]> code.delx.au - gnu-emacs/blob - src/intervals.c
(graft_intervals_into_buffer): Remove #ifdef'd-out code.
[gnu-emacs] / src / intervals.c
1 /* Code for doing intervals.
2 Copyright (C) 1993, 1994, 1995, 1997, 1998 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* NOTES:
23
24 Have to ensure that we can't put symbol nil on a plist, or some
25 functions may work incorrectly.
26
27 An idea: Have the owner of the tree keep count of splits and/or
28 insertion lengths (in intervals), and balance after every N.
29
30 Need to call *_left_hook when buffer is killed.
31
32 Scan for zero-length, or 0-length to see notes about handling
33 zero length interval-markers.
34
35 There are comments around about freeing intervals. It might be
36 faster to explicitly free them (put them on the free list) than
37 to GC them.
38
39 */
40
41
42 #include <config.h>
43 #include "lisp.h"
44 #include "intervals.h"
45 #include "buffer.h"
46 #include "puresize.h"
47 #include "keyboard.h"
48 #include "keymap.h"
49
50 /* Test for membership, allowing for t (actually any non-cons) to mean the
51 universal set. */
52
53 #define TMEM(sym, set) (CONSP (set) ? ! NILP (Fmemq (sym, set)) : ! NILP (set))
54
55 Lisp_Object merge_properties_sticky ();
56 static INTERVAL reproduce_tree P_ ((INTERVAL, INTERVAL));
57 static INTERVAL reproduce_tree_obj P_ ((INTERVAL, Lisp_Object));
58 \f
59 /* Utility functions for intervals. */
60
61
62 /* Create the root interval of some object, a buffer or string. */
63
64 INTERVAL
65 create_root_interval (parent)
66 Lisp_Object parent;
67 {
68 INTERVAL new;
69
70 CHECK_IMPURE (parent);
71
72 new = make_interval ();
73
74 if (BUFFERP (parent))
75 {
76 new->total_length = (BUF_Z (XBUFFER (parent))
77 - BUF_BEG (XBUFFER (parent)));
78 BUF_INTERVALS (XBUFFER (parent)) = new;
79 new->position = 1;
80 }
81 else if (STRINGP (parent))
82 {
83 new->total_length = XSTRING (parent)->size;
84 XSTRING (parent)->intervals = new;
85 new->position = 0;
86 }
87
88 SET_INTERVAL_OBJECT (new, parent);
89
90 return new;
91 }
92
93 /* Make the interval TARGET have exactly the properties of SOURCE */
94
95 void
96 copy_properties (source, target)
97 register INTERVAL source, target;
98 {
99 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
100 return;
101
102 COPY_INTERVAL_CACHE (source, target);
103 target->plist = Fcopy_sequence (source->plist);
104 }
105
106 /* Merge the properties of interval SOURCE into the properties
107 of interval TARGET. That is to say, each property in SOURCE
108 is added to TARGET if TARGET has no such property as yet. */
109
110 static void
111 merge_properties (source, target)
112 register INTERVAL source, target;
113 {
114 register Lisp_Object o, sym, val;
115
116 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
117 return;
118
119 MERGE_INTERVAL_CACHE (source, target);
120
121 o = source->plist;
122 while (! EQ (o, Qnil))
123 {
124 sym = Fcar (o);
125 val = Fmemq (sym, target->plist);
126
127 if (NILP (val))
128 {
129 o = Fcdr (o);
130 val = Fcar (o);
131 target->plist = Fcons (sym, Fcons (val, target->plist));
132 o = Fcdr (o);
133 }
134 else
135 o = Fcdr (Fcdr (o));
136 }
137 }
138
139 /* Return 1 if the two intervals have the same properties,
140 0 otherwise. */
141
142 int
143 intervals_equal (i0, i1)
144 INTERVAL i0, i1;
145 {
146 register Lisp_Object i0_cdr, i0_sym, i1_val;
147 register int i1_len;
148
149 if (DEFAULT_INTERVAL_P (i0) && DEFAULT_INTERVAL_P (i1))
150 return 1;
151
152 if (DEFAULT_INTERVAL_P (i0) || DEFAULT_INTERVAL_P (i1))
153 return 0;
154
155 i1_len = XFASTINT (Flength (i1->plist));
156 if (i1_len & 0x1) /* Paranoia -- plists are always even */
157 abort ();
158 i1_len /= 2;
159 i0_cdr = i0->plist;
160 while (!NILP (i0_cdr))
161 {
162 /* Lengths of the two plists were unequal. */
163 if (i1_len == 0)
164 return 0;
165
166 i0_sym = Fcar (i0_cdr);
167 i1_val = Fmemq (i0_sym, i1->plist);
168
169 /* i0 has something i1 doesn't. */
170 if (EQ (i1_val, Qnil))
171 return 0;
172
173 /* i0 and i1 both have sym, but it has different values in each. */
174 i0_cdr = Fcdr (i0_cdr);
175 if (! EQ (Fcar (Fcdr (i1_val)), Fcar (i0_cdr)))
176 return 0;
177
178 i0_cdr = Fcdr (i0_cdr);
179 i1_len--;
180 }
181
182 /* Lengths of the two plists were unequal. */
183 if (i1_len > 0)
184 return 0;
185
186 return 1;
187 }
188 \f
189
190 /* Traverse an interval tree TREE, performing FUNCTION on each node.
191 No guarantee is made about the order of traversal.
192 Pass FUNCTION two args: an interval, and ARG. */
193
194 void
195 traverse_intervals_noorder (tree, function, arg)
196 INTERVAL tree;
197 void (* function) P_ ((INTERVAL, Lisp_Object));
198 Lisp_Object arg;
199 {
200 /* Minimize stack usage. */
201 while (!NULL_INTERVAL_P (tree))
202 {
203 (*function) (tree, arg);
204 if (NULL_INTERVAL_P (tree->right))
205 tree = tree->left;
206 else
207 {
208 traverse_intervals_noorder (tree->left, function, arg);
209 tree = tree->right;
210 }
211 }
212 }
213
214 /* Traverse an interval tree TREE, performing FUNCTION on each node.
215 Pass FUNCTION two args: an interval, and ARG. */
216
217 void
218 traverse_intervals (tree, position, function, arg)
219 INTERVAL tree;
220 int position;
221 void (* function) P_ ((INTERVAL, Lisp_Object));
222 Lisp_Object arg;
223 {
224 while (!NULL_INTERVAL_P (tree))
225 {
226 traverse_intervals (tree->left, position, function, arg);
227 position += LEFT_TOTAL_LENGTH (tree);
228 tree->position = position;
229 (*function) (tree, arg);
230 position += LENGTH (tree); tree = tree->right;
231 }
232 }
233 \f
234 #if 0
235
236 static int icount;
237 static int idepth;
238 static int zero_length;
239
240 /* These functions are temporary, for debugging purposes only. */
241
242 INTERVAL search_interval, found_interval;
243
244 void
245 check_for_interval (i)
246 register INTERVAL i;
247 {
248 if (i == search_interval)
249 {
250 found_interval = i;
251 icount++;
252 }
253 }
254
255 INTERVAL
256 search_for_interval (i, tree)
257 register INTERVAL i, tree;
258 {
259 icount = 0;
260 search_interval = i;
261 found_interval = NULL_INTERVAL;
262 traverse_intervals_noorder (tree, &check_for_interval, Qnil);
263 return found_interval;
264 }
265
266 static void
267 inc_interval_count (i)
268 INTERVAL i;
269 {
270 icount++;
271 if (LENGTH (i) == 0)
272 zero_length++;
273 if (depth > idepth)
274 idepth = depth;
275 }
276
277 int
278 count_intervals (i)
279 register INTERVAL i;
280 {
281 icount = 0;
282 idepth = 0;
283 zero_length = 0;
284 traverse_intervals_noorder (i, &inc_interval_count, Qnil);
285
286 return icount;
287 }
288
289 static INTERVAL
290 root_interval (interval)
291 INTERVAL interval;
292 {
293 register INTERVAL i = interval;
294
295 while (! ROOT_INTERVAL_P (i))
296 i = INTERVAL_PARENT (i);
297
298 return i;
299 }
300 #endif
301 \f
302 /* Assuming that a left child exists, perform the following operation:
303
304 A B
305 / \ / \
306 B => A
307 / \ / \
308 c c
309 */
310
311 static INLINE INTERVAL
312 rotate_right (interval)
313 INTERVAL interval;
314 {
315 INTERVAL i;
316 INTERVAL B = interval->left;
317 int old_total = interval->total_length;
318
319 /* Deal with any Parent of A; make it point to B. */
320 if (! ROOT_INTERVAL_P (interval))
321 {
322 if (AM_LEFT_CHILD (interval))
323 INTERVAL_PARENT (interval)->left = B;
324 else
325 INTERVAL_PARENT (interval)->right = B;
326 }
327 COPY_INTERVAL_PARENT (B, interval);
328
329 /* Make B the parent of A */
330 i = B->right;
331 B->right = interval;
332 SET_INTERVAL_PARENT (interval, B);
333
334 /* Make A point to c */
335 interval->left = i;
336 if (! NULL_INTERVAL_P (i))
337 SET_INTERVAL_PARENT (i, interval);
338
339 /* A's total length is decreased by the length of B and its left child. */
340 interval->total_length -= B->total_length - LEFT_TOTAL_LENGTH (interval);
341
342 /* B must have the same total length of A. */
343 B->total_length = old_total;
344
345 return B;
346 }
347
348 /* Assuming that a right child exists, perform the following operation:
349
350 A B
351 / \ / \
352 B => A
353 / \ / \
354 c c
355 */
356
357 static INLINE INTERVAL
358 rotate_left (interval)
359 INTERVAL interval;
360 {
361 INTERVAL i;
362 INTERVAL B = interval->right;
363 int old_total = interval->total_length;
364
365 /* Deal with any parent of A; make it point to B. */
366 if (! ROOT_INTERVAL_P (interval))
367 {
368 if (AM_LEFT_CHILD (interval))
369 INTERVAL_PARENT (interval)->left = B;
370 else
371 INTERVAL_PARENT (interval)->right = B;
372 }
373 COPY_INTERVAL_PARENT (B, interval);
374
375 /* Make B the parent of A */
376 i = B->left;
377 B->left = interval;
378 SET_INTERVAL_PARENT (interval, B);
379
380 /* Make A point to c */
381 interval->right = i;
382 if (! NULL_INTERVAL_P (i))
