]> code.delx.au - gnu-emacs/blob - src/unexmacosx.c
Update copyright year to 2015
[gnu-emacs] / src / unexmacosx.c
1 /* Dump Emacs in Mach-O format for use on Mac OS X.
2 Copyright (C) 2001-2015 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* Contributed by Andrew Choi (akochoi@mac.com). */
20
21 /* Documentation note.
22
23 Consult the following documents/files for a description of the
24 Mach-O format: the file loader.h, man pages for Mach-O and ld, old
25 NEXTSTEP documents of the Mach-O format. The tool otool dumps the
26 mach header (-h option) and the load commands (-l option) in a
27 Mach-O file. The tool nm on Mac OS X displays the symbol table in
28 a Mach-O file. For examples of unexec for the Mach-O format, see
29 the file unexnext.c in the GNU Emacs distribution, the file
30 unexdyld.c in the Darwin port of GNU Emacs 20.7, and unexdyld.c in
31 the Darwin port of XEmacs 21.1. Also the Darwin Libc source
32 contains the source code for malloc_freezedry and malloc_jumpstart.
33 Read that to see what they do. This file was written completely
34 from scratch, making use of information from the above sources. */
35
36 /* The Mac OS X implementation of unexec makes use of Darwin's `zone'
37 memory allocator. All calls to malloc, realloc, and free in Emacs
38 are redirected to unexec_malloc, unexec_realloc, and unexec_free in
39 this file. When temacs is run, all memory requests are handled in
40 the zone EmacsZone. The Darwin memory allocator library calls
41 maintain the data structures to manage this zone. Dumping writes
42 its contents to data segments of the executable file. When emacs
43 is run, the loader recreates the contents of the zone in memory.
44 However since the initialization routine of the zone memory
45 allocator is run again, this `zone' can no longer be used as a
46 heap. That is why emacs uses the ordinary malloc system call to
47 allocate memory. Also, when a block of memory needs to be
48 reallocated and the new size is larger than the old one, a new
49 block must be obtained by malloc and the old contents copied to
50 it. */
51
52 /* Peculiarity of the Mach-O files generated by ld in Mac OS X
53 (possible causes of future bugs if changed).
54
55 The file offset of the start of the __TEXT segment is zero. Since
56 the Mach header and load commands are located at the beginning of a
57 Mach-O file, copying the contents of the __TEXT segment from the
58 input file overwrites them in the output file. Despite this,
59 unexec works fine as written below because the segment load command
60 for __TEXT appears, and is therefore processed, before all other
61 load commands except the segment load command for __PAGEZERO, which
62 remains unchanged.
63
64 Although the file offset of the start of the __TEXT segment is
65 zero, none of the sections it contains actually start there. In
66 fact, the earliest one starts a few hundred bytes beyond the end of
67 the last load command. The linker option -headerpad controls the
68 minimum size of this padding. Its setting can be changed in
69 s/darwin.h. A value of 0x690, e.g., leaves room for 30 additional
70 load commands for the newly created __DATA segments (at 56 bytes
71 each). Unexec fails if there is not enough room for these new
72 segments.
73
74 The __TEXT segment contains the sections __text, __cstring,
75 __picsymbol_stub, and __const and the __DATA segment contains the
76 sections __data, __la_symbol_ptr, __nl_symbol_ptr, __dyld, __bss,
77 and __common. The other segments do not contain any sections.
78 These sections are copied from the input file to the output file,
79 except for __data, __bss, and __common, which are dumped from
80 memory. The types of the sections __bss and __common are changed
81 from S_ZEROFILL to S_REGULAR. Note that the number of sections and
82 their relative order in the input and output files remain
83 unchanged. Otherwise all n_sect fields in the nlist records in the
84 symbol table (specified by the LC_SYMTAB load command) will have to
85 be changed accordingly.
86 */
87
88 /* config.h #define:s malloc/realloc/free and then includes stdlib.h.
89 We want the undefined versions, but if config.h includes stdlib.h
90 with the #define:s in place, the prototypes will be wrong and we get
91 warnings. To prevent that, include stdlib.h before config.h. */
92
93 #include <stdlib.h>
94 #include <config.h>
95 #undef malloc
96 #undef realloc
97 #undef free
98
99 #include "unexec.h"
100 #include "lisp.h"
101
102 #include <stdio.h>
103 #include <fcntl.h>
104 #include <stdarg.h>
105 #include <sys/types.h>
106 #include <unistd.h>
107 #include <mach/mach.h>
108 #include <mach-o/loader.h>
109 #include <mach-o/reloc.h>
110 #ifdef HAVE_MALLOC_MALLOC_H
111 #include <malloc/malloc.h>
112 #else
113 #include <objc/malloc.h>
114 #endif
115
116 #include <assert.h>
117
118 /* LC_DATA_IN_CODE is not defined in mach-o/loader.h on OS X 10.7.
119 But it is used if we build with "Command Line Tools for Xcode 4.5
120 (OS X Lion) - September 2012". */
121 #ifndef LC_DATA_IN_CODE
122 #define LC_DATA_IN_CODE 0x29 /* table of non-instructions in __text */
123 #endif
124
125 #ifdef _LP64
126 #define mach_header mach_header_64
127 #define segment_command segment_command_64
128 #undef VM_REGION_BASIC_INFO_COUNT
129 #define VM_REGION_BASIC_INFO_COUNT VM_REGION_BASIC_INFO_COUNT_64
130 #undef VM_REGION_BASIC_INFO
131 #define VM_REGION_BASIC_INFO VM_REGION_BASIC_INFO_64
132 #undef LC_SEGMENT
133 #define LC_SEGMENT LC_SEGMENT_64
134 #define vm_region vm_region_64
135 #define section section_64
136 #undef MH_MAGIC
137 #define MH_MAGIC MH_MAGIC_64
138 #endif
139
140 #define VERBOSE 1
141
142 /* Size of buffer used to copy data from the input file to the output
143 file in function unexec_copy. */
144 #define UNEXEC_COPY_BUFSZ 1024
145
146 /* Regions with memory addresses above this value are assumed to be
147 mapped to dynamically loaded libraries and will not be dumped. */
148 #define VM_DATA_TOP (20 * 1024 * 1024)
149
150 /* Type of an element on the list of regions to be dumped. */
151 struct region_t {
152 vm_address_t address;
153 vm_size_t size;
154 vm_prot_t protection;
155 vm_prot_t max_protection;
156
157 struct region_t *next;
158 };
159
160 /* Head and tail of the list of regions to be dumped. */
161 static struct region_t *region_list_head = 0;
162 static struct region_t *region_list_tail = 0;
163
164 /* Pointer to array of load commands. */
165 static struct load_command **lca;
166
167 /* Number of load commands. */
168 static int nlc;
169
170 /* The highest VM address of segments loaded by the input file.
