]> code.delx.au - gnu-emacs/blob - src/fns.c
* fns.c (string_make_multibyte, string_to_multibyte)
[gnu-emacs] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985, 86, 87, 93, 94, 95, 97, 98, 99, 2000, 2001, 02, 03, 2004
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23
24 #ifdef HAVE_UNISTD_H
25 #include <unistd.h>
26 #endif
27 #include <time.h>
28
29 #ifndef MAC_OSX
30 /* On Mac OS X, defining this conflicts with precompiled headers. */
31
32 /* Note on some machines this defines `vector' as a typedef,
33 so make sure we don't use that name in this file. */
34 #undef vector
35 #define vector *****
36
37 #endif /* ! MAC_OSX */
38
39 #include "lisp.h"
40 #include "commands.h"
41 #include "charset.h"
42 #include "coding.h"
43 #include "buffer.h"
44 #include "keyboard.h"
45 #include "keymap.h"
46 #include "intervals.h"
47 #include "frame.h"
48 #include "window.h"
49 #include "blockinput.h"
50 #if defined (HAVE_MENUS) && defined (HAVE_X_WINDOWS)
51 #include "xterm.h"
52 #endif
53
54 #ifndef NULL
55 #define NULL ((POINTER_TYPE *)0)
56 #endif
57
58 /* Nonzero enables use of dialog boxes for questions
59 asked by mouse commands. */
60 int use_dialog_box;
61
62 /* Nonzero enables use of a file dialog for file name
63 questions asked by mouse commands. */
64 int use_file_dialog;
65
66 extern int minibuffer_auto_raise;
67 extern Lisp_Object minibuf_window;
68 extern Lisp_Object Vlocale_coding_system;
69
70 Lisp_Object Qstring_lessp, Qprovide, Qrequire;
71 Lisp_Object Qyes_or_no_p_history;
72 Lisp_Object Qcursor_in_echo_area;
73 Lisp_Object Qwidget_type;
74 Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
75
76 extern Lisp_Object Qinput_method_function;
77
78 static int internal_equal ();
79
80 extern long get_random ();
81 extern void seed_random ();
82
83 #ifndef HAVE_UNISTD_H
84 extern long time ();
85 #endif
86 \f
87 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
88 doc: /* Return the argument unchanged. */)
89 (arg)
90 Lisp_Object arg;
91 {
92 return arg;
93 }
94
95 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
96 doc: /* Return a pseudo-random number.
97 All integers representable in Lisp are equally likely.
98 On most systems, this is 29 bits' worth.
99 With positive integer argument N, return random number in interval [0,N).
100 With argument t, set the random number seed from the current time and pid. */)
101 (n)
102 Lisp_Object n;
103 {
104 EMACS_INT val;
105 Lisp_Object lispy_val;
106 unsigned long denominator;
107
108 if (EQ (n, Qt))
109 seed_random (getpid () + time (NULL));
110 if (NATNUMP (n) && XFASTINT (n) != 0)
111 {
112 /* Try to take our random number from the higher bits of VAL,
113 not the lower, since (says Gentzel) the low bits of `random'
114 are less random than the higher ones. We do this by using the
115 quotient rather than the remainder. At the high end of the RNG
116 it's possible to get a quotient larger than n; discarding
117 these values eliminates the bias that would otherwise appear
118 when using a large n. */
119 denominator = ((unsigned long)1 << VALBITS) / XFASTINT (n);
120 do
121 val = get_random () / denominator;
122 while (val >= XFASTINT (n));
123 }
124 else
125 val = get_random ();
126 XSETINT (lispy_val, val);
127 return lispy_val;
128 }
129 \f
130 /* Random data-structure functions */
131
132 DEFUN ("length", Flength, Slength, 1, 1, 0,
133 doc: /* Return the length of vector, list or string SEQUENCE.
134 A byte-code function object is also allowed.
135 If the string contains multibyte characters, this is not necessarily
136 the number of bytes in the string; it is the number of characters.
137 To get the number of bytes, use `string-bytes'. */)
138 (sequence)
139 register Lisp_Object sequence;
140 {
141 register Lisp_Object val;
142 register int i;
143
144 retry:
145 if (STRINGP (sequence))
146 XSETFASTINT (val, SCHARS (sequence));
147 else if (VECTORP (sequence))
148 XSETFASTINT (val, XVECTOR (sequence)->size);
149 else if (SUB_CHAR_TABLE_P (sequence))
150 XSETFASTINT (val, SUB_CHAR_TABLE_ORDINARY_SLOTS);
151 else if (CHAR_TABLE_P (sequence))
152 XSETFASTINT (val, MAX_CHAR);
153 else if (BOOL_VECTOR_P (sequence))
154 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
155 else if (COMPILEDP (sequence))
156 XSETFASTINT (val, XVECTOR (sequence)->size & PSEUDOVECTOR_SIZE_MASK);
157 else if (CONSP (sequence))
158 {
159 i = 0;
160 while (CONSP (sequence))
161 {
162 sequence = XCDR (sequence);
163 ++i;
164
165 if (!CONSP (sequence))
166 break;
167
168 sequence = XCDR (sequence);
169 ++i;
170 QUIT;
171 }
172
173 if (!NILP (sequence))
174 wrong_type_argument (Qlistp, sequence);
175
176 val = make_number (i);
177 }
178 else if (NILP (sequence))
179 XSETFASTINT (val, 0);
180 else
181 {
182 sequence = wrong_type_argument (Qsequencep, sequence);
183 goto retry;
184 }
185 return val;
186 }
187
188 /* This does not check for quits. That is safe
189 since it must terminate. */
190
191 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
192 doc: /* Return the length of a list, but avoid error or infinite loop.
193 This function never gets an error. If LIST is not really a list,
194 it returns 0. If LIST is circular, it returns a finite value
195 which is at least the number of distinct elements. */)
196 (list)
197 Lisp_Object list;
198 {
199 Lisp_Object tail, halftail, length;
200 int len = 0;
201
202 /* halftail is used to detect circular lists. */
203 halftail = list;
204 for (tail = list; CONSP (tail); tail = XCDR (tail))
205 {
206 if (EQ (tail, halftail) && len != 0)
207 break;
208 len++;
209 if ((len & 1) == 0)
210 halftail = XCDR (halftail);
211 }
212
213 XSETINT (length, len);
214 return length;
215 }
216
217 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
218 doc: /* Return the number of bytes in STRING.
219 If STRING is a multibyte string, this is greater than the length of STRING. */)
220 (string)
221 Lisp_Object string;
222 {
223 CHECK_STRING (string);
224 return make_number (SBYTES (string));
225 }
226
227 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
228 doc: /* Return t if two strings have identical contents.
229 Case is significant, but text properties are ignored.
230 Symbols are also allowed; their print names are used instead. */)
231 (s1, s2)
232 register Lisp_Object s1, s2;
233 {
234 if (SYMBOLP (s1))
235 s1 = SYMBOL_NAME (s1);
236 if (SYMBOLP (s2))
237 s2 = SYMBOL_NAME (s2);
238 CHECK_STRING (s1);
239 CHECK_STRING (s2);
240
241 if (SCHARS (s1) != SCHARS (s2)
242 || SBYTES (s1) != SBYTES (s2)
243 || bcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
244 return Qnil;
245 return Qt;
246 }
247
248 DEFUN ("compare-strings", Fcompare_strings,
249 Scompare_strings, 6, 7, 0,
250 doc: /* Compare the contents of two strings, converting to multibyte if needed.
251 In string STR1, skip the first START1 characters and stop at END1.
252 In string STR2, skip the first START2 characters and stop at END2.
253 END1 and END2 default to the full lengths of the respective strings.
254
255 Case is significant in this comparison if IGNORE-CASE is nil.
256 Unibyte strings are converted to multibyte for comparison.
257
258 The value is t if the strings (or specified portions) match.
259 If string STR1 is less, the value is a negative number N;
260 - 1 - N is the number of characters that match at the beginning.
261 If string STR1 is greater, the value is a positive number N;
262 N - 1 is the number of characters that match at the beginning. */)
263 (str1, start1, end1, str2, start2, end2, ignore_case)
264 Lisp_Object str1, start1, end1, start2, str2, end2, ignore_case;
265 {
266 register int end1_char, end2_char;
267 register int i1, i1_byte, i2, i2_byte;
268
269 CHECK_STRING (str1);
270 CHECK_STRING (str2);
271 if (NILP (start1))
272 start1 = make_number (0);
273 if (NILP (start2))
274 start2 = make_number (0);
275 CHECK_NATNUM (start1);
276 CHECK_NATNUM (start2);
277 if (! NILP (end1))
278 CHECK_NATNUM (end1);
279 if (! NILP (end2))
280 CHECK_NATNUM (end2);
281
282 i1 = XINT (start1);
283 i2 = XINT (start2);
284
285 i1_byte = string_char_to_byte (str1, i1);
286 i2_byte = string_char_to_byte (str2, i2);
287
288 end1_char = SCHARS (str1);
289 if (! NILP (end1) && end1_char > XINT (end1))
290 end1_char = XINT (end1);
291
292 end2_char = SCHARS (str2);
293 if (! NILP (end2) && end2_char > XINT (end2))
294 end2_char = XINT (end2);
295
296 while (i1 < end1_char && i2 < end2_char)
297 {
298 /* When we find a mismatch, we must compare the
299 characters, not just the bytes. */
300 int c1, c2;
301
302 if (STRING_MULTIBYTE (str1))
303 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
304 else
305 {
306 c1 = SREF (str1, i1++);
307 c1 = unibyte_char_to_multibyte (c1);
308 }
309
310 if (STRING_MULTIBYTE (str2))
311 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
312 else
313 {
314 c2 = SREF (str2, i2++);
315 c2 = unibyte_char_to_multibyte (c2);
316 }
317
318 if (c1 == c2)
319 continue;
320
321 if (! NILP (ignore_case))
322 {
323 Lisp_Object tem;
324
325 tem = Fupcase (make_number (c1));
326 c1 = XINT (tem);
327 tem = Fupcase (make_number (c2));
328 c2 = XINT (tem);
329 }
330
331 if (c1 == c2)
332 continue;
333
334 /* Note that I1 has already been incremented
335 past the character that we are comparing;
336 hence we don't add or subtract 1 here. */
337 if (c1 < c2)
338 return make_number (- i1 + XINT (start1));
339 else
340 return make_number (i1 - XINT (start1));
341 }
342
343 if (i1 < end1_char)
344 return make_number (i1 - XINT (start1) + 1);
345 if (i2 < end2_char)
346 return make_number (- i1 + XINT (start1) - 1);
347
348 return Qt;
349 }
350
351 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
352 doc: /* Return t if first arg string is less than second in lexicographic order.
353 Case is significant.
354 Symbols are also allowed; their print names are used instead. */)
355 (s1, s2)
356 register Lisp_Object s1, s2;
357 {
358 register int end;
359 register int i1, i1_byte, i2, i2_byte;
360
361 if (SYMBOLP (s1))
362 s1 = SYMBOL_NAME (s1);
363 if (SYMBOLP (s2))
364 s2 = SYMBOL_NAME (s2);
365 CHECK_STRING (s1);
366 CHECK_STRING (s2);
367
368 i1 = i1_byte = i2 = i2_byte = 0;
369
370 end = SCHARS (s1);
371 if (end > SCHARS (s2))
372 end = SCHARS (s2);
373
374 while (i1 < end)
375 {
376 /* When we find a mismatch, we must compare the
377 characters, not just the bytes. */
378 int c1, c2;
379
380 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
381 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
382
383 if (c1 != c2)
384 return c1 < c2 ? Qt : Qnil;
385 }
386 return i1 < SCHARS (s2) ? Qt : Qnil;
387 }
388 \f
389 static Lisp_Object concat ();
390
391 /* ARGSUSED */
392 Lisp_Object
393 concat2 (s1, s2)
394 Lisp_Object s1, s2;
395 {
396 #ifdef NO_ARG_ARRAY
397 Lisp_Object args[2];
398 args[0] = s1;
399 args[1] = s2;
400 return concat (2, args, Lisp_String, 0);
401 #else
402 return concat (2, &s1, Lisp_String, 0);
403 #endif /* NO_ARG_ARRAY */
404 }
405
406 /* ARGSUSED */
407 Lisp_Object
408 concat3 (s1, s2, s3)
409 Lisp_Object s1, s2, s3;
410 {
411 #ifdef NO_ARG_ARRAY
412 Lisp_Object args[3];
413 args[0] = s1;
414 args[1] = s2;
415 args[2] = s3;
416 return concat (3, args, Lisp_String, 0);
417 #else
418 return concat (3, &s1, Lisp_String, 0);
419 #endif /* NO_ARG_ARRAY */
420 }
421
422 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
423 doc: /* Concatenate all the arguments and make the result a list.
424 The result is a list whose elements are the elements of all the arguments.
425 Each argument may be a list, vector or string.
426 The last argument is not copied, just used as the tail of the new list.
427 usage: (append &rest SEQUENCES) */)
428 (nargs, args)
429 int nargs;
430 Lisp_Object *args;
431 {
432 return concat (nargs, args, Lisp_Cons, 1);
433 }
434
435 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
436 doc: /* Concatenate all the arguments and make the result a string.
437 The result is a string whose elements are the elements of all the arguments.
438 Each argument may be a string or a list or vector of characters (integers).
439 usage: (concat &rest SEQUENCES) */)
440 (nargs, args)
441 int nargs;
442 Lisp_Object *args;
443 {
444 return concat (nargs, args, Lisp_String, 0);
445 }
446
447 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
448 doc: /* Concatenate all the arguments and make the result a vector.
449 The result is a vector whose elements are the elements of all the arguments.
450 Each argument may be a list, vector or string.
451 usage: (vconcat &rest SEQUENCES) */)
452 (nargs, args)
453 int nargs;
454 Lisp_Object *args;
455 {
456 return concat (nargs, args, Lisp_Vectorlike, 0);
457 }
458
459 /* Return a copy of a sub char table ARG. The elements except for a
460 nested sub char table are not copied. */
461 static Lisp_Object
462 copy_sub_char_table (arg)
463 Lisp_Object arg;
464 {
465 Lisp_Object copy = make_sub_char_table (XCHAR_TABLE (arg)->defalt);
466 int i;
467
468 /* Copy all the contents. */
469 bcopy (XCHAR_TABLE (arg)->contents, XCHAR_TABLE (copy)->contents,
470 SUB_CHAR_TABLE_ORDINARY_SLOTS * sizeof (Lisp_Object));
471 /* Recursively copy any sub char-tables in the ordinary slots. */
472 for (i = 32; i < SUB_CHAR_TABLE_ORDINARY_SLOTS; i++)
473 if (SUB_CHAR_TABLE_P (XCHAR_TABLE (arg)->contents[i]))
474 XCHAR_TABLE (copy)->contents[i]
475 = copy_sub_char_table (XCHAR_TABLE (copy)->contents[i]);
476
477 return copy;
478 }
479
480
481 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
482 doc: /* Return a copy of a list, vector, string or char-table.
483 The elements of a list or vector are not copied; they are shared
484 with the original. */)
485 (arg)
486 Lisp_Object arg;
487 {
488 if (NILP (arg)) return arg;
489
490 if (CHAR_TABLE_P (arg))
491 {
492 int i;
493 Lisp_Object copy;
494
495 copy = Fmake_char_table (XCHAR_TABLE (arg)->purpose, Qnil);
496 /* Copy all the slots, including the extra ones. */
497 bcopy (XVECTOR (arg)->contents, XVECTOR (copy)->contents,
498 ((XCHAR_TABLE (arg)->size & PSEUDOVECTOR_SIZE_MASK)
499 * sizeof (Lisp_Object)));
500
501 /* Recursively copy any sub char tables in the ordinary slots
502 for multibyte characters. */
503 for (i = CHAR_TABLE_SINGLE_BYTE_SLOTS;
504 i < CHAR_TABLE_ORDINARY_SLOTS; i++)
505 if (SUB_CHAR_TABLE_P (XCHAR_TABLE (arg)->contents[i]))
506 XCHAR_TABLE (copy)->contents[i]
507 = copy_sub_char_table (XCHAR_TABLE (copy)->contents[i]);
508
509 return copy;
510 }
511
512 if (BOOL_VECTOR_P (arg))
513 {
514 Lisp_Object val;
515 int size_in_chars
516 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
517 / BOOL_VECTOR_BITS_PER_CHAR);
518
519 val = Fmake_bool_vector (Flength (arg), Qnil);
520 bcopy (XBOOL_VECTOR (arg)->data, XBOOL_VECTOR (val)->data,
521 size_in_chars);
522 return val;
523 }
524
525 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
526 arg = wrong_type_argument (Qsequencep, arg);
527 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
528 }
529
530 /* This structure holds information of an argument of `concat' that is
531 a string and has text properties to be copied. */
532 struct textprop_rec
533 {
534 int argnum; /* refer to ARGS (arguments of `concat') */
535 int from; /* refer to ARGS[argnum] (argument string) */
536 int to; /* refer to VAL (the target string) */
537 };
538
539 static Lisp_Object
540 concat (nargs, args, target_type, last_special)
541 int nargs;
542 Lisp_Object *args;
543 enum Lisp_Type target_type;
544 int last_special;
545 {
546 Lisp_Object val;
547 register Lisp_Object tail;
548 register Lisp_Object this;
549 int toindex;
550 int toindex_byte = 0;
551 register int result_len;
552 register int result_len_byte;
553 register int argnum;
554 Lisp_Object last_tail;
555 Lisp_Object prev;
556 int some_multibyte;
557 /* When we make a multibyte string, we can't copy text properties
558 while concatinating each string because the length of resulting
559 string can't be decided until we finish the whole concatination.
560 So, we record strings that have text properties to be copied
561 here, and copy the text properties after the concatination. */
562 struct textprop_rec *textprops = NULL;
563 /* Number of elments in textprops. */
564 int num_textprops = 0;
565
566 tail = Qnil;
567
568 /* In append, the last arg isn't treated like the others */
569 if (last_special && nargs > 0)
570 {
571 nargs--;
572 last_tail = args[nargs];
573 }
574 else
575 last_tail = Qnil;
576
577 /* Canonicalize each argument. */
578 for (argnum = 0; argnum < nargs; argnum++)
579 {
580 this = args[argnum];
581 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
582 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
583 {
584 args[argnum] = wrong_type_argument (Qsequencep, this);
585 }
586 }
587
588 /* Compute total length in chars of arguments in RESULT_LEN.