383 SET_INTERVAL_PARENT (i, interval);
384
385 /* A's total length is decreased by the length of B and its right child. */
386 interval->total_length -= B->total_length - RIGHT_TOTAL_LENGTH (interval);
387
388 /* B must have the same total length of A. */
389 B->total_length = old_total;
390
391 return B;
392 }
393 \f
394 /* Balance an interval tree with the assumption that the subtrees
395 themselves are already balanced. */
396
397 static INTERVAL
398 balance_an_interval (i)
399 INTERVAL i;
400 {
401 register int old_diff, new_diff;
402
403 while (1)
404 {
405 old_diff = LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i);
406 if (old_diff > 0)
407 {
408 new_diff = i->total_length - i->left->total_length
409 + RIGHT_TOTAL_LENGTH (i->left) - LEFT_TOTAL_LENGTH (i->left);
410 if (abs (new_diff) >= old_diff)
411 break;
412 i = rotate_right (i);
413 balance_an_interval (i->right);
414 }
415 else if (old_diff < 0)
416 {
417 new_diff = i->total_length - i->right->total_length
418 + LEFT_TOTAL_LENGTH (i->right) - RIGHT_TOTAL_LENGTH (i->right);
419 if (abs (new_diff) >= -old_diff)
420 break;
421 i = rotate_left (i);
422 balance_an_interval (i->left);
423 }
424 else
425 break;
426 }
427 return i;
428 }
429
430 /* Balance INTERVAL, potentially stuffing it back into its parent
431 Lisp Object. */
432
433 static INLINE INTERVAL
434 balance_possible_root_interval (interval)
435 register INTERVAL interval;
436 {
437 Lisp_Object parent;
438 int have_parent = 0;
439
440 if (!INTERVAL_HAS_OBJECT (interval) && !INTERVAL_HAS_PARENT (interval))
441 return interval;
442
443 if (INTERVAL_HAS_OBJECT (interval))
444 {
445 have_parent = 1;
446 GET_INTERVAL_OBJECT (parent, interval);
447 }
448 interval = balance_an_interval (interval);
449
450 if (have_parent)
451 {
452 if (BUFFERP (parent))
453 BUF_INTERVALS (XBUFFER (parent)) = interval;
454 else if (STRINGP (parent))
455 XSTRING (parent)->intervals = interval;
456 }
457
458 return interval;
459 }
460
461 /* Balance the interval tree TREE. Balancing is by weight
462 (the amount of text). */
463
464 static INTERVAL
465 balance_intervals_internal (tree)
466 register INTERVAL tree;
467 {
468 /* Balance within each side. */
469 if (tree->left)
470 balance_intervals_internal (tree->left);
471 if (tree->right)
472 balance_intervals_internal (tree->right);
473 return balance_an_interval (tree);
474 }
475
476 /* Advertised interface to balance intervals. */
477
478 INTERVAL
479 balance_intervals (tree)
480 INTERVAL tree;
481 {
482 if (tree == NULL_INTERVAL)
483 return NULL_INTERVAL;
484
485 return balance_intervals_internal (tree);
486 }
487 \f
488 /* Split INTERVAL into two pieces, starting the second piece at
489 character position OFFSET (counting from 0), relative to INTERVAL.
490 INTERVAL becomes the left-hand piece, and the right-hand piece
491 (second, lexicographically) is returned.
492
493 The size and position fields of the two intervals are set based upon
494 those of the original interval. The property list of the new interval
495 is reset, thus it is up to the caller to do the right thing with the
496 result.
497
498 Note that this does not change the position of INTERVAL; if it is a root,
499 it is still a root after this operation. */
500
501 INTERVAL
502 split_interval_right (interval, offset)
503 INTERVAL interval;
504 int offset;
505 {
506 INTERVAL new = make_interval ();
507 int position = interval->position;
508 int new_length = LENGTH (interval) - offset;
509
510 new->position = position + offset;
511 SET_INTERVAL_PARENT (new, interval);
512
513 if (NULL_RIGHT_CHILD (interval))
514 {
515 interval->right = new;
516 new->total_length = new_length;
517 }
518 else
519 {
520 /* Insert the new node between INTERVAL and its right child. */
521 new->right = interval->right;
522 SET_INTERVAL_PARENT (interval->right, new);
523 interval->right = new;
524 new->total_length = new_length + new->right->total_length;
525 balance_an_interval (new);
526 }
527
528 balance_possible_root_interval (interval);
529
530 return new;
531 }
532
533 /* Split INTERVAL into two pieces, starting the second piece at
534 character position OFFSET (counting from 0), relative to INTERVAL.
535 INTERVAL becomes the right-hand piece, and the left-hand piece
536 (first, lexicographically) is returned.
537
538 The size and position fields of the two intervals are set based upon
539 those of the original interval. The property list of the new interval
540 is reset, thus it is up to the caller to do the right thing with the
541 result.
542
543 Note that this does not change the position of INTERVAL; if it is a root,
544 it is still a root after this operation. */
545
546 INTERVAL
547 split_interval_left (interval, offset)
548 INTERVAL interval;
549 int offset;
550 {
551 INTERVAL new = make_interval ();
552 int new_length = offset;
553
554 new->position = interval->position;
555 interval->position = interval->position + offset;
556 SET_INTERVAL_PARENT (new, interval);
557
558 if (NULL_LEFT_CHILD (interval))
559 {
560 interval->left = new;
561 new->total_length = new_length;
562 }
563 else
564 {
565 /* Insert the new node between INTERVAL and its left child. */
566 new->left = interval->left;
567 SET_INTERVAL_PARENT (new->left, new);
568 interval->left = new;
569 new->total_length = new_length + new->left->total_length;
570 balance_an_interval (new);
571 }
572
573 balance_possible_root_interval (interval);
574
575 return new;
576 }
577 \f
578 /* Return the proper position for the first character
579 described by the interval tree SOURCE.
580 This is 1 if the parent is a buffer,
581 0 if the parent is a string or if there is no parent.
582
583 Don't use this function on an interval which is the child
584 of another interval! */
585
586 int
587 interval_start_pos (source)
588 INTERVAL source;
589 {
590 Lisp_Object parent;
591
592 if (NULL_INTERVAL_P (source))
593 return 0;
594
595 if (! INTERVAL_HAS_OBJECT (source))
596 return 0;
597 GET_INTERVAL_OBJECT (parent, source);
598 if (BUFFERP (parent))
599 return BUF_BEG (XBUFFER (parent));
600 return 0;
601 }
602
603 /* Find the interval containing text position POSITION in the text
604 represented by the interval tree TREE. POSITION is a buffer
605 position (starting from 1) or a string index (starting from 0).
606 If POSITION is at the end of the buffer or string,
607 return the interval containing the last character.
608
609 The `position' field, which is a cache of an interval's position,
610 is updated in the interval found. Other functions (e.g., next_interval)
611 will update this cache based on the result of find_interval. */
612
613 INTERVAL
614 find_interval (tree, position)
615 register INTERVAL tree;
616 register int position;
617 {
618 /* The distance from the left edge of the subtree at TREE
619 to POSITION. */
620 register int relative_position;
621
622 if (NULL_INTERVAL_P (tree))
623 return NULL_INTERVAL;
624
625 relative_position = position;
626 if (INTERVAL_HAS_OBJECT (tree))
627 {
628 Lisp_Object parent;
629 GET_INTERVAL_OBJECT (parent, tree);
630 if (BUFFERP (parent))
631 relative_position -= BUF_BEG (XBUFFER (parent));
632 }
633
634 if (relative_position > TOTAL_LENGTH (tree))
635 abort (); /* Paranoia */
636
637 if (!handling_signal)
638 tree = balance_possible_root_interval (tree);
639
640 while (1)
641 {
642 if (relative_position < LEFT_TOTAL_LENGTH (tree))
643 {
644 tree = tree->left;
645 }
646 else if (! NULL_RIGHT_CHILD (tree)
647 && relative_position >= (TOTAL_LENGTH (tree)
648 - RIGHT_TOTAL_LENGTH (tree)))
649 {
650 relative_position -= (TOTAL_LENGTH (tree)
651 - RIGHT_TOTAL_LENGTH (tree));
652 tree = tree->right;
653 }
654 else
655 {
656 tree->position
657 = (position - relative_position /* the left edge of *tree */
658 + LEFT_TOTAL_LENGTH (tree)); /* the left edge of this interval */
659
660 return tree;
661 }
662 }
663 }
664 \f
665 /* Find the succeeding interval (lexicographically) to INTERVAL.
666 Sets the `position' field based on that of INTERVAL (see
667 find_interval). */
668
669 INTERVAL
670 next_interval (interval)
671 register INTERVAL interval;
672 {
673 register INTERVAL i = interval;
674 register int next_position;
675
676 if (NULL_INTERVAL_P (i))
677 return NULL_INTERVAL;
678 next_position = interval->position + LENGTH (interval);
679
680 if (! NULL_RIGHT_CHILD (i))
681 {
682 i = i->right;
683 while (! NULL_LEFT_CHILD (i))
684 i = i->left;
685
686 i->position = next_position;
687 return i;
688 }
689
690 while (! NULL_PARENT (i))
691 {
692 if (AM_LEFT_CHILD (i))
693 {
694 i = INTERVAL_PARENT (i);
695 i->position = next_position;
696 return i;
697 }
698
699 i = INTERVAL_PARENT (i);
700 }
701
702 return NULL_INTERVAL;
703 }
704
705 /* Find the preceding interval (lexicographically) to INTERVAL.
