimize-binary-predicate (form)
844 (if (byte-compile-constp (nth 1 form))
845 (if (byte-compile-constp (nth 2 form))
846 (condition-case ()
847 (list 'quote (eval form))
848 (error form))
849 ;; This can enable some lapcode optimizations.
850 (list (car form) (nth 2 form) (nth 1 form)))
851 form))
852
853 (defun byte-optimize-predicate (form)
854 (let ((ok t)
855 (rest (cdr form)))
856 (while (and rest ok)
857 (setq ok (byte-compile-constp (car rest))
858 rest (cdr rest)))
859 (if ok
860 (condition-case ()
861 (list 'quote (eval form))
862 (error form))
863 form)))
864
865 (defun byte-optimize-identity (form)
866 (if (and (cdr form) (null (cdr (cdr form))))
867 (nth 1 form)
868 (byte-compile-warn "identity called with %d arg%s, but requires 1"
869 (length (cdr form))
870 (if (= 1 (length (cdr form))) "" "s"))
871 form))
872
873 (put 'identity 'byte-optimizer 'byte-optimize-identity)
874
875 (put '+ 'byte-optimizer 'byte-optimize-plus)
876 (put '* 'byte-optimizer 'byte-optimize-multiply)
877 (put '- 'byte-optimizer 'byte-optimize-minus)
878 (put '/ 'byte-optimizer 'byte-optimize-divide)
879 (put 'max 'byte-optimizer 'byte-optimize-associative-math)
880 (put 'min 'byte-optimizer 'byte-optimize-associative-math)
881
882 (put '= 'byte-optimizer 'byte-optimize-binary-predicate)
883 (put 'eq 'byte-optimizer 'byte-optimize-binary-predicate)
884 (put 'equal 'byte-optimizer 'byte-optimize-binary-predicate)
885 (put 'string= 'byte-optimizer 'byte-optimize-binary-predicate)
886 (put 'string-equal 'byte-optimizer 'byte-optimize-binary-predicate)
887
888 (put '< 'byte-optimizer 'byte-optimize-predicate)
889 (put '> 'byte-optimizer 'byte-optimize-predicate)
890 (put '<= 'byte-optimizer 'byte-optimize-predicate)
891 (put '>= 'byte-optimizer 'byte-optimize-predicate)
892 (put '1+ 'byte-optimizer 'byte-optimize-predicate)
893 (put '1- 'byte-optimizer 'byte-optimize-predicate)
894 (put 'not 'byte-optimizer 'byte-optimize-predicate)
895 (put 'null 'byte-optimizer 'byte-optimize-predicate)
896 (put 'memq 'byte-optimizer 'byte-optimize-predicate)
897 (put 'consp 'byte-optimizer 'byte-optimize-predicate)
898 (put 'listp 'byte-optimizer 'byte-optimize-predicate)
899 (put 'symbolp 'byte-optimizer 'byte-optimize-predicate)
900 (put 'stringp 'byte-optimizer 'byte-optimize-predicate)
901 (put 'string< 'byte-optimizer 'byte-optimize-predicate)
902 (put 'string-lessp 'byte-optimizer 'byte-optimize-predicate)
903
904 (put 'logand 'byte-optimizer 'byte-optimize-logmumble)
905 (put 'logior 'byte-optimizer 'byte-optimize-logmumble)
906 (put 'logxor 'byte-optimizer 'byte-optimize-logmumble)
907 (put 'lognot 'byte-optimizer 'byte-optimize-predicate)
908
909 (put 'car 'byte-optimizer 'byte-optimize-predicate)
910 (put 'cdr 'byte-optimizer 'byte-optimize-predicate)
911 (put 'car-safe 'byte-optimizer 'byte-optimize-predicate)
912 (put 'cdr-safe 'byte-optimizer 'byte-optimize-predicate)
913
914
915 ;; I'm not convinced that this is necessary. Doesn't the optimizer loop
916 ;; take care of this? - Jamie
917 ;; I think this may some times be necessary to reduce ie (quote 5) to 5,
918 ;; so arithmetic optimizers recognize the numeric constant. - Hallvard
919 (put 'quote 'byte-optimizer 'byte-optimize-quote)
920 (defun byte-optimize-quote (form)
921 (if (or (consp (nth 1 form))
922 (and (symbolp (nth 1 form))
923 (not (byte-compile-const-symbol-p form))))
924 form
925 (nth 1 form)))
926
927 (defun byte-optimize-zerop (form)
928 (cond ((numberp (nth 1 form))
929 (eval form))
930 (byte-compile-delete-errors
931 (list '= (nth 1 form) 0))
932 (form)))
933
934 (put 'zerop 'byte-optimizer 'byte-optimize-zerop)
935
936 (defun byte-optimize-and (form)
937 ;; Simplify if less than 2 args.
938 ;; if there is a literal nil in the args to `and', throw it and following
939 ;; forms away, and surround the `and' with (progn ... nil).
940 (cond ((null (cdr form)))
941 ((memq nil form)
942 (list 'progn
943 (byte-optimize-and
944 (prog1 (setq form (copy-sequence form))
945 (while (nth 1 form)
946 (setq form (cdr form)))
947 (setcdr form nil)))
948 nil))
949 ((null (cdr (cdr form)))
950 (nth 1 form))
951 ((byte-optimize-predicate form))))
952
953 (defun byte-optimize-or (form)
954 ;; Throw away nil's, and simplify if less than 2 args.
955 ;; If there is a literal non-nil constant in the args to `or', throw away all
956 ;; following forms.
957 (if (memq nil form)
958 (setq form (delq nil (copy-sequence form))))
959 (let ((rest form))
960 (while (cdr (setq rest (cdr rest)))
961 (if (byte-compile-trueconstp (car rest))
962 (setq form (copy-sequence form)
963 rest (setcdr (memq (car rest) form) nil))))
964 (if (cdr (cdr form))
965 (byte-optimize-predicate form)
966 (nth 1 form))))
967
968 (defun byte-optimize-cond (form)
969 ;; if any clauses have a literal nil as their test, throw them away.
970 ;; if any clause has a literal non-nil constant as its test, throw
971 ;; away all following clauses.
972 (let (rest)
973 ;; This must be first, to reduce (cond (t ...) (nil)) to (progn t ...)
