]> code.delx.au - gnu-emacs/blob - src/lisp.h
Tiny lisp.h cleanup
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2015 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #define DECLARE_GDB_SYM(type, id) type const id EXTERNALLY_VISIBLE
48 #ifdef MAIN_PROGRAM
49 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) DECLARE_GDB_SYM (type, id)
50 # define DEFINE_GDB_SYMBOL_END(id) = id;
51 #else
52 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) extern DECLARE_GDB_SYM (type, id)
53 # define DEFINE_GDB_SYMBOL_END(val) ;
54 #endif
55
56 /* The ubiquitous max and min macros. */
57 #undef min
58 #undef max
59 #define max(a, b) ((a) > (b) ? (a) : (b))
60 #define min(a, b) ((a) < (b) ? (a) : (b))
61
62 /* Number of elements in an array. */
63 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
64
65 /* Number of bits in a Lisp_Object tag. */
66 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
67 #define GCTYPEBITS 3
68 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
69
70 /* The number of bits needed in an EMACS_INT over and above the number
71 of bits in a pointer. This is 0 on systems where:
72 1. We can specify multiple-of-8 alignment on static variables.
73 2. We know malloc returns a multiple of 8. */
74 #if (defined alignas \
75 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
76 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
77 || defined CYGWIN))
78 # define NONPOINTER_BITS 0
79 #else
80 # define NONPOINTER_BITS GCTYPEBITS
81 #endif
82
83 /* EMACS_INT - signed integer wide enough to hold an Emacs value
84 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
85 pI - printf length modifier for EMACS_INT
86 EMACS_UINT - unsigned variant of EMACS_INT */
87 #ifndef EMACS_INT_MAX
88 # if INTPTR_MAX <= 0
89 # error "INTPTR_MAX misconfigured"
90 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
91 typedef int EMACS_INT;
92 typedef unsigned int EMACS_UINT;
93 # define EMACS_INT_MAX INT_MAX
94 # define pI ""
95 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
96 typedef long int EMACS_INT;
97 typedef unsigned long EMACS_UINT;
98 # define EMACS_INT_MAX LONG_MAX
99 # define pI "l"
100 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
101 In theory this is not safe, but in practice it seems to be OK. */
102 # elif INTPTR_MAX <= LLONG_MAX
103 typedef long long int EMACS_INT;
104 typedef unsigned long long int EMACS_UINT;
105 # define EMACS_INT_MAX LLONG_MAX
106 # define pI "ll"
107 # else
108 # error "INTPTR_MAX too large"
109 # endif
110 #endif
111
112 /* Number of bits to put in each character in the internal representation
113 of bool vectors. This should not vary across implementations. */
114 enum { BOOL_VECTOR_BITS_PER_CHAR =
115 #define BOOL_VECTOR_BITS_PER_CHAR 8
116 BOOL_VECTOR_BITS_PER_CHAR
117 };
118
119 /* An unsigned integer type representing a fixed-length bit sequence,
120 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
121 for speed, but it is unsigned char on weird platforms. */
122 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
123 typedef size_t bits_word;
124 # define BITS_WORD_MAX SIZE_MAX
125 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
126 #else
127 typedef unsigned char bits_word;
128 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
129 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
130 #endif
131 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
132
133 /* Number of bits in some machine integer types. */
134 enum
135 {
136 BITS_PER_CHAR = CHAR_BIT,
137 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
138 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
139 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
140 };
141
142 /* printmax_t and uprintmax_t are types for printing large integers.
143 These are the widest integers that are supported for printing.
144 pMd etc. are conversions for printing them.
145 On C99 hosts, there's no problem, as even the widest integers work.
146 Fall back on EMACS_INT on pre-C99 hosts. */
147 #ifdef PRIdMAX
148 typedef intmax_t printmax_t;
149 typedef uintmax_t uprintmax_t;
150 # define pMd PRIdMAX
151 # define pMu PRIuMAX
152 #else
153 typedef EMACS_INT printmax_t;
154 typedef EMACS_UINT uprintmax_t;
155 # define pMd pI"d"
156 # define pMu pI"u"
157 #endif
158
159 /* Use pD to format ptrdiff_t values, which suffice for indexes into
160 buffers and strings. Emacs never allocates objects larger than
161 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
162 In C99, pD can always be "t"; configure it here for the sake of
163 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
164 #if PTRDIFF_MAX == INT_MAX
165 # define pD ""
166 #elif PTRDIFF_MAX == LONG_MAX
167 # define pD "l"
168 #elif PTRDIFF_MAX == LLONG_MAX
169 # define pD "ll"
170 #else
171 # define pD "t"
172 #endif
173
174 /* Extra internal type checking? */
175
176 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
177 'assume (COND)'. COND should be free of side effects, as it may or
178 may not be evaluated.
179
180 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
181 defined and suppress_checking is false, and does nothing otherwise.
182 Emacs dies if COND is checked and is false. The suppress_checking
183 variable is initialized to 0 in alloc.c. Set it to 1 using a
184 debugger to temporarily disable aborting on detected internal
185 inconsistencies or error conditions.
