]> code.delx.au - gnu-emacs/blob - doc/lispref/sequences.texi
Update copyright year to 2015
[gnu-emacs] / doc / lispref / sequences.texi
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990-1995, 1998-1999, 2001-2015 Free Software
4 @c Foundation, Inc.
5 @c See the file elisp.texi for copying conditions.
6 @node Sequences Arrays Vectors
7 @chapter Sequences, Arrays, and Vectors
8 @cindex sequence
9
10 The @dfn{sequence} type is the union of two other Lisp types: lists
11 and arrays. In other words, any list is a sequence, and any array is
12 a sequence. The common property that all sequences have is that each
13 is an ordered collection of elements.
14
15 An @dfn{array} is a fixed-length object with a slot for each of its
16 elements. All the elements are accessible in constant time. The four
17 types of arrays are strings, vectors, char-tables and bool-vectors.
18
19 A list is a sequence of elements, but it is not a single primitive
20 object; it is made of cons cells, one cell per element. Finding the
21 @var{n}th element requires looking through @var{n} cons cells, so
22 elements farther from the beginning of the list take longer to access.
23 But it is possible to add elements to the list, or remove elements.
24
25 The following diagram shows the relationship between these types:
26
27 @example
28 @group
29 _____________________________________________
30 | |
31 | Sequence |
32 | ______ ________________________________ |
33 | | | | | |
34 | | List | | Array | |
35 | | | | ________ ________ | |
36 | |______| | | | | | | |
37 | | | Vector | | String | | |
38 | | |________| |________| | |
39 | | ____________ _____________ | |
40 | | | | | | | |
41 | | | Char-table | | Bool-vector | | |
42 | | |____________| |_____________| | |
43 | |________________________________| |
44 |_____________________________________________|
45 @end group
46 @end example
47
48 @menu
49 * Sequence Functions:: Functions that accept any kind of sequence.
50 * Arrays:: Characteristics of arrays in Emacs Lisp.
51 * Array Functions:: Functions specifically for arrays.
52 * Vectors:: Special characteristics of Emacs Lisp vectors.
53 * Vector Functions:: Functions specifically for vectors.
54 * Char-Tables:: How to work with char-tables.
55 * Bool-Vectors:: How to work with bool-vectors.
56 * Rings:: Managing a fixed-size ring of objects.
57 @end menu
58
59 @node Sequence Functions
60 @section Sequences
61
62 This section describes functions that accept any kind of sequence.
63
64 @defun sequencep object
65 This function returns @code{t} if @var{object} is a list, vector,
66 string, bool-vector, or char-table, @code{nil} otherwise.
67 @end defun
68
69 @defun length sequence
70 @cindex string length
71 @cindex list length
72 @cindex vector length
73 @cindex sequence length
74 @cindex char-table length
75 This function returns the number of elements in @var{sequence}. If
76 @var{sequence} is a dotted list, a @code{wrong-type-argument} error is
77 signaled. Circular lists may cause an infinite loop. For a
78 char-table, the value returned is always one more than the maximum
79 Emacs character code.
80
81 @xref{Definition of safe-length}, for the related function @code{safe-length}.
82
83 @example
84 @group
85 (length '(1 2 3))
86 @result{} 3
87 @end group
88 @group
89 (length ())
90 @result{} 0
91 @end group
92 @group
93 (length "foobar")
94 @result{} 6
95 @end group
96 @group
97 (length [1 2 3])
98 @result{} 3
99 @end group
100 @group
101 (length (make-bool-vector 5 nil))
102 @result{} 5
103 @end group
104 @end example
105 @end defun
106
107 @noindent
108 See also @code{string-bytes}, in @ref{Text Representations}.
109
110 If you need to compute the width of a string on display, you should use
111 @code{string-width} (@pxref{Size of Displayed Text}), not @code{length},
112 since @code{length} only counts the number of characters, but does not
113 account for the display width of each character.
114
115 @defun elt sequence index
116 @cindex elements of sequences
117 This function returns the element of @var{sequence} indexed by
118 @var{index}. Legitimate values of @var{index} are integers ranging
119 from 0 up to one less than the length of @var{sequence}. If
120 @var{sequence} is a list, out-of-range values behave as for
121 @code{nth}. @xref{Definition of nth}. Otherwise, out-of-range values
122 trigger an @code{args-out-of-range} error.
123
124 @example
125 @group
126 (elt [1 2 3 4] 2)
127 @result{} 3
128 @end group
129 @group
130 (elt '(1 2 3 4) 2)
131 @result{} 3
132 @end group
133 @group
134 ;; @r{We use @code{string} to show clearly which character @code{elt} returns.}
135 (string (elt "1234" 2))
136 @result{} "3"
137 @end group
138 @group
139 (elt [1 2 3 4] 4)
140 @error{} Args out of range: [1 2 3 4], 4
141 @end group
142 @group
143 (elt [1 2 3 4] -1)
144 @error{} Args out of range: [1 2 3 4], -1
145 @end group
146 @end example
147
148 This function generalizes @code{aref} (@pxref{Array Functions}) and
149 @code{nth} (@pxref{Definition of nth}).
150 @end defun
151
152 @defun copy-sequence sequence
153 @cindex copying sequences
154 This function returns a copy of @var{sequence}. The copy is the same
155 type of object as the original sequence, and it has the same elements
156 in the same order.
157
158 Storing a new element into the copy does not affect the original
159 @var{sequence}, and vice versa. However, the elements of the new
160 sequence are not copies; they are identical (@code{eq}) to the elements
161 of the original. Therefore, changes made within these elements, as
162 found via the copied sequence, are also visible in the original
163 sequence.
164
165 If the sequence is a string with text properties, the property list in
166 the copy is itself a copy, not shared with the original's property
167 list. However, the actual values of the properties are shared.
168 @xref{Text Properties}.
169
170 This function does not work for dotted lists. Trying to copy a
171 circular list may cause an infinite loop.