974 (while (setq rest (assq nil (cdr form)))
975 (setq form (delq rest (copy-sequence form))))
976 (if (memq nil (cdr form))
977 (setq form (delq nil (copy-sequence form))))
978 (setq rest form)
979 (while (setq rest (cdr rest))
980 (cond ((byte-compile-trueconstp (car-safe (car rest)))
981 (cond ((eq rest (cdr form))
982 (setq form
983 (if (cdr (car rest))
984 (if (cdr (cdr (car rest)))
985 (cons 'progn (cdr (car rest)))
986 (nth 1 (car rest)))
987 (car (car rest)))))
988 ((cdr rest)
989 (setq form (copy-sequence form))
990 (setcdr (memq (car rest) form) nil)))
991 (setq rest nil)))))
992 ;;
993 ;; Turn (cond (( <x> )) ... ) into (or <x> (cond ... ))
994 (if (eq 'cond (car-safe form))
995 (let ((clauses (cdr form)))
996 (if (and (consp (car clauses))
997 (null (cdr (car clauses))))
998 (list 'or (car (car clauses))
999 (byte-optimize-cond
1000 (cons (car form) (cdr (cdr form)))))
1001 form))
1002 form))
1003
1004 (defun byte-optimize-if (form)
1005 ;; (if <true-constant> <then> <else...>) ==> <then>
1006 ;; (if <false-constant> <then> <else...>) ==> (progn <else...>)
1007 ;; (if <test> nil <else...>) ==> (if (not <test>) (progn <else...>))
1008 ;; (if <test> <then> nil) ==> (if <test> <then>)
1009 (let ((clause (nth 1 form)))
1010 (cond ((byte-compile-trueconstp clause)
1011 (nth 2 form))
1012 ((null clause)
1013 (if (nthcdr 4 form)
1014 (cons 'progn (nthcdr 3 form))
1015 (nth 3 form)))
1016 ((nth 2 form)
1017 (if (equal '(nil) (nthcdr 3 form))
1018 (list 'if clause (nth 2 form))
1019 form))
1020 ((or (nth 3 form) (nthcdr 4 form))
1021 (list 'if
1022 ;; Don't make a double negative;
1023 ;; instead, take away the one that is there.
1024 (if (and (consp clause) (memq (car clause) '(not null))
1025 (= (length clause) 2)) ; (not xxxx) or (not (xxxx))
1026 (nth 1 clause)
1027 (list 'not clause))
1028 (if (nthcdr 4 form)
1029 (cons 'progn (nthcdr 3 form))
1030 (nth 3 form))))
1031 (t
1032 (list 'progn clause nil)))))
1033
1034 (defun byte-optimize-while (form)
1035 (when (< (length form) 2)
1036 (byte-compile-warn "too few arguments for `while'"))
1037 (if (nth 1 form)
1038 form))
1039
1040 (put 'and 'byte-optimizer 'byte-optimize-and)
1041 (put 'or 'byte-optimizer 'byte-optimize-or)
1042 (put 'cond 'byte-optimizer 'byte-optimize-cond)
1043 (put 'if 'byte-optimizer 'byte-optimize-if)
1044 (put 'while 'byte-optimizer 'byte-optimize-while)
1045
1046 ;; byte-compile-negation-optimizer lives in bytecomp.el
1047 (put '/= 'byte-optimizer 'byte-compile-negation-optimizer)
1048 (put 'atom 'byte-optimizer 'byte-compile-negation-optimizer)
1049 (put 'nlistp 'byte-optimizer 'byte-compile-negation-optimizer)
1050
1051
1052 (defun byte-optimize-funcall (form)
1053 ;; (funcall (lambda ...) ...) ==> ((lambda ...) ...)
1054 ;; (funcall foo ...) ==> (foo ...)
1055 (let ((fn (nth 1 form)))
1056 (if (memq (car-safe fn) '(quote function))
1057 (cons (nth 1 fn) (cdr (cdr form)))
1058 form)))
1059
1060 (defun byte-optimize-apply (form)
1061 ;; If the last arg is a literal constant, turn this into a funcall.
1062 ;; The funcall optimizer can then transform (funcall 'foo ...) -> (foo ...).
1063 (let ((fn (nth 1 form))
1064 (last (nth (1- (length form)) form))) ; I think this really is fastest
1065 (or (if (or (null last)
1066 (eq (car-safe last) 'quote))
1067 (if (listp (nth 1 last))
1068 (let ((butlast (nreverse (cdr (reverse (cdr (cdr form)))))))
1069 (nconc (list 'funcall fn) butlast
1070 (mapcar (lambda (x) (list 'quote x)) (nth 1 last))))
1071 (byte-compile-warn
1072 "last arg to apply can't be a literal atom: `%s'"
1073 (prin1-to-string last))
1074 nil))
1075 form)))
1076
1077 (put 'funcall 'byte-optimizer 'byte-optimize-funcall)
1078 (put 'apply 'byte-optimizer 'byte-optimize-apply)
1079
1080
1081 (put 'let 'byte-optimizer 'byte-optimize-letX)
1082 (put 'let* 'byte-optimizer 'byte-optimize-letX)
1083 (defun byte-optimize-letX (form)
1084 (cond ((null (nth 1 form))
1085 ;; No bindings
1086 (cons 'progn (cdr (cdr form))))
1087 ((or (nth 2 form) (nthcdr 3 form))
1088 form)
1089 ;; The body is nil
1090 ((eq (car form) 'let)
1091 (append '(progn) (mapcar 'car-safe (mapcar 'cdr-safe (nth 1 form)))
1092 '(nil)))
1093 (t
1094 (let ((binds (reverse (nth 1 form))))
1095 (list 'let* (reverse (cdr binds)) (nth 1 (car binds)) nil)))))
1096
1097
1098 (put 'nth 'byte-optimizer 'byte-optimize-nth)
1099 (defun byte-optimize-nth (form)
1100 (if (= (safe-length form) 3)
1101 (if (memq (nth 1 form) '(0 1))
1102 (list 'car (if (zerop (nth 1 form))
1103 (nth 2 form)
1104 (list 'cdr (nth 2 form))))
1105 (byte-optimize-predicate form))
1106 form))
1107
1108 (put 'nthcdr 'byte-optimizer 'byte-optimize-nthcdr)
1109 (defun byte-optimize-nthcdr (form)
1110 (if (= (safe-length form) 3)
1111 (if (memq (nth 1 form) '(0 1 2))
1112 (let ((count (nth 1 form)))
1113 (setq form (nth 2 form))
1114 (while (>= (setq count (1- count)) 0)
1115 (setq form (list 'cdr form)))
1116 form)
1117 (byte-optimize-predicate form))
1118 form))
1119
1120 (put 'concat 'byte-optimizer 'byte-optimize-concat)
1121 (defun byte-optimize-concat (form)
1122 (let ((args (cdr form))
1123 (constant t))
1124 (while (and args constant)
1125 (or (byte-compile-constp (car args))
1126 (setq constant nil))
1127 (setq args (cdr args)))
1128 (if constant
1129 (eval form)
1130 form)))
1131
1132 ;; Avoid having to write forward-... with a negative arg for speed.
1133 ;; Fixme: don't be limited to constant args.
1134 (put 'backward-char 'byte-optimizer 'byte-optimize-backward-char)
1135 (defun byte-optimize-backward-char (form)
1136 (cond ((and (= 2 (safe-length form))
1137 (numberp (nth 1 form)))
1138 (list 'forward-char (eval (- (nth 1 form)))))
1139 ((= 1 (safe-length form))
1140 '(forward-char -1))
1141 (t form)))
1142
1143 (put 'backward-word 'byte-optimizer 'byte-optimize-backward-word)
1144 (defun byte-optimize-backward-word (form)
1145 (cond ((and (= 2 (safe-length form))
1146 (numberp (nth 1 form)))
1147 (list 'forward-word (eval (- (nth 1 form)))))
1148 ((= 1 (safe-length form))
1149 '(forward-char -1))
1150 (t form)))
1151
1152 (put 'char-before 'byte-optimizer 'byte-optimize-char-before)
1153 (defun byte-optimize-char-before (form)
1154 (cond ((= 2 (safe-length form))
1155 `(char-after (1- ,(nth 1 form))))
1156 ((= 1 (safe-length form))
1157 '(char-after (1- (point))))
1158 (t form)))
1159
1160 ;; Fixme: delete-char -> delete-region (byte-coded)
1161 ;; optimize string-as-unibyte, string-as-multibyte, string-make-unibyte,
1162 ;; string-make-multibyte for constant args.