171 Regions with addresses beyond this are assumed to be allocated
172 dynamically and thus require dumping. */
173 static vm_address_t infile_lc_highest_addr = 0;
174
175 /* The lowest file offset used by the all sections in the __TEXT
176 segments. This leaves room at the beginning of the file to store
177 the Mach-O header. Check this value against header size to ensure
178 the added load commands for the new __DATA segments did not
179 overwrite any of the sections in the __TEXT segment. */
180 static unsigned long text_seg_lowest_offset = 0x10000000;
181
182 /* Mach header. */
183 static struct mach_header mh;
184
185 /* Offset at which the next load command should be written. */
186 static unsigned long curr_header_offset = sizeof (struct mach_header);
187
188 /* Offset at which the next segment should be written. */
189 static unsigned long curr_file_offset = 0;
190
191 static unsigned long pagesize;
192 #define ROUNDUP_TO_PAGE_BOUNDARY(x) (((x) + pagesize - 1) & ~(pagesize - 1))
193
194 static int infd, outfd;
195
196 static int in_dumped_exec = 0;
197
198 static malloc_zone_t *emacs_zone;
199
200 /* file offset of input file's data segment */
201 static off_t data_segment_old_fileoff = 0;
202
203 static struct segment_command *data_segment_scp;
204
205 /* Read N bytes from infd into memory starting at address DEST.
206 Return true if successful, false otherwise. */
207 static int
208 unexec_read (void *dest, size_t n)
209 {
210 return n == read (infd, dest, n);
211 }
212
213 /* Write COUNT bytes from memory starting at address SRC to outfd
214 starting at offset DEST. Return true if successful, false
215 otherwise. */
216 static int
217 unexec_write (off_t dest, const void *src, size_t count)
218 {
219 if (lseek (outfd, dest, SEEK_SET) != dest)
220 return 0;
221
222 return write (outfd, src, count) == count;
223 }
224
225 /* Write COUNT bytes of zeros to outfd starting at offset DEST.
226 Return true if successful, false otherwise. */
227 static int
228 unexec_write_zero (off_t dest, size_t count)
229 {
230 char buf[UNEXEC_COPY_BUFSZ];
231 ssize_t bytes;
232
233 memset (buf, 0, UNEXEC_COPY_BUFSZ);
234 if (lseek (outfd, dest, SEEK_SET) != dest)
235 return 0;
236
237 while (count > 0)
238 {
239 bytes = count > UNEXEC_COPY_BUFSZ ? UNEXEC_COPY_BUFSZ : count;
240 if (write (outfd, buf, bytes) != bytes)
241 return 0;
242 count -= bytes;
243 }
244
245 return 1;
246 }
247
248 /* Copy COUNT bytes from starting offset SRC in infd to starting
249 offset DEST in outfd. Return true if successful, false
250 otherwise. */
251 static int
252 unexec_copy (off_t dest, off_t src, ssize_t count)
253 {
254 ssize_t bytes_read;
255 ssize_t bytes_to_read;
256
257 char buf[UNEXEC_COPY_BUFSZ];
258
259 if (lseek (infd, src, SEEK_SET) != src)
260 return 0;
261
262 if (lseek (outfd, dest, SEEK_SET) != dest)
263 return 0;
264
265 while (count > 0)
266 {
267 bytes_to_read = count > UNEXEC_COPY_BUFSZ ? UNEXEC_COPY_BUFSZ : count;
268 bytes_read = read (infd, buf, bytes_to_read);
269 if (bytes_read <= 0)
270 return 0;
271 if (write (outfd, buf, bytes_read) != bytes_read)
272 return 0;
273 count -= bytes_read;
274 }
275
276 return 1;
277 }
278
279 /* Debugging and informational messages routines. */
280
281 static _Noreturn void
282 unexec_error (const char *format, ...)
283 {
284 va_list ap;
285
286 va_start (ap, format);
287 fprintf (stderr, "unexec: ");
288 vfprintf (stderr, format, ap);
289 fprintf (stderr, "\n");
290 va_end (ap);
291 exit (1);
292 }
293
294 static void
295 print_prot (vm_prot_t prot)
296 {
297 if (prot == VM_PROT_NONE)
298 printf ("none");
299 else
300 {
301 putchar (prot & VM_PROT_READ ? 'r' : ' ');
302 putchar (prot & VM_PROT_WRITE ? 'w' : ' ');
303 putchar (prot & VM_PROT_EXECUTE ? 'x' : ' ');
304 putchar (' ');
305 }
306 }
307
308 static void
309 print_region (vm_address_t address, vm_size_t size, vm_prot_t prot,
310 vm_prot_t max_prot)
311 {
312 printf ("%#10lx %#8lx ", (long) address, (long) size);
313 print_prot (prot);
314 putchar (' ');
315 print_prot (max_prot);
316 putchar ('\n');
317 }
318
319 static void
320 print_region_list (void)
321 {
322 struct region_t *r;
323
324 printf (" address size prot maxp\n");
325
326 for (r = region_list_head; r; r = r->next)
327 print_region (r->address, r->size, r->protection, r->max_protection);
328 }
329
330 static void
331 print_regions (void)
332 {
333 task_t target_task = mach_task_self ();
334 vm_address_t address = (vm_address_t) 0;
335 vm_size_t size;
336 struct vm_region_basic_info info;
337 mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT;
338 mach_port_t object_name;
339
340 printf (" address size prot maxp\n");
341
342 while (vm_region (target_task, &address, &size, VM_REGION_BASIC_INFO,
343 (vm_region_info_t) &info, &info_count, &object_name)
344 == KERN_SUCCESS && info_count == VM_REGION_BASIC_INFO_COUNT)
345 {
346 print_region (address, size, info.protection, info.max_protection);
347
348 if (object_name != MACH_PORT_NULL)
349 mach_port_deallocate (target_task, object_name);
350
351 address += size;
352 }
353 }
354
355 /* Build the list of regions that need to be dumped. Regions with
356 addresses above VM_DATA_TOP are omitted. Adjacent regions with
357 identical protection are merged. Note that non-writable regions
358 cannot be omitted because they some regions created at run time are
359 read-only. */
360 static void
361 build_region_list (void)
362 {
