]> code.delx.au - gnu-emacs/blob - src/fns.c
(internal_equal): Return t for two NaN arguments.
[gnu-emacs] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985, 86, 87, 93, 94, 95, 97, 98, 99, 2000, 2001, 02, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23
24 #ifdef HAVE_UNISTD_H
25 #include <unistd.h>
26 #endif
27 #include <time.h>
28
29 #ifndef MAC_OSX
30 /* On Mac OS X, defining this conflicts with precompiled headers. */
31
32 /* Note on some machines this defines `vector' as a typedef,
33 so make sure we don't use that name in this file. */
34 #undef vector
35 #define vector *****
36
37 #endif /* ! MAC_OSX */
38
39 #include "lisp.h"
40 #include "commands.h"
41 #include "charset.h"
42 #include "coding.h"
43 #include "buffer.h"
44 #include "keyboard.h"
45 #include "keymap.h"
46 #include "intervals.h"
47 #include "frame.h"
48 #include "window.h"
49 #include "blockinput.h"
50 #if defined (HAVE_MENUS) && defined (HAVE_X_WINDOWS)
51 #include "xterm.h"
52 #endif
53
54 #ifndef NULL
55 #define NULL ((POINTER_TYPE *)0)
56 #endif
57
58 /* Nonzero enables use of dialog boxes for questions
59 asked by mouse commands. */
60 int use_dialog_box;
61
62 /* Nonzero enables use of a file dialog for file name
63 questions asked by mouse commands. */
64 int use_file_dialog;
65
66 extern int minibuffer_auto_raise;
67 extern Lisp_Object minibuf_window;
68 extern Lisp_Object Vlocale_coding_system;
69
70 Lisp_Object Qstring_lessp, Qprovide, Qrequire;
71 Lisp_Object Qyes_or_no_p_history;
72 Lisp_Object Qcursor_in_echo_area;
73 Lisp_Object Qwidget_type;
74 Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
75
76 extern Lisp_Object Qinput_method_function;
77
78 static int internal_equal ();
79
80 extern long get_random ();
81 extern void seed_random ();
82
83 #ifndef HAVE_UNISTD_H
84 extern long time ();
85 #endif
86 \f
87 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
88 doc: /* Return the argument unchanged. */)
89 (arg)
90 Lisp_Object arg;
91 {
92 return arg;
93 }
94
95 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
96 doc: /* Return a pseudo-random number.
97 All integers representable in Lisp are equally likely.
98 On most systems, this is 29 bits' worth.
99 With positive integer argument N, return random number in interval [0,N).
100 With argument t, set the random number seed from the current time and pid. */)
101 (n)
102 Lisp_Object n;
103 {
104 EMACS_INT val;
105 Lisp_Object lispy_val;
106 unsigned long denominator;
107
108 if (EQ (n, Qt))
109 seed_random (getpid () + time (NULL));
110 if (NATNUMP (n) && XFASTINT (n) != 0)
111 {
112 /* Try to take our random number from the higher bits of VAL,
113 not the lower, since (says Gentzel) the low bits of `random'
114 are less random than the higher ones. We do this by using the
115 quotient rather than the remainder. At the high end of the RNG
116 it's possible to get a quotient larger than n; discarding
117 these values eliminates the bias that would otherwise appear
118 when using a large n. */
119 denominator = ((unsigned long)1 << VALBITS) / XFASTINT (n);
120 do
121 val = get_random () / denominator;
122 while (val >= XFASTINT (n));
123 }
124 else
125 val = get_random ();
126 XSETINT (lispy_val, val);
127 return lispy_val;
128 }
129 \f
130 /* Random data-structure functions */
131
132 DEFUN ("length", Flength, Slength, 1, 1, 0,
133 doc: /* Return the length of vector, list or string SEQUENCE.
134 A byte-code function object is also allowed.
135 If the string contains multibyte characters, this is not necessarily
136 the number of bytes in the string; it is the number of characters.
137 To get the number of bytes, use `string-bytes'. */)
138 (sequence)
139 register Lisp_Object sequence;
140 {
141 register Lisp_Object val;
142 register int i;
143
144 retry:
145 if (STRINGP (sequence))
146 XSETFASTINT (val, SCHARS (sequence));
147 else if (VECTORP (sequence))
148 XSETFASTINT (val, XVECTOR (sequence)->size);
149 else if (SUB_CHAR_TABLE_P (sequence))
150 XSETFASTINT (val, SUB_CHAR_TABLE_ORDINARY_SLOTS);
151 else if (CHAR_TABLE_P (sequence))
152 XSETFASTINT (val, MAX_CHAR);
153 else if (BOOL_VECTOR_P (sequence))
154 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
155 else if (COMPILEDP (sequence))
156 XSETFASTINT (val, XVECTOR (sequence)->size & PSEUDOVECTOR_SIZE_MASK);
157 else if (CONSP (sequence))
158 {
159 i = 0;
160 while (CONSP (sequence))
161 {
162 sequence = XCDR (sequence);
163 ++i;
164
165 if (!CONSP (sequence))
166 break;
167
168 sequence = XCDR (sequence);
169 ++i;
170 QUIT;
171 }
172
173 if (!NILP (sequence))
174 wrong_type_argument (Qlistp, sequence);
175
176 val = make_number (i);
177 }
178 else if (NILP (sequence))
179 XSETFASTINT (val, 0);
180 else
181 {
182 sequence = wrong_type_argument (Qsequencep, sequence);
183 goto retry;
184 }
185 return val;
186 }
187
188 /* This does not check for quits. That is safe
189 since it must terminate. */
190
191 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
192 doc: /* Return the length of a list, but avoid error or infinite loop.
193 This function never gets an error. If LIST is not really a list,
194 it returns 0. If LIST is circular, it returns a finite value
195 which is at least the number of distinct elements. */)
196 (list)
197 Lisp_Object list;
198 {
199 Lisp_Object tail, halftail, length;
200 int len = 0;
201
202 /* halftail is used to detect circular lists. */
203 halftail = list;
204 for (tail = list; CONSP (tail); tail = XCDR (tail))
205 {
206 if (EQ (tail, halftail) && len != 0)
207 break;
208 len++;
209 if ((len & 1) == 0)
210 halftail = XCDR (halftail);
211 }
212
213 XSETINT (length, len);
214 return length;
215 }
216
217 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
218 doc: /* Return the number of bytes in STRING.
219 If STRING is a multibyte string, this is greater than the length of STRING. */)
220 (string)
221 Lisp_Object string;
222 {
223 CHECK_STRING (string);
224 return make_number (SBYTES (string));
225 }
226
227 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
228 doc: /* Return t if two strings have identical contents.
229 Case is significant, but text properties are ignored.
230 Symbols are also allowed; their print names are used instead. */)
231 (s1, s2)
232 register Lisp_Object s1, s2;
233 {
234 if (SYMBOLP (s1))
235 s1 = SYMBOL_NAME (s1);
236 if (SYMBOLP (s2))
237 s2 = SYMBOL_NAME (s2);
238 CHECK_STRING (s1);
239 CHECK_STRING (s2);
240
241 if (SCHARS (s1) != SCHARS (s2)
242 || SBYTES (s1) != SBYTES (s2)
243 || bcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
244 return Qnil;
245 return Qt;
246 }
247
248 DEFUN ("compare-strings", Fcompare_strings,
249 Scompare_strings, 6, 7, 0,
250 doc: /* Compare the contents of two strings, converting to multibyte if needed.
251 In string STR1, skip the first START1 characters and stop at END1.
252 In string STR2, skip the first START2 characters and stop at END2.
253 END1 and END2 default to the full lengths of the respective strings.
254
255 Case is significant in this comparison if IGNORE-CASE is nil.
256 Unibyte strings are converted to multibyte for comparison.
257
258 The value is t if the strings (or specified portions) match.
259 If string STR1 is less, the value is a negative number N;
260 - 1 - N is the number of characters that match at the beginning.
261 If string STR1 is greater, the value is a positive number N;
262 N - 1 is the number of characters that match at the beginning. */)
263 (str1, start1, end1, str2, start2, end2, ignore_case)
264 Lisp_Object str1, start1, end1, start2, str2, end2, ignore_case;
265 {
266 register int end1_char, end2_char;
267 register int i1, i1_byte, i2, i2_byte;
268
269 CHECK_STRING (str1);
270 CHECK_STRING (str2);
271 if (NILP (start1))
272 start1 = make_number (0);
273 if (NILP (start2))
274 start2 = make_number (0);
275 CHECK_NATNUM (start1);
276 CHECK_NATNUM (start2);
277 if (! NILP (end1))
278 CHECK_NATNUM (end1);
279 if (! NILP (end2))
280 CHECK_NATNUM (end2);
281
282 i1 = XINT (start1);
283 i2 = XINT (start2);
284
285 i1_byte = string_char_to_byte (str1, i1);
286 i2_byte = string_char_to_byte (str2, i2);
287
288 end1_char = SCHARS (str1);
289 if (! NILP (end1) && end1_char > XINT (end1))
290 end1_char = XINT (end1);
291
292 end2_char = SCHARS (str2);
293 if (! NILP (end2) && end2_char > XINT (end2))
294 end2_char = XINT (end2);
295
296 while (i1 < end1_char && i2 < end2_char)
297 {
298 /* When we find a mismatch, we must compare the
299 characters, not just the bytes. */
300 int c1, c2;
301
302 if (STRING_MULTIBYTE (str1))
303 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
304 else
305 {
306 c1 = SREF (str1, i1++);
307 c1 = unibyte_char_to_multibyte (c1);
308 }
309
310 if (STRING_MULTIBYTE (str2))
311 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
312 else
313 {
314 c2 = SREF (str2, i2++);
315 c2 = unibyte_char_to_multibyte (c2);
316 }
317
318 if (c1 == c2)
319 continue;
320
321 if (! NILP (ignore_case))
322 {
323 Lisp_Object tem;
324
325 tem = Fupcase (make_number (c1));
326 c1 = XINT (tem);
327 tem = Fupcase (make_number (c2));
328 c2 = XINT (tem);
329 }
330
331 if (c1 == c2)
332 continue;
333
334 /* Note that I1 has already been incremented
335 past the character that we are comparing;
336 hence we don't add or subtract 1 here. */
337 if (c1 < c2)
338 return make_number (- i1 + XINT (start1));
339 else
340 return make_number (i1 - XINT (start1));
341 }
342
343 if (i1 < end1_char)
344 return make_number (i1 - XINT (start1) + 1);
345 if (i2 < end2_char)
346 return make_number (- i1 + XINT (start1) - 1);
347
348 return Qt;
349 }
350
351 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
352 doc: /* Return t if first arg string is less than second in lexicographic order.
353 Case is significant.
354 Symbols are also allowed; their print names are used instead. */)
355 (s1, s2)
356 register Lisp_Object s1, s2;
357 {
358 register int end;
359 register int i1, i1_byte, i2, i2_byte;
360
361 if (SYMBOLP (s1))
362 s1 = SYMBOL_NAME (s1);
363 if (SYMBOLP (s2))
364 s2 = SYMBOL_NAME (s2);
365 CHECK_STRING (s1);
366 CHECK_STRING (s2);
367
368 i1 = i1_byte = i2 = i2_byte = 0;
369
370 end = SCHARS (s1);
371 if (end > SCHARS (s2))
372 end = SCHARS (s2);
373
374 while (i1 < end)
375 {
376 /* When we find a mismatch, we must compare the
377 characters, not just the bytes. */
378 int c1, c2;
379
380 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
381 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
382
383 if (c1 != c2)
384 return c1 < c2 ? Qt : Qnil;
385 }
386 return i1 < SCHARS (s2) ? Qt : Qnil;
387 }
388 \f
389 static Lisp_Object concat ();
390
391 /* ARGSUSED */
392 Lisp_Object
393 concat2 (s1, s2)
394 Lisp_Object s1, s2;
395 {
396 #ifdef NO_ARG_ARRAY
397 Lisp_Object args[2];
398 args[0] = s1;
399 args[1] = s2;
400 return concat (2, args, Lisp_String, 0);
401 #else
402 return concat (2, &s1, Lisp_String, 0);
403 #endif /* NO_ARG_ARRAY */
404 }
405
406 /* ARGSUSED */
407 Lisp_Object
408 concat3 (s1, s2, s3)
409 Lisp_Object s1, s2, s3;
410 {
411 #ifdef NO_ARG_ARRAY
412 Lisp_Object args[3];
413 args[0] = s1;
414 args[1] = s2;
415 args[2] = s3;
416 return concat (3, args, Lisp_String, 0);
417 #else
418 return concat (3, &s1, Lisp_String, 0);
419 #endif /* NO_ARG_ARRAY */
420 }
421
422 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
423 doc: /* Concatenate all the arguments and make the result a list.
424 The result is a list whose elements are the elements of all the arguments.
425 Each argument may be a list, vector or string.
426 The last argument is not copied, just used as the tail of the new list.
427 usage: (append &rest SEQUENCES) */)
428 (nargs, args)
429 int nargs;
430 Lisp_Object *args;
431 {
432 return concat (nargs, args, Lisp_Cons, 1);
433 }
434
435 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
436 doc: /* Concatenate all the arguments and make the result a string.
437 The result is a string whose elements are the elements of all the arguments.
438 Each argument may be a string or a list or vector of characters (integers).
439 usage: (concat &rest SEQUENCES) */)
440 (nargs, args)
441 int nargs;
442 Lisp_Object *args;
443 {
444 return concat (nargs, args, Lisp_String, 0);
445 }
446
447 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
448 doc: /* Concatenate all the arguments and make the result a vector.
449 The result is a vector whose elements are the elements of all the arguments.
450 Each argument may be a list, vector or string.
451 usage: (vconcat &rest SEQUENCES) */)
452 (nargs, args)
453 int nargs;
454 Lisp_Object *args;
455 {
456 return concat (nargs, args, Lisp_Vectorlike, 0);
457 }
458
459 /* Return a copy of a sub char table ARG. The elements except for a
460 nested sub char table are not copied. */
461 static Lisp_Object
462 copy_sub_char_table (arg)
463 Lisp_Object arg;
464 {
465 Lisp_Object copy = make_sub_char_table (XCHAR_TABLE (arg)->defalt);
466 int i;
467
468 /* Copy all the contents. */
469 bcopy (XCHAR_TABLE (arg)->contents, XCHAR_TABLE (copy)->contents,
470 SUB_CHAR_TABLE_ORDINARY_SLOTS * sizeof (Lisp_Object));
471 /* Recursively copy any sub char-tables in the ordinary slots. */
472 for (i = 32; i < SUB_CHAR_TABLE_ORDINARY_SLOTS; i++)
473 if (SUB_CHAR_TABLE_P (XCHAR_TABLE (arg)->contents[i]))
474 XCHAR_TABLE (copy)->contents[i]
475 = copy_sub_char_table (XCHAR_TABLE (copy)->contents[i]);
476
477 return copy;
478 }
479
480
481 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
482 doc: /* Return a copy of a list, vector, string or char-table.
483 The elements of a list or vector are not copied; they are shared
484 with the original. */)
485 (arg)
486 Lisp_Object arg;
487 {
488 if (NILP (arg)) return arg;
489
490 if (CHAR_TABLE_P (arg))
491 {
492 int i;
493 Lisp_Object copy;
494
495 copy = Fmake_char_table (XCHAR_TABLE (arg)->purpose, Qnil);
496 /* Copy all the slots, including the extra ones. */
497 bcopy (XVECTOR (arg)->contents, XVECTOR (copy)->contents,
498 ((XCHAR_TABLE (arg)->size & PSEUDOVECTOR_SIZE_MASK)
499 * sizeof (Lisp_Object)));
500
501 /* Recursively copy any sub char tables in the ordinary slots
502 for multibyte characters. */
503 for (i = CHAR_TABLE_SINGLE_BYTE_SLOTS;
504 i < CHAR_TABLE_ORDINARY_SLOTS; i++)
505 if (SUB_CHAR_TABLE_P (XCHAR_TABLE (arg)->contents[i]))
506 XCHAR_TABLE (copy)->contents[i]
507 = copy_sub_char_table (XCHAR_TABLE (copy)->contents[i]);
508
509 return copy;
510 }
511
512 if (BOOL_VECTOR_P (arg))
513 {
514 Lisp_Object val;
515 int size_in_chars
516 = (XBOOL_VECTOR (arg)->size + BITS_PER_CHAR - 1) / BITS_PER_CHAR;
517
518 val = Fmake_bool_vector (Flength (arg), Qnil);
519 bcopy (XBOOL_VECTOR (arg)->data, XBOOL_VECTOR (val)->data,
520 size_in_chars);
521 return val;
522 }
523
524 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
525 arg = wrong_type_argument (Qsequencep, arg);
526 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
527 }
528
529 /* In string STR of length LEN, see if bytes before STR[I] combine
530 with bytes after STR[I] to form a single character. If so, return
531 the number of bytes after STR[I] which combine in this way.
532 Otherwize, return 0. */
533
534 static int
535 count_combining (str, len, i)
536 unsigned char *str;
537 int len, i;
538 {
539 int j = i - 1, bytes;
540
541 if (i == 0 || i == len || CHAR_HEAD_P (str[i]))
542 return 0;
543 while (j >= 0 && !CHAR_HEAD_P (str[j])) j--;
544 if (j < 0 || ! BASE_LEADING_CODE_P (str[j]))
545 return 0;
546 PARSE_MULTIBYTE_SEQ (str + j, len - j, bytes);
547 return (bytes <= i - j ? 0 : bytes - (i - j));
548 }
549
550 /* This structure holds information of an argument of `concat' that is
551 a string and has text properties to be copied. */
552 struct textprop_rec
553 {
554 int argnum; /* refer to ARGS (arguments of `concat') */
555 int from; /* refer to ARGS[argnum] (argument string) */
556 int to; /* refer to VAL (the target string) */
557 };
558
559 static Lisp_Object
560 concat (nargs, args, target_type, last_special)
561 int nargs;
562 Lisp_Object *args;
563 enum Lisp_Type target_type;
564 int last_special;
565 {
566 Lisp_Object val;
567 register Lisp_Object tail;
568 register Lisp_Object this;
569 int toindex;
570 int toindex_byte = 0;
571 register int result_len;
572 register int result_len_byte;
573 register int argnum;
574 Lisp_Object last_tail;
575 Lisp_Object prev;
576 int some_multibyte;
577 /* When we make a multibyte string, we can't copy text properties
578 while concatinating each string because the length of resulting
579 string can't be decided until we finish the whole concatination.
580 So, we record strings that have text properties to be copied
581 here, and copy the text properties after the concatination. */
582 struct textprop_rec *textprops = NULL;
583 /* Number of elments in textprops. */
584 int num_textprops = 0;
585
586 tail = Qnil;
587
588 /* In append, the last arg isn't treated like the others */
589 if (last_special && nargs > 0)
590 {
591 nargs--;
592 last_tail = args[nargs];
593 }
594 else
595 last_tail = Qnil;
596
597 /* Canonicalize each argument. */
598 for (argnum = 0; argnum < nargs; argnum++)
599 {
600 this = args[argnum];
601 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
602 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
603 {
604 args[argnum] = wrong_type_argument (Qsequencep, this);
605 }
606 }
607
608 /* Compute total length in chars of arguments in RESULT_LEN.