1163
1164 (put 'featurep 'byte-optimizer 'byte-optimize-featurep)
1165 (defun byte-optimize-featurep (form)
1166 ;; Emacs-21's byte-code doesn't run under XEmacs anyway, so we can
1167 ;; safely optimize away this test.
1168 (if (equal '((quote xemacs)) (cdr-safe form))
1169 nil
1170 form))
1171 \f
1172 ;;; enumerating those functions which need not be called if the returned
1173 ;;; value is not used. That is, something like
1174 ;;; (progn (list (something-with-side-effects) (yow))
1175 ;;; (foo))
1176 ;;; may safely be turned into
1177 ;;; (progn (progn (something-with-side-effects) (yow))
1178 ;;; (foo))
1179 ;;; Further optimizations will turn (progn (list 1 2 3) 'foo) into 'foo.
1180
1181 ;;; Some of these functions have the side effect of allocating memory
1182 ;;; and it would be incorrect to replace two calls with one.
1183 ;;; But we don't try to do those kinds of optimizations,
1184 ;;; so it is safe to list such functions here.
1185 ;;; Some of these functions return values that depend on environment
1186 ;;; state, so that constant folding them would be wrong,
1187 ;;; but we don't do constant folding based on this list.
1188
1189 ;;; However, at present the only optimization we normally do
1190 ;;; is delete calls that need not occur, and we only do that
1191 ;;; with the error-free functions.
1192
1193 ;;; I wonder if I missed any :-\)
1194 (let ((side-effect-free-fns
1195 '(% * + - / /= 1+ 1- < <= = > >= abs acos append aref ash asin atan
1196 assoc assq
1197 boundp buffer-file-name buffer-local-variables buffer-modified-p
1198 buffer-substring byte-code-function-p
1199 capitalize car-less-than-car car cdr ceiling char-after char-before
1200 char-equal char-to-string char-width
1201 compare-strings concat coordinates-in-window-p
1202 copy-alist copy-sequence copy-marker cos count-lines
1203 decode-time default-boundp default-value documentation downcase
1204 elt exp expt encode-time error-message-string
1205 fboundp fceiling featurep ffloor
1206 file-directory-p file-exists-p file-locked-p file-name-absolute-p
1207 file-newer-than-file-p file-readable-p file-symlink-p file-writable-p
1208 float float-time floor format format-time-string frame-visible-p
1209 fround ftruncate
1210 get gethash get-buffer get-buffer-window getenv get-file-buffer
1211 hash-table-count
1212 int-to-string intern-soft
1213 keymap-parent
1214 length local-variable-if-set-p local-variable-p log log10 logand
1215 logb logior lognot logxor lsh
1216 make-list make-string make-symbol
1217 marker-buffer max member memq min mod multibyte-char-to-unibyte
1218 next-window nth nthcdr number-to-string
1219 parse-colon-path plist-get plist-member
1220 prefix-numeric-value previous-window prin1-to-string propertize
1221 radians-to-degrees rassq rassoc read-from-string regexp-quote
1222 region-beginning region-end reverse round
1223 sin sqrt string string< string= string-equal string-lessp string-to-char
1224 string-to-int string-to-number substring sxhash symbol-function
1225 symbol-name symbol-plist symbol-value string-make-unibyte
1226 string-make-multibyte string-as-multibyte string-as-unibyte
1227 tan truncate
1228 unibyte-char-to-multibyte upcase user-full-name
1229 user-login-name user-original-login-name user-variable-p
1230 vconcat
1231 window-buffer window-dedicated-p window-edges window-height
1232 window-hscroll window-minibuffer-p window-width
1233 zerop))
1234 (side-effect-and-error-free-fns
1235 '(arrayp atom
1236 bobp bolp bool-vector-p
1237 buffer-end buffer-list buffer-size buffer-string bufferp
1238 car-safe case-table-p cdr-safe char-or-string-p commandp cons consp
1239 current-buffer current-global-map current-indentation
1240 current-local-map current-minor-mode-maps current-time
1241 current-time-string current-time-zone
1242 eobp eolp eq equal eventp
1243 floatp following-char framep
1244 get-largest-window get-lru-window
1245 hash-table-p
1246 identity ignore integerp integer-or-marker-p interactive-p
1247 invocation-directory invocation-name
1248 keymapp
1249 line-beginning-position line-end-position list listp
1250 make-marker mark mark-marker markerp memory-limit minibuffer-window
1251 mouse-movement-p
1252 natnump nlistp not null number-or-marker-p numberp
1253 one-window-p overlayp
1254 point point-marker point-min point-max preceding-char processp
1255 recent-keys recursion-depth
1256 safe-length selected-frame selected-window sequencep
1257 standard-case-table standard-syntax-table stringp subrp symbolp
1258 syntax-table syntax-table-p
1259 this-command-keys this-command-keys-vector this-single-command-keys
1260 this-single-command-raw-keys
1261 user-real-login-name user-real-uid user-uid
1262 vector vectorp visible-frame-list
1263 wholenump window-configuration-p window-live-p windowp)))
1264 (while side-effect-free-fns
1265 (put (car side-effect-free-fns) 'side-effect-free t)
1266 (setq side-effect-free-fns (cdr side-effect-free-fns)))
1267 (while side-effect-and-error-free-fns
1268 (put (car side-effect-and-error-free-fns) 'side-effect-free 'error-free)
1269 (setq side-effect-and-error-free-fns (cdr side-effect-and-error-free-fns)))
1270 nil)
1271
1272
1273 (defun byte-compile-splice-in-already-compiled-code (form)
1274 ;; form is (byte-code "..." [...] n)
1275 (if (not (memq byte-optimize '(t lap)))
1276 (byte-compile-normal-call form)
1277 (byte-inline-lapcode
1278 (byte-decompile-bytecode-1 (nth 1 form) (nth 2 form) t))
1279 (setq byte-compile-maxdepth (max (+ byte-compile-depth (nth 3 form))
1280 byte-compile-maxdepth))
1281 (setq byte-compile-depth (1+ byte-compile-depth))))
1282
1283 (put 'byte-code 'byte-compile 'byte-compile-splice-in-already-compiled-code)
1284
1285 \f
1286 (defconst byte-constref-ops
1287 '(byte-constant byte-constant2 byte-varref byte-varset byte-varbind))
1288
1289 ;;; This function extracts the bitfields from variable-length opcodes.
1290 ;;; Originally defined in disass.el (which no longer uses it.)
1291
1292 (defun disassemble-offset ()
1293 "Don't call this!"