706 Sets the `position' field based on that of INTERVAL (see
707 find_interval). */
708
709 INTERVAL
710 previous_interval (interval)
711 register INTERVAL interval;
712 {
713 register INTERVAL i;
714
715 if (NULL_INTERVAL_P (interval))
716 return NULL_INTERVAL;
717
718 if (! NULL_LEFT_CHILD (interval))
719 {
720 i = interval->left;
721 while (! NULL_RIGHT_CHILD (i))
722 i = i->right;
723
724 i->position = interval->position - LENGTH (i);
725 return i;
726 }
727
728 i = interval;
729 while (! NULL_PARENT (i))
730 {
731 if (AM_RIGHT_CHILD (i))
732 {
733 i = INTERVAL_PARENT (i);
734
735 i->position = interval->position - LENGTH (i);
736 return i;
737 }
738 i = INTERVAL_PARENT (i);
739 }
740
741 return NULL_INTERVAL;
742 }
743
744 /* Find the interval containing POS given some non-NULL INTERVAL
745 in the same tree. Note that we need to update interval->position
746 if we go down the tree.
747 To speed up the process, we assume that the ->position of
748 I and all its parents is already uptodate. */
749 INTERVAL
750 update_interval (i, pos)
751 register INTERVAL i;
752 int pos;
753 {
754 if (NULL_INTERVAL_P (i))
755 return NULL_INTERVAL;
756
757 while (1)
758 {
759 if (pos < i->position)
760 {
761 /* Move left. */
762 if (pos >= i->position - TOTAL_LENGTH (i->left))
763 {
764 i->left->position = i->position - TOTAL_LENGTH (i->left)
765 + LEFT_TOTAL_LENGTH (i->left);
766 i = i->left; /* Move to the left child */
767 }
768 else if (NULL_PARENT (i))
769 error ("Point before start of properties");
770 else
771 i = INTERVAL_PARENT (i);
772 continue;
773 }
774 else if (pos >= INTERVAL_LAST_POS (i))
775 {
776 /* Move right. */
777 if (pos < INTERVAL_LAST_POS (i) + TOTAL_LENGTH (i->right))
778 {
779 i->right->position = INTERVAL_LAST_POS (i) +
780 LEFT_TOTAL_LENGTH (i->right);
781 i = i->right; /* Move to the right child */
782 }
783 else if (NULL_PARENT (i))
784 error ("Point after end of properties");
785 else
786 i = INTERVAL_PARENT (i);
787 continue;
788 }
789 else
790 return i;
791 }
792 }
793
794 \f
795 #if 0
796 /* Traverse a path down the interval tree TREE to the interval
797 containing POSITION, adjusting all nodes on the path for
798 an addition of LENGTH characters. Insertion between two intervals
799 (i.e., point == i->position, where i is second interval) means
800 text goes into second interval.
801
802 Modifications are needed to handle the hungry bits -- after simply
803 finding the interval at position (don't add length going down),
804 if it's the beginning of the interval, get the previous interval
805 and check the hungry bits of both. Then add the length going back up
806 to the root. */
807
808 static INTERVAL
809 adjust_intervals_for_insertion (tree, position, length)
810 INTERVAL tree;
811 int position, length;
812 {
813 register int relative_position;
814 register INTERVAL this;
815
816 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
817 abort ();
818
819 /* If inserting at point-max of a buffer, that position
820 will be out of range */
821 if (position > TOTAL_LENGTH (tree))
822 position = TOTAL_LENGTH (tree);
823 relative_position = position;
824 this = tree;
825
826 while (1)
827 {
828 if (relative_position <= LEFT_TOTAL_LENGTH (this))
829 {
830 this->total_length += length;
831 this = this->left;
832 }
833 else if (relative_position > (TOTAL_LENGTH (this)
834 - RIGHT_TOTAL_LENGTH (this)))
835 {
836 relative_position -= (TOTAL_LENGTH (this)
837 - RIGHT_TOTAL_LENGTH (this));
838 this->total_length += length;
839 this = this->right;
840 }
841 else
842 {
843 /* If we are to use zero-length intervals as buffer pointers,
844 then this code will have to change. */
845 this->total_length += length;
846 this->position = LEFT_TOTAL_LENGTH (this)
847 + position - relative_position + 1;
848 return tree;
849 }
850 }
851 }
852 #endif
853
854 /* Effect an adjustment corresponding to the addition of LENGTH characters
855 of text. Do this by finding the interval containing POSITION in the
856 interval tree TREE, and then adjusting all of its ancestors by adding
857 LENGTH to them.
858
859 If POSITION is the first character of an interval, meaning that point
860 is actually between the two intervals, make the new text belong to
861 the interval which is "sticky".
862
863 If both intervals are "sticky", then make them belong to the left-most
864 interval. Another possibility would be to create a new interval for
865 this text, and make it have the merged properties of both ends. */
866
867 static INTERVAL
868 adjust_intervals_for_insertion (tree, position, length)
869 INTERVAL tree;
870 int position, length;
871 {
872 register INTERVAL i;
873 register INTERVAL temp;
874 int eobp = 0;
875 Lisp_Object parent;
876 int offset;
877
878 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
879 abort ();
880
881 GET_INTERVAL_OBJECT (parent, tree);
882 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
883
884 /* If inserting at point-max of a buffer, that position will be out
885 of range. Remember that buffer positions are 1-based. */
886 if (position >= TOTAL_LENGTH (tree) + offset)
887 {
888 position = TOTAL_LENGTH (tree) + offset;
889 eobp = 1;
890 }
891
892 i = find_interval (tree, position);
893
894 /* If in middle of an interval which is not sticky either way,
895 we must not just give its properties to the insertion.
896 So split this interval at the insertion point.
897
898 Originally, the if condition here was this:
899 (! (position == i->position || eobp)
900 && END_NONSTICKY_P (i)
901 && FRONT_NONSTICKY_P (i))
902 But, these macros are now unreliable because of introduction of
903 Vtext_property_default_nonsticky. So, we always check properties
904 one by one if POSITION is in middle of an interval. */
905 if (! (position == i->position || eobp))
906 {
907 Lisp_Object tail;
908 Lisp_Object front, rear;
909
910 tail = i->plist;
911
912 /* Properties font-sticky and rear-nonsticky override
913 Vtext_property_default_nonsticky. So, if they are t, we can
914 skip one by one checking of properties. */
915 rear = textget (i->plist, Qrear_nonsticky);
916 if (! CONSP (rear) && ! NILP (rear))
917 {
918 /* All properties are nonsticky. We split the interval. */
919 goto check_done;
920 }
921 front = textget (i->plist, Qfront_sticky);
922 if (! CONSP (front) && ! NILP (front))
923 {
924 /* All properties are sticky. We don't split the interval. */
925 tail = Qnil;
926 goto check_done;
927 }
928
929 /* Does any actual property pose an actual problem? We break
930 the loop if we find a nonsticky property. */
931 for (; CONSP (tail); tail = Fcdr (XCDR (tail)))
932 {
933 Lisp_Object prop, tmp;
934 prop = XCAR (tail);
935
936 /* Is this particular property front-sticky? */
937 if (CONSP (front) && ! NILP (Fmemq (prop, front)))
938 continue;
939
940 /* Is this particular property rear-nonsticky? */
941 if (CONSP (rear) && ! NILP (Fmemq (prop, rear)))
942 break;
943
944 /* Is this particular property recorded as sticky or
945 nonsticky in Vtext_property_default_nonsticky? */
946 tmp = Fassq (prop, Vtext_property_default_nonsticky);
947 if (CONSP (tmp))
948 {
949 if (NILP (tmp))
950 continue;
951 break;
952 }
953
954 /* By default, a text property is rear-sticky, thus we
955 continue the loop. */
956 }
957
958 check_done:
959 /* If any property is a real problem, split the interval. */
960 if (! NILP (tail))
961 {
962 temp = split_interval_right (i, position - i->position);
963 copy_properties (i, temp);
964 i = temp;
965 }
966 }
967
968 /* If we are positioned between intervals, check the stickiness of
969 both of them. We have to do this too, if we are at BEG or Z. */
970 if (position == i->position || eobp)
971 {
972 register INTERVAL prev;
973
974 if (position == BEG)
975 prev = 0;
976 else if (eobp)
977 {
978 prev = i;
979 i = 0;
980 }
981 else
982 prev = previous_interval (i);
983
984 /* Even if we are positioned between intervals, we default
985 to the left one if it exists. We extend it now and split
986 off a part later, if stickiness demands it. */
987 for (temp = prev ? prev : i; temp; temp = INTERVAL_PARENT_OR_NULL (temp))
988 {
989 temp->total_length += length;
990 temp = balance_possible_root_interval (temp);
991 }
992
993 /* If at least one interval has sticky properties,
994 we check the stickiness property by property.
995
996 Originally, the if condition here was this:
997 (END_NONSTICKY_P (prev) || FRONT_STICKY_P (i))
998 But, these macros are now unreliable because of introduction
999 of Vtext_property_default_nonsticky. So, we always have to
1000 check stickiness of properties one by one. If cache of
1001 stickiness is implemented in the future, we may be able to
1002 use those macros again. */
1003 if (1)
1004 {
1005 Lisp_Object pleft, pright;
1006 struct interval newi;
1007
1008 pleft = NULL_INTERVAL_P (prev) ? Qnil : prev->plist;
1009 pright = NULL_INTERVAL_P (i) ? Qnil : i->plist;
1010 newi.plist = merge_properties_sticky (pleft, pright);
1011
1012 if (! prev) /* i.e. position == BEG */
1013 {
1014 if (! intervals_equal (i, &newi))
1015 {
1016 i = split_interval_left (i, length);
1017 i->plist = newi.plist;
1018 }
1019 }
1020 else if (! intervals_equal (prev, &newi))
1021 {
1022 prev = split_interval_right (prev,
1023 position - prev->position);
1024 prev->plist = newi.plist;
1025 if (! NULL_INTERVAL_P (i)
1026 && intervals_equal (prev, i))
1027 merge_interval_right (prev);
1028 }
1029
1030 /* We will need to update the cache here later. */
1031 }
1032 else if (! prev && ! NILP (i->plist))
1033 {
1034 /* Just split off a new interval at the left.