609 If desired output is a string, also compute length in bytes
610 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
611 whether the result should be a multibyte string. */
612 result_len_byte = 0;
613 result_len = 0;
614 some_multibyte = 0;
615 for (argnum = 0; argnum < nargs; argnum++)
616 {
617 int len;
618 this = args[argnum];
619 len = XFASTINT (Flength (this));
620 if (target_type == Lisp_String)
621 {
622 /* We must count the number of bytes needed in the string
623 as well as the number of characters. */
624 int i;
625 Lisp_Object ch;
626 int this_len_byte;
627
628 if (VECTORP (this))
629 for (i = 0; i < len; i++)
630 {
631 ch = XVECTOR (this)->contents[i];
632 if (! INTEGERP (ch))
633 wrong_type_argument (Qintegerp, ch);
634 this_len_byte = CHAR_BYTES (XINT (ch));
635 result_len_byte += this_len_byte;
636 if (!SINGLE_BYTE_CHAR_P (XINT (ch)))
637 some_multibyte = 1;
638 }
639 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
640 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
641 else if (CONSP (this))
642 for (; CONSP (this); this = XCDR (this))
643 {
644 ch = XCAR (this);
645 if (! INTEGERP (ch))
646 wrong_type_argument (Qintegerp, ch);
647 this_len_byte = CHAR_BYTES (XINT (ch));
648 result_len_byte += this_len_byte;
649 if (!SINGLE_BYTE_CHAR_P (XINT (ch)))
650 some_multibyte = 1;
651 }
652 else if (STRINGP (this))
653 {
654 if (STRING_MULTIBYTE (this))
655 {
656 some_multibyte = 1;
657 result_len_byte += SBYTES (this);
658 }
659 else
660 result_len_byte += count_size_as_multibyte (SDATA (this),
661 SCHARS (this));
662 }
663 }
664
665 result_len += len;
666 }
667
668 if (! some_multibyte)
669 result_len_byte = result_len;
670
671 /* Create the output object. */
672 if (target_type == Lisp_Cons)
673 val = Fmake_list (make_number (result_len), Qnil);
674 else if (target_type == Lisp_Vectorlike)
675 val = Fmake_vector (make_number (result_len), Qnil);
676 else if (some_multibyte)
677 val = make_uninit_multibyte_string (result_len, result_len_byte);
678 else
679 val = make_uninit_string (result_len);
680
681 /* In `append', if all but last arg are nil, return last arg. */
682 if (target_type == Lisp_Cons && EQ (val, Qnil))
683 return last_tail;
684
685 /* Copy the contents of the args into the result. */
686 if (CONSP (val))
687 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
688 else
689 toindex = 0, toindex_byte = 0;
690
691 prev = Qnil;
692 if (STRINGP (val))
693 textprops
694 = (struct textprop_rec *) alloca (sizeof (struct textprop_rec) * nargs);
695
696 for (argnum = 0; argnum < nargs; argnum++)
697 {
698 Lisp_Object thislen;
699 int thisleni = 0;
700 register unsigned int thisindex = 0;
701 register unsigned int thisindex_byte = 0;
702
703 this = args[argnum];
704 if (!CONSP (this))
705 thislen = Flength (this), thisleni = XINT (thislen);
706
707 /* Between strings of the same kind, copy fast. */
708 if (STRINGP (this) && STRINGP (val)
709 && STRING_MULTIBYTE (this) == some_multibyte)
710 {
711 int thislen_byte = SBYTES (this);
712 int combined;
713
714 bcopy (SDATA (this), SDATA (val) + toindex_byte,
715 SBYTES (this));
716 combined = (some_multibyte && toindex_byte > 0
717 ? count_combining (SDATA (val),
718 toindex_byte + thislen_byte,
719 toindex_byte)
720 : 0);
721 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
722 {
723 textprops[num_textprops].argnum = argnum;
724 /* We ignore text properties on characters being combined. */
725 textprops[num_textprops].from = combined;
726 textprops[num_textprops++].to = toindex;
727 }
728 toindex_byte += thislen_byte;
729 toindex += thisleni - combined;
730 STRING_SET_CHARS (val, SCHARS (val) - combined);
731 }
732 /* Copy a single-byte string to a multibyte string. */
733 else if (STRINGP (this) && STRINGP (val))
734 {
735 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
736 {
737 textprops[num_textprops].argnum = argnum;
738 textprops[num_textprops].from = 0;
739 textprops[num_textprops++].to = toindex;
740 }
741 toindex_byte += copy_text (SDATA (this),
742 SDATA (val) + toindex_byte,
743 SCHARS (this), 0, 1);
744 toindex += thisleni;
745 }
746 else
747 /* Copy element by element. */
748 while (1)
749 {
750 register Lisp_Object elt;
751
752 /* Fetch next element of `this' arg into `elt', or break if
753 `this' is exhausted. */
754 if (NILP (this)) break;
755 if (CONSP (this))
756 elt = XCAR (this), this = XCDR (this);
757 else if (thisindex >= thisleni)
758 break;
759 else if (STRINGP (this))
760 {
761 int c;
762 if (STRING_MULTIBYTE (this))
763 {
764 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
765 thisindex,
766 thisindex_byte);
767 XSETFASTINT (elt, c);
768 }
769 else
770 {
771 XSETFASTINT (elt, SREF (this, thisindex++));
772 if (some_multibyte
773 && (XINT (elt) >= 0240
774 || (XINT (elt) >= 0200
775 && ! NILP (Vnonascii_translation_table)))
776 && XINT (elt) < 0400)
777 {
778 c = unibyte_char_to_multibyte (XINT (elt));
779 XSETINT (elt, c);
780 }
781 }
782 }
783 else if (BOOL_VECTOR_P (this))
784 {
785 int byte;
786 byte = XBOOL_VECTOR (this)->data[thisindex / BITS_PER_CHAR];
787 if (byte & (1 << (thisindex % BITS_PER_CHAR)))
788 elt = Qt;
789 else
790 elt = Qnil;
791 thisindex++;
792 }
793 else
794 elt = XVECTOR (this)->contents[thisindex++];
795
796 /* Store this element into the result. */
797 if (toindex < 0)
798 {
799 XSETCAR (tail, elt);
800 prev = tail;
801 tail = XCDR (tail);
802 }
803 else if (VECTORP (val))
804 XVECTOR (val)->contents[toindex++] = elt;
805 else
806 {
807 CHECK_NUMBER (elt);
808 if (SINGLE_BYTE_CHAR_P (XINT (elt)))
809 {
810 if (some_multibyte)
811 toindex_byte
812 += CHAR_STRING (XINT (elt),
813 SDATA (val) + toindex_byte);
814 else
815 SSET (val, toindex_byte++, XINT (elt));
816 if (some_multibyte
817 && toindex_byte > 0
818 && count_combining (SDATA (val),
819 toindex_byte, toindex_byte - 1))
820 STRING_SET_CHARS (val, SCHARS (val) - 1);
821 else
822 toindex++;
823 }
824 else
825 /* If we have any multibyte characters,
826 we already decided to make a multibyte string. */
827 {
828 int c = XINT (elt);
829 /* P exists as a variable
830 to avoid a bug on the Masscomp C compiler. */
831 unsigned char *p = SDATA (val) + toindex_byte;
832
833 toindex_byte += CHAR_STRING (c, p);
834 toindex++;
835 }
836 }
837 }
838 }
839 if (!NILP (prev))
840 XSETCDR (prev, last_tail);
841
842 if (num_textprops > 0)
843 {
844 Lisp_Object props;
845 int last_to_end = -1;
846
847 for (argnum = 0; argnum < num_textprops; argnum++)
848 {
849 this = args[textprops[argnum].argnum];
850 props = text_property_list (this,
851 make_number (0),
852 make_number (SCHARS (this)),
853 Qnil);
854 /* If successive arguments have properites, be sure that the
855 value of `composition' property be the copy. */
856 if (last_to_end == textprops[argnum].to)
857 make_composition_value_copy (props);
858 add_text_properties_from_list (val, props,
859 make_number (textprops[argnum].to));
860 last_to_end = textprops[argnum].to + SCHARS (this);
861 }
862 }
863 return val;
864 }
865 \f
866 static Lisp_Object string_char_byte_cache_string;
867 static int string_char_byte_cache_charpos;
868 static int string_char_byte_cache_bytepos;
869
870 void
871 clear_string_char_byte_cache ()
872 {
873 string_char_byte_cache_string = Qnil;
874 }
875
876 /* Return the character index corresponding to CHAR_INDEX in STRING. */
877
878 int
879 string_char_to_byte (string, char_index)
880 Lisp_Object string;
881 int char_index;
882 {
883 int i, i_byte;
884 int best_below, best_below_byte;
885 int best_above, best_above_byte;
886
887 if (! STRING_MULTIBYTE (string))
888 return char_index;
889
890 best_below = best_below_byte = 0;
891 best_above = SCHARS (string);
892 best_above_byte = SBYTES (string);
893
894 if (EQ (string, string_char_byte_cache_string))
895 {
896 if (string_char_byte_cache_charpos < char_index)
897 {
898 best_below = string_char_byte_cache_charpos;
899 best_below_byte = string_char_byte_cache_bytepos;
900 }
901 else
902 {
903 best_above = string_char_byte_cache_charpos;
904 best_above_byte = string_char_byte_cache_bytepos;
905 }
906 }
907
908 if (char_index - best_below < best_above - char_index)
909 {
910 while (best_below < char_index)
911 {
912 int c;
913 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, string,
914 best_below, best_below_byte);
915 }
916 i = best_below;
917 i_byte = best_below_byte;
918 }
919 else
920 {
921 while (best_above > char_index)
922 {
923 unsigned char *pend = SDATA (string) + best_above_byte;
924 unsigned char *pbeg = pend - best_above_byte;
925 unsigned char *p = pend - 1;
926 int bytes;
927
928 while (p > pbeg && !CHAR_HEAD_P (*p)) p--;
929 PARSE_MULTIBYTE_SEQ (p, pend - p, bytes);
930 if (bytes == pend - p)
931 best_above_byte -= bytes;
932 else if (bytes > pend - p)
933 best_above_byte -= (pend - p);
934 else
935 best_above_byte--;
936 best_above--;
937 }
938 i = best_above;
939 i_byte = best_above_byte;
940 }
941
942 string_char_byte_cache_bytepos = i_byte;
943 string_char_byte_cache_charpos = i;
944 string_char_byte_cache_string = string;
945
946 return i_byte;
947 }
948 \f
949 /* Return the character index corresponding to BYTE_INDEX in STRING. */
950
951 int
952 string_byte_to_char (string, byte_index)
953 Lisp_Object string;
954 int byte_index;
955 {
956 int i, i_byte;
957 int best_below, best_below_byte;
958 int best_above, best_above_byte;
959
960 if (! STRING_MULTIBYTE (string))
961 return byte_index;
962
963 best_below = best_below_byte = 0;
964 best_above = SCHARS (string);
965 best_above_byte = SBYTES (string);
966
967 if (EQ (string, string_char_byte_cache_string))
968 {
969 if (string_char_byte_cache_bytepos < byte_index)
970 {
971 best_below = string_char_byte_cache_charpos;
972 best_below_byte = string_char_byte_cache_bytepos;
973 }
974 else
975 {
976 best_above = string_char_byte_cache_charpos;
977 best_above_byte = string_char_byte_cache_bytepos;
978 }
979 }
980
981 if (byte_index - best_below_byte < best_above_byte - byte_index)
982 {
983 while (best_below_byte < byte_index)
984 {
985 int c;
986 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, string,
987 best_below, best_below_byte);
988 }
989 i = best_below;
990 i_byte = best_below_byte;
991 }
992 else
993 {
994 while (best_above_byte > byte_index)
995 {
996 unsigned char *pend = SDATA (string) + best_above_byte;
997 unsigned char *pbeg = pend - best_above_byte;
998 unsigned char *p = pend - 1;
999 int bytes;
1000
1001 while (p > pbeg && !CHAR_HEAD_P (*p)) p--;
1002 PARSE_MULTIBYTE_SEQ (p, pend - p, bytes);
1003 if (bytes == pend - p)
1004 best_above_byte -= bytes;
1005 else if (bytes > pend - p)
1006 best_above_byte -= (pend - p);
1007 else
1008 best_above_byte--;
1009 best_above--;
1010 }
1011 i = best_above;
1012 i_byte = best_above_byte;
1013 }
1014
1015 string_char_byte_cache_bytepos = i_byte;
1016 string_char_byte_cache_charpos = i;
1017 string_char_byte_cache_string = string;
1018
1019 return i;
1020 }
1021 \f
1022 /* Convert STRING to a multibyte string.
1023 Single-byte characters 0240 through 0377 are converted
1024 by adding nonascii_insert_offset to each. */
1025
1026 Lisp_Object
1027 string_make_multibyte (string)
1028 Lisp_Object string;
1029 {
1030 unsigned char *buf;
1031 int nbytes;
1032
1033 if (STRING_MULTIBYTE (string))
1034 return string;
1035
1036 nbytes = count_size_as_multibyte (SDATA (string),
1037 SCHARS (string));
1038 /* If all the chars are ASCII, they won't need any more bytes
1039 once converted. In that case, we can return STRING itself. */
1040 if (nbytes == SBYTES (string))
1041 return string;
1042
1043 buf = (unsigned char *) alloca (nbytes);
1044 copy_text (SDATA (string), buf, SBYTES (string),
1045 0, 1);
1046
1047 return make_multibyte_string (buf, SCHARS (string), nbytes);
1048 }
1049
1050
1051 /* Convert STRING to a multibyte string without changing each
1052 character codes. Thus, characters 0200 trough 0237 are converted
1053 to eight-bit-control characters, and characters 0240 through 0377
1054 are converted eight-bit-graphic characters. */
1055
1056 Lisp_Object
1057 string_to_multibyte (string)
1058 Lisp_Object string;
1059 {
1060 unsigned char *buf;
1061 int nbytes;
1062
1063 if (STRING_MULTIBYTE (string))
1064 return string;
1065
1066 nbytes = parse_str_to_multibyte (SDATA (string), SBYTES (string));
1067 /* If all the chars are ASCII or eight-bit-graphic, they won't need
1068 any more bytes once converted. */
1069 if (nbytes == SBYTES (string))
1070 return make_multibyte_string (SDATA (string), nbytes, nbytes);
1071
1072 buf = (unsigned char *) alloca (nbytes);
1073 bcopy (SDATA (string), buf, SBYTES (string));
1074 str_to_multibyte (buf, nbytes, SBYTES (string));
1075
1076 return make_multibyte_string (buf, SCHARS (string), nbytes);
1077 }
1078
1079
1080 /* Convert STRING to a single-byte string. */
1081
1082 Lisp_Object
1083 string_make_unibyte (string)
1084 Lisp_Object string;
1085 {
1086 unsigned char *buf;
1087
1088 if (! STRING_MULTIBYTE (string))
1089 return string;
1090
1091 buf = (unsigned char *) alloca (SCHARS (string));
1092
1093 copy_text (SDATA (string), buf, SBYTES (string),
1094 1, 0);
1095
1096 return make_unibyte_string (buf, SCHARS (string));
1097 }
1098
1099 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
1100 1, 1, 0,
1101 doc: /* Return the multibyte equivalent of STRING.
1102 If STRING is unibyte and contains non-ASCII characters, the function
1103 `unibyte-char-to-multibyte' is used to convert each unibyte character
1104 to a multibyte character. In this case, the returned string is a
1105 newly created string with no text properties. If STRING is multibyte
1106 or entirely ASCII, it is returned unchanged. In particular, when
1107 STRING is unibyte and entirely ASCII, the returned string is unibyte.
1108 \(When the characters are all ASCII, Emacs primitives will treat the
1109 string the same way whether it is unibyte or multibyte.) */)
1110 (string)
1111 Lisp_Object string;
1112 {
1113 CHECK_STRING (string);
1114
1115 return string_make_multibyte (string);
1116 }
1117
1118 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
1119 1, 1, 0,
1120 doc: /* Return the unibyte equivalent of STRING.
1121 Multibyte character codes are converted to unibyte according to
1122 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
1123 If the lookup in the translation table fails, this function takes just
1124 the low 8 bits of each character. */)
1125 (string)
1126 Lisp_Object string;
1127 {
1128 CHECK_STRING (string);
1129
1130 return string_make_unibyte (string);
1131 }
1132
1133 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1134 1, 1, 0,
1135 doc: /* Return a unibyte string with the same individual bytes as STRING.
1136 If STRING is unibyte, the result is STRING itself.
1137 Otherwise it is a newly created string, with no text properties.
1138 If STRING is multibyte and contains a character of charset
1139 `eight-bit-control' or `eight-bit-graphic', it is converted to the
1140 corresponding single byte. */)
1141 (string)
1142 Lisp_Object string;
1143 {
1144 CHECK_STRING (string);
1145
1146 if (STRING_MULTIBYTE (string))
1147 {
1148 int bytes = SBYTES (string);
1149 unsigned char *str = (unsigned char *) xmalloc (bytes);
1150
1151 bcopy (SDATA (string), str, bytes);
1152 bytes = str_as_unibyte (str, bytes);
1153 string = make_unibyte_string (str, bytes);
1154 xfree (str);
1155 }
1156 return string;
1157 }
1158
1159 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1160 1, 1, 0,
1161 doc: /* Return a multibyte string with the same individual bytes as STRING.
1162 If STRING is multibyte, the result is STRING itself.
1163 Otherwise it is a newly created string, with no text properties.
1164 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1165 part of a multibyte form), it is converted to the corresponding
1166 multibyte character of charset `eight-bit-control' or `eight-bit-graphic'. */)
1167 (string)
1168 Lisp_Object string;
1169 {
1170 CHECK_STRING (string);
1171
1172 if (! STRING_MULTIBYTE (string))
1173 {
1174 Lisp_Object new_string;
1175 int nchars, nbytes;
1176
1177 parse_str_as_multibyte (SDATA (string),
1178 SBYTES (string),
1179 &nchars, &nbytes);
1180 new_string = make_uninit_multibyte_string (nchars, nbytes);
1181 bcopy (SDATA (string), SDATA (new_string),
1182 SBYTES (string));
1183 if (nbytes != SBYTES (string))
1184 str_as_multibyte (SDATA (new_string), nbytes,
1185 SBYTES (string), NULL);
1186 string = new_string;
1187 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1188 }
1189 return string;
1190 }
1191
1192 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1193 1, 1, 0,
1194 doc: /* Return a multibyte string with the same individual chars as STRING.
1195 If STRING is multibyte, the result is STRING itself.
1196 Otherwise it is a newly created string, with no text properties.
1197 Characters 0200 through 0237 are converted to eight-bit-control
1198 characters of the same character code. Characters 0240 through 0377
1199 are converted to eight-bit-graphic characters of the same character
1200 codes. */)
1201 (string)
1202 Lisp_Object string;
1203 {
1204 CHECK_STRING (string);
1205
1206 return string_to_multibyte (string);
1207 }
1208
1209 \f
1210 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1211 doc: /* Return a copy of ALIST.
1212 This is an alist which represents the same mapping from objects to objects,
1213 but does not share the alist structure with ALIST.
1214 The objects mapped (cars and cdrs of elements of the alist)
1215 are shared, however.
1216 Elements of ALIST that are not conses are also shared. */)
1217 (alist)
1218 Lisp_Object alist;
1219 {
1220 register Lisp_Object tem;
1221
1222 CHECK_LIST (alist);
1223 if (NILP (alist))
1224 return alist;
1225 alist = concat (1, &alist, Lisp_Cons, 0);
1226 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1227 {
1228 register Lisp_Object car;
1229 car = XCAR (tem);
1230
1231 if (CONSP (car))
1232 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1233 }
1234 return alist;
1235 }
1236
1237 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1238 doc: /* Return a substring of STRING, starting at index FROM and ending before TO.
1239 TO may be nil or omitted; then the substring runs to the end of STRING.
1240 FROM and TO start at 0. If either is negative, it counts from the end.
1241
1242 This function allows vectors as well as strings. */)
1243 (string, from, to)
1244 Lisp_Object string;
1245 register Lisp_Object from, to;
1246 {
1247 Lisp_Object res;
1248 int size;
1249 int size_byte = 0;
1250 int from_char, to_char;
1251 int from_byte = 0, to_byte = 0;
1252
1253 if (! (STRINGP (string) || VECTORP (string)))
1254 wrong_type_argument (Qarrayp, string);
1255
1256 CHECK_NUMBER (from);
1257
1258 if (STRINGP (string))
1259 {
1260 size = SCHARS (string);
1261 size_byte = SBYTES (string);
1262 }
1263 else
1264 size = XVECTOR (string)->size;
1265
1266 if (NILP (to))
1267 {
1268 to_char = size;
1269 to_byte = size_byte;
1270 }
1271 else
1272 {
1273 CHECK_NUMBER (to);
1274
1275 to_char = XINT (to);
1276 if (to_char < 0)
1277 to_char += size;
1278
1279 if (STRINGP (string))
1280 to_byte = string_char_to_byte (string, to_char);
1281 }
1282
1283 from_char = XINT (from);
1284 if (from_char < 0)
1285 from_char += size;
1286 if (STRINGP (string))
1287 from_byte = string_char_to_byte (string, from_char);
1288
1289 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1290 args_out_of_range_3 (string, make_number (from_char),
1291 make_number (to_char));
1292
1293 if (STRINGP (string))
1294 {
1295 res = make_specified_string (SDATA (string) + from_byte,
1296 to_char - from_char, to_byte - from_byte,
1297 STRING_MULTIBYTE (string));
1298 copy_text_properties (make_number (from_char), make_number (to_char),
1299 string, make_number (0), res, Qnil);
1300 }
1301 else
1302 res = Fvector (to_char - from_char,
1303 XVECTOR (string)->contents + from_char);
1304
1305 return res;
1306 }
1307
1308
1309 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1310 doc: /* Return a substring of STRING, without text properties.
1311 It starts at index FROM and ending before TO.
1312 TO may be nil or omitted; then the substring runs to the end of STRING.
1313 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1314 If FROM or TO is negative, it counts from the end.
1315
1316 With one argument, just copy STRING without its properties. */)
1317 (string, from, to)
1318 Lisp_Object string;
1319 register Lisp_Object from, to;
1320 {
1321 int size, size_byte;
1322 int from_char, to_char;
1323 int from_byte, to_byte;
1324
1325 CHECK_STRING (string);
1326
1327 size = SCHARS (string);
1328 size_byte = SBYTES (string);
1329
1330 if (NILP (from))
1331 from_char = from_byte = 0;
1332 else
1333 {
1334 CHECK_NUMBER (from);
1335 from_char = XINT (from);
1336 if (from_char < 0)
1337 from_char += size;
1338
1339 from_byte = string_char_to_byte (string, from_char);
1340 }
1341
1342 if (NILP (to))
1343 {
1344 to_char = size;
1345 to_byte = size_byte;
1346 }
1347 else
1348 {
1349 CHECK_NUMBER (to);
1350
1351 to_char = XINT (to);
1352 if (to_char < 0)
1353 to_char += size;
1354
1355 to_byte = string_char_to_byte (string, to_char);
1356 }
1357
1358 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1359 args_out_of_range_3 (string, make_number (from_char),
1360 make_number (to_char));
1361
1362 return make_specified_string (SDATA (string) + from_byte,
1363 to_char - from_char, to_byte - from_byte,
1364 STRING_MULTIBYTE (string));
1365 }
1366
1367 /* Extract a substring of STRING, giving start and end positions
1368 both in characters and in bytes. */
1369
1370 Lisp_Object
1371 substring_both (string, from, from_byte, to, to_byte)
1372 Lisp_Object string;
1373 int from, from_byte, to, to_byte;
1374 {
1375 Lisp_Object res;
1376 int size;
1377 int size_byte;
1378
1379 if (! (STRINGP (string) || VECTORP (string)))
1380 wrong_type_argument (Qarrayp, string);
1381
1382 if (STRINGP (string))
1383 {
1384 size = SCHARS (string);
1385 size_byte = SBYTES (string);
1386 }
1387 else
1388 size = XVECTOR (string)->size;
1389
1390 if (!(0 <= from && from <= to && to <= size))
1391 args_out_of_range_3 (string, make_number (from), make_number (to));
1392
1393 if (STRINGP (string))
1394 {
1395 res = make_specified_string (SDATA (string) + from_byte,
1396 to - from, to_byte - from_byte,
1397 STRING_MULTIBYTE (string));
1398 copy_text_properties (make_number (from), make_number (to),
1399 string, make_number (0), res, Qnil);
1400 }
1401 else
1402 res = Fvector (to - from,
1403 XVECTOR (string)->contents + from);
1404
1405 return res;
1406 }
1407 \f
1408 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1409 doc: /* Take cdr N times on LIST, returns the result. */)
1410 (n, list)
1411 Lisp_Object n;
1412 register Lisp_Object list;
1413 {
1414 register int i, num;
1415 CHECK_NUMBER (n);
1416 num = XINT (n);
1417 for (i = 0; i < num && !NILP (list); i++)
1418 {
1419 QUIT;
1420 if (! CONSP (list))
1421 wrong_type_argument (Qlistp, list);
1422 list = XCDR (list);
1423 }
1424 return list;
1425 }
1426
1427 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1428 doc: /* Return the Nth element of LIST.
1429 N counts from zero. If LIST is not that long, nil is returned. */)
1430 (n, list)
1431 Lisp_Object n, list;
1432 {
1433 return Fcar (Fnthcdr (n, list));
1434 }
1435
1436 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1437 doc: /* Return element of SEQUENCE at index N. */)
1438 (sequence, n)
1439 register Lisp_Object sequence, n;
1440 {
1441 CHECK_NUMBER (n);
1442 while (1)
1443 {
1444 if (CONSP (sequence) || NILP (sequence))
1445 return Fcar (Fnthcdr (n, sequence));
1446 else if (STRINGP (sequence) || VECTORP (sequence)
1447 || BOOL_VECTOR_P (sequence) || CHAR_TABLE_P (sequence))
1448 return Faref (sequence, n);
1449 else
1450 sequence = wrong_type_argument (Qsequencep, sequence);
1451 }
1452 }
1453
1454 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1455 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1456 The value is actually the tail of LIST whose car is ELT. */)
1457 (elt, list)
1458 register Lisp_Object elt;
1459 Lisp_Object list;
1460 {
1461 register Lisp_Object tail;
1462 for (tail = list; !NILP (tail); tail = XCDR (tail))
1463 {
1464 register Lisp_Object tem;
1465 if (! CONSP (tail))
1466 wrong_type_argument (Qlistp, list);
1467 tem = XCAR (tail);
1468 if (! NILP (Fequal (elt, tem)))
1469 return tail;
1470 QUIT;
1471 }
1472 return Qnil;
1473 }
1474
1475 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1476 doc: /* Return non-nil if ELT is an element of LIST.