1294 ;; fetch and return the offset for the current opcode.
1295 ;; return nil if this opcode has no offset
1296 ;; OP, PTR and BYTES are used and set dynamically
1297 (defvar op)
1298 (defvar ptr)
1299 (defvar bytes)
1300 (cond ((< op byte-nth)
1301 (let ((tem (logand op 7)))
1302 (setq op (logand op 248))
1303 (cond ((eq tem 6)
1304 (setq ptr (1+ ptr)) ;offset in next byte
1305 (aref bytes ptr))
1306 ((eq tem 7)
1307 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1308 (+ (aref bytes ptr)
1309 (progn (setq ptr (1+ ptr))
1310 (lsh (aref bytes ptr) 8))))
1311 (t tem)))) ;offset was in opcode
1312 ((>= op byte-constant)
1313 (prog1 (- op byte-constant) ;offset in opcode
1314 (setq op byte-constant)))
1315 ((and (>= op byte-constant2)
1316 (<= op byte-goto-if-not-nil-else-pop))
1317 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1318 (+ (aref bytes ptr)
1319 (progn (setq ptr (1+ ptr))
1320 (lsh (aref bytes ptr) 8))))
1321 ((and (>= op byte-listN)
1322 (<= op byte-insertN))
1323 (setq ptr (1+ ptr)) ;offset in next byte
1324 (aref bytes ptr))))
1325
1326
1327 ;;; This de-compiler is used for inline expansion of compiled functions,
1328 ;;; and by the disassembler.
1329 ;;;
1330 ;;; This list contains numbers, which are pc values,
1331 ;;; before each instruction.
1332 (defun byte-decompile-bytecode (bytes constvec)
1333 "Turns BYTECODE into lapcode, referring to CONSTVEC."
1334 (let ((byte-compile-constants nil)
1335 (byte-compile-variables nil)
1336 (byte-compile-tag-number 0))
1337 (byte-decompile-bytecode-1 bytes constvec)))
1338
1339 ;; As byte-decompile-bytecode, but updates
1340 ;; byte-compile-{constants, variables, tag-number}.
1341 ;; If MAKE-SPLICEABLE is true, then `return' opcodes are replaced
1342 ;; with `goto's destined for the end of the code.
1343 ;; That is for use by the compiler.
1344 ;; If MAKE-SPLICEABLE is nil, we are being called for the disassembler.
1345 ;; In that case, we put a pc value into the list
1346 ;; before each insn (or its label).
1347 (defun byte-decompile-bytecode-1 (bytes constvec &optional make-spliceable)
1348 (let ((length (length bytes))
1349 (ptr 0) optr tag tags op offset
1350 lap tmp
1351 endtag
1352 (retcount 0))
1353 (while (not (= ptr length))
1354 (or make-spliceable
1355 (setq lap (cons ptr lap)))
1356 (setq op (aref bytes ptr)
1357 optr ptr
1358 offset (disassemble-offset)) ; this does dynamic-scope magic
1359 (setq op (aref byte-code-vector op))
1360 (cond ((memq op byte-goto-ops)
1361 ;; it's a pc
1362 (setq offset
1363 (cdr (or (assq offset tags)
1364 (car (setq tags
1365 (cons (cons offset
1366 (byte-compile-make-tag))
1367 tags)))))))
1368 ((cond ((eq op 'byte-constant2) (setq op 'byte-constant) t)
1369 ((memq op byte-constref-ops)))
1370 (setq tmp (if (>= offset (length constvec))
1371 (list 'out-of-range offset)
1372 (aref constvec offset))
1373 offset (if (eq op 'byte-constant)
1374 (byte-compile-get-constant tmp)
1375 (or (assq tmp byte-compile-variables)
1376 (car (setq byte-compile-variables
1377 (cons (list tmp)
1378 byte-compile-variables)))))))
1379 ((and make-spliceable
1380 (eq op 'byte-return))
1381 (if (= ptr (1- length))
1382 (setq op nil)
1383 (setq offset (or endtag (setq endtag (byte-compile-make-tag)))
1384 op 'byte-goto))))
1385 ;; lap = ( [ (pc . (op . arg)) ]* )
1386 (setq lap (cons (cons optr (cons op (or offset 0)))
1387 lap))
1388 (setq ptr (1+ ptr)))
1389 ;; take off the dummy nil op that we replaced a trailing "return" with.
1390 (let ((rest lap))
1391 (while rest
1392 (cond ((numberp (car rest)))
1393 ((setq tmp (assq (car (car rest)) tags))
1394 ;; this addr is jumped to
1395 (setcdr rest (cons (cons nil (cdr tmp))
1396 (cdr rest)))
1397 (setq tags (delq tmp tags))
1398 (setq rest (cdr rest))))
1399 (setq rest (cdr rest))))
1400 (if tags (error "optimizer error: missed tags %s" tags))
1401 (if (null (car (cdr (car lap))))
1402 (setq lap (cdr lap)))
1403 (if endtag
1404 (setq lap (cons (cons nil endtag) lap)))
1405 ;; remove addrs, lap = ( [ (op . arg) | (TAG tagno) ]* )
1406 (mapcar (function (lambda (elt)
1407 (if (numberp elt)
1408 elt
1409 (cdr elt))))
1410 (nreverse lap))))
1411
1412 \f
1413 ;;; peephole optimizer
1414
1415 (defconst byte-tagref-ops (cons 'TAG byte-goto-ops))
1416
1417 (defconst byte-conditional-ops
1418 '(byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop
1419 byte-goto-if-not-nil-else-pop))
1420
1421 (defconst byte-after-unbind-ops
1422 '(byte-constant byte-dup
1423 byte-symbolp byte-consp byte-stringp byte-listp byte-numberp byte-integerp
1424 byte-eq byte-not
1425 byte-cons byte-list1 byte-list2 ; byte-list3 byte-list4
1426 byte-interactive-p)
1427 ;; How about other side-effect-free-ops? Is it safe to move an
1428 ;; error invocation (such as from nth) out of an unwind-protect?
1429 ;; No, it is not, because the unwind-protect forms can alter
1430 ;; the inside of the object to which nth would apply.
1431 ;; For the same reason, byte-equal was deleted from this list.
1432 "Byte-codes that can be moved past an unbind.")
1433
1434 (defconst byte-compile-side-effect-and-error-free-ops
1435 '(byte-constant byte-dup byte-symbolp byte-consp byte-stringp byte-listp
1436 byte-integerp byte-numberp byte-eq byte-equal byte-not byte-car-safe
1437 byte-cdr-safe byte-cons byte-list1 byte-list2 byte-point byte-point-max
1438 byte-point-min byte-following-char byte-preceding-char
1439 byte-current-column byte-eolp byte-eobp byte-bolp byte-bobp
1440 byte-current-buffer byte-interactive-p))
1441
1442 (defconst byte-compile-side-effect-free-ops
1443 (nconc
1444 '(byte-varref byte-nth byte-memq byte-car byte-cdr byte-length byte-aref
1445 byte-symbol-value byte-get byte-concat2 byte-concat3 byte-sub1 byte-add1
1446 byte-eqlsign byte-gtr byte-lss byte-leq byte-geq byte-diff byte-negate
1447 byte-plus byte-max byte-min byte-mult byte-char-after byte-char-syntax
1448 byte-buffer-substring byte-string= byte-string< byte-nthcdr byte-elt
1449 byte-member byte-assq byte-quo byte-rem)
1450 byte-compile-side-effect-and-error-free-ops))
1451
1452 ;;; This crock is because of the way DEFVAR_BOOL variables work.