589 If desired output is a string, also compute length in bytes
590 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
591 whether the result should be a multibyte string. */
592 result_len_byte = 0;
593 result_len = 0;
594 some_multibyte = 0;
595 for (argnum = 0; argnum < nargs; argnum++)
596 {
597 int len;
598 this = args[argnum];
599 len = XFASTINT (Flength (this));
600 if (target_type == Lisp_String)
601 {
602 /* We must count the number of bytes needed in the string
603 as well as the number of characters. */
604 int i;
605 Lisp_Object ch;
606 int this_len_byte;
607
608 if (VECTORP (this))
609 for (i = 0; i < len; i++)
610 {
611 ch = XVECTOR (this)->contents[i];
612 if (! INTEGERP (ch))
613 wrong_type_argument (Qintegerp, ch);
614 this_len_byte = CHAR_BYTES (XINT (ch));
615 result_len_byte += this_len_byte;
616 if (!SINGLE_BYTE_CHAR_P (XINT (ch)))
617 some_multibyte = 1;
618 }
619 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
620 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
621 else if (CONSP (this))
622 for (; CONSP (this); this = XCDR (this))
623 {
624 ch = XCAR (this);
625 if (! INTEGERP (ch))
626 wrong_type_argument (Qintegerp, ch);
627 this_len_byte = CHAR_BYTES (XINT (ch));
628 result_len_byte += this_len_byte;
629 if (!SINGLE_BYTE_CHAR_P (XINT (ch)))
630 some_multibyte = 1;
631 }
632 else if (STRINGP (this))
633 {
634 if (STRING_MULTIBYTE (this))
635 {
636 some_multibyte = 1;
637 result_len_byte += SBYTES (this);
638 }
639 else
640 result_len_byte += count_size_as_multibyte (SDATA (this),
641 SCHARS (this));
642 }
643 }
644
645 result_len += len;
646 }
647
648 if (! some_multibyte)
649 result_len_byte = result_len;
650
651 /* Create the output object. */
652 if (target_type == Lisp_Cons)
653 val = Fmake_list (make_number (result_len), Qnil);
654 else if (target_type == Lisp_Vectorlike)
655 val = Fmake_vector (make_number (result_len), Qnil);
656 else if (some_multibyte)
657 val = make_uninit_multibyte_string (result_len, result_len_byte);
658 else
659 val = make_uninit_string (result_len);
660
661 /* In `append', if all but last arg are nil, return last arg. */
662 if (target_type == Lisp_Cons && EQ (val, Qnil))
663 return last_tail;
664
665 /* Copy the contents of the args into the result. */
666 if (CONSP (val))
667 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
668 else
669 toindex = 0, toindex_byte = 0;
670
671 prev = Qnil;
672 if (STRINGP (val))
673 textprops
674 = (struct textprop_rec *) alloca (sizeof (struct textprop_rec) * nargs);
675
676 for (argnum = 0; argnum < nargs; argnum++)
677 {
678 Lisp_Object thislen;
679 int thisleni = 0;
680 register unsigned int thisindex = 0;
681 register unsigned int thisindex_byte = 0;
682
683 this = args[argnum];
684 if (!CONSP (this))
685 thislen = Flength (this), thisleni = XINT (thislen);
686
687 /* Between strings of the same kind, copy fast. */
688 if (STRINGP (this) && STRINGP (val)
689 && STRING_MULTIBYTE (this) == some_multibyte)
690 {
691 int thislen_byte = SBYTES (this);
692
693 bcopy (SDATA (this), SDATA (val) + toindex_byte,
694 SBYTES (this));
695 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
696 {
697 textprops[num_textprops].argnum = argnum;
698 textprops[num_textprops].from = 0;
699 textprops[num_textprops++].to = toindex;
700 }
701 toindex_byte += thislen_byte;
702 toindex += thisleni;
703 STRING_SET_CHARS (val, SCHARS (val));
704 }
705 /* Copy a single-byte string to a multibyte string. */
706 else if (STRINGP (this) && STRINGP (val))
707 {
708 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
709 {
710 textprops[num_textprops].argnum = argnum;
711 textprops[num_textprops].from = 0;
712 textprops[num_textprops++].to = toindex;
713 }
714 toindex_byte += copy_text (SDATA (this),
715 SDATA (val) + toindex_byte,
716 SCHARS (this), 0, 1);
717 toindex += thisleni;
718 }
719 else
720 /* Copy element by element. */
721 while (1)
722 {
723 register Lisp_Object elt;
724
725 /* Fetch next element of `this' arg into `elt', or break if
726 `this' is exhausted. */
727 if (NILP (this)) break;
728 if (CONSP (this))
729 elt = XCAR (this), this = XCDR (this);
730 else if (thisindex >= thisleni)
731 break;
732 else if (STRINGP (this))
733 {
734 int c;
735 if (STRING_MULTIBYTE (this))
736 {
737 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
738 thisindex,
739 thisindex_byte);
740 XSETFASTINT (elt, c);
741 }
742 else
743 {
744 XSETFASTINT (elt, SREF (this, thisindex++));
745 if (some_multibyte
746 && (XINT (elt) >= 0240
747 || (XINT (elt) >= 0200
748 && ! NILP (Vnonascii_translation_table)))
749 && XINT (elt) < 0400)
750 {
751 c = unibyte_char_to_multibyte (XINT (elt));
752 XSETINT (elt, c);
753 }
754 }
755 }
756 else if (BOOL_VECTOR_P (this))
757 {
758 int byte;
759 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
760 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
761 elt = Qt;
762 else
763 elt = Qnil;
764 thisindex++;
765 }
766 else
767 elt = XVECTOR (this)->contents[thisindex++];
768
769 /* Store this element into the result. */
770 if (toindex < 0)
771 {
772 XSETCAR (tail, elt);
773 prev = tail;
774 tail = XCDR (tail);
775 }
776 else if (VECTORP (val))
777 XVECTOR (val)->contents[toindex++] = elt;
778 else
779 {
780 CHECK_NUMBER (elt);
781 if (SINGLE_BYTE_CHAR_P (XINT (elt)))
782 {
783 if (some_multibyte)
784 toindex_byte
785 += CHAR_STRING (XINT (elt),
786 SDATA (val) + toindex_byte);
787 else
788 SSET (val, toindex_byte++, XINT (elt));
789 toindex++;
790 }
791 else
792 /* If we have any multibyte characters,
793 we already decided to make a multibyte string. */
794 {
795 int c = XINT (elt);
796 /* P exists as a variable
797 to avoid a bug on the Masscomp C compiler. */
798 unsigned char *p = SDATA (val) + toindex_byte;
799
800 toindex_byte += CHAR_STRING (c, p);
801 toindex++;
802 }
803 }
804 }
805 }
806 if (!NILP (prev))
807 XSETCDR (prev, last_tail);
808
809 if (num_textprops > 0)
810 {
811 Lisp_Object props;
812 int last_to_end = -1;
813
814 for (argnum = 0; argnum < num_textprops; argnum++)
815 {
816 this = args[textprops[argnum].argnum];
817 props = text_property_list (this,
818 make_number (0),
819 make_number (SCHARS (this)),
820 Qnil);
821 /* If successive arguments have properites, be sure that the
822 value of `composition' property be the copy. */
823 if (last_to_end == textprops[argnum].to)
824 make_composition_value_copy (props);
825 add_text_properties_from_list (val, props,
826 make_number (textprops[argnum].to));
827 last_to_end = textprops[argnum].to + SCHARS (this);
828 }
829 }
830 return val;
831 }
832 \f
833 static Lisp_Object string_char_byte_cache_string;
834 static int string_char_byte_cache_charpos;
835 static int string_char_byte_cache_bytepos;
836
837 void
838 clear_string_char_byte_cache ()
839 {
840 string_char_byte_cache_string = Qnil;
841 }
842
843 /* Return the character index corresponding to CHAR_INDEX in STRING. */
844
845 int
846 string_char_to_byte (string, char_index)
847 Lisp_Object string;
848 int char_index;
849 {
850 int i, i_byte;
851 int best_below, best_below_byte;
852 int best_above, best_above_byte;
853
854 best_below = best_below_byte = 0;
855 best_above = SCHARS (string);
856 best_above_byte = SBYTES (string);
857 if (best_above == best_above_byte)
858 return char_index;
859
860 if (EQ (string, string_char_byte_cache_string))
861 {
862 if (string_char_byte_cache_charpos < char_index)
863 {
864 best_below = string_char_byte_cache_charpos;
865 best_below_byte = string_char_byte_cache_bytepos;
866 }
867 else
868 {
869 best_above = string_char_byte_cache_charpos;
870 best_above_byte = string_char_byte_cache_bytepos;
871 }
872 }
873
874 if (char_index - best_below < best_above - char_index)
875 {
876 while (best_below < char_index)
877 {
878 int c;
879 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, string,
880 best_below, best_below_byte);
881 }
882 i = best_below;
883 i_byte = best_below_byte;
884 }
885 else
886 {
887 while (best_above > char_index)
888 {
889 unsigned char *pend = SDATA (string) + best_above_byte;
890 unsigned char *pbeg = pend - best_above_byte;
891 unsigned char *p = pend - 1;
892 int bytes;
893
894 while (p > pbeg && !CHAR_HEAD_P (*p)) p--;
895 PARSE_MULTIBYTE_SEQ (p, pend - p, bytes);
896 if (bytes == pend - p)
897 best_above_byte -= bytes;
898 else if (bytes > pend - p)
899 best_above_byte -= (pend - p);
900 else
901 best_above_byte--;
902 best_above--;
903 }
904 i = best_above;
905 i_byte = best_above_byte;
906 }
907
908 string_char_byte_cache_bytepos = i_byte;
909 string_char_byte_cache_charpos = i;
910 string_char_byte_cache_string = string;
911
912 return i_byte;
913 }
914 \f
915 /* Return the character index corresponding to BYTE_INDEX in STRING. */
916
917 int
918 string_byte_to_char (string, byte_index)
919 Lisp_Object string;
920 int byte_index;
921 {
922 int i, i_byte;
923 int best_below, best_below_byte;
924 int best_above, best_above_byte;
925
926 best_below = best_below_byte = 0;
927 best_above = SCHARS (string);
928 best_above_byte = SBYTES (string);
929 if (best_above == best_above_byte)
930 return byte_index;
931
932 if (EQ (string, string_char_byte_cache_string))
933 {
934 if (string_char_byte_cache_bytepos < byte_index)
935 {
936 best_below = string_char_byte_cache_charpos;
937 best_below_byte = string_char_byte_cache_bytepos;
938 }
939 else
940 {
941 best_above = string_char_byte_cache_charpos;
942 best_above_byte = string_char_byte_cache_bytepos;
943 }
944 }
945
946 if (byte_index - best_below_byte < best_above_byte - byte_index)
947 {
948 while (best_below_byte < byte_index)
949 {
950 int c;
951 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, string,
952 best_below, best_below_byte);
953 }
954 i = best_below;
955 i_byte = best_below_byte;
956 }
957 else
958 {
959 while (best_above_byte > byte_index)
960 {
961 unsigned char *pend = SDATA (string) + best_above_byte;
962 unsigned char *pbeg = pend - best_above_byte;
963 unsigned char *p = pend - 1;
964 int bytes;
965
966 while (p > pbeg && !CHAR_HEAD_P (*p)) p--;
967 PARSE_MULTIBYTE_SEQ (p, pend - p, bytes);
968 if (bytes == pend - p)
969 best_above_byte -= bytes;
970 else if (bytes > pend - p)
971 best_above_byte -= (pend - p);
972 else
973 best_above_byte--;
974 best_above--;
975 }
976 i = best_above;
977 i_byte = best_above_byte;
978 }
979
980 string_char_byte_cache_bytepos = i_byte;
981 string_char_byte_cache_charpos = i;
982 string_char_byte_cache_string = string;
983
984 return i;
985 }
986 \f
987 /* Convert STRING to a multibyte string.
988 Single-byte characters 0240 through 0377 are converted
989 by adding nonascii_insert_offset to each. */
990
991 Lisp_Object
992 string_make_multibyte (string)
993 Lisp_Object string;
994 {
995 unsigned char *buf;
996 int nbytes;
997 Lisp_Object ret;
998 USE_SAFE_ALLOCA;
999
1000 if (STRING_MULTIBYTE (string))
1001 return string;
1002
1003 nbytes = count_size_as_multibyte (SDATA (string),
1004 SCHARS (string));
1005 /* If all the chars are ASCII, they won't need any more bytes
1006 once converted. In that case, we can return STRING itself. */
1007 if (nbytes == SBYTES (string))
1008 return string;
1009
1010 SAFE_ALLOCA (buf, unsigned char *, nbytes);
1011 copy_text (SDATA (string), buf, SBYTES (string),
1012 0, 1);
1013
1014 ret = make_multibyte_string (buf, SCHARS (string), nbytes);
1015 SAFE_FREE (nbytes);
1016
1017 return ret;
1018 }
1019
1020
1021 /* Convert STRING to a multibyte string without changing each
1022 character codes. Thus, characters 0200 trough 0237 are converted
1023 to eight-bit-control characters, and characters 0240 through 0377
1024 are converted eight-bit-graphic characters. */
1025
1026 Lisp_Object
1027 string_to_multibyte (string)
1028 Lisp_Object string;
1029 {
1030 unsigned char *buf;
1031 int nbytes;
1032 Lisp_Object ret;
1033 USE_SAFE_ALLOCA;
1034
1035 if (STRING_MULTIBYTE (string))
1036 return string;
1037
1038 nbytes = parse_str_to_multibyte (SDATA (string), SBYTES (string));
1039 /* If all the chars are ASCII or eight-bit-graphic, they won't need
1040 any more bytes once converted. */
1041 if (nbytes == SBYTES (string))
1042 return make_multibyte_string (SDATA (string), nbytes, nbytes);
1043
1044 SAFE_ALLOCA (buf, unsigned char *, nbytes);
1045 bcopy (SDATA (string), buf, SBYTES (string));
1046 str_to_multibyte (buf, nbytes, SBYTES (string));
1047
1048 ret = make_multibyte_string (buf, SCHARS (string), nbytes);
1049 SAFE_FREE (nbytes);
1050
1051 return ret;
1052 }
1053
1054
1055 /* Convert STRING to a single-byte string. */
1056
1057 Lisp_Object
1058 string_make_unibyte (string)
1059 Lisp_Object string;
1060 {
1061 int nchars;
1062 unsigned char *buf;
1063 Lisp_Object ret;
1064 USE_SAFE_ALLOCA;
1065
1066 if (! STRING_MULTIBYTE (string))
1067 return string;
1068
1069 nchars = SCHARS (string);
1070
1071 SAFE_ALLOCA (buf, unsigned char *, nchars);
1072 copy_text (SDATA (string), buf, SBYTES (string),
1073 1, 0);
1074
1075 ret = make_unibyte_string (buf, nchars);
1076 SAFE_FREE (nchars);
1077
1078 return ret;
1079 }
1080
1081 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
1082 1, 1, 0,
1083 doc: /* Return the multibyte equivalent of STRING.
1084 If STRING is unibyte and contains non-ASCII characters, the function
1085 `unibyte-char-to-multibyte' is used to convert each unibyte character
1086 to a multibyte character. In this case, the returned string is a
1087 newly created string with no text properties. If STRING is multibyte
1088 or entirely ASCII, it is returned unchanged. In particular, when
1089 STRING is unibyte and entirely ASCII, the returned string is unibyte.
1090 \(When the characters are all ASCII, Emacs primitives will treat the
1091 string the same way whether it is unibyte or multibyte.) */)
1092 (string)
1093 Lisp_Object string;
1094 {
1095 CHECK_STRING (string);
1096
1097 return string_make_multibyte (string);
1098 }
1099
1100 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
1101 1, 1, 0,
1102 doc: /* Return the unibyte equivalent of STRING.
1103 Multibyte character codes are converted to unibyte according to
1104 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
1105 If the lookup in the translation table fails, this function takes just
1106 the low 8 bits of each character. */)
1107 (string)
1108 Lisp_Object string;
1109 {
1110 CHECK_STRING (string);
1111
1112 return string_make_unibyte (string);
1113 }
1114
1115 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1116 1, 1, 0,
1117 doc: /* Return a unibyte string with the same individual bytes as STRING.
1118 If STRING is unibyte, the result is STRING itself.
1119 Otherwise it is a newly created string, with no text properties.
1120 If STRING is multibyte and contains a character of charset
1121 `eight-bit-control' or `eight-bit-graphic', it is converted to the
1122 corresponding single byte. */)
1123 (string)
1124 Lisp_Object string;
1125 {
1126 CHECK_STRING (string);
1127
1128 if (STRING_MULTIBYTE (string))
1129 {
1130 int bytes = SBYTES (string);
1131 unsigned char *str = (unsigned char *) xmalloc (bytes);
1132
1133 bcopy (SDATA (string), str, bytes);
1134 bytes = str_as_unibyte (str, bytes);
1135 string = make_unibyte_string (str, bytes);
1136 xfree (str);
1137 }
1138 return string;
1139 }
1140
1141 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1142 1, 1, 0,
1143 doc: /* Return a multibyte string with the same individual bytes as STRING.
1144 If STRING is multibyte, the result is STRING itself.
1145 Otherwise it is a newly created string, with no text properties.
1146 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1147 part of a multibyte form), it is converted to the corresponding
1148 multibyte character of charset `eight-bit-control' or `eight-bit-graphic'. */)
1149 (string)
1150 Lisp_Object string;
1151 {
1152 CHECK_STRING (string);
1153
1154 if (! STRING_MULTIBYTE (string))
1155 {
1156 Lisp_Object new_string;
1157 int nchars, nbytes;
1158
1159 parse_str_as_multibyte (SDATA (string),
1160 SBYTES (string),
1161 &nchars, &nbytes);
1162 new_string = make_uninit_multibyte_string (nchars, nbytes);
1163 bcopy (SDATA (string), SDATA (new_string),
1164 SBYTES (string));
1165 if (nbytes != SBYTES (string))
1166 str_as_multibyte (SDATA (new_string), nbytes,
1167 SBYTES (string), NULL);
1168 string = new_string;
1169 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1170 }
1171 return string;
1172 }
1173
1174 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1175 1, 1, 0,
1176 doc: /* Return a multibyte string with the same individual chars as STRING.
1177 If STRING is multibyte, the result is STRING itself.
1178 Otherwise it is a newly created string, with no text properties.
1179 Characters 0200 through 0237 are converted to eight-bit-control
1180 characters of the same character code. Characters 0240 through 0377
1181 are converted to eight-bit-graphic characters of the same character
1182 codes. */)
1183 (string)
1184 Lisp_Object string;
1185 {
1186 CHECK_STRING (string);
1187
1188 return string_to_multibyte (string);
1189 }
1190
1191 \f
1192 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1193 doc: /* Return a copy of ALIST.
1194 This is an alist which represents the same mapping from objects to objects,
1195 but does not share the alist structure with ALIST.
1196 The objects mapped (cars and cdrs of elements of the alist)
1197 are shared, however.
1198 Elements of ALIST that are not conses are also shared. */)
1199 (alist)
1200 Lisp_Object alist;
1201 {
1202 register Lisp_Object tem;
1203
1204 CHECK_LIST (alist);
1205 if (NILP (alist))
1206 return alist;
1207 alist = concat (1, &alist, Lisp_Cons, 0);
1208 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1209 {
1210 register Lisp_Object car;
1211 car = XCAR (tem);
1212
1213 if (CONSP (car))
1214 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1215 }
1216 return alist;
1217 }
1218
1219 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1220 doc: /* Return a substring of STRING, starting at index FROM and ending before TO.
1221 TO may be nil or omitted; then the substring runs to the end of STRING.
1222 FROM and TO start at 0. If either is negative, it counts from the end.
1223
1224 This function allows vectors as well as strings. */)
1225 (string, from, to)
1226 Lisp_Object string;
1227 register Lisp_Object from, to;
1228 {
1229 Lisp_Object res;
1230 int size;
1231 int size_byte = 0;
1232 int from_char, to_char;
1233 int from_byte = 0, to_byte = 0;
1234
1235 if (! (STRINGP (string) || VECTORP (string)))
1236 wrong_type_argument (Qarrayp, string);
1237
1238 CHECK_NUMBER (from);
1239
1240 if (STRINGP (string))
1241 {
1242 size = SCHARS (string);
1243 size_byte = SBYTES (string);
1244 }
1245 else
1246 size = XVECTOR (string)->size;
1247
1248 if (NILP (to))
1249 {
1250 to_char = size;
1251 to_byte = size_byte;
1252 }
1253 else
1254 {
1255 CHECK_NUMBER (to);
1256
1257 to_char = XINT (to);
1258 if (to_char < 0)
1259 to_char += size;
1260
1261 if (STRINGP (string))
1262 to_byte = string_char_to_byte (string, to_char);
1263 }
1264
1265 from_char = XINT (from);
1266 if (from_char < 0)
1267 from_char += size;
1268 if (STRINGP (string))
1269 from_byte = string_char_to_byte (string, from_char);
1270
1271 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1272 args_out_of_range_3 (string, make_number (from_char),
1273 make_number (to_char));
1274
1275 if (STRINGP (string))
1276 {
1277 res = make_specified_string (SDATA (string) + from_byte,
1278 to_char - from_char, to_byte - from_byte,
1279 STRING_MULTIBYTE (string));
1280 copy_text_properties (make_number (from_char), make_number (to_char),
1281 string, make_number (0), res, Qnil);
1282 }
1283 else
1284 res = Fvector (to_char - from_char,
1285 XVECTOR (string)->contents + from_char);
1286
1287 return res;
1288 }
1289
1290
1291 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1292 doc: /* Return a substring of STRING, without text properties.
1293 It starts at index FROM and ending before TO.
1294 TO may be nil or omitted; then the substring runs to the end of STRING.
1295 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1296 If FROM or TO is negative, it counts from the end.
1297
1298 With one argument, just copy STRING without its properties. */)
1299 (string, from, to)
1300 Lisp_Object string;
1301 register Lisp_Object from, to;
1302 {
1303 int size, size_byte;
1304 int from_char, to_char;
1305 int from_byte, to_byte;
1306
1307 CHECK_STRING (string);
1308
1309 size = SCHARS (string);
1310 size_byte = SBYTES (string);
1311
1312 if (NILP (from))
1313 from_char = from_byte = 0;
1314 else
1315 {
1316 CHECK_NUMBER (from);
1317 from_char = XINT (from);
1318 if (from_char < 0)
1319 from_char += size;
1320
1321 from_byte = string_char_to_byte (string, from_char);
1322 }
1323
1324 if (NILP (to))
1325 {
1326 to_char = size;
1327 to_byte = size_byte;
1328 }
1329 else
1330 {
1331 CHECK_NUMBER (to);
1332
1333 to_char = XINT (to);
1334 if (to_char < 0)
1335 to_char += size;
1336
1337 to_byte = string_char_to_byte (string, to_char);
1338 }
1339
1340 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1341 args_out_of_range_3 (string, make_number (from_char),
1342 make_number (to_char));
1343
1344 return make_specified_string (SDATA (string) + from_byte,
1345 to_char - from_char, to_byte - from_byte,
1346 STRING_MULTIBYTE (string));
1347 }
1348
1349 /* Extract a substring of STRING, giving start and end positions
1350 both in characters and in bytes. */
1351
1352 Lisp_Object
1353 substring_both (string, from, from_byte, to, to_byte)
1354 Lisp_Object string;
1355 int from, from_byte, to, to_byte;
1356 {
1357 Lisp_Object res;
1358 int size;
1359 int size_byte;
1360
1361 if (! (STRINGP (string) || VECTORP (string)))
1362 wrong_type_argument (Qarrayp, string);
1363
1364 if (STRINGP (string))
1365 {
1366 size = SCHARS (string);
1367 size_byte = SBYTES (string);
1368 }
1369 else
1370 size = XVECTOR (string)->size;
1371
1372 if (!(0 <= from && from <= to && to <= size))
1373 args_out_of_range_3 (string, make_number (from), make_number (to));
1374
1375 if (STRINGP (string))
1376 {
1377 res = make_specified_string (SDATA (string) + from_byte,
1378 to - from, to_byte - from_byte,
1379 STRING_MULTIBYTE (string));
1380 copy_text_properties (make_number (from), make_number (to),
1381 string, make_number (0), res, Qnil);
1382 }
1383 else
1384 res = Fvector (to - from,
1385 XVECTOR (string)->contents + from);
1386
1387 return res;
1388 }
1389 \f
1390 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1391 doc: /* Take cdr N times on LIST, returns the result. */)
1392 (n, list)
1393 Lisp_Object n;
1394 register Lisp_Object list;
1395 {
1396 register int i, num;
1397 CHECK_NUMBER (n);
1398 num = XINT (n);
1399 for (i = 0; i < num && !NILP (list); i++)
1400 {
1401 QUIT;
1402 if (! CONSP (list))
1403 wrong_type_argument (Qlistp, list);
1404 list = XCDR (list);
1405 }
1406 return list;
1407 }
1408
1409 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1410 doc: /* Return the Nth element of LIST.
1411 N counts from zero. If LIST is not that long, nil is returned. */)
1412 (n, list)
1413 Lisp_Object n, list;
1414 {
1415 return Fcar (Fnthcdr (n, list));
1416 }
1417
1418 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1419 doc: /* Return element of SEQUENCE at index N. */)
1420 (sequence, n)
1421 register Lisp_Object sequence, n;
1422 {
1423 CHECK_NUMBER (n);
1424 while (1)
1425 {
1426 if (CONSP (sequence) || NILP (sequence))
1427 return Fcar (Fnthcdr (n, sequence));
1428 else if (STRINGP (sequence) || VECTORP (sequence)
1429 || BOOL_VECTOR_P (sequence) || CHAR_TABLE_P (sequence))
1430 return Faref (sequence, n);
1431 else
1432 sequence = wrong_type_argument (Qsequencep, sequence);
1433 }
1434 }
1435
1436 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1437 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1438 The value is actually the tail of LIST whose car is ELT. */)
1439 (elt, list)
1440 register Lisp_Object elt;
1441 Lisp_Object list;
1442 {
1443 register Lisp_Object tail;
1444 for (tail = list; !NILP (tail); tail = XCDR (tail))
1445 {
1446 register Lisp_Object tem;
1447 if (! CONSP (tail))
1448 wrong_type_argument (Qlistp, list);
1449 tem = XCAR (tail);
1450 if (! NILP (Fequal (elt, tem)))
1451 return tail;
1452 QUIT;
1453 }
1454 return Qnil;
1455 }
1456
1457 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1458 doc: /* Return non-nil if ELT is an element of LIST.
1459 Comparison done with EQ. The value is actually the tail of LIST
1460 whose car is ELT. */)
1461 (elt, list)
1462 Lisp_Object elt, list;
1463 {
1464 while (1)
1465 {
1466 if (!CONSP (list) || EQ (XCAR (list), elt))
1467 break;
1468
1469 list = XCDR (list);
1470 if (!CONSP (list) || EQ (XCAR (list), elt))
1471 break;
1472
1473 list = XCDR (list);
1474 if (!CONSP (list) || EQ (XCAR (list), elt))
1475 break;
1476
1477 list = XCDR (list);
1478 QUIT;
1479 }
1480
1481 if (!CONSP (list) && !NILP (list))
1482 list = wrong_type_argument (Qlistp, list);
1483
1484 return list;
1485 }
1486
1487 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1488 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1489 The value is actually the first element of LIST whose car is KEY.