1035 Since I wasn't front-sticky, the empty plist is ok. */
1036 i = split_interval_left (i, length);
1037 }
1038 }
1039
1040 /* Otherwise just extend the interval. */
1041 else
1042 {
1043 for (temp = i; temp; temp = INTERVAL_PARENT_OR_NULL (temp))
1044 {
1045 temp->total_length += length;
1046 temp = balance_possible_root_interval (temp);
1047 }
1048 }
1049
1050 return tree;
1051 }
1052
1053 /* Any property might be front-sticky on the left, rear-sticky on the left,
1054 front-sticky on the right, or rear-sticky on the right; the 16 combinations
1055 can be arranged in a matrix with rows denoting the left conditions and
1056 columns denoting the right conditions:
1057 _ __ _
1058 _ FR FR FR FR
1059 FR__ 0 1 2 3
1060 _FR 4 5 6 7
1061 FR 8 9 A B
1062 FR C D E F
1063
1064 left-props = '(front-sticky (p8 p9 pa pb pc pd pe pf)
1065 rear-nonsticky (p4 p5 p6 p7 p8 p9 pa pb)
1066 p0 L p1 L p2 L p3 L p4 L p5 L p6 L p7 L
1067 p8 L p9 L pa L pb L pc L pd L pe L pf L)
1068 right-props = '(front-sticky (p2 p3 p6 p7 pa pb pe pf)
1069 rear-nonsticky (p1 p2 p5 p6 p9 pa pd pe)
1070 p0 R p1 R p2 R p3 R p4 R p5 R p6 R p7 R
1071 p8 R p9 R pa R pb R pc R pd R pe R pf R)
1072
1073 We inherit from whoever has a sticky side facing us. If both sides
1074 do (cases 2, 3, E, and F), then we inherit from whichever side has a
1075 non-nil value for the current property. If both sides do, then we take
1076 from the left.
1077
1078 When we inherit a property, we get its stickiness as well as its value.
1079 So, when we merge the above two lists, we expect to get this:
1080
1081 result = '(front-sticky (p6 p7 pa pb pc pd pe pf)
1082 rear-nonsticky (p6 pa)
1083 p0 L p1 L p2 L p3 L p6 R p7 R
1084 pa R pb R pc L pd L pe L pf L)
1085
1086 The optimizable special cases are:
1087 left rear-nonsticky = nil, right front-sticky = nil (inherit left)
1088 left rear-nonsticky = t, right front-sticky = t (inherit right)
1089 left rear-nonsticky = t, right front-sticky = nil (inherit none)
1090 */
1091
1092 Lisp_Object
1093 merge_properties_sticky (pleft, pright)
1094 Lisp_Object pleft, pright;
1095 {
1096 register Lisp_Object props, front, rear;
1097 Lisp_Object lfront, lrear, rfront, rrear;
1098 register Lisp_Object tail1, tail2, sym, lval, rval, cat;
1099 int use_left, use_right;
1100 int lpresent;
1101
1102 props = Qnil;
1103 front = Qnil;
1104 rear = Qnil;
1105 lfront = textget (pleft, Qfront_sticky);
1106 lrear = textget (pleft, Qrear_nonsticky);
1107 rfront = textget (pright, Qfront_sticky);
1108 rrear = textget (pright, Qrear_nonsticky);
1109
1110 /* Go through each element of PRIGHT. */
1111 for (tail1 = pright; CONSP (tail1); tail1 = Fcdr (Fcdr (tail1)))
1112 {
1113 Lisp_Object tmp;
1114
1115 sym = Fcar (tail1);
1116
1117 /* Sticky properties get special treatment. */
1118 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1119 continue;
1120
1121 rval = Fcar (Fcdr (tail1));
1122 for (tail2 = pleft; CONSP (tail2); tail2 = Fcdr (Fcdr (tail2)))
1123 if (EQ (sym, Fcar (tail2)))
1124 break;
1125
1126 /* Indicate whether the property is explicitly defined on the left.
1127 (We know it is defined explicitly on the right
1128 because otherwise we don't get here.) */
1129 lpresent = ! NILP (tail2);
1130 lval = (NILP (tail2) ? Qnil : Fcar (Fcdr (tail2)));
1131
1132 /* Even if lrear or rfront say nothing about the stickiness of
1133 SYM, Vtext_property_default_nonsticky may give default
1134 stickiness to SYM. */
1135 tmp = Fassq (sym, Vtext_property_default_nonsticky);
1136 use_left = (lpresent
1137 && ! (TMEM (sym, lrear)
1138 || CONSP (tmp) && ! NILP (XCDR (tmp))));
1139 use_right = (TMEM (sym, rfront)
1140 || (CONSP (tmp) && NILP (XCDR (tmp))));
1141 if (use_left && use_right)
1142 {
1143 if (NILP (lval))
1144 use_left = 0;
1145 else if (NILP (rval))
1146 use_right = 0;
1147 }
1148 if (use_left)
1149 {
1150 /* We build props as (value sym ...) rather than (sym value ...)
1151 because we plan to nreverse it when we're done. */
1152 props = Fcons (lval, Fcons (sym, props));
1153 if (TMEM (sym, lfront))
1154 front = Fcons (sym, front);
1155 if (TMEM (sym, lrear))
1156 rear = Fcons (sym, rear);
1157 }
1158 else if (use_right)
1159 {
1160 props = Fcons (rval, Fcons (sym, props));
1161 if (TMEM (sym, rfront))
1162 front = Fcons (sym, front);
1163 if (TMEM (sym, rrear))
1164 rear = Fcons (sym, rear);
1165 }
1166 }
1167
1168 /* Now go through each element of PLEFT. */
1169 for (tail2 = pleft; CONSP (tail2); tail2 = Fcdr (Fcdr (tail2)))
1170 {
1171 Lisp_Object tmp;
1172
1173 sym = Fcar (tail2);
1174
1175 /* Sticky properties get special treatment. */
1176 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1177 continue;
1178
1179 /* If sym is in PRIGHT, we've already considered it. */
1180 for (tail1 = pright; CONSP (tail1); tail1 = Fcdr (Fcdr (tail1)))
1181 if (EQ (sym, Fcar (tail1)))
1182 break;
1183 if (! NILP (tail1))
1184 continue;
1185
1186 lval = Fcar (Fcdr (tail2));
1187
1188 /* Even if lrear or rfront say nothing about the stickiness of
1189 SYM, Vtext_property_default_nonsticky may give default
1190 stickiness to SYM. */
1191 tmp = Fassq (sym, Vtext_property_default_nonsticky);
1192
1193 /* Since rval is known to be nil in this loop, the test simplifies. */
1194 if (! (TMEM (sym, lrear) || (CONSP (tmp) && ! NILP (XCDR (tmp)))))
1195 {
1196 props = Fcons (lval, Fcons (sym, props));
1197 if (TMEM (sym, lfront))
1198 front = Fcons (sym, front);
1199 }
1200 else if (TMEM (sym, rfront) || (CONSP (tmp) && NILP (XCDR (tmp))))
1201 {
1202 /* The value is nil, but we still inherit the stickiness
1203 from the right. */
1204 front = Fcons (sym, front);
1205 if (TMEM (sym, rrear))
1206 rear = Fcons (sym, rear);
1207 }
1208 }
1209 props = Fnreverse (props);
1210 if (! NILP (rear))
1211 props = Fcons (Qrear_nonsticky, Fcons (Fnreverse (rear), props));
1212
1213 cat = textget (props, Qcategory);
1214 if (! NILP (front)
1215 &&
1216 /* If we have inherited a front-stick category property that is t,
1217 we don't need to set up a detailed one. */
1218 ! (! NILP (cat) && SYMBOLP (cat)
1219 && EQ (Fget (cat, Qfront_sticky), Qt)))
1220 props = Fcons (Qfront_sticky, Fcons (Fnreverse (front), props));
1221 return props;
1222 }
1223
1224 \f
1225 /* Delete an node I from its interval tree by merging its subtrees
1226 into one subtree which is then returned. Caller is responsible for
1227 storing the resulting subtree into its parent. */
1228
1229 static INTERVAL
1230 delete_node (i)
1231 register INTERVAL i;
1232 {
1233 register INTERVAL migrate, this;
1234 register int migrate_amt;
1235
1236 if (NULL_INTERVAL_P (i->left))
1237 return i->right;
1238 if (NULL_INTERVAL_P (i->right))
1239 return i->left;
1240
1241 migrate = i->left;
1242 migrate_amt = i->left->total_length;
1243 this = i->right;
1244 this->total_length += migrate_amt;
1245 while (! NULL_INTERVAL_P (this->left))
1246 {
1247 this = this->left;
1248 this->total_length += migrate_amt;
1249 }
1250 this->left = migrate;
1251 SET_INTERVAL_PARENT (migrate, this);
1252
1253 return i->right;
1254 }
1255
1256 /* Delete interval I from its tree by calling `delete_node'
1257 and properly connecting the resultant subtree.
1258
1259 I is presumed to be empty; that is, no adjustments are made
1260 for the length of I. */
1261
1262 void
1263 delete_interval (i)
1264 register INTERVAL i;
1265 {
1266 register INTERVAL parent;
1267 int amt = LENGTH (i);
1268
1269 if (amt > 0) /* Only used on zero-length intervals now. */
1270 abort ();
1271
1272 if (ROOT_INTERVAL_P (i))
1273 {
1274 Lisp_Object owner;
1275 GET_INTERVAL_OBJECT (owner, i);
1276 parent = delete_node (i);
1277 if (! NULL_INTERVAL_P (parent))
1278 SET_INTERVAL_OBJECT (parent, owner);
1279
1280 if (BUFFERP (owner))
1281 BUF_INTERVALS (XBUFFER (owner)) = parent;
1282 else if (STRINGP (owner))
1283 XSTRING (owner)->intervals = parent;
1284 else
1285 abort ();
1286
1287 return;
1288 }
1289
1290 parent = INTERVAL_PARENT (i);
1291 if (AM_LEFT_CHILD (i))
1292 {
1293 parent->left = delete_node (i);
1294 if (! NULL_INTERVAL_P (parent->left))
1295 SET_INTERVAL_PARENT (parent->left, parent);
1296 }
1297 else
1298 {
1299 parent->right = delete_node (i);
1300 if (! NULL_INTERVAL_P (parent->right))
1301 SET_INTERVAL_PARENT (parent->right, parent);
1302 }
1303 }
1304 \f
1305 /* Find the interval in TREE corresponding to the relative position
1306 FROM and delete as much as possible of AMOUNT from that interval.
1307 Return the amount actually deleted, and if the interval was
1308 zeroed-out, delete that interval node from the tree.