1477 Comparison done with EQ. The value is actually the tail of LIST
1478 whose car is ELT. */)
1479 (elt, list)
1480 Lisp_Object elt, list;
1481 {
1482 while (1)
1483 {
1484 if (!CONSP (list) || EQ (XCAR (list), elt))
1485 break;
1486
1487 list = XCDR (list);
1488 if (!CONSP (list) || EQ (XCAR (list), elt))
1489 break;
1490
1491 list = XCDR (list);
1492 if (!CONSP (list) || EQ (XCAR (list), elt))
1493 break;
1494
1495 list = XCDR (list);
1496 QUIT;
1497 }
1498
1499 if (!CONSP (list) && !NILP (list))
1500 list = wrong_type_argument (Qlistp, list);
1501
1502 return list;
1503 }
1504
1505 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1506 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1507 The value is actually the first element of LIST whose car is KEY.
1508 Elements of LIST that are not conses are ignored. */)
1509 (key, list)
1510 Lisp_Object key, list;
1511 {
1512 Lisp_Object result;
1513
1514 while (1)
1515 {
1516 if (!CONSP (list)
1517 || (CONSP (XCAR (list))
1518 && EQ (XCAR (XCAR (list)), key)))
1519 break;
1520
1521 list = XCDR (list);
1522 if (!CONSP (list)
1523 || (CONSP (XCAR (list))
1524 && EQ (XCAR (XCAR (list)), key)))
1525 break;
1526
1527 list = XCDR (list);
1528 if (!CONSP (list)
1529 || (CONSP (XCAR (list))
1530 && EQ (XCAR (XCAR (list)), key)))
1531 break;
1532
1533 list = XCDR (list);
1534 QUIT;
1535 }
1536
1537 if (CONSP (list))
1538 result = XCAR (list);
1539 else if (NILP (list))
1540 result = Qnil;
1541 else
1542 result = wrong_type_argument (Qlistp, list);
1543
1544 return result;
1545 }
1546
1547 /* Like Fassq but never report an error and do not allow quits.
1548 Use only on lists known never to be circular. */
1549
1550 Lisp_Object
1551 assq_no_quit (key, list)
1552 Lisp_Object key, list;
1553 {
1554 while (CONSP (list)
1555 && (!CONSP (XCAR (list))
1556 || !EQ (XCAR (XCAR (list)), key)))
1557 list = XCDR (list);
1558
1559 return CONSP (list) ? XCAR (list) : Qnil;
1560 }
1561
1562 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1563 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1564 The value is actually the first element of LIST whose car equals KEY. */)
1565 (key, list)
1566 Lisp_Object key, list;
1567 {
1568 Lisp_Object result, car;
1569
1570 while (1)
1571 {
1572 if (!CONSP (list)
1573 || (CONSP (XCAR (list))
1574 && (car = XCAR (XCAR (list)),
1575 EQ (car, key) || !NILP (Fequal (car, key)))))
1576 break;
1577
1578 list = XCDR (list);
1579 if (!CONSP (list)
1580 || (CONSP (XCAR (list))
1581 && (car = XCAR (XCAR (list)),
1582 EQ (car, key) || !NILP (Fequal (car, key)))))
1583 break;
1584
1585 list = XCDR (list);
1586 if (!CONSP (list)
1587 || (CONSP (XCAR (list))
1588 && (car = XCAR (XCAR (list)),
1589 EQ (car, key) || !NILP (Fequal (car, key)))))
1590 break;
1591
1592 list = XCDR (list);
1593 QUIT;
1594 }
1595
1596 if (CONSP (list))
1597 result = XCAR (list);
1598 else if (NILP (list))
1599 result = Qnil;
1600 else
1601 result = wrong_type_argument (Qlistp, list);
1602
1603 return result;
1604 }
1605
1606 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1607 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1608 The value is actually the first element of LIST whose cdr is KEY. */)
1609 (key, list)
1610 register Lisp_Object key;
1611 Lisp_Object list;
1612 {
1613 Lisp_Object result;
1614
1615 while (1)
1616 {
1617 if (!CONSP (list)
1618 || (CONSP (XCAR (list))
1619 && EQ (XCDR (XCAR (list)), key)))
1620 break;
1621
1622 list = XCDR (list);
1623 if (!CONSP (list)
1624 || (CONSP (XCAR (list))
1625 && EQ (XCDR (XCAR (list)), key)))
1626 break;
1627
1628 list = XCDR (list);
1629 if (!CONSP (list)
1630 || (CONSP (XCAR (list))
1631 && EQ (XCDR (XCAR (list)), key)))
1632 break;
1633
1634 list = XCDR (list);
1635 QUIT;
1636 }
1637
1638 if (NILP (list))
1639 result = Qnil;
1640 else if (CONSP (list))
1641 result = XCAR (list);
1642 else
1643 result = wrong_type_argument (Qlistp, list);
1644
1645 return result;
1646 }
1647
1648 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1649 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1650 The value is actually the first element of LIST whose cdr equals KEY. */)
1651 (key, list)
1652 Lisp_Object key, list;
1653 {
1654 Lisp_Object result, cdr;
1655
1656 while (1)
1657 {
1658 if (!CONSP (list)
1659 || (CONSP (XCAR (list))
1660 && (cdr = XCDR (XCAR (list)),
1661 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1662 break;
1663
1664 list = XCDR (list);
1665 if (!CONSP (list)
1666 || (CONSP (XCAR (list))
1667 && (cdr = XCDR (XCAR (list)),
1668 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1669 break;
1670
1671 list = XCDR (list);
1672 if (!CONSP (list)
1673 || (CONSP (XCAR (list))
1674 && (cdr = XCDR (XCAR (list)),
1675 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1676 break;
1677
1678 list = XCDR (list);
1679 QUIT;
1680 }
1681
1682 if (CONSP (list))
1683 result = XCAR (list);
1684 else if (NILP (list))
1685 result = Qnil;
1686 else
1687 result = wrong_type_argument (Qlistp, list);
1688
1689 return result;
1690 }
1691 \f
1692 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1693 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1694 The modified LIST is returned. Comparison is done with `eq'.
1695 If the first member of LIST is ELT, there is no way to remove it by side effect;
1696 therefore, write `(setq foo (delq element foo))'
1697 to be sure of changing the value of `foo'. */)
1698 (elt, list)
1699 register Lisp_Object elt;
1700 Lisp_Object list;
1701 {
1702 register Lisp_Object tail, prev;
1703 register Lisp_Object tem;
1704
1705 tail = list;
1706 prev = Qnil;
1707 while (!NILP (tail))
1708 {
1709 if (! CONSP (tail))
1710 wrong_type_argument (Qlistp, list);
1711 tem = XCAR (tail);
1712 if (EQ (elt, tem))
1713 {
1714 if (NILP (prev))
1715 list = XCDR (tail);
1716 else
1717 Fsetcdr (prev, XCDR (tail));
1718 }
1719 else
1720 prev = tail;
1721 tail = XCDR (tail);
1722 QUIT;
1723 }
1724 return list;
1725 }
1726
1727 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1728 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1729 SEQ must be a list, a vector, or a string.
1730 The modified SEQ is returned. Comparison is done with `equal'.
1731 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1732 is not a side effect; it is simply using a different sequence.
1733 Therefore, write `(setq foo (delete element foo))'
1734 to be sure of changing the value of `foo'. */)
1735 (elt, seq)
1736 Lisp_Object elt, seq;
1737 {
1738 if (VECTORP (seq))
1739 {
1740 EMACS_INT i, n;
1741
1742 for (i = n = 0; i < ASIZE (seq); ++i)
1743 if (NILP (Fequal (AREF (seq, i), elt)))
1744 ++n;
1745
1746 if (n != ASIZE (seq))
1747 {
1748 struct Lisp_Vector *p = allocate_vector (n);
1749
1750 for (i = n = 0; i < ASIZE (seq); ++i)
1751 if (NILP (Fequal (AREF (seq, i), elt)))
1752 p->contents[n++] = AREF (seq, i);
1753
1754 XSETVECTOR (seq, p);
1755 }
1756 }
1757 else if (STRINGP (seq))
1758 {
1759 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1760 int c;
1761
1762 for (i = nchars = nbytes = ibyte = 0;
1763 i < SCHARS (seq);
1764 ++i, ibyte += cbytes)
1765 {
1766 if (STRING_MULTIBYTE (seq))
1767 {
1768 c = STRING_CHAR (SDATA (seq) + ibyte,
1769 SBYTES (seq) - ibyte);
1770 cbytes = CHAR_BYTES (c);
1771 }
1772 else
1773 {
1774 c = SREF (seq, i);
1775 cbytes = 1;
1776 }
1777
1778 if (!INTEGERP (elt) || c != XINT (elt))
1779 {
1780 ++nchars;
1781 nbytes += cbytes;
1782 }
1783 }
1784
1785 if (nchars != SCHARS (seq))
1786 {
1787 Lisp_Object tem;
1788
1789 tem = make_uninit_multibyte_string (nchars, nbytes);
1790 if (!STRING_MULTIBYTE (seq))
1791 STRING_SET_UNIBYTE (tem);
1792
1793 for (i = nchars = nbytes = ibyte = 0;
1794 i < SCHARS (seq);
1795 ++i, ibyte += cbytes)
1796 {
1797 if (STRING_MULTIBYTE (seq))
1798 {
1799 c = STRING_CHAR (SDATA (seq) + ibyte,
1800 SBYTES (seq) - ibyte);
1801 cbytes = CHAR_BYTES (c);
1802 }
1803 else
1804 {
1805 c = SREF (seq, i);
1806 cbytes = 1;
1807 }
1808
1809 if (!INTEGERP (elt) || c != XINT (elt))
1810 {
1811 unsigned char *from = SDATA (seq) + ibyte;
1812 unsigned char *to = SDATA (tem) + nbytes;
1813 EMACS_INT n;
1814
1815 ++nchars;
1816 nbytes += cbytes;
1817
1818 for (n = cbytes; n--; )
1819 *to++ = *from++;
1820 }
1821 }
1822
1823 seq = tem;
1824 }
1825 }
1826 else
1827 {
1828 Lisp_Object tail, prev;
1829
1830 for (tail = seq, prev = Qnil; !NILP (tail); tail = XCDR (tail))
1831 {
1832 if (!CONSP (tail))
1833 wrong_type_argument (Qlistp, seq);
1834
1835 if (!NILP (Fequal (elt, XCAR (tail))))
1836 {
1837 if (NILP (prev))
1838 seq = XCDR (tail);
1839 else
1840 Fsetcdr (prev, XCDR (tail));
1841 }
1842 else
1843 prev = tail;
1844 QUIT;
1845 }
1846 }
1847
1848 return seq;
1849 }
1850
1851 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1852 doc: /* Reverse LIST by modifying cdr pointers.
1853 Return the reversed list. */)
1854 (list)
1855 Lisp_Object list;
1856 {
1857 register Lisp_Object prev, tail, next;
1858
1859 if (NILP (list)) return list;
1860 prev = Qnil;
1861 tail = list;
1862 while (!NILP (tail))
1863 {
1864 QUIT;
1865 if (! CONSP (tail))
1866 wrong_type_argument (Qlistp, list);
1867 next = XCDR (tail);
1868 Fsetcdr (tail, prev);
1869 prev = tail;
1870 tail = next;
1871 }
1872 return prev;
1873 }
1874
1875 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1876 doc: /* Reverse LIST, copying. Return the reversed list.
1877 See also the function `nreverse', which is used more often. */)
1878 (list)
1879 Lisp_Object list;
1880 {
1881 Lisp_Object new;
1882
1883 for (new = Qnil; CONSP (list); list = XCDR (list))
1884 {
1885 QUIT;
1886 new = Fcons (XCAR (list), new);
1887 }
1888 if (!NILP (list))
1889 wrong_type_argument (Qconsp, list);
1890 return new;
1891 }
1892 \f
1893 Lisp_Object merge ();
1894
1895 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1896 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1897 Returns the sorted list. LIST is modified by side effects.
1898 PREDICATE is called with two elements of LIST, and should return t
1899 if the first element is "less" than the second. */)
1900 (list, predicate)
1901 Lisp_Object list, predicate;
1902 {
1903 Lisp_Object front, back;
1904 register Lisp_Object len, tem;
1905 struct gcpro gcpro1, gcpro2;
1906 register int length;
1907
1908 front = list;
1909 len = Flength (list);
1910 length = XINT (len);
1911 if (length < 2)
1912 return list;
1913
1914 XSETINT (len, (length / 2) - 1);
1915 tem = Fnthcdr (len, list);
1916 back = Fcdr (tem);
1917 Fsetcdr (tem, Qnil);
1918
1919 GCPRO2 (front, back);
1920 front = Fsort (front, predicate);
1921 back = Fsort (back, predicate);
1922 UNGCPRO;
1923 return merge (front, back, predicate);
1924 }
1925
1926 Lisp_Object
1927 merge (org_l1, org_l2, pred)
1928 Lisp_Object org_l1, org_l2;
1929 Lisp_Object pred;
1930 {
1931 Lisp_Object value;
1932 register Lisp_Object tail;
1933 Lisp_Object tem;
1934 register Lisp_Object l1, l2;
1935 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1936
1937 l1 = org_l1;
1938 l2 = org_l2;
1939 tail = Qnil;
1940 value = Qnil;
1941
1942 /* It is sufficient to protect org_l1 and org_l2.
1943 When l1 and l2 are updated, we copy the new values
1944 back into the org_ vars. */
1945 GCPRO4 (org_l1, org_l2, pred, value);
1946
1947 while (1)
1948 {
1949 if (NILP (l1))
1950 {
1951 UNGCPRO;
1952 if (NILP (tail))
1953 return l2;
1954 Fsetcdr (tail, l2);
1955 return value;
1956 }
1957 if (NILP (l2))
1958 {
1959 UNGCPRO;
1960 if (NILP (tail))
1961 return l1;
1962 Fsetcdr (tail, l1);
1963 return value;
1964 }
1965 tem = call2 (pred, Fcar (l2), Fcar (l1));
1966 if (NILP (tem))
1967 {
1968 tem = l1;
1969 l1 = Fcdr (l1);
1970 org_l1 = l1;
1971 }
1972 else
1973 {
1974 tem = l2;
1975 l2 = Fcdr (l2);
1976 org_l2 = l2;
1977 }
1978 if (NILP (tail))
1979 value = tem;
1980 else
1981 Fsetcdr (tail, tem);
1982 tail = tem;
1983 }
1984 }
1985
1986 \f
1987 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1988 doc: /* Extract a value from a property list.
1989 PLIST is a property list, which is a list of the form
1990 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1991 corresponding to the given PROP, or nil if PROP is not
1992 one of the properties on the list. */)
1993 (plist, prop)
1994 Lisp_Object plist;
1995 Lisp_Object prop;
1996 {
1997 Lisp_Object tail;
1998
1999 for (tail = plist;
2000 CONSP (tail) && CONSP (XCDR (tail));
2001 tail = XCDR (XCDR (tail)))
2002 {
2003 if (EQ (prop, XCAR (tail)))
2004 return XCAR (XCDR (tail));
2005
2006 /* This function can be called asynchronously
2007 (setup_coding_system). Don't QUIT in that case. */
2008 if (!interrupt_input_blocked)
2009 QUIT;
2010 }
2011
2012 if (!NILP (tail))
2013 wrong_type_argument (Qlistp, prop);
2014
2015 return Qnil;
2016 }
2017
2018 DEFUN ("get", Fget, Sget, 2, 2, 0,
2019 doc: /* Return the value of SYMBOL's PROPNAME property.
2020 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
2021 (symbol, propname)
2022 Lisp_Object symbol, propname;
2023 {
2024 CHECK_SYMBOL (symbol);
2025 return Fplist_get (XSYMBOL (symbol)->plist, propname);
2026 }
2027
2028 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
2029 doc: /* Change value in PLIST of PROP to VAL.
2030 PLIST is a property list, which is a list of the form
2031 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
2032 If PROP is already a property on the list, its value is set to VAL,
2033 otherwise the new PROP VAL pair is added. The new plist is returned;
2034 use `(setq x (plist-put x prop val))' to be sure to use the new value.
2035 The PLIST is modified by side effects. */)
2036 (plist, prop, val)
2037 Lisp_Object plist;
2038 register Lisp_Object prop;
2039 Lisp_Object val;
2040 {
2041 register Lisp_Object tail, prev;
2042 Lisp_Object newcell;
2043 prev = Qnil;
2044 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2045 tail = XCDR (XCDR (tail)))
2046 {
2047 if (EQ (prop, XCAR (tail)))
2048 {
2049 Fsetcar (XCDR (tail), val);
2050 return plist;
2051 }
2052
2053 prev = tail;
2054 QUIT;
2055 }
2056 newcell = Fcons (prop, Fcons (val, Qnil));
2057 if (NILP (prev))
2058 return newcell;
2059 else
2060 Fsetcdr (XCDR (prev), newcell);
2061 return plist;
2062 }
2063
2064 DEFUN ("put", Fput, Sput, 3, 3, 0,
2065 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
2066 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
2067 (symbol, propname, value)
2068 Lisp_Object symbol, propname, value;
2069 {
2070 CHECK_SYMBOL (symbol);
2071 XSYMBOL (symbol)->plist
2072 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
2073 return value;
2074 }
2075 \f
2076 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
2077 doc: /* Extract a value from a property list, comparing with `equal'.
2078 PLIST is a property list, which is a list of the form
2079 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
2080 corresponding to the given PROP, or nil if PROP is not
2081 one of the properties on the list. */)
2082 (plist, prop)
2083 Lisp_Object plist;
2084 Lisp_Object prop;
2085 {
2086 Lisp_Object tail;
2087
2088 for (tail = plist;
2089 CONSP (tail) && CONSP (XCDR (tail));
2090 tail = XCDR (XCDR (tail)))
2091 {
2092 if (! NILP (Fequal (prop, XCAR (tail))))
2093 return XCAR (XCDR (tail));
2094
2095 QUIT;
2096 }
2097
2098 if (!NILP (tail))
2099 wrong_type_argument (Qlistp, prop);
2100
2101 return Qnil;
2102 }
2103
2104 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
2105 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
2106 PLIST is a property list, which is a list of the form
2107 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
2108 If PROP is already a property on the list, its value is set to VAL,
2109 otherwise the new PROP VAL pair is added. The new plist is returned;
2110 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
2111 The PLIST is modified by side effects. */)
2112 (plist, prop, val)
2113 Lisp_Object plist;
2114 register Lisp_Object prop;
2115 Lisp_Object val;
2116 {
2117 register Lisp_Object tail, prev;
2118 Lisp_Object newcell;
2119 prev = Qnil;
2120 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2121 tail = XCDR (XCDR (tail)))
2122 {
2123 if (! NILP (Fequal (prop, XCAR (tail))))
2124 {
2125 Fsetcar (XCDR (tail), val);
2126 return plist;
2127 }
2128
2129 prev = tail;
2130 QUIT;
2131 }
2132 newcell = Fcons (prop, Fcons (val, Qnil));
2133 if (NILP (prev))
2134 return newcell;
2135 else
2136 Fsetcdr (XCDR (prev), newcell);
2137 return plist;
2138 }
2139 \f
2140 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
2141 doc: /* Return t if two Lisp objects have similar structure and contents.
2142 They must have the same data type.
2143 Conses are compared by comparing the cars and the cdrs.
2144 Vectors and strings are compared element by element.
2145 Numbers are compared by value, but integers cannot equal floats.
2146 (Use `=' if you want integers and floats to be able to be equal.)
2147 Symbols must match exactly. */)
2148 (o1, o2)
2149 register Lisp_Object o1, o2;
2150 {
2151 return internal_equal (o1, o2, 0) ? Qt : Qnil;
2152 }
2153
2154 static int
2155 internal_equal (o1, o2, depth)
2156 register Lisp_Object o1, o2;
2157 int depth;
2158 {
2159 if (depth > 200)
2160 error ("Stack overflow in equal");
2161
2162 tail_recurse:
2163 QUIT;
2164 if (EQ (o1, o2))
2165 return 1;
2166 if (XTYPE (o1) != XTYPE (o2))
2167 return 0;
2168
2169 switch (XTYPE (o1))
2170 {
2171 case Lisp_Float:
2172 {
2173 double d1, d2;
2174
2175 d1 = extract_float (o1);
2176 d2 = extract_float (o2);
2177 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2178 though they are not =. */
2179 return d1 == d2 || (d1 != d1 && d2 != d2);
2180 }
2181
2182 case Lisp_Cons:
2183 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1))
2184 return 0;
2185 o1 = XCDR (o1);
2186 o2 = XCDR (o2);
2187 goto tail_recurse;
2188
2189 case Lisp_Misc:
2190 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2191 return 0;
2192 if (OVERLAYP (o1))
2193 {
2194 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2195 depth + 1)
2196 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2197 depth + 1))
2198 return 0;
2199 o1 = XOVERLAY (o1)->plist;
2200 o2 = XOVERLAY (o2)->plist;
2201 goto tail_recurse;
2202 }
2203 if (MARKERP (o1))
2204 {
2205 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2206 && (XMARKER (o1)->buffer == 0
2207 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2208 }
2209 break;
2210
2211 case Lisp_Vectorlike:
2212 {
2213 register int i;
2214 EMACS_INT size = XVECTOR (o1)->size;
2215 /* Pseudovectors have the type encoded in the size field, so this test
2216 actually checks that the objects have the same type as well as the
2217 same size. */
2218 if (XVECTOR (o2)->size != size)
2219 return 0;
2220 /* Boolvectors are compared much like strings. */
2221 if (BOOL_VECTOR_P (o1))
2222 {
2223 int size_in_chars
2224 = (XBOOL_VECTOR (o1)->size + BITS_PER_CHAR - 1) / BITS_PER_CHAR;
2225
2226 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2227 return 0;
2228 if (bcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2229 size_in_chars))
2230 return 0;
2231 return 1;
2232 }
2233 if (WINDOW_CONFIGURATIONP (o1))
2234 return compare_window_configurations (o1, o2, 0);
2235
2236 /* Aside from them, only true vectors, char-tables, and compiled
2237 functions are sensible to compare, so eliminate the others now. */
2238 if (size & PSEUDOVECTOR_FLAG)
2239 {
2240 if (!(size & (PVEC_COMPILED | PVEC_CHAR_TABLE)))
2241 return 0;
2242 size &= PSEUDOVECTOR_SIZE_MASK;
2243 }
2244 for (i = 0; i < size; i++)
2245 {
2246 Lisp_Object v1, v2;
2247 v1 = XVECTOR (o1)->contents [i];
2248 v2 = XVECTOR (o2)->contents [i];
2249 if (!internal_equal (v1, v2, depth + 1))
2250 return 0;
2251 }
2252 return 1;
2253 }
2254 break;
2255
2256 case Lisp_String:
2257 if (SCHARS (o1) != SCHARS (o2))
2258 return 0;
2259 if (SBYTES (o1) != SBYTES (o2))
2260 return 0;
2261 if (bcmp (SDATA (o1), SDATA (o2),
2262 SBYTES (o1)))
2263 return 0;
2264 return 1;
2265
2266 case Lisp_Int:
2267 case Lisp_Symbol:
2268 case Lisp_Type_Limit:
2269 break;
2270 }
2271
2272 return 0;
2273 }
2274 \f
2275 extern Lisp_Object Fmake_char_internal ();
2276
2277 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2278 doc: /* Store each element of ARRAY with ITEM.