172
173 See also @code{append} in @ref{Building Lists}, @code{concat} in
174 @ref{Creating Strings}, and @code{vconcat} in @ref{Vector Functions},
175 for other ways to copy sequences.
176
177 @example
178 @group
179 (setq bar '(1 2))
180 @result{} (1 2)
181 @end group
182 @group
183 (setq x (vector 'foo bar))
184 @result{} [foo (1 2)]
185 @end group
186 @group
187 (setq y (copy-sequence x))
188 @result{} [foo (1 2)]
189 @end group
190
191 @group
192 (eq x y)
193 @result{} nil
194 @end group
195 @group
196 (equal x y)
197 @result{} t
198 @end group
199 @group
200 (eq (elt x 1) (elt y 1))
201 @result{} t
202 @end group
203
204 @group
205 ;; @r{Replacing an element of one sequence.}
206 (aset x 0 'quux)
207 x @result{} [quux (1 2)]
208 y @result{} [foo (1 2)]
209 @end group
210
211 @group
212 ;; @r{Modifying the inside of a shared element.}
213 (setcar (aref x 1) 69)
214 x @result{} [quux (69 2)]
215 y @result{} [foo (69 2)]
216 @end group
217 @end example
218 @end defun
219
220 @defun reverse sequence
221 @cindex string reverse
222 @cindex list reverse
223 @cindex vector reverse
224 @cindex sequence reverse
225 This function creates a new sequence whose elements are the elements
226 of @var{sequence}, but in reverse order. The original argument @var{sequence}
227 is @emph{not} altered. Note that char-tables cannot be reversed.
228
229 @example
230 @group
231 (setq x '(1 2 3 4))
232 @result{} (1 2 3 4)
233 @end group
234 @group
235 (reverse x)
236 @result{} (4 3 2 1)
237 x
238 @result{} (1 2 3 4)
239 @end group
240 @group
241 (setq x [1 2 3 4])
242 @result{} [1 2 3 4]
243 @end group
244 @group
245 (reverse x)
246 @result{} [4 3 2 1]
247 x
248 @result{} [1 2 3 4]
249 @end group
250 @group
251 (setq x "xyzzy")
252 @result{} "xyzzy"
253 @end group
254 @group
255 (reverse x)
256 @result{} "yzzyx"
257 x
258 @result{} "xyzzy"
259 @end group
260 @end example
261 @end defun
262
263 @defun nreverse sequence
264 @cindex reversing a string
265 @cindex reversing a list
266 @cindex reversing a vector
267 This function reverses the order of the elements of @var{sequence}.
268 Unlike @code{reverse} the original @var{sequence} may be modified.
269
270 For example:
271
272 @example
273 @group
274 (setq x '(a b c))
275 @result{} (a b c)
276 @end group
277 @group
278 x
279 @result{} (a b c)
280 (nreverse x)
281 @result{} (c b a)
282 @end group
283 @group
284 ;; @r{The cons cell that was first is now last.}
285 x
286 @result{} (a)
287 @end group
288 @end example
289
290 To avoid confusion, we usually store the result of @code{nreverse}
291 back in the same variable which held the original list:
292
293 @example
294 (setq x (nreverse x))
295 @end example
296
297 Here is the @code{nreverse} of our favorite example, @code{(a b c)},
298 presented graphically:
299
300 @smallexample
301 @group
302 @r{Original list head:} @r{Reversed list:}
303 ------------- ------------- ------------
304 | car | cdr | | car | cdr | | car | cdr |
305 | a | nil |<-- | b | o |<-- | c | o |
306 | | | | | | | | | | | | |
307 ------------- | --------- | - | -------- | -
308 | | | |
309 ------------- ------------
310 @end group
311 @end smallexample
312
313 For the vector, it is even simpler because you don't need setq:
314
315 @example
316 (setq x [1 2 3 4])
317 @result{} [1 2 3 4]
318 (nreverse x)
319 @result{} [4 3 2 1]
320 x
321 @result{} [4 3 2 1]
322 @end example
323
324 Note that unlike @code{reverse}, this function doesn't work with strings.
325 Although you can alter string data by using @code{aset}, it is strongly
326 encouraged to treat strings as immutable.
327
328 @end defun
329
330 @defun sort sequence predicate
331 @cindex stable sort
332 @cindex sorting lists
333 @cindex sorting vectors
334 This function sorts @var{sequence} stably. Note that this function doesn't work
335 for all sequences; it may be used only for lists and vectors. If @var{sequence}
336 is a list, it is modified destructively. This functions returns the sorted
337 @var{sequence} and compares elements using @var{predicate}. A stable sort is
338 one in which elements with equal sort keys maintain their relative order before
339 and after the sort. Stability is important when successive sorts are used to
340 order elements according to different criteria.
341
342 The argument @var{predicate} must be a function that accepts two
343 arguments. It is called with two elements of @var{sequence}. To get an
344 increasing order sort, the @var{predicate} should return non-@code{nil} if the
345 first element is ``less than'' the second, or @code{nil} if not.
346
347 The comparison function @var{predicate} must give reliable results for
348 any given pair of arguments, at least within a single call to
349 @code{sort}. It must be @dfn{antisymmetric}; that is, if @var{a} is
350 less than @var{b}, @var{b} must not be less than @var{a}. It must be
351 @dfn{transitive}---that is, if @var{a} is less than @var{b}, and @var{b}
352 is less than @var{c}, then @var{a} must be less than @var{c}. If you
353 use a comparison function which does not meet these requirements, the
354 result of @code{sort} is unpredictable.
355
356 The destructive aspect of @code{sort} for lists is that it rearranges the
357 cons cells forming @var{sequence} by changing @sc{cdr}s. A nondestructive
358 sort function would create new cons cells to store the elements in their
359 sorted order. If you wish to make a sorted copy without destroying the
360 original, copy it first with @code{copy-sequence} and then sort.