186
187 In some cases, a good compiler may be able to optimize away the
188 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
189 uses eassert to test STRINGP (x), but a particular use of XSTRING
190 is invoked only after testing that STRINGP (x) is true, making the
191 test redundant.
192
193 eassume is like eassert except that it also causes the compiler to
194 assume that COND is true afterwards, regardless of whether runtime
195 checking is enabled. This can improve performance in some cases,
196 though it can degrade performance in others. It's often suboptimal
197 for COND to call external functions or access volatile storage. */
198
199 #ifndef ENABLE_CHECKING
200 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
201 # define eassume(cond) assume (cond)
202 #else /* ENABLE_CHECKING */
203
204 extern _Noreturn void die (const char *, const char *, int);
205
206 extern bool suppress_checking EXTERNALLY_VISIBLE;
207
208 # define eassert(cond) \
209 (suppress_checking || (cond) \
210 ? (void) 0 \
211 : die (# cond, __FILE__, __LINE__))
212 # define eassume(cond) \
213 (suppress_checking \
214 ? assume (cond) \
215 : (cond) \
216 ? (void) 0 \
217 : die (# cond, __FILE__, __LINE__))
218 #endif /* ENABLE_CHECKING */
219
220 \f
221 /* Use the configure flag --enable-check-lisp-object-type to make
222 Lisp_Object use a struct type instead of the default int. The flag
223 causes CHECK_LISP_OBJECT_TYPE to be defined. */
224
225 /***** Select the tagging scheme. *****/
226 /* The following option controls the tagging scheme:
227 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
228 always 0, and we can thus use them to hold tag bits, without
229 restricting our addressing space.
230
231 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
232 restricting our possible address range.
233
234 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
235 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
236 on the few static Lisp_Objects used: lispsym, all the defsubr, and
237 the two special buffers buffer_defaults and buffer_local_symbols. */
238
239 enum Lisp_Bits
240 {
241 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
242 integer constant, for MSVC. */
243 #define GCALIGNMENT 8
244
245 /* Number of bits in a Lisp_Object value, not counting the tag. */
246 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
247
248 /* Number of bits in a Lisp fixnum tag. */
249 INTTYPEBITS = GCTYPEBITS - 1,
250
251 /* Number of bits in a Lisp fixnum value, not counting the tag. */
252 FIXNUM_BITS = VALBITS + 1
253 };
254
255 #if GCALIGNMENT != 1 << GCTYPEBITS
256 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
257 #endif
258
259 /* The maximum value that can be stored in a EMACS_INT, assuming all
260 bits other than the type bits contribute to a nonnegative signed value.
261 This can be used in #if, e.g., '#if USB_TAG' below expands to an
262 expression involving VAL_MAX. */
263 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
264
265 /* Whether the least-significant bits of an EMACS_INT contain the tag.
266 On hosts where pointers-as-ints do not exceed VAL_MAX / 2, USE_LSB_TAG is:
267 a. unnecessary, because the top bits of an EMACS_INT are unused, and
268 b. slower, because it typically requires extra masking.
269 So, USE_LSB_TAG is true only on hosts where it might be useful. */
270 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
271 #define USE_LSB_TAG (VAL_MAX / 2 < INTPTR_MAX)
272 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
273
274 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
275 # error "USE_LSB_TAG not supported on this platform; please report this." \
276 "Try 'configure --with-wide-int' to work around the problem."
277 error !;
278 #endif
279
280 #ifndef alignas
281 # define alignas(alignment) /* empty */
282 # if USE_LSB_TAG
283 # error "USE_LSB_TAG requires alignas"
284 # endif
285 #endif
286
287 #ifdef HAVE_STRUCT_ATTRIBUTE_ALIGNED
288 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
289 #else
290 # define GCALIGNED /* empty */
291 #endif
292
293 /* Some operations are so commonly executed that they are implemented
294 as macros, not functions, because otherwise runtime performance would
295 suffer too much when compiling with GCC without optimization.
296 There's no need to inline everything, just the operations that
297 would otherwise cause a serious performance problem.
298
299 For each such operation OP, define a macro lisp_h_OP that contains
300 the operation's implementation. That way, OP can be implemented
301 via a macro definition like this:
302
303 #define OP(x) lisp_h_OP (x)
304
305 and/or via a function definition like this:
306
307 LISP_MACRO_DEFUN (OP, Lisp_Object, (Lisp_Object x), (x))
308
309 which macro-expands to this:
310
311 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
312
313 without worrying about the implementations diverging, since
314 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
315 are intended to be private to this include file, and should not be
316 used elsewhere.