1453 ;;; Consider the code
1454 ;;;
1455 ;;; (defun foo (flag)
1456 ;;; (let ((old-pop-ups pop-up-windows)
1457 ;;; (pop-up-windows flag))
1458 ;;; (cond ((not (eq pop-up-windows old-pop-ups))
1459 ;;; (setq old-pop-ups pop-up-windows)
1460 ;;; ...))))
1461 ;;;
1462 ;;; Uncompiled, old-pop-ups will always be set to nil or t, even if FLAG is
1463 ;;; something else. But if we optimize
1464 ;;;
1465 ;;; varref flag
1466 ;;; varbind pop-up-windows
1467 ;;; varref pop-up-windows
1468 ;;; not
1469 ;;; to
1470 ;;; varref flag
1471 ;;; dup
1472 ;;; varbind pop-up-windows
1473 ;;; not
1474 ;;;
1475 ;;; we break the program, because it will appear that pop-up-windows and
1476 ;;; old-pop-ups are not EQ when really they are. So we have to know what
1477 ;;; the BOOL variables are, and not perform this optimization on them.
1478
1479 ;;; The variable `byte-boolean-vars' is now primitive and updated
1480 ;;; automatically by DEFVAR_BOOL.
1481
1482 (defun byte-optimize-lapcode (lap &optional for-effect)
1483 "Simple peephole optimizer. LAP is both modified and returned."
1484 (let (lap0
1485 lap1
1486 lap2
1487 (keep-going 'first-time)
1488 (add-depth 0)
1489 rest tmp tmp2 tmp3
1490 (side-effect-free (if byte-compile-delete-errors
1491 byte-compile-side-effect-free-ops
1492 byte-compile-side-effect-and-error-free-ops)))
1493 (while keep-going
1494 (or (eq keep-going 'first-time)
1495 (byte-compile-log-lap " ---- next pass"))
1496 (setq rest lap
1497 keep-going nil)
1498 (while rest
1499 (setq lap0 (car rest)
1500 lap1 (nth 1 rest)
1501 lap2 (nth 2 rest))
1502
1503 ;; You may notice that sequences like "dup varset discard" are
1504 ;; optimized but sequences like "dup varset TAG1: discard" are not.
1505 ;; You may be tempted to change this; resist that temptation.
1506 (cond ;;
1507 ;; <side-effect-free> pop --> <deleted>
1508 ;; ...including:
1509 ;; const-X pop --> <deleted>
1510 ;; varref-X pop --> <deleted>
1511 ;; dup pop --> <deleted>
1512 ;;
1513 ((and (eq 'byte-discard (car lap1))
1514 (memq (car lap0) side-effect-free))
1515 (setq keep-going t)
1516 (setq tmp (aref byte-stack+-info (symbol-value (car lap0))))
1517 (setq rest (cdr rest))
1518 (cond ((= tmp 1)
1519 (byte-compile-log-lap
1520 " %s discard\t-->\t<deleted>" lap0)
1521 (setq lap (delq lap0 (delq lap1 lap))))
1522 ((= tmp 0)
1523 (byte-compile-log-lap
1524 " %s discard\t-->\t<deleted> discard" lap0)
1525 (setq lap (delq lap0 lap)))
1526 ((= tmp -1)
1527 (byte-compile-log-lap
1528 " %s discard\t-->\tdiscard discard" lap0)
1529 (setcar lap0 'byte-discard)
1530 (setcdr lap0 0))
1531 ((error "Optimizer error: too much on the stack"))))
1532 ;;
1533 ;; goto*-X X: --> X:
1534 ;;
1535 ((and (memq (car lap0) byte-goto-ops)
1536 (eq (cdr lap0) lap1))
1537 (cond ((eq (car lap0) 'byte-goto)
1538 (setq lap (delq lap0 lap))
1539 (setq tmp "<deleted>"))
1540 ((memq (car lap0) byte-goto-always-pop-ops)
1541 (setcar lap0 (setq tmp 'byte-discard))
1542 (setcdr lap0 0))
1543 ((error "Depth conflict at tag %d" (nth 2 lap0))))
1544 (and (memq byte-optimize-log '(t byte))
1545 (byte-compile-log " (goto %s) %s:\t-->\t%s %s:"
1546 (nth 1 lap1) (nth 1 lap1)
1547 tmp (nth 1 lap1)))
1548 (setq keep-going t))
1549 ;;
1550 ;; varset-X varref-X --> dup varset-X
1551 ;; varbind-X varref-X --> dup varbind-X
1552 ;; const/dup varset-X varref-X --> const/dup varset-X const/dup
1553 ;; const/dup varbind-X varref-X --> const/dup varbind-X const/dup
1554 ;; The latter two can enable other optimizations.
1555 ;;
1556 ((and (eq 'byte-varref (car lap2))
1557 (eq (cdr lap1) (cdr lap2))
1558 (memq (car lap1) '(byte-varset byte-varbind)))
1559 (if (and (setq tmp (memq (car (cdr lap2)) byte-boolean-vars))
1560 (not (eq (car lap0) 'byte-constant)))
1561 nil
1562 (setq keep-going t)
1563 (if (memq (car lap0) '(byte-constant byte-dup))
1564 (progn
1565 (setq tmp (if (or (not tmp)
1566 (byte-compile-const-symbol-p
1567 (car (cdr lap0))))
1568 (cdr lap0)
1569 (byte-compile-get-constant t)))
1570 (byte-compile-log-lap " %s %s %s\t-->\t%s %s %s"
1571 lap0 lap1 lap2 lap0 lap1
1572 (cons (car lap0) tmp))
1573 (setcar lap2 (car lap0))
1574 (setcdr lap2 tmp))
1575 (byte-compile-log-lap " %s %s\t-->\tdup %s" lap1 lap2 lap1)
1576 (setcar lap2 (car lap1))
1577 (setcar lap1 'byte-dup)
1578 (setcdr lap1 0)
1579 ;; The stack depth gets locally increased, so we will
1580 ;; increase maxdepth in case depth = maxdepth here.
1581 ;; This can cause the third argument to byte-code to
1582 ;; be larger than necessary.
1583 (setq add-depth 1))))
1584 ;;
1585 ;; dup varset-X discard --> varset-X
1586 ;; dup varbind-X discard --> varbind-X
1587 ;; (the varbind variant can emerge from other optimizations)
1588 ;;
1589 ((and (eq 'byte-dup (car lap0))
1590 (eq 'byte-discard (car lap2))
1591 (memq (car lap1) '(byte-varset byte-varbind)))
1592 (byte-compile-log-lap " dup %s discard\t-->\t%s" lap1 lap1)
1593 (setq keep-going t
1594 rest (cdr rest))
1595 (setq lap (delq lap0 (delq lap2 lap))))
1596 ;;
1597 ;; not goto-X-if-nil --> goto-X-if-non-nil
1598 ;; not goto-X-if-non-nil --> goto-X-if-nil
1599 ;;
1600 ;; it is wrong to do the same thing for the -else-pop variants.