2279 ARRAY is a vector, string, char-table, or bool-vector. */)
2280 (array, item)
2281 Lisp_Object array, item;
2282 {
2283 register int size, index, charval;
2284 retry:
2285 if (VECTORP (array))
2286 {
2287 register Lisp_Object *p = XVECTOR (array)->contents;
2288 size = XVECTOR (array)->size;
2289 for (index = 0; index < size; index++)
2290 p[index] = item;
2291 }
2292 else if (CHAR_TABLE_P (array))
2293 {
2294 register Lisp_Object *p = XCHAR_TABLE (array)->contents;
2295 size = CHAR_TABLE_ORDINARY_SLOTS;
2296 for (index = 0; index < size; index++)
2297 p[index] = item;
2298 XCHAR_TABLE (array)->defalt = Qnil;
2299 }
2300 else if (STRINGP (array))
2301 {
2302 register unsigned char *p = SDATA (array);
2303 CHECK_NUMBER (item);
2304 charval = XINT (item);
2305 size = SCHARS (array);
2306 if (STRING_MULTIBYTE (array))
2307 {
2308 unsigned char str[MAX_MULTIBYTE_LENGTH];
2309 int len = CHAR_STRING (charval, str);
2310 int size_byte = SBYTES (array);
2311 unsigned char *p1 = p, *endp = p + size_byte;
2312 int i;
2313
2314 if (size != size_byte)
2315 while (p1 < endp)
2316 {
2317 int this_len = MULTIBYTE_FORM_LENGTH (p1, endp - p1);
2318 if (len != this_len)
2319 error ("Attempt to change byte length of a string");
2320 p1 += this_len;
2321 }
2322 for (i = 0; i < size_byte; i++)
2323 *p++ = str[i % len];
2324 }
2325 else
2326 for (index = 0; index < size; index++)
2327 p[index] = charval;
2328 }
2329 else if (BOOL_VECTOR_P (array))
2330 {
2331 register unsigned char *p = XBOOL_VECTOR (array)->data;
2332 int size_in_chars
2333 = (XBOOL_VECTOR (array)->size + BITS_PER_CHAR - 1) / BITS_PER_CHAR;
2334
2335 charval = (! NILP (item) ? -1 : 0);
2336 for (index = 0; index < size_in_chars - 1; index++)
2337 p[index] = charval;
2338 if (index < size_in_chars)
2339 {
2340 /* Mask out bits beyond the vector size. */
2341 if (XBOOL_VECTOR (array)->size % BITS_PER_CHAR)
2342 charval &= (1 << (XBOOL_VECTOR (array)->size % BITS_PER_CHAR)) - 1;
2343 p[index] = charval;
2344 }
2345 }
2346 else
2347 {
2348 array = wrong_type_argument (Qarrayp, array);
2349 goto retry;
2350 }
2351 return array;
2352 }
2353
2354 DEFUN ("clear-string", Fclear_string, Sclear_string,
2355 1, 1, 0,
2356 doc: /* Clear the contents of STRING.
2357 This makes STRING unibyte and may change its length. */)
2358 (string)
2359 Lisp_Object string;
2360 {
2361 int len = SBYTES (string);
2362 bzero (SDATA (string), len);
2363 STRING_SET_CHARS (string, len);
2364 STRING_SET_UNIBYTE (string);
2365 return Qnil;
2366 }
2367 \f
2368 DEFUN ("char-table-subtype", Fchar_table_subtype, Schar_table_subtype,
2369 1, 1, 0,
2370 doc: /* Return the subtype of char-table CHAR-TABLE. The value is a symbol. */)
2371 (char_table)
2372 Lisp_Object char_table;
2373 {
2374 CHECK_CHAR_TABLE (char_table);
2375
2376 return XCHAR_TABLE (char_table)->purpose;
2377 }
2378
2379 DEFUN ("char-table-parent", Fchar_table_parent, Schar_table_parent,
2380 1, 1, 0,
2381 doc: /* Return the parent char-table of CHAR-TABLE.
2382 The value is either nil or another char-table.
2383 If CHAR-TABLE holds nil for a given character,
2384 then the actual applicable value is inherited from the parent char-table
2385 \(or from its parents, if necessary). */)
2386 (char_table)
2387 Lisp_Object char_table;
2388 {
2389 CHECK_CHAR_TABLE (char_table);
2390
2391 return XCHAR_TABLE (char_table)->parent;
2392 }
2393
2394 DEFUN ("set-char-table-parent", Fset_char_table_parent, Sset_char_table_parent,
2395 2, 2, 0,
2396 doc: /* Set the parent char-table of CHAR-TABLE to PARENT.
2397 Return PARENT. PARENT must be either nil or another char-table. */)
2398 (char_table, parent)
2399 Lisp_Object char_table, parent;
2400 {
2401 Lisp_Object temp;
2402
2403 CHECK_CHAR_TABLE (char_table);
2404
2405 if (!NILP (parent))
2406 {
2407 CHECK_CHAR_TABLE (parent);
2408
2409 for (temp = parent; !NILP (temp); temp = XCHAR_TABLE (temp)->parent)
2410 if (EQ (temp, char_table))
2411 error ("Attempt to make a chartable be its own parent");
2412 }
2413
2414 XCHAR_TABLE (char_table)->parent = parent;
2415
2416 return parent;
2417 }
2418
2419 DEFUN ("char-table-extra-slot", Fchar_table_extra_slot, Schar_table_extra_slot,
2420 2, 2, 0,
2421 doc: /* Return the value of CHAR-TABLE's extra-slot number N. */)
2422 (char_table, n)
2423 Lisp_Object char_table, n;
2424 {
2425 CHECK_CHAR_TABLE (char_table);
2426 CHECK_NUMBER (n);
2427 if (XINT (n) < 0
2428 || XINT (n) >= CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (char_table)))
2429 args_out_of_range (char_table, n);
2430
2431 return XCHAR_TABLE (char_table)->extras[XINT (n)];
2432 }
2433
2434 DEFUN ("set-char-table-extra-slot", Fset_char_table_extra_slot,
2435 Sset_char_table_extra_slot,
2436 3, 3, 0,
2437 doc: /* Set CHAR-TABLE's extra-slot number N to VALUE. */)
2438 (char_table, n, value)
2439 Lisp_Object char_table, n, value;
2440 {
2441 CHECK_CHAR_TABLE (char_table);
2442 CHECK_NUMBER (n);
2443 if (XINT (n) < 0
2444 || XINT (n) >= CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (char_table)))
2445 args_out_of_range (char_table, n);
2446
2447 return XCHAR_TABLE (char_table)->extras[XINT (n)] = value;
2448 }
2449 \f
2450 DEFUN ("char-table-range", Fchar_table_range, Schar_table_range,
2451 2, 2, 0,
2452 doc: /* Return the value in CHAR-TABLE for a range of characters RANGE.
2453 RANGE should be nil (for the default value)
2454 a vector which identifies a character set or a row of a character set,
2455 a character set name, or a character code. */)
2456 (char_table, range)
2457 Lisp_Object char_table, range;
2458 {
2459 CHECK_CHAR_TABLE (char_table);
2460
2461 if (EQ (range, Qnil))
2462 return XCHAR_TABLE (char_table)->defalt;
2463 else if (INTEGERP (range))
2464 return Faref (char_table, range);
2465 else if (SYMBOLP (range))
2466 {
2467 Lisp_Object charset_info;
2468
2469 charset_info = Fget (range, Qcharset);
2470 CHECK_VECTOR (charset_info);
2471
2472 return Faref (char_table,
2473 make_number (XINT (XVECTOR (charset_info)->contents[0])
2474 + 128));
2475 }
2476 else if (VECTORP (range))
2477 {
2478 if (XVECTOR (range)->size == 1)
2479 return Faref (char_table,
2480 make_number (XINT (XVECTOR (range)->contents[0]) + 128));
2481 else
2482 {
2483 int size = XVECTOR (range)->size;
2484 Lisp_Object *val = XVECTOR (range)->contents;
2485 Lisp_Object ch = Fmake_char_internal (size <= 0 ? Qnil : val[0],
2486 size <= 1 ? Qnil : val[1],
2487 size <= 2 ? Qnil : val[2]);
2488 return Faref (char_table, ch);
2489 }
2490 }
2491 else
2492 error ("Invalid RANGE argument to `char-table-range'");
2493 return Qt;
2494 }
2495
2496 DEFUN ("set-char-table-range", Fset_char_table_range, Sset_char_table_range,
2497 3, 3, 0,
2498 doc: /* Set the value in CHAR-TABLE for a range of characters RANGE to VALUE.
2499 RANGE should be t (for all characters), nil (for the default value),
2500 a character set, a vector which identifies a character set, a row of a
2501 character set, or a character code. Return VALUE. */)
2502 (char_table, range, value)
2503 Lisp_Object char_table, range, value;
2504 {
2505 int i;
2506
2507 CHECK_CHAR_TABLE (char_table);
2508
2509 if (EQ (range, Qt))
2510 for (i = 0; i < CHAR_TABLE_ORDINARY_SLOTS; i++)
2511 XCHAR_TABLE (char_table)->contents[i] = value;
2512 else if (EQ (range, Qnil))
2513 XCHAR_TABLE (char_table)->defalt = value;
2514 else if (SYMBOLP (range))
2515 {
2516 Lisp_Object charset_info;
2517
2518 charset_info = Fget (range, Qcharset);
2519 CHECK_VECTOR (charset_info);
2520
2521 return Faset (char_table,
2522 make_number (XINT (XVECTOR (charset_info)->contents[0])
2523 + 128),
2524 value);
2525 }
2526 else if (INTEGERP (range))
2527 Faset (char_table, range, value);
2528 else if (VECTORP (range))
2529 {
2530 if (XVECTOR (range)->size == 1)
2531 return Faset (char_table,
2532 make_number (XINT (XVECTOR (range)->contents[0]) + 128),
2533 value);
2534 else
2535 {
2536 int size = XVECTOR (range)->size;
2537 Lisp_Object *val = XVECTOR (range)->contents;
2538 Lisp_Object ch = Fmake_char_internal (size <= 0 ? Qnil : val[0],
2539 size <= 1 ? Qnil : val[1],
2540 size <= 2 ? Qnil : val[2]);
2541 return Faset (char_table, ch, value);
2542 }
2543 }
2544 else
2545 error ("Invalid RANGE argument to `set-char-table-range'");
2546
2547 return value;
2548 }
2549
2550 DEFUN ("set-char-table-default", Fset_char_table_default,
2551 Sset_char_table_default, 3, 3, 0,
2552 doc: /* Set the default value in CHAR-TABLE for generic character CH to VALUE.
2553 The generic character specifies the group of characters.
2554 See also the documentation of `make-char'. */)
2555 (char_table, ch, value)
2556 Lisp_Object char_table, ch, value;
2557 {
2558 int c, charset, code1, code2;
2559 Lisp_Object temp;
2560
2561 CHECK_CHAR_TABLE (char_table);
2562 CHECK_NUMBER (ch);
2563
2564 c = XINT (ch);
2565 SPLIT_CHAR (c, charset, code1, code2);
2566
2567 /* Since we may want to set the default value for a character set
2568 not yet defined, we check only if the character set is in the
2569 valid range or not, instead of it is already defined or not. */
2570 if (! CHARSET_VALID_P (charset))
2571 invalid_character (c);
2572
2573 if (charset == CHARSET_ASCII)
2574 return (XCHAR_TABLE (char_table)->defalt = value);
2575
2576 /* Even if C is not a generic char, we had better behave as if a
2577 generic char is specified. */
2578 if (!CHARSET_DEFINED_P (charset) || CHARSET_DIMENSION (charset) == 1)
2579 code1 = 0;
2580 temp = XCHAR_TABLE (char_table)->contents[charset + 128];
2581 if (!code1)
2582 {
2583 if (SUB_CHAR_TABLE_P (temp))
2584 XCHAR_TABLE (temp)->defalt = value;
2585 else
2586 XCHAR_TABLE (char_table)->contents[charset + 128] = value;
2587 return value;
2588 }
2589 if (SUB_CHAR_TABLE_P (temp))
2590 char_table = temp;
2591 else
2592 char_table = (XCHAR_TABLE (char_table)->contents[charset + 128]
2593 = make_sub_char_table (temp));
2594 temp = XCHAR_TABLE (char_table)->contents[code1];
2595 if (SUB_CHAR_TABLE_P (temp))
2596 XCHAR_TABLE (temp)->defalt = value;
2597 else
2598 XCHAR_TABLE (char_table)->contents[code1] = value;
2599 return value;
2600 }
2601
2602 /* Look up the element in TABLE at index CH,
2603 and return it as an integer.
2604 If the element is nil, return CH itself.
2605 (Actually we do that for any non-integer.) */
2606
2607 int
2608 char_table_translate (table, ch)
2609 Lisp_Object table;
2610 int ch;
2611 {
2612 Lisp_Object value;
2613 value = Faref (table, make_number (ch));
2614 if (! INTEGERP (value))
2615 return ch;
2616 return XINT (value);
2617 }
2618
2619 static void
2620 optimize_sub_char_table (table, chars)
2621 Lisp_Object *table;
2622 int chars;
2623 {
2624 Lisp_Object elt;
2625 int from, to;
2626
2627 if (chars == 94)
2628 from = 33, to = 127;
2629 else
2630 from = 32, to = 128;
2631
2632 if (!SUB_CHAR_TABLE_P (*table))
2633 return;
2634 elt = XCHAR_TABLE (*table)->contents[from++];
2635 for (; from < to; from++)
2636 if (NILP (Fequal (elt, XCHAR_TABLE (*table)->contents[from])))
2637 return;
2638 *table = elt;
2639 }
2640
2641 DEFUN ("optimize-char-table", Foptimize_char_table, Soptimize_char_table,
2642 1, 1, 0, doc: /* Optimize char table TABLE. */)
2643 (table)
2644 Lisp_Object table;
2645 {
2646 Lisp_Object elt;
2647 int dim;
2648 int i, j;
2649
2650 CHECK_CHAR_TABLE (table);
2651
2652 for (i = CHAR_TABLE_SINGLE_BYTE_SLOTS; i < CHAR_TABLE_ORDINARY_SLOTS; i++)
2653 {
2654 elt = XCHAR_TABLE (table)->contents[i];
2655 if (!SUB_CHAR_TABLE_P (elt))
2656 continue;
2657 dim = CHARSET_DIMENSION (i - 128);
2658 if (dim == 2)
2659 for (j = 32; j < SUB_CHAR_TABLE_ORDINARY_SLOTS; j++)
2660 optimize_sub_char_table (XCHAR_TABLE (elt)->contents + j, dim);
2661 optimize_sub_char_table (XCHAR_TABLE (table)->contents + i, dim);
2662 }
2663 return Qnil;
2664 }
2665
2666 \f
2667 /* Map C_FUNCTION or FUNCTION over SUBTABLE, calling it for each
2668 character or group of characters that share a value.
2669 DEPTH is the current depth in the originally specified
2670 chartable, and INDICES contains the vector indices
2671 for the levels our callers have descended.
2672
2673 ARG is passed to C_FUNCTION when that is called. */
2674
2675 void
2676 map_char_table (c_function, function, table, subtable, arg, depth, indices)
2677 void (*c_function) P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
2678 Lisp_Object function, table, subtable, arg, *indices;
2679 int depth;
2680 {
2681 int i, to;
2682
2683 if (depth == 0)
2684 {
2685 /* At first, handle ASCII and 8-bit European characters. */
2686 for (i = 0; i < CHAR_TABLE_SINGLE_BYTE_SLOTS; i++)
2687 {
2688 Lisp_Object elt= XCHAR_TABLE (subtable)->contents[i];
2689 if (NILP (elt))
2690 elt = XCHAR_TABLE (subtable)->defalt;
2691 if (NILP (elt))
2692 elt = Faref (subtable, make_number (i));
2693 if (c_function)
2694 (*c_function) (arg, make_number (i), elt);
2695 else
2696 call2 (function, make_number (i), elt);
2697 }
2698 #if 0 /* If the char table has entries for higher characters,
2699 we should report them. */
2700 if (NILP (current_buffer->enable_multibyte_characters))
2701 return;
2702 #endif
2703 to = CHAR_TABLE_ORDINARY_SLOTS;
2704 }
2705 else
2706 {
2707 int charset = XFASTINT (indices[0]) - 128;
2708
2709 i = 32;
2710 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
2711 if (CHARSET_CHARS (charset) == 94)
2712 i++, to--;
2713 }
2714
2715 for (; i < to; i++)
2716 {
2717 Lisp_Object elt;
2718 int charset;
2719
2720 elt = XCHAR_TABLE (subtable)->contents[i];
2721 XSETFASTINT (indices[depth], i);
2722 charset = XFASTINT (indices[0]) - 128;
2723 if (depth == 0
2724 && (!CHARSET_DEFINED_P (charset)
2725 || charset == CHARSET_8_BIT_CONTROL
2726 || charset == CHARSET_8_BIT_GRAPHIC))
2727 continue;
2728
2729 if (SUB_CHAR_TABLE_P (elt))
2730 {
2731 if (depth >= 3)
2732 error ("Too deep char table");
2733 map_char_table (c_function, function, table, elt, arg, depth + 1, indices);
2734 }
2735 else
2736 {
2737 int c1, c2, c;
2738
2739 c1 = depth >= 1 ? XFASTINT (indices[1]) : 0;
2740 c2 = depth >= 2 ? XFASTINT (indices[2]) : 0;
2741 c = MAKE_CHAR (charset, c1, c2);
2742
2743 if (NILP (elt))
2744 elt = XCHAR_TABLE (subtable)->defalt;
2745 if (NILP (elt))
2746 elt = Faref (table, make_number (c));
2747
2748 if (c_function)
2749 (*c_function) (arg, make_number (c), elt);
2750 else
2751 call2 (function, make_number (c), elt);
2752 }
2753 }
2754 }
2755
2756 static void void_call2 P_ ((Lisp_Object a, Lisp_Object b, Lisp_Object c));
2757 static void
2758 void_call2 (a, b, c)
2759 Lisp_Object a, b, c;
2760 {
2761 call2 (a, b, c);
2762 }
2763
2764 DEFUN ("map-char-table", Fmap_char_table, Smap_char_table,
2765 2, 2, 0,
2766 doc: /* Call FUNCTION for each (normal and generic) characters in CHAR-TABLE.
2767 FUNCTION is called with two arguments--a key and a value.
2768 The key is always a possible IDX argument to `aref'. */)
2769 (function, char_table)
2770 Lisp_Object function, char_table;
2771 {
2772 /* The depth of char table is at most 3. */
2773 Lisp_Object indices[3];
2774
2775 CHECK_CHAR_TABLE (char_table);
2776
2777 /* When Lisp_Object is represented as a union, `call2' cannot directly
2778 be passed to map_char_table because it returns a Lisp_Object rather
2779 than returning nothing.
2780 Casting leads to crashes on some architectures. -stef */
2781 map_char_table (void_call2, Qnil, char_table, char_table, function, 0, indices);
2782 return Qnil;
2783 }
2784
2785 /* Return a value for character C in char-table TABLE. Store the
2786 actual index for that value in *IDX. Ignore the default value of
2787 TABLE. */
2788
2789 Lisp_Object
2790 char_table_ref_and_index (table, c, idx)
2791 Lisp_Object table;
2792 int c, *idx;
2793 {
2794 int charset, c1, c2;
2795 Lisp_Object elt;
2796
2797 if (SINGLE_BYTE_CHAR_P (c))
2798 {
2799 *idx = c;
2800 return XCHAR_TABLE (table)->contents[c];
2801 }
2802 SPLIT_CHAR (c, charset, c1, c2);
2803 elt = XCHAR_TABLE (table)->contents[charset + 128];
2804 *idx = MAKE_CHAR (charset, 0, 0);
2805 if (!SUB_CHAR_TABLE_P (elt))
2806 return elt;
2807 if (c1 < 32 || NILP (XCHAR_TABLE (elt)->contents[c1]))
2808 return XCHAR_TABLE (elt)->defalt;
2809 elt = XCHAR_TABLE (elt)->contents[c1];
2810 *idx = MAKE_CHAR (charset, c1, 0);
2811 if (!SUB_CHAR_TABLE_P (elt))
2812 return elt;
2813 if (c2 < 32 || NILP (XCHAR_TABLE (elt)->contents[c2]))
2814 return XCHAR_TABLE (elt)->defalt;
2815 *idx = c;
2816 return XCHAR_TABLE (elt)->contents[c2];
2817 }
2818
2819 \f
2820 /* ARGSUSED */
2821 Lisp_Object
2822 nconc2 (s1, s2)
2823 Lisp_Object s1, s2;
2824 {
2825 #ifdef NO_ARG_ARRAY
2826 Lisp_Object args[2];
2827 args[0] = s1;
2828 args[1] = s2;
2829 return Fnconc (2, args);
2830 #else
2831 return Fnconc (2, &s1);
2832 #endif /* NO_ARG_ARRAY */
2833 }
2834
2835 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2836 doc: /* Concatenate any number of lists by altering them.
2837 Only the last argument is not altered, and need not be a list.
2838 usage: (nconc &rest LISTS) */)
2839 (nargs, args)
2840 int nargs;
2841 Lisp_Object *args;
2842 {
2843 register int argnum;
2844 register Lisp_Object tail, tem, val;
2845
2846 val = tail = Qnil;
2847
2848 for (argnum = 0; argnum < nargs; argnum++)
2849 {
2850 tem = args[argnum];
2851 if (NILP (tem)) continue;
2852
2853 if (NILP (val))
2854 val = tem;
2855
2856 if (argnum + 1 == nargs) break;
2857
2858 if (!CONSP (tem))
2859 tem = wrong_type_argument (Qlistp, tem);
2860
2861 while (CONSP (tem))
2862 {
2863 tail = tem;
2864 tem = XCDR (tail);
2865 QUIT;
2866 }
2867
2868 tem = args[argnum + 1];
2869 Fsetcdr (tail, tem);
2870 if (NILP (tem))
2871 args[argnum + 1] = tail;
2872 }
2873
2874 return val;
2875 }
2876 \f
2877 /* This is the guts of all mapping functions.
2878 Apply FN to each element of SEQ, one by one,
2879 storing the results into elements of VALS, a C vector of Lisp_Objects.