363 task_t target_task = mach_task_self ();
364 vm_address_t address = (vm_address_t) 0;
365 vm_size_t size;
366 struct vm_region_basic_info info;
367 mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT;
368 mach_port_t object_name;
369 struct region_t *r;
370
371 #if VERBOSE
372 printf ("--- List of All Regions ---\n");
373 printf (" address size prot maxp\n");
374 #endif
375
376 while (vm_region (target_task, &address, &size, VM_REGION_BASIC_INFO,
377 (vm_region_info_t) &info, &info_count, &object_name)
378 == KERN_SUCCESS && info_count == VM_REGION_BASIC_INFO_COUNT)
379 {
380 /* Done when we reach addresses of shared libraries, which are
381 loaded in high memory. */
382 if (address >= VM_DATA_TOP)
383 break;
384
385 #if VERBOSE
386 print_region (address, size, info.protection, info.max_protection);
387 #endif
388
389 /* If a region immediately follows the previous one (the one
390 most recently added to the list) and has identical
391 protection, merge it with the latter. Otherwise create a
392 new list element for it. */
393 if (region_list_tail
394 && info.protection == region_list_tail->protection
395 && info.max_protection == region_list_tail->max_protection
396 && region_list_tail->address + region_list_tail->size == address)
397 {
398 region_list_tail->size += size;
399 }
400 else
401 {
402 r = malloc (sizeof *r);
403
404 if (!r)
405 unexec_error ("cannot allocate region structure");
406
407 r->address = address;
408 r->size = size;
409 r->protection = info.protection;
410 r->max_protection = info.max_protection;
411
412 r->next = 0;
413 if (region_list_head == 0)
414 {
415 region_list_head = r;
416 region_list_tail = r;
417 }
418 else
419 {
420 region_list_tail->next = r;
421 region_list_tail = r;
422 }
423
424 /* Deallocate (unused) object name returned by
425 vm_region. */
426 if (object_name != MACH_PORT_NULL)
427 mach_port_deallocate (target_task, object_name);
428 }
429
430 address += size;
431 }
432
433 printf ("--- List of Regions to be Dumped ---\n");
434 print_region_list ();
435 }
436
437
438 #define MAX_UNEXEC_REGIONS 400
439
440 static int num_unexec_regions;
441 typedef struct {
442 vm_range_t range;
443 vm_size_t filesize;
444 } unexec_region_info;
445 static unexec_region_info unexec_regions[MAX_UNEXEC_REGIONS];
446
447 static void
448 unexec_regions_recorder (task_t task, void *rr, unsigned type,
449 vm_range_t *ranges, unsigned num)
450 {
451 vm_address_t p;
452 vm_size_t filesize;
453
454 while (num && num_unexec_regions < MAX_UNEXEC_REGIONS)
455 {
456 /* Subtract the size of trailing null bytes from filesize. It
457 can be smaller than vmsize in segment commands. In such a
458 case, trailing bytes are initialized with zeros. */
459 for (p = ranges->address + ranges->size; p > ranges->address; p--)
460 if (*(((char *) p)-1))
461 break;
462 filesize = p - ranges->address;
463
464 unexec_regions[num_unexec_regions].filesize = filesize;
465 unexec_regions[num_unexec_regions++].range = *ranges;
466 printf ("%#10lx (sz: %#8lx/%#8lx)\n", (long) (ranges->address),
467 (long) filesize, (long) (ranges->size));
468 ranges++; num--;
469 }
470 }
471
472 static kern_return_t
473 unexec_reader (task_t task, vm_address_t address, vm_size_t size, void **ptr)
474 {
475 *ptr = (void *) address;
476 return KERN_SUCCESS;
477 }
478
479 static void
480 find_emacs_zone_regions (void)
481 {
482 num_unexec_regions = 0;
483
484 emacs_zone->introspect->enumerator (mach_task_self (), 0,
485 MALLOC_PTR_REGION_RANGE_TYPE
486 | MALLOC_ADMIN_REGION_RANGE_TYPE,
487 (vm_address_t) emacs_zone,
488 unexec_reader,
489 unexec_regions_recorder);
490
491 if (num_unexec_regions == MAX_UNEXEC_REGIONS)
492 unexec_error ("find_emacs_zone_regions: too many regions");
493 }
494
495 static int
496 unexec_regions_sort_compare (const void *a, const void *b)
497 {
498 vm_address_t aa = ((unexec_region_info *) a)->range.address;
499 vm_address_t bb = ((unexec_region_info *) b)->range.address;
500
501 if (aa < bb)
502 return -1;
503 else if (aa > bb)
504 return 1;
505 else
506 return 0;
507 }
508
509 static void
510 unexec_regions_merge (void)
511 {
512 int i, n;
513 unexec_region_info r;
514 vm_size_t padsize;
515
516 qsort (unexec_regions, num_unexec_regions, sizeof (unexec_regions[0]),
517 &unexec_regions_sort_compare);
518 n = 0;
519 r = unexec_regions[0];
520 padsize = r.range.address & (pagesize - 1);
521 if (padsize)
522 {
523 r.range.address -= padsize;
524 r.range.size += padsize;
525 r.filesize += padsize;
526 }
527 for (i = 1; i < num_unexec_regions; i++)
528 {
529 if (r.range.address + r.range.size == unexec_regions[i].range.address
530 && r.range.size - r.filesize < 2 * pagesize)
531 {
532 r.filesize = r.range.size + unexec_regions[i].filesize;
533 r.range.size += unexec_regions[i].range.size;
534 }
535 else
536 {
537 unexec_regions[n++] = r;
538 r = unexec_regions[i];
539 padsize = r.range.address & (pagesize - 1);
540 if (padsize)
541 {
542 if ((unexec_regions[n-1].range.address
543 + unexec_regions[n-1].range.size) == r.range.address)
544 unexec_regions[n-1].range.size -= padsize;
545
546 r.range.address -= padsize;
547 r.range.size += padsize;
548 r.filesize += padsize;
549 }
550 }
551 }
552 unexec_regions[n++] = r;
553 num_unexec_regions = n;
554 }
555
556
557 /* More informational messages routines. */
558
559 static void
560 print_load_command_name (int lc)
561 {
562 switch (lc)
563 {
564 case LC_SEGMENT:
565 #ifndef _LP64