317
318 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
319 functions, once most developers have access to GCC 4.8 or later and
320 can use "gcc -Og" to debug. Maybe in the year 2016. See
321 Bug#11935.
322
323 Commentary for these macros can be found near their corresponding
324 functions, below. */
325
326 #if CHECK_LISP_OBJECT_TYPE
327 # define lisp_h_XLI(o) ((o).i)
328 # define lisp_h_XIL(i) ((Lisp_Object) { i })
329 #else
330 # define lisp_h_XLI(o) (o)
331 # define lisp_h_XIL(i) (i)
332 #endif
333 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
334 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
335 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
336 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
337 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
338 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
339 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
340 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
341 #define lisp_h_INTEGERP(x) ((XTYPE (x) & (Lisp_Int0 | ~Lisp_Int1)) == Lisp_Int0)
342 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
343 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
344 #define lisp_h_NILP(x) EQ (x, Qnil)
345 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
346 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
347 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
348 #define lisp_h_SYMBOL_VAL(sym) \
349 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
350 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
351 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
352 #define lisp_h_XCAR(c) XCONS (c)->car
353 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
354 #define lisp_h_XCONS(a) \
355 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
356 #define lisp_h_XHASH(a) XUINT (a)
357 #define lisp_h_XPNTR(a) \
358 (SYMBOLP (a) ? XSYMBOL (a) : (void *) ((intptr_t) (XLI (a) & VALMASK)))
359 #ifndef GC_CHECK_CONS_LIST
360 # define lisp_h_check_cons_list() ((void) 0)
361 #endif
362 #if USE_LSB_TAG
363 # define lisp_h_make_number(n) \
364 XIL ((EMACS_INT) (((EMACS_UINT) (n) << INTTYPEBITS) + Lisp_Int0))
365 # define lisp_h_XFASTINT(a) XINT (a)
366 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
367 # define lisp_h_XSYMBOL(a) \
368 (eassert (SYMBOLP (a)), \
369 (struct Lisp_Symbol *) ((uintptr_t) XLI (a) - Lisp_Symbol \
370 + (char *) lispsym))
371 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
372 # define lisp_h_XUNTAG(a, type) ((void *) (intptr_t) (XLI (a) - (type)))
373 #endif
374
375 /* When compiling via gcc -O0, define the key operations as macros, as
376 Emacs is too slow otherwise. To disable this optimization, compile
377 with -DINLINING=false. */
378 #if (defined __NO_INLINE__ \
379 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
380 && ! (defined INLINING && ! INLINING))
381 # define XLI(o) lisp_h_XLI (o)
382 # define XIL(i) lisp_h_XIL (i)
383 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
384 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
385 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
386 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
387 # define CONSP(x) lisp_h_CONSP (x)
388 # define EQ(x, y) lisp_h_EQ (x, y)
389 # define FLOATP(x) lisp_h_FLOATP (x)
390 # define INTEGERP(x) lisp_h_INTEGERP (x)
391 # define MARKERP(x) lisp_h_MARKERP (x)
392 # define MISCP(x) lisp_h_MISCP (x)
393 # define NILP(x) lisp_h_NILP (x)
394 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
395 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
396 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
397 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
398 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
399 # define XCAR(c) lisp_h_XCAR (c)
400 # define XCDR(c) lisp_h_XCDR (c)
401 # define XCONS(a) lisp_h_XCONS (a)
402 # define XHASH(a) lisp_h_XHASH (a)
403 # define XPNTR(a) lisp_h_XPNTR (a)
404 # ifndef GC_CHECK_CONS_LIST
405 # define check_cons_list() lisp_h_check_cons_list ()
406 # endif
407 # if USE_LSB_TAG
408 # define make_number(n) lisp_h_make_number (n)
409 # define XFASTINT(a) lisp_h_XFASTINT (a)
410 # define XINT(a) lisp_h_XINT (a)
411 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
412 # define XTYPE(a) lisp_h_XTYPE (a)
413 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
414 # endif
415 #endif
416
417 /* Define NAME as a lisp.h inline function that returns TYPE and has
418 arguments declared as ARGDECLS and passed as ARGS. ARGDECLS and
419 ARGS should be parenthesized. Implement the function by calling
420 lisp_h_NAME ARGS. */
421 #define LISP_MACRO_DEFUN(name, type, argdecls, args) \
422 INLINE type (name) argdecls { return lisp_h_##name args; }
423
424 /* like LISP_MACRO_DEFUN, except NAME returns void. */
425 #define LISP_MACRO_DEFUN_VOID(name, argdecls, args) \
426 INLINE void (name) argdecls { lisp_h_##name args; }
427
428
429 /* Define the fundamental Lisp data structures. */
430
431 /* This is the set of Lisp data types. If you want to define a new
432 data type, read the comments after Lisp_Fwd_Type definition
433 below. */
434
435 /* Lisp integers use 2 tags, to give them one extra bit, thus
436 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
437 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
438 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
439
440 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
441 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
442 vociferously about them. */
443 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
444 || (defined __SUNPRO_C && __STDC__))
445 #define ENUM_BF(TYPE) unsigned int
446 #else
447 #define ENUM_BF(TYPE) enum TYPE
448 #endif
449
450
451 enum Lisp_Type
452 {
453 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
454 Lisp_Symbol = 0,
455
456 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
457 whose first member indicates the subtype. */
458 Lisp_Misc = 1,
459
460 /* Integer. XINT (obj) is the integer value. */
461 Lisp_Int0 = 2,
462 Lisp_Int1 = USE_LSB_TAG ? 6 : 3,
463
464 /* String. XSTRING (object) points to a struct Lisp_String.