1309
1310 Note that FROM is actually origin zero, aka relative to the
1311 leftmost edge of tree. This is appropriate since we call ourselves
1312 recursively on subtrees.
1313
1314 Do this by recursing down TREE to the interval in question, and
1315 deleting the appropriate amount of text. */
1316
1317 static int
1318 interval_deletion_adjustment (tree, from, amount)
1319 register INTERVAL tree;
1320 register int from, amount;
1321 {
1322 register int relative_position = from;
1323
1324 if (NULL_INTERVAL_P (tree))
1325 return 0;
1326
1327 /* Left branch */
1328 if (relative_position < LEFT_TOTAL_LENGTH (tree))
1329 {
1330 int subtract = interval_deletion_adjustment (tree->left,
1331 relative_position,
1332 amount);
1333 tree->total_length -= subtract;
1334 return subtract;
1335 }
1336 /* Right branch */
1337 else if (relative_position >= (TOTAL_LENGTH (tree)
1338 - RIGHT_TOTAL_LENGTH (tree)))
1339 {
1340 int subtract;
1341
1342 relative_position -= (tree->total_length
1343 - RIGHT_TOTAL_LENGTH (tree));
1344 subtract = interval_deletion_adjustment (tree->right,
1345 relative_position,
1346 amount);
1347 tree->total_length -= subtract;
1348 return subtract;
1349 }
1350 /* Here -- this node. */
1351 else
1352 {
1353 /* How much can we delete from this interval? */
1354 int my_amount = ((tree->total_length
1355 - RIGHT_TOTAL_LENGTH (tree))
1356 - relative_position);
1357
1358 if (amount > my_amount)
1359 amount = my_amount;
1360
1361 tree->total_length -= amount;
1362 if (LENGTH (tree) == 0)
1363 delete_interval (tree);
1364
1365 return amount;
1366 }
1367
1368 /* Never reach here. */
1369 }
1370
1371 /* Effect the adjustments necessary to the interval tree of BUFFER to
1372 correspond to the deletion of LENGTH characters from that buffer
1373 text. The deletion is effected at position START (which is a
1374 buffer position, i.e. origin 1). */
1375
1376 static void
1377 adjust_intervals_for_deletion (buffer, start, length)
1378 struct buffer *buffer;
1379 int start, length;
1380 {
1381 register int left_to_delete = length;
1382 register INTERVAL tree = BUF_INTERVALS (buffer);
1383 Lisp_Object parent;
1384 int offset;
1385
1386 GET_INTERVAL_OBJECT (parent, tree);
1387 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
1388
1389 if (NULL_INTERVAL_P (tree))
1390 return;
1391
1392 if (start > offset + TOTAL_LENGTH (tree)
1393 || start + length > offset + TOTAL_LENGTH (tree))
1394 abort ();
1395
1396 if (length == TOTAL_LENGTH (tree))
1397 {
1398 BUF_INTERVALS (buffer) = NULL_INTERVAL;
1399 return;
1400 }
1401
1402 if (ONLY_INTERVAL_P (tree))
1403 {
1404 tree->total_length -= length;
1405 return;
1406 }
1407
1408 if (start > offset + TOTAL_LENGTH (tree))
1409 start = offset + TOTAL_LENGTH (tree);
1410 while (left_to_delete > 0)
1411 {
1412 left_to_delete -= interval_deletion_adjustment (tree, start - offset,
1413 left_to_delete);
1414 tree = BUF_INTERVALS (buffer);
1415 if (left_to_delete == tree->total_length)
1416 {
1417 BUF_INTERVALS (buffer) = NULL_INTERVAL;
1418 return;
1419 }
1420 }
1421 }
1422 \f
1423 /* Make the adjustments necessary to the interval tree of BUFFER to
1424 represent an addition or deletion of LENGTH characters starting
1425 at position START. Addition or deletion is indicated by the sign
1426 of LENGTH. */
1427
1428 INLINE void
1429 offset_intervals (buffer, start, length)
1430 struct buffer *buffer;
1431 int start, length;
1432 {
1433 if (NULL_INTERVAL_P (BUF_INTERVALS (buffer)) || length == 0)
1434 return;
1435
1436 if (length > 0)
1437 adjust_intervals_for_insertion (BUF_INTERVALS (buffer), start, length);
1438 else
1439 adjust_intervals_for_deletion (buffer, start, -length);
1440 }
1441 \f
1442 /* Merge interval I with its lexicographic successor. The resulting
1443 interval is returned, and has the properties of the original
1444 successor. The properties of I are lost. I is removed from the
1445 interval tree.
1446
1447 IMPORTANT:
1448 The caller must verify that this is not the last (rightmost)
1449 interval. */
1450
1451 INTERVAL
1452 merge_interval_right (i)
1453 register INTERVAL i;
1454 {
1455 register int absorb = LENGTH (i);
1456 register INTERVAL successor;
1457
1458 /* Zero out this interval. */
1459 i->total_length -= absorb;
1460
1461 /* Find the succeeding interval. */
1462 if (! NULL_RIGHT_CHILD (i)) /* It's below us. Add absorb
1463 as we descend. */
1464 {
1465 successor = i->right;
1466 while (! NULL_LEFT_CHILD (successor))
1467 {
1468 successor->total_length += absorb;
1469 successor = successor->left;
1470 }
1471
1472 successor->total_length += absorb;
1473 delete_interval (i);
1474 return successor;
1475 }
1476
1477 successor = i;
1478 while (! NULL_PARENT (successor)) /* It's above us. Subtract as
1479 we ascend. */
1480 {
1481 if (AM_LEFT_CHILD (successor))
1482 {
1483 successor = INTERVAL_PARENT (successor);
1484 delete_interval (i);
1485 return successor;
1486 }
1487
1488 successor = INTERVAL_PARENT (successor);
1489 successor->total_length -= absorb;
1490 }
1491
1492 /* This must be the rightmost or last interval and cannot
1493 be merged right. The caller should have known. */
1494 abort ();
1495 }
1496 \f
1497 /* Merge interval I with its lexicographic predecessor. The resulting
1498 interval is returned, and has the properties of the original predecessor.
1499 The properties of I are lost. Interval node I is removed from the tree.
1500
1501 IMPORTANT:
1502 The caller must verify that this is not the first (leftmost) interval. */
1503
1504 INTERVAL
1505 merge_interval_left (i)
1506 register INTERVAL i;
1507 {
1508 register int absorb = LENGTH (i);
1509 register INTERVAL predecessor;
1510
1511 /* Zero out this interval. */
1512 i->total_length -= absorb;
1513
1514 /* Find the preceding interval. */
1515 if (! NULL_LEFT_CHILD (i)) /* It's below us. Go down,
1516 adding ABSORB as we go. */
1517 {
1518 predecessor = i->left;
1519 while (! NULL_RIGHT_CHILD (predecessor))
1520 {
1521 predecessor->total_length += absorb;
1522 predecessor = predecessor->right;
1523 }
1524
1525 predecessor->total_length += absorb;
1526 delete_interval (i);
1527 return predecessor;
1528 }
1529
1530 predecessor = i;
1531 while (! NULL_PARENT (predecessor)) /* It's above us. Go up,
1532 subtracting ABSORB. */
1533 {
1534 if (AM_RIGHT_CHILD (predecessor))
1535 {
1536 predecessor = INTERVAL_PARENT (predecessor);
1537 delete_interval (i);
1538 return predecessor;
1539 }
1540
1541 predecessor = INTERVAL_PARENT (predecessor);
1542 predecessor->total_length -= absorb;
1543 }
1544
1545 /* This must be the leftmost or first interval and cannot
1546 be merged left. The caller should have known. */
1547 abort ();
1548 }
1549 \f
1550 /* Make an exact copy of interval tree SOURCE which descends from
1551 PARENT. This is done by recursing through SOURCE, copying
1552 the current interval and its properties, and then adjusting
1553 the pointers of the copy. */
1554
1555 static INTERVAL
1556 reproduce_tree (source, parent)
1557 INTERVAL source, parent;
1558 {
1559 register INTERVAL t = make_interval ();
1560
1561 bcopy (source, t, INTERVAL_SIZE);
1562 copy_properties (source, t);
1563 SET_INTERVAL_PARENT (t, parent);
1564 if (! NULL_LEFT_CHILD (source))
1565 t->left = reproduce_tree (source->left, t);
1566 if (! NULL_RIGHT_CHILD (source))
1567 t->right = reproduce_tree (source->right, t);
1568
1569 return t;
1570 }
1571
1572 static INTERVAL
1573 reproduce_tree_obj (source, parent)
1574 INTERVAL source;
1575 Lisp_Object parent;
1576 {
1577 register INTERVAL t = make_interval ();
1578
1579 bcopy (source, t, INTERVAL_SIZE);
1580 copy_properties (source, t);
1581 SET_INTERVAL_OBJECT (t, parent);
1582 if (! NULL_LEFT_CHILD (source))
1583 t->left = reproduce_tree (source->left, t);
1584 if (! NULL_RIGHT_CHILD (source))
1585 t->right = reproduce_tree (source->right, t);
1586
1587 return t;
1588 }
1589
1590 #if 0
1591 /* Nobody calls this. Perhaps it's a vestige of an earlier design. */
1592
1593 /* Make a new interval of length LENGTH starting at START in the
1594 group of intervals INTERVALS, which is actually an interval tree.