566 printf ("LC_SEGMENT ");
567 #else
568 printf ("LC_SEGMENT_64 ");
569 #endif
570 break;
571 case LC_LOAD_DYLINKER:
572 printf ("LC_LOAD_DYLINKER ");
573 break;
574 case LC_LOAD_DYLIB:
575 printf ("LC_LOAD_DYLIB ");
576 break;
577 case LC_SYMTAB:
578 printf ("LC_SYMTAB ");
579 break;
580 case LC_DYSYMTAB:
581 printf ("LC_DYSYMTAB ");
582 break;
583 case LC_UNIXTHREAD:
584 printf ("LC_UNIXTHREAD ");
585 break;
586 case LC_PREBOUND_DYLIB:
587 printf ("LC_PREBOUND_DYLIB");
588 break;
589 case LC_TWOLEVEL_HINTS:
590 printf ("LC_TWOLEVEL_HINTS");
591 break;
592 #ifdef LC_UUID
593 case LC_UUID:
594 printf ("LC_UUID ");
595 break;
596 #endif
597 #ifdef LC_DYLD_INFO
598 case LC_DYLD_INFO:
599 printf ("LC_DYLD_INFO ");
600 break;
601 case LC_DYLD_INFO_ONLY:
602 printf ("LC_DYLD_INFO_ONLY");
603 break;
604 #endif
605 #ifdef LC_VERSION_MIN_MACOSX
606 case LC_VERSION_MIN_MACOSX:
607 printf ("LC_VERSION_MIN_MACOSX");
608 break;
609 #endif
610 #ifdef LC_FUNCTION_STARTS
611 case LC_FUNCTION_STARTS:
612 printf ("LC_FUNCTION_STARTS");
613 break;
614 #endif
615 #ifdef LC_MAIN
616 case LC_MAIN:
617 printf ("LC_MAIN ");
618 break;
619 #endif
620 #ifdef LC_DATA_IN_CODE
621 case LC_DATA_IN_CODE:
622 printf ("LC_DATA_IN_CODE ");
623 break;
624 #endif
625 #ifdef LC_SOURCE_VERSION
626 case LC_SOURCE_VERSION:
627 printf ("LC_SOURCE_VERSION");
628 break;
629 #endif
630 #ifdef LC_DYLIB_CODE_SIGN_DRS
631 case LC_DYLIB_CODE_SIGN_DRS:
632 printf ("LC_DYLIB_CODE_SIGN_DRS");
633 break;
634 #endif
635 default:
636 printf ("unknown ");
637 }
638 }
639
640 static void
641 print_load_command (struct load_command *lc)
642 {
643 print_load_command_name (lc->cmd);
644 printf ("%8d", lc->cmdsize);
645
646 if (lc->cmd == LC_SEGMENT)
647 {
648 struct segment_command *scp;
649 struct section *sectp;
650 int j;
651
652 scp = (struct segment_command *) lc;
653 printf (" %-16.16s %#10lx %#8lx\n",
654 scp->segname, (long) (scp->vmaddr), (long) (scp->vmsize));
655
656 sectp = (struct section *) (scp + 1);
657 for (j = 0; j < scp->nsects; j++)
658 {
659 printf (" %-16.16s %#10lx %#8lx\n",
660 sectp->sectname, (long) (sectp->addr), (long) (sectp->size));
661 sectp++;
662 }
663 }
664 else
665 printf ("\n");
666 }
667
668 /* Read header and load commands from input file. Store the latter in
669 the global array lca. Store the total number of load commands in
670 global variable nlc. */
671 static void
672 read_load_commands (void)
673 {
674 int i;
675
676 if (!unexec_read (&mh, sizeof (struct mach_header)))
677 unexec_error ("cannot read mach-o header");
678
679 if (mh.magic != MH_MAGIC)
680 unexec_error ("input file not in Mach-O format");
681
682 if (mh.filetype != MH_EXECUTE)
683 unexec_error ("input Mach-O file is not an executable object file");
684
685 #if VERBOSE
686 printf ("--- Header Information ---\n");
687 printf ("Magic = 0x%08x\n", mh.magic);
688 printf ("CPUType = %d\n", mh.cputype);
689 printf ("CPUSubType = %d\n", mh.cpusubtype);
690 printf ("FileType = 0x%x\n", mh.filetype);
691 printf ("NCmds = %d\n", mh.ncmds);
692 printf ("SizeOfCmds = %d\n", mh.sizeofcmds);
693 printf ("Flags = 0x%08x\n", mh.flags);
694 #endif
695
696 nlc = mh.ncmds;
697 lca = malloc (nlc * sizeof *lca);
698
699 for (i = 0; i < nlc; i++)
700 {
701 struct load_command lc;
702 /* Load commands are variable-size: so read the command type and
703 size first and then read the rest. */
704 if (!unexec_read (&lc, sizeof (struct load_command)))
705 unexec_error ("cannot read load command");
706 lca[i] = malloc (lc.cmdsize);
707 memcpy (lca[i], &lc, sizeof (struct load_command));
708 if (!unexec_read (lca[i] + 1, lc.cmdsize - sizeof (struct load_command)))
709 unexec_error ("cannot read content of load command");
710 if (lc.cmd == LC_SEGMENT)
711 {
712 struct segment_command *scp = (struct segment_command *) lca[i];
713
714 if (scp->vmaddr + scp->vmsize > infile_lc_highest_addr)
715 infile_lc_highest_addr = scp->vmaddr + scp->vmsize;
716
717 if (strncmp (scp->segname, SEG_TEXT, 16) == 0)
718 {
719 struct section *sectp = (struct section *) (scp + 1);
720 int j;
721
722 for (j = 0; j < scp->nsects; j++)
723 if (sectp->offset < text_seg_lowest_offset)
724 text_seg_lowest_offset = sectp->offset;
725 }
726 }
727 }
728
729 printf ("Highest address of load commands in input file: %#8lx\n",
730 (unsigned long)infile_lc_highest_addr);
731
732 printf ("Lowest offset of all sections in __TEXT segment: %#8lx\n",
733 text_seg_lowest_offset);
734
735 printf ("--- List of Load Commands in Input File ---\n");
736 printf ("# cmd cmdsize name address size\n");
737
738 for (i = 0; i < nlc; i++)
739 {
740 printf ("%1d ", i);
741 print_load_command (lca[i]);
742 }
743 }
744
745 /* Copy a LC_SEGMENT load command other than the __DATA segment from
746 the input file to the output file, adjusting the file offset of the
747 segment and the file offsets of sections contained in it. */
748 static void
749 copy_segment (struct load_command *lc)
750 {
751 struct segment_command *scp = (struct segment_command *) lc;
752 unsigned long old_fileoff = scp->fileoff;
753 struct section *sectp;
754 int j;
755
756 scp->fileoff = curr_file_offset;
757
758 sectp = (struct section *) (scp + 1);
759 for (j = 0; j < scp->nsects; j++)
760 {
761 sectp->offset += curr_file_offset - old_fileoff;
762 sectp++;
763 }
764
765 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
766 scp->segname, (long) (scp->fileoff), (long) (scp->filesize),