1601 ;;
1602 ((and (eq 'byte-not (car lap0))
1603 (or (eq 'byte-goto-if-nil (car lap1))
1604 (eq 'byte-goto-if-not-nil (car lap1))))
1605 (byte-compile-log-lap " not %s\t-->\t%s"
1606 lap1
1607 (cons
1608 (if (eq (car lap1) 'byte-goto-if-nil)
1609 'byte-goto-if-not-nil
1610 'byte-goto-if-nil)
1611 (cdr lap1)))
1612 (setcar lap1 (if (eq (car lap1) 'byte-goto-if-nil)
1613 'byte-goto-if-not-nil
1614 'byte-goto-if-nil))
1615 (setq lap (delq lap0 lap))
1616 (setq keep-going t))
1617 ;;
1618 ;; goto-X-if-nil goto-Y X: --> goto-Y-if-non-nil X:
1619 ;; goto-X-if-non-nil goto-Y X: --> goto-Y-if-nil X:
1620 ;;
1621 ;; it is wrong to do the same thing for the -else-pop variants.
1622 ;;
1623 ((and (or (eq 'byte-goto-if-nil (car lap0))
1624 (eq 'byte-goto-if-not-nil (car lap0))) ; gotoX
1625 (eq 'byte-goto (car lap1)) ; gotoY
1626 (eq (cdr lap0) lap2)) ; TAG X
1627 (let ((inverse (if (eq 'byte-goto-if-nil (car lap0))
1628 'byte-goto-if-not-nil 'byte-goto-if-nil)))
1629 (byte-compile-log-lap " %s %s %s:\t-->\t%s %s:"
1630 lap0 lap1 lap2
1631 (cons inverse (cdr lap1)) lap2)
1632 (setq lap (delq lap0 lap))
1633 (setcar lap1 inverse)
1634 (setq keep-going t)))
1635 ;;
1636 ;; const goto-if-* --> whatever
1637 ;;
1638 ((and (eq 'byte-constant (car lap0))
1639 (memq (car lap1) byte-conditional-ops))
1640 (cond ((if (or (eq (car lap1) 'byte-goto-if-nil)
1641 (eq (car lap1) 'byte-goto-if-nil-else-pop))
1642 (car (cdr lap0))
1643 (not (car (cdr lap0))))
1644 (byte-compile-log-lap " %s %s\t-->\t<deleted>"
1645 lap0 lap1)
1646 (setq rest (cdr rest)
1647 lap (delq lap0 (delq lap1 lap))))
1648 (t
1649 (if (memq (car lap1) byte-goto-always-pop-ops)
1650 (progn
1651 (byte-compile-log-lap " %s %s\t-->\t%s"
1652 lap0 lap1 (cons 'byte-goto (cdr lap1)))
1653 (setq lap (delq lap0 lap)))
1654 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1655 (cons 'byte-goto (cdr lap1))))
1656 (setcar lap1 'byte-goto)))
1657 (setq keep-going t))
1658 ;;
1659 ;; varref-X varref-X --> varref-X dup
1660 ;; varref-X [dup ...] varref-X --> varref-X [dup ...] dup
1661 ;; We don't optimize the const-X variations on this here,
1662 ;; because that would inhibit some goto optimizations; we
1663 ;; optimize the const-X case after all other optimizations.
1664 ;;
1665 ((and (eq 'byte-varref (car lap0))
1666 (progn
1667 (setq tmp (cdr rest))
1668 (while (eq (car (car tmp)) 'byte-dup)
1669 (setq tmp (cdr tmp)))
1670 t)
1671 (eq (cdr lap0) (cdr (car tmp)))
1672 (eq 'byte-varref (car (car tmp))))
1673 (if (memq byte-optimize-log '(t byte))
1674 (let ((str ""))
1675 (setq tmp2 (cdr rest))
1676 (while (not (eq tmp tmp2))
1677 (setq tmp2 (cdr tmp2)
1678 str (concat str " dup")))
1679 (byte-compile-log-lap " %s%s %s\t-->\t%s%s dup"
1680 lap0 str lap0 lap0 str)))
1681 (setq keep-going t)
1682 (setcar (car tmp) 'byte-dup)
1683 (setcdr (car tmp) 0)
1684 (setq rest tmp))
1685 ;;
1686 ;; TAG1: TAG2: --> TAG1: <deleted>
1687 ;; (and other references to TAG2 are replaced with TAG1)
1688 ;;
1689 ((and (eq (car lap0) 'TAG)
1690 (eq (car lap1) 'TAG))
1691 (and (memq byte-optimize-log '(t byte))
1692 (byte-compile-log " adjacent tags %d and %d merged"
1693 (nth 1 lap1) (nth 1 lap0)))
1694 (setq tmp3 lap)
1695 (while (setq tmp2 (rassq lap0 tmp3))
1696 (setcdr tmp2 lap1)
1697 (setq tmp3 (cdr (memq tmp2 tmp3))))
1698 (setq lap (delq lap0 lap)
1699 keep-going t))
1700 ;;
1701 ;; unused-TAG: --> <deleted>
1702 ;;
1703 ((and (eq 'TAG (car lap0))
1704 (not (rassq lap0 lap)))
1705 (and (memq byte-optimize-log '(t byte))
1706 (byte-compile-log " unused tag %d removed" (nth 1 lap0)))
1707 (setq lap (delq lap0 lap)
1708 keep-going t))
1709 ;;
1710 ;; goto ... --> goto <delete until TAG or end>
1711 ;; return ... --> return <delete until TAG or end>
1712 ;;
1713 ((and (memq (car lap0) '(byte-goto byte-return))
1714 (not (memq (car lap1) '(TAG nil))))
1715 (setq tmp rest)
1716 (let ((i 0)
1717 (opt-p (memq byte-optimize-log '(t lap)))
1718 str deleted)
1719 (while (and (setq tmp (cdr tmp))
1720 (not (eq 'TAG (car (car tmp)))))
1721 (if opt-p (setq deleted (cons (car tmp) deleted)
1722 str (concat str " %s")
1723 i (1+ i))))
1724 (if opt-p
1725 (let ((tagstr
1726 (if (eq 'TAG (car (car tmp)))
1727 (format "%d:" (car (cdr (car tmp))))
1728 (or (car tmp) ""))))
1729 (if (< i 6)
1730 (apply 'byte-compile-log-lap-1
1731 (concat " %s" str
1732 " %s\t-->\t%s <deleted> %s")
1733 lap0
1734 (nconc (nreverse deleted)
1735 (list tagstr lap0 tagstr)))
1736 (byte-compile-log-lap
1737 " %s <%d unreachable op%s> %s\t-->\t%s <deleted> %s"
1738 lap0 i (if (= i 1) "" "s")
1739 tagstr lap0 tagstr))))
1740 (rplacd rest tmp))
1741 (setq keep-going t))
1742 ;;
1743 ;; <safe-op> unbind --> unbind <safe-op>
1744 ;; (this may enable other optimizations.)