465 The length of the string, and its contents, are stored therein. */
466 Lisp_String = 4,
467
468 /* Vector of Lisp objects, or something resembling it.
469 XVECTOR (object) points to a struct Lisp_Vector, which contains
470 the size and contents. The size field also contains the type
471 information, if it's not a real vector object. */
472 Lisp_Vectorlike = 5,
473
474 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
475 Lisp_Cons = USE_LSB_TAG ? 3 : 6,
476
477 Lisp_Float = 7
478 };
479
480 /* This is the set of data types that share a common structure.
481 The first member of the structure is a type code from this set.
482 The enum values are arbitrary, but we'll use large numbers to make it
483 more likely that we'll spot the error if a random word in memory is
484 mistakenly interpreted as a Lisp_Misc. */
485 enum Lisp_Misc_Type
486 {
487 Lisp_Misc_Free = 0x5eab,
488 Lisp_Misc_Marker,
489 Lisp_Misc_Overlay,
490 Lisp_Misc_Save_Value,
491 /* Currently floats are not a misc type,
492 but let's define this in case we want to change that. */
493 Lisp_Misc_Float,
494 /* This is not a type code. It is for range checking. */
495 Lisp_Misc_Limit
496 };
497
498 /* These are the types of forwarding objects used in the value slot
499 of symbols for special built-in variables whose value is stored in
500 C variables. */
501 enum Lisp_Fwd_Type
502 {
503 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
504 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
505 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
506 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
507 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
508 };
509
510 /* If you want to define a new Lisp data type, here are some
511 instructions. See the thread at
512 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
513 for more info.
514
515 First, there are already a couple of Lisp types that can be used if
516 your new type does not need to be exposed to Lisp programs nor
517 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
518 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
519 is suitable for temporarily stashing away pointers and integers in
520 a Lisp object. The latter is useful for vector-like Lisp objects
521 that need to be used as part of other objects, but which are never
522 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
523 an example).
524
525 These two types don't look pretty when printed, so they are
526 unsuitable for Lisp objects that can be exposed to users.
527
528 To define a new data type, add one more Lisp_Misc subtype or one
529 more pseudovector subtype. Pseudovectors are more suitable for
530 objects with several slots that need to support fast random access,
531 while Lisp_Misc types are for everything else. A pseudovector object
532 provides one or more slots for Lisp objects, followed by struct
533 members that are accessible only from C. A Lisp_Misc object is a
534 wrapper for a C struct that can contain anything you like.
535
536 Explicit freeing is discouraged for Lisp objects in general. But if
537 you really need to exploit this, use Lisp_Misc (check free_misc in
538 alloc.c to see why). There is no way to free a vectorlike object.
539
540 To add a new pseudovector type, extend the pvec_type enumeration;
541 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
542
543 For a Lisp_Misc, you will also need to add your entry to union
544 Lisp_Misc (but make sure the first word has the same structure as
545 the others, starting with a 16-bit member of the Lisp_Misc_Type
546 enumeration and a 1-bit GC markbit) and make sure the overall size
547 of the union is not increased by your addition.
548
549 For a new pseudovector, it's highly desirable to limit the size
550 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
551 Otherwise you will need to change sweep_vectors (also in alloc.c).
552
553 Then you will need to add switch branches in print.c (in
554 print_object, to print your object, and possibly also in
555 print_preprocess) and to alloc.c, to mark your object (in
556 mark_object) and to free it (in gc_sweep). The latter is also the
557 right place to call any code specific to your data type that needs
558 to run when the object is recycled -- e.g., free any additional
559 resources allocated for it that are not Lisp objects. You can even
560 make a pointer to the function that frees the resources a slot in
561 your object -- this way, the same object could be used to represent
562 several disparate C structures. */
563
564 #ifdef CHECK_LISP_OBJECT_TYPE
565
566 typedef struct { EMACS_INT i; } Lisp_Object;
567
568 #define LISP_INITIALLY(i) {i}
569
570 #undef CHECK_LISP_OBJECT_TYPE
571 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
572 #else /* CHECK_LISP_OBJECT_TYPE */
573
574 /* If a struct type is not wanted, define Lisp_Object as just a number. */
575
576 typedef EMACS_INT Lisp_Object;
577 #define LISP_INITIALLY(i) (i)
578 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
579 #endif /* CHECK_LISP_OBJECT_TYPE */
580
581 #define LISP_INITIALLY_ZERO LISP_INITIALLY (0)
582 \f
583 /* Forward declarations. */
584
585 /* Defined in this file. */
586 union Lisp_Fwd;
587 INLINE bool BOOL_VECTOR_P (Lisp_Object);
588 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
589 INLINE bool BUFFERP (Lisp_Object);
590 INLINE bool CHAR_TABLE_P (Lisp_Object);
591 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
592 INLINE bool (CONSP) (Lisp_Object);
593 INLINE bool (FLOATP) (Lisp_Object);
594 INLINE bool functionp (Lisp_Object);
595 INLINE bool (INTEGERP) (Lisp_Object);
596 INLINE bool (MARKERP) (Lisp_Object);
597 INLINE bool (MISCP) (Lisp_Object);
598 INLINE bool (NILP) (Lisp_Object);
599 INLINE bool OVERLAYP (Lisp_Object);
600 INLINE bool PROCESSP (Lisp_Object);
601 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
602 INLINE bool SAVE_VALUEP (Lisp_Object);
603 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
604 Lisp_Object);
605 INLINE bool STRINGP (Lisp_Object);
606 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
607 INLINE bool SUBRP (Lisp_Object);
608 INLINE bool (SYMBOLP) (Lisp_Object);
609 INLINE bool (VECTORLIKEP) (Lisp_Object);
610 INLINE bool WINDOWP (Lisp_Object);
611 INLINE bool TERMINALP (Lisp_Object);
612 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
613 INLINE struct Lisp_Symbol *(XSYMBOL) (Lisp_Object);
614 INLINE void *(XUNTAG) (Lisp_Object, int);
615
616 /* Defined in chartab.c. */
617 extern Lisp_Object char_table_ref (Lisp_Object, int);
618 extern void char_table_set (Lisp_Object, int, Lisp_Object);
619
620 /* Defined in data.c. */
621 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
622 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
623
624 /* Defined in emacs.c. */
625 extern bool might_dump;
626 /* True means Emacs has already been initialized.