767 (long) (scp->vmsize), (long) (scp->vmaddr));
768
769 if (!unexec_copy (scp->fileoff, old_fileoff, scp->filesize))
770 unexec_error ("cannot copy segment from input to output file");
771 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (scp->filesize);
772
773 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
774 unexec_error ("cannot write load command to header");
775
776 curr_header_offset += lc->cmdsize;
777 }
778
779 /* Copy a LC_SEGMENT load command for the __DATA segment in the input
780 file to the output file. We assume that only one such segment load
781 command exists in the input file and it contains the sections
782 __data, __bss, __common, __la_symbol_ptr, __nl_symbol_ptr, and
783 __dyld. The first three of these should be dumped from memory and
784 the rest should be copied from the input file. Note that the
785 sections __bss and __common contain no data in the input file
786 because their flag fields have the value S_ZEROFILL. Dumping these
787 from memory makes it necessary to adjust file offset fields in
788 subsequently dumped load commands. Then, create new __DATA segment
789 load commands for regions on the region list other than the one
790 corresponding to the __DATA segment in the input file. */
791 static void
792 copy_data_segment (struct load_command *lc)
793 {
794 struct segment_command *scp = (struct segment_command *) lc;
795 struct section *sectp;
796 int j;
797 unsigned long header_offset, old_file_offset;
798
799 /* The new filesize of the segment is set to its vmsize because data
800 blocks for segments must start at region boundaries. Note that
801 this may leave unused locations at the end of the segment data
802 block because the total of the sizes of all sections in the
803 segment is generally smaller than vmsize. */
804 scp->filesize = scp->vmsize;
805
806 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
807 scp->segname, curr_file_offset, (long)(scp->filesize),
808 (long)(scp->vmsize), (long) (scp->vmaddr));
809
810 /* Offsets in the output file for writing the next section structure
811 and segment data block, respectively. */
812 header_offset = curr_header_offset + sizeof (struct segment_command);
813
814 sectp = (struct section *) (scp + 1);
815 for (j = 0; j < scp->nsects; j++)
816 {
817 old_file_offset = sectp->offset;
818 sectp->offset = sectp->addr - scp->vmaddr + curr_file_offset;
819 /* The __data section is dumped from memory. The __bss and
820 __common sections are also dumped from memory but their flag
821 fields require changing (from S_ZEROFILL to S_REGULAR). The
822 other three kinds of sections are just copied from the input
823 file. */
824 if (strncmp (sectp->sectname, SECT_DATA, 16) == 0)
825 {
826 unsigned long my_size;
827
828 /* The __data section is basically dumped from memory. But
829 initialized data in statically linked libraries are
830 copied from the input file. In particular,
831 add_image_hook.names and add_image_hook.pointers stored
832 by libarclite_macosx.a, are restored so that they will be
833 reinitialized when the dumped binary is executed. */
834 my_size = (unsigned long)my_edata - sectp->addr;
835 if (!(sectp->addr <= (unsigned long)my_edata
836 && my_size <= sectp->size))
837 unexec_error ("my_edata is not in section %s", SECT_DATA);
838 if (!unexec_write (sectp->offset, (void *) sectp->addr, my_size))
839 unexec_error ("cannot write section %s", SECT_DATA);
840 if (!unexec_copy (sectp->offset + my_size, old_file_offset + my_size,
841 sectp->size - my_size))
842 unexec_error ("cannot copy section %s", SECT_DATA);
843 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
844 unexec_error ("cannot write section %s's header", SECT_DATA);
845 }
846 else if (strncmp (sectp->sectname, SECT_COMMON, 16) == 0)
847 {
848 sectp->flags = S_REGULAR;
849 if (!unexec_write (sectp->offset, (void *) sectp->addr, sectp->size))
850 unexec_error ("cannot write section %.16s", sectp->sectname);
851 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
852 unexec_error ("cannot write section %.16s's header", sectp->sectname);
853 }
854 else if (strncmp (sectp->sectname, SECT_BSS, 16) == 0)
855 {
856 unsigned long my_size;
857
858 sectp->flags = S_REGULAR;
859
860 /* Clear uninitialized local variables in statically linked
861 libraries. In particular, function pointers stored by
862 libSystemStub.a, which is introduced in Mac OS X 10.4 for
863 binary compatibility with respect to long double, are
864 cleared so that they will be reinitialized when the
865 dumped binary is executed on other versions of OS. */
866 my_size = (unsigned long)my_endbss_static - sectp->addr;
867 if (!(sectp->addr <= (unsigned long)my_endbss_static
868 && my_size <= sectp->size))
869 unexec_error ("my_endbss_static is not in section %.16s",
870 sectp->sectname);
871 if (!unexec_write (sectp->offset, (void *) sectp->addr, my_size))
872 unexec_error ("cannot write section %.16s", sectp->sectname);
873 if (!unexec_write_zero (sectp->offset + my_size,
874 sectp->size - my_size))
875 unexec_error ("cannot write section %.16s", sectp->sectname);
876 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
877 unexec_error ("cannot write section %.16s's header", sectp->sectname);
878 }
879 else if (strncmp (sectp->sectname, "__bss", 5) == 0
880 || strncmp (sectp->sectname, "__pu_bss", 8) == 0)
881 {
882 sectp->flags = S_REGULAR;
883
884 /* These sections are produced by GCC 4.6+.