2880 LENI is the length of VALS, which should also be the length of SEQ. */
2881
2882 static void
2883 mapcar1 (leni, vals, fn, seq)
2884 int leni;
2885 Lisp_Object *vals;
2886 Lisp_Object fn, seq;
2887 {
2888 register Lisp_Object tail;
2889 Lisp_Object dummy;
2890 register int i;
2891 struct gcpro gcpro1, gcpro2, gcpro3;
2892
2893 if (vals)
2894 {
2895 /* Don't let vals contain any garbage when GC happens. */
2896 for (i = 0; i < leni; i++)
2897 vals[i] = Qnil;
2898
2899 GCPRO3 (dummy, fn, seq);
2900 gcpro1.var = vals;
2901 gcpro1.nvars = leni;
2902 }
2903 else
2904 GCPRO2 (fn, seq);
2905 /* We need not explicitly protect `tail' because it is used only on lists, and
2906 1) lists are not relocated and 2) the list is marked via `seq' so will not be freed */
2907
2908 if (VECTORP (seq))
2909 {
2910 for (i = 0; i < leni; i++)
2911 {
2912 dummy = XVECTOR (seq)->contents[i];
2913 dummy = call1 (fn, dummy);
2914 if (vals)
2915 vals[i] = dummy;
2916 }
2917 }
2918 else if (BOOL_VECTOR_P (seq))
2919 {
2920 for (i = 0; i < leni; i++)
2921 {
2922 int byte;
2923 byte = XBOOL_VECTOR (seq)->data[i / BITS_PER_CHAR];
2924 if (byte & (1 << (i % BITS_PER_CHAR)))
2925 dummy = Qt;
2926 else
2927 dummy = Qnil;
2928
2929 dummy = call1 (fn, dummy);
2930 if (vals)
2931 vals[i] = dummy;
2932 }
2933 }
2934 else if (STRINGP (seq))
2935 {
2936 int i_byte;
2937
2938 for (i = 0, i_byte = 0; i < leni;)
2939 {
2940 int c;
2941 int i_before = i;
2942
2943 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2944 XSETFASTINT (dummy, c);
2945 dummy = call1 (fn, dummy);
2946 if (vals)
2947 vals[i_before] = dummy;
2948 }
2949 }
2950 else /* Must be a list, since Flength did not get an error */
2951 {
2952 tail = seq;
2953 for (i = 0; i < leni; i++)
2954 {
2955 dummy = call1 (fn, Fcar (tail));
2956 if (vals)
2957 vals[i] = dummy;
2958 tail = XCDR (tail);
2959 }
2960 }
2961
2962 UNGCPRO;
2963 }
2964
2965 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2966 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2967 In between each pair of results, stick in SEPARATOR. Thus, " " as
2968 SEPARATOR results in spaces between the values returned by FUNCTION.
2969 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2970 (function, sequence, separator)
2971 Lisp_Object function, sequence, separator;
2972 {
2973 Lisp_Object len;
2974 register int leni;
2975 int nargs;
2976 register Lisp_Object *args;
2977 register int i;
2978 struct gcpro gcpro1;
2979
2980 len = Flength (sequence);
2981 leni = XINT (len);
2982 nargs = leni + leni - 1;
2983 if (nargs < 0) return build_string ("");
2984
2985 args = (Lisp_Object *) alloca (nargs * sizeof (Lisp_Object));
2986
2987 GCPRO1 (separator);
2988 mapcar1 (leni, args, function, sequence);
2989 UNGCPRO;
2990
2991 for (i = leni - 1; i >= 0; i--)
2992 args[i + i] = args[i];
2993
2994 for (i = 1; i < nargs; i += 2)
2995 args[i] = separator;
2996
2997 return Fconcat (nargs, args);
2998 }
2999
3000 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
3001 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
3002 The result is a list just as long as SEQUENCE.
3003 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
3004 (function, sequence)
3005 Lisp_Object function, sequence;
3006 {
3007 register Lisp_Object len;
3008 register int leni;
3009 register Lisp_Object *args;
3010
3011 len = Flength (sequence);
3012 leni = XFASTINT (len);
3013 args = (Lisp_Object *) alloca (leni * sizeof (Lisp_Object));
3014
3015 mapcar1 (leni, args, function, sequence);
3016
3017 return Flist (leni, args);
3018 }
3019
3020 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
3021 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
3022 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
3023 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
3024 (function, sequence)
3025 Lisp_Object function, sequence;
3026 {
3027 register int leni;
3028
3029 leni = XFASTINT (Flength (sequence));
3030 mapcar1 (leni, 0, function, sequence);
3031
3032 return sequence;
3033 }
3034 \f
3035 /* Anything that calls this function must protect from GC! */
3036
3037 DEFUN ("y-or-n-p", Fy_or_n_p, Sy_or_n_p, 1, 1, 0,
3038 doc: /* Ask user a "y or n" question. Return t if answer is "y".
3039 Takes one argument, which is the string to display to ask the question.
3040 It should end in a space; `y-or-n-p' adds `(y or n) ' to it.
3041 No confirmation of the answer is requested; a single character is enough.
3042 Also accepts Space to mean yes, or Delete to mean no. \(Actually, it uses
3043 the bindings in `query-replace-map'; see the documentation of that variable
3044 for more information. In this case, the useful bindings are `act', `skip',
3045 `recenter', and `quit'.\)
3046
3047 Under a windowing system a dialog box will be used if `last-nonmenu-event'
3048 is nil and `use-dialog-box' is non-nil. */)
3049 (prompt)
3050 Lisp_Object prompt;
3051 {
3052 register Lisp_Object obj, key, def, map;
3053 register int answer;
3054 Lisp_Object xprompt;
3055 Lisp_Object args[2];
3056 struct gcpro gcpro1, gcpro2;
3057 int count = SPECPDL_INDEX ();
3058
3059 specbind (Qcursor_in_echo_area, Qt);
3060
3061 map = Fsymbol_value (intern ("query-replace-map"));
3062
3063 CHECK_STRING (prompt);
3064 xprompt = prompt;
3065 GCPRO2 (prompt, xprompt);
3066
3067 #ifdef HAVE_X_WINDOWS
3068 if (display_hourglass_p)
3069 cancel_hourglass ();
3070 #endif
3071
3072 while (1)
3073 {
3074
3075 #ifdef HAVE_MENUS
3076 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3077 && use_dialog_box
3078 && have_menus_p ())
3079 {
3080 Lisp_Object pane, menu;
3081 redisplay_preserve_echo_area (3);
3082 pane = Fcons (Fcons (build_string ("Yes"), Qt),
3083 Fcons (Fcons (build_string ("No"), Qnil),
3084 Qnil));
3085 menu = Fcons (prompt, pane);
3086 obj = Fx_popup_dialog (Qt, menu);
3087 answer = !NILP (obj);
3088 break;
3089 }
3090 #endif /* HAVE_MENUS */
3091 cursor_in_echo_area = 1;
3092 choose_minibuf_frame ();
3093
3094 {
3095 Lisp_Object pargs[3];
3096
3097 /* Colorize prompt according to `minibuffer-prompt' face. */
3098 pargs[0] = build_string ("%s(y or n) ");
3099 pargs[1] = intern ("face");
3100 pargs[2] = intern ("minibuffer-prompt");
3101 args[0] = Fpropertize (3, pargs);
3102 args[1] = xprompt;
3103 Fmessage (2, args);
3104 }
3105
3106 if (minibuffer_auto_raise)
3107 {
3108 Lisp_Object mini_frame;
3109
3110 mini_frame = WINDOW_FRAME (XWINDOW (minibuf_window));
3111
3112 Fraise_frame (mini_frame);
3113 }
3114
3115 obj = read_filtered_event (1, 0, 0, 0);
3116 cursor_in_echo_area = 0;
3117 /* If we need to quit, quit with cursor_in_echo_area = 0. */
3118 QUIT;
3119
3120 key = Fmake_vector (make_number (1), obj);
3121 def = Flookup_key (map, key, Qt);
3122
3123 if (EQ (def, intern ("skip")))
3124 {
3125 answer = 0;
3126 break;
3127 }
3128 else if (EQ (def, intern ("act")))
3129 {
3130 answer = 1;
3131 break;
3132 }
3133 else if (EQ (def, intern ("recenter")))
3134 {
3135 Frecenter (Qnil);
3136 xprompt = prompt;
3137 continue;
3138 }
3139 else if (EQ (def, intern ("quit")))
3140 Vquit_flag = Qt;
3141 /* We want to exit this command for exit-prefix,
3142 and this is the only way to do it. */
3143 else if (EQ (def, intern ("exit-prefix")))
3144 Vquit_flag = Qt;
3145
3146 QUIT;
3147
3148 /* If we don't clear this, then the next call to read_char will
3149 return quit_char again, and we'll enter an infinite loop. */
3150 Vquit_flag = Qnil;
3151
3152 Fding (Qnil);
3153 Fdiscard_input ();
3154 if (EQ (xprompt, prompt))
3155 {
3156 args[0] = build_string ("Please answer y or n. ");
3157 args[1] = prompt;
3158 xprompt = Fconcat (2, args);
3159 }
3160 }
3161 UNGCPRO;
3162
3163 if (! noninteractive)
3164 {
3165 cursor_in_echo_area = -1;
3166 message_with_string (answer ? "%s(y or n) y" : "%s(y or n) n",
3167 xprompt, 0);
3168 }
3169
3170 unbind_to (count, Qnil);
3171 return answer ? Qt : Qnil;
3172 }
3173 \f
3174 /* This is how C code calls `yes-or-no-p' and allows the user
3175 to redefined it.
3176
3177 Anything that calls this function must protect from GC! */
3178
3179 Lisp_Object
3180 do_yes_or_no_p (prompt)
3181 Lisp_Object prompt;
3182 {
3183 return call1 (intern ("yes-or-no-p"), prompt);
3184 }
3185
3186 /* Anything that calls this function must protect from GC! */
3187
3188 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
3189 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
3190 Takes one argument, which is the string to display to ask the question.
3191 It should end in a space; `yes-or-no-p' adds `(yes or no) ' to it.
3192 The user must confirm the answer with RET,
3193 and can edit it until it has been confirmed.
3194
3195 Under a windowing system a dialog box will be used if `last-nonmenu-event'
3196 is nil, and `use-dialog-box' is non-nil. */)
3197 (prompt)
3198 Lisp_Object prompt;
3199 {
3200 register Lisp_Object ans;
3201 Lisp_Object args[2];
3202 struct gcpro gcpro1;
3203
3204 CHECK_STRING (prompt);
3205
3206 #ifdef HAVE_MENUS
3207 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3208 && use_dialog_box
3209 && have_menus_p ())
3210 {
3211 Lisp_Object pane, menu, obj;
3212 redisplay_preserve_echo_area (4);
3213 pane = Fcons (Fcons (build_string ("Yes"), Qt),
3214 Fcons (Fcons (build_string ("No"), Qnil),
3215 Qnil));
3216 GCPRO1 (pane);
3217 menu = Fcons (prompt, pane);
3218 obj = Fx_popup_dialog (Qt, menu);
3219 UNGCPRO;
3220 return obj;
3221 }
3222 #endif /* HAVE_MENUS */
3223
3224 args[0] = prompt;
3225 args[1] = build_string ("(yes or no) ");
3226 prompt = Fconcat (2, args);
3227
3228 GCPRO1 (prompt);
3229
3230 while (1)
3231 {
3232 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
3233 Qyes_or_no_p_history, Qnil,
3234 Qnil));
3235 if (SCHARS (ans) == 3 && !strcmp (SDATA (ans), "yes"))
3236 {
3237 UNGCPRO;
3238 return Qt;
3239 }
3240 if (SCHARS (ans) == 2 && !strcmp (SDATA (ans), "no"))
3241 {
3242 UNGCPRO;
3243 return Qnil;
3244 }
3245
3246 Fding (Qnil);
3247 Fdiscard_input ();
3248 message ("Please answer yes or no.");
3249 Fsleep_for (make_number (2), Qnil);
3250 }
3251 }
3252 \f
3253 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
3254 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
3255
3256 Each of the three load averages is multiplied by 100, then converted
3257 to integer.
3258
3259 When USE-FLOATS is non-nil, floats will be used instead of integers.
3260 These floats are not multiplied by 100.
3261
3262 If the 5-minute or 15-minute load averages are not available, return a
3263 shortened list, containing only those averages which are available.
3264
3265 An error is thrown if the load average can't be obtained. In some
3266 cases making it work would require Emacs being installed setuid or
3267 setgid so that it can read kernel information, and that usually isn't
3268 advisable. */)
3269 (use_floats)
3270 Lisp_Object use_floats;
3271 {
3272 double load_ave[3];
3273 int loads = getloadavg (load_ave, 3);
3274 Lisp_Object ret = Qnil;
3275
3276 if (loads < 0)
3277 error ("load-average not implemented for this operating system");
3278
3279 while (loads-- > 0)
3280 {
3281 Lisp_Object load = (NILP (use_floats) ?
3282 make_number ((int) (100.0 * load_ave[loads]))
3283 : make_float (load_ave[loads]));
3284 ret = Fcons (load, ret);
3285 }
3286
3287 return ret;
3288 }
3289 \f
3290 Lisp_Object Vfeatures, Qsubfeatures;
3291 extern Lisp_Object Vafter_load_alist;
3292
3293 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
3294 doc: /* Returns t if FEATURE is present in this Emacs.
3295
3296 Use this to conditionalize execution of lisp code based on the
3297 presence or absence of emacs or environment extensions.
3298 Use `provide' to declare that a feature is available. This function
3299 looks at the value of the variable `features'. The optional argument
3300 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
3301 (feature, subfeature)
3302 Lisp_Object feature, subfeature;
3303 {
3304 register Lisp_Object tem;
3305 CHECK_SYMBOL (feature);
3306 tem = Fmemq (feature, Vfeatures);
3307 if (!NILP (tem) && !NILP (subfeature))
3308 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
3309 return (NILP (tem)) ? Qnil : Qt;
3310 }
3311
3312 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
3313 doc: /* Announce that FEATURE is a feature of the current Emacs.
3314 The optional argument SUBFEATURES should be a list of symbols listing
3315 particular subfeatures supported in this version of FEATURE. */)
3316 (feature, subfeatures)
3317 Lisp_Object feature, subfeatures;
3318 {
3319 register Lisp_Object tem;
3320 CHECK_SYMBOL (feature);
3321 CHECK_LIST (subfeatures);
3322 if (!NILP (Vautoload_queue))
3323 Vautoload_queue = Fcons (Fcons (Vfeatures, Qnil), Vautoload_queue);
3324 tem = Fmemq (feature, Vfeatures);
3325 if (NILP (tem))
3326 Vfeatures = Fcons (feature, Vfeatures);
3327 if (!NILP (subfeatures))
3328 Fput (feature, Qsubfeatures, subfeatures);
3329 LOADHIST_ATTACH (Fcons (Qprovide, feature));
3330
3331 /* Run any load-hooks for this file. */
3332 tem = Fassq (feature, Vafter_load_alist);
3333 if (CONSP (tem))
3334 Fprogn (XCDR (tem));
3335
3336 return feature;
3337 }
3338 \f
3339 /* `require' and its subroutines. */
3340
3341 /* List of features currently being require'd, innermost first. */
3342
3343 Lisp_Object require_nesting_list;
3344
3345 Lisp_Object
3346 require_unwind (old_value)
3347 Lisp_Object old_value;
3348 {
3349 return require_nesting_list = old_value;
3350 }
3351
3352 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
3353 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
3354 If FEATURE is not a member of the list `features', then the feature
3355 is not loaded; so load the file FILENAME.
3356 If FILENAME is omitted, the printname of FEATURE is used as the file name,
3357 and `load' will try to load this name appended with the suffix `.elc' or
3358 `.el', in that order. The name without appended suffix will not be used.
3359 If the optional third argument NOERROR is non-nil,
3360 then return nil if the file is not found instead of signaling an error.
3361 Normally the return value is FEATURE.
3362 The normal messages at start and end of loading FILENAME are suppressed. */)
3363 (feature, filename, noerror)
3364 Lisp_Object feature, filename, noerror;
3365 {
3366 register Lisp_Object tem;
3367 struct gcpro gcpro1, gcpro2;
3368
3369 CHECK_SYMBOL (feature);
3370
3371 tem = Fmemq (feature, Vfeatures);
3372
3373 if (NILP (tem))
3374 {
3375 int count = SPECPDL_INDEX ();
3376 int nesting = 0;
3377
3378 LOADHIST_ATTACH (Fcons (Qrequire, feature));
3379
3380 /* This is to make sure that loadup.el gives a clear picture
3381 of what files are preloaded and when. */
3382 if (! NILP (Vpurify_flag))
3383 error ("(require %s) while preparing to dump",
3384 SDATA (SYMBOL_NAME (feature)));
3385
3386 /* A certain amount of recursive `require' is legitimate,
3387 but if we require the same feature recursively 3 times,
3388 signal an error. */
3389 tem = require_nesting_list;
3390 while (! NILP (tem))
3391 {
3392 if (! NILP (Fequal (feature, XCAR (tem))))
3393 nesting++;
3394 tem = XCDR (tem);
3395 }
3396 if (nesting > 3)
3397 error ("Recursive `require' for feature `%s'",
3398 SDATA (SYMBOL_NAME (feature)));
3399
3400 /* Update the list for any nested `require's that occur. */
3401 record_unwind_protect (require_unwind, require_nesting_list);
3402 require_nesting_list = Fcons (feature, require_nesting_list);
3403
3404 /* Value saved here is to be restored into Vautoload_queue */
3405 record_unwind_protect (un_autoload, Vautoload_queue);
3406 Vautoload_queue = Qt;
3407
3408 /* Load the file. */
3409 GCPRO2 (feature, filename);
3410 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
3411 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
3412 UNGCPRO;
3413
3414 /* If load failed entirely, return nil. */
3415 if (NILP (tem))
3416 return unbind_to (count, Qnil);
3417
3418 tem = Fmemq (feature, Vfeatures);
3419 if (NILP (tem))
3420 error ("Required feature `%s' was not provided",
3421 SDATA (SYMBOL_NAME (feature)));
3422
3423 /* Once loading finishes, don't undo it. */
3424 Vautoload_queue = Qt;
3425 feature = unbind_to (count, feature);
3426 }
3427
3428 return feature;
3429 }
3430 \f
3431 /* Primitives for work of the "widget" library.
3432 In an ideal world, this section would not have been necessary.
3433 However, lisp function calls being as slow as they are, it turns
3434 out that some functions in the widget library (wid-edit.el) are the
3435 bottleneck of Widget operation. Here is their translation to C,
3436 for the sole reason of efficiency. */
3437
3438 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
3439 doc: /* Return non-nil if PLIST has the property PROP.
3440 PLIST is a property list, which is a list of the form
3441 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
3442 Unlike `plist-get', this allows you to distinguish between a missing
3443 property and a property with the value nil.
3444 The value is actually the tail of PLIST whose car is PROP. */)
3445 (plist, prop)
3446 Lisp_Object plist, prop;
3447 {
3448 while (CONSP (plist) && !EQ (XCAR (plist), prop))
3449 {
3450 QUIT;
3451 plist = XCDR (plist);
3452 plist = CDR (plist);
3453 }
3454 return plist;
3455 }
3456
3457 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
3458 doc: /* In WIDGET, set PROPERTY to VALUE.
3459 The value can later be retrieved with `widget-get'. */)
3460 (widget, property, value)
3461 Lisp_Object widget, property, value;
3462 {
3463 CHECK_CONS (widget);
3464 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
3465 return value;
3466 }
3467
3468 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
3469 doc: /* In WIDGET, get the value of PROPERTY.
3470 The value could either be specified when the widget was created, or
3471 later with `widget-put'. */)
3472 (widget, property)
3473 Lisp_Object widget, property;
3474 {
3475 Lisp_Object tmp;
3476
3477 while (1)
3478 {
3479 if (NILP (widget))
3480 return Qnil;
3481 CHECK_CONS (widget);
3482 tmp = Fplist_member (XCDR (widget), property);
3483 if (CONSP (tmp))
3484 {
3485 tmp = XCDR (tmp);
3486 return CAR (tmp);
3487 }
3488 tmp = XCAR (widget);
3489 if (NILP (tmp))
3490 return Qnil;
3491 widget = Fget (tmp, Qwidget_type);
3492 }
3493 }
3494
3495 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
3496 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
3497 ARGS are passed as extra arguments to the function.
3498 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
3499 (nargs, args)
3500 int nargs;
3501 Lisp_Object *args;
3502 {
3503 /* This function can GC. */
3504 Lisp_Object newargs[3];
3505 struct gcpro gcpro1, gcpro2;
3506 Lisp_Object result;
3507
3508 newargs[0] = Fwidget_get (args[0], args[1]);
3509 newargs[1] = args[0];
3510 newargs[2] = Flist (nargs - 2, args + 2);
3511 GCPRO2 (newargs[0], newargs[2]);
3512 result = Fapply (3, newargs);
3513 UNGCPRO;
3514 return result;
3515 }
3516
3517 #ifdef HAVE_LANGINFO_CODESET
3518 #include <langinfo.h>
3519 #endif
3520
3521 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
3522 doc: /* Access locale data ITEM for the current C locale, if available.
3523 ITEM should be one of the following:
3524
3525 `codeset', returning the character set as a string (locale item CODESET);
3526
3527 `days', returning a 7-element vector of day names (locale items DAY_n);
3528
3529 `months', returning a 12-element vector of month names (locale items MON_n);
3530
3531 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
3532 both measured in milimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
3533
3534 If the system can't provide such information through a call to
3535 `nl_langinfo', or if ITEM isn't from the list above, return nil.
3536
3537 See also Info node `(libc)Locales'.
3538
3539 The data read from the system are decoded using `locale-coding-system'. */)
3540 (item)
3541 Lisp_Object item;
3542 {
3543 char *str = NULL;
3544 #ifdef HAVE_LANGINFO_CODESET
3545 Lisp_Object val;
3546 if (EQ (item, Qcodeset))
3547 {
3548 str = nl_langinfo (CODESET);
3549 return build_string (str);
3550 }
3551 #ifdef DAY_1
3552 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
3553 {
3554 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
3555 int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
3556 int i;
3557 synchronize_system_time_locale ();
3558 for (i = 0; i < 7; i++)
3559 {
3560 str = nl_langinfo (days[i]);
3561 val = make_unibyte_string (str, strlen (str));
3562 /* Fixme: Is this coding system necessarily right, even if
3563 it is consistent with CODESET? If not, what to do? */
3564 Faset (v, make_number (i),
3565 code_convert_string_norecord (val, Vlocale_coding_system,
3566 0));
3567 }
3568 return v;
3569 }
3570 #endif /* DAY_1 */
3571 #ifdef MON_1
3572 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
3573 {
3574 struct Lisp_Vector *p = allocate_vector (12);
3575 int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
3576 MON_8, MON_9, MON_10, MON_11, MON_12};
3577 int i;
3578 synchronize_system_time_locale ();
3579 for (i = 0; i < 12; i++)
3580 {
3581 str = nl_langinfo (months[i]);
3582 val = make_unibyte_string (str, strlen (str));
3583 p->contents[i] =
3584 code_convert_string_norecord (val, Vlocale_coding_system, 0);
3585 }
3586 XSETVECTOR (val, p);
3587 return val;
3588 }
3589 #endif /* MON_1 */
3590 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
3591 but is in the locale files. This could be used by ps-print. */
3592 #ifdef PAPER_WIDTH
3593 else if (EQ (item, Qpaper))
3594 {
3595 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
3596 make_number (nl_langinfo (PAPER_HEIGHT)));
3597 }
3598 #endif /* PAPER_WIDTH */
3599 #endif /* HAVE_LANGINFO_CODESET*/
3600 return Qnil;
3601 }
3602 \f
3603 /* base64 encode/decode functions (RFC 2045).