627 Used during startup to detect startup of dumped Emacs. */
628 extern bool initialized;
629
630 /* Defined in floatfns.c. */
631 extern double extract_float (Lisp_Object);
632
633 \f
634 /* Interned state of a symbol. */
635
636 enum symbol_interned
637 {
638 SYMBOL_UNINTERNED = 0,
639 SYMBOL_INTERNED = 1,
640 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
641 };
642
643 enum symbol_redirect
644 {
645 SYMBOL_PLAINVAL = 4,
646 SYMBOL_VARALIAS = 1,
647 SYMBOL_LOCALIZED = 2,
648 SYMBOL_FORWARDED = 3
649 };
650
651 struct Lisp_Symbol
652 {
653 bool_bf gcmarkbit : 1;
654
655 /* Indicates where the value can be found:
656 0 : it's a plain var, the value is in the `value' field.
657 1 : it's a varalias, the value is really in the `alias' symbol.
658 2 : it's a localized var, the value is in the `blv' object.
659 3 : it's a forwarding variable, the value is in `forward'. */
660 ENUM_BF (symbol_redirect) redirect : 3;
661
662 /* Non-zero means symbol is constant, i.e. changing its value
663 should signal an error. If the value is 3, then the var
664 can be changed, but only by `defconst'. */
665 unsigned constant : 2;
666
667 /* Interned state of the symbol. This is an enumerator from
668 enum symbol_interned. */
669 unsigned interned : 2;
670
671 /* True means that this variable has been explicitly declared
672 special (with `defvar' etc), and shouldn't be lexically bound. */
673 bool_bf declared_special : 1;
674
675 /* True if pointed to from purespace and hence can't be GC'd. */
676 bool_bf pinned : 1;
677
678 /* The symbol's name, as a Lisp string. */
679 Lisp_Object name;
680
681 /* Value of the symbol or Qunbound if unbound. Which alternative of the
682 union is used depends on the `redirect' field above. */
683 union {
684 Lisp_Object value;
685 struct Lisp_Symbol *alias;
686 struct Lisp_Buffer_Local_Value *blv;
687 union Lisp_Fwd *fwd;
688 } val;
689
690 /* Function value of the symbol or Qnil if not fboundp. */
691 Lisp_Object function;
692
693 /* The symbol's property list. */
694 Lisp_Object plist;
695
696 /* Next symbol in obarray bucket, if the symbol is interned. */
697 struct Lisp_Symbol *next;
698 };
699
700 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
701 meaning as in the DEFUN macro, and is used to construct a prototype. */
702 /* We can use the same trick as in the DEFUN macro to generate the
703 appropriate prototype. */
704 #define EXFUN(fnname, maxargs) \
705 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
706
707 /* Note that the weird token-substitution semantics of ANSI C makes
708 this work for MANY and UNEVALLED. */
709 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
710 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
711 #define DEFUN_ARGS_0 (void)
712 #define DEFUN_ARGS_1 (Lisp_Object)
713 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
714 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
715 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
716 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
717 Lisp_Object)
718 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
719 Lisp_Object, Lisp_Object)
720 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
721 Lisp_Object, Lisp_Object, Lisp_Object)
722 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
723 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
724
725 /* Yield an integer that contains TAG along with PTR. */
726 #define TAG_PTR(tag, ptr) \
727 ((USE_LSB_TAG ? (tag) : (EMACS_UINT) (tag) << VALBITS) + (uintptr_t) (ptr))
728
729 /* Yield an integer that contains a symbol tag along with OFFSET.