885
886 FIXME: We possibly ought to clear uninitialized local
887 variables in statically linked libraries like for
888 SECT_BSS (__bss) above, but setting up the markers we
889 need in lastfile.c would be rather messy. See
890 darwin_output_aligned_bss () in gcc/config/darwin.c for
891 the root of the problem, keeping in mind that the
892 sections are numbered by their alignment in GCC 4.6, but
893 by log2(alignment) in GCC 4.7. */
894
895 if (!unexec_write (sectp->offset, (void *) sectp->addr, sectp->size))
896 unexec_error ("cannot copy section %.16s", sectp->sectname);
897 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
898 unexec_error ("cannot write section %.16s's header", sectp->sectname);
899 }
900 else if (strncmp (sectp->sectname, "__la_symbol_ptr", 16) == 0
901 || strncmp (sectp->sectname, "__nl_symbol_ptr", 16) == 0
902 || strncmp (sectp->sectname, "__got", 16) == 0
903 || strncmp (sectp->sectname, "__la_sym_ptr2", 16) == 0
904 || strncmp (sectp->sectname, "__dyld", 16) == 0
905 || strncmp (sectp->sectname, "__const", 16) == 0
906 || strncmp (sectp->sectname, "__cfstring", 16) == 0
907 || strncmp (sectp->sectname, "__gcc_except_tab", 16) == 0
908 || strncmp (sectp->sectname, "__program_vars", 16) == 0
909 || strncmp (sectp->sectname, "__mod_init_func", 16) == 0
910 || strncmp (sectp->sectname, "__mod_term_func", 16) == 0
911 || strncmp (sectp->sectname, "__static_data", 16) == 0
912 || strncmp (sectp->sectname, "__objc_", 7) == 0)
913 {
914 if (!unexec_copy (sectp->offset, old_file_offset, sectp->size))
915 unexec_error ("cannot copy section %.16s", sectp->sectname);
916 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
917 unexec_error ("cannot write section %.16s's header", sectp->sectname);
918 }
919 else
920 unexec_error ("unrecognized section %.16s in __DATA segment",
921 sectp->sectname);
922
923 printf (" section %-16.16s at %#8lx - %#8lx (sz: %#8lx)\n",
924 sectp->sectname, (long) (sectp->offset),
925 (long) (sectp->offset + sectp->size), (long) (sectp->size));
926
927 header_offset += sizeof (struct section);
928 sectp++;
929 }
930
931 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (scp->filesize);
932
933 if (!unexec_write (curr_header_offset, scp, sizeof (struct segment_command)))
934 unexec_error ("cannot write header of __DATA segment");
935 curr_header_offset += lc->cmdsize;
936
937 /* Create new __DATA segment load commands for regions on the region
938 list that do not corresponding to any segment load commands in
939 the input file.
940 */
941 for (j = 0; j < num_unexec_regions; j++)
942 {
943 struct segment_command sc;
944
945 sc.cmd = LC_SEGMENT;
946 sc.cmdsize = sizeof (struct segment_command);
947 strncpy (sc.segname, SEG_DATA, 16);
948 sc.vmaddr = unexec_regions[j].range.address;
949 sc.vmsize = unexec_regions[j].range.size;
950 sc.fileoff = curr_file_offset;
951 sc.filesize = unexec_regions[j].filesize;
952 sc.maxprot = VM_PROT_READ | VM_PROT_WRITE;
953 sc.initprot = VM_PROT_READ | VM_PROT_WRITE;
954 sc.nsects = 0;
955 sc.flags = 0;
956
957 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
958 sc.segname, (long) (sc.fileoff), (long) (sc.filesize),
959 (long) (sc.vmsize), (long) (sc.vmaddr));
960
961 if (!unexec_write (sc.fileoff, (void *) sc.vmaddr, sc.filesize))
962 unexec_error ("cannot write new __DATA segment");
963 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (sc.filesize);
964
965 if (!unexec_write (curr_header_offset, &sc, sc.cmdsize))
966 unexec_error ("cannot write new __DATA segment's header");
967 curr_header_offset += sc.cmdsize;
968 mh.ncmds++;
969 }
970 }
971
972 /* Copy a LC_SYMTAB load command from the input file to the output
973 file, adjusting the file offset fields. */
974 static void
975 copy_symtab (struct load_command *lc, long delta)
976 {
977 struct symtab_command *stp = (struct symtab_command *) lc;
978
979 stp->symoff += delta;
980 stp->stroff += delta;
981
982 printf ("Writing LC_SYMTAB command\n");
983
984 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
985 unexec_error ("cannot write symtab command to header");
986
987 curr_header_offset += lc->cmdsize;
988 }
989
990 /* Fix up relocation entries. */
991 static void
992 unrelocate (const char *name, off_t reloff, int nrel, vm_address_t base)
993 {
994 int i, unreloc_count;
995 struct relocation_info reloc_info;
996 struct scattered_relocation_info *sc_reloc_info
997 = (struct scattered_relocation_info *) &reloc_info;
998 vm_address_t location;
999
1000 for (unreloc_count = 0, i = 0; i < nrel; i++)
1001 {
1002 if (lseek (infd, reloff, L_SET) != reloff)
1003 unexec_error ("unrelocate: %s:%d cannot seek to reloc_info", name, i);
1004 if (!unexec_read (&reloc_info, sizeof (reloc_info)))
1005 unexec_error ("unrelocate: %s:%d cannot read reloc_info", name, i);
1006 reloff += sizeof (reloc_info);
1007
1008 if (sc_reloc_info->r_scattered == 0)
1009 switch (reloc_info.r_type)
1010 {
1011 case GENERIC_RELOC_VANILLA:
1012 location = base + reloc_info.r_address;
1013 if (location >= data_segment_scp->vmaddr
1014 && location < (data_segment_scp->vmaddr
1015 + data_segment_scp->vmsize))
1016 {
1017 off_t src_off = data_segment_old_fileoff
1018 + (location - data_segment_scp->vmaddr);
1019 off_t dst_off = data_segment_scp->fileoff