1490 Elements of LIST that are not conses are ignored. */)
1491 (key, list)
1492 Lisp_Object key, list;
1493 {
1494 Lisp_Object result;
1495
1496 while (1)
1497 {
1498 if (!CONSP (list)
1499 || (CONSP (XCAR (list))
1500 && EQ (XCAR (XCAR (list)), key)))
1501 break;
1502
1503 list = XCDR (list);
1504 if (!CONSP (list)
1505 || (CONSP (XCAR (list))
1506 && EQ (XCAR (XCAR (list)), key)))
1507 break;
1508
1509 list = XCDR (list);
1510 if (!CONSP (list)
1511 || (CONSP (XCAR (list))
1512 && EQ (XCAR (XCAR (list)), key)))
1513 break;
1514
1515 list = XCDR (list);
1516 QUIT;
1517 }
1518
1519 if (CONSP (list))
1520 result = XCAR (list);
1521 else if (NILP (list))
1522 result = Qnil;
1523 else
1524 result = wrong_type_argument (Qlistp, list);
1525
1526 return result;
1527 }
1528
1529 /* Like Fassq but never report an error and do not allow quits.
1530 Use only on lists known never to be circular. */
1531
1532 Lisp_Object
1533 assq_no_quit (key, list)
1534 Lisp_Object key, list;
1535 {
1536 while (CONSP (list)
1537 && (!CONSP (XCAR (list))
1538 || !EQ (XCAR (XCAR (list)), key)))
1539 list = XCDR (list);
1540
1541 return CONSP (list) ? XCAR (list) : Qnil;
1542 }
1543
1544 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1545 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1546 The value is actually the first element of LIST whose car equals KEY. */)
1547 (key, list)
1548 Lisp_Object key, list;
1549 {
1550 Lisp_Object result, car;
1551
1552 while (1)
1553 {
1554 if (!CONSP (list)
1555 || (CONSP (XCAR (list))
1556 && (car = XCAR (XCAR (list)),
1557 EQ (car, key) || !NILP (Fequal (car, key)))))
1558 break;
1559
1560 list = XCDR (list);
1561 if (!CONSP (list)
1562 || (CONSP (XCAR (list))
1563 && (car = XCAR (XCAR (list)),
1564 EQ (car, key) || !NILP (Fequal (car, key)))))
1565 break;
1566
1567 list = XCDR (list);
1568 if (!CONSP (list)
1569 || (CONSP (XCAR (list))
1570 && (car = XCAR (XCAR (list)),
1571 EQ (car, key) || !NILP (Fequal (car, key)))))
1572 break;
1573
1574 list = XCDR (list);
1575 QUIT;
1576 }
1577
1578 if (CONSP (list))
1579 result = XCAR (list);
1580 else if (NILP (list))
1581 result = Qnil;
1582 else
1583 result = wrong_type_argument (Qlistp, list);
1584
1585 return result;
1586 }
1587
1588 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1589 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1590 The value is actually the first element of LIST whose cdr is KEY. */)
1591 (key, list)
1592 register Lisp_Object key;
1593 Lisp_Object list;
1594 {
1595 Lisp_Object result;
1596
1597 while (1)
1598 {
1599 if (!CONSP (list)
1600 || (CONSP (XCAR (list))
1601 && EQ (XCDR (XCAR (list)), key)))
1602 break;
1603
1604 list = XCDR (list);
1605 if (!CONSP (list)
1606 || (CONSP (XCAR (list))
1607 && EQ (XCDR (XCAR (list)), key)))
1608 break;
1609
1610 list = XCDR (list);
1611 if (!CONSP (list)
1612 || (CONSP (XCAR (list))
1613 && EQ (XCDR (XCAR (list)), key)))
1614 break;
1615
1616 list = XCDR (list);
1617 QUIT;
1618 }
1619
1620 if (NILP (list))
1621 result = Qnil;
1622 else if (CONSP (list))
1623 result = XCAR (list);
1624 else
1625 result = wrong_type_argument (Qlistp, list);
1626
1627 return result;
1628 }
1629
1630 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1631 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1632 The value is actually the first element of LIST whose cdr equals KEY. */)
1633 (key, list)
1634 Lisp_Object key, list;
1635 {
1636 Lisp_Object result, cdr;
1637
1638 while (1)
1639 {
1640 if (!CONSP (list)
1641 || (CONSP (XCAR (list))
1642 && (cdr = XCDR (XCAR (list)),
1643 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1644 break;
1645
1646 list = XCDR (list);
1647 if (!CONSP (list)
1648 || (CONSP (XCAR (list))
1649 && (cdr = XCDR (XCAR (list)),
1650 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1651 break;
1652
1653 list = XCDR (list);
1654 if (!CONSP (list)
1655 || (CONSP (XCAR (list))
1656 && (cdr = XCDR (XCAR (list)),
1657 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1658 break;
1659
1660 list = XCDR (list);
1661 QUIT;
1662 }
1663
1664 if (CONSP (list))
1665 result = XCAR (list);
1666 else if (NILP (list))
1667 result = Qnil;
1668 else
1669 result = wrong_type_argument (Qlistp, list);
1670
1671 return result;
1672 }
1673 \f
1674 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1675 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1676 The modified LIST is returned. Comparison is done with `eq'.
1677 If the first member of LIST is ELT, there is no way to remove it by side effect;
1678 therefore, write `(setq foo (delq element foo))'
1679 to be sure of changing the value of `foo'. */)
1680 (elt, list)
1681 register Lisp_Object elt;
1682 Lisp_Object list;
1683 {
1684 register Lisp_Object tail, prev;
1685 register Lisp_Object tem;
1686
1687 tail = list;
1688 prev = Qnil;
1689 while (!NILP (tail))
1690 {
1691 if (! CONSP (tail))
1692 wrong_type_argument (Qlistp, list);
1693 tem = XCAR (tail);
1694 if (EQ (elt, tem))
1695 {
1696 if (NILP (prev))
1697 list = XCDR (tail);
1698 else
1699 Fsetcdr (prev, XCDR (tail));
1700 }
1701 else
1702 prev = tail;
1703 tail = XCDR (tail);
1704 QUIT;
1705 }
1706 return list;
1707 }
1708
1709 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1710 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1711 SEQ must be a list, a vector, or a string.
1712 The modified SEQ is returned. Comparison is done with `equal'.
1713 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1714 is not a side effect; it is simply using a different sequence.
1715 Therefore, write `(setq foo (delete element foo))'
1716 to be sure of changing the value of `foo'. */)
1717 (elt, seq)
1718 Lisp_Object elt, seq;
1719 {
1720 if (VECTORP (seq))
1721 {
1722 EMACS_INT i, n;
1723
1724 for (i = n = 0; i < ASIZE (seq); ++i)
1725 if (NILP (Fequal (AREF (seq, i), elt)))
1726 ++n;
1727
1728 if (n != ASIZE (seq))
1729 {
1730 struct Lisp_Vector *p = allocate_vector (n);
1731
1732 for (i = n = 0; i < ASIZE (seq); ++i)
1733 if (NILP (Fequal (AREF (seq, i), elt)))
1734 p->contents[n++] = AREF (seq, i);
1735
1736 XSETVECTOR (seq, p);
1737 }
1738 }
1739 else if (STRINGP (seq))
1740 {
1741 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1742 int c;
1743
1744 for (i = nchars = nbytes = ibyte = 0;
1745 i < SCHARS (seq);
1746 ++i, ibyte += cbytes)
1747 {
1748 if (STRING_MULTIBYTE (seq))
1749 {
1750 c = STRING_CHAR (SDATA (seq) + ibyte,
1751 SBYTES (seq) - ibyte);
1752 cbytes = CHAR_BYTES (c);
1753 }
1754 else
1755 {
1756 c = SREF (seq, i);
1757 cbytes = 1;
1758 }
1759
1760 if (!INTEGERP (elt) || c != XINT (elt))
1761 {
1762 ++nchars;
1763 nbytes += cbytes;
1764 }
1765 }
1766
1767 if (nchars != SCHARS (seq))
1768 {
1769 Lisp_Object tem;
1770
1771 tem = make_uninit_multibyte_string (nchars, nbytes);
1772 if (!STRING_MULTIBYTE (seq))
1773 STRING_SET_UNIBYTE (tem);
1774
1775 for (i = nchars = nbytes = ibyte = 0;
1776 i < SCHARS (seq);
1777 ++i, ibyte += cbytes)
1778 {
1779 if (STRING_MULTIBYTE (seq))
1780 {
1781 c = STRING_CHAR (SDATA (seq) + ibyte,
1782 SBYTES (seq) - ibyte);
1783 cbytes = CHAR_BYTES (c);
1784 }
1785 else
1786 {
1787 c = SREF (seq, i);
1788 cbytes = 1;
1789 }
1790
1791 if (!INTEGERP (elt) || c != XINT (elt))
1792 {
1793 unsigned char *from = SDATA (seq) + ibyte;
1794 unsigned char *to = SDATA (tem) + nbytes;
1795 EMACS_INT n;
1796
1797 ++nchars;
1798 nbytes += cbytes;
1799
1800 for (n = cbytes; n--; )
1801 *to++ = *from++;
1802 }
1803 }
1804
1805 seq = tem;
1806 }
1807 }
1808 else
1809 {
1810 Lisp_Object tail, prev;
1811
1812 for (tail = seq, prev = Qnil; !NILP (tail); tail = XCDR (tail))
1813 {
1814 if (!CONSP (tail))
1815 wrong_type_argument (Qlistp, seq);
1816
1817 if (!NILP (Fequal (elt, XCAR (tail))))
1818 {
1819 if (NILP (prev))
1820 seq = XCDR (tail);
1821 else
1822 Fsetcdr (prev, XCDR (tail));
1823 }
1824 else
1825 prev = tail;
1826 QUIT;
1827 }
1828 }
1829
1830 return seq;
1831 }
1832
1833 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1834 doc: /* Reverse LIST by modifying cdr pointers.
1835 Return the reversed list. */)
1836 (list)
1837 Lisp_Object list;
1838 {
1839 register Lisp_Object prev, tail, next;
1840
1841 if (NILP (list)) return list;
1842 prev = Qnil;
1843 tail = list;
1844 while (!NILP (tail))
1845 {
1846 QUIT;
1847 if (! CONSP (tail))
1848 wrong_type_argument (Qlistp, list);
1849 next = XCDR (tail);
1850 Fsetcdr (tail, prev);
1851 prev = tail;
1852 tail = next;
1853 }
1854 return prev;
1855 }
1856
1857 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1858 doc: /* Reverse LIST, copying. Return the reversed list.
1859 See also the function `nreverse', which is used more often. */)
1860 (list)
1861 Lisp_Object list;
1862 {
1863 Lisp_Object new;
1864
1865 for (new = Qnil; CONSP (list); list = XCDR (list))
1866 {
1867 QUIT;
1868 new = Fcons (XCAR (list), new);
1869 }
1870 if (!NILP (list))
1871 wrong_type_argument (Qconsp, list);
1872 return new;
1873 }
1874 \f
1875 Lisp_Object merge ();
1876
1877 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1878 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1879 Returns the sorted list. LIST is modified by side effects.
1880 PREDICATE is called with two elements of LIST, and should return t
1881 if the first element is "less" than the second. */)
1882 (list, predicate)
1883 Lisp_Object list, predicate;
1884 {
1885 Lisp_Object front, back;
1886 register Lisp_Object len, tem;
1887 struct gcpro gcpro1, gcpro2;
1888 register int length;
1889
1890 front = list;
1891 len = Flength (list);
1892 length = XINT (len);
1893 if (length < 2)
1894 return list;
1895
1896 XSETINT (len, (length / 2) - 1);
1897 tem = Fnthcdr (len, list);
1898 back = Fcdr (tem);
1899 Fsetcdr (tem, Qnil);
1900
1901 GCPRO2 (front, back);
1902 front = Fsort (front, predicate);
1903 back = Fsort (back, predicate);
1904 UNGCPRO;
1905 return merge (front, back, predicate);
1906 }
1907
1908 Lisp_Object
1909 merge (org_l1, org_l2, pred)
1910 Lisp_Object org_l1, org_l2;
1911 Lisp_Object pred;
1912 {
1913 Lisp_Object value;
1914 register Lisp_Object tail;
1915 Lisp_Object tem;
1916 register Lisp_Object l1, l2;
1917 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1918
1919 l1 = org_l1;
1920 l2 = org_l2;
1921 tail = Qnil;
1922 value = Qnil;
1923
1924 /* It is sufficient to protect org_l1 and org_l2.
1925 When l1 and l2 are updated, we copy the new values
1926 back into the org_ vars. */
1927 GCPRO4 (org_l1, org_l2, pred, value);
1928
1929 while (1)
1930 {
1931 if (NILP (l1))
1932 {
1933 UNGCPRO;
1934 if (NILP (tail))
1935 return l2;
1936 Fsetcdr (tail, l2);
1937 return value;
1938 }
1939 if (NILP (l2))
1940 {
1941 UNGCPRO;
1942 if (NILP (tail))
1943 return l1;
1944 Fsetcdr (tail, l1);
1945 return value;
1946 }
1947 tem = call2 (pred, Fcar (l2), Fcar (l1));
1948 if (NILP (tem))
1949 {
1950 tem = l1;
1951 l1 = Fcdr (l1);
1952 org_l1 = l1;
1953 }
1954 else
1955 {
1956 tem = l2;
1957 l2 = Fcdr (l2);
1958 org_l2 = l2;
1959 }
1960 if (NILP (tail))
1961 value = tem;
1962 else
1963 Fsetcdr (tail, tem);
1964 tail = tem;
1965 }
1966 }
1967
1968 \f
1969 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1970 doc: /* Extract a value from a property list.
1971 PLIST is a property list, which is a list of the form
1972 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1973 corresponding to the given PROP, or nil if PROP is not
1974 one of the properties on the list. */)
1975 (plist, prop)
1976 Lisp_Object plist;
1977 Lisp_Object prop;
1978 {
1979 Lisp_Object tail;
1980
1981 for (tail = plist;
1982 CONSP (tail) && CONSP (XCDR (tail));
1983 tail = XCDR (XCDR (tail)))
1984 {
1985 if (EQ (prop, XCAR (tail)))
1986 return XCAR (XCDR (tail));
1987
1988 /* This function can be called asynchronously
1989 (setup_coding_system). Don't QUIT in that case. */
1990 if (!interrupt_input_blocked)
1991 QUIT;
1992 }
1993
1994 if (!NILP (tail))
1995 wrong_type_argument (Qlistp, prop);
1996
1997 return Qnil;
1998 }
1999
2000 DEFUN ("get", Fget, Sget, 2, 2, 0,
2001 doc: /* Return the value of SYMBOL's PROPNAME property.
2002 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
2003 (symbol, propname)
2004 Lisp_Object symbol, propname;
2005 {
2006 CHECK_SYMBOL (symbol);
2007 return Fplist_get (XSYMBOL (symbol)->plist, propname);
2008 }
2009
2010 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
2011 doc: /* Change value in PLIST of PROP to VAL.
2012 PLIST is a property list, which is a list of the form
2013 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
2014 If PROP is already a property on the list, its value is set to VAL,
2015 otherwise the new PROP VAL pair is added. The new plist is returned;
2016 use `(setq x (plist-put x prop val))' to be sure to use the new value.
2017 The PLIST is modified by side effects. */)
2018 (plist, prop, val)
2019 Lisp_Object plist;
2020 register Lisp_Object prop;
2021 Lisp_Object val;
2022 {
2023 register Lisp_Object tail, prev;
2024 Lisp_Object newcell;
2025 prev = Qnil;
2026 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2027 tail = XCDR (XCDR (tail)))
2028 {
2029 if (EQ (prop, XCAR (tail)))
2030 {
2031 Fsetcar (XCDR (tail), val);
2032 return plist;
2033 }
2034
2035 prev = tail;
2036 QUIT;
2037 }
2038 newcell = Fcons (prop, Fcons (val, Qnil));
2039 if (NILP (prev))
2040 return newcell;
2041 else
2042 Fsetcdr (XCDR (prev), newcell);
2043 return plist;
2044 }
2045
2046 DEFUN ("put", Fput, Sput, 3, 3, 0,
2047 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
2048 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
2049 (symbol, propname, value)
2050 Lisp_Object symbol, propname, value;
2051 {
2052 CHECK_SYMBOL (symbol);
2053 XSYMBOL (symbol)->plist
2054 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
2055 return value;
2056 }
2057 \f
2058 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
2059 doc: /* Extract a value from a property list, comparing with `equal'.
2060 PLIST is a property list, which is a list of the form
2061 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
2062 corresponding to the given PROP, or nil if PROP is not
2063 one of the properties on the list. */)
2064 (plist, prop)
2065 Lisp_Object plist;
2066 Lisp_Object prop;
2067 {
2068 Lisp_Object tail;
2069
2070 for (tail = plist;
2071 CONSP (tail) && CONSP (XCDR (tail));
2072 tail = XCDR (XCDR (tail)))
2073 {
2074 if (! NILP (Fequal (prop, XCAR (tail))))
2075 return XCAR (XCDR (tail));
2076
2077 QUIT;
2078 }
2079
2080 if (!NILP (tail))
2081 wrong_type_argument (Qlistp, prop);
2082
2083 return Qnil;
2084 }
2085
2086 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
2087 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
2088 PLIST is a property list, which is a list of the form
2089 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
2090 If PROP is already a property on the list, its value is set to VAL,
2091 otherwise the new PROP VAL pair is added. The new plist is returned;
2092 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
2093 The PLIST is modified by side effects. */)
2094 (plist, prop, val)
2095 Lisp_Object plist;
2096 register Lisp_Object prop;
2097 Lisp_Object val;
2098 {
2099 register Lisp_Object tail, prev;
2100 Lisp_Object newcell;
2101 prev = Qnil;
2102 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2103 tail = XCDR (XCDR (tail)))
2104 {
2105 if (! NILP (Fequal (prop, XCAR (tail))))
2106 {
2107 Fsetcar (XCDR (tail), val);
2108 return plist;
2109 }
2110
2111 prev = tail;
2112 QUIT;
2113 }
2114 newcell = Fcons (prop, Fcons (val, Qnil));
2115 if (NILP (prev))
2116 return newcell;
2117 else
2118 Fsetcdr (XCDR (prev), newcell);
2119 return plist;
2120 }
2121 \f
2122 DEFUN ("eql", Feql, Seql, 2, 2, 0,
2123 doc: /* Return t if the two args are the same Lisp object.
2124 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
2125 (obj1, obj2)
2126 Lisp_Object obj1, obj2;
2127 {
2128 if (FLOATP (obj1))
2129 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
2130 else
2131 return EQ (obj1, obj2) ? Qt : Qnil;
2132 }
2133
2134 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
2135 doc: /* Return t if two Lisp objects have similar structure and contents.
2136 They must have the same data type.
2137 Conses are compared by comparing the cars and the cdrs.
2138 Vectors and strings are compared element by element.
2139 Numbers are compared by value, but integers cannot equal floats.
2140 (Use `=' if you want integers and floats to be able to be equal.)
2141 Symbols must match exactly. */)
2142 (o1, o2)
2143 register Lisp_Object o1, o2;
2144 {
2145 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
2146 }
2147
2148 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2149 doc: /* Return t if two Lisp objects have similar structure and contents.
2150 This is like `equal' except that it compares the text properties
2151 of strings. (`equal' ignores text properties.) */)
2152 (o1, o2)
2153 register Lisp_Object o1, o2;
2154 {
2155 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2156 }
2157
2158 /* DEPTH is current depth of recursion. Signal an error if it
2159 gets too deep.
2160 PROPS, if non-nil, means compare string text properties too. */
2161
2162 static int
2163 internal_equal (o1, o2, depth, props)
2164 register Lisp_Object o1, o2;
2165 int depth, props;
2166 {
2167 if (depth > 200)
2168 error ("Stack overflow in equal");
2169
2170 tail_recurse:
2171 QUIT;
2172 if (EQ (o1, o2))
2173 return 1;
2174 if (XTYPE (o1) != XTYPE (o2))
2175 return 0;
2176
2177 switch (XTYPE (o1))
2178 {
2179 case Lisp_Float:
2180 {
2181 double d1, d2;
2182
2183 d1 = extract_float (o1);
2184 d2 = extract_float (o2);
2185 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2186 though they are not =. */
2187 return d1 == d2 || (d1 != d1 && d2 != d2);
2188 }
2189
2190 case Lisp_Cons:
2191 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2192 return 0;
2193 o1 = XCDR (o1);
2194 o2 = XCDR (o2);
2195 goto tail_recurse;
2196
2197 case Lisp_Misc:
2198 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2199 return 0;
2200 if (OVERLAYP (o1))
2201 {
2202 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2203 depth + 1, props)
2204 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2205 depth + 1))
2206 return 0;
2207 o1 = XOVERLAY (o1)->plist;
2208 o2 = XOVERLAY (o2)->plist;
2209 goto tail_recurse;
2210 }
2211 if (MARKERP (o1))
2212 {
2213 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2214 && (XMARKER (o1)->buffer == 0
2215 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2216 }
2217 break;
2218
2219 case Lisp_Vectorlike:
2220 {
2221 register int i;
2222 EMACS_INT size = XVECTOR (o1)->size;
2223 /* Pseudovectors have the type encoded in the size field, so this test
2224 actually checks that the objects have the same type as well as the
2225 same size. */
2226 if (XVECTOR (o2)->size != size)
2227 return 0;
2228 /* Boolvectors are compared much like strings. */
2229 if (BOOL_VECTOR_P (o1))
2230 {
2231 int size_in_chars
2232 = ((XBOOL_VECTOR (o1)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2233 / BOOL_VECTOR_BITS_PER_CHAR);
2234
2235 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2236 return 0;
2237 if (bcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2238 size_in_chars))
2239 return 0;
2240 return 1;
2241 }
2242 if (WINDOW_CONFIGURATIONP (o1))
2243 return compare_window_configurations (o1, o2, 0);
2244
2245 /* Aside from them, only true vectors, char-tables, and compiled
2246 functions are sensible to compare, so eliminate the others now. */
2247 if (size & PSEUDOVECTOR_FLAG)
2248 {
2249 if (!(size & (PVEC_COMPILED | PVEC_CHAR_TABLE)))
2250 return 0;
2251 size &= PSEUDOVECTOR_SIZE_MASK;
2252 }
2253 for (i = 0; i < size; i++)
2254 {
2255 Lisp_Object v1, v2;
2256 v1 = XVECTOR (o1)->contents [i];
2257 v2 = XVECTOR (o2)->contents [i];
2258 if (!internal_equal (v1, v2, depth + 1, props))
2259 return 0;
2260 }
2261 return 1;
2262 }
2263 break;
2264
2265 case Lisp_String:
2266 if (SCHARS (o1) != SCHARS (o2))
2267 return 0;
2268 if (SBYTES (o1) != SBYTES (o2))
2269 return 0;
2270 if (bcmp (SDATA (o1), SDATA (o2),
2271 SBYTES (o1)))
2272 return 0;
2273 if (props && !compare_string_intervals (o1, o2))
2274 return 0;
2275 return 1;
2276
2277 case Lisp_Int:
2278 case Lisp_Symbol:
2279 case Lisp_Type_Limit:
2280 break;
2281 }
2282
2283 return 0;
2284 }
2285 \f
2286 extern Lisp_Object Fmake_char_internal ();
2287
2288 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2289 doc: /* Store each element of ARRAY with ITEM.