730 OFFSET should be the offset in bytes from 'lispsym' to the symbol. */
731 #define TAG_SYMOFFSET(offset) \
732 TAG_PTR (Lisp_Symbol, \
733 ((uintptr_t) (offset) >> (USE_LSB_TAG ? 0 : GCTYPEBITS)))
734
735 /* Declare extern constants for Lisp symbols. These can be helpful
736 when using a debugger like GDB, on older platforms where the debug
737 format does not represent C macros. */
738 #define DEFINE_LISP_SYMBOL_BEGIN(name) \
739 DEFINE_GDB_SYMBOL_BEGIN (Lisp_Object, name)
740 #define DEFINE_LISP_SYMBOL_END(name) \
741 DEFINE_GDB_SYMBOL_END (LISP_INITIALLY (TAG_SYMOFFSET (i##name \
742 * sizeof *lispsym)))
743
744 #include "globals.h"
745
746 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
747 At the machine level, these operations are no-ops. */
748 LISP_MACRO_DEFUN (XLI, EMACS_INT, (Lisp_Object o), (o))
749 LISP_MACRO_DEFUN (XIL, Lisp_Object, (EMACS_INT i), (i))
750
751 /* In the size word of a vector, this bit means the vector has been marked. */
752
753 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
754 # define ARRAY_MARK_FLAG PTRDIFF_MIN
755 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
756
757 /* In the size word of a struct Lisp_Vector, this bit means it's really
758 some other vector-like object. */
759 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
760 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
761 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
762
763 /* In a pseudovector, the size field actually contains a word with one
764 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
765 with PVEC_TYPE_MASK to indicate the actual type. */
766 enum pvec_type
767 {
768 PVEC_NORMAL_VECTOR,
769 PVEC_FREE,
770 PVEC_PROCESS,
771 PVEC_FRAME,
772 PVEC_WINDOW,
773 PVEC_BOOL_VECTOR,
774 PVEC_BUFFER,
775 PVEC_HASH_TABLE,
776 PVEC_TERMINAL,
777 PVEC_WINDOW_CONFIGURATION,
778 PVEC_SUBR,
779 PVEC_OTHER,
780 /* These should be last, check internal_equal to see why. */
781 PVEC_COMPILED,
782 PVEC_CHAR_TABLE,
783 PVEC_SUB_CHAR_TABLE,
784 PVEC_FONT /* Should be last because it's used for range checking. */
785 };
786
787 enum More_Lisp_Bits
788 {
789 /* For convenience, we also store the number of elements in these bits.
790 Note that this size is not necessarily the memory-footprint size, but
791 only the number of Lisp_Object fields (that need to be traced by GC).
792 The distinction is used, e.g., by Lisp_Process, which places extra
793 non-Lisp_Object fields at the end of the structure. */
794 PSEUDOVECTOR_SIZE_BITS = 12,
795 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
796
797 /* To calculate the memory footprint of the pseudovector, it's useful
798 to store the size of non-Lisp area in word_size units here. */
799 PSEUDOVECTOR_REST_BITS = 12,
800 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
801 << PSEUDOVECTOR_SIZE_BITS),
802
803 /* Used to extract pseudovector subtype information. */
804 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
805 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
806 };
807 \f
808 /* These functions extract various sorts of values from a Lisp_Object.
809 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
810 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
811 that cons. */
812
813 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
814 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
815 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
816 DEFINE_GDB_SYMBOL_END (VALMASK)
817
818 /* Largest and smallest representable fixnum values. These are the C
819 values. They are macros for use in static initializers. */
820 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
821 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
822
823 #if USE_LSB_TAG
824
825 LISP_MACRO_DEFUN (make_number, Lisp_Object, (EMACS_INT n), (n))
826 LISP_MACRO_DEFUN (XINT, EMACS_INT, (Lisp_Object a), (a))
827 LISP_MACRO_DEFUN (XFASTINT, EMACS_INT, (Lisp_Object a), (a))
828 LISP_MACRO_DEFUN (XSYMBOL, struct Lisp_Symbol *, (Lisp_Object a), (a))
829 LISP_MACRO_DEFUN (XTYPE, enum Lisp_Type, (Lisp_Object a), (a))
830 LISP_MACRO_DEFUN (XUNTAG, void *, (Lisp_Object a, int type), (a, type))
831
832 #else /* ! USE_LSB_TAG */
833
834 /* Although compiled only if ! USE_LSB_TAG, the following functions
835 also work when USE_LSB_TAG; this is to aid future maintenance when
836 the lisp_h_* macros are eventually removed. */
837
838 /* Make a Lisp integer representing the value of the low order
839 bits of N. */
840 INLINE Lisp_Object
841 make_number (EMACS_INT n)
842 {
843 EMACS_INT int0 = Lisp_Int0;
844 if (USE_LSB_TAG)
845 {
846 EMACS_UINT u = n;
847 n = u << INTTYPEBITS;
848 n += int0;
849 }
850 else
851 {
852 n &= INTMASK;
853 n += (int0 << VALBITS);
854 }
855 return XIL (n);
856 }
857
858 /* Extract A's value as a signed integer. */
859 INLINE EMACS_INT
860 XINT (Lisp_Object a)
861 {
862 EMACS_INT i = XLI (a);
863 if (! USE_LSB_TAG)
864 {
865 EMACS_UINT u = i;
866 i = u << INTTYPEBITS;
867 }
868 return i >> INTTYPEBITS;
869 }
870
871 /* Like XINT (A), but may be faster. A must be nonnegative.