1595 Returns the new interval.
1596
1597 Generate an error if the new positions would overlap an existing
1598 interval. */
1599
1600 static INTERVAL
1601 make_new_interval (intervals, start, length)
1602 INTERVAL intervals;
1603 int start, length;
1604 {
1605 INTERVAL slot;
1606
1607 slot = find_interval (intervals, start);
1608 if (start + length > slot->position + LENGTH (slot))
1609 error ("Interval would overlap");
1610
1611 if (start == slot->position && length == LENGTH (slot))
1612 return slot;
1613
1614 if (slot->position == start)
1615 {
1616 /* New right node. */
1617 split_interval_right (slot, length);
1618 return slot;
1619 }
1620
1621 if (slot->position + LENGTH (slot) == start + length)
1622 {
1623 /* New left node. */
1624 split_interval_left (slot, LENGTH (slot) - length);
1625 return slot;
1626 }
1627
1628 /* Convert interval SLOT into three intervals. */
1629 split_interval_left (slot, start - slot->position);
1630 split_interval_right (slot, length);
1631 return slot;
1632 }
1633 #endif
1634 \f
1635 /* Insert the intervals of SOURCE into BUFFER at POSITION.
1636 LENGTH is the length of the text in SOURCE.
1637
1638 The `position' field of the SOURCE intervals is assumed to be
1639 consistent with its parent; therefore, SOURCE must be an
1640 interval tree made with copy_interval or must be the whole
1641 tree of a buffer or a string.
1642
1643 This is used in insdel.c when inserting Lisp_Strings into the
1644 buffer. The text corresponding to SOURCE is already in the buffer
1645 when this is called. The intervals of new tree are a copy of those
1646 belonging to the string being inserted; intervals are never
1647 shared.
1648
1649 If the inserted text had no intervals associated, and we don't
1650 want to inherit the surrounding text's properties, this function
1651 simply returns -- offset_intervals should handle placing the
1652 text in the correct interval, depending on the sticky bits.
1653
1654 If the inserted text had properties (intervals), then there are two
1655 cases -- either insertion happened in the middle of some interval,
1656 or between two intervals.
1657
1658 If the text goes into the middle of an interval, then new
1659 intervals are created in the middle with only the properties of
1660 the new text, *unless* the macro MERGE_INSERTIONS is true, in
1661 which case the new text has the union of its properties and those
1662 of the text into which it was inserted.
1663
1664 If the text goes between two intervals, then if neither interval
1665 had its appropriate sticky property set (front_sticky, rear_sticky),
1666 the new text has only its properties. If one of the sticky properties
1667 is set, then the new text "sticks" to that region and its properties
1668 depend on merging as above. If both the preceding and succeeding
1669 intervals to the new text are "sticky", then the new text retains
1670 only its properties, as if neither sticky property were set. Perhaps
1671 we should consider merging all three sets of properties onto the new
1672 text... */
1673
1674 void
1675 graft_intervals_into_buffer (source, position, length, buffer, inherit)
1676 INTERVAL source;
1677 int position, length;
1678 struct buffer *buffer;
1679 int inherit;
1680 {
1681 register INTERVAL under, over, this, prev;
1682 register INTERVAL tree;
1683
1684 tree = BUF_INTERVALS (buffer);
1685
1686 /* If the new text has no properties, it becomes part of whatever
1687 interval it was inserted into. */
1688 if (NULL_INTERVAL_P (source))
1689 {
1690 Lisp_Object buf;
1691 if (!inherit && ! NULL_INTERVAL_P (tree))
1692 {
1693 int saved_inhibit_modification_hooks = inhibit_modification_hooks;
1694 XSETBUFFER (buf, buffer);
1695 inhibit_modification_hooks = 1;
1696 Fset_text_properties (make_number (position),
1697 make_number (position + length),
1698 Qnil, buf);
1699 inhibit_modification_hooks = saved_inhibit_modification_hooks;
1700 }
1701 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer)))
1702 BUF_INTERVALS (buffer) = balance_an_interval (BUF_INTERVALS (buffer));
1703 return;
1704 }
1705
1706 if (NULL_INTERVAL_P (tree))
1707 {
1708 /* The inserted text constitutes the whole buffer, so
1709 simply copy over the interval structure. */
1710 if ((BUF_Z (buffer) - BUF_BEG (buffer)) == TOTAL_LENGTH (source))
1711 {
1712 Lisp_Object buf;
1713 XSETBUFFER (buf, buffer);
1714 BUF_INTERVALS (buffer) = reproduce_tree_obj (source, buf);
1715 BUF_INTERVALS (buffer)->position = 1;
1716
1717 /* Explicitly free the old tree here? */
1718
1719 return;
1720 }
1721
1722 /* Create an interval tree in which to place a copy
1723 of the intervals of the inserted string. */
1724 {
1725 Lisp_Object buf;
1726 XSETBUFFER (buf, buffer);
1727 tree = create_root_interval (buf);
1728 }
1729 }
1730 else if (TOTAL_LENGTH (tree) == TOTAL_LENGTH (source))
1731 /* If the buffer contains only the new string, but
1732 there was already some interval tree there, then it may be
1733 some zero length intervals. Eventually, do something clever
1734 about inserting properly. For now, just waste the old intervals. */
1735 {
1736 BUF_INTERVALS (buffer) = reproduce_tree (source, INTERVAL_PARENT (tree));
1737 BUF_INTERVALS (buffer)->position = 1;
1738 /* Explicitly free the old tree here. */
1739
1740 return;
1741 }
1742 /* Paranoia -- the text has already been added, so this buffer
1743 should be of non-zero length. */
1744 else if (TOTAL_LENGTH (tree) == 0)
1745 abort ();
1746
1747 this = under = find_interval (tree, position);
1748 if (NULL_INTERVAL_P (under)) /* Paranoia */
1749 abort ();
1750 over = find_interval (source, interval_start_pos (source));
1751
1752 /* Here for insertion in the middle of an interval.
1753 Split off an equivalent interval to the right,
1754 then don't bother with it any more. */
1755
1756 if (position > under->position)
1757 {
1758 INTERVAL end_unchanged
1759 = split_interval_left (this, position - under->position);
1760 copy_properties (under, end_unchanged);
1761 under->position = position;
1762 }
1763 else
1764 {
1765 /* This call may have some effect because previous_interval may
1766 update `position' fields of intervals. Thus, don't ignore it
1767 for the moment. Someone please tell me the truth (K.Handa). */
1768 prev = previous_interval (under);
1769 #if 0
1770 /* But, this code surely has no effect. And, anyway,
1771 END_NONSTICKY_P is unreliable now. */
1772 if (prev && !END_NONSTICKY_P (prev))
1773 prev = 0;
1774 #endif /* 0 */
1775 }
1776
1777 /* Insertion is now at beginning of UNDER. */
1778
1779 /* The inserted text "sticks" to the interval `under',
1780 which means it gets those properties.
1781 The properties of under are the result of
1782 adjust_intervals_for_insertion, so stickiness has
1783 already been taken care of. */
1784
1785 while (! NULL_INTERVAL_P (over))
1786 {
1787 if (LENGTH (over) < LENGTH (under))
1788 {
1789 this = split_interval_left (under, LENGTH (over));
1790 copy_properties (under, this);
1791 }
1792 else
1793 this = under;
1794 copy_properties (over, this);
1795 if (inherit)
1796 merge_properties (over, this);
1797 else
1798 copy_properties (over, this);
1799 over = next_interval (over);
1800 }
1801
1802 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer)))
1803 BUF_INTERVALS (buffer) = balance_an_interval (BUF_INTERVALS (buffer));
1804 return;
1805 }
1806
1807 /* Get the value of property PROP from PLIST,
1808 which is the plist of an interval.
1809 We check for direct properties, for categories with property PROP,
1810 and for PROP appearing on the default-text-properties list. */
1811
1812 Lisp_Object
1813 textget (plist, prop)
1814 Lisp_Object plist;
1815 register Lisp_Object prop;
1816 {
1817 register Lisp_Object tail, fallback;
1818 fallback = Qnil;
1819
1820 for (tail = plist; !NILP (tail); tail = Fcdr (Fcdr (tail)))
1821 {
1822 register Lisp_Object tem;
1823 tem = Fcar (tail);
1824 if (EQ (prop, tem))
1825 return Fcar (Fcdr (tail));
1826 if (EQ (tem, Qcategory))
1827 {
1828 tem = Fcar (Fcdr (tail));
1829 if (SYMBOLP (tem))
1830 fallback = Fget (tem, prop);
1831 }
1832 }
1833
1834 if (! NILP (fallback))
1835 return fallback;
1836 if (CONSP (Vdefault_text_properties))
1837 return Fplist_get (Vdefault_text_properties, prop);
1838 return Qnil;
1839 }
1840
1841 \f
1842 /* Set point "temporarily", without checking any text properties. */
1843
1844 INLINE void
1845 temp_set_point (buffer, charpos)
1846 struct buffer *buffer;
1847 int charpos;
1848 {
1849 temp_set_point_both (buffer, charpos,
1850 buf_charpos_to_bytepos (buffer, charpos));
1851 }
1852
1853 /* Set point in BUFFER "temporarily" to CHARPOS, which corresponds to
1854 byte position BYTEPOS. */
1855
1856 INLINE void
1857 temp_set_point_both (buffer, charpos, bytepos)
1858 int charpos, bytepos;
1859 struct buffer *buffer;
1860 {
1861 /* In a single-byte buffer, the two positions must be equal. */
1862 if (BUF_ZV (buffer) == BUF_ZV_BYTE (buffer)
1863 && charpos != bytepos)
1864 abort ();
1865
1866 if (charpos > bytepos)
1867 abort ();
1868
1869 if (charpos > BUF_ZV (buffer) || charpos < BUF_BEGV (buffer))
1870 abort ();
1871
1872 BUF_PT_BYTE (buffer) = bytepos;
1873 BUF_PT (buffer) = charpos;
1874 }
1875
1876 /* Set point in BUFFER to CHARPOS. If the target position is
1877 before an intangible character, move to an ok place. */
1878
1879 void
1880 set_point (buffer, charpos)
1881 register struct buffer *buffer;
1882 register int charpos;
1883 {
1884 set_point_both (buffer, charpos, buf_charpos_to_bytepos (buffer, charpos));
1885 }
1886
1887 /* Set point in BUFFER to CHARPOS, which corresponds to byte
1888 position BYTEPOS. If the target position is
1889 before an intangible character, move to an ok place. */
1890
1891 void
1892 set_point_both (buffer, charpos, bytepos)
1893 register struct buffer *buffer;
1894 register int charpos, bytepos;
1895 {
1896 register INTERVAL to, from, toprev, fromprev;
1897 int buffer_point;
1898 int old_position = BUF_PT (buffer);
1899 int backwards = (charpos < old_position ? 1 : 0);
1900 int have_overlays;
1901 int original_position;
1902
1903 buffer->point_before_scroll = Qnil;
1904
1905 if (charpos == BUF_PT (buffer))
1906 return;
1907
1908 /* In a single-byte buffer, the two positions must be equal. */
1909 if (BUF_ZV (buffer) == BUF_ZV_BYTE (buffer)
1910 && charpos != bytepos)
1911 abort ();
1912
1913 /* Check this now, before checking if the buffer has any intervals.