361
362 Sorting does not change the @sc{car}s of the cons cells in @var{sequence};
363 the cons cell that originally contained the element @code{a} in
364 @var{sequence} still has @code{a} in its @sc{car} after sorting, but it now
365 appears in a different position in the list due to the change of
366 @sc{cdr}s. For example:
367
368 @example
369 @group
370 (setq nums '(1 3 2 6 5 4 0))
371 @result{} (1 3 2 6 5 4 0)
372 @end group
373 @group
374 (sort nums '<)
375 @result{} (0 1 2 3 4 5 6)
376 @end group
377 @group
378 nums
379 @result{} (1 2 3 4 5 6)
380 @end group
381 @end example
382
383 @noindent
384 @strong{Warning}: Note that the list in @code{nums} no longer contains
385 0; this is the same cons cell that it was before, but it is no longer
386 the first one in the list. Don't assume a variable that formerly held
387 the argument now holds the entire sorted list! Instead, save the result
388 of @code{sort} and use that. Most often we store the result back into
389 the variable that held the original list:
390
391 @example
392 (setq nums (sort nums '<))
393 @end example
394
395 For the better understanding of what stable sort is, consider the following
396 vector example. After sorting, all items whose @code{car} is 8 are grouped
397 at the beginning of @code{vector}, but their relative order is preserved.
398 All items whose @code{car} is 9 are grouped at the end of @code{vector},
399 but their relative order is also preserved:
400
401 @example
402 @group
403 (setq
404 vector
405 (vector '(8 . "xxx") '(9 . "aaa") '(8 . "bbb") '(9 . "zzz")
406 '(9 . "ppp") '(8 . "ttt") '(8 . "eee") '(9 . "fff")))
407 @result{} [(8 . "xxx") (9 . "aaa") (8 . "bbb") (9 . "zzz")
408 (9 . "ppp") (8 . "ttt") (8 . "eee") (9 . "fff")]
409 @end group
410 @group
411 (sort vector (lambda (x y) (< (car x) (car y))))
412 @result{} [(8 . "xxx") (8 . "bbb") (8 . "ttt") (8 . "eee")
413 (9 . "aaa") (9 . "zzz") (9 . "ppp") (9 . "fff")]
414 @end group
415 @end example
416
417 @xref{Sorting}, for more functions that perform sorting.
418 See @code{documentation} in @ref{Accessing Documentation}, for a
419 useful example of @code{sort}.
420 @end defun
421
422 @cindex sequence functions in seq
423 @cindex seq library
424 The @file{seq.el} library provides the following additional sequence
425 manipulation macros and functions, prefixed with @code{seq-}. To use
426 them, you must first load the @file{seq} library.
427
428 All functions defined in this library are free of side-effects;
429 i.e., they do not modify any sequence (list, vector, or string) that
430 you pass as an argument. Unless otherwise stated, the result is a
431 sequence of the same type as the input. For those functions that take
432 a predicate, this should be a function of one argument.
433
434 @defun seq-drop sequence n
435 This function returns all but the first @var{n} (an integer)
436 elements of @var{sequence}. If @var{n} is negative or zero,
437 the result is @var{sequence}.
438
439 @example
440 @group
441 (seq-drop [1 2 3 4 5 6] 3)
442 @result{} [4 5 6]
443 @end group
444 @group
445 (seq-drop "hello world" -4)
446 @result{} "hello world"
447 @end group
448 @end example
449 @end defun
450
451 @defun seq-take sequence n
452 This function returns the first @var{n} (an integer) elements of
453 @var{sequence}. If @var{n} is negative or zero, the result
454 is @code{nil}.
455
456 @example
457 @group
458 (seq-take '(1 2 3 4) 3)
459 @result{} (1 2 3)
460 @end group
461 @group
462 (seq-take [1 2 3 4] 0)
463 @result{} []
464 @end group
465 @end example
466 @end defun
467
468 @defun seq-take-while predicate sequence
469 This function returns the members of @var{sequence} in order,
470 stopping before the first one for which @var{predicate} returns @code{nil}.
471
472 @example
473 @group
474 (seq-take-while (lambda (elt) (> elt 0)) '(1 2 3 -1 -2))
475 @result{} (1 2 3)
476 @end group
477 @group
478 (seq-take-while (lambda (elt) (> elt 0)) [-1 4 6])
479 @result{} []
480 @end group
481 @end example
482 @end defun
483
484 @defun seq-drop-while predicate sequence
485 This function returns the members of @var{sequence} in order,
486 starting from the first one for which @var{predicate} returns @code{nil}.
487
488 @example
489 @group
490 (seq-drop-while (lambda (elt) (> elt 0)) '(1 2 3 -1 -2))
491 @result{} (-1 -2)
492 @end group
493 @group
494 (seq-drop-while (lambda (elt) (< elt 0)) [1 4 6])
495 @result{} [1 4 6]
496 @end group
497 @end example
498 @end defun
499
500 @defun seq-filter predicate sequence
501 @cindex filtering sequences
502 This function returns a list of all the elements in @var{sequence}
503 for which @var{predicate} returns non-@code{nil}.
504
505 @example
506 @group
507 (seq-filter (lambda (elt) (> elt 0)) [1 -1 3 -3 5])
508 @result{} (1 3 5)
509 @end group
510 @group
511 (seq-filter (lambda (elt) (> elt 0)) '(-1 -3 -5))
512 @result{} nil
513 @end group
514 @end example
515 @end defun
516
517 @defun seq-remove predicate sequence
518 @cindex removing from sequences
519 This function returns a list of all the elements in @var{sequence}
520 for which @var{predicate} returns @code{nil}.
521
522 @example
523 @group
524 (seq-remove (lambda (elt) (> elt 0)) [1 -1 3 -3 5])
525 @result{} (-1 -3)
526 @end group
527 @group
528 (seq-remove (lambda (elt) (< elt 0)) '(-1 -3 -5))
529 @result{} nil
530 @end group
531 @end example
532 @end defun
533
534 @defun seq-reduce function sequence initial-value
535 @cindex reducing sequences
536 This function returns the result of calling @var{function} with
537 @var{initial-value} and the first element of @var{sequence}, then calling
538 @var{function} with that result and the second element of @var{sequence},
539 then with that result and the third element of @var{sequence}, etc.