2290 ARRAY is a vector, string, char-table, or bool-vector. */)
2291 (array, item)
2292 Lisp_Object array, item;
2293 {
2294 register int size, index, charval;
2295 retry:
2296 if (VECTORP (array))
2297 {
2298 register Lisp_Object *p = XVECTOR (array)->contents;
2299 size = XVECTOR (array)->size;
2300 for (index = 0; index < size; index++)
2301 p[index] = item;
2302 }
2303 else if (CHAR_TABLE_P (array))
2304 {
2305 register Lisp_Object *p = XCHAR_TABLE (array)->contents;
2306 size = CHAR_TABLE_ORDINARY_SLOTS;
2307 for (index = 0; index < size; index++)
2308 p[index] = item;
2309 XCHAR_TABLE (array)->defalt = Qnil;
2310 }
2311 else if (STRINGP (array))
2312 {
2313 register unsigned char *p = SDATA (array);
2314 CHECK_NUMBER (item);
2315 charval = XINT (item);
2316 size = SCHARS (array);
2317 if (STRING_MULTIBYTE (array))
2318 {
2319 unsigned char str[MAX_MULTIBYTE_LENGTH];
2320 int len = CHAR_STRING (charval, str);
2321 int size_byte = SBYTES (array);
2322 unsigned char *p1 = p, *endp = p + size_byte;
2323 int i;
2324
2325 if (size != size_byte)
2326 while (p1 < endp)
2327 {
2328 int this_len = MULTIBYTE_FORM_LENGTH (p1, endp - p1);
2329 if (len != this_len)
2330 error ("Attempt to change byte length of a string");
2331 p1 += this_len;
2332 }
2333 for (i = 0; i < size_byte; i++)
2334 *p++ = str[i % len];
2335 }
2336 else
2337 for (index = 0; index < size; index++)
2338 p[index] = charval;
2339 }
2340 else if (BOOL_VECTOR_P (array))
2341 {
2342 register unsigned char *p = XBOOL_VECTOR (array)->data;
2343 int size_in_chars
2344 = ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2345 / BOOL_VECTOR_BITS_PER_CHAR);
2346
2347 charval = (! NILP (item) ? -1 : 0);
2348 for (index = 0; index < size_in_chars - 1; index++)
2349 p[index] = charval;
2350 if (index < size_in_chars)
2351 {
2352 /* Mask out bits beyond the vector size. */
2353 if (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)
2354 charval &= (1 << (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2355 p[index] = charval;
2356 }
2357 }
2358 else
2359 {
2360 array = wrong_type_argument (Qarrayp, array);
2361 goto retry;
2362 }
2363 return array;
2364 }
2365
2366 DEFUN ("clear-string", Fclear_string, Sclear_string,
2367 1, 1, 0,
2368 doc: /* Clear the contents of STRING.
2369 This makes STRING unibyte and may change its length. */)
2370 (string)
2371 Lisp_Object string;
2372 {
2373 int len = SBYTES (string);
2374 bzero (SDATA (string), len);
2375 STRING_SET_CHARS (string, len);
2376 STRING_SET_UNIBYTE (string);
2377 return Qnil;
2378 }
2379 \f
2380 DEFUN ("char-table-subtype", Fchar_table_subtype, Schar_table_subtype,
2381 1, 1, 0,
2382 doc: /* Return the subtype of char-table CHAR-TABLE. The value is a symbol. */)
2383 (char_table)
2384 Lisp_Object char_table;
2385 {
2386 CHECK_CHAR_TABLE (char_table);
2387
2388 return XCHAR_TABLE (char_table)->purpose;
2389 }
2390
2391 DEFUN ("char-table-parent", Fchar_table_parent, Schar_table_parent,
2392 1, 1, 0,
2393 doc: /* Return the parent char-table of CHAR-TABLE.
2394 The value is either nil or another char-table.
2395 If CHAR-TABLE holds nil for a given character,
2396 then the actual applicable value is inherited from the parent char-table
2397 \(or from its parents, if necessary). */)
2398 (char_table)
2399 Lisp_Object char_table;
2400 {
2401 CHECK_CHAR_TABLE (char_table);
2402
2403 return XCHAR_TABLE (char_table)->parent;
2404 }
2405
2406 DEFUN ("set-char-table-parent", Fset_char_table_parent, Sset_char_table_parent,
2407 2, 2, 0,
2408 doc: /* Set the parent char-table of CHAR-TABLE to PARENT.
2409 Return PARENT. PARENT must be either nil or another char-table. */)
2410 (char_table, parent)
2411 Lisp_Object char_table, parent;
2412 {
2413 Lisp_Object temp;
2414
2415 CHECK_CHAR_TABLE (char_table);
2416
2417 if (!NILP (parent))
2418 {
2419 CHECK_CHAR_TABLE (parent);
2420
2421 for (temp = parent; !NILP (temp); temp = XCHAR_TABLE (temp)->parent)
2422 if (EQ (temp, char_table))
2423 error ("Attempt to make a chartable be its own parent");
2424 }
2425
2426 XCHAR_TABLE (char_table)->parent = parent;
2427
2428 return parent;
2429 }
2430
2431 DEFUN ("char-table-extra-slot", Fchar_table_extra_slot, Schar_table_extra_slot,
2432 2, 2, 0,
2433 doc: /* Return the value of CHAR-TABLE's extra-slot number N. */)
2434 (char_table, n)
2435 Lisp_Object char_table, n;
2436 {
2437 CHECK_CHAR_TABLE (char_table);
2438 CHECK_NUMBER (n);
2439 if (XINT (n) < 0
2440 || XINT (n) >= CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (char_table)))
2441 args_out_of_range (char_table, n);
2442
2443 return XCHAR_TABLE (char_table)->extras[XINT (n)];
2444 }
2445
2446 DEFUN ("set-char-table-extra-slot", Fset_char_table_extra_slot,
2447 Sset_char_table_extra_slot,
2448 3, 3, 0,
2449 doc: /* Set CHAR-TABLE's extra-slot number N to VALUE. */)
2450 (char_table, n, value)
2451 Lisp_Object char_table, n, value;
2452 {
2453 CHECK_CHAR_TABLE (char_table);
2454 CHECK_NUMBER (n);
2455 if (XINT (n) < 0
2456 || XINT (n) >= CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (char_table)))
2457 args_out_of_range (char_table, n);
2458
2459 return XCHAR_TABLE (char_table)->extras[XINT (n)] = value;
2460 }
2461 \f
2462 DEFUN ("char-table-range", Fchar_table_range, Schar_table_range,
2463 2, 2, 0,
2464 doc: /* Return the value in CHAR-TABLE for a range of characters RANGE.
2465 RANGE should be nil (for the default value)
2466 a vector which identifies a character set or a row of a character set,
2467 a character set name, or a character code. */)
2468 (char_table, range)
2469 Lisp_Object char_table, range;
2470 {
2471 CHECK_CHAR_TABLE (char_table);
2472
2473 if (EQ (range, Qnil))
2474 return XCHAR_TABLE (char_table)->defalt;
2475 else if (INTEGERP (range))
2476 return Faref (char_table, range);
2477 else if (SYMBOLP (range))
2478 {
2479 Lisp_Object charset_info;
2480
2481 charset_info = Fget (range, Qcharset);
2482 CHECK_VECTOR (charset_info);
2483
2484 return Faref (char_table,
2485 make_number (XINT (XVECTOR (charset_info)->contents[0])
2486 + 128));
2487 }
2488 else if (VECTORP (range))
2489 {
2490 if (XVECTOR (range)->size == 1)
2491 return Faref (char_table,
2492 make_number (XINT (XVECTOR (range)->contents[0]) + 128));
2493 else
2494 {
2495 int size = XVECTOR (range)->size;
2496 Lisp_Object *val = XVECTOR (range)->contents;
2497 Lisp_Object ch = Fmake_char_internal (size <= 0 ? Qnil : val[0],
2498 size <= 1 ? Qnil : val[1],
2499 size <= 2 ? Qnil : val[2]);
2500 return Faref (char_table, ch);
2501 }
2502 }
2503 else
2504 error ("Invalid RANGE argument to `char-table-range'");
2505 return Qt;
2506 }
2507
2508 DEFUN ("set-char-table-range", Fset_char_table_range, Sset_char_table_range,
2509 3, 3, 0,
2510 doc: /* Set the value in CHAR-TABLE for a range of characters RANGE to VALUE.
2511 RANGE should be t (for all characters), nil (for the default value),
2512 a character set, a vector which identifies a character set, a row of a
2513 character set, or a character code. Return VALUE. */)
2514 (char_table, range, value)
2515 Lisp_Object char_table, range, value;
2516 {
2517 int i;
2518
2519 CHECK_CHAR_TABLE (char_table);
2520
2521 if (EQ (range, Qt))
2522 for (i = 0; i < CHAR_TABLE_ORDINARY_SLOTS; i++)
2523 XCHAR_TABLE (char_table)->contents[i] = value;
2524 else if (EQ (range, Qnil))
2525 XCHAR_TABLE (char_table)->defalt = value;
2526 else if (SYMBOLP (range))
2527 {
2528 Lisp_Object charset_info;
2529 int charset_id;
2530
2531 charset_info = Fget (range, Qcharset);
2532 if (! VECTORP (charset_info)
2533 || ! NATNUMP (AREF (charset_info, 0))
2534 || (charset_id = XINT (AREF (charset_info, 0)),
2535 ! CHARSET_DEFINED_P (charset_id)))
2536 error ("Invalid charset: %s", SDATA (SYMBOL_NAME (range)));
2537
2538 if (charset_id == CHARSET_ASCII)
2539 for (i = 0; i < 128; i++)
2540 XCHAR_TABLE (char_table)->contents[i] = value;
2541 else if (charset_id == CHARSET_8_BIT_CONTROL)
2542 for (i = 128; i < 160; i++)
2543 XCHAR_TABLE (char_table)->contents[i] = value;
2544 else if (charset_id == CHARSET_8_BIT_GRAPHIC)
2545 for (i = 160; i < 256; i++)
2546 XCHAR_TABLE (char_table)->contents[i] = value;
2547 else
2548 XCHAR_TABLE (char_table)->contents[charset_id + 128] = value;
2549 }
2550 else if (INTEGERP (range))
2551 Faset (char_table, range, value);
2552 else if (VECTORP (range))
2553 {
2554 if (XVECTOR (range)->size == 1)
2555 return Faset (char_table,
2556 make_number (XINT (XVECTOR (range)->contents[0]) + 128),
2557 value);
2558 else
2559 {
2560 int size = XVECTOR (range)->size;
2561 Lisp_Object *val = XVECTOR (range)->contents;
2562 Lisp_Object ch = Fmake_char_internal (size <= 0 ? Qnil : val[0],
2563 size <= 1 ? Qnil : val[1],
2564 size <= 2 ? Qnil : val[2]);
2565 return Faset (char_table, ch, value);
2566 }
2567 }
2568 else
2569 error ("Invalid RANGE argument to `set-char-table-range'");
2570
2571 return value;
2572 }
2573
2574 DEFUN ("set-char-table-default", Fset_char_table_default,
2575 Sset_char_table_default, 3, 3, 0,
2576 doc: /* Set the default value in CHAR-TABLE for generic character CH to VALUE.
2577 The generic character specifies the group of characters.
2578 See also the documentation of `make-char'. */)
2579 (char_table, ch, value)
2580 Lisp_Object char_table, ch, value;
2581 {
2582 int c, charset, code1, code2;
2583 Lisp_Object temp;
2584
2585 CHECK_CHAR_TABLE (char_table);
2586 CHECK_NUMBER (ch);
2587
2588 c = XINT (ch);
2589 SPLIT_CHAR (c, charset, code1, code2);
2590
2591 /* Since we may want to set the default value for a character set
2592 not yet defined, we check only if the character set is in the
2593 valid range or not, instead of it is already defined or not. */
2594 if (! CHARSET_VALID_P (charset))
2595 invalid_character (c);
2596
2597 if (charset == CHARSET_ASCII)
2598 return (XCHAR_TABLE (char_table)->defalt = value);
2599
2600 /* Even if C is not a generic char, we had better behave as if a
2601 generic char is specified. */
2602 if (!CHARSET_DEFINED_P (charset) || CHARSET_DIMENSION (charset) == 1)
2603 code1 = 0;
2604 temp = XCHAR_TABLE (char_table)->contents[charset + 128];
2605 if (!code1)
2606 {
2607 if (SUB_CHAR_TABLE_P (temp))
2608 XCHAR_TABLE (temp)->defalt = value;
2609 else
2610 XCHAR_TABLE (char_table)->contents[charset + 128] = value;
2611 return value;
2612 }
2613 if (SUB_CHAR_TABLE_P (temp))
2614 char_table = temp;
2615 else
2616 char_table = (XCHAR_TABLE (char_table)->contents[charset + 128]
2617 = make_sub_char_table (temp));
2618 temp = XCHAR_TABLE (char_table)->contents[code1];
2619 if (SUB_CHAR_TABLE_P (temp))
2620 XCHAR_TABLE (temp)->defalt = value;
2621 else
2622 XCHAR_TABLE (char_table)->contents[code1] = value;
2623 return value;
2624 }
2625
2626 /* Look up the element in TABLE at index CH,
2627 and return it as an integer.
2628 If the element is nil, return CH itself.
2629 (Actually we do that for any non-integer.) */
2630
2631 int
2632 char_table_translate (table, ch)
2633 Lisp_Object table;
2634 int ch;
2635 {
2636 Lisp_Object value;
2637 value = Faref (table, make_number (ch));
2638 if (! INTEGERP (value))
2639 return ch;
2640 return XINT (value);
2641 }
2642
2643 static void
2644 optimize_sub_char_table (table, chars)
2645 Lisp_Object *table;
2646 int chars;
2647 {
2648 Lisp_Object elt;
2649 int from, to;
2650
2651 if (chars == 94)
2652 from = 33, to = 127;
2653 else
2654 from = 32, to = 128;
2655
2656 if (!SUB_CHAR_TABLE_P (*table))
2657 return;
2658 elt = XCHAR_TABLE (*table)->contents[from++];
2659 for (; from < to; from++)
2660 if (NILP (Fequal (elt, XCHAR_TABLE (*table)->contents[from])))
2661 return;
2662 *table = elt;
2663 }
2664
2665 DEFUN ("optimize-char-table", Foptimize_char_table, Soptimize_char_table,
2666 1, 1, 0, doc: /* Optimize char table TABLE. */)
2667 (table)
2668 Lisp_Object table;
2669 {
2670 Lisp_Object elt;
2671 int dim;
2672 int i, j;
2673
2674 CHECK_CHAR_TABLE (table);
2675
2676 for (i = CHAR_TABLE_SINGLE_BYTE_SLOTS; i < CHAR_TABLE_ORDINARY_SLOTS; i++)
2677 {
2678 elt = XCHAR_TABLE (table)->contents[i];
2679 if (!SUB_CHAR_TABLE_P (elt))
2680 continue;
2681 dim = CHARSET_DIMENSION (i - 128);
2682 if (dim == 2)
2683 for (j = 32; j < SUB_CHAR_TABLE_ORDINARY_SLOTS; j++)
2684 optimize_sub_char_table (XCHAR_TABLE (elt)->contents + j, dim);
2685 optimize_sub_char_table (XCHAR_TABLE (table)->contents + i, dim);
2686 }
2687 return Qnil;
2688 }
2689
2690 \f
2691 /* Map C_FUNCTION or FUNCTION over SUBTABLE, calling it for each
2692 character or group of characters that share a value.
2693 DEPTH is the current depth in the originally specified
2694 chartable, and INDICES contains the vector indices
2695 for the levels our callers have descended.
2696
2697 ARG is passed to C_FUNCTION when that is called. */
2698
2699 void
2700 map_char_table (c_function, function, table, subtable, arg, depth, indices)
2701 void (*c_function) P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
2702 Lisp_Object function, table, subtable, arg, *indices;
2703 int depth;
2704 {
2705 int i, to;
2706
2707 if (depth == 0)
2708 {
2709 /* At first, handle ASCII and 8-bit European characters. */
2710 for (i = 0; i < CHAR_TABLE_SINGLE_BYTE_SLOTS; i++)
2711 {
2712 Lisp_Object elt= XCHAR_TABLE (subtable)->contents[i];
2713 if (NILP (elt))
2714 elt = XCHAR_TABLE (subtable)->defalt;
2715 if (NILP (elt))
2716 elt = Faref (subtable, make_number (i));
2717 if (c_function)
2718 (*c_function) (arg, make_number (i), elt);
2719 else
2720 call2 (function, make_number (i), elt);
2721 }
2722 #if 0 /* If the char table has entries for higher characters,
2723 we should report them. */
2724 if (NILP (current_buffer->enable_multibyte_characters))
2725 return;
2726 #endif
2727 to = CHAR_TABLE_ORDINARY_SLOTS;
2728 }
2729 else
2730 {
2731 int charset = XFASTINT (indices[0]) - 128;
2732
2733 i = 32;
2734 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
2735 if (CHARSET_CHARS (charset) == 94)
2736 i++, to--;
2737 }
2738
2739 for (; i < to; i++)
2740 {
2741 Lisp_Object elt;
2742 int charset;
2743
2744 elt = XCHAR_TABLE (subtable)->contents[i];
2745 XSETFASTINT (indices[depth], i);
2746 charset = XFASTINT (indices[0]) - 128;
2747 if (depth == 0
2748 && (!CHARSET_DEFINED_P (charset)
2749 || charset == CHARSET_8_BIT_CONTROL
2750 || charset == CHARSET_8_BIT_GRAPHIC))
2751 continue;
2752
2753 if (SUB_CHAR_TABLE_P (elt))
2754 {
2755 if (depth >= 3)
2756 error ("Too deep char table");
2757 map_char_table (c_function, function, table, elt, arg, depth + 1, indices);
2758 }
2759 else
2760 {
2761 int c1, c2, c;
2762
2763 c1 = depth >= 1 ? XFASTINT (indices[1]) : 0;
2764 c2 = depth >= 2 ? XFASTINT (indices[2]) : 0;
2765 c = MAKE_CHAR (charset, c1, c2);
2766
2767 if (NILP (elt))
2768 elt = XCHAR_TABLE (subtable)->defalt;
2769 if (NILP (elt))
2770 elt = Faref (table, make_number (c));
2771
2772 if (c_function)
2773 (*c_function) (arg, make_number (c), elt);
2774 else
2775 call2 (function, make_number (c), elt);
2776 }
2777 }
2778 }
2779
2780 static void void_call2 P_ ((Lisp_Object a, Lisp_Object b, Lisp_Object c));
2781 static void
2782 void_call2 (a, b, c)
2783 Lisp_Object a, b, c;
2784 {
2785 call2 (a, b, c);
2786 }
2787
2788 DEFUN ("map-char-table", Fmap_char_table, Smap_char_table,
2789 2, 2, 0,
2790 doc: /* Call FUNCTION for each (normal and generic) characters in CHAR-TABLE.
2791 FUNCTION is called with two arguments--a key and a value.
2792 The key is always a possible IDX argument to `aref'. */)
2793 (function, char_table)
2794 Lisp_Object function, char_table;
2795 {
2796 /* The depth of char table is at most 3. */
2797 Lisp_Object indices[3];
2798
2799 CHECK_CHAR_TABLE (char_table);
2800
2801 /* When Lisp_Object is represented as a union, `call2' cannot directly
2802 be passed to map_char_table because it returns a Lisp_Object rather
2803 than returning nothing.
2804 Casting leads to crashes on some architectures. -stef */
2805 map_char_table (void_call2, Qnil, char_table, char_table, function, 0, indices);
2806 return Qnil;
2807 }
2808
2809 /* Return a value for character C in char-table TABLE. Store the
2810 actual index for that value in *IDX. Ignore the default value of
2811 TABLE. */
2812
2813 Lisp_Object
2814 char_table_ref_and_index (table, c, idx)
2815 Lisp_Object table;
2816 int c, *idx;
2817 {
2818 int charset, c1, c2;
2819 Lisp_Object elt;
2820
2821 if (SINGLE_BYTE_CHAR_P (c))
2822 {
2823 *idx = c;
2824 return XCHAR_TABLE (table)->contents[c];
2825 }
2826 SPLIT_CHAR (c, charset, c1, c2);
2827 elt = XCHAR_TABLE (table)->contents[charset + 128];
2828 *idx = MAKE_CHAR (charset, 0, 0);
2829 if (!SUB_CHAR_TABLE_P (elt))
2830 return elt;
2831 if (c1 < 32 || NILP (XCHAR_TABLE (elt)->contents[c1]))
2832 return XCHAR_TABLE (elt)->defalt;
2833 elt = XCHAR_TABLE (elt)->contents[c1];
2834 *idx = MAKE_CHAR (charset, c1, 0);
2835 if (!SUB_CHAR_TABLE_P (elt))
2836 return elt;
2837 if (c2 < 32 || NILP (XCHAR_TABLE (elt)->contents[c2]))
2838 return XCHAR_TABLE (elt)->defalt;
2839 *idx = c;
2840 return XCHAR_TABLE (elt)->contents[c2];
2841 }
2842
2843 \f
2844 /* ARGSUSED */
2845 Lisp_Object
2846 nconc2 (s1, s2)
2847 Lisp_Object s1, s2;
2848 {
2849 #ifdef NO_ARG_ARRAY
2850 Lisp_Object args[2];
2851 args[0] = s1;
2852 args[1] = s2;
2853 return Fnconc (2, args);
2854 #else
2855 return Fnconc (2, &s1);
2856 #endif /* NO_ARG_ARRAY */
2857 }
2858
2859 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2860 doc: /* Concatenate any number of lists by altering them.
2861 Only the last argument is not altered, and need not be a list.
2862 usage: (nconc &rest LISTS) */)
2863 (nargs, args)
2864 int nargs;
2865 Lisp_Object *args;
2866 {
2867 register int argnum;
2868 register Lisp_Object tail, tem, val;
2869
2870 val = tail = Qnil;
2871
2872 for (argnum = 0; argnum < nargs; argnum++)
2873 {
2874 tem = args[argnum];
2875 if (NILP (tem)) continue;
2876
2877 if (NILP (val))
2878 val = tem;
2879
2880 if (argnum + 1 == nargs) break;
2881
2882 if (!CONSP (tem))
2883 tem = wrong_type_argument (Qlistp, tem);
2884
2885 while (CONSP (tem))
2886 {
2887 tail = tem;
2888 tem = XCDR (tail);
2889 QUIT;
2890 }
2891
2892 tem = args[argnum + 1];
2893 Fsetcdr (tail, tem);
2894 if (NILP (tem))
2895 args[argnum + 1] = tail;
2896 }
2897
2898 return val;
2899 }
2900 \f
2901 /* This is the guts of all mapping functions.