1914 That way, we can catch conditions which break this sanity check
1915 whether or not there are intervals in the buffer. */
1916 if (charpos > BUF_ZV (buffer) || charpos < BUF_BEGV (buffer))
1917 abort ();
1918
1919 have_overlays = (! NILP (buffer->overlays_before)
1920 || ! NILP (buffer->overlays_after));
1921
1922 /* If we have no text properties and overlays,
1923 then we can do it quickly. */
1924 if (NULL_INTERVAL_P (BUF_INTERVALS (buffer)) && ! have_overlays)
1925 {
1926 temp_set_point_both (buffer, charpos, bytepos);
1927 return;
1928 }
1929
1930 /* Set TO to the interval containing the char after CHARPOS,
1931 and TOPREV to the interval containing the char before CHARPOS.
1932 Either one may be null. They may be equal. */
1933 to = find_interval (BUF_INTERVALS (buffer), charpos);
1934 if (charpos == BUF_BEGV (buffer))
1935 toprev = 0;
1936 else if (to && to->position == charpos)
1937 toprev = previous_interval (to);
1938 else
1939 toprev = to;
1940
1941 buffer_point = (BUF_PT (buffer) == BUF_ZV (buffer)
1942 ? BUF_ZV (buffer) - 1
1943 : BUF_PT (buffer));
1944
1945 /* Set FROM to the interval containing the char after PT,
1946 and FROMPREV to the interval containing the char before PT.
1947 Either one may be null. They may be equal. */
1948 /* We could cache this and save time. */
1949 from = find_interval (BUF_INTERVALS (buffer), buffer_point);
1950 if (buffer_point == BUF_BEGV (buffer))
1951 fromprev = 0;
1952 else if (from && from->position == BUF_PT (buffer))
1953 fromprev = previous_interval (from);
1954 else if (buffer_point != BUF_PT (buffer))
1955 fromprev = from, from = 0;
1956 else
1957 fromprev = from;
1958
1959 /* Moving within an interval. */
1960 if (to == from && toprev == fromprev && INTERVAL_VISIBLE_P (to)
1961 && ! have_overlays)
1962 {
1963 temp_set_point_both (buffer, charpos, bytepos);
1964 return;
1965 }
1966
1967 original_position = charpos;
1968
1969 /* If the new position is between two intangible characters
1970 with the same intangible property value,
1971 move forward or backward until a change in that property. */
1972 if (NILP (Vinhibit_point_motion_hooks)
1973 && ((! NULL_INTERVAL_P (to) && ! NULL_INTERVAL_P (toprev))
1974 || have_overlays)
1975 /* Intangibility never stops us from positioning at the beginning
1976 or end of the buffer, so don't bother checking in that case. */
1977 && charpos != BEGV && charpos != ZV)
1978 {
1979 Lisp_Object intangible_propval;
1980 Lisp_Object pos;
1981
1982 XSETINT (pos, charpos);
1983
1984 if (backwards)
1985 {
1986 intangible_propval = Fget_char_property (make_number (charpos),
1987 Qintangible, Qnil);
1988
1989 /* If following char is intangible,
1990 skip back over all chars with matching intangible property. */
1991 if (! NILP (intangible_propval))
1992 while (XINT (pos) > BUF_BEGV (buffer)
1993 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
1994 Qintangible, Qnil),
1995 intangible_propval))
1996 pos = Fprevious_char_property_change (pos, Qnil);
1997 }
1998 else
1999 {
2000 intangible_propval = Fget_char_property (make_number (charpos - 1),
2001 Qintangible, Qnil);
2002
2003 /* If following char is intangible,
2004 skip forward over all chars with matching intangible property. */
2005 if (! NILP (intangible_propval))
2006 while (XINT (pos) < BUF_ZV (buffer)
2007 && EQ (Fget_char_property (pos, Qintangible, Qnil),
2008 intangible_propval))
2009 pos = Fnext_char_property_change (pos, Qnil);
2010
2011 }
2012
2013 charpos = XINT (pos);
2014 bytepos = buf_charpos_to_bytepos (buffer, charpos);
2015 }
2016
2017 if (charpos != original_position)
2018 {
2019 /* Set TO to the interval containing the char after CHARPOS,
2020 and TOPREV to the interval containing the char before CHARPOS.
2021 Either one may be null. They may be equal. */
2022 to = find_interval (BUF_INTERVALS (buffer), charpos);
2023 if (charpos == BUF_BEGV (buffer))
2024 toprev = 0;
2025 else if (to && to->position == charpos)
2026 toprev = previous_interval (to);
2027 else
2028 toprev = to;
2029 }
2030
2031 /* Here TO is the interval after the stopping point
2032 and TOPREV is the interval before the stopping point.
2033 One or the other may be null. */
2034
2035 temp_set_point_both (buffer, charpos, bytepos);
2036
2037 /* We run point-left and point-entered hooks here, iff the
2038 two intervals are not equivalent. These hooks take
2039 (old_point, new_point) as arguments. */
2040 if (NILP (Vinhibit_point_motion_hooks)
2041 && (! intervals_equal (from, to)
2042 || ! intervals_equal (fromprev, toprev)))
2043 {
2044 Lisp_Object leave_after, leave_before, enter_after, enter_before;
2045
2046 if (fromprev)
2047 leave_after = textget (fromprev->plist, Qpoint_left);
2048 else
2049 leave_after = Qnil;
2050 if (from)
2051 leave_before = textget (from->plist, Qpoint_left);
2052 else
2053 leave_before = Qnil;
2054
2055 if (toprev)
2056 enter_after = textget (toprev->plist, Qpoint_entered);
2057 else
2058 enter_after = Qnil;
2059 if (to)
2060 enter_before = textget (to->plist, Qpoint_entered);
2061 else
2062 enter_before = Qnil;
2063
2064 if (! EQ (leave_before, enter_before) && !NILP (leave_before))
2065 call2 (leave_before, make_number (old_position),
2066 make_number (charpos));
2067 if (! EQ (leave_after, enter_after) && !NILP (leave_after))
2068 call2 (leave_after, make_number (old_position),
2069 make_number (charpos));
2070
2071 if (! EQ (enter_before, leave_before) && !NILP (enter_before))
2072 call2 (enter_before, make_number (old_position),
2073 make_number (charpos));
2074 if (! EQ (enter_after, leave_after) && !NILP (enter_after))
2075 call2 (enter_after, make_number (old_position),
2076 make_number (charpos));
2077 }
2078 }
2079 \f
2080 /* Move point to POSITION, unless POSITION is inside an intangible
2081 segment that reaches all the way to point. */
2082
2083 void
2084 move_if_not_intangible (position)
2085 int position;
2086 {
2087 Lisp_Object pos;
2088 Lisp_Object intangible_propval;
2089
2090 XSETINT (pos, position);
2091
2092 if (! NILP (Vinhibit_point_motion_hooks))
2093 /* If intangible is inhibited, always move point to POSITION. */
2094 ;
2095 else if (PT < position && XINT (pos) < ZV)
2096 {
2097 /* We want to move forward, so check the text before POSITION. */
2098
2099 intangible_propval = Fget_char_property (pos,
2100 Qintangible, Qnil);
2101
2102 /* If following char is intangible,
2103 skip back over all chars with matching intangible property. */
2104 if (! NILP (intangible_propval))
2105 while (XINT (pos) > BEGV
2106 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
2107 Qintangible, Qnil),
2108 intangible_propval))
2109 pos = Fprevious_char_property_change (pos, Qnil);
2110 }
2111 else if (XINT (pos) > BEGV)
2112 {
2113 /* We want to move backward, so check the text after POSITION. */
2114
2115 intangible_propval = Fget_char_property (make_number (XINT (pos) - 1),
2116 Qintangible, Qnil);
2117
2118 /* If following char is intangible,
2119 skip forward over all chars with matching intangible property. */
2120 if (! NILP (intangible_propval))
2121 while (XINT (pos) < ZV
2122 && EQ (Fget_char_property (pos, Qintangible, Qnil),
2123 intangible_propval))
2124 pos = Fnext_char_property_change (pos, Qnil);
2125
2126 }
2127
2128 /* If the whole stretch between PT and POSITION isn't intangible,
2129 try moving to POSITION (which means we actually move farther
2130 if POSITION is inside of intangible text). */
2131
2132 if (XINT (pos) != PT)
2133 SET_PT (position);
2134 }
2135 \f
2136 /* If text at position POS has property PROP, set *VAL to the property
2137 value, *START and *END to the beginning and end of a region that
2138 has the same property, and return 1. Otherwise return 0.