540 @var{function} should be a function of two arguments. If
541 @var{sequence} is empty, this returns @var{initial-value} without
542 calling @var{function}.
543
544 @example
545 @group
546 (seq-reduce #'+ [1 2 3 4] 0)
547 @result{} 10
548 @end group
549 @group
550 (seq-reduce #'+ '(1 2 3 4) 5)
551 @result{} 15
552 @end group
553 @group
554 (seq-reduce #'+ '() 3)
555 @result{} 3
556 @end group
557 @end example
558 @end defun
559
560 @defun seq-some-p predicate sequence
561 This function returns the first member of sequence for which @var{predicate}
562 returns non-@code{nil}.
563
564 @example
565 @group
566 (seq-some-p #'numberp ["abc" 1 nil])
567 @result{} 1
568 @end group
569 @group
570 (seq-some-p #'numberp ["abc" "def"])
571 @result{} nil
572 @end group
573 @end example
574 @end defun
575
576 @defun seq-every-p predicate sequence
577 This function returns non-@code{nil} if applying @var{predicate}
578 to every element of @var{sequence} returns non-@code{nil}.
579
580 @example
581 @group
582 (seq-every-p #'numberp [2 4 6])
583 @result{} t
584 @end group
585 @group
586 (seq-some-p #'numberp [2 4 "6"])
587 @result{} nil
588 @end group
589 @end example
590 @end defun
591
592 @defun seq-empty-p sequence
593 This function returns non-@code{nil} if @var{sequence} is empty.
594
595 @example
596 @group
597 (seq-empty-p "not empty")
598 @result{} nil
599 @end group
600 @group
601 (seq-empty-p "")
602 @result{} t
603 @end group
604 @end example
605 @end defun
606
607 @defun seq-count predicate sequence
608 This function returns the number of elements in @var{sequence} for which
609 @var{predicate} returns non-@code{nil}.
610
611 @example
612 (seq-count (lambda (elt) (> elt 0)) [-1 2 0 3 -2])
613 @result{} 2
614 @end example
615 @end defun
616
617 @cindex sorting sequences
618 @defun seq-sort function sequence
619 This function returns a copy of @var{sequence} that is sorted
620 according to @var{function}, a function of two arguments that returns
621 non-@code{nil} if the first argument should sort before the second.
622 @end defun
623
624 @defun seq-contains-p sequence elt &optional function
625 This function returns the first element in @var{sequence} that is equal to
626 @var{elt}. If the optional argument @var{function} is non-@code{nil},
627 it is a function of two arguments to use instead of the default @code{equal}.
628
629 @example
630 @group
631 (seq-contains-p '(symbol1 symbol2) 'symbol1)
632 @result{} symbol1
633 @end group
634 @group
635 (seq-contains-p '(symbol1 symbol2) 'symbol3)
636 @result{} nil
637 @end group
638 @end example
639
640 @end defun
641
642 @defun seq-uniq sequence &optional function
643 This function returns a list of the elements of @var{sequence} with
644 duplicates removed. If the optional argument @var{function} is non-@code{nil},
645 it is a function of two arguments to use instead of the default @code{equal}.
646
647 @example
648 @group
649 (seq-uniq '(1 2 2 1 3))
650 @result{} (1 2 3)
651 @end group
652 @group
653 (seq-uniq '(1 2 2.0 1.0) #'=)
654 @result{} [3 4]
655 @end group
656 @end example
657 @end defun
658
659 @defun seq-subseq sequence start &optional end
660 This function returns a subset of @var{sequence} from @var{start}
661 to @var{end}, both integers (@var{end} defaults to the last element).
662 If @var{start} or @var{end} is negative, it counts from the end of
663 @var{sequence}.
664
665 @example
666 @group
667 (seq-subseq '(1 2 3 4 5) 1)
668 @result{} (2 3 4 5)
669 @end group
670 @group
671 (seq-subseq '[1 2 3 4 5] 1 3)
672 @result{} [2 3]
673 @end group
674 @group
675 (seq-subseq '[1 2 3 4 5] -3 -1)
676 @result{} [3 4]
677 @end group
678 @end example
679 @end defun
680
681 @defun seq-concatenate type &rest sequences
682 This function returns a sequence of type @var{type} made of the
683 concatenation of @var{sequences}. @var{type} may be: @code{vector},
684 @code{list} or @code{string}.
685
686 @example
687 @group
688 (seq-concatenate 'list '(1 2) '(3 4) [5 6])
689 @result{} (1 2 3 5 6)
690 @end group
691 @group
692 (seq-concatenate 'string "Hello " "world")
693 @result{} "Hello world"
694 @end group
695 @end example
696 @end defun
697
698 @defmac seq-doseq (var sequence [result]) body@dots{}
699 @cindex sequence iteration
700 This macro is like @code{dolist}, except that @var{sequence} can be a list,
701 vector or string (@pxref{Iteration} for more information about the
702 @code{dolist} macro). This is primarily useful for side-effects.
703 @end defmac
704
705 @node Arrays
706 @section Arrays
707 @cindex array
708
709 An @dfn{array} object has slots that hold a number of other Lisp
710 objects, called the elements of the array. Any element of an array
711 may be accessed in constant time. In contrast, the time to access an
712 element of a list is proportional to the position of that element in
713 the list.
714
715 Emacs defines four types of array, all one-dimensional:
716 @dfn{strings} (@pxref{String Type}), @dfn{vectors} (@pxref{Vector
717 Type}), @dfn{bool-vectors} (@pxref{Bool-Vector Type}), and
718 @dfn{char-tables} (@pxref{Char-Table Type}). Vectors and char-tables
719 can hold elements of any type, but strings can only hold characters,
720 and bool-vectors can only hold @code{t} and @code{nil}.