2902 Apply FN to each element of SEQ, one by one,
2903 storing the results into elements of VALS, a C vector of Lisp_Objects.
2904 LENI is the length of VALS, which should also be the length of SEQ. */
2905
2906 static void
2907 mapcar1 (leni, vals, fn, seq)
2908 int leni;
2909 Lisp_Object *vals;
2910 Lisp_Object fn, seq;
2911 {
2912 register Lisp_Object tail;
2913 Lisp_Object dummy;
2914 register int i;
2915 struct gcpro gcpro1, gcpro2, gcpro3;
2916
2917 if (vals)
2918 {
2919 /* Don't let vals contain any garbage when GC happens. */
2920 for (i = 0; i < leni; i++)
2921 vals[i] = Qnil;
2922
2923 GCPRO3 (dummy, fn, seq);
2924 gcpro1.var = vals;
2925 gcpro1.nvars = leni;
2926 }
2927 else
2928 GCPRO2 (fn, seq);
2929 /* We need not explicitly protect `tail' because it is used only on lists, and
2930 1) lists are not relocated and 2) the list is marked via `seq' so will not be freed */
2931
2932 if (VECTORP (seq))
2933 {
2934 for (i = 0; i < leni; i++)
2935 {
2936 dummy = XVECTOR (seq)->contents[i];
2937 dummy = call1 (fn, dummy);
2938 if (vals)
2939 vals[i] = dummy;
2940 }
2941 }
2942 else if (BOOL_VECTOR_P (seq))
2943 {
2944 for (i = 0; i < leni; i++)
2945 {
2946 int byte;
2947 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2948 if (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)))
2949 dummy = Qt;
2950 else
2951 dummy = Qnil;
2952
2953 dummy = call1 (fn, dummy);
2954 if (vals)
2955 vals[i] = dummy;
2956 }
2957 }
2958 else if (STRINGP (seq))
2959 {
2960 int i_byte;
2961
2962 for (i = 0, i_byte = 0; i < leni;)
2963 {
2964 int c;
2965 int i_before = i;
2966
2967 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2968 XSETFASTINT (dummy, c);
2969 dummy = call1 (fn, dummy);
2970 if (vals)
2971 vals[i_before] = dummy;
2972 }
2973 }
2974 else /* Must be a list, since Flength did not get an error */
2975 {
2976 tail = seq;
2977 for (i = 0; i < leni; i++)
2978 {
2979 dummy = call1 (fn, Fcar (tail));
2980 if (vals)
2981 vals[i] = dummy;
2982 tail = XCDR (tail);
2983 }
2984 }
2985
2986 UNGCPRO;
2987 }
2988
2989 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2990 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2991 In between each pair of results, stick in SEPARATOR. Thus, " " as
2992 SEPARATOR results in spaces between the values returned by FUNCTION.
2993 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2994 (function, sequence, separator)
2995 Lisp_Object function, sequence, separator;
2996 {
2997 Lisp_Object len;
2998 register int leni;
2999 int nargs;
3000 register Lisp_Object *args;
3001 register int i;
3002 struct gcpro gcpro1;
3003 int nbytes;
3004 Lisp_Object ret;
3005 USE_SAFE_ALLOCA;
3006
3007 len = Flength (sequence);
3008 leni = XINT (len);
3009 nargs = leni + leni - 1;
3010 if (nargs < 0) return build_string ("");
3011
3012 nbytes = nargs * sizeof (Lisp_Object);
3013 SAFE_ALLOCA (args, Lisp_Object *, nbytes);
3014
3015 GCPRO1 (separator);
3016 mapcar1 (leni, args, function, sequence);
3017 UNGCPRO;
3018
3019 for (i = leni - 1; i >= 0; i--)
3020 args[i + i] = args[i];
3021
3022 for (i = 1; i < nargs; i += 2)
3023 args[i] = separator;
3024
3025 ret = Fconcat (nargs, args);
3026 SAFE_FREE (nbytes);
3027
3028 return ret;
3029 }
3030
3031 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
3032 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
3033 The result is a list just as long as SEQUENCE.
3034 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
3035 (function, sequence)
3036 Lisp_Object function, sequence;
3037 {
3038 register Lisp_Object len;
3039 register int leni;
3040 register Lisp_Object *args;
3041 int nbytes;
3042 Lisp_Object ret;
3043 USE_SAFE_ALLOCA;
3044
3045 len = Flength (sequence);
3046 leni = XFASTINT (len);
3047
3048 nbytes = leni * sizeof (Lisp_Object);
3049 SAFE_ALLOCA (args, Lisp_Object *, nbytes);
3050
3051 mapcar1 (leni, args, function, sequence);
3052
3053 ret = Flist (leni, args);
3054 SAFE_FREE(nbytes);
3055
3056 return ret;
3057 }
3058
3059 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
3060 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
3061 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
3062 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
3063 (function, sequence)
3064 Lisp_Object function, sequence;
3065 {
3066 register int leni;
3067
3068 leni = XFASTINT (Flength (sequence));
3069 mapcar1 (leni, 0, function, sequence);
3070
3071 return sequence;
3072 }
3073 \f
3074 /* Anything that calls this function must protect from GC! */
3075
3076 DEFUN ("y-or-n-p", Fy_or_n_p, Sy_or_n_p, 1, 1, 0,
3077 doc: /* Ask user a "y or n" question. Return t if answer is "y".
3078 Takes one argument, which is the string to display to ask the question.
3079 It should end in a space; `y-or-n-p' adds `(y or n) ' to it.
3080 No confirmation of the answer is requested; a single character is enough.
3081 Also accepts Space to mean yes, or Delete to mean no. \(Actually, it uses
3082 the bindings in `query-replace-map'; see the documentation of that variable
3083 for more information. In this case, the useful bindings are `act', `skip',
3084 `recenter', and `quit'.\)
3085
3086 Under a windowing system a dialog box will be used if `last-nonmenu-event'
3087 is nil and `use-dialog-box' is non-nil. */)
3088 (prompt)
3089 Lisp_Object prompt;
3090 {
3091 register Lisp_Object obj, key, def, map;
3092 register int answer;
3093 Lisp_Object xprompt;
3094 Lisp_Object args[2];
3095 struct gcpro gcpro1, gcpro2;
3096 int count = SPECPDL_INDEX ();
3097
3098 specbind (Qcursor_in_echo_area, Qt);
3099
3100 map = Fsymbol_value (intern ("query-replace-map"));
3101
3102 CHECK_STRING (prompt);
3103 xprompt = prompt;
3104 GCPRO2 (prompt, xprompt);
3105
3106 #ifdef HAVE_X_WINDOWS
3107 if (display_hourglass_p)
3108 cancel_hourglass ();
3109 #endif
3110
3111 while (1)
3112 {
3113
3114 #ifdef HAVE_MENUS
3115 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3116 && use_dialog_box
3117 && have_menus_p ())
3118 {
3119 Lisp_Object pane, menu;
3120 redisplay_preserve_echo_area (3);
3121 pane = Fcons (Fcons (build_string ("Yes"), Qt),
3122 Fcons (Fcons (build_string ("No"), Qnil),
3123 Qnil));
3124 menu = Fcons (prompt, pane);
3125 obj = Fx_popup_dialog (Qt, menu);
3126 answer = !NILP (obj);
3127 break;
3128 }
3129 #endif /* HAVE_MENUS */
3130 cursor_in_echo_area = 1;
3131 choose_minibuf_frame ();
3132
3133 {
3134 Lisp_Object pargs[3];
3135
3136 /* Colorize prompt according to `minibuffer-prompt' face. */
3137 pargs[0] = build_string ("%s(y or n) ");
3138 pargs[1] = intern ("face");
3139 pargs[2] = intern ("minibuffer-prompt");
3140 args[0] = Fpropertize (3, pargs);
3141 args[1] = xprompt;
3142 Fmessage (2, args);
3143 }
3144
3145 if (minibuffer_auto_raise)
3146 {
3147 Lisp_Object mini_frame;
3148
3149 mini_frame = WINDOW_FRAME (XWINDOW (minibuf_window));
3150
3151 Fraise_frame (mini_frame);
3152 }
3153
3154 obj = read_filtered_event (1, 0, 0, 0);
3155 cursor_in_echo_area = 0;
3156 /* If we need to quit, quit with cursor_in_echo_area = 0. */
3157 QUIT;
3158
3159 key = Fmake_vector (make_number (1), obj);
3160 def = Flookup_key (map, key, Qt);
3161
3162 if (EQ (def, intern ("skip")))
3163 {
3164 answer = 0;
3165 break;
3166 }
3167 else if (EQ (def, intern ("act")))
3168 {
3169 answer = 1;
3170 break;
3171 }
3172 else if (EQ (def, intern ("recenter")))
3173 {
3174 Frecenter (Qnil);
3175 xprompt = prompt;
3176 continue;
3177 }
3178 else if (EQ (def, intern ("quit")))
3179 Vquit_flag = Qt;
3180 /* We want to exit this command for exit-prefix,
3181 and this is the only way to do it. */
3182 else if (EQ (def, intern ("exit-prefix")))
3183 Vquit_flag = Qt;
3184
3185 QUIT;
3186
3187 /* If we don't clear this, then the next call to read_char will
3188 return quit_char again, and we'll enter an infinite loop. */
3189 Vquit_flag = Qnil;
3190
3191 Fding (Qnil);
3192 Fdiscard_input ();
3193 if (EQ (xprompt, prompt))
3194 {
3195 args[0] = build_string ("Please answer y or n. ");
3196 args[1] = prompt;
3197 xprompt = Fconcat (2, args);
3198 }
3199 }
3200 UNGCPRO;
3201
3202 if (! noninteractive)
3203 {
3204 cursor_in_echo_area = -1;
3205 message_with_string (answer ? "%s(y or n) y" : "%s(y or n) n",
3206 xprompt, 0);
3207 }
3208
3209 unbind_to (count, Qnil);
3210 return answer ? Qt : Qnil;
3211 }
3212 \f
3213 /* This is how C code calls `yes-or-no-p' and allows the user
3214 to redefined it.
3215
3216 Anything that calls this function must protect from GC! */
3217
3218 Lisp_Object
3219 do_yes_or_no_p (prompt)
3220 Lisp_Object prompt;
3221 {
3222 return call1 (intern ("yes-or-no-p"), prompt);
3223 }
3224
3225 /* Anything that calls this function must protect from GC! */
3226
3227 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
3228 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
3229 Takes one argument, which is the string to display to ask the question.
3230 It should end in a space; `yes-or-no-p' adds `(yes or no) ' to it.
3231 The user must confirm the answer with RET,
3232 and can edit it until it has been confirmed.
3233
3234 Under a windowing system a dialog box will be used if `last-nonmenu-event'
3235 is nil, and `use-dialog-box' is non-nil. */)
3236 (prompt)
3237 Lisp_Object prompt;
3238 {
3239 register Lisp_Object ans;
3240 Lisp_Object args[2];
3241 struct gcpro gcpro1;
3242
3243 CHECK_STRING (prompt);
3244
3245 #ifdef HAVE_MENUS
3246 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3247 && use_dialog_box
3248 && have_menus_p ())
3249 {
3250 Lisp_Object pane, menu, obj;
3251 redisplay_preserve_echo_area (4);
3252 pane = Fcons (Fcons (build_string ("Yes"), Qt),
3253 Fcons (Fcons (build_string ("No"), Qnil),
3254 Qnil));
3255 GCPRO1 (pane);
3256 menu = Fcons (prompt, pane);
3257 obj = Fx_popup_dialog (Qt, menu);
3258 UNGCPRO;
3259 return obj;
3260 }
3261 #endif /* HAVE_MENUS */
3262
3263 args[0] = prompt;
3264 args[1] = build_string ("(yes or no) ");
3265 prompt = Fconcat (2, args);
3266
3267 GCPRO1 (prompt);
3268
3269 while (1)
3270 {
3271 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
3272 Qyes_or_no_p_history, Qnil,
3273 Qnil));
3274 if (SCHARS (ans) == 3 && !strcmp (SDATA (ans), "yes"))
3275 {
3276 UNGCPRO;
3277 return Qt;
3278 }
3279 if (SCHARS (ans) == 2 && !strcmp (SDATA (ans), "no"))
3280 {
3281 UNGCPRO;
3282 return Qnil;
3283 }
3284
3285 Fding (Qnil);
3286 Fdiscard_input ();
3287 message ("Please answer yes or no.");
3288 Fsleep_for (make_number (2), Qnil);
3289 }
3290 }
3291 \f
3292 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
3293 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
3294
3295 Each of the three load averages is multiplied by 100, then converted
3296 to integer.
3297
3298 When USE-FLOATS is non-nil, floats will be used instead of integers.
3299 These floats are not multiplied by 100.
3300
3301 If the 5-minute or 15-minute load averages are not available, return a
3302 shortened list, containing only those averages which are available.
3303
3304 An error is thrown if the load average can't be obtained. In some
3305 cases making it work would require Emacs being installed setuid or
3306 setgid so that it can read kernel information, and that usually isn't
3307 advisable. */)
3308 (use_floats)
3309 Lisp_Object use_floats;
3310 {
3311 double load_ave[3];
3312 int loads = getloadavg (load_ave, 3);
3313 Lisp_Object ret = Qnil;
3314
3315 if (loads < 0)
3316 error ("load-average not implemented for this operating system");
3317
3318 while (loads-- > 0)
3319 {
3320 Lisp_Object load = (NILP (use_floats) ?
3321 make_number ((int) (100.0 * load_ave[loads]))
3322 : make_float (load_ave[loads]));
3323 ret = Fcons (load, ret);
3324 }
3325
3326 return ret;
3327 }
3328 \f
3329 Lisp_Object Vfeatures, Qsubfeatures;
3330 extern Lisp_Object Vafter_load_alist;
3331
3332 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
3333 doc: /* Returns t if FEATURE is present in this Emacs.
3334
3335 Use this to conditionalize execution of lisp code based on the
3336 presence or absence of emacs or environment extensions.
3337 Use `provide' to declare that a feature is available. This function
3338 looks at the value of the variable `features'. The optional argument
3339 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
3340 (feature, subfeature)
3341 Lisp_Object feature, subfeature;
3342 {
3343 register Lisp_Object tem;
3344 CHECK_SYMBOL (feature);
3345 tem = Fmemq (feature, Vfeatures);
3346 if (!NILP (tem) && !NILP (subfeature))
3347 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
3348 return (NILP (tem)) ? Qnil : Qt;
3349 }
3350
3351 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
3352 doc: /* Announce that FEATURE is a feature of the current Emacs.
3353 The optional argument SUBFEATURES should be a list of symbols listing
3354 particular subfeatures supported in this version of FEATURE. */)
3355 (feature, subfeatures)
3356 Lisp_Object feature, subfeatures;
3357 {
3358 register Lisp_Object tem;
3359 CHECK_SYMBOL (feature);
3360 CHECK_LIST (subfeatures);
3361 if (!NILP (Vautoload_queue))
3362 Vautoload_queue = Fcons (Fcons (Vfeatures, Qnil), Vautoload_queue);
3363 tem = Fmemq (feature, Vfeatures);
3364 if (NILP (tem))
3365 Vfeatures = Fcons (feature, Vfeatures);
3366 if (!NILP (subfeatures))
3367 Fput (feature, Qsubfeatures, subfeatures);
3368 LOADHIST_ATTACH (Fcons (Qprovide, feature));
3369
3370 /* Run any load-hooks for this file. */
3371 tem = Fassq (feature, Vafter_load_alist);
3372 if (CONSP (tem))
3373 Fprogn (XCDR (tem));
3374
3375 return feature;
3376 }
3377 \f
3378 /* `require' and its subroutines. */
3379
3380 /* List of features currently being require'd, innermost first. */
3381
3382 Lisp_Object require_nesting_list;
3383
3384 Lisp_Object
3385 require_unwind (old_value)
3386 Lisp_Object old_value;
3387 {
3388 return require_nesting_list = old_value;
3389 }
3390
3391 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
3392 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
3393 If FEATURE is not a member of the list `features', then the feature
3394 is not loaded; so load the file FILENAME.
3395 If FILENAME is omitted, the printname of FEATURE is used as the file name,
3396 and `load' will try to load this name appended with the suffix `.elc' or
3397 `.el', in that order. The name without appended suffix will not be used.
3398 If the optional third argument NOERROR is non-nil,
3399 then return nil if the file is not found instead of signaling an error.
3400 Normally the return value is FEATURE.
3401 The normal messages at start and end of loading FILENAME are suppressed. */)
3402 (feature, filename, noerror)
3403 Lisp_Object feature, filename, noerror;
3404 {
3405 register Lisp_Object tem;
3406 struct gcpro gcpro1, gcpro2;
3407
3408 CHECK_SYMBOL (feature);
3409
3410 tem = Fmemq (feature, Vfeatures);
3411
3412 if (NILP (tem))
3413 {
3414 int count = SPECPDL_INDEX ();
3415 int nesting = 0;
3416
3417 LOADHIST_ATTACH (Fcons (Qrequire, feature));
3418
3419 /* This is to make sure that loadup.el gives a clear picture
3420 of what files are preloaded and when. */
3421 if (! NILP (Vpurify_flag))
3422 error ("(require %s) while preparing to dump",
3423 SDATA (SYMBOL_NAME (feature)));
3424
3425 /* A certain amount of recursive `require' is legitimate,
3426 but if we require the same feature recursively 3 times,
3427 signal an error. */
3428 tem = require_nesting_list;
3429 while (! NILP (tem))
3430 {
3431 if (! NILP (Fequal (feature, XCAR (tem))))
3432 nesting++;
3433 tem = XCDR (tem);
3434 }
3435 if (nesting > 3)
3436 error ("Recursive `require' for feature `%s'",
3437 SDATA (SYMBOL_NAME (feature)));
3438
3439 /* Update the list for any nested `require's that occur. */
3440 record_unwind_protect (require_unwind, require_nesting_list);
3441 require_nesting_list = Fcons (feature, require_nesting_list);
3442
3443 /* Value saved here is to be restored into Vautoload_queue */
3444 record_unwind_protect (un_autoload, Vautoload_queue);
3445 Vautoload_queue = Qt;
3446
3447 /* Load the file. */
3448 GCPRO2 (feature, filename);
3449 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
3450 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
3451 UNGCPRO;
3452
3453 /* If load failed entirely, return nil. */
3454 if (NILP (tem))
3455 return unbind_to (count, Qnil);
3456
3457 tem = Fmemq (feature, Vfeatures);
3458 if (NILP (tem))
3459 error ("Required feature `%s' was not provided",
3460 SDATA (SYMBOL_NAME (feature)));
3461
3462 /* Once loading finishes, don't undo it. */
3463 Vautoload_queue = Qt;
3464 feature = unbind_to (count, feature);
3465 }
3466
3467 return feature;
3468 }
3469 \f
3470 /* Primitives for work of the "widget" library.
3471 In an ideal world, this section would not have been necessary.
3472 However, lisp function calls being as slow as they are, it turns
3473 out that some functions in the widget library (wid-edit.el) are the
3474 bottleneck of Widget operation. Here is their translation to C,
3475 for the sole reason of efficiency. */
3476
3477 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
3478 doc: /* Return non-nil if PLIST has the property PROP.
3479 PLIST is a property list, which is a list of the form
3480 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
3481 Unlike `plist-get', this allows you to distinguish between a missing
3482 property and a property with the value nil.
3483 The value is actually the tail of PLIST whose car is PROP. */)
3484 (plist, prop)
3485 Lisp_Object plist, prop;
3486 {
3487 while (CONSP (plist) && !EQ (XCAR (plist), prop))
3488 {
3489 QUIT;
3490 plist = XCDR (plist);
3491 plist = CDR (plist);
3492 }
3493 return plist;
3494 }
3495
3496 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
3497 doc: /* In WIDGET, set PROPERTY to VALUE.
3498 The value can later be retrieved with `widget-get'. */)
3499 (widget, property, value)
3500 Lisp_Object widget, property, value;
3501 {
3502 CHECK_CONS (widget);
3503 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
3504 return value;
3505 }
3506
3507 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
3508 doc: /* In WIDGET, get the value of PROPERTY.
3509 The value could either be specified when the widget was created, or
3510 later with `widget-put'. */)
3511 (widget, property)
3512 Lisp_Object widget, property;
3513 {
3514 Lisp_Object tmp;
3515
3516 while (1)
3517 {
3518 if (NILP (widget))
3519 return Qnil;
3520 CHECK_CONS (widget);
3521 tmp = Fplist_member (XCDR (widget), property);
3522 if (CONSP (tmp))
3523 {
3524 tmp = XCDR (tmp);
3525 return CAR (tmp);
3526 }
3527 tmp = XCAR (widget);
3528 if (NILP (tmp))
3529 return Qnil;
3530 widget = Fget (tmp, Qwidget_type);
3531 }
3532 }
3533
3534 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
3535 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
3536 ARGS are passed as extra arguments to the function.
3537 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
3538 (nargs, args)
3539 int nargs;
3540 Lisp_Object *args;
3541 {
3542 /* This function can GC. */
3543 Lisp_Object newargs[3];
3544 struct gcpro gcpro1, gcpro2;
3545 Lisp_Object result;
3546
3547 newargs[0] = Fwidget_get (args[0], args[1]);
3548 newargs[1] = args[0];
3549 newargs[2] = Flist (nargs - 2, args + 2);
3550 GCPRO2 (newargs[0], newargs[2]);
3551 result = Fapply (3, newargs);
3552 UNGCPRO;
3553 return result;
3554 }
3555
3556 #ifdef HAVE_LANGINFO_CODESET
3557 #include <langinfo.h>
3558 #endif
3559
3560 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
3561 doc: /* Access locale data ITEM for the current C locale, if available.
3562 ITEM should be one of the following:
3563
3564 `codeset', returning the character set as a string (locale item CODESET);
3565
3566 `days', returning a 7-element vector of day names (locale items DAY_n);
3567
3568 `months', returning a 12-element vector of month names (locale items MON_n);
3569
3570 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
3571 both measured in milimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
3572
3573 If the system can't provide such information through a call to
3574 `nl_langinfo', or if ITEM isn't from the list above, return nil.