1020 + (location - data_segment_scp->vmaddr);
1021
1022 if (!unexec_copy (dst_off, src_off, 1 << reloc_info.r_length))
1023 unexec_error ("unrelocate: %s:%d cannot copy original value",
1024 name, i);
1025 unreloc_count++;
1026 }
1027 break;
1028 default:
1029 unexec_error ("unrelocate: %s:%d cannot handle type = %d",
1030 name, i, reloc_info.r_type);
1031 }
1032 else
1033 unexec_error ("unrelocate: %s:%d cannot handle scattered type = %d",
1034 name, i, sc_reloc_info->r_type);
1035 }
1036
1037 if (nrel > 0)
1038 printf ("Fixed up %d/%d %s relocation entries in data segment.\n",
1039 unreloc_count, nrel, name);
1040 }
1041
1042 /* Copy a LC_DYSYMTAB load command from the input file to the output
1043 file, adjusting the file offset fields. */
1044 static void
1045 copy_dysymtab (struct load_command *lc, long delta)
1046 {
1047 struct dysymtab_command *dstp = (struct dysymtab_command *) lc;
1048 vm_address_t base;
1049
1050 #ifdef _LP64
1051 /* First writable segment address. */
1052 base = data_segment_scp->vmaddr;
1053 #else
1054 /* First segment address in the file (unless MH_SPLIT_SEGS set). */
1055 base = 0;
1056 #endif
1057
1058 unrelocate ("local", dstp->locreloff, dstp->nlocrel, base);
1059 unrelocate ("external", dstp->extreloff, dstp->nextrel, base);
1060
1061 if (dstp->nextrel > 0) {
1062 dstp->extreloff += delta;
1063 }
1064
1065 if (dstp->nlocrel > 0) {
1066 dstp->locreloff += delta;
1067 }
1068
1069 if (dstp->nindirectsyms > 0)
1070 dstp->indirectsymoff += delta;
1071
1072 printf ("Writing LC_DYSYMTAB command\n");
1073
1074 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1075 unexec_error ("cannot write symtab command to header");
1076
1077 curr_header_offset += lc->cmdsize;
1078 }
1079
1080 /* Copy a LC_TWOLEVEL_HINTS load command from the input file to the output
1081 file, adjusting the file offset fields. */
1082 static void
1083 copy_twolevelhints (struct load_command *lc, long delta)
1084 {
1085 struct twolevel_hints_command *tlhp = (struct twolevel_hints_command *) lc;
1086
1087 if (tlhp->nhints > 0) {
1088 tlhp->offset += delta;
1089 }
1090
1091 printf ("Writing LC_TWOLEVEL_HINTS command\n");
1092
1093 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1094 unexec_error ("cannot write two level hint command to header");
1095
1096 curr_header_offset += lc->cmdsize;
1097 }
1098
1099 #ifdef LC_DYLD_INFO
1100 /* Copy a LC_DYLD_INFO(_ONLY) load command from the input file to the output
1101 file, adjusting the file offset fields. */
1102 static void
1103 copy_dyld_info (struct load_command *lc, long delta)
1104 {
1105 struct dyld_info_command *dip = (struct dyld_info_command *) lc;
1106
1107 if (dip->rebase_off > 0)
1108 dip->rebase_off += delta;
1109 if (dip->bind_off > 0)
1110 dip->bind_off += delta;
1111 if (dip->weak_bind_off > 0)
1112 dip->weak_bind_off += delta;
1113 if (dip->lazy_bind_off > 0)
1114 dip->lazy_bind_off += delta;
1115 if (dip->export_off > 0)
1116 dip->export_off += delta;
1117
1118 printf ("Writing ");
1119 print_load_command_name (lc->cmd);
1120 printf (" command\n");
1121
1122 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1123 unexec_error ("cannot write dyld info command to header");
1124
1125 curr_header_offset += lc->cmdsize;
1126 }
1127 #endif
1128
1129 #ifdef LC_FUNCTION_STARTS
1130 /* Copy a LC_FUNCTION_STARTS/LC_DATA_IN_CODE/LC_DYLIB_CODE_SIGN_DRS
1131 load command from the input file to the output file, adjusting the
1132 data offset field. */
1133 static void
1134 copy_linkedit_data (struct load_command *lc, long delta)
1135 {
1136 struct linkedit_data_command *ldp = (struct linkedit_data_command *) lc;
1137
1138 if (ldp->dataoff > 0)
1139 ldp->dataoff += delta;
1140
1141 printf ("Writing ");
1142 print_load_command_name (lc->cmd);
1143 printf (" command\n");
1144
1145 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1146 unexec_error ("cannot write linkedit data command to header");
1147
1148 curr_header_offset += lc->cmdsize;
1149 }
1150 #endif
1151
1152 /* Copy other kinds of load commands from the input file to the output
1153 file, ones that do not require adjustments of file offsets. */
1154 static void
1155 copy_other (struct load_command *lc)
1156 {
1157 printf ("Writing ");
1158 print_load_command_name (lc->cmd);
1159 printf (" command\n");
1160
1161 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1162 unexec_error ("cannot write symtab command to header");
1163
1164 curr_header_offset += lc->cmdsize;
1165 }
1166
1167 /* Loop through all load commands and dump them. Then write the Mach
1168 header. */
1169 static void
1170 dump_it (void)
1171 {
1172 int i;
1173 long linkedit_delta = 0;
1174
1175 printf ("--- Load Commands written to Output File ---\n");
1176
1177 for (i = 0; i < nlc; i++)
1178 switch (lca[i]->cmd)
1179 {
1180 case LC_SEGMENT:
1181 {
1182 struct segment_command *scp = (struct segment_command *) lca[i];
1183 if (strncmp (scp->segname, SEG_DATA, 16) == 0)
1184 {
1185 /* save data segment file offset and segment_command for
1186 unrelocate */
1187 if (data_segment_old_fileoff)
1188 unexec_error ("cannot handle multiple DATA segments"
1189 " in input file");
1190 data_segment_old_fileoff = scp->fileoff;
1191 data_segment_scp = scp;
1192