3604 Based on code from GNU recode. */
3605
3606 #define MIME_LINE_LENGTH 76
3607
3608 #define IS_ASCII(Character) \
3609 ((Character) < 128)
3610 #define IS_BASE64(Character) \
3611 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
3612 #define IS_BASE64_IGNORABLE(Character) \
3613 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
3614 || (Character) == '\f' || (Character) == '\r')
3615
3616 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
3617 character or return retval if there are no characters left to
3618 process. */
3619 #define READ_QUADRUPLET_BYTE(retval) \
3620 do \
3621 { \
3622 if (i == length) \
3623 { \
3624 if (nchars_return) \
3625 *nchars_return = nchars; \
3626 return (retval); \
3627 } \
3628 c = from[i++]; \
3629 } \
3630 while (IS_BASE64_IGNORABLE (c))
3631
3632 /* Don't use alloca for regions larger than this, lest we overflow
3633 their stack. */
3634 #define MAX_ALLOCA 16*1024
3635
3636 /* Table of characters coding the 64 values. */
3637 static char base64_value_to_char[64] =
3638 {
3639 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
3640 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
3641 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
3642 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
3643 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
3644 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
3645 '8', '9', '+', '/' /* 60-63 */
3646 };
3647
3648 /* Table of base64 values for first 128 characters. */
3649 static short base64_char_to_value[128] =
3650 {
3651 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
3652 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
3653 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
3654 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
3655 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
3656 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
3657 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
3658 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
3659 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
3660 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
3661 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
3662 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
3663 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
3664 };
3665
3666 /* The following diagram shows the logical steps by which three octets
3667 get transformed into four base64 characters.
3668
3669 .--------. .--------. .--------.
3670 |aaaaaabb| |bbbbcccc| |ccdddddd|
3671 `--------' `--------' `--------'
3672 6 2 4 4 2 6
3673 .--------+--------+--------+--------.
3674 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
3675 `--------+--------+--------+--------'
3676
3677 .--------+--------+--------+--------.
3678 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
3679 `--------+--------+--------+--------'
3680
3681 The octets are divided into 6 bit chunks, which are then encoded into
3682 base64 characters. */
3683
3684
3685 static int base64_encode_1 P_ ((const char *, char *, int, int, int));
3686 static int base64_decode_1 P_ ((const char *, char *, int, int, int *));
3687
3688 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
3689 2, 3, "r",
3690 doc: /* Base64-encode the region between BEG and END.
3691 Return the length of the encoded text.
3692 Optional third argument NO-LINE-BREAK means do not break long lines
3693 into shorter lines. */)
3694 (beg, end, no_line_break)
3695 Lisp_Object beg, end, no_line_break;
3696 {
3697 char *encoded;
3698 int allength, length;
3699 int ibeg, iend, encoded_length;
3700 int old_pos = PT;
3701
3702 validate_region (&beg, &end);
3703
3704 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3705 iend = CHAR_TO_BYTE (XFASTINT (end));
3706 move_gap_both (XFASTINT (beg), ibeg);
3707
3708 /* We need to allocate enough room for encoding the text.
3709 We need 33 1/3% more space, plus a newline every 76
3710 characters, and then we round up. */
3711 length = iend - ibeg;
3712 allength = length + length/3 + 1;
3713 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3714
3715 if (allength <= MAX_ALLOCA)
3716 encoded = (char *) alloca (allength);
3717 else
3718 encoded = (char *) xmalloc (allength);
3719 encoded_length = base64_encode_1 (BYTE_POS_ADDR (ibeg), encoded, length,
3720 NILP (no_line_break),
3721 !NILP (current_buffer->enable_multibyte_characters));
3722 if (encoded_length > allength)
3723 abort ();
3724
3725 if (encoded_length < 0)
3726 {
3727 /* The encoding wasn't possible. */
3728 if (length > MAX_ALLOCA)
3729 xfree (encoded);
3730 error ("Multibyte character in data for base64 encoding");
3731 }
3732
3733 /* Now we have encoded the region, so we insert the new contents
3734 and delete the old. (Insert first in order to preserve markers.) */
3735 SET_PT_BOTH (XFASTINT (beg), ibeg);
3736 insert (encoded, encoded_length);
3737 if (allength > MAX_ALLOCA)
3738 xfree (encoded);
3739 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3740
3741 /* If point was outside of the region, restore it exactly; else just
3742 move to the beginning of the region. */
3743 if (old_pos >= XFASTINT (end))
3744 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3745 else if (old_pos > XFASTINT (beg))
3746 old_pos = XFASTINT (beg);
3747 SET_PT (old_pos);
3748
3749 /* We return the length of the encoded text. */
3750 return make_number (encoded_length);
3751 }
3752
3753 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3754 1, 2, 0,
3755 doc: /* Base64-encode STRING and return the result.
3756 Optional second argument NO-LINE-BREAK means do not break long lines
3757 into shorter lines. */)
3758 (string, no_line_break)
3759 Lisp_Object string, no_line_break;
3760 {
3761 int allength, length, encoded_length;
3762 char *encoded;
3763 Lisp_Object encoded_string;
3764
3765 CHECK_STRING (string);
3766
3767 /* We need to allocate enough room for encoding the text.
3768 We need 33 1/3% more space, plus a newline every 76
3769 characters, and then we round up. */
3770 length = SBYTES (string);
3771 allength = length + length/3 + 1;
3772 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3773
3774 /* We need to allocate enough room for decoding the text. */
3775 if (allength <= MAX_ALLOCA)
3776 encoded = (char *) alloca (allength);
3777 else
3778 encoded = (char *) xmalloc (allength);
3779
3780 encoded_length = base64_encode_1 (SDATA (string),
3781 encoded, length, NILP (no_line_break),
3782 STRING_MULTIBYTE (string));
3783 if (encoded_length > allength)
3784 abort ();
3785
3786 if (encoded_length < 0)
3787 {
3788 /* The encoding wasn't possible. */
3789 if (length > MAX_ALLOCA)
3790 xfree (encoded);
3791 error ("Multibyte character in data for base64 encoding");
3792 }
3793
3794 encoded_string = make_unibyte_string (encoded, encoded_length);
3795 if (allength > MAX_ALLOCA)
3796 xfree (encoded);
3797
3798 return encoded_string;
3799 }
3800
3801 static int
3802 base64_encode_1 (from, to, length, line_break, multibyte)
3803 const char *from;
3804 char *to;
3805 int length;
3806 int line_break;
3807 int multibyte;
3808 {
3809 int counter = 0, i = 0;
3810 char *e = to;
3811 int c;
3812 unsigned int value;
3813 int bytes;
3814
3815 while (i < length)
3816 {
3817 if (multibyte)
3818 {
3819 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3820 if (c >= 256)
3821 return -1;
3822 i += bytes;
3823 }
3824 else
3825 c = from[i++];
3826
3827 /* Wrap line every 76 characters. */
3828
3829 if (line_break)
3830 {
3831 if (counter < MIME_LINE_LENGTH / 4)
3832 counter++;
3833 else
3834 {
3835 *e++ = '\n';
3836 counter = 1;
3837 }
3838 }
3839
3840 /* Process first byte of a triplet. */
3841
3842 *e++ = base64_value_to_char[0x3f & c >> 2];
3843 value = (0x03 & c) << 4;
3844
3845 /* Process second byte of a triplet. */
3846
3847 if (i == length)
3848 {
3849 *e++ = base64_value_to_char[value];
3850 *e++ = '=';
3851 *e++ = '=';
3852 break;
3853 }
3854
3855 if (multibyte)
3856 {
3857 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3858 if (c >= 256)
3859 return -1;
3860 i += bytes;
3861 }
3862 else
3863 c = from[i++];
3864
3865 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3866 value = (0x0f & c) << 2;
3867
3868 /* Process third byte of a triplet. */
3869
3870 if (i == length)
3871 {
3872 *e++ = base64_value_to_char[value];
3873 *e++ = '=';
3874 break;
3875 }
3876
3877 if (multibyte)
3878 {
3879 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3880 if (c >= 256)
3881 return -1;
3882 i += bytes;
3883 }
3884 else
3885 c = from[i++];
3886
3887 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3888 *e++ = base64_value_to_char[0x3f & c];
3889 }
3890
3891 return e - to;
3892 }
3893
3894
3895 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3896 2, 2, "r",
3897 doc: /* Base64-decode the region between BEG and END.
3898 Return the length of the decoded text.
3899 If the region can't be decoded, signal an error and don't modify the buffer. */)
3900 (beg, end)
3901 Lisp_Object beg, end;
3902 {
3903 int ibeg, iend, length, allength;
3904 char *decoded;
3905 int old_pos = PT;
3906 int decoded_length;
3907 int inserted_chars;
3908 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
3909
3910 validate_region (&beg, &end);
3911
3912 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3913 iend = CHAR_TO_BYTE (XFASTINT (end));
3914
3915 length = iend - ibeg;
3916
3917 /* We need to allocate enough room for decoding the text. If we are
3918 working on a multibyte buffer, each decoded code may occupy at
3919 most two bytes. */
3920 allength = multibyte ? length * 2 : length;
3921 if (allength <= MAX_ALLOCA)
3922 decoded = (char *) alloca (allength);
3923 else
3924 decoded = (char *) xmalloc (allength);
3925
3926 move_gap_both (XFASTINT (beg), ibeg);
3927 decoded_length = base64_decode_1 (BYTE_POS_ADDR (ibeg), decoded, length,
3928 multibyte, &inserted_chars);
3929 if (decoded_length > allength)
3930 abort ();
3931
3932 if (decoded_length < 0)
3933 {
3934 /* The decoding wasn't possible. */
3935 if (allength > MAX_ALLOCA)
3936 xfree (decoded);
3937 error ("Invalid base64 data");
3938 }
3939
3940 /* Now we have decoded the region, so we insert the new contents
3941 and delete the old. (Insert first in order to preserve markers.) */
3942 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3943 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3944 if (allength > MAX_ALLOCA)
3945 xfree (decoded);
3946 /* Delete the original text. */
3947 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3948 iend + decoded_length, 1);
3949
3950 /* If point was outside of the region, restore it exactly; else just
3951 move to the beginning of the region. */
3952 if (old_pos >= XFASTINT (end))
3953 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3954 else if (old_pos > XFASTINT (beg))
3955 old_pos = XFASTINT (beg);
3956 SET_PT (old_pos > ZV ? ZV : old_pos);
3957
3958 return make_number (inserted_chars);
3959 }
3960
3961 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3962 1, 1, 0,
3963 doc: /* Base64-decode STRING and return the result. */)
3964 (string)
3965 Lisp_Object string;
3966 {
3967 char *decoded;
3968 int length, decoded_length;
3969 Lisp_Object decoded_string;
3970
3971 CHECK_STRING (string);
3972
3973 length = SBYTES (string);
3974 /* We need to allocate enough room for decoding the text. */
3975 if (length <= MAX_ALLOCA)
3976 decoded = (char *) alloca (length);
3977 else
3978 decoded = (char *) xmalloc (length);
3979
3980 /* The decoded result should be unibyte. */
3981 decoded_length = base64_decode_1 (SDATA (string), decoded, length,
3982 0, NULL);
3983 if (decoded_length > length)
3984 abort ();
3985 else if (decoded_length >= 0)
3986 decoded_string = make_unibyte_string (decoded, decoded_length);
3987 else
3988 decoded_string = Qnil;
3989
3990 if (length > MAX_ALLOCA)
3991 xfree (decoded);
3992 if (!STRINGP (decoded_string))
3993 error ("Invalid base64 data");
3994
3995 return decoded_string;
3996 }
3997
3998 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
3999 MULTIBYTE is nonzero, the decoded result should be in multibyte
4000 form. If NCHARS_RETRUN is not NULL, store the number of produced
4001 characters in *NCHARS_RETURN. */
4002
4003 static int
4004 base64_decode_1 (from, to, length, multibyte, nchars_return)
4005 const char *from;
4006 char *to;
4007 int length;
4008 int multibyte;
4009 int *nchars_return;
4010 {
4011 int i = 0;
4012 char *e = to;
4013 unsigned char c;
4014 unsigned long value;
4015 int nchars = 0;
4016
4017 while (1)
4018 {
4019 /* Process first byte of a quadruplet. */
4020
4021 READ_QUADRUPLET_BYTE (e-to);
4022
4023 if (!IS_BASE64 (c))
4024 return -1;
4025 value = base64_char_to_value[c] << 18;
4026
4027 /* Process second byte of a quadruplet. */
4028
4029 READ_QUADRUPLET_BYTE (-1);
4030
4031 if (!IS_BASE64 (c))
4032 return -1;
4033 value |= base64_char_to_value[c] << 12;
4034
4035 c = (unsigned char) (value >> 16);
4036 if (multibyte)
4037 e += CHAR_STRING (c, e);
4038 else
4039 *e++ = c;
4040 nchars++;
4041
4042 /* Process third byte of a quadruplet. */
4043
4044 READ_QUADRUPLET_BYTE (-1);
4045
4046 if (c == '=')
4047 {
4048 READ_QUADRUPLET_BYTE (-1);
4049
4050 if (c != '=')
4051 return -1;
4052 continue;
4053 }
4054
4055 if (!IS_BASE64 (c))
4056 return -1;
4057 value |= base64_char_to_value[c] << 6;
4058
4059 c = (unsigned char) (0xff & value >> 8);
4060 if (multibyte)
4061 e += CHAR_STRING (c, e);
4062 else
4063 *e++ = c;
4064 nchars++;
4065
4066 /* Process fourth byte of a quadruplet. */
4067
4068 READ_QUADRUPLET_BYTE (-1);
4069
4070 if (c == '=')
4071 continue;
4072
4073 if (!IS_BASE64 (c))
4074 return -1;
4075 value |= base64_char_to_value[c];
4076
4077 c = (unsigned char) (0xff & value);
4078 if (multibyte)
4079 e += CHAR_STRING (c, e);
4080 else
4081 *e++ = c;
4082 nchars++;
4083 }
4084 }
4085
4086
4087 \f
4088 /***********************************************************************
4089 ***** *****
4090 ***** Hash Tables *****
4091 ***** *****
4092 ***********************************************************************/
4093
4094 /* Implemented by gerd@gnu.org. This hash table implementation was
4095 inspired by CMUCL hash tables. */
4096
4097 /* Ideas:
4098
4099 1. For small tables, association lists are probably faster than
4100 hash tables because they have lower overhead.
4101
4102 For uses of hash tables where the O(1) behavior of table
4103 operations is not a requirement, it might therefore be a good idea
4104 not to hash. Instead, we could just do a linear search in the
4105 key_and_value vector of the hash table. This could be done
4106 if a `:linear-search t' argument is given to make-hash-table. */
4107
4108
4109 /* The list of all weak hash tables. Don't staticpro this one. */
4110
4111 Lisp_Object Vweak_hash_tables;
4112
4113 /* Various symbols. */
4114
4115 Lisp_Object Qhash_table_p, Qeq, Qeql, Qequal, Qkey, Qvalue;
4116 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
4117 Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
4118
4119 /* Function prototypes. */
4120
4121 static struct Lisp_Hash_Table *check_hash_table P_ ((Lisp_Object));
4122 static int get_key_arg P_ ((Lisp_Object, int, Lisp_Object *, char *));
4123 static void maybe_resize_hash_table P_ ((struct Lisp_Hash_Table *));
4124 static int cmpfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
4125 Lisp_Object, unsigned));
4126 static int cmpfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
4127 Lisp_Object, unsigned));
4128 static int cmpfn_user_defined P_ ((struct Lisp_Hash_Table *, Lisp_Object,
4129 unsigned, Lisp_Object, unsigned));
4130 static unsigned hashfn_eq P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4131 static unsigned hashfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4132 static unsigned hashfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4133 static unsigned hashfn_user_defined P_ ((struct Lisp_Hash_Table *,
4134 Lisp_Object));
4135 static unsigned sxhash_string P_ ((unsigned char *, int));
4136 static unsigned sxhash_list P_ ((Lisp_Object, int));
4137 static unsigned sxhash_vector P_ ((Lisp_Object, int));
4138 static unsigned sxhash_bool_vector P_ ((Lisp_Object));
4139 static int sweep_weak_table P_ ((struct Lisp_Hash_Table *, int));
4140
4141
4142 \f
4143 /***********************************************************************
4144 Utilities
4145 ***********************************************************************/
4146
4147 /* If OBJ is a Lisp hash table, return a pointer to its struct
4148 Lisp_Hash_Table. Otherwise, signal an error. */
4149
4150 static struct Lisp_Hash_Table *
4151 check_hash_table (obj)
4152 Lisp_Object obj;
4153 {
4154 CHECK_HASH_TABLE (obj);
4155 return XHASH_TABLE (obj);
4156 }
4157
4158
4159 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
4160 number. */
4161
4162 int
4163 next_almost_prime (n)
4164 int n;
4165 {
4166 if (n % 2 == 0)
4167 n += 1;
4168 if (n % 3 == 0)
4169 n += 2;
4170 if (n % 7 == 0)
4171 n += 4;
4172 return n;
4173 }
4174
4175
4176 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
4177 which USED[I] is non-zero. If found at index I in ARGS, set
4178 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
4179 -1. This function is used to extract a keyword/argument pair from
4180 a DEFUN parameter list. */
4181
4182 static int
4183 get_key_arg (key, nargs, args, used)
4184 Lisp_Object key;
4185 int nargs;
4186 Lisp_Object *args;
4187 char *used;
4188 {
4189 int i;
4190
4191 for (i = 0; i < nargs - 1; ++i)
4192 if (!used[i] && EQ (args[i], key))
4193 break;
4194
4195 if (i >= nargs - 1)
4196 i = -1;
4197 else
4198 {
4199 used[i++] = 1;
4200 used[i] = 1;
4201 }
4202
4203 return i;
4204 }
4205
4206
4207 /* Return a Lisp vector which has the same contents as VEC but has
4208 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
4209 vector that are not copied from VEC are set to INIT. */
4210
4211 Lisp_Object
4212 larger_vector (vec, new_size, init)
4213 Lisp_Object vec;
4214 int new_size;
4215 Lisp_Object init;
4216 {
4217 struct Lisp_Vector *v;
4218 int i, old_size;
4219
4220 xassert (VECTORP (vec));
4221 old_size = XVECTOR (vec)->size;
4222 xassert (new_size >= old_size);
4223
4224 v = allocate_vector (new_size);
4225 bcopy (XVECTOR (vec)->contents, v->contents,
4226 old_size * sizeof *v->contents);
4227 for (i = old_size; i < new_size; ++i)
4228 v->contents[i] = init;
4229 XSETVECTOR (vec, v);
4230 return vec;
4231 }
4232
4233
4234 /***********************************************************************
4235 Low-level Functions
4236 ***********************************************************************/
4237
4238 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
4239 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
4240 KEY2 are the same. */
4241
4242 static int
4243 cmpfn_eql (h, key1, hash1, key2, hash2)
4244 struct Lisp_Hash_Table *h;
4245 Lisp_Object key1, key2;
4246 unsigned hash1, hash2;
4247 {
4248 return (FLOATP (key1)
4249 && FLOATP (key2)
4250 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
4251 }
4252
4253
4254 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
4255 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
4256 KEY2 are the same. */
4257
4258 static int
4259 cmpfn_equal (h, key1, hash1, key2, hash2)
4260 struct Lisp_Hash_Table *h;
4261 Lisp_Object key1, key2;
4262 unsigned hash1, hash2;
4263 {
4264 return hash1 == hash2 && !NILP (Fequal (key1, key2));
4265 }
4266
4267
4268 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
4269 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
4270 if KEY1 and KEY2 are the same. */
4271
4272 static int
4273 cmpfn_user_defined (h, key1, hash1, key2, hash2)
4274 struct Lisp_Hash_Table *h;
4275 Lisp_Object key1, key2;
4276 unsigned hash1, hash2;
4277 {
4278 if (hash1 == hash2)
4279 {
4280 Lisp_Object args[3];
4281
4282 args[0] = h->user_cmp_function;
4283 args[1] = key1;
4284 args[2] = key2;
4285 return !NILP (Ffuncall (3, args));
4286 }
4287 else
4288 return 0;
4289 }
4290
4291
4292 /* Value is a hash code for KEY for use in hash table H which uses
4293 `eq' to compare keys. The hash code returned is guaranteed to fit
4294 in a Lisp integer. */
4295
4296 static unsigned
4297 hashfn_eq (h, key)
4298 struct Lisp_Hash_Table *h;
4299 Lisp_Object key;
4300 {
4301 unsigned hash = XUINT (key) ^ XGCTYPE (key);
4302 xassert ((hash & ~INTMASK) == 0);
4303 return hash;
4304 }
4305
4306
4307 /* Value is a hash code for KEY for use in hash table H which uses
4308 `eql' to compare keys. The hash code returned is guaranteed to fit
4309 in a Lisp integer. */
4310
4311 static unsigned
4312 hashfn_eql (h, key)
4313 struct Lisp_Hash_Table *h;
4314 Lisp_Object key;
4315 {
4316 unsigned hash;
4317 if (FLOATP (key))
4318 hash = sxhash (key, 0);
4319 else
4320 hash = XUINT (key) ^ XGCTYPE (key);
4321 xassert ((hash & ~INTMASK) == 0);
4322 return hash;
4323 }
4324
4325
4326 /* Value is a hash code for KEY for use in hash table H which uses
4327 `equal' to compare keys. The hash code returned is guaranteed to fit
4328 in a Lisp integer. */
4329
4330 static unsigned
4331 hashfn_equal (h, key)
4332 struct Lisp_Hash_Table *h;
4333 Lisp_Object key;
4334 {
4335 unsigned hash = sxhash (key, 0);
4336 xassert ((hash & ~INTMASK) == 0);
4337 return hash;
4338 }
4339
4340
4341 /* Value is a hash code for KEY for use in hash table H which uses as
4342 user-defined function to compare keys. The hash code returned is
4343 guaranteed to fit in a Lisp integer. */
4344
4345 static unsigned
4346 hashfn_user_defined (h, key)
4347 struct Lisp_Hash_Table *h;
4348 Lisp_Object key;
4349 {
4350 Lisp_Object args[2], hash;
4351
4352 args[0] = h->user_hash_function;
4353 args[1] = key;
4354 hash = Ffuncall (2, args);
4355 if (!INTEGERP (hash))
4356 Fsignal (Qerror,
4357 list2 (build_string ("Invalid hash code returned from \
4358 user-supplied hash function"),
4359 hash));
4360 return XUINT (hash);
4361 }
4362
4363
4364 /* Create and initialize a new hash table.