3575
3576 See also Info node `(libc)Locales'.
3577
3578 The data read from the system are decoded using `locale-coding-system'. */)
3579 (item)
3580 Lisp_Object item;
3581 {
3582 char *str = NULL;
3583 #ifdef HAVE_LANGINFO_CODESET
3584 Lisp_Object val;
3585 if (EQ (item, Qcodeset))
3586 {
3587 str = nl_langinfo (CODESET);
3588 return build_string (str);
3589 }
3590 #ifdef DAY_1
3591 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
3592 {
3593 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
3594 int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
3595 int i;
3596 synchronize_system_time_locale ();
3597 for (i = 0; i < 7; i++)
3598 {
3599 str = nl_langinfo (days[i]);
3600 val = make_unibyte_string (str, strlen (str));
3601 /* Fixme: Is this coding system necessarily right, even if
3602 it is consistent with CODESET? If not, what to do? */
3603 Faset (v, make_number (i),
3604 code_convert_string_norecord (val, Vlocale_coding_system,
3605 0));
3606 }
3607 return v;
3608 }
3609 #endif /* DAY_1 */
3610 #ifdef MON_1
3611 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
3612 {
3613 struct Lisp_Vector *p = allocate_vector (12);
3614 int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
3615 MON_8, MON_9, MON_10, MON_11, MON_12};
3616 int i;
3617 synchronize_system_time_locale ();
3618 for (i = 0; i < 12; i++)
3619 {
3620 str = nl_langinfo (months[i]);
3621 val = make_unibyte_string (str, strlen (str));
3622 p->contents[i] =
3623 code_convert_string_norecord (val, Vlocale_coding_system, 0);
3624 }
3625 XSETVECTOR (val, p);
3626 return val;
3627 }
3628 #endif /* MON_1 */
3629 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
3630 but is in the locale files. This could be used by ps-print. */
3631 #ifdef PAPER_WIDTH
3632 else if (EQ (item, Qpaper))
3633 {
3634 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
3635 make_number (nl_langinfo (PAPER_HEIGHT)));
3636 }
3637 #endif /* PAPER_WIDTH */
3638 #endif /* HAVE_LANGINFO_CODESET*/
3639 return Qnil;
3640 }
3641 \f
3642 /* base64 encode/decode functions (RFC 2045).
3643 Based on code from GNU recode. */
3644
3645 #define MIME_LINE_LENGTH 76
3646
3647 #define IS_ASCII(Character) \
3648 ((Character) < 128)
3649 #define IS_BASE64(Character) \
3650 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
3651 #define IS_BASE64_IGNORABLE(Character) \
3652 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
3653 || (Character) == '\f' || (Character) == '\r')
3654
3655 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
3656 character or return retval if there are no characters left to
3657 process. */
3658 #define READ_QUADRUPLET_BYTE(retval) \
3659 do \
3660 { \
3661 if (i == length) \
3662 { \
3663 if (nchars_return) \
3664 *nchars_return = nchars; \
3665 return (retval); \
3666 } \
3667 c = from[i++]; \
3668 } \
3669 while (IS_BASE64_IGNORABLE (c))
3670
3671 /* Table of characters coding the 64 values. */
3672 static char base64_value_to_char[64] =
3673 {
3674 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
3675 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
3676 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
3677 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
3678 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
3679 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
3680 '8', '9', '+', '/' /* 60-63 */
3681 };
3682
3683 /* Table of base64 values for first 128 characters. */
3684 static short base64_char_to_value[128] =
3685 {
3686 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
3687 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
3688 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
3689 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
3690 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
3691 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
3692 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
3693 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
3694 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
3695 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
3696 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
3697 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
3698 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
3699 };
3700
3701 /* The following diagram shows the logical steps by which three octets
3702 get transformed into four base64 characters.
3703
3704 .--------. .--------. .--------.
3705 |aaaaaabb| |bbbbcccc| |ccdddddd|
3706 `--------' `--------' `--------'
3707 6 2 4 4 2 6
3708 .--------+--------+--------+--------.
3709 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
3710 `--------+--------+--------+--------'
3711
3712 .--------+--------+--------+--------.
3713 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
3714 `--------+--------+--------+--------'
3715
3716 The octets are divided into 6 bit chunks, which are then encoded into
3717 base64 characters. */
3718
3719
3720 static int base64_encode_1 P_ ((const char *, char *, int, int, int));
3721 static int base64_decode_1 P_ ((const char *, char *, int, int, int *));
3722
3723 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
3724 2, 3, "r",
3725 doc: /* Base64-encode the region between BEG and END.
3726 Return the length of the encoded text.
3727 Optional third argument NO-LINE-BREAK means do not break long lines
3728 into shorter lines. */)
3729 (beg, end, no_line_break)
3730 Lisp_Object beg, end, no_line_break;
3731 {
3732 char *encoded;
3733 int allength, length;
3734 int ibeg, iend, encoded_length;
3735 int old_pos = PT;
3736 USE_SAFE_ALLOCA;
3737
3738 validate_region (&beg, &end);
3739
3740 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3741 iend = CHAR_TO_BYTE (XFASTINT (end));
3742 move_gap_both (XFASTINT (beg), ibeg);
3743
3744 /* We need to allocate enough room for encoding the text.
3745 We need 33 1/3% more space, plus a newline every 76
3746 characters, and then we round up. */
3747 length = iend - ibeg;
3748 allength = length + length/3 + 1;
3749 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3750
3751 SAFE_ALLOCA (encoded, char *, allength);
3752 encoded_length = base64_encode_1 (BYTE_POS_ADDR (ibeg), encoded, length,
3753 NILP (no_line_break),
3754 !NILP (current_buffer->enable_multibyte_characters));
3755 if (encoded_length > allength)
3756 abort ();
3757
3758 if (encoded_length < 0)
3759 {
3760 /* The encoding wasn't possible. */
3761 SAFE_FREE (allength);
3762 error ("Multibyte character in data for base64 encoding");
3763 }
3764
3765 /* Now we have encoded the region, so we insert the new contents
3766 and delete the old. (Insert first in order to preserve markers.) */
3767 SET_PT_BOTH (XFASTINT (beg), ibeg);
3768 insert (encoded, encoded_length);
3769 SAFE_FREE (allength);
3770 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3771
3772 /* If point was outside of the region, restore it exactly; else just
3773 move to the beginning of the region. */
3774 if (old_pos >= XFASTINT (end))
3775 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3776 else if (old_pos > XFASTINT (beg))
3777 old_pos = XFASTINT (beg);
3778 SET_PT (old_pos);
3779
3780 /* We return the length of the encoded text. */
3781 return make_number (encoded_length);
3782 }
3783
3784 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3785 1, 2, 0,
3786 doc: /* Base64-encode STRING and return the result.
3787 Optional second argument NO-LINE-BREAK means do not break long lines
3788 into shorter lines. */)
3789 (string, no_line_break)
3790 Lisp_Object string, no_line_break;
3791 {
3792 int allength, length, encoded_length;
3793 char *encoded;
3794 Lisp_Object encoded_string;
3795 USE_SAFE_ALLOCA;
3796
3797 CHECK_STRING (string);
3798
3799 /* We need to allocate enough room for encoding the text.
3800 We need 33 1/3% more space, plus a newline every 76
3801 characters, and then we round up. */
3802 length = SBYTES (string);
3803 allength = length + length/3 + 1;
3804 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3805
3806 /* We need to allocate enough room for decoding the text. */
3807 SAFE_ALLOCA (encoded, char *, allength);
3808
3809 encoded_length = base64_encode_1 (SDATA (string),
3810 encoded, length, NILP (no_line_break),
3811 STRING_MULTIBYTE (string));
3812 if (encoded_length > allength)
3813 abort ();
3814
3815 if (encoded_length < 0)
3816 {
3817 /* The encoding wasn't possible. */
3818 SAFE_FREE (allength);
3819 error ("Multibyte character in data for base64 encoding");
3820 }
3821
3822 encoded_string = make_unibyte_string (encoded, encoded_length);
3823 SAFE_FREE (allength);
3824
3825 return encoded_string;
3826 }
3827
3828 static int
3829 base64_encode_1 (from, to, length, line_break, multibyte)
3830 const char *from;
3831 char *to;
3832 int length;
3833 int line_break;
3834 int multibyte;
3835 {
3836 int counter = 0, i = 0;
3837 char *e = to;
3838 int c;
3839 unsigned int value;
3840 int bytes;
3841
3842 while (i < length)
3843 {
3844 if (multibyte)
3845 {
3846 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3847 if (c >= 256)
3848 return -1;
3849 i += bytes;
3850 }
3851 else
3852 c = from[i++];
3853
3854 /* Wrap line every 76 characters. */
3855
3856 if (line_break)
3857 {
3858 if (counter < MIME_LINE_LENGTH / 4)
3859 counter++;
3860 else
3861 {
3862 *e++ = '\n';
3863 counter = 1;
3864 }
3865 }
3866
3867 /* Process first byte of a triplet. */
3868
3869 *e++ = base64_value_to_char[0x3f & c >> 2];
3870 value = (0x03 & c) << 4;
3871
3872 /* Process second byte of a triplet. */
3873
3874 if (i == length)
3875 {
3876 *e++ = base64_value_to_char[value];
3877 *e++ = '=';
3878 *e++ = '=';
3879 break;
3880 }
3881
3882 if (multibyte)
3883 {
3884 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3885 if (c >= 256)
3886 return -1;
3887 i += bytes;
3888 }
3889 else
3890 c = from[i++];
3891
3892 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3893 value = (0x0f & c) << 2;
3894
3895 /* Process third byte of a triplet. */
3896
3897 if (i == length)
3898 {
3899 *e++ = base64_value_to_char[value];
3900 *e++ = '=';
3901 break;
3902 }
3903
3904 if (multibyte)
3905 {
3906 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3907 if (c >= 256)
3908 return -1;
3909 i += bytes;
3910 }
3911 else
3912 c = from[i++];
3913
3914 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3915 *e++ = base64_value_to_char[0x3f & c];
3916 }
3917
3918 return e - to;
3919 }
3920
3921
3922 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3923 2, 2, "r",
3924 doc: /* Base64-decode the region between BEG and END.
3925 Return the length of the decoded text.
3926 If the region can't be decoded, signal an error and don't modify the buffer. */)
3927 (beg, end)
3928 Lisp_Object beg, end;
3929 {
3930 int ibeg, iend, length, allength;
3931 char *decoded;
3932 int old_pos = PT;
3933 int decoded_length;
3934 int inserted_chars;
3935 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
3936 USE_SAFE_ALLOCA;
3937
3938 validate_region (&beg, &end);
3939
3940 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3941 iend = CHAR_TO_BYTE (XFASTINT (end));
3942
3943 length = iend - ibeg;
3944
3945 /* We need to allocate enough room for decoding the text. If we are
3946 working on a multibyte buffer, each decoded code may occupy at
3947 most two bytes. */
3948 allength = multibyte ? length * 2 : length;
3949 SAFE_ALLOCA (decoded, char *, allength);
3950
3951 move_gap_both (XFASTINT (beg), ibeg);
3952 decoded_length = base64_decode_1 (BYTE_POS_ADDR (ibeg), decoded, length,
3953 multibyte, &inserted_chars);
3954 if (decoded_length > allength)
3955 abort ();
3956
3957 if (decoded_length < 0)
3958 {
3959 /* The decoding wasn't possible. */
3960 SAFE_FREE (allength);
3961 error ("Invalid base64 data");
3962 }
3963
3964 /* Now we have decoded the region, so we insert the new contents
3965 and delete the old. (Insert first in order to preserve markers.) */
3966 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3967 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3968 SAFE_FREE (allength);
3969
3970 /* Delete the original text. */
3971 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3972 iend + decoded_length, 1);
3973
3974 /* If point was outside of the region, restore it exactly; else just
3975 move to the beginning of the region. */
3976 if (old_pos >= XFASTINT (end))
3977 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3978 else if (old_pos > XFASTINT (beg))
3979 old_pos = XFASTINT (beg);
3980 SET_PT (old_pos > ZV ? ZV : old_pos);
3981
3982 return make_number (inserted_chars);
3983 }
3984
3985 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3986 1, 1, 0,
3987 doc: /* Base64-decode STRING and return the result. */)
3988 (string)
3989 Lisp_Object string;
3990 {
3991 char *decoded;
3992 int length, decoded_length;
3993 Lisp_Object decoded_string;
3994 USE_SAFE_ALLOCA;
3995
3996 CHECK_STRING (string);
3997
3998 length = SBYTES (string);
3999 /* We need to allocate enough room for decoding the text. */
4000 SAFE_ALLOCA (decoded, char *, length);
4001
4002 /* The decoded result should be unibyte. */
4003 decoded_length = base64_decode_1 (SDATA (string), decoded, length,
4004 0, NULL);
4005 if (decoded_length > length)
4006 abort ();
4007 else if (decoded_length >= 0)
4008 decoded_string = make_unibyte_string (decoded, decoded_length);
4009 else
4010 decoded_string = Qnil;
4011
4012 SAFE_FREE (length);
4013 if (!STRINGP (decoded_string))
4014 error ("Invalid base64 data");
4015
4016 return decoded_string;
4017 }
4018
4019 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
4020 MULTIBYTE is nonzero, the decoded result should be in multibyte
4021 form. If NCHARS_RETRUN is not NULL, store the number of produced
4022 characters in *NCHARS_RETURN. */
4023
4024 static int
4025 base64_decode_1 (from, to, length, multibyte, nchars_return)
4026 const char *from;
4027 char *to;
4028 int length;
4029 int multibyte;
4030 int *nchars_return;
4031 {
4032 int i = 0;
4033 char *e = to;
4034 unsigned char c;
4035 unsigned long value;
4036 int nchars = 0;
4037
4038 while (1)
4039 {
4040 /* Process first byte of a quadruplet. */
4041
4042 READ_QUADRUPLET_BYTE (e-to);
4043
4044 if (!IS_BASE64 (c))
4045 return -1;
4046 value = base64_char_to_value[c] << 18;
4047
4048 /* Process second byte of a quadruplet. */
4049
4050 READ_QUADRUPLET_BYTE (-1);
4051
4052 if (!IS_BASE64 (c))
4053 return -1;
4054 value |= base64_char_to_value[c] << 12;
4055
4056 c = (unsigned char) (value >> 16);
4057 if (multibyte)
4058 e += CHAR_STRING (c, e);
4059 else
4060 *e++ = c;
4061 nchars++;
4062
4063 /* Process third byte of a quadruplet. */
4064
4065 READ_QUADRUPLET_BYTE (-1);
4066
4067 if (c == '=')
4068 {
4069 READ_QUADRUPLET_BYTE (-1);
4070
4071 if (c != '=')
4072 return -1;
4073 continue;
4074 }
4075
4076 if (!IS_BASE64 (c))
4077 return -1;
4078 value |= base64_char_to_value[c] << 6;
4079
4080 c = (unsigned char) (0xff & value >> 8);
4081 if (multibyte)
4082 e += CHAR_STRING (c, e);
4083 else
4084 *e++ = c;
4085 nchars++;
4086
4087 /* Process fourth byte of a quadruplet. */
4088
4089 READ_QUADRUPLET_BYTE (-1);
4090
4091 if (c == '=')
4092 continue;
4093
4094 if (!IS_BASE64 (c))
4095 return -1;
4096 value |= base64_char_to_value[c];
4097
4098 c = (unsigned char) (0xff & value);
4099 if (multibyte)
4100 e += CHAR_STRING (c, e);
4101 else
4102 *e++ = c;
4103 nchars++;
4104 }
4105 }
4106
4107
4108 \f
4109 /***********************************************************************
4110 ***** *****
4111 ***** Hash Tables *****
4112 ***** *****
4113 ***********************************************************************/
4114
4115 /* Implemented by gerd@gnu.org. This hash table implementation was
4116 inspired by CMUCL hash tables. */
4117
4118 /* Ideas:
4119
4120 1. For small tables, association lists are probably faster than
4121 hash tables because they have lower overhead.
4122
4123 For uses of hash tables where the O(1) behavior of table
4124 operations is not a requirement, it might therefore be a good idea
4125 not to hash. Instead, we could just do a linear search in the
4126 key_and_value vector of the hash table. This could be done
4127 if a `:linear-search t' argument is given to make-hash-table. */
4128
4129
4130 /* The list of all weak hash tables. Don't staticpro this one. */
4131
4132 Lisp_Object Vweak_hash_tables;
4133
4134 /* Various symbols. */
4135
4136 Lisp_Object Qhash_table_p, Qeq, Qeql, Qequal, Qkey, Qvalue;
4137 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
4138 Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
4139
4140 /* Function prototypes. */
4141
4142 static struct Lisp_Hash_Table *check_hash_table P_ ((Lisp_Object));
4143 static int get_key_arg P_ ((Lisp_Object, int, Lisp_Object *, char *));
4144 static void maybe_resize_hash_table P_ ((struct Lisp_Hash_Table *));
4145 static int cmpfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
4146 Lisp_Object, unsigned));
4147 static int cmpfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
4148 Lisp_Object, unsigned));
4149 static int cmpfn_user_defined P_ ((struct Lisp_Hash_Table *, Lisp_Object,
4150 unsigned, Lisp_Object, unsigned));
4151 static unsigned hashfn_eq P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4152 static unsigned hashfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4153 static unsigned hashfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4154 static unsigned hashfn_user_defined P_ ((struct Lisp_Hash_Table *,
4155 Lisp_Object));
4156 static unsigned sxhash_string P_ ((unsigned char *, int));
4157 static unsigned sxhash_list P_ ((Lisp_Object, int));
4158 static unsigned sxhash_vector P_ ((Lisp_Object, int));
4159 static unsigned sxhash_bool_vector P_ ((Lisp_Object));
4160 static int sweep_weak_table P_ ((struct Lisp_Hash_Table *, int));
4161
4162
4163 \f
4164 /***********************************************************************
4165 Utilities
4166 ***********************************************************************/
4167
4168 /* If OBJ is a Lisp hash table, return a pointer to its struct
4169 Lisp_Hash_Table. Otherwise, signal an error. */
4170
4171 static struct Lisp_Hash_Table *
4172 check_hash_table (obj)
4173 Lisp_Object obj;
4174 {
4175 CHECK_HASH_TABLE (obj);
4176 return XHASH_TABLE (obj);
4177 }
4178
4179
4180 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
4181 number. */
4182
4183 int
4184 next_almost_prime (n)
4185 int n;
4186 {
4187 if (n % 2 == 0)
4188 n += 1;
4189 if (n % 3 == 0)
4190 n += 2;
4191 if (n % 7 == 0)
4192 n += 4;
4193 return n;
4194 }
4195
4196
4197 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
4198 which USED[I] is non-zero. If found at index I in ARGS, set
4199 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
4200 -1. This function is used to extract a keyword/argument pair from
4201 a DEFUN parameter list. */
4202
4203 static int
4204 get_key_arg (key, nargs, args, used)
4205 Lisp_Object key;
4206 int nargs;
4207 Lisp_Object *args;
4208 char *used;
4209 {
4210 int i;
4211
4212 for (i = 0; i < nargs - 1; ++i)
4213 if (!used[i] && EQ (args[i], key))
4214 break;
4215
4216 if (i >= nargs - 1)
4217 i = -1;
4218 else
4219 {
4220 used[i++] = 1;
4221 used[i] = 1;
4222 }
4223
4224 return i;
4225 }
4226
4227
4228 /* Return a Lisp vector which has the same contents as VEC but has
4229 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
4230 vector that are not copied from VEC are set to INIT. */
4231
4232 Lisp_Object
4233 larger_vector (vec, new_size, init)
4234 Lisp_Object vec;
4235 int new_size;
4236 Lisp_Object init;
4237 {
4238 struct Lisp_Vector *v;
4239 int i, old_size;
4240
4241 xassert (VECTORP (vec));
4242 old_size = XVECTOR (vec)->size;
4243 xassert (new_size >= old_size);
4244
4245 v = allocate_vector (new_size);
4246 bcopy (XVECTOR (vec)->contents, v->contents,
4247 old_size * sizeof *v->contents);
4248 for (i = old_size; i < new_size; ++i)
4249 v->contents[i] = init;
4250 XSETVECTOR (vec, v);
4251 return vec;
4252 }
4253
4254
4255 /***********************************************************************
4256 Low-level Functions
4257 ***********************************************************************/
4258
4259 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
4260 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
4261 KEY2 are the same. */
4262
4263 static int
4264 cmpfn_eql (h, key1, hash1, key2, hash2)
4265 struct Lisp_Hash_Table *h;
4266 Lisp_Object key1, key2;
4267 unsigned hash1, hash2;
4268 {
4269 return (FLOATP (key1)
4270 && FLOATP (key2)
4271 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
4272 }
4273
4274
4275 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
4276 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
4277 KEY2 are the same. */
4278
4279 static int
4280 cmpfn_equal (h, key1, hash1, key2, hash2)
4281 struct Lisp_Hash_Table *h;
4282 Lisp_Object key1, key2;
4283 unsigned hash1, hash2;
4284 {
4285 return hash1 == hash2 && !NILP (Fequal (key1, key2));
4286 }
4287
4288
4289 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
4290 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
4291 if KEY1 and KEY2 are the same. */
4292
4293 static int
4294 cmpfn_user_defined (h, key1, hash1, key2, hash2)
4295 struct Lisp_Hash_Table *h;
4296 Lisp_Object key1, key2;
4297 unsigned hash1, hash2;
4298 {
4299 if (hash1 == hash2)
4300 {
4301 Lisp_Object args[3];
4302
4303 args[0] = h->user_cmp_function;
4304 args[1] = key1;
4305 args[2] = key2;
4306 return !NILP (Ffuncall (3, args));
4307 }
4308 else
4309 return 0;
4310 }
4311
4312
4313 /* Value is a hash code for KEY for use in hash table H which uses
4314 `eq' to compare keys. The hash code returned is guaranteed to fit
4315 in a Lisp integer. */
4316
4317 static unsigned
4318 hashfn_eq (h, key)
4319 struct Lisp_Hash_Table *h;
4320 Lisp_Object key;
4321 {
4322 unsigned hash = XUINT (key) ^ XGCTYPE (key);
4323 xassert ((hash & ~INTMASK) == 0);
4324 return hash;
4325 }
4326
4327
4328 /* Value is a hash code for KEY for use in hash table H which uses
4329 `eql' to compare keys. The hash code returned is guaranteed to fit
4330 in a Lisp integer. */
4331
4332 static unsigned
4333 hashfn_eql (h, key)
4334 struct Lisp_Hash_Table *h;
4335 Lisp_Object key;
4336 {
4337 unsigned hash;
4338 if (FLOATP (key))
4339 hash = sxhash (key, 0);
4340 else
4341 hash = XUINT (key) ^ XGCTYPE (key);
4342 xassert ((hash & ~INTMASK) == 0);
4343 return hash;
4344 }
4345
4346
4347 /* Value is a hash code for KEY for use in hash table H which uses
4348 `equal' to compare keys. The hash code returned is guaranteed to fit
4349 in a Lisp integer. */
4350
4351 static unsigned
4352 hashfn_equal (h, key)
4353 struct Lisp_Hash_Table *h;
4354 Lisp_Object key;
4355 {
4356 unsigned hash = sxhash (key, 0);
4357 xassert ((hash & ~INTMASK) == 0);
4358 return hash;
4359 }
4360
4361
4362 /* Value is a hash code for KEY for use in hash table H which uses as
4363 user-defined function to compare keys. The hash code returned is
4364 guaranteed to fit in a Lisp integer. */
4365
4366 static unsigned
4367 hashfn_user_defined (h, key)
4368 struct Lisp_Hash_Table *h;
4369 Lisp_Object key;
4370 {
4371 Lisp_Object args[2], hash;
4372
4373 args[0] = h->user_hash_function;
4374 args[1] = key;
4375 hash = Ffuncall (2, args);
4376 if (!INTEGERP (hash))
4377 Fsignal (Qerror,
4378 list2 (build_string ("Invalid hash code returned from \
4379 user-supplied hash function"),
4380 hash));
4381 return XUINT (hash);
4382 }
4383
4384
4385 /* Create and initialize a new hash table.