1193 copy_data_segment (lca[i]);
1194 }
1195 else
1196 {
1197 if (strncmp (scp->segname, SEG_LINKEDIT, 16) == 0)
1198 {
1199 if (linkedit_delta)
1200 unexec_error ("cannot handle multiple LINKEDIT segments"
1201 " in input file");
1202 linkedit_delta = curr_file_offset - scp->fileoff;
1203 }
1204
1205 copy_segment (lca[i]);
1206 }
1207 }
1208 break;
1209 case LC_SYMTAB:
1210 copy_symtab (lca[i], linkedit_delta);
1211 break;
1212 case LC_DYSYMTAB:
1213 copy_dysymtab (lca[i], linkedit_delta);
1214 break;
1215 case LC_TWOLEVEL_HINTS:
1216 copy_twolevelhints (lca[i], linkedit_delta);
1217 break;
1218 #ifdef LC_DYLD_INFO
1219 case LC_DYLD_INFO:
1220 case LC_DYLD_INFO_ONLY:
1221 copy_dyld_info (lca[i], linkedit_delta);
1222 break;
1223 #endif
1224 #ifdef LC_FUNCTION_STARTS
1225 case LC_FUNCTION_STARTS:
1226 #ifdef LC_DATA_IN_CODE
1227 case LC_DATA_IN_CODE:
1228 #endif
1229 #ifdef LC_DYLIB_CODE_SIGN_DRS
1230 case LC_DYLIB_CODE_SIGN_DRS:
1231 #endif
1232 copy_linkedit_data (lca[i], linkedit_delta);
1233 break;
1234 #endif
1235 default:
1236 copy_other (lca[i]);
1237 break;
1238 }
1239
1240 if (curr_header_offset > text_seg_lowest_offset)
1241 unexec_error ("not enough room for load commands for new __DATA segments"
1242 " (increase headerpad_extra in configure.in to at least %lX)",
1243 num_unexec_regions * sizeof (struct segment_command));
1244
1245 printf ("%ld unused bytes follow Mach-O header\n",
1246 text_seg_lowest_offset - curr_header_offset);
1247
1248 mh.sizeofcmds = curr_header_offset - sizeof (struct mach_header);
1249 if (!unexec_write (0, &mh, sizeof (struct mach_header)))
1250 unexec_error ("cannot write final header contents");
1251 }
1252
1253 /* Take a snapshot of Emacs and make a Mach-O format executable file
1254 from it. The file names of the output and input files are outfile
1255 and infile, respectively. The three other parameters are
1256 ignored. */
1257 void
1258 unexec (const char *outfile, const char *infile)
1259 {
1260 if (in_dumped_exec)
1261 unexec_error ("Unexec from a dumped executable is not supported.");
1262
1263 pagesize = getpagesize ();
1264 infd = emacs_open (infile, O_RDONLY, 0);
1265 if (infd < 0)
1266 {
1267 unexec_error ("cannot open input file `%s'", infile);
1268 }
1269
1270 outfd = emacs_open (outfile, O_WRONLY | O_TRUNC | O_CREAT, 0777);
1271 if (outfd < 0)
1272 {
1273 emacs_close (infd);
1274 unexec_error ("cannot open output file `%s'", outfile);
1275 }
1276
1277 build_region_list ();
1278 read_load_commands ();
1279
1280 find_emacs_zone_regions ();
1281 unexec_regions_merge ();
1282
1283 in_dumped_exec = 1;
1284
1285 dump_it ();
1286
1287 emacs_close (outfd);
1288 }
1289
1290
1291 void
1292 unexec_init_emacs_zone (void)
1293 {
1294 emacs_zone = malloc_create_zone (0, 0);
1295 malloc_set_zone_name (emacs_zone, "EmacsZone");
1296 }
1297
1298 #ifndef MACOSX_MALLOC_MULT16
1299 #define MACOSX_MALLOC_MULT16 1
1300 #endif
1301
1302 typedef struct unexec_malloc_header {
1303 union {
1304 char c[8];
1305 size_t size;
1306 } u;
1307 } unexec_malloc_header_t;
1308
1309 #if MACOSX_MALLOC_MULT16
1310
1311 #define ptr_in_unexec_regions(p) ((((vm_address_t) (p)) & 8) != 0)
1312
1313 #else
1314
1315 int
1316 ptr_in_unexec_regions (void *ptr)
1317 {
1318 int i;
1319
1320 for (i = 0; i < num_unexec_regions; i++)
1321 if ((vm_address_t) ptr - unexec_regions[i].range.address
1322 < unexec_regions[i].range.size)
1323 return 1;
1324
1325 return 0;
1326 }
1327
1328 #endif
1329
1330 void *
1331 unexec_malloc (size_t size)
1332 {
1333 if (in_dumped_exec)
1334 {
1335 void *p;
1336
1337 p = malloc (size);
1338 #if MACOSX_MALLOC_MULT16
1339 assert (((vm_address_t) p % 16) == 0);
1340 #endif
1341 return p;
1342 }
1343 else
1344 {
1345 unexec_malloc_header_t *ptr;
1346
1347 ptr = (unexec_malloc_header_t *)
1348 malloc_zone_malloc (emacs_zone, size + sizeof (unexec_malloc_header_t));
1349 ptr->u.size = size;
1350 ptr++;
1351 #if MACOSX_MALLOC_MULT16
1352 assert (((vm_address_t) ptr % 16) == 8);
1353 #endif
1354 return (void *) ptr;
1355 }
1356 }
1357
1358 void *
1359 unexec_realloc (void *old_ptr, size_t new_size)
1360 {
1361 if (in_dumped_exec)
1362 {
1363 void *p;
1364
1365 if (ptr_in_unexec_regions (old_ptr))
1366 {
1367 size_t old_size = ((unexec_malloc_header_t *) old_ptr)[-1].u.size;
1368 size_t size = new_size > old_size ? old_size : new_size;
1369
1370 p = malloc (new_size);
1371 if (size)
1372 memcpy (p, old_ptr, size);
1373 }
1374 else
1375 {
1376 p = realloc (old_ptr, new_size);
1377 }
1378 #if MACOSX_MALLOC_MULT16
1379 assert (((vm_address_t) p % 16) == 0);
1380 #endif
1381 return p;
1382 }
1383 else
1384 {
1385 unexec_malloc_header_t *ptr;
1386
1387 ptr = (unexec_malloc_header_t *)
1388 malloc_zone_realloc (emacs_zone, (unexec_malloc_header_t *) old_ptr - 1,
1389 new_size + sizeof (unexec_malloc_header_t));
1390 ptr->u.size = new_size;
1391 ptr++;
1392 #if MACOSX_MALLOC_MULT16
1393 assert (((vm_address_t) ptr % 16) == 8);
1394 #endif
1395 return (void *) ptr;
1396 }
1397 }
1398
1399 void
1400 unexec_free (void *ptr)
1401 {
1402 if (ptr == NULL)
1403 return;
1404 if (in_dumped_exec)
1405 {
1406 if (!ptr_in_unexec_regions (ptr))
1407 free (ptr);
1408 }
1409 else
1410 malloc_zone_free (emacs_zone, (unexec_malloc_header_t *) ptr - 1);
1411 }