4365
4366 TEST specifies the test the hash table will use to compare keys.
4367 It must be either one of the predefined tests `eq', `eql' or
4368 `equal' or a symbol denoting a user-defined test named TEST with
4369 test and hash functions USER_TEST and USER_HASH.
4370
4371 Give the table initial capacity SIZE, SIZE >= 0, an integer.
4372
4373 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
4374 new size when it becomes full is computed by adding REHASH_SIZE to
4375 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
4376 table's new size is computed by multiplying its old size with
4377 REHASH_SIZE.
4378
4379 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
4380 be resized when the ratio of (number of entries in the table) /
4381 (table size) is >= REHASH_THRESHOLD.
4382
4383 WEAK specifies the weakness of the table. If non-nil, it must be
4384 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
4385
4386 Lisp_Object
4387 make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4388 user_test, user_hash)
4389 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4390 Lisp_Object user_test, user_hash;
4391 {
4392 struct Lisp_Hash_Table *h;
4393 Lisp_Object table;
4394 int index_size, i, sz;
4395
4396 /* Preconditions. */
4397 xassert (SYMBOLP (test));
4398 xassert (INTEGERP (size) && XINT (size) >= 0);
4399 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
4400 || (FLOATP (rehash_size) && XFLOATINT (rehash_size) > 1.0));
4401 xassert (FLOATP (rehash_threshold)
4402 && XFLOATINT (rehash_threshold) > 0
4403 && XFLOATINT (rehash_threshold) <= 1.0);
4404
4405 if (XFASTINT (size) == 0)
4406 size = make_number (1);
4407
4408 /* Allocate a table and initialize it. */
4409 h = allocate_hash_table ();
4410
4411 /* Initialize hash table slots. */
4412 sz = XFASTINT (size);
4413
4414 h->test = test;
4415 if (EQ (test, Qeql))
4416 {
4417 h->cmpfn = cmpfn_eql;
4418 h->hashfn = hashfn_eql;
4419 }
4420 else if (EQ (test, Qeq))
4421 {
4422 h->cmpfn = NULL;
4423 h->hashfn = hashfn_eq;
4424 }
4425 else if (EQ (test, Qequal))
4426 {
4427 h->cmpfn = cmpfn_equal;
4428 h->hashfn = hashfn_equal;
4429 }
4430 else
4431 {
4432 h->user_cmp_function = user_test;
4433 h->user_hash_function = user_hash;
4434 h->cmpfn = cmpfn_user_defined;
4435 h->hashfn = hashfn_user_defined;
4436 }
4437
4438 h->weak = weak;
4439 h->rehash_threshold = rehash_threshold;
4440 h->rehash_size = rehash_size;
4441 h->count = make_number (0);
4442 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
4443 h->hash = Fmake_vector (size, Qnil);
4444 h->next = Fmake_vector (size, Qnil);
4445 /* Cast to int here avoids losing with gcc 2.95 on Tru64/Alpha... */
4446 index_size = next_almost_prime ((int) (sz / XFLOATINT (rehash_threshold)));
4447 h->index = Fmake_vector (make_number (index_size), Qnil);
4448
4449 /* Set up the free list. */
4450 for (i = 0; i < sz - 1; ++i)
4451 HASH_NEXT (h, i) = make_number (i + 1);
4452 h->next_free = make_number (0);
4453
4454 XSET_HASH_TABLE (table, h);
4455 xassert (HASH_TABLE_P (table));
4456 xassert (XHASH_TABLE (table) == h);
4457
4458 /* Maybe add this hash table to the list of all weak hash tables. */
4459 if (NILP (h->weak))
4460 h->next_weak = Qnil;
4461 else
4462 {
4463 h->next_weak = Vweak_hash_tables;
4464 Vweak_hash_tables = table;
4465 }
4466
4467 return table;
4468 }
4469
4470
4471 /* Return a copy of hash table H1. Keys and values are not copied,
4472 only the table itself is. */
4473
4474 Lisp_Object
4475 copy_hash_table (h1)
4476 struct Lisp_Hash_Table *h1;
4477 {
4478 Lisp_Object table;
4479 struct Lisp_Hash_Table *h2;
4480 struct Lisp_Vector *next;
4481
4482 h2 = allocate_hash_table ();
4483 next = h2->vec_next;
4484 bcopy (h1, h2, sizeof *h2);
4485 h2->vec_next = next;
4486 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
4487 h2->hash = Fcopy_sequence (h1->hash);
4488 h2->next = Fcopy_sequence (h1->next);
4489 h2->index = Fcopy_sequence (h1->index);
4490 XSET_HASH_TABLE (table, h2);
4491
4492 /* Maybe add this hash table to the list of all weak hash tables. */
4493 if (!NILP (h2->weak))
4494 {
4495 h2->next_weak = Vweak_hash_tables;
4496 Vweak_hash_tables = table;
4497 }
4498
4499 return table;
4500 }
4501
4502
4503 /* Resize hash table H if it's too full. If H cannot be resized
4504 because it's already too large, throw an error. */
4505
4506 static INLINE void
4507 maybe_resize_hash_table (h)
4508 struct Lisp_Hash_Table *h;
4509 {
4510 if (NILP (h->next_free))
4511 {
4512 int old_size = HASH_TABLE_SIZE (h);
4513 int i, new_size, index_size;
4514
4515 if (INTEGERP (h->rehash_size))
4516 new_size = old_size + XFASTINT (h->rehash_size);
4517 else
4518 new_size = old_size * XFLOATINT (h->rehash_size);
4519 new_size = max (old_size + 1, new_size);
4520 index_size = next_almost_prime ((int)
4521 (new_size
4522 / XFLOATINT (h->rehash_threshold)));
4523 if (max (index_size, 2 * new_size) > MOST_POSITIVE_FIXNUM)
4524 error ("Hash table too large to resize");
4525
4526 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
4527 h->next = larger_vector (h->next, new_size, Qnil);
4528 h->hash = larger_vector (h->hash, new_size, Qnil);
4529 h->index = Fmake_vector (make_number (index_size), Qnil);
4530
4531 /* Update the free list. Do it so that new entries are added at
4532 the end of the free list. This makes some operations like
4533 maphash faster. */
4534 for (i = old_size; i < new_size - 1; ++i)
4535 HASH_NEXT (h, i) = make_number (i + 1);
4536
4537 if (!NILP (h->next_free))
4538 {
4539 Lisp_Object last, next;
4540
4541 last = h->next_free;
4542 while (next = HASH_NEXT (h, XFASTINT (last)),
4543 !NILP (next))
4544 last = next;
4545
4546 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
4547 }
4548 else
4549 XSETFASTINT (h->next_free, old_size);
4550
4551 /* Rehash. */
4552 for (i = 0; i < old_size; ++i)
4553 if (!NILP (HASH_HASH (h, i)))
4554 {
4555 unsigned hash_code = XUINT (HASH_HASH (h, i));
4556 int start_of_bucket = hash_code % XVECTOR (h->index)->size;
4557 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4558 HASH_INDEX (h, start_of_bucket) = make_number (i);
4559 }
4560 }
4561 }
4562
4563
4564 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
4565 the hash code of KEY. Value is the index of the entry in H
4566 matching KEY, or -1 if not found. */
4567
4568 int
4569 hash_lookup (h, key, hash)
4570 struct Lisp_Hash_Table *h;
4571 Lisp_Object key;
4572 unsigned *hash;
4573 {
4574 unsigned hash_code;
4575 int start_of_bucket;
4576 Lisp_Object idx;
4577
4578 hash_code = h->hashfn (h, key);
4579 if (hash)
4580 *hash = hash_code;
4581
4582 start_of_bucket = hash_code % XVECTOR (h->index)->size;
4583 idx = HASH_INDEX (h, start_of_bucket);
4584
4585 /* We need not gcpro idx since it's either an integer or nil. */
4586 while (!NILP (idx))
4587 {
4588 int i = XFASTINT (idx);
4589 if (EQ (key, HASH_KEY (h, i))
4590 || (h->cmpfn
4591 && h->cmpfn (h, key, hash_code,
4592 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4593 break;
4594 idx = HASH_NEXT (h, i);
4595 }
4596
4597 return NILP (idx) ? -1 : XFASTINT (idx);
4598 }
4599
4600
4601 /* Put an entry into hash table H that associates KEY with VALUE.
4602 HASH is a previously computed hash code of KEY.
4603 Value is the index of the entry in H matching KEY. */
4604
4605 int
4606 hash_put (h, key, value, hash)
4607 struct Lisp_Hash_Table *h;
4608 Lisp_Object key, value;
4609 unsigned hash;
4610 {
4611 int start_of_bucket, i;
4612
4613 xassert ((hash & ~INTMASK) == 0);
4614
4615 /* Increment count after resizing because resizing may fail. */
4616 maybe_resize_hash_table (h);
4617 h->count = make_number (XFASTINT (h->count) + 1);
4618
4619 /* Store key/value in the key_and_value vector. */
4620 i = XFASTINT (h->next_free);
4621 h->next_free = HASH_NEXT (h, i);
4622 HASH_KEY (h, i) = key;
4623 HASH_VALUE (h, i) = value;
4624
4625 /* Remember its hash code. */
4626 HASH_HASH (h, i) = make_number (hash);
4627
4628 /* Add new entry to its collision chain. */
4629 start_of_bucket = hash % XVECTOR (h->index)->size;
4630 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4631 HASH_INDEX (h, start_of_bucket) = make_number (i);
4632 return i;
4633 }
4634
4635
4636 /* Remove the entry matching KEY from hash table H, if there is one. */
4637
4638 void
4639 hash_remove (h, key)
4640 struct Lisp_Hash_Table *h;
4641 Lisp_Object key;
4642 {
4643 unsigned hash_code;
4644 int start_of_bucket;
4645 Lisp_Object idx, prev;
4646
4647 hash_code = h->hashfn (h, key);
4648 start_of_bucket = hash_code % XVECTOR (h->index)->size;
4649 idx = HASH_INDEX (h, start_of_bucket);
4650 prev = Qnil;
4651
4652 /* We need not gcpro idx, prev since they're either integers or nil. */
4653 while (!NILP (idx))
4654 {
4655 int i = XFASTINT (idx);
4656
4657 if (EQ (key, HASH_KEY (h, i))
4658 || (h->cmpfn
4659 && h->cmpfn (h, key, hash_code,
4660 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4661 {
4662 /* Take entry out of collision chain. */
4663 if (NILP (prev))
4664 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
4665 else
4666 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
4667
4668 /* Clear slots in key_and_value and add the slots to
4669 the free list. */
4670 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
4671 HASH_NEXT (h, i) = h->next_free;
4672 h->next_free = make_number (i);
4673 h->count = make_number (XFASTINT (h->count) - 1);
4674 xassert (XINT (h->count) >= 0);
4675 break;
4676 }
4677 else
4678 {
4679 prev = idx;
4680 idx = HASH_NEXT (h, i);
4681 }
4682 }
4683 }
4684
4685
4686 /* Clear hash table H. */
4687
4688 void
4689 hash_clear (h)
4690 struct Lisp_Hash_Table *h;
4691 {
4692 if (XFASTINT (h->count) > 0)
4693 {
4694 int i, size = HASH_TABLE_SIZE (h);
4695
4696 for (i = 0; i < size; ++i)
4697 {
4698 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
4699 HASH_KEY (h, i) = Qnil;
4700 HASH_VALUE (h, i) = Qnil;
4701 HASH_HASH (h, i) = Qnil;
4702 }
4703
4704 for (i = 0; i < XVECTOR (h->index)->size; ++i)
4705 XVECTOR (h->index)->contents[i] = Qnil;
4706
4707 h->next_free = make_number (0);
4708 h->count = make_number (0);
4709 }
4710 }
4711
4712
4713 \f
4714 /************************************************************************
4715 Weak Hash Tables
4716 ************************************************************************/
4717
4718 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
4719 entries from the table that don't survive the current GC.
4720 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
4721 non-zero if anything was marked. */
4722
4723 static int
4724 sweep_weak_table (h, remove_entries_p)
4725 struct Lisp_Hash_Table *h;
4726 int remove_entries_p;
4727 {
4728 int bucket, n, marked;
4729
4730 n = XVECTOR (h->index)->size & ~ARRAY_MARK_FLAG;
4731 marked = 0;
4732
4733 for (bucket = 0; bucket < n; ++bucket)
4734 {
4735 Lisp_Object idx, next, prev;
4736
4737 /* Follow collision chain, removing entries that
4738 don't survive this garbage collection. */
4739 prev = Qnil;
4740 for (idx = HASH_INDEX (h, bucket); !GC_NILP (idx); idx = next)
4741 {
4742 int i = XFASTINT (idx);
4743 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
4744 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
4745 int remove_p;
4746
4747 if (EQ (h->weak, Qkey))
4748 remove_p = !key_known_to_survive_p;
4749 else if (EQ (h->weak, Qvalue))
4750 remove_p = !value_known_to_survive_p;
4751 else if (EQ (h->weak, Qkey_or_value))
4752 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
4753 else if (EQ (h->weak, Qkey_and_value))
4754 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
4755 else
4756 abort ();
4757
4758 next = HASH_NEXT (h, i);
4759
4760 if (remove_entries_p)
4761 {
4762 if (remove_p)
4763 {
4764 /* Take out of collision chain. */
4765 if (GC_NILP (prev))
4766 HASH_INDEX (h, bucket) = next;
4767 else
4768 HASH_NEXT (h, XFASTINT (prev)) = next;
4769
4770 /* Add to free list. */
4771 HASH_NEXT (h, i) = h->next_free;
4772 h->next_free = idx;
4773
4774 /* Clear key, value, and hash. */
4775 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
4776 HASH_HASH (h, i) = Qnil;
4777
4778 h->count = make_number (XFASTINT (h->count) - 1);
4779 }
4780 }
4781 else
4782 {
4783 if (!remove_p)
4784 {
4785 /* Make sure key and value survive. */
4786 if (!key_known_to_survive_p)
4787 {
4788 mark_object (HASH_KEY (h, i));
4789 marked = 1;
4790 }
4791
4792 if (!value_known_to_survive_p)
4793 {
4794 mark_object (HASH_VALUE (h, i));
4795 marked = 1;
4796 }
4797 }
4798 }
4799 }
4800 }
4801
4802 return marked;
4803 }
4804
4805 /* Remove elements from weak hash tables that don't survive the
4806 current garbage collection. Remove weak tables that don't survive
4807 from Vweak_hash_tables. Called from gc_sweep. */
4808
4809 void
4810 sweep_weak_hash_tables ()
4811 {
4812 Lisp_Object table, used, next;
4813 struct Lisp_Hash_Table *h;
4814 int marked;
4815
4816 /* Mark all keys and values that are in use. Keep on marking until
4817 there is no more change. This is necessary for cases like
4818 value-weak table A containing an entry X -> Y, where Y is used in a
4819 key-weak table B, Z -> Y. If B comes after A in the list of weak
4820 tables, X -> Y might be removed from A, although when looking at B
4821 one finds that it shouldn't. */
4822 do
4823 {
4824 marked = 0;
4825 for (table = Vweak_hash_tables; !GC_NILP (table); table = h->next_weak)
4826 {
4827 h = XHASH_TABLE (table);
4828 if (h->size & ARRAY_MARK_FLAG)
4829 marked |= sweep_weak_table (h, 0);
4830 }
4831 }
4832 while (marked);
4833
4834 /* Remove tables and entries that aren't used. */
4835 for (table = Vweak_hash_tables, used = Qnil; !GC_NILP (table); table = next)
4836 {
4837 h = XHASH_TABLE (table);
4838 next = h->next_weak;
4839
4840 if (h->size & ARRAY_MARK_FLAG)
4841 {
4842 /* TABLE is marked as used. Sweep its contents. */
4843 if (XFASTINT (h->count) > 0)
4844 sweep_weak_table (h, 1);
4845
4846 /* Add table to the list of used weak hash tables. */
4847 h->next_weak = used;
4848 used = table;
4849 }
4850 }
4851
4852 Vweak_hash_tables = used;
4853 }
4854
4855
4856 \f
4857 /***********************************************************************
4858 Hash Code Computation
4859 ***********************************************************************/
4860
4861 /* Maximum depth up to which to dive into Lisp structures. */
4862
4863 #define SXHASH_MAX_DEPTH 3
4864
4865 /* Maximum length up to which to take list and vector elements into
4866 account. */
4867
4868 #define SXHASH_MAX_LEN 7
4869
4870 /* Combine two integers X and Y for hashing. */
4871
4872 #define SXHASH_COMBINE(X, Y) \
4873 ((((unsigned)(X) << 4) + (((unsigned)(X) >> 24) & 0x0fffffff)) \
4874 + (unsigned)(Y))
4875
4876
4877 /* Return a hash for string PTR which has length LEN. The hash
4878 code returned is guaranteed to fit in a Lisp integer. */
4879
4880 static unsigned
4881 sxhash_string (ptr, len)
4882 unsigned char *ptr;
4883 int len;
4884 {
4885 unsigned char *p = ptr;
4886 unsigned char *end = p + len;
4887 unsigned char c;
4888 unsigned hash = 0;
4889
4890 while (p != end)
4891 {
4892 c = *p++;
4893 if (c >= 0140)
4894 c -= 40;
4895 hash = ((hash << 3) + (hash >> 28) + c);
4896 }
4897
4898 return hash & INTMASK;
4899 }
4900
4901
4902 /* Return a hash for list LIST. DEPTH is the current depth in the
4903 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4904
4905 static unsigned
4906 sxhash_list (list, depth)
4907 Lisp_Object list;
4908 int depth;
4909 {
4910 unsigned hash = 0;
4911 int i;
4912
4913 if (depth < SXHASH_MAX_DEPTH)
4914 for (i = 0;
4915 CONSP (list) && i < SXHASH_MAX_LEN;
4916 list = XCDR (list), ++i)
4917 {
4918 unsigned hash2 = sxhash (XCAR (list), depth + 1);
4919 hash = SXHASH_COMBINE (hash, hash2);
4920 }
4921
4922 return hash;
4923 }
4924
4925
4926 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4927 the Lisp structure. */
4928
4929 static unsigned
4930 sxhash_vector (vec, depth)
4931 Lisp_Object vec;
4932 int depth;
4933 {
4934 unsigned hash = XVECTOR (vec)->size;
4935 int i, n;
4936
4937 n = min (SXHASH_MAX_LEN, XVECTOR (vec)->size);
4938 for (i = 0; i < n; ++i)
4939 {
4940 unsigned hash2 = sxhash (XVECTOR (vec)->contents[i], depth + 1);
4941 hash = SXHASH_COMBINE (hash, hash2);
4942 }
4943
4944 return hash;
4945 }
4946
4947
4948 /* Return a hash for bool-vector VECTOR. */
4949
4950 static unsigned
4951 sxhash_bool_vector (vec)
4952 Lisp_Object vec;
4953 {
4954 unsigned hash = XBOOL_VECTOR (vec)->size;
4955 int i, n;
4956
4957 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->vector_size);
4958 for (i = 0; i < n; ++i)
4959 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4960
4961 return hash;
4962 }
4963
4964
4965 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4966 structure. Value is an unsigned integer clipped to INTMASK. */
4967
4968 unsigned
4969 sxhash (obj, depth)
4970 Lisp_Object obj;
4971 int depth;
4972 {
4973 unsigned hash;
4974
4975 if (depth > SXHASH_MAX_DEPTH)
4976 return 0;
4977
4978 switch (XTYPE (obj))
4979 {
4980 case Lisp_Int:
4981 hash = XUINT (obj);
4982 break;
4983
4984 case Lisp_Symbol:
4985 hash = sxhash_string (SDATA (SYMBOL_NAME (obj)),
4986 SCHARS (SYMBOL_NAME (obj)));
4987 break;
4988
4989 case Lisp_Misc:
4990 hash = XUINT (obj);
4991 break;
4992
4993 case Lisp_String:
4994 hash = sxhash_string (SDATA (obj), SCHARS (obj));
4995 break;
4996
4997 /* This can be everything from a vector to an overlay. */
4998 case Lisp_Vectorlike:
4999 if (VECTORP (obj))
5000 /* According to the CL HyperSpec, two arrays are equal only if
5001 they are `eq', except for strings and bit-vectors. In
5002 Emacs, this works differently. We have to compare element
5003 by element. */
5004 hash = sxhash_vector (obj, depth);
5005 else if (BOOL_VECTOR_P (obj))
5006 hash = sxhash_bool_vector (obj);
5007 else
5008 /* Others are `equal' if they are `eq', so let's take their
5009 address as hash. */
5010 hash = XUINT (obj);
5011 break;
5012
5013 case Lisp_Cons:
5014 hash = sxhash_list (obj, depth);
5015 break;
5016
5017 case Lisp_Float:
5018 {
5019 unsigned char *p = (unsigned char *) &XFLOAT_DATA (obj);
5020 unsigned char *e = p + sizeof XFLOAT_DATA (obj);
5021 for (hash = 0; p < e; ++p)
5022 hash = SXHASH_COMBINE (hash, *p);
5023 break;
5024 }
5025
5026 default:
5027 abort ();
5028 }
5029
5030 return hash & INTMASK;
5031 }
5032
5033
5034 \f
5035 /***********************************************************************
5036 Lisp Interface
5037 ***********************************************************************/
5038
5039
5040 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
5041 doc: /* Compute a hash code for OBJ and return it as integer. */)
5042 (obj)
5043 Lisp_Object obj;
5044 {
5045 unsigned hash = sxhash (obj, 0);;
5046 return make_number (hash);
5047 }
5048
5049
5050 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
5051 doc: /* Create and return a new hash table.
5052
5053 Arguments are specified as keyword/argument pairs. The following
5054 arguments are defined:
5055
5056 :test TEST -- TEST must be a symbol that specifies how to compare
5057 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
5058 `equal'. User-supplied test and hash functions can be specified via
5059 `define-hash-table-test'.
5060
5061 :size SIZE -- A hint as to how many elements will be put in the table.
5062 Default is 65.
5063
5064 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
5065 fills up. If REHASH-SIZE is an integer, add that many space. If it
5066 is a float, it must be > 1.0, and the new size is computed by
5067 multiplying the old size with that factor. Default is 1.5.
5068
5069 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
5070 Resize the hash table when ratio of the number of entries in the
5071 table. Default is 0.8.
5072
5073 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
5074 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
5075 returned is a weak table. Key/value pairs are removed from a weak
5076 hash table when there are no non-weak references pointing to their
5077 key, value, one of key or value, or both key and value, depending on
5078 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
5079 is nil.