872 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
873 integers have zero-bits in their tags. */
874 INLINE EMACS_INT
875 XFASTINT (Lisp_Object a)
876 {
877 EMACS_INT int0 = Lisp_Int0;
878 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a) - (int0 << VALBITS);
879 eassert (0 <= n);
880 return n;
881 }
882
883 /* Extract A's value as a symbol. */
884 INLINE struct Lisp_Symbol *
885 XSYMBOL (Lisp_Object a)
886 {
887 uintptr_t i = (uintptr_t) XUNTAG (a, Lisp_Symbol);
888 if (! USE_LSB_TAG)
889 i <<= GCTYPEBITS;
890 void *p = (char *) lispsym + i;
891 return p;
892 }
893
894 /* Extract A's type. */
895 INLINE enum Lisp_Type
896 XTYPE (Lisp_Object a)
897 {
898 EMACS_UINT i = XLI (a);
899 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
900 }
901
902 /* Extract A's pointer value, assuming A's type is TYPE. */
903 INLINE void *
904 XUNTAG (Lisp_Object a, int type)
905 {
906 intptr_t i = USE_LSB_TAG ? XLI (a) - type : XLI (a) & VALMASK;
907 return (void *) i;
908 }
909
910 #endif /* ! USE_LSB_TAG */
911
912 /* Extract the pointer hidden within A. */
913 LISP_MACRO_DEFUN (XPNTR, void *, (Lisp_Object a), (a))
914
915 /* Extract A's value as an unsigned integer. */
916 INLINE EMACS_UINT
917 XUINT (Lisp_Object a)
918 {
919 EMACS_UINT i = XLI (a);
920 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
921 }
922
923 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
924 right now, but XUINT should only be applied to objects we know are
925 integers. */
926 LISP_MACRO_DEFUN (XHASH, EMACS_INT, (Lisp_Object a), (a))
927
928 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
929 INLINE Lisp_Object
930 make_natnum (EMACS_INT n)
931 {
932 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
933 EMACS_INT int0 = Lisp_Int0;
934 return USE_LSB_TAG ? make_number (n) : XIL (n + (int0 << VALBITS));
935 }
936
937 /* Return true if X and Y are the same object. */
938 LISP_MACRO_DEFUN (EQ, bool, (Lisp_Object x, Lisp_Object y), (x, y))
939
940 /* Value is true if I doesn't fit into a Lisp fixnum. It is
941 written this way so that it also works if I is of unsigned
942 type or if I is a NaN. */
943
944 #define FIXNUM_OVERFLOW_P(i) \
945 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
946
947 INLINE ptrdiff_t
948 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
949 {
950 return num < lower ? lower : num <= upper ? num : upper;
951 }
952 \f
953
954 /* Extract a value or address from a Lisp_Object. */
955
956 LISP_MACRO_DEFUN (XCONS, struct Lisp_Cons *, (Lisp_Object a), (a))
957
958 INLINE struct Lisp_Vector *
959 XVECTOR (Lisp_Object a)
960 {
961 eassert (VECTORLIKEP (a));
962 return XUNTAG (a, Lisp_Vectorlike);
963 }
964
965 INLINE struct Lisp_String *
966 XSTRING (Lisp_Object a)
967 {
968 eassert (STRINGP (a));
969 return XUNTAG (a, Lisp_String);
970 }
971
972 /* The index of the C-defined Lisp symbol SYM.
973 This can be used in a static initializer. */
974 #define SYMBOL_INDEX(sym) i##sym
975
976 INLINE struct Lisp_Float *
977 XFLOAT (Lisp_Object a)
978 {
979 eassert (FLOATP (a));
980 return XUNTAG (a, Lisp_Float);
981 }
982
983 /* Pseudovector types. */
984
985 INLINE struct Lisp_Process *
986 XPROCESS (Lisp_Object a)
987 {
988 eassert (PROCESSP (a));
989 return XUNTAG (a, Lisp_Vectorlike);
990 }
991
992 INLINE struct window *
993 XWINDOW (Lisp_Object a)
994 {
995 eassert (WINDOWP (a));
996 return XUNTAG (a, Lisp_Vectorlike);
997 }
998
999 INLINE struct terminal *
1000 XTERMINAL (Lisp_Object a)
1001 {
1002 eassert (TERMINALP (a));
1003 return XUNTAG (a, Lisp_Vectorlike);
1004 }
1005
1006 INLINE struct Lisp_Subr *
1007 XSUBR (Lisp_Object a)
1008 {
1009 eassert (SUBRP (a));
1010 return XUNTAG (a, Lisp_Vectorlike);
1011 }
1012
1013 INLINE struct buffer *
1014 XBUFFER (Lisp_Object a)
1015 {
1016 eassert (BUFFERP (a));
1017 return XUNTAG (a, Lisp_Vectorlike);
1018 }
1019
1020 INLINE struct Lisp_Char_Table *
1021 XCHAR_TABLE (Lisp_Object a)
1022 {
1023 eassert (CHAR_TABLE_P (a));
1024 return XUNTAG (a, Lisp_Vectorlike);
1025 }
1026
1027 INLINE struct Lisp_Sub_Char_Table *
1028 XSUB_CHAR_TABLE (Lisp_Object a)
1029 {
1030 eassert (SUB_CHAR_TABLE_P (a));
1031 return XUNTAG (a, Lisp_Vectorlike);
1032 }
1033
1034 INLINE struct Lisp_Bool_Vector *
1035 XBOOL_VECTOR (Lisp_Object a)
1036 {
1037 eassert (BOOL_VECTOR_P (a));
1038 return XUNTAG (a, Lisp_Vectorlike);
1039 }
1040
1041 /* Construct a Lisp_Object from a value or address. */
1042
1043 INLINE Lisp_Object
1044 make_lisp_ptr (void *ptr, enum Lisp_Type type)