4386
4387 TEST specifies the test the hash table will use to compare keys.
4388 It must be either one of the predefined tests `eq', `eql' or
4389 `equal' or a symbol denoting a user-defined test named TEST with
4390 test and hash functions USER_TEST and USER_HASH.
4391
4392 Give the table initial capacity SIZE, SIZE >= 0, an integer.
4393
4394 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
4395 new size when it becomes full is computed by adding REHASH_SIZE to
4396 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
4397 table's new size is computed by multiplying its old size with
4398 REHASH_SIZE.
4399
4400 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
4401 be resized when the ratio of (number of entries in the table) /
4402 (table size) is >= REHASH_THRESHOLD.
4403
4404 WEAK specifies the weakness of the table. If non-nil, it must be
4405 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
4406
4407 Lisp_Object
4408 make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4409 user_test, user_hash)
4410 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4411 Lisp_Object user_test, user_hash;
4412 {
4413 struct Lisp_Hash_Table *h;
4414 Lisp_Object table;
4415 int index_size, i, sz;
4416
4417 /* Preconditions. */
4418 xassert (SYMBOLP (test));
4419 xassert (INTEGERP (size) && XINT (size) >= 0);
4420 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
4421 || (FLOATP (rehash_size) && XFLOATINT (rehash_size) > 1.0));
4422 xassert (FLOATP (rehash_threshold)
4423 && XFLOATINT (rehash_threshold) > 0
4424 && XFLOATINT (rehash_threshold) <= 1.0);
4425
4426 if (XFASTINT (size) == 0)
4427 size = make_number (1);
4428
4429 /* Allocate a table and initialize it. */
4430 h = allocate_hash_table ();
4431
4432 /* Initialize hash table slots. */
4433 sz = XFASTINT (size);
4434
4435 h->test = test;
4436 if (EQ (test, Qeql))
4437 {
4438 h->cmpfn = cmpfn_eql;
4439 h->hashfn = hashfn_eql;
4440 }
4441 else if (EQ (test, Qeq))
4442 {
4443 h->cmpfn = NULL;
4444 h->hashfn = hashfn_eq;
4445 }
4446 else if (EQ (test, Qequal))
4447 {
4448 h->cmpfn = cmpfn_equal;
4449 h->hashfn = hashfn_equal;
4450 }
4451 else
4452 {
4453 h->user_cmp_function = user_test;
4454 h->user_hash_function = user_hash;
4455 h->cmpfn = cmpfn_user_defined;
4456 h->hashfn = hashfn_user_defined;
4457 }
4458
4459 h->weak = weak;
4460 h->rehash_threshold = rehash_threshold;
4461 h->rehash_size = rehash_size;
4462 h->count = make_number (0);
4463 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
4464 h->hash = Fmake_vector (size, Qnil);
4465 h->next = Fmake_vector (size, Qnil);
4466 /* Cast to int here avoids losing with gcc 2.95 on Tru64/Alpha... */
4467 index_size = next_almost_prime ((int) (sz / XFLOATINT (rehash_threshold)));
4468 h->index = Fmake_vector (make_number (index_size), Qnil);
4469
4470 /* Set up the free list. */
4471 for (i = 0; i < sz - 1; ++i)
4472 HASH_NEXT (h, i) = make_number (i + 1);
4473 h->next_free = make_number (0);
4474
4475 XSET_HASH_TABLE (table, h);
4476 xassert (HASH_TABLE_P (table));
4477 xassert (XHASH_TABLE (table) == h);
4478
4479 /* Maybe add this hash table to the list of all weak hash tables. */
4480 if (NILP (h->weak))
4481 h->next_weak = Qnil;
4482 else
4483 {
4484 h->next_weak = Vweak_hash_tables;
4485 Vweak_hash_tables = table;
4486 }
4487
4488 return table;
4489 }
4490
4491
4492 /* Return a copy of hash table H1. Keys and values are not copied,
4493 only the table itself is. */
4494
4495 Lisp_Object
4496 copy_hash_table (h1)
4497 struct Lisp_Hash_Table *h1;
4498 {
4499 Lisp_Object table;
4500 struct Lisp_Hash_Table *h2;
4501 struct Lisp_Vector *next;
4502
4503 h2 = allocate_hash_table ();
4504 next = h2->vec_next;
4505 bcopy (h1, h2, sizeof *h2);
4506 h2->vec_next = next;
4507 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
4508 h2->hash = Fcopy_sequence (h1->hash);
4509 h2->next = Fcopy_sequence (h1->next);
4510 h2->index = Fcopy_sequence (h1->index);
4511 XSET_HASH_TABLE (table, h2);
4512
4513 /* Maybe add this hash table to the list of all weak hash tables. */
4514 if (!NILP (h2->weak))
4515 {
4516 h2->next_weak = Vweak_hash_tables;
4517 Vweak_hash_tables = table;
4518 }
4519
4520 return table;
4521 }
4522
4523
4524 /* Resize hash table H if it's too full. If H cannot be resized
4525 because it's already too large, throw an error. */
4526
4527 static INLINE void
4528 maybe_resize_hash_table (h)
4529 struct Lisp_Hash_Table *h;
4530 {
4531 if (NILP (h->next_free))
4532 {
4533 int old_size = HASH_TABLE_SIZE (h);
4534 int i, new_size, index_size;
4535
4536 if (INTEGERP (h->rehash_size))
4537 new_size = old_size + XFASTINT (h->rehash_size);
4538 else
4539 new_size = old_size * XFLOATINT (h->rehash_size);
4540 new_size = max (old_size + 1, new_size);
4541 index_size = next_almost_prime ((int)
4542 (new_size
4543 / XFLOATINT (h->rehash_threshold)));
4544 if (max (index_size, 2 * new_size) > MOST_POSITIVE_FIXNUM)
4545 error ("Hash table too large to resize");
4546
4547 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
4548 h->next = larger_vector (h->next, new_size, Qnil);
4549 h->hash = larger_vector (h->hash, new_size, Qnil);
4550 h->index = Fmake_vector (make_number (index_size), Qnil);
4551
4552 /* Update the free list. Do it so that new entries are added at
4553 the end of the free list. This makes some operations like
4554 maphash faster. */
4555 for (i = old_size; i < new_size - 1; ++i)
4556 HASH_NEXT (h, i) = make_number (i + 1);
4557
4558 if (!NILP (h->next_free))
4559 {
4560 Lisp_Object last, next;
4561
4562 last = h->next_free;
4563 while (next = HASH_NEXT (h, XFASTINT (last)),
4564 !NILP (next))
4565 last = next;
4566
4567 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
4568 }
4569 else
4570 XSETFASTINT (h->next_free, old_size);
4571
4572 /* Rehash. */
4573 for (i = 0; i < old_size; ++i)
4574 if (!NILP (HASH_HASH (h, i)))
4575 {
4576 unsigned hash_code = XUINT (HASH_HASH (h, i));
4577 int start_of_bucket = hash_code % XVECTOR (h->index)->size;
4578 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4579 HASH_INDEX (h, start_of_bucket) = make_number (i);
4580 }
4581 }
4582 }
4583
4584
4585 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
4586 the hash code of KEY. Value is the index of the entry in H
4587 matching KEY, or -1 if not found. */
4588
4589 int
4590 hash_lookup (h, key, hash)
4591 struct Lisp_Hash_Table *h;
4592 Lisp_Object key;
4593 unsigned *hash;
4594 {
4595 unsigned hash_code;
4596 int start_of_bucket;
4597 Lisp_Object idx;
4598
4599 hash_code = h->hashfn (h, key);
4600 if (hash)
4601 *hash = hash_code;
4602
4603 start_of_bucket = hash_code % XVECTOR (h->index)->size;
4604 idx = HASH_INDEX (h, start_of_bucket);
4605
4606 /* We need not gcpro idx since it's either an integer or nil. */
4607 while (!NILP (idx))
4608 {
4609 int i = XFASTINT (idx);
4610 if (EQ (key, HASH_KEY (h, i))
4611 || (h->cmpfn
4612 && h->cmpfn (h, key, hash_code,
4613 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4614 break;
4615 idx = HASH_NEXT (h, i);
4616 }
4617
4618 return NILP (idx) ? -1 : XFASTINT (idx);
4619 }
4620
4621
4622 /* Put an entry into hash table H that associates KEY with VALUE.
4623 HASH is a previously computed hash code of KEY.
4624 Value is the index of the entry in H matching KEY. */
4625
4626 int
4627 hash_put (h, key, value, hash)
4628 struct Lisp_Hash_Table *h;
4629 Lisp_Object key, value;
4630 unsigned hash;
4631 {
4632 int start_of_bucket, i;
4633
4634 xassert ((hash & ~INTMASK) == 0);
4635
4636 /* Increment count after resizing because resizing may fail. */
4637 maybe_resize_hash_table (h);
4638 h->count = make_number (XFASTINT (h->count) + 1);
4639
4640 /* Store key/value in the key_and_value vector. */
4641 i = XFASTINT (h->next_free);
4642 h->next_free = HASH_NEXT (h, i);
4643 HASH_KEY (h, i) = key;
4644 HASH_VALUE (h, i) = value;
4645
4646 /* Remember its hash code. */
4647 HASH_HASH (h, i) = make_number (hash);
4648
4649 /* Add new entry to its collision chain. */
4650 start_of_bucket = hash % XVECTOR (h->index)->size;
4651 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4652 HASH_INDEX (h, start_of_bucket) = make_number (i);
4653 return i;
4654 }
4655
4656
4657 /* Remove the entry matching KEY from hash table H, if there is one. */
4658
4659 void
4660 hash_remove (h, key)
4661 struct Lisp_Hash_Table *h;
4662 Lisp_Object key;
4663 {
4664 unsigned hash_code;
4665 int start_of_bucket;
4666 Lisp_Object idx, prev;
4667
4668 hash_code = h->hashfn (h, key);
4669 start_of_bucket = hash_code % XVECTOR (h->index)->size;
4670 idx = HASH_INDEX (h, start_of_bucket);
4671 prev = Qnil;
4672
4673 /* We need not gcpro idx, prev since they're either integers or nil. */
4674 while (!NILP (idx))
4675 {
4676 int i = XFASTINT (idx);
4677
4678 if (EQ (key, HASH_KEY (h, i))
4679 || (h->cmpfn
4680 && h->cmpfn (h, key, hash_code,
4681 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4682 {
4683 /* Take entry out of collision chain. */
4684 if (NILP (prev))
4685 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
4686 else
4687 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
4688
4689 /* Clear slots in key_and_value and add the slots to
4690 the free list. */
4691 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
4692 HASH_NEXT (h, i) = h->next_free;
4693 h->next_free = make_number (i);
4694 h->count = make_number (XFASTINT (h->count) - 1);
4695 xassert (XINT (h->count) >= 0);
4696 break;
4697 }
4698 else
4699 {
4700 prev = idx;
4701 idx = HASH_NEXT (h, i);
4702 }
4703 }
4704 }
4705
4706
4707 /* Clear hash table H. */
4708
4709 void
4710 hash_clear (h)
4711 struct Lisp_Hash_Table *h;
4712 {
4713 if (XFASTINT (h->count) > 0)
4714 {
4715 int i, size = HASH_TABLE_SIZE (h);
4716
4717 for (i = 0; i < size; ++i)
4718 {
4719 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
4720 HASH_KEY (h, i) = Qnil;
4721 HASH_VALUE (h, i) = Qnil;
4722 HASH_HASH (h, i) = Qnil;
4723 }
4724
4725 for (i = 0; i < XVECTOR (h->index)->size; ++i)
4726 XVECTOR (h->index)->contents[i] = Qnil;
4727
4728 h->next_free = make_number (0);
4729 h->count = make_number (0);
4730 }
4731 }
4732
4733
4734 \f
4735 /************************************************************************
4736 Weak Hash Tables
4737 ************************************************************************/
4738
4739 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
4740 entries from the table that don't survive the current GC.
4741 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
4742 non-zero if anything was marked. */
4743
4744 static int
4745 sweep_weak_table (h, remove_entries_p)
4746 struct Lisp_Hash_Table *h;
4747 int remove_entries_p;
4748 {
4749 int bucket, n, marked;
4750
4751 n = XVECTOR (h->index)->size & ~ARRAY_MARK_FLAG;
4752 marked = 0;
4753
4754 for (bucket = 0; bucket < n; ++bucket)
4755 {
4756 Lisp_Object idx, next, prev;
4757
4758 /* Follow collision chain, removing entries that
4759 don't survive this garbage collection. */
4760 prev = Qnil;
4761 for (idx = HASH_INDEX (h, bucket); !GC_NILP (idx); idx = next)
4762 {
4763 int i = XFASTINT (idx);
4764 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
4765 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
4766 int remove_p;
4767
4768 if (EQ (h->weak, Qkey))
4769 remove_p = !key_known_to_survive_p;
4770 else if (EQ (h->weak, Qvalue))
4771 remove_p = !value_known_to_survive_p;
4772 else if (EQ (h->weak, Qkey_or_value))
4773 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
4774 else if (EQ (h->weak, Qkey_and_value))
4775 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
4776 else
4777 abort ();
4778
4779 next = HASH_NEXT (h, i);
4780
4781 if (remove_entries_p)
4782 {
4783 if (remove_p)
4784 {
4785 /* Take out of collision chain. */
4786 if (GC_NILP (prev))
4787 HASH_INDEX (h, bucket) = next;
4788 else
4789 HASH_NEXT (h, XFASTINT (prev)) = next;
4790
4791 /* Add to free list. */
4792 HASH_NEXT (h, i) = h->next_free;
4793 h->next_free = idx;
4794
4795 /* Clear key, value, and hash. */
4796 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
4797 HASH_HASH (h, i) = Qnil;
4798
4799 h->count = make_number (XFASTINT (h->count) - 1);
4800 }
4801 }
4802 else
4803 {
4804 if (!remove_p)
4805 {
4806 /* Make sure key and value survive. */
4807 if (!key_known_to_survive_p)
4808 {
4809 mark_object (HASH_KEY (h, i));
4810 marked = 1;
4811 }
4812
4813 if (!value_known_to_survive_p)
4814 {
4815 mark_object (HASH_VALUE (h, i));
4816 marked = 1;
4817 }
4818 }
4819 }
4820 }
4821 }
4822
4823 return marked;
4824 }
4825
4826 /* Remove elements from weak hash tables that don't survive the
4827 current garbage collection. Remove weak tables that don't survive
4828 from Vweak_hash_tables. Called from gc_sweep. */
4829
4830 void
4831 sweep_weak_hash_tables ()
4832 {
4833 Lisp_Object table, used, next;
4834 struct Lisp_Hash_Table *h;
4835 int marked;
4836
4837 /* Mark all keys and values that are in use. Keep on marking until
4838 there is no more change. This is necessary for cases like
4839 value-weak table A containing an entry X -> Y, where Y is used in a
4840 key-weak table B, Z -> Y. If B comes after A in the list of weak
4841 tables, X -> Y might be removed from A, although when looking at B
4842 one finds that it shouldn't. */
4843 do
4844 {
4845 marked = 0;
4846 for (table = Vweak_hash_tables; !GC_NILP (table); table = h->next_weak)
4847 {
4848 h = XHASH_TABLE (table);
4849 if (h->size & ARRAY_MARK_FLAG)
4850 marked |= sweep_weak_table (h, 0);
4851 }
4852 }
4853 while (marked);
4854
4855 /* Remove tables and entries that aren't used. */
4856 for (table = Vweak_hash_tables, used = Qnil; !GC_NILP (table); table = next)
4857 {
4858 h = XHASH_TABLE (table);
4859 next = h->next_weak;
4860
4861 if (h->size & ARRAY_MARK_FLAG)
4862 {
4863 /* TABLE is marked as used. Sweep its contents. */
4864 if (XFASTINT (h->count) > 0)
4865 sweep_weak_table (h, 1);
4866
4867 /* Add table to the list of used weak hash tables. */
4868 h->next_weak = used;
4869 used = table;
4870 }
4871 }
4872
4873 Vweak_hash_tables = used;
4874 }
4875
4876
4877 \f
4878 /***********************************************************************
4879 Hash Code Computation
4880 ***********************************************************************/
4881
4882 /* Maximum depth up to which to dive into Lisp structures. */
4883
4884 #define SXHASH_MAX_DEPTH 3
4885
4886 /* Maximum length up to which to take list and vector elements into
4887 account. */
4888
4889 #define SXHASH_MAX_LEN 7
4890
4891 /* Combine two integers X and Y for hashing. */
4892
4893 #define SXHASH_COMBINE(X, Y) \
4894 ((((unsigned)(X) << 4) + (((unsigned)(X) >> 24) & 0x0fffffff)) \
4895 + (unsigned)(Y))
4896
4897
4898 /* Return a hash for string PTR which has length LEN. The hash
4899 code returned is guaranteed to fit in a Lisp integer. */
4900
4901 static unsigned
4902 sxhash_string (ptr, len)
4903 unsigned char *ptr;
4904 int len;
4905 {
4906 unsigned char *p = ptr;
4907 unsigned char *end = p + len;
4908 unsigned char c;
4909 unsigned hash = 0;
4910
4911 while (p != end)
4912 {
4913 c = *p++;
4914 if (c >= 0140)
4915 c -= 40;
4916 hash = ((hash << 3) + (hash >> 28) + c);
4917 }
4918
4919 return hash & INTMASK;
4920 }
4921
4922
4923 /* Return a hash for list LIST. DEPTH is the current depth in the
4924 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4925
4926 static unsigned
4927 sxhash_list (list, depth)
4928 Lisp_Object list;
4929 int depth;
4930 {
4931 unsigned hash = 0;
4932 int i;
4933
4934 if (depth < SXHASH_MAX_DEPTH)
4935 for (i = 0;
4936 CONSP (list) && i < SXHASH_MAX_LEN;
4937 list = XCDR (list), ++i)
4938 {
4939 unsigned hash2 = sxhash (XCAR (list), depth + 1);
4940 hash = SXHASH_COMBINE (hash, hash2);
4941 }
4942
4943 return hash;
4944 }
4945
4946
4947 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4948 the Lisp structure. */
4949
4950 static unsigned
4951 sxhash_vector (vec, depth)
4952 Lisp_Object vec;
4953 int depth;
4954 {
4955 unsigned hash = XVECTOR (vec)->size;
4956 int i, n;
4957
4958 n = min (SXHASH_MAX_LEN, XVECTOR (vec)->size);
4959 for (i = 0; i < n; ++i)
4960 {
4961 unsigned hash2 = sxhash (XVECTOR (vec)->contents[i], depth + 1);
4962 hash = SXHASH_COMBINE (hash, hash2);
4963 }
4964
4965 return hash;
4966 }
4967
4968
4969 /* Return a hash for bool-vector VECTOR. */
4970
4971 static unsigned
4972 sxhash_bool_vector (vec)
4973 Lisp_Object vec;
4974 {
4975 unsigned hash = XBOOL_VECTOR (vec)->size;
4976 int i, n;
4977
4978 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->vector_size);
4979 for (i = 0; i < n; ++i)
4980 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4981
4982 return hash;
4983 }
4984
4985
4986 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4987 structure. Value is an unsigned integer clipped to INTMASK. */
4988
4989 unsigned
4990 sxhash (obj, depth)
4991 Lisp_Object obj;
4992 int depth;
4993 {
4994 unsigned hash;
4995
4996 if (depth > SXHASH_MAX_DEPTH)
4997 return 0;
4998
4999 switch (XTYPE (obj))
5000 {
5001 case Lisp_Int:
5002 hash = XUINT (obj);
5003 break;
5004
5005 case Lisp_Symbol:
5006 hash = sxhash_string (SDATA (SYMBOL_NAME (obj)),
5007 SCHARS (SYMBOL_NAME (obj)));
5008 break;
5009
5010 case Lisp_Misc:
5011 hash = XUINT (obj);
5012 break;
5013
5014 case Lisp_String:
5015 hash = sxhash_string (SDATA (obj), SCHARS (obj));
5016 break;
5017
5018 /* This can be everything from a vector to an overlay. */
5019 case Lisp_Vectorlike:
5020 if (VECTORP (obj))
5021 /* According to the CL HyperSpec, two arrays are equal only if
5022 they are `eq', except for strings and bit-vectors. In
5023 Emacs, this works differently. We have to compare element
5024 by element. */
5025 hash = sxhash_vector (obj, depth);
5026 else if (BOOL_VECTOR_P (obj))
5027 hash = sxhash_bool_vector (obj);
5028 else
5029 /* Others are `equal' if they are `eq', so let's take their
5030 address as hash. */
5031 hash = XUINT (obj);
5032 break;
5033
5034 case Lisp_Cons:
5035 hash = sxhash_list (obj, depth);
5036 break;
5037
5038 case Lisp_Float:
5039 {
5040 unsigned char *p = (unsigned char *) &XFLOAT_DATA (obj);
5041 unsigned char *e = p + sizeof XFLOAT_DATA (obj);
5042 for (hash = 0; p < e; ++p)
5043 hash = SXHASH_COMBINE (hash, *p);
5044 break;
5045 }
5046
5047 default:
5048 abort ();
5049 }
5050
5051 return hash & INTMASK;
5052 }
5053
5054
5055 \f
5056 /***********************************************************************
5057 Lisp Interface
5058 ***********************************************************************/
5059
5060
5061 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
5062 doc: /* Compute a hash code for OBJ and return it as integer. */)
5063 (obj)
5064 Lisp_Object obj;
5065 {
5066 unsigned hash = sxhash (obj, 0);;
5067 return make_number (hash);
5068 }
5069
5070
5071 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
5072 doc: /* Create and return a new hash table.
5073
5074 Arguments are specified as keyword/argument pairs. The following
5075 arguments are defined:
5076
5077 :test TEST -- TEST must be a symbol that specifies how to compare
5078 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
5079 `equal'. User-supplied test and hash functions can be specified via
5080 `define-hash-table-test'.
5081
5082 :size SIZE -- A hint as to how many elements will be put in the table.
5083 Default is 65.
5084
5085 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
5086 fills up. If REHASH-SIZE is an integer, add that many space. If it
5087 is a float, it must be > 1.0, and the new size is computed by
5088 multiplying the old size with that factor. Default is 1.5.
5089
5090 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
5091 Resize the hash table when ratio of the number of entries in the
5092 table. Default is 0.8.
5093
5094 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
5095 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
5096 returned is a weak table. Key/value pairs are removed from a weak
5097 hash table when there are no non-weak references pointing to their
5098 key, value, one of key or value, or both key and value, depending on
5099 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
5100 is nil.