721
722 All four kinds of array share these characteristics:
723
724 @itemize @bullet
725 @item
726 The first element of an array has index zero, the second element has
727 index 1, and so on. This is called @dfn{zero-origin} indexing. For
728 example, an array of four elements has indices 0, 1, 2, @w{and 3}.
729
730 @item
731 The length of the array is fixed once you create it; you cannot
732 change the length of an existing array.
733
734 @item
735 For purposes of evaluation, the array is a constant---i.e.,
736 it evaluates to itself.
737
738 @item
739 The elements of an array may be referenced or changed with the functions
740 @code{aref} and @code{aset}, respectively (@pxref{Array Functions}).
741 @end itemize
742
743 When you create an array, other than a char-table, you must specify
744 its length. You cannot specify the length of a char-table, because that
745 is determined by the range of character codes.
746
747 In principle, if you want an array of text characters, you could use
748 either a string or a vector. In practice, we always choose strings for
749 such applications, for four reasons:
750
751 @itemize @bullet
752 @item
753 They occupy one-fourth the space of a vector of the same elements.
754
755 @item
756 Strings are printed in a way that shows the contents more clearly
757 as text.
758
759 @item
760 Strings can hold text properties. @xref{Text Properties}.
761
762 @item
763 Many of the specialized editing and I/O facilities of Emacs accept only
764 strings. For example, you cannot insert a vector of characters into a
765 buffer the way you can insert a string. @xref{Strings and Characters}.
766 @end itemize
767
768 By contrast, for an array of keyboard input characters (such as a key
769 sequence), a vector may be necessary, because many keyboard input
770 characters are outside the range that will fit in a string. @xref{Key
771 Sequence Input}.
772
773 @node Array Functions
774 @section Functions that Operate on Arrays
775
776 In this section, we describe the functions that accept all types of
777 arrays.
778
779 @defun arrayp object
780 This function returns @code{t} if @var{object} is an array (i.e., a
781 vector, a string, a bool-vector or a char-table).
782
783 @example
784 @group
785 (arrayp [a])
786 @result{} t
787 (arrayp "asdf")
788 @result{} t
789 (arrayp (syntax-table)) ;; @r{A char-table.}
790 @result{} t
791 @end group
792 @end example
793 @end defun
794
795 @defun aref array index
796 @cindex array elements
797 This function returns the @var{index}th element of @var{array}. The
798 first element is at index zero.
799
800 @example
801 @group
802 (setq primes [2 3 5 7 11 13])
803 @result{} [2 3 5 7 11 13]
804 (aref primes 4)
805 @result{} 11
806 @end group
807 @group
808 (aref "abcdefg" 1)
809 @result{} 98 ; @r{@samp{b} is @acronym{ASCII} code 98.}
810 @end group
811 @end example
812
813 See also the function @code{elt}, in @ref{Sequence Functions}.
814 @end defun
815
816 @defun aset array index object
817 This function sets the @var{index}th element of @var{array} to be
818 @var{object}. It returns @var{object}.
819
820 @example
821 @group
822 (setq w [foo bar baz])
823 @result{} [foo bar baz]
824 (aset w 0 'fu)
825 @result{} fu
826 w
827 @result{} [fu bar baz]
828 @end group
829
830 @group
831 (setq x "asdfasfd")
832 @result{} "asdfasfd"
833 (aset x 3 ?Z)
834 @result{} 90
835 x
836 @result{} "asdZasfd"
837 @end group
838 @end example
839
840 If @var{array} is a string and @var{object} is not a character, a
841 @code{wrong-type-argument} error results. The function converts a
842 unibyte string to multibyte if necessary to insert a character.
843 @end defun
844
845 @defun fillarray array object
846 This function fills the array @var{array} with @var{object}, so that
847 each element of @var{array} is @var{object}. It returns @var{array}.
848
849 @example
850 @group
851 (setq a [a b c d e f g])
852 @result{} [a b c d e f g]
853 (fillarray a 0)
854 @result{} [0 0 0 0 0 0 0]
855 a
856 @result{} [0 0 0 0 0 0 0]
857 @end group
858 @group
859 (setq s "When in the course")
860 @result{} "When in the course"
861 (fillarray s ?-)
862 @result{} "------------------"
863 @end group
864 @end example
865
866 If @var{array} is a string and @var{object} is not a character, a
867 @code{wrong-type-argument} error results.
868 @end defun
869
870 The general sequence functions @code{copy-sequence} and @code{length}
871 are often useful for objects known to be arrays. @xref{Sequence Functions}.
872
873 @node Vectors
874 @section Vectors
875 @cindex vector (type)
876
877 A @dfn{vector} is a general-purpose array whose elements can be any
878 Lisp objects. (By contrast, the elements of a string can only be
879 characters. @xref{Strings and Characters}.) Vectors are used in
880 Emacs for many purposes: as key sequences (@pxref{Key Sequences}), as
881 symbol-lookup tables (@pxref{Creating Symbols}), as part of the
882 representation of a byte-compiled function (@pxref{Byte Compilation}),
883 and more.
884
885 Like other arrays, vectors use zero-origin indexing: the first
886 element has index 0.
887
888 Vectors are printed with square brackets surrounding the elements.
889 Thus, a vector whose elements are the symbols @code{a}, @code{b} and
890 @code{a} is printed as @code{[a b a]}. You can write vectors in the
891 same way in Lisp input.
892
893 A vector, like a string or a number, is considered a constant for
894 evaluation: the result of evaluating it is the same vector. This does
895 not evaluate or even examine the elements of the vector.
896 @xref{Self-Evaluating Forms}.