2139
2140 OBJECT is the string or buffer to look for the property in;
2141 nil means the current buffer. */
2142
2143 int
2144 get_property_and_range (pos, prop, val, start, end, object)
2145 int pos;
2146 Lisp_Object prop, *val;
2147 int *start, *end;
2148 Lisp_Object object;
2149 {
2150 INTERVAL i, prev, next;
2151
2152 if (NILP (object))
2153 i = find_interval (BUF_INTERVALS (current_buffer), pos);
2154 else if (BUFFERP (object))
2155 i = find_interval (BUF_INTERVALS (XBUFFER (object)), pos);
2156 else if (STRINGP (object))
2157 i = find_interval (XSTRING (object)->intervals, pos);
2158 else
2159 abort ();
2160
2161 if (NULL_INTERVAL_P (i) || (i->position + LENGTH (i) <= pos))
2162 return 0;
2163 *val = textget (i->plist, prop);
2164 if (NILP (*val))
2165 return 0;
2166
2167 next = i; /* remember it in advance */
2168 prev = previous_interval (i);
2169 while (! NULL_INTERVAL_P (prev)
2170 && EQ (*val, textget (prev->plist, prop)))
2171 i = prev, prev = previous_interval (prev);
2172 *start = i->position;
2173
2174 next = next_interval (i);
2175 while (! NULL_INTERVAL_P (next)
2176 && EQ (*val, textget (next->plist, prop)))
2177 i = next, next = next_interval (next);
2178 *end = i->position + LENGTH (i);
2179
2180 return 1;
2181 }
2182 \f
2183 /* Return the proper local keymap TYPE for position POSITION in
2184 BUFFER; TYPE should be one of `keymap' or `local-map'. Use the map
2185 specified by the PROP property, if any. Otherwise, if TYPE is
2186 `local-map' use BUFFER's local map. */
2187
2188 Lisp_Object
2189 get_local_map (position, buffer, type)
2190 register int position;
2191 register struct buffer *buffer;
2192 Lisp_Object type;
2193 {
2194 Lisp_Object prop, lispy_position, lispy_buffer;
2195 int old_begv, old_zv, old_begv_byte, old_zv_byte;
2196
2197 /* Perhaps we should just change `position' to the limit. */
2198 if (position > BUF_Z (buffer) || position < BUF_BEG (buffer))
2199 abort ();
2200
2201 /* Ignore narrowing, so that a local map continues to be valid even if
2202 the visible region contains no characters and hence no properties. */
2203 old_begv = BUF_BEGV (buffer);
2204 old_zv = BUF_ZV (buffer);
2205 old_begv_byte = BUF_BEGV_BYTE (buffer);
2206 old_zv_byte = BUF_ZV_BYTE (buffer);
2207 BUF_BEGV (buffer) = BUF_BEG (buffer);
2208 BUF_ZV (buffer) = BUF_Z (buffer);
2209 BUF_BEGV_BYTE (buffer) = BUF_BEG_BYTE (buffer);
2210 BUF_ZV_BYTE (buffer) = BUF_Z_BYTE (buffer);
2211
2212 /* There are no properties at the end of the buffer, so in that case
2213 check for a local map on the last character of the buffer instead. */
2214 if (position == BUF_Z (buffer) && BUF_Z (buffer) > BUF_BEG (buffer))
2215 --position;
2216 XSETFASTINT (lispy_position, position);
2217 XSETBUFFER (lispy_buffer, buffer);
2218 prop = Fget_char_property (lispy_position, type, lispy_buffer);
2219
2220 BUF_BEGV (buffer) = old_begv;
2221 BUF_ZV (buffer) = old_zv;
2222 BUF_BEGV_BYTE (buffer) = old_begv_byte;
2223 BUF_ZV_BYTE (buffer) = old_zv_byte;
2224
2225 /* Use the local map only if it is valid. */
2226 prop = get_keymap (prop, 0, 0);
2227 if (CONSP (prop))
2228 return prop;
2229
2230 if (EQ (type, Qkeymap))
2231 return Qnil;
2232 else
2233 return buffer->keymap;
2234 }
2235 \f
2236 /* Produce an interval tree reflecting the intervals in
2237 TREE from START to START + LENGTH.
2238 The new interval tree has no parent and has a starting-position of 0. */
2239
2240 INTERVAL
2241 copy_intervals (tree, start, length)
2242 INTERVAL tree;
2243 int start, length;
2244 {
2245 register INTERVAL i, new, t;
2246 register int got, prevlen;
2247
2248 if (NULL_INTERVAL_P (tree) || length <= 0)
2249 return NULL_INTERVAL;
2250
2251 i = find_interval (tree, start);
2252 if (NULL_INTERVAL_P (i) || LENGTH (i) == 0)
2253 abort ();
2254
2255 /* If there is only one interval and it's the default, return nil. */
2256 if ((start - i->position + 1 + length) < LENGTH (i)
2257 && DEFAULT_INTERVAL_P (i))
2258 return NULL_INTERVAL;
2259
2260 new = make_interval ();
2261 new->position = 0;
2262 got = (LENGTH (i) - (start - i->position));
2263 new->total_length = length;
2264 copy_properties (i, new);
2265
2266 t = new;
2267 prevlen = got;
2268 while (got < length)
2269 {
2270 i = next_interval (i);
2271 t = split_interval_right (t, prevlen);
2272 copy_properties (i, t);
2273 prevlen = LENGTH (i);
2274 got += prevlen;
2275 }
2276
2277 return balance_an_interval (new);
2278 }
2279
2280 /* Give STRING the properties of BUFFER from POSITION to LENGTH. */
2281
2282 INLINE void
2283 copy_intervals_to_string (string, buffer, position, length)
2284 Lisp_Object string;
2285 struct buffer *buffer;
2286 int position, length;
2287 {
2288 INTERVAL interval_copy = copy_intervals (BUF_INTERVALS (buffer),
2289 position, length);
2290 if (NULL_INTERVAL_P (interval_copy))
2291 return;
2292
2293 SET_INTERVAL_OBJECT (interval_copy, string);
2294 XSTRING (string)->intervals = interval_copy;
2295 }
2296 \f
2297 /* Return 1 if strings S1 and S2 have identical properties; 0 otherwise.
2298 Assume they have identical characters. */
2299
2300 int
2301 compare_string_intervals (s1, s2)
2302 Lisp_Object s1, s2;
2303 {
2304 INTERVAL i1, i2;
2305 int pos = 0;
2306 int end = XSTRING (s1)->size;
2307
2308 i1 = find_interval (XSTRING (s1)->intervals, 0);
2309 i2 = find_interval (XSTRING (s2)->intervals, 0);
2310
2311 while (pos < end)
2312 {
2313 /* Determine how far we can go before we reach the end of I1 or I2. */
2314 int len1 = (i1 != 0 ? INTERVAL_LAST_POS (i1) : end) - pos;
2315 int len2 = (i2 != 0 ? INTERVAL_LAST_POS (i2) : end) - pos;
2316 int distance = min (len1, len2);
2317
2318 /* If we ever find a mismatch between the strings,
2319 they differ. */
2320 if (! intervals_equal (i1, i2))
2321 return 0;
2322
2323 /* Advance POS till the end of the shorter interval,
2324 and advance one or both interval pointers for the new position. */
2325 pos += distance;
2326 if (len1 == distance)
2327 i1 = next_interval (i1);
2328 if (len2 == distance)
2329 i2 = next_interval (i2);
2330 }
2331 return 1;
2332 }
2333 \f
2334 /* Recursively adjust interval I in the current buffer
2335 for setting enable_multibyte_characters to MULTI_FLAG.
2336 The range of interval I is START ... END in characters,
2337 START_BYTE ... END_BYTE in bytes. */
2338
2339 static void
2340 set_intervals_multibyte_1 (i, multi_flag, start, start_byte, end, end_byte)
2341 INTERVAL i;
2342 int multi_flag;
2343 int start, start_byte, end, end_byte;
2344 {
2345 /* Fix the length of this interval. */
2346 if (multi_flag)
2347 i->total_length = end - start;
2348 else
2349 i->total_length = end_byte - start_byte;
2350
2351 /* Recursively fix the length of the subintervals. */
2352 if (i->left)
2353 {
2354 int left_end, left_end_byte;
2355
2356 if (multi_flag)
2357 {
2358 left_end_byte = start_byte + LEFT_TOTAL_LENGTH (i);
2359 left_end = BYTE_TO_CHAR (left_end_byte);
2360 }
2361 else
2362 {
2363 left_end = start + LEFT_TOTAL_LENGTH (i);
2364 left_end_byte = CHAR_TO_BYTE (left_end);
2365 }
2366
2367 set_intervals_multibyte_1 (i->left, multi_flag, start, start_byte,
2368 left_end, left_end_byte);
2369 }
2370 if (i->right)
2371 {
2372 int right_start_byte, right_start;
2373
2374 if (multi_flag)
2375 {
2376 right_start_byte = end_byte - RIGHT_TOTAL_LENGTH (i);
2377 right_start = BYTE_TO_CHAR (right_start_byte);
2378 }
2379 else
2380 {
2381 right_start = end - RIGHT_TOTAL_LENGTH (i);
2382 right_start_byte = CHAR_TO_BYTE (right_start);
2383 }
2384
2385 set_intervals_multibyte_1 (i->right, multi_flag,
2386 right_start, right_start_byte,
2387 end, end_byte);
2388 }
2389 }
2390
2391 /* Update the intervals of the current buffer
2392 to fit the contents as multibyte (if MULTI_FLAG is 1)
2393 or to fit them as non-multibyte (if MULTI_FLAG is 0). */
2394
2395 void
2396 set_intervals_multibyte (multi_flag)
2397 int multi_flag;
2398 {
2399 if (BUF_INTERVALS (current_buffer))
2400 set_intervals_multibyte_1 (BUF_INTERVALS (current_buffer), multi_flag,
2401 BEG, BEG_BYTE, Z, Z_BYTE);
2402 }