1745 ;;
1746 ((and (eq 'byte-unbind (car lap1))
1747 (memq (car lap0) byte-after-unbind-ops))
1748 (byte-compile-log-lap " %s %s\t-->\t%s %s" lap0 lap1 lap1 lap0)
1749 (setcar rest lap1)
1750 (setcar (cdr rest) lap0)
1751 (setq keep-going t))
1752 ;;
1753 ;; varbind-X unbind-N --> discard unbind-(N-1)
1754 ;; save-excursion unbind-N --> unbind-(N-1)
1755 ;; save-restriction unbind-N --> unbind-(N-1)
1756 ;;
1757 ((and (eq 'byte-unbind (car lap1))
1758 (memq (car lap0) '(byte-varbind byte-save-excursion
1759 byte-save-restriction))
1760 (< 0 (cdr lap1)))
1761 (if (zerop (setcdr lap1 (1- (cdr lap1))))
1762 (delq lap1 rest))
1763 (if (eq (car lap0) 'byte-varbind)
1764 (setcar rest (cons 'byte-discard 0))
1765 (setq lap (delq lap0 lap)))
1766 (byte-compile-log-lap " %s %s\t-->\t%s %s"
1767 lap0 (cons (car lap1) (1+ (cdr lap1)))
1768 (if (eq (car lap0) 'byte-varbind)
1769 (car rest)
1770 (car (cdr rest)))
1771 (if (and (/= 0 (cdr lap1))
1772 (eq (car lap0) 'byte-varbind))
1773 (car (cdr rest))
1774 ""))
1775 (setq keep-going t))
1776 ;;
1777 ;; goto*-X ... X: goto-Y --> goto*-Y
1778 ;; goto-X ... X: return --> return
1779 ;;
1780 ((and (memq (car lap0) byte-goto-ops)
1781 (memq (car (setq tmp (nth 1 (memq (cdr lap0) lap))))
1782 '(byte-goto byte-return)))
1783 (cond ((and (not (eq tmp lap0))
1784 (or (eq (car lap0) 'byte-goto)
1785 (eq (car tmp) 'byte-goto)))
1786 (byte-compile-log-lap " %s [%s]\t-->\t%s"
1787 (car lap0) tmp tmp)
1788 (if (eq (car tmp) 'byte-return)
1789 (setcar lap0 'byte-return))
1790 (setcdr lap0 (cdr tmp))
1791 (setq keep-going t))))
1792 ;;
1793 ;; goto-*-else-pop X ... X: goto-if-* --> whatever
1794 ;; goto-*-else-pop X ... X: discard --> whatever
1795 ;;
1796 ((and (memq (car lap0) '(byte-goto-if-nil-else-pop
1797 byte-goto-if-not-nil-else-pop))
1798 (memq (car (car (setq tmp (cdr (memq (cdr lap0) lap)))))
1799 (eval-when-compile
1800 (cons 'byte-discard byte-conditional-ops)))
1801 (not (eq lap0 (car tmp))))
1802 (setq tmp2 (car tmp))
1803 (setq tmp3 (assq (car lap0) '((byte-goto-if-nil-else-pop
1804 byte-goto-if-nil)
1805 (byte-goto-if-not-nil-else-pop
1806 byte-goto-if-not-nil))))
1807 (if (memq (car tmp2) tmp3)
1808 (progn (setcar lap0 (car tmp2))
1809 (setcdr lap0 (cdr tmp2))
1810 (byte-compile-log-lap " %s-else-pop [%s]\t-->\t%s"
1811 (car lap0) tmp2 lap0))
1812 ;; Get rid of the -else-pop's and jump one step further.
1813 (or (eq 'TAG (car (nth 1 tmp)))
1814 (setcdr tmp (cons (byte-compile-make-tag)
1815 (cdr tmp))))
1816 (byte-compile-log-lap " %s [%s]\t-->\t%s <skip>"
1817 (car lap0) tmp2 (nth 1 tmp3))
1818 (setcar lap0 (nth 1 tmp3))
1819 (setcdr lap0 (nth 1 tmp)))
1820 (setq keep-going t))
1821 ;;
1822 ;; const goto-X ... X: goto-if-* --> whatever
1823 ;; const goto-X ... X: discard --> whatever
1824 ;;
1825 ((and (eq (car lap0) 'byte-constant)
1826 (eq (car lap1) 'byte-goto)
1827 (memq (car (car (setq tmp (cdr (memq (cdr lap1) lap)))))
1828 (eval-when-compile
1829 (cons 'byte-discard byte-conditional-ops)))
1830 (not (eq lap1 (car tmp))))
1831 (setq tmp2 (car tmp))
1832 (cond ((memq (car tmp2)
1833 (if (null (car (cdr lap0)))
1834 '(byte-goto-if-nil byte-goto-if-nil-else-pop)
1835 '(byte-goto-if-not-nil
1836 byte-goto-if-not-nil-else-pop)))
1837 (byte-compile-log-lap " %s goto [%s]\t-->\t%s %s"
1838 lap0 tmp2 lap0 tmp2)
1839 (setcar lap1 (car tmp2))
1840 (setcdr lap1 (cdr tmp2))
1841 ;; Let next step fix the (const,goto-if*) sequence.
1842 (setq rest (cons nil rest)))
1843 (t
1844 ;; Jump one step further
1845 (byte-compile-log-lap
1846 " %s goto [%s]\t-->\t<deleted> goto <skip>"
1847 lap0 tmp2)
1848 (or (eq 'TAG (car (nth 1 tmp)))
1849 (setcdr tmp (cons (byte-compile-make-tag)
1850 (cdr tmp))))
1851 (setcdr lap1 (car (cdr tmp)))
1852 (setq lap (delq lap0 lap))))
1853 (setq keep-going t))
1854 ;;
1855 ;; X: varref-Y ... varset-Y goto-X -->
1856 ;; X: varref-Y Z: ... dup varset-Y goto-Z
1857 ;; (varset-X goto-BACK, BACK: varref-X --> copy the varref down.)
1858 ;; (This is so usual for while loops that it is worth handling).