897
898 Here are examples illustrating these principles:
899
900 @example
901 @group
902 (setq avector [1 two '(three) "four" [five]])
903 @result{} [1 two (quote (three)) "four" [five]]
904 (eval avector)
905 @result{} [1 two (quote (three)) "four" [five]]
906 (eq avector (eval avector))
907 @result{} t
908 @end group
909 @end example
910
911 @node Vector Functions
912 @section Functions for Vectors
913
914 Here are some functions that relate to vectors:
915
916 @defun vectorp object
917 This function returns @code{t} if @var{object} is a vector.
918
919 @example
920 @group
921 (vectorp [a])
922 @result{} t
923 (vectorp "asdf")
924 @result{} nil
925 @end group
926 @end example
927 @end defun
928
929 @defun vector &rest objects
930 This function creates and returns a vector whose elements are the
931 arguments, @var{objects}.
932
933 @example
934 @group
935 (vector 'foo 23 [bar baz] "rats")
936 @result{} [foo 23 [bar baz] "rats"]
937 (vector)
938 @result{} []
939 @end group
940 @end example
941 @end defun
942
943 @defun make-vector length object
944 This function returns a new vector consisting of @var{length} elements,
945 each initialized to @var{object}.
946
947 @example
948 @group
949 (setq sleepy (make-vector 9 'Z))
950 @result{} [Z Z Z Z Z Z Z Z Z]
951 @end group
952 @end example
953 @end defun
954
955 @defun vconcat &rest sequences
956 @cindex copying vectors
957 This function returns a new vector containing all the elements of
958 @var{sequences}. The arguments @var{sequences} may be true lists,
959 vectors, strings or bool-vectors. If no @var{sequences} are given,
960 the empty vector is returned.
961
962 The value is either the empty vector, or is a newly constructed
963 nonempty vector that is not @code{eq} to any existing vector.
964
965 @example
966 @group
967 (setq a (vconcat '(A B C) '(D E F)))
968 @result{} [A B C D E F]
969 (eq a (vconcat a))
970 @result{} nil
971 @end group
972 @group
973 (vconcat)
974 @result{} []
975 (vconcat [A B C] "aa" '(foo (6 7)))
976 @result{} [A B C 97 97 foo (6 7)]
977 @end group
978 @end example
979
980 The @code{vconcat} function also allows byte-code function objects as
981 arguments. This is a special feature to make it easy to access the entire
982 contents of a byte-code function object. @xref{Byte-Code Objects}.
983
984 For other concatenation functions, see @code{mapconcat} in @ref{Mapping
985 Functions}, @code{concat} in @ref{Creating Strings}, and @code{append}
986 in @ref{Building Lists}.
987 @end defun
988
989 The @code{append} function also provides a way to convert a vector into a
990 list with the same elements:
991
992 @example
993 @group
994 (setq avector [1 two (quote (three)) "four" [five]])
995 @result{} [1 two (quote (three)) "four" [five]]
996 (append avector nil)
997 @result{} (1 two (quote (three)) "four" [five])
998 @end group
999 @end example
1000
1001 @node Char-Tables
1002 @section Char-Tables
1003 @cindex char-tables
1004 @cindex extra slots of char-table
1005
1006 A char-table is much like a vector, except that it is indexed by
1007 character codes. Any valid character code, without modifiers, can be
1008 used as an index in a char-table. You can access a char-table's
1009 elements with @code{aref} and @code{aset}, as with any array. In
1010 addition, a char-table can have @dfn{extra slots} to hold additional
1011 data not associated with particular character codes. Like vectors,
1012 char-tables are constants when evaluated, and can hold elements of any
1013 type.
1014
1015 @cindex subtype of char-table
1016 Each char-table has a @dfn{subtype}, a symbol, which serves two
1017 purposes:
1018
1019 @itemize @bullet
1020 @item
1021 The subtype provides an easy way to tell what the char-table is for.
1022 For instance, display tables are char-tables with @code{display-table}
1023 as the subtype, and syntax tables are char-tables with
1024 @code{syntax-table} as the subtype. The subtype can be queried using
1025 the function @code{char-table-subtype}, described below.
1026
1027 @item
1028 The subtype controls the number of @dfn{extra slots} in the
1029 char-table. This number is specified by the subtype's
1030 @code{char-table-extra-slots} symbol property (@pxref{Symbol
1031 Properties}), whose value should be an integer between 0 and 10. If
1032 the subtype has no such symbol property, the char-table has no extra
1033 slots.
1034 @end itemize
1035
1036 @cindex parent of char-table
1037 A char-table can have a @dfn{parent}, which is another char-table. If
1038 it does, then whenever the char-table specifies @code{nil} for a
1039 particular character @var{c}, it inherits the value specified in the
1040 parent. In other words, @code{(aref @var{char-table} @var{c})} returns
1041 the value from the parent of @var{char-table} if @var{char-table} itself
1042 specifies @code{nil}.
1043
1044 @cindex default value of char-table
1045 A char-table can also have a @dfn{default value}. If so, then
1046 @code{(aref @var{char-table} @var{c})} returns the default value
1047 whenever the char-table does not specify any other non-@code{nil} value.
1048
1049 @defun make-char-table subtype &optional init
1050 Return a newly-created char-table, with subtype @var{subtype} (a
1051 symbol). Each element is initialized to @var{init}, which defaults to
1052 @code{nil}. You cannot alter the subtype of a char-table after the
1053 char-table is created.
1054
1055 There is no argument to specify the length of the char-table, because
1056 all char-tables have room for any valid character code as an index.
1057
1058 If @var{subtype} has the @code{char-table-extra-slots} symbol
1059 property, that specifies the number of extra slots in the char-table.
1060 This should be an integer between 0 and 10; otherwise,
1061 @code{make-char-table} raises an error. If @var{subtype} has no
1062 @code{char-table-extra-slots} symbol property (@pxref{Property
1063 Lists}), the char-table has no extra slots.
1064 @end defun
1065
1066 @defun char-table-p object
1067 This function returns @code{t} if @var{object} is a char-table, and
1068 @code{nil} otherwise.