5101
5102 usage: (make-hash-table &rest KEYWORD-ARGS) */)
5103 (nargs, args)
5104 int nargs;
5105 Lisp_Object *args;
5106 {
5107 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
5108 Lisp_Object user_test, user_hash;
5109 char *used;
5110 int i;
5111
5112 /* The vector `used' is used to keep track of arguments that
5113 have been consumed. */
5114 used = (char *) alloca (nargs * sizeof *used);
5115 bzero (used, nargs * sizeof *used);
5116
5117 /* See if there's a `:test TEST' among the arguments. */
5118 i = get_key_arg (QCtest, nargs, args, used);
5119 test = i < 0 ? Qeql : args[i];
5120 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
5121 {
5122 /* See if it is a user-defined test. */
5123 Lisp_Object prop;
5124
5125 prop = Fget (test, Qhash_table_test);
5126 if (!CONSP (prop) || !CONSP (XCDR (prop)))
5127 Fsignal (Qerror, list2 (build_string ("Invalid hash table test"),
5128 test));
5129 user_test = XCAR (prop);
5130 user_hash = XCAR (XCDR (prop));
5131 }
5132 else
5133 user_test = user_hash = Qnil;
5134
5135 /* See if there's a `:size SIZE' argument. */
5136 i = get_key_arg (QCsize, nargs, args, used);
5137 size = i < 0 ? Qnil : args[i];
5138 if (NILP (size))
5139 size = make_number (DEFAULT_HASH_SIZE);
5140 else if (!INTEGERP (size) || XINT (size) < 0)
5141 Fsignal (Qerror,
5142 list2 (build_string ("Invalid hash table size"),
5143 size));
5144
5145 /* Look for `:rehash-size SIZE'. */
5146 i = get_key_arg (QCrehash_size, nargs, args, used);
5147 rehash_size = i < 0 ? make_float (DEFAULT_REHASH_SIZE) : args[i];
5148 if (!NUMBERP (rehash_size)
5149 || (INTEGERP (rehash_size) && XINT (rehash_size) <= 0)
5150 || XFLOATINT (rehash_size) <= 1.0)
5151 Fsignal (Qerror,
5152 list2 (build_string ("Invalid hash table rehash size"),
5153 rehash_size));
5154
5155 /* Look for `:rehash-threshold THRESHOLD'. */
5156 i = get_key_arg (QCrehash_threshold, nargs, args, used);
5157 rehash_threshold = i < 0 ? make_float (DEFAULT_REHASH_THRESHOLD) : args[i];
5158 if (!FLOATP (rehash_threshold)
5159 || XFLOATINT (rehash_threshold) <= 0.0
5160 || XFLOATINT (rehash_threshold) > 1.0)
5161 Fsignal (Qerror,
5162 list2 (build_string ("Invalid hash table rehash threshold"),
5163 rehash_threshold));
5164
5165 /* Look for `:weakness WEAK'. */
5166 i = get_key_arg (QCweakness, nargs, args, used);
5167 weak = i < 0 ? Qnil : args[i];
5168 if (EQ (weak, Qt))
5169 weak = Qkey_and_value;
5170 if (!NILP (weak)
5171 && !EQ (weak, Qkey)
5172 && !EQ (weak, Qvalue)
5173 && !EQ (weak, Qkey_or_value)
5174 && !EQ (weak, Qkey_and_value))
5175 Fsignal (Qerror, list2 (build_string ("Invalid hash table weakness"),
5176 weak));
5177
5178 /* Now, all args should have been used up, or there's a problem. */
5179 for (i = 0; i < nargs; ++i)
5180 if (!used[i])
5181 Fsignal (Qerror,
5182 list2 (build_string ("Invalid argument list"), args[i]));
5183
5184 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
5185 user_test, user_hash);
5186 }
5187
5188
5189 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
5190 doc: /* Return a copy of hash table TABLE. */)
5191 (table)
5192 Lisp_Object table;
5193 {
5194 return copy_hash_table (check_hash_table (table));
5195 }
5196
5197
5198 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
5199 doc: /* Return the number of elements in TABLE. */)
5200 (table)
5201 Lisp_Object table;
5202 {
5203 return check_hash_table (table)->count;
5204 }
5205
5206
5207 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
5208 Shash_table_rehash_size, 1, 1, 0,
5209 doc: /* Return the current rehash size of TABLE. */)
5210 (table)
5211 Lisp_Object table;
5212 {
5213 return check_hash_table (table)->rehash_size;
5214 }
5215
5216
5217 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
5218 Shash_table_rehash_threshold, 1, 1, 0,
5219 doc: /* Return the current rehash threshold of TABLE. */)
5220 (table)
5221 Lisp_Object table;
5222 {
5223 return check_hash_table (table)->rehash_threshold;
5224 }
5225
5226
5227 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
5228 doc: /* Return the size of TABLE.
5229 The size can be used as an argument to `make-hash-table' to create
5230 a hash table than can hold as many elements of TABLE holds
5231 without need for resizing. */)
5232 (table)
5233 Lisp_Object table;
5234 {
5235 struct Lisp_Hash_Table *h = check_hash_table (table);
5236 return make_number (HASH_TABLE_SIZE (h));
5237 }
5238
5239
5240 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
5241 doc: /* Return the test TABLE uses. */)
5242 (table)
5243 Lisp_Object table;
5244 {
5245 return check_hash_table (table)->test;
5246 }
5247
5248
5249 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
5250 1, 1, 0,
5251 doc: /* Return the weakness of TABLE. */)
5252 (table)
5253 Lisp_Object table;
5254 {
5255 return check_hash_table (table)->weak;
5256 }
5257
5258
5259 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
5260 doc: /* Return t if OBJ is a Lisp hash table object. */)
5261 (obj)
5262 Lisp_Object obj;
5263 {
5264 return HASH_TABLE_P (obj) ? Qt : Qnil;
5265 }
5266
5267
5268 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
5269 doc: /* Clear hash table TABLE. */)
5270 (table)
5271 Lisp_Object table;
5272 {
5273 hash_clear (check_hash_table (table));
5274 return Qnil;
5275 }
5276
5277
5278 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
5279 doc: /* Look up KEY in TABLE and return its associated value.
5280 If KEY is not found, return DFLT which defaults to nil. */)
5281 (key, table, dflt)
5282 Lisp_Object key, table, dflt;
5283 {
5284 struct Lisp_Hash_Table *h = check_hash_table (table);
5285 int i = hash_lookup (h, key, NULL);
5286 return i >= 0 ? HASH_VALUE (h, i) : dflt;
5287 }
5288
5289
5290 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
5291 doc: /* Associate KEY with VALUE in hash table TABLE.
5292 If KEY is already present in table, replace its current value with
5293 VALUE. */)
5294 (key, value, table)
5295 Lisp_Object key, value, table;
5296 {
5297 struct Lisp_Hash_Table *h = check_hash_table (table);
5298 int i;
5299 unsigned hash;
5300
5301 i = hash_lookup (h, key, &hash);
5302 if (i >= 0)
5303 HASH_VALUE (h, i) = value;
5304 else
5305 hash_put (h, key, value, hash);
5306
5307 return value;
5308 }
5309
5310
5311 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
5312 doc: /* Remove KEY from TABLE. */)
5313 (key, table)
5314 Lisp_Object key, table;
5315 {
5316 struct Lisp_Hash_Table *h = check_hash_table (table);
5317 hash_remove (h, key);
5318 return Qnil;
5319 }
5320
5321
5322 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
5323 doc: /* Call FUNCTION for all entries in hash table TABLE.
5324 FUNCTION is called with 2 arguments KEY and VALUE. */)
5325 (function, table)
5326 Lisp_Object function, table;
5327 {
5328 struct Lisp_Hash_Table *h = check_hash_table (table);
5329 Lisp_Object args[3];
5330 int i;
5331
5332 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
5333 if (!NILP (HASH_HASH (h, i)))
5334 {
5335 args[0] = function;
5336 args[1] = HASH_KEY (h, i);
5337 args[2] = HASH_VALUE (h, i);
5338 Ffuncall (3, args);
5339 }
5340
5341 return Qnil;
5342 }
5343
5344
5345 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
5346 Sdefine_hash_table_test, 3, 3, 0,
5347 doc: /* Define a new hash table test with name NAME, a symbol.
5348
5349 In hash tables created with NAME specified as test, use TEST to
5350 compare keys, and HASH for computing hash codes of keys.
5351
5352 TEST must be a function taking two arguments and returning non-nil if
5353 both arguments are the same. HASH must be a function taking one
5354 argument and return an integer that is the hash code of the argument.
5355 Hash code computation should use the whole value range of integers,
5356 including negative integers. */)
5357 (name, test, hash)
5358 Lisp_Object name, test, hash;
5359 {
5360 return Fput (name, Qhash_table_test, list2 (test, hash));
5361 }
5362
5363
5364 \f
5365 /************************************************************************
5366 MD5
5367 ************************************************************************/
5368
5369 #include "md5.h"
5370 #include "coding.h"
5371
5372 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
5373 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
5374
5375 A message digest is a cryptographic checksum of a document, and the
5376 algorithm to calculate it is defined in RFC 1321.
5377
5378 The two optional arguments START and END are character positions
5379 specifying for which part of OBJECT the message digest should be
5380 computed. If nil or omitted, the digest is computed for the whole
5381 OBJECT.
5382
5383 The MD5 message digest is computed from the result of encoding the
5384 text in a coding system, not directly from the internal Emacs form of
5385 the text. The optional fourth argument CODING-SYSTEM specifies which
5386 coding system to encode the text with. It should be the same coding
5387 system that you used or will use when actually writing the text into a
5388 file.
5389
5390 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
5391 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
5392 system would be chosen by default for writing this text into a file.
5393
5394 If OBJECT is a string, the most preferred coding system (see the
5395 command `prefer-coding-system') is used.
5396
5397 If NOERROR is non-nil, silently assume the `raw-text' coding if the
5398 guesswork fails. Normally, an error is signaled in such case. */)
5399 (object, start, end, coding_system, noerror)
5400 Lisp_Object object, start, end, coding_system, noerror;
5401 {
5402 unsigned char digest[16];
5403 unsigned char value[33];
5404 int i;
5405 int size;
5406 int size_byte = 0;
5407 int start_char = 0, end_char = 0;
5408 int start_byte = 0, end_byte = 0;
5409 register int b, e;
5410 register struct buffer *bp;
5411 int temp;
5412
5413 if (STRINGP (object))
5414 {
5415 if (NILP (coding_system))
5416 {
5417 /* Decide the coding-system to encode the data with. */
5418
5419 if (STRING_MULTIBYTE (object))
5420 /* use default, we can't guess correct value */
5421 coding_system = SYMBOL_VALUE (XCAR (Vcoding_category_list));
5422 else
5423 coding_system = Qraw_text;
5424 }
5425
5426 if (NILP (Fcoding_system_p (coding_system)))
5427 {
5428 /* Invalid coding system. */
5429
5430 if (!NILP (noerror))
5431 coding_system = Qraw_text;
5432 else
5433 while (1)
5434 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
5435 }
5436
5437 if (STRING_MULTIBYTE (object))
5438 object = code_convert_string1 (object, coding_system, Qnil, 1);
5439
5440 size = SCHARS (object);
5441 size_byte = SBYTES (object);
5442
5443 if (!NILP (start))
5444 {
5445 CHECK_NUMBER (start);
5446
5447 start_char = XINT (start);
5448
5449 if (start_char < 0)
5450 start_char += size;
5451
5452 start_byte = string_char_to_byte (object, start_char);
5453 }
5454
5455 if (NILP (end))
5456 {
5457 end_char = size;
5458 end_byte = size_byte;
5459 }
5460 else
5461 {
5462 CHECK_NUMBER (end);
5463
5464 end_char = XINT (end);
5465
5466 if (end_char < 0)
5467 end_char += size;
5468
5469 end_byte = string_char_to_byte (object, end_char);
5470 }
5471
5472 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
5473 args_out_of_range_3 (object, make_number (start_char),
5474 make_number (end_char));
5475 }
5476 else
5477 {
5478 struct buffer *prev = current_buffer;
5479
5480 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
5481
5482 CHECK_BUFFER (object);
5483
5484 bp = XBUFFER (object);
5485 if (bp != current_buffer)
5486 set_buffer_internal (bp);
5487
5488 if (NILP (start))
5489 b = BEGV;
5490 else
5491 {
5492 CHECK_NUMBER_COERCE_MARKER (start);
5493 b = XINT (start);
5494 }
5495
5496 if (NILP (end))
5497 e = ZV;
5498 else
5499 {
5500 CHECK_NUMBER_COERCE_MARKER (end);
5501 e = XINT (end);
5502 }
5503
5504 if (b > e)
5505 temp = b, b = e, e = temp;
5506
5507 if (!(BEGV <= b && e <= ZV))
5508 args_out_of_range (start, end);
5509
5510 if (NILP (coding_system))
5511 {
5512 /* Decide the coding-system to encode the data with.
5513 See fileio.c:Fwrite-region */
5514
5515 if (!NILP (Vcoding_system_for_write))
5516 coding_system = Vcoding_system_for_write;
5517 else
5518 {
5519 int force_raw_text = 0;
5520
5521 coding_system = XBUFFER (object)->buffer_file_coding_system;
5522 if (NILP (coding_system)
5523 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
5524 {
5525 coding_system = Qnil;
5526 if (NILP (current_buffer->enable_multibyte_characters))
5527 force_raw_text = 1;
5528 }
5529
5530 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
5531 {
5532 /* Check file-coding-system-alist. */
5533 Lisp_Object args[4], val;
5534
5535 args[0] = Qwrite_region; args[1] = start; args[2] = end;
5536 args[3] = Fbuffer_file_name(object);
5537 val = Ffind_operation_coding_system (4, args);
5538 if (CONSP (val) && !NILP (XCDR (val)))
5539 coding_system = XCDR (val);
5540 }
5541
5542 if (NILP (coding_system)
5543 && !NILP (XBUFFER (object)->buffer_file_coding_system))
5544 {
5545 /* If we still have not decided a coding system, use the
5546 default value of buffer-file-coding-system. */
5547 coding_system = XBUFFER (object)->buffer_file_coding_system;
5548 }
5549
5550 if (!force_raw_text
5551 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
5552 /* Confirm that VAL can surely encode the current region. */
5553 coding_system = call4 (Vselect_safe_coding_system_function,
5554 make_number (b), make_number (e),
5555 coding_system, Qnil);
5556
5557 if (force_raw_text)
5558 coding_system = Qraw_text;
5559 }
5560
5561 if (NILP (Fcoding_system_p (coding_system)))
5562 {
5563 /* Invalid coding system. */
5564
5565 if (!NILP (noerror))
5566 coding_system = Qraw_text;
5567 else
5568 while (1)
5569 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
5570 }
5571 }
5572
5573 object = make_buffer_string (b, e, 0);
5574 if (prev != current_buffer)
5575 set_buffer_internal (prev);
5576 /* Discard the unwind protect for recovering the current
5577 buffer. */
5578 specpdl_ptr--;
5579
5580 if (STRING_MULTIBYTE (object))
5581 object = code_convert_string1 (object, coding_system, Qnil, 1);
5582 }
5583
5584 md5_buffer (SDATA (object) + start_byte,
5585 SBYTES (object) - (size_byte - end_byte),
5586 digest);
5587
5588 for (i = 0; i < 16; i++)
5589 sprintf (&value[2 * i], "%02x", digest[i]);
5590 value[32] = '\0';
5591
5592 return make_string (value, 32);
5593 }
5594
5595 \f
5596 void
5597 syms_of_fns ()
5598 {
5599 /* Hash table stuff. */
5600 Qhash_table_p = intern ("hash-table-p");
5601 staticpro (&Qhash_table_p);
5602 Qeq = intern ("eq");
5603 staticpro (&Qeq);
5604 Qeql = intern ("eql");
5605 staticpro (&Qeql);
5606 Qequal = intern ("equal");
5607 staticpro (&Qequal);
5608 QCtest = intern (":test");
5609 staticpro (&QCtest);
5610 QCsize = intern (":size");
5611 staticpro (&QCsize);
5612 QCrehash_size = intern (":rehash-size");
5613 staticpro (&QCrehash_size);
5614 QCrehash_threshold = intern (":rehash-threshold");
5615 staticpro (&QCrehash_threshold);
5616 QCweakness = intern (":weakness");
5617 staticpro (&QCweakness);
5618 Qkey = intern ("key");
5619 staticpro (&Qkey);
5620 Qvalue = intern ("value");
5621 staticpro (&Qvalue);
5622 Qhash_table_test = intern ("hash-table-test");
5623 staticpro (&Qhash_table_test);
5624 Qkey_or_value = intern ("key-or-value");
5625 staticpro (&Qkey_or_value);
5626 Qkey_and_value = intern ("key-and-value");
5627 staticpro (&Qkey_and_value);
5628
5629 defsubr (&Ssxhash);
5630 defsubr (&Smake_hash_table);
5631 defsubr (&Scopy_hash_table);
5632 defsubr (&Shash_table_count);
5633 defsubr (&Shash_table_rehash_size);
5634 defsubr (&Shash_table_rehash_threshold);
5635 defsubr (&Shash_table_size);
5636 defsubr (&Shash_table_test);
5637 defsubr (&Shash_table_weakness);
5638 defsubr (&Shash_table_p);
5639 defsubr (&Sclrhash);
5640 defsubr (&Sgethash);
5641 defsubr (&Sputhash);
5642 defsubr (&Sremhash);
5643 defsubr (&Smaphash);
5644 defsubr (&Sdefine_hash_table_test);
5645
5646 Qstring_lessp = intern ("string-lessp");
5647 staticpro (&Qstring_lessp);
5648 Qprovide = intern ("provide");
5649 staticpro (&Qprovide);
5650 Qrequire = intern ("require");
5651 staticpro (&Qrequire);
5652 Qyes_or_no_p_history = intern ("yes-or-no-p-history");
5653 staticpro (&Qyes_or_no_p_history);
5654 Qcursor_in_echo_area = intern ("cursor-in-echo-area");
5655 staticpro (&Qcursor_in_echo_area);
5656 Qwidget_type = intern ("widget-type");
5657 staticpro (&Qwidget_type);
5658
5659 staticpro (&string_char_byte_cache_string);
5660 string_char_byte_cache_string = Qnil;
5661
5662 require_nesting_list = Qnil;
5663 staticpro (&require_nesting_list);
5664
5665 Fset (Qyes_or_no_p_history, Qnil);
5666
5667 DEFVAR_LISP ("features", &Vfeatures,
5668 doc: /* A list of symbols which are the features of the executing emacs.
5669 Used by `featurep' and `require', and altered by `provide'. */);
5670 Vfeatures = Qnil;
5671 Qsubfeatures = intern ("subfeatures");
5672 staticpro (&Qsubfeatures);
5673
5674 #ifdef HAVE_LANGINFO_CODESET
5675 Qcodeset = intern ("codeset");
5676 staticpro (&Qcodeset);
5677 Qdays = intern ("days");
5678 staticpro (&Qdays);
5679 Qmonths = intern ("months");
5680 staticpro (&Qmonths);
5681 Qpaper = intern ("paper");
5682 staticpro (&Qpaper);
5683 #endif /* HAVE_LANGINFO_CODESET */
5684
5685 DEFVAR_BOOL ("use-dialog-box", &use_dialog_box,
5686 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
5687 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
5688 invoked by mouse clicks and mouse menu items. */);
5689 use_dialog_box = 1;
5690
5691 DEFVAR_BOOL ("use-file-dialog", &use_file_dialog,
5692 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
5693 This applies to commands from menus and tool bar buttons. The value of
5694 `use-dialog-box' takes precedence over this variable, so a file dialog is only
5695 used if both `use-dialog-box' and this variable are non-nil. */);
5696 use_file_dialog = 1;
5697
5698 defsubr (&Sidentity);
5699 defsubr (&Srandom);
5700 defsubr (&Slength);
5701 defsubr (&Ssafe_length);
5702 defsubr (&Sstring_bytes);
5703 defsubr (&Sstring_equal);
5704 defsubr (&Scompare_strings);
5705 defsubr (&Sstring_lessp);
5706 defsubr (&Sappend);
5707 defsubr (&Sconcat);
5708 defsubr (&Svconcat);
5709 defsubr (&Scopy_sequence);
5710 defsubr (&Sstring_make_multibyte);
5711 defsubr (&Sstring_make_unibyte);
5712 defsubr (&Sstring_as_multibyte);
5713 defsubr (&Sstring_as_unibyte);
5714 defsubr (&Sstring_to_multibyte);
5715 defsubr (&Scopy_alist);
5716 defsubr (&Ssubstring);
5717 defsubr (&Ssubstring_no_properties);
5718 defsubr (&Snthcdr);
5719 defsubr (&Snth);
5720 defsubr (&Selt);
5721 defsubr (&Smember);
5722 defsubr (&Smemq);
5723 defsubr (&Sassq);
5724 defsubr (&Sassoc);
5725 defsubr (&Srassq);
5726 defsubr (&Srassoc);
5727 defsubr (&Sdelq);
5728 defsubr (&Sdelete);
5729 defsubr (&Snreverse);
5730 defsubr (&Sreverse);
5731 defsubr (&Ssort);
5732 defsubr (&Splist_get);
5733 defsubr (&Sget);
5734 defsubr (&Splist_put);
5735 defsubr (&Sput);
5736 defsubr (&Slax_plist_get);
5737 defsubr (&Slax_plist_put);
5738 defsubr (&Seql);
5739 defsubr (&Sequal);
5740 defsubr (&Sequal_including_properties);
5741 defsubr (&Sfillarray);
5742 defsubr (&Sclear_string);
5743 defsubr (&Schar_table_subtype);
5744 defsubr (&Schar_table_parent);
5745 defsubr (&Sset_char_table_parent);
5746 defsubr (&Schar_table_extra_slot);
5747 defsubr (&Sset_char_table_extra_slot);
5748 defsubr (&Schar_table_range);
5749 defsubr (&Sset_char_table_range);
5750 defsubr (&Sset_char_table_default);
5751 defsubr (&Soptimize_char_table);
5752 defsubr (&Smap_char_table);
5753 defsubr (&Snconc);
5754 defsubr (&Smapcar);
5755 defsubr (&Smapc);
5756 defsubr (&Smapconcat);
5757 defsubr (&Sy_or_n_p);
5758 defsubr (&Syes_or_no_p);
5759 defsubr (&Sload_average);
5760 defsubr (&Sfeaturep);
5761 defsubr (&Srequire);
5762 defsubr (&Sprovide);
5763 defsubr (&Splist_member);
5764 defsubr (&Swidget_put);
5765 defsubr (&Swidget_get);
5766 defsubr (&Swidget_apply);
5767 defsubr (&Sbase64_encode_region);
5768 defsubr (&Sbase64_decode_region);
5769 defsubr (&Sbase64_encode_string);
5770 defsubr (&Sbase64_decode_string);
5771 defsubr (&Smd5);
5772 defsubr (&Slocale_info);
5773 }
5774
5775
5776 void
5777 init_fns ()
5778 {
5779 Vweak_hash_tables = Qnil;
5780 }
5781
5782 /* arch-tag: 787f8219-5b74-46bd-8469-7e1cc475fa31
5783 (do not change this comment) */