5080
5081 usage: (make-hash-table &rest KEYWORD-ARGS) */)
5082 (nargs, args)
5083 int nargs;
5084 Lisp_Object *args;
5085 {
5086 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
5087 Lisp_Object user_test, user_hash;
5088 char *used;
5089 int i;
5090
5091 /* The vector `used' is used to keep track of arguments that
5092 have been consumed. */
5093 used = (char *) alloca (nargs * sizeof *used);
5094 bzero (used, nargs * sizeof *used);
5095
5096 /* See if there's a `:test TEST' among the arguments. */
5097 i = get_key_arg (QCtest, nargs, args, used);
5098 test = i < 0 ? Qeql : args[i];
5099 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
5100 {
5101 /* See if it is a user-defined test. */
5102 Lisp_Object prop;
5103
5104 prop = Fget (test, Qhash_table_test);
5105 if (!CONSP (prop) || !CONSP (XCDR (prop)))
5106 Fsignal (Qerror, list2 (build_string ("Invalid hash table test"),
5107 test));
5108 user_test = XCAR (prop);
5109 user_hash = XCAR (XCDR (prop));
5110 }
5111 else
5112 user_test = user_hash = Qnil;
5113
5114 /* See if there's a `:size SIZE' argument. */
5115 i = get_key_arg (QCsize, nargs, args, used);
5116 size = i < 0 ? Qnil : args[i];
5117 if (NILP (size))
5118 size = make_number (DEFAULT_HASH_SIZE);
5119 else if (!INTEGERP (size) || XINT (size) < 0)
5120 Fsignal (Qerror,
5121 list2 (build_string ("Invalid hash table size"),
5122 size));
5123
5124 /* Look for `:rehash-size SIZE'. */
5125 i = get_key_arg (QCrehash_size, nargs, args, used);
5126 rehash_size = i < 0 ? make_float (DEFAULT_REHASH_SIZE) : args[i];
5127 if (!NUMBERP (rehash_size)
5128 || (INTEGERP (rehash_size) && XINT (rehash_size) <= 0)
5129 || XFLOATINT (rehash_size) <= 1.0)
5130 Fsignal (Qerror,
5131 list2 (build_string ("Invalid hash table rehash size"),
5132 rehash_size));
5133
5134 /* Look for `:rehash-threshold THRESHOLD'. */
5135 i = get_key_arg (QCrehash_threshold, nargs, args, used);
5136 rehash_threshold = i < 0 ? make_float (DEFAULT_REHASH_THRESHOLD) : args[i];
5137 if (!FLOATP (rehash_threshold)
5138 || XFLOATINT (rehash_threshold) <= 0.0
5139 || XFLOATINT (rehash_threshold) > 1.0)
5140 Fsignal (Qerror,
5141 list2 (build_string ("Invalid hash table rehash threshold"),
5142 rehash_threshold));
5143
5144 /* Look for `:weakness WEAK'. */
5145 i = get_key_arg (QCweakness, nargs, args, used);
5146 weak = i < 0 ? Qnil : args[i];
5147 if (EQ (weak, Qt))
5148 weak = Qkey_and_value;
5149 if (!NILP (weak)
5150 && !EQ (weak, Qkey)
5151 && !EQ (weak, Qvalue)
5152 && !EQ (weak, Qkey_or_value)
5153 && !EQ (weak, Qkey_and_value))
5154 Fsignal (Qerror, list2 (build_string ("Invalid hash table weakness"),
5155 weak));
5156
5157 /* Now, all args should have been used up, or there's a problem. */
5158 for (i = 0; i < nargs; ++i)
5159 if (!used[i])
5160 Fsignal (Qerror,
5161 list2 (build_string ("Invalid argument list"), args[i]));
5162
5163 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
5164 user_test, user_hash);
5165 }
5166
5167
5168 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
5169 doc: /* Return a copy of hash table TABLE. */)
5170 (table)
5171 Lisp_Object table;
5172 {
5173 return copy_hash_table (check_hash_table (table));
5174 }
5175
5176
5177 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
5178 doc: /* Return the number of elements in TABLE. */)
5179 (table)
5180 Lisp_Object table;
5181 {
5182 return check_hash_table (table)->count;
5183 }
5184
5185
5186 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
5187 Shash_table_rehash_size, 1, 1, 0,
5188 doc: /* Return the current rehash size of TABLE. */)
5189 (table)
5190 Lisp_Object table;
5191 {
5192 return check_hash_table (table)->rehash_size;
5193 }
5194
5195
5196 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
5197 Shash_table_rehash_threshold, 1, 1, 0,
5198 doc: /* Return the current rehash threshold of TABLE. */)
5199 (table)
5200 Lisp_Object table;
5201 {
5202 return check_hash_table (table)->rehash_threshold;
5203 }
5204
5205
5206 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
5207 doc: /* Return the size of TABLE.
5208 The size can be used as an argument to `make-hash-table' to create
5209 a hash table than can hold as many elements of TABLE holds
5210 without need for resizing. */)
5211 (table)
5212 Lisp_Object table;
5213 {
5214 struct Lisp_Hash_Table *h = check_hash_table (table);
5215 return make_number (HASH_TABLE_SIZE (h));
5216 }
5217
5218
5219 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
5220 doc: /* Return the test TABLE uses. */)
5221 (table)
5222 Lisp_Object table;
5223 {
5224 return check_hash_table (table)->test;
5225 }
5226
5227
5228 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
5229 1, 1, 0,
5230 doc: /* Return the weakness of TABLE. */)
5231 (table)
5232 Lisp_Object table;
5233 {
5234 return check_hash_table (table)->weak;
5235 }
5236
5237
5238 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
5239 doc: /* Return t if OBJ is a Lisp hash table object. */)
5240 (obj)
5241 Lisp_Object obj;
5242 {
5243 return HASH_TABLE_P (obj) ? Qt : Qnil;
5244 }
5245
5246
5247 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
5248 doc: /* Clear hash table TABLE. */)
5249 (table)
5250 Lisp_Object table;
5251 {
5252 hash_clear (check_hash_table (table));
5253 return Qnil;
5254 }
5255
5256
5257 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
5258 doc: /* Look up KEY in TABLE and return its associated value.
5259 If KEY is not found, return DFLT which defaults to nil. */)
5260 (key, table, dflt)
5261 Lisp_Object key, table, dflt;
5262 {
5263 struct Lisp_Hash_Table *h = check_hash_table (table);
5264 int i = hash_lookup (h, key, NULL);
5265 return i >= 0 ? HASH_VALUE (h, i) : dflt;
5266 }
5267
5268
5269 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
5270 doc: /* Associate KEY with VALUE in hash table TABLE.
5271 If KEY is already present in table, replace its current value with
5272 VALUE. */)
5273 (key, value, table)
5274 Lisp_Object key, value, table;
5275 {
5276 struct Lisp_Hash_Table *h = check_hash_table (table);
5277 int i;
5278 unsigned hash;
5279
5280 i = hash_lookup (h, key, &hash);
5281 if (i >= 0)
5282 HASH_VALUE (h, i) = value;
5283 else
5284 hash_put (h, key, value, hash);
5285
5286 return value;
5287 }
5288
5289
5290 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
5291 doc: /* Remove KEY from TABLE. */)
5292 (key, table)
5293 Lisp_Object key, table;
5294 {
5295 struct Lisp_Hash_Table *h = check_hash_table (table);
5296 hash_remove (h, key);
5297 return Qnil;
5298 }
5299
5300
5301 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
5302 doc: /* Call FUNCTION for all entries in hash table TABLE.
5303 FUNCTION is called with 2 arguments KEY and VALUE. */)
5304 (function, table)
5305 Lisp_Object function, table;
5306 {
5307 struct Lisp_Hash_Table *h = check_hash_table (table);
5308 Lisp_Object args[3];
5309 int i;
5310
5311 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
5312 if (!NILP (HASH_HASH (h, i)))
5313 {
5314 args[0] = function;
5315 args[1] = HASH_KEY (h, i);
5316 args[2] = HASH_VALUE (h, i);
5317 Ffuncall (3, args);
5318 }
5319
5320 return Qnil;
5321 }
5322
5323
5324 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
5325 Sdefine_hash_table_test, 3, 3, 0,
5326 doc: /* Define a new hash table test with name NAME, a symbol.
5327
5328 In hash tables created with NAME specified as test, use TEST to
5329 compare keys, and HASH for computing hash codes of keys.
5330
5331 TEST must be a function taking two arguments and returning non-nil if
5332 both arguments are the same. HASH must be a function taking one
5333 argument and return an integer that is the hash code of the argument.
5334 Hash code computation should use the whole value range of integers,
5335 including negative integers. */)
5336 (name, test, hash)
5337 Lisp_Object name, test, hash;
5338 {
5339 return Fput (name, Qhash_table_test, list2 (test, hash));
5340 }
5341
5342
5343 \f
5344 /************************************************************************
5345 MD5
5346 ************************************************************************/
5347
5348 #include "md5.h"
5349 #include "coding.h"
5350
5351 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
5352 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
5353
5354 A message digest is a cryptographic checksum of a document, and the
5355 algorithm to calculate it is defined in RFC 1321.
5356
5357 The two optional arguments START and END are character positions
5358 specifying for which part of OBJECT the message digest should be
5359 computed. If nil or omitted, the digest is computed for the whole
5360 OBJECT.
5361
5362 The MD5 message digest is computed from the result of encoding the
5363 text in a coding system, not directly from the internal Emacs form of
5364 the text. The optional fourth argument CODING-SYSTEM specifies which
5365 coding system to encode the text with. It should be the same coding
5366 system that you used or will use when actually writing the text into a
5367 file.
5368
5369 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
5370 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
5371 system would be chosen by default for writing this text into a file.
5372
5373 If OBJECT is a string, the most preferred coding system (see the
5374 command `prefer-coding-system') is used.
5375
5376 If NOERROR is non-nil, silently assume the `raw-text' coding if the
5377 guesswork fails. Normally, an error is signaled in such case. */)
5378 (object, start, end, coding_system, noerror)
5379 Lisp_Object object, start, end, coding_system, noerror;
5380 {
5381 unsigned char digest[16];
5382 unsigned char value[33];
5383 int i;
5384 int size;
5385 int size_byte = 0;
5386 int start_char = 0, end_char = 0;
5387 int start_byte = 0, end_byte = 0;
5388 register int b, e;
5389 register struct buffer *bp;
5390 int temp;
5391
5392 if (STRINGP (object))
5393 {
5394 if (NILP (coding_system))
5395 {
5396 /* Decide the coding-system to encode the data with. */
5397
5398 if (STRING_MULTIBYTE (object))
5399 /* use default, we can't guess correct value */
5400 coding_system = SYMBOL_VALUE (XCAR (Vcoding_category_list));
5401 else
5402 coding_system = Qraw_text;
5403 }
5404
5405 if (NILP (Fcoding_system_p (coding_system)))
5406 {
5407 /* Invalid coding system. */
5408
5409 if (!NILP (noerror))
5410 coding_system = Qraw_text;
5411 else
5412 while (1)
5413 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
5414 }
5415
5416 if (STRING_MULTIBYTE (object))
5417 object = code_convert_string1 (object, coding_system, Qnil, 1);
5418
5419 size = SCHARS (object);
5420 size_byte = SBYTES (object);
5421
5422 if (!NILP (start))
5423 {
5424 CHECK_NUMBER (start);
5425
5426 start_char = XINT (start);
5427
5428 if (start_char < 0)
5429 start_char += size;
5430
5431 start_byte = string_char_to_byte (object, start_char);
5432 }
5433
5434 if (NILP (end))
5435 {
5436 end_char = size;
5437 end_byte = size_byte;
5438 }
5439 else
5440 {
5441 CHECK_NUMBER (end);
5442
5443 end_char = XINT (end);
5444
5445 if (end_char < 0)
5446 end_char += size;
5447
5448 end_byte = string_char_to_byte (object, end_char);
5449 }
5450
5451 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
5452 args_out_of_range_3 (object, make_number (start_char),
5453 make_number (end_char));
5454 }
5455 else
5456 {
5457 CHECK_BUFFER (object);
5458
5459 bp = XBUFFER (object);
5460
5461 if (NILP (start))
5462 b = BUF_BEGV (bp);
5463 else
5464 {
5465 CHECK_NUMBER_COERCE_MARKER (start);
5466 b = XINT (start);
5467 }
5468
5469 if (NILP (end))
5470 e = BUF_ZV (bp);
5471 else
5472 {
5473 CHECK_NUMBER_COERCE_MARKER (end);
5474 e = XINT (end);
5475 }
5476
5477 if (b > e)
5478 temp = b, b = e, e = temp;
5479
5480 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
5481 args_out_of_range (start, end);
5482
5483 if (NILP (coding_system))
5484 {
5485 /* Decide the coding-system to encode the data with.
5486 See fileio.c:Fwrite-region */
5487
5488 if (!NILP (Vcoding_system_for_write))
5489 coding_system = Vcoding_system_for_write;
5490 else
5491 {
5492 int force_raw_text = 0;
5493
5494 coding_system = XBUFFER (object)->buffer_file_coding_system;
5495 if (NILP (coding_system)
5496 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
5497 {
5498 coding_system = Qnil;
5499 if (NILP (current_buffer->enable_multibyte_characters))
5500 force_raw_text = 1;
5501 }
5502
5503 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
5504 {
5505 /* Check file-coding-system-alist. */
5506 Lisp_Object args[4], val;
5507
5508 args[0] = Qwrite_region; args[1] = start; args[2] = end;
5509 args[3] = Fbuffer_file_name(object);
5510 val = Ffind_operation_coding_system (4, args);
5511 if (CONSP (val) && !NILP (XCDR (val)))
5512 coding_system = XCDR (val);
5513 }
5514
5515 if (NILP (coding_system)
5516 && !NILP (XBUFFER (object)->buffer_file_coding_system))
5517 {
5518 /* If we still have not decided a coding system, use the
5519 default value of buffer-file-coding-system. */
5520 coding_system = XBUFFER (object)->buffer_file_coding_system;
5521 }
5522
5523 if (!force_raw_text
5524 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
5525 /* Confirm that VAL can surely encode the current region. */
5526 coding_system = call4 (Vselect_safe_coding_system_function,
5527 make_number (b), make_number (e),
5528 coding_system, Qnil);
5529
5530 if (force_raw_text)
5531 coding_system = Qraw_text;
5532 }
5533
5534 if (NILP (Fcoding_system_p (coding_system)))
5535 {
5536 /* Invalid coding system. */
5537
5538 if (!NILP (noerror))
5539 coding_system = Qraw_text;
5540 else
5541 while (1)
5542 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
5543 }
5544 }
5545
5546 object = make_buffer_string (b, e, 0);
5547
5548 if (STRING_MULTIBYTE (object))
5549 object = code_convert_string1 (object, coding_system, Qnil, 1);
5550 }
5551
5552 md5_buffer (SDATA (object) + start_byte,
5553 SBYTES (object) - (size_byte - end_byte),
5554 digest);
5555
5556 for (i = 0; i < 16; i++)
5557 sprintf (&value[2 * i], "%02x", digest[i]);
5558 value[32] = '\0';
5559
5560 return make_string (value, 32);
5561 }
5562
5563 \f
5564 void
5565 syms_of_fns ()
5566 {
5567 /* Hash table stuff. */
5568 Qhash_table_p = intern ("hash-table-p");
5569 staticpro (&Qhash_table_p);
5570 Qeq = intern ("eq");
5571 staticpro (&Qeq);
5572 Qeql = intern ("eql");
5573 staticpro (&Qeql);
5574 Qequal = intern ("equal");
5575 staticpro (&Qequal);
5576 QCtest = intern (":test");
5577 staticpro (&QCtest);
5578 QCsize = intern (":size");
5579 staticpro (&QCsize);
5580 QCrehash_size = intern (":rehash-size");
5581 staticpro (&QCrehash_size);
5582 QCrehash_threshold = intern (":rehash-threshold");
5583 staticpro (&QCrehash_threshold);
5584 QCweakness = intern (":weakness");
5585 staticpro (&QCweakness);
5586 Qkey = intern ("key");
5587 staticpro (&Qkey);
5588 Qvalue = intern ("value");
5589 staticpro (&Qvalue);
5590 Qhash_table_test = intern ("hash-table-test");
5591 staticpro (&Qhash_table_test);
5592 Qkey_or_value = intern ("key-or-value");
5593 staticpro (&Qkey_or_value);
5594 Qkey_and_value = intern ("key-and-value");
5595 staticpro (&Qkey_and_value);
5596
5597 defsubr (&Ssxhash);
5598 defsubr (&Smake_hash_table);
5599 defsubr (&Scopy_hash_table);
5600 defsubr (&Shash_table_count);
5601 defsubr (&Shash_table_rehash_size);
5602 defsubr (&Shash_table_rehash_threshold);
5603 defsubr (&Shash_table_size);
5604 defsubr (&Shash_table_test);
5605 defsubr (&Shash_table_weakness);
5606 defsubr (&Shash_table_p);
5607 defsubr (&Sclrhash);
5608 defsubr (&Sgethash);
5609 defsubr (&Sputhash);
5610 defsubr (&Sremhash);
5611 defsubr (&Smaphash);
5612 defsubr (&Sdefine_hash_table_test);
5613
5614 Qstring_lessp = intern ("string-lessp");
5615 staticpro (&Qstring_lessp);
5616 Qprovide = intern ("provide");
5617 staticpro (&Qprovide);
5618 Qrequire = intern ("require");
5619 staticpro (&Qrequire);
5620 Qyes_or_no_p_history = intern ("yes-or-no-p-history");
5621 staticpro (&Qyes_or_no_p_history);
5622 Qcursor_in_echo_area = intern ("cursor-in-echo-area");
5623 staticpro (&Qcursor_in_echo_area);
5624 Qwidget_type = intern ("widget-type");
5625 staticpro (&Qwidget_type);
5626
5627 staticpro (&string_char_byte_cache_string);
5628 string_char_byte_cache_string = Qnil;
5629
5630 require_nesting_list = Qnil;
5631 staticpro (&require_nesting_list);
5632
5633 Fset (Qyes_or_no_p_history, Qnil);
5634
5635 DEFVAR_LISP ("features", &Vfeatures,
5636 doc: /* A list of symbols which are the features of the executing emacs.
5637 Used by `featurep' and `require', and altered by `provide'. */);
5638 Vfeatures = Qnil;
5639 Qsubfeatures = intern ("subfeatures");
5640 staticpro (&Qsubfeatures);
5641
5642 #ifdef HAVE_LANGINFO_CODESET
5643 Qcodeset = intern ("codeset");
5644 staticpro (&Qcodeset);
5645 Qdays = intern ("days");
5646 staticpro (&Qdays);
5647 Qmonths = intern ("months");
5648 staticpro (&Qmonths);
5649 Qpaper = intern ("paper");
5650 staticpro (&Qpaper);
5651 #endif /* HAVE_LANGINFO_CODESET */
5652
5653 DEFVAR_BOOL ("use-dialog-box", &use_dialog_box,
5654 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
5655 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
5656 invoked by mouse clicks and mouse menu items. */);
5657 use_dialog_box = 1;
5658
5659 DEFVAR_BOOL ("use-file-dialog", &use_file_dialog,
5660 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
5661 This applies to commands from menus and tool bar buttons. The value of
5662 `use-dialog-box' takes precedence over this variable, so a file dialog is only
5663 used if both `use-dialog-box' and this variable are non-nil. */);
5664 use_file_dialog = 1;
5665
5666 defsubr (&Sidentity);
5667 defsubr (&Srandom);
5668 defsubr (&Slength);
5669 defsubr (&Ssafe_length);
5670 defsubr (&Sstring_bytes);
5671 defsubr (&Sstring_equal);
5672 defsubr (&Scompare_strings);
5673 defsubr (&Sstring_lessp);
5674 defsubr (&Sappend);
5675 defsubr (&Sconcat);
5676 defsubr (&Svconcat);
5677 defsubr (&Scopy_sequence);
5678 defsubr (&Sstring_make_multibyte);
5679 defsubr (&Sstring_make_unibyte);
5680 defsubr (&Sstring_as_multibyte);
5681 defsubr (&Sstring_as_unibyte);
5682 defsubr (&Sstring_to_multibyte);
5683 defsubr (&Scopy_alist);
5684 defsubr (&Ssubstring);
5685 defsubr (&Ssubstring_no_properties);
5686 defsubr (&Snthcdr);
5687 defsubr (&Snth);
5688 defsubr (&Selt);
5689 defsubr (&Smember);
5690 defsubr (&Smemq);
5691 defsubr (&Sassq);
5692 defsubr (&Sassoc);
5693 defsubr (&Srassq);
5694 defsubr (&Srassoc);
5695 defsubr (&Sdelq);
5696 defsubr (&Sdelete);
5697 defsubr (&Snreverse);
5698 defsubr (&Sreverse);
5699 defsubr (&Ssort);
5700 defsubr (&Splist_get);
5701 defsubr (&Sget);
5702 defsubr (&Splist_put);
5703 defsubr (&Sput);
5704 defsubr (&Slax_plist_get);
5705 defsubr (&Slax_plist_put);
5706 defsubr (&Sequal);
5707 defsubr (&Sfillarray);
5708 defsubr (&Sclear_string);
5709 defsubr (&Schar_table_subtype);
5710 defsubr (&Schar_table_parent);
5711 defsubr (&Sset_char_table_parent);
5712 defsubr (&Schar_table_extra_slot);
5713 defsubr (&Sset_char_table_extra_slot);
5714 defsubr (&Schar_table_range);
5715 defsubr (&Sset_char_table_range);
5716 defsubr (&Sset_char_table_default);
5717 defsubr (&Soptimize_char_table);
5718 defsubr (&Smap_char_table);
5719 defsubr (&Snconc);
5720 defsubr (&Smapcar);
5721 defsubr (&Smapc);
5722 defsubr (&Smapconcat);
5723 defsubr (&Sy_or_n_p);
5724 defsubr (&Syes_or_no_p);
5725 defsubr (&Sload_average);
5726 defsubr (&Sfeaturep);
5727 defsubr (&Srequire);
5728 defsubr (&Sprovide);
5729 defsubr (&Splist_member);
5730 defsubr (&Swidget_put);
5731 defsubr (&Swidget_get);
5732 defsubr (&Swidget_apply);
5733 defsubr (&Sbase64_encode_region);
5734 defsubr (&Sbase64_decode_region);
5735 defsubr (&Sbase64_encode_string);
5736 defsubr (&Sbase64_decode_string);
5737 defsubr (&Smd5);
5738 defsubr (&Slocale_info);
5739 }
5740
5741
5742 void
5743 init_fns ()
5744 {
5745 Vweak_hash_tables = Qnil;
5746 }
5747
5748 /* arch-tag: 787f8219-5b74-46bd-8469-7e1cc475fa31
5749 (do not change this comment) */