1069 @end defun
1070
1071 @defun char-table-subtype char-table
1072 This function returns the subtype symbol of @var{char-table}.
1073 @end defun
1074
1075 There is no special function to access default values in a char-table.
1076 To do that, use @code{char-table-range} (see below).
1077
1078 @defun char-table-parent char-table
1079 This function returns the parent of @var{char-table}. The parent is
1080 always either @code{nil} or another char-table.
1081 @end defun
1082
1083 @defun set-char-table-parent char-table new-parent
1084 This function sets the parent of @var{char-table} to @var{new-parent}.
1085 @end defun
1086
1087 @defun char-table-extra-slot char-table n
1088 This function returns the contents of extra slot @var{n} of
1089 @var{char-table}. The number of extra slots in a char-table is
1090 determined by its subtype.
1091 @end defun
1092
1093 @defun set-char-table-extra-slot char-table n value
1094 This function stores @var{value} in extra slot @var{n} of
1095 @var{char-table}.
1096 @end defun
1097
1098 A char-table can specify an element value for a single character code;
1099 it can also specify a value for an entire character set.
1100
1101 @defun char-table-range char-table range
1102 This returns the value specified in @var{char-table} for a range of
1103 characters @var{range}. Here are the possibilities for @var{range}:
1104
1105 @table @asis
1106 @item @code{nil}
1107 Refers to the default value.
1108
1109 @item @var{char}
1110 Refers to the element for character @var{char}
1111 (supposing @var{char} is a valid character code).
1112
1113 @item @code{(@var{from} . @var{to})}
1114 A cons cell refers to all the characters in the inclusive range
1115 @samp{[@var{from}..@var{to}]}.
1116 @end table
1117 @end defun
1118
1119 @defun set-char-table-range char-table range value
1120 This function sets the value in @var{char-table} for a range of
1121 characters @var{range}. Here are the possibilities for @var{range}:
1122
1123 @table @asis
1124 @item @code{nil}
1125 Refers to the default value.
1126
1127 @item @code{t}
1128 Refers to the whole range of character codes.
1129
1130 @item @var{char}
1131 Refers to the element for character @var{char}
1132 (supposing @var{char} is a valid character code).
1133
1134 @item @code{(@var{from} . @var{to})}
1135 A cons cell refers to all the characters in the inclusive range
1136 @samp{[@var{from}..@var{to}]}.
1137 @end table
1138 @end defun
1139
1140 @defun map-char-table function char-table
1141 This function calls its argument @var{function} for each element of
1142 @var{char-table} that has a non-@code{nil} value. The call to
1143 @var{function} is with two arguments, a key and a value. The key
1144 is a possible @var{range} argument for @code{char-table-range}---either
1145 a valid character or a cons cell @code{(@var{from} . @var{to})},
1146 specifying a range of characters that share the same value. The value is
1147 what @code{(char-table-range @var{char-table} @var{key})} returns.
1148
1149 Overall, the key-value pairs passed to @var{function} describe all the
1150 values stored in @var{char-table}.
1151
1152 The return value is always @code{nil}; to make calls to
1153 @code{map-char-table} useful, @var{function} should have side effects.
1154 For example, here is how to examine the elements of the syntax table:
1155
1156 @example
1157 (let (accumulator)
1158 (map-char-table
1159 #'(lambda (key value)
1160 (setq accumulator
1161 (cons (list
1162 (if (consp key)
1163 (list (car key) (cdr key))
1164 key)
1165 value)
1166 accumulator)))
1167 (syntax-table))
1168 accumulator)
1169 @result{}
1170 (((2597602 4194303) (2)) ((2597523 2597601) (3))
1171 ... (65379 (5 . 65378)) (65378 (4 . 65379)) (65377 (1))
1172 ... (12 (0)) (11 (3)) (10 (12)) (9 (0)) ((0 8) (3)))
1173 @end example
1174 @end defun
1175
1176 @node Bool-Vectors
1177 @section Bool-vectors
1178 @cindex Bool-vectors
1179
1180 A bool-vector is much like a vector, except that it stores only the
1181 values @code{t} and @code{nil}. If you try to store any non-@code{nil}
1182 value into an element of the bool-vector, the effect is to store
1183 @code{t} there. As with all arrays, bool-vector indices start from 0,
1184 and the length cannot be changed once the bool-vector is created.
1185 Bool-vectors are constants when evaluated.
1186
1187 Several functions work specifically with bool-vectors; aside
1188 from that, you manipulate them with same functions used for other kinds
1189 of arrays.
1190
1191 @defun make-bool-vector length initial
1192 Return a new bool-vector of @var{length} elements,
1193 each one initialized to @var{initial}.
1194 @end defun
1195
1196 @defun bool-vector &rest objects
1197 This function creates and returns a bool-vector whose elements are the
1198 arguments, @var{objects}.
1199 @end defun
1200
1201 @defun bool-vector-p object
1202 This returns @code{t} if @var{object} is a bool-vector,
1203 and @code{nil} otherwise.
1204 @end defun
1205
1206 There are also some bool-vector set operation functions, described below:
1207
1208 @defun bool-vector-exclusive-or a b &optional c
1209 Return @dfn{bitwise exclusive or} of bool vectors @var{a} and @var{b}.
1210 If optional argument @var{c} is given, the result of this operation is
1211 stored into @var{c}. All arguments should be bool vectors of the same length.
1212 @end defun
1213
1214 @defun bool-vector-union a b &optional c
1215 Return @dfn{bitwise or} of bool vectors @var{a} and @var{b}. If
1216 optional argument @var{c} is given, the result of this operation is
1217 stored into @var{c}. All arguments should be bool vectors of the same length.
1218 @end defun
1219
1220 @defun bool-vector-intersection a b &optional c
1221 Return @dfn{bitwise and} of bool vectors @var{a} and @var{b}. If
1222 optional argument @var{c} is given, the result of this operation is
1223 stored into @var{c}. All arguments should be bool vectors of the same length.