1859 ;;
1860 ((and (eq (car lap1) 'byte-varset)
1861 (eq (car lap2) 'byte-goto)
1862 (not (memq (cdr lap2) rest)) ;Backwards jump
1863 (eq (car (car (setq tmp (cdr (memq (cdr lap2) lap)))))
1864 'byte-varref)
1865 (eq (cdr (car tmp)) (cdr lap1))
1866 (not (memq (car (cdr lap1)) byte-boolean-vars)))
1867 ;;(byte-compile-log-lap " Pulled %s to end of loop" (car tmp))
1868 (let ((newtag (byte-compile-make-tag)))
1869 (byte-compile-log-lap
1870 " %s: %s ... %s %s\t-->\t%s: %s %s: ... %s %s %s"
1871 (nth 1 (cdr lap2)) (car tmp)
1872 lap1 lap2
1873 (nth 1 (cdr lap2)) (car tmp)
1874 (nth 1 newtag) 'byte-dup lap1
1875 (cons 'byte-goto newtag)
1876 )
1877 (setcdr rest (cons (cons 'byte-dup 0) (cdr rest)))
1878 (setcdr tmp (cons (setcdr lap2 newtag) (cdr tmp))))
1879 (setq add-depth 1)
1880 (setq keep-going t))
1881 ;;
1882 ;; goto-X Y: ... X: goto-if*-Y --> goto-if-not-*-X+1 Y:
1883 ;; (This can pull the loop test to the end of the loop)
1884 ;;
1885 ((and (eq (car lap0) 'byte-goto)
1886 (eq (car lap1) 'TAG)
1887 (eq lap1
1888 (cdr (car (setq tmp (cdr (memq (cdr lap0) lap))))))
1889 (memq (car (car tmp))
1890 '(byte-goto byte-goto-if-nil byte-goto-if-not-nil
1891 byte-goto-if-nil-else-pop)))
1892 ;; (byte-compile-log-lap " %s %s, %s %s --> moved conditional"
1893 ;; lap0 lap1 (cdr lap0) (car tmp))
1894 (let ((newtag (byte-compile-make-tag)))
1895 (byte-compile-log-lap
1896 "%s %s: ... %s: %s\t-->\t%s ... %s:"
1897 lap0 (nth 1 lap1) (nth 1 (cdr lap0)) (car tmp)
1898 (cons (cdr (assq (car (car tmp))
1899 '((byte-goto-if-nil . byte-goto-if-not-nil)
1900 (byte-goto-if-not-nil . byte-goto-if-nil)
1901 (byte-goto-if-nil-else-pop .
1902 byte-goto-if-not-nil-else-pop)
1903 (byte-goto-if-not-nil-else-pop .
1904 byte-goto-if-nil-else-pop))))
1905 newtag)
1906
1907 (nth 1 newtag)
1908 )
1909 (setcdr tmp (cons (setcdr lap0 newtag) (cdr tmp)))
1910 (if (eq (car (car tmp)) 'byte-goto-if-nil-else-pop)
1911 ;; We can handle this case but not the -if-not-nil case,
1912 ;; because we won't know which non-nil constant to push.
1913 (setcdr rest (cons (cons 'byte-constant
1914 (byte-compile-get-constant nil))
1915 (cdr rest))))
1916 (setcar lap0 (nth 1 (memq (car (car tmp))
1917 '(byte-goto-if-nil-else-pop
1918 byte-goto-if-not-nil
1919 byte-goto-if-nil
1920 byte-goto-if-not-nil
1921 byte-goto byte-goto))))
1922 )
1923 (setq keep-going t))
1924 )
1925 (setq rest (cdr rest)))
1926 )
1927 ;; Cleanup stage:
1928 ;; Rebuild byte-compile-constants / byte-compile-variables.
1929 ;; Simple optimizations that would inhibit other optimizations if they
1930 ;; were done in the optimizing loop, and optimizations which there is no
1931 ;; need to do more than once.
1932 (setq byte-compile-constants nil
1933 byte-compile-variables nil)
1934 (setq rest lap)
1935 (while rest
1936 (setq lap0 (car rest)
1937 lap1 (nth 1 rest))
1938 (if (memq (car lap0) byte-constref-ops)
1939 (if (or (eq (car lap0) 'byte-constant)
1940 (eq (car lap0) 'byte-constant2))
1941 (unless (memq (cdr lap0) byte-compile-constants)
1942 (setq byte-compile-constants (cons (cdr lap0)
1943 byte-compile-constants)))
1944 (unless (memq (cdr lap0) byte-compile-variables)
1945 (setq byte-compile-variables (cons (cdr lap0)
1946 byte-compile-variables)))))
1947 (cond (;;
1948 ;; const-C varset-X const-C --> const-C dup varset-X
1949 ;; const-C varbind-X const-C --> const-C dup varbind-X
1950 ;;
1951 (and (eq (car lap0) 'byte-constant)
1952 (eq (car (nth 2 rest)) 'byte-constant)
1953 (eq (cdr lap0) (cdr (nth 2 rest)))
1954 (memq (car lap1) '(byte-varbind byte-varset)))
1955 (byte-compile-log-lap " %s %s %s\t-->\t%s dup %s"
1956 lap0 lap1 lap0 lap0 lap1)
1957 (setcar (cdr (cdr rest)) (cons (car lap1) (cdr lap1)))
1958 (setcar (cdr rest) (cons 'byte-dup 0))
1959 (setq add-depth 1))
1960 ;;
1961 ;; const-X [dup/const-X ...] --> const-X [dup ...] dup
1962 ;; varref-X [dup/varref-X ...] --> varref-X [dup ...] dup
1963 ;;
1964 ((memq (car lap0) '(byte-constant byte-varref))
1965 (setq tmp rest
1966 tmp2 nil)
1967 (while (progn
1968 (while (eq 'byte-dup (car (car (setq tmp (cdr tmp))))))
1969 (and (eq (cdr lap0) (cdr (car tmp)))
1970 (eq (car lap0) (car (car tmp)))))
1971 (setcar tmp (cons 'byte-dup 0))
1972 (setq tmp2 t))
1973 (if tmp2
1974 (byte-compile-log-lap
1975 " %s [dup/%s]...\t-->\t%s dup..." lap0 lap0 lap0)))
1976 ;;
1977 ;; unbind-N unbind-M --> unbind-(N+M)
1978 ;;
1979 ((and (eq 'byte-unbind (car lap0))
1980 (eq 'byte-unbind (car lap1)))
1981 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1982 (cons 'byte-unbind
1983 (+ (cdr lap0) (cdr lap1))))
1984 (setq keep-going t)
1985 (setq lap (delq lap0 lap))
1986 (setcdr lap1 (+ (cdr lap1) (cdr lap0))))
1987 )
1988 (setq rest (cdr rest)))
1989 (setq byte-compile-maxdepth (+ byte-compile-maxdepth add-depth)))
1990 lap)
1991
1992 (provide 'byte-opt)
1993
1994 \f
1995 ;; To avoid "lisp nesting exceeds max-lisp-eval-depth" when this file compiles
1996 ;; itself, compile some of its most used recursive functions (at load time).
1997 ;;
1998 (eval-when-compile
1999 (or (byte-code-function-p (symbol-function 'byte-optimize-form))
2000 (assq 'byte-code (symbol-function 'byte-optimize-form))
2001 (let ((byte-optimize nil)
2002 (byte-compile-warnings nil))
2003 (mapcar (lambda (x)
2004 (or noninteractive (message "compiling %s..." x))
2005 (byte-compile x)
2006 (or noninteractive (message "compiling %s...done" x)))
2007 '(byte-optimize-form
2008 byte-optimize-body
2009 byte-optimize-predicate
2010 byte-optimize-binary-predicate
2011 ;; Inserted some more than necessary, to speed it up.
2012 byte-optimize-form-code-walker
2013 byte-optimize-lapcode))))
2014 nil)
2015
2016 ;;; byte-opt.el ends here