1045 {
1046 Lisp_Object a = XIL (TAG_PTR (type, ptr));
1047 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
1048 return a;
1049 }
1050
1051 INLINE Lisp_Object
1052 make_lisp_symbol (struct Lisp_Symbol *sym)
1053 {
1054 Lisp_Object a = XIL (TAG_SYMOFFSET ((char *) sym - (char *) lispsym));
1055 eassert (XSYMBOL (a) == sym);
1056 return a;
1057 }
1058
1059 INLINE Lisp_Object
1060 builtin_lisp_symbol (int index)
1061 {
1062 return make_lisp_symbol (lispsym + index);
1063 }
1064
1065 #define XSETINT(a, b) ((a) = make_number (b))
1066 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
1067 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
1068 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
1069 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
1070 #define XSETSYMBOL(a, b) ((a) = make_lisp_symbol (b))
1071 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
1072 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
1073
1074 /* Pseudovector types. */
1075
1076 #define XSETPVECTYPE(v, code) \
1077 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
1078 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
1079 ((v)->header.size = (PSEUDOVECTOR_FLAG \
1080 | ((code) << PSEUDOVECTOR_AREA_BITS) \
1081 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
1082 | (lispsize)))
1083
1084 /* The cast to struct vectorlike_header * avoids aliasing issues. */
1085 #define XSETPSEUDOVECTOR(a, b, code) \
1086 XSETTYPED_PSEUDOVECTOR (a, b, \
1087 (((struct vectorlike_header *) \
1088 XUNTAG (a, Lisp_Vectorlike)) \
1089 ->size), \
1090 code)
1091 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
1092 (XSETVECTOR (a, b), \
1093 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
1094 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
1095
1096 #define XSETWINDOW_CONFIGURATION(a, b) \
1097 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
1098 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
1099 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
1100 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
1101 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
1102 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
1103 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
1104 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1105 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1106 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1107
1108 /* Efficiently convert a pointer to a Lisp object and back. The
1109 pointer is represented as a Lisp integer, so the garbage collector
1110 does not know about it. The pointer should not have both Lisp_Int1
1111 bits set, which makes this conversion inherently unportable. */
1112
1113 INLINE void *
1114 XINTPTR (Lisp_Object a)
1115 {
1116 return XUNTAG (a, Lisp_Int0);
1117 }
1118
1119 INLINE Lisp_Object
1120 make_pointer_integer (void *p)
1121 {
1122 Lisp_Object a = XIL (TAG_PTR (Lisp_Int0, p));
1123 eassert (INTEGERP (a) && XINTPTR (a) == p);
1124 return a;
1125 }
1126
1127 /* Type checking. */
1128
1129 LISP_MACRO_DEFUN_VOID (CHECK_TYPE,
1130 (int ok, Lisp_Object predicate, Lisp_Object x),
1131 (ok, predicate, x))
1132
1133 /* Deprecated and will be removed soon. */
1134
1135 #define INTERNAL_FIELD(field) field ## _
1136
1137 /* See the macros in intervals.h. */
1138
1139 typedef struct interval *INTERVAL;
1140
1141 struct GCALIGNED Lisp_Cons
1142 {
1143 /* Car of this cons cell. */
1144 Lisp_Object car;
1145
1146 union
1147 {
1148 /* Cdr of this cons cell. */
1149 Lisp_Object cdr;
1150
1151 /* Used to chain conses on a free list. */
1152 struct Lisp_Cons *chain;
1153 } u;
1154 };
1155
1156 /* Take the car or cdr of something known to be a cons cell. */
1157 /* The _addr functions shouldn't be used outside of the minimal set
1158 of code that has to know what a cons cell looks like. Other code not
1159 part of the basic lisp implementation should assume that the car and cdr
1160 fields are not accessible. (What if we want to switch to
1161 a copying collector someday? Cached cons cell field addresses may be
1162 invalidated at arbitrary points.) */
1163 INLINE Lisp_Object *
1164 xcar_addr (Lisp_Object c)
1165 {
1166 return &XCONS (c)->car;
1167 }
1168 INLINE Lisp_Object *
1169 xcdr_addr (Lisp_Object c)
1170 {
1171 return &XCONS (c)->u.cdr;
1172 }
1173
1174 /* Use these from normal code. */
1175 LISP_MACRO_DEFUN (XCAR, Lisp_Object, (Lisp_Object c), (c))
1176 LISP_MACRO_DEFUN (XCDR, Lisp_Object, (