1224 @end defun
1225
1226 @defun bool-vector-set-difference a b &optional c
1227 Return @dfn{set difference} of bool vectors @var{a} and @var{b}. If
1228 optional argument @var{c} is given, the result of this operation is
1229 stored into @var{c}. All arguments should be bool vectors of the same length.
1230 @end defun
1231
1232 @defun bool-vector-not a &optional b
1233 Return @dfn{set complement} of bool vector @var{a}. If optional
1234 argument @var{b} is given, the result of this operation is stored into
1235 @var{b}. All arguments should be bool vectors of the same length.
1236 @end defun
1237
1238 @defun bool-vector-subsetp a b
1239 Return @code{t} if every @code{t} value in @var{a} is also t in
1240 @var{b}, @code{nil} otherwise. All arguments should be bool vectors of the
1241 same length.
1242 @end defun
1243
1244 @defun bool-vector-count-consecutive a b i
1245 Return the number of consecutive elements in @var{a} equal @var{b}
1246 starting at @var{i}. @code{a} is a bool vector, @var{b} is @code{t}
1247 or @code{nil}, and @var{i} is an index into @code{a}.
1248 @end defun
1249
1250 @defun bool-vector-count-population a
1251 Return the number of elements that are @code{t} in bool vector @var{a}.
1252 @end defun
1253
1254 The printed form represents up to 8 boolean values as a single
1255 character:
1256
1257 @example
1258 @group
1259 (bool-vector t nil t nil)
1260 @result{} #&4"^E"
1261 (bool-vector)
1262 @result{} #&0""
1263 @end group
1264 @end example
1265
1266 You can use @code{vconcat} to print a bool-vector like other vectors:
1267
1268 @example
1269 @group
1270 (vconcat (bool-vector nil t nil t))
1271 @result{} [nil t nil t]
1272 @end group
1273 @end example
1274
1275 Here is another example of creating, examining, and updating a
1276 bool-vector:
1277
1278 @example
1279 (setq bv (make-bool-vector 5 t))
1280 @result{} #&5"^_"
1281 (aref bv 1)
1282 @result{} t
1283 (aset bv 3 nil)
1284 @result{} nil
1285 bv
1286 @result{} #&5"^W"
1287 @end example
1288
1289 @noindent
1290 These results make sense because the binary codes for control-_ and
1291 control-W are 11111 and 10111, respectively.
1292
1293 @node Rings
1294 @section Managing a Fixed-Size Ring of Objects
1295
1296 @cindex ring data structure
1297 A @dfn{ring} is a fixed-size data structure that supports insertion,
1298 deletion, rotation, and modulo-indexed reference and traversal. An
1299 efficient ring data structure is implemented by the @code{ring}
1300 package. It provides the functions listed in this section.
1301
1302 Note that several ``rings'' in Emacs, like the kill ring and the
1303 mark ring, are actually implemented as simple lists, @emph{not} using
1304 the @code{ring} package; thus the following functions won't work on
1305 them.
1306
1307 @defun make-ring size
1308 This returns a new ring capable of holding @var{size} objects.
1309 @var{size} should be an integer.
1310 @end defun
1311
1312 @defun ring-p object
1313 This returns @code{t} if @var{object} is a ring, @code{nil} otherwise.
1314 @end defun
1315
1316 @defun ring-size ring
1317 This returns the maximum capacity of the @var{ring}.
1318 @end defun
1319
1320 @defun ring-length ring
1321 This returns the number of objects that @var{ring} currently contains.
1322 The value will never exceed that returned by @code{ring-size}.
1323 @end defun
1324
1325 @defun ring-elements ring
1326 This returns a list of the objects in @var{ring}, in order, newest first.
1327 @end defun
1328
1329 @defun ring-copy ring
1330 This returns a new ring which is a copy of @var{ring}.
1331 The new ring contains the same (@code{eq}) objects as @var{ring}.
1332 @end defun
1333
1334 @defun ring-empty-p ring
1335 This returns @code{t} if @var{ring} is empty, @code{nil} otherwise.
1336 @end defun
1337
1338 The newest element in the ring always has index 0. Higher indices
1339 correspond to older elements. Indices are computed modulo the ring
1340 length. Index @minus{}1 corresponds to the oldest element, @minus{}2
1341 to the next-oldest, and so forth.
1342
1343 @defun ring-ref ring index
1344 This returns the object in @var{ring} found at index @var{index}.
1345 @var{index} may be negative or greater than the ring length. If
1346 @var{ring} is empty, @code{ring-ref} signals an error.
1347 @end defun
1348
1349 @defun ring-insert ring object
1350 This inserts @var{object} into @var{ring}, making it the newest
1351 element, and returns @var{object}.
1352
1353 If the ring is full, insertion removes the oldest element to
1354 make room for the new element.
1355 @end defun
1356
1357 @defun ring-remove ring &optional index
1358 Remove an object from @var{ring}, and return that object. The
1359 argument @var{index} specifies which item to remove; if it is
1360 @code{nil}, that means to remove the oldest item. If @var{ring} is
1361 empty, @code{ring-remove} signals an error.
1362 @end defun
1363
1364 @defun ring-insert-at-beginning ring object
1365 This inserts @var{object} into @var{ring}, treating it as the oldest
1366 element. The return value is not significant.
1367
1368 If the ring is full, this function removes the newest element to make
1369 room for the inserted element.
1370 @end defun
1371
1372 @cindex fifo data structure
1373 If you are careful not to exceed the ring size, you can
1374 use the ring as a first-in-first-out queue. For example:
1375
1376 @lisp
1377 (let ((fifo (make-ring 5)))
1378 (mapc (lambda (obj) (ring-insert fifo obj))
1379 '(0 one "two"))
1380 (list (ring-remove fifo) t
1381 (ring-remove fifo) t
1382 (ring-remove fifo)))
1383 @result{} (0 t one t "two")
1384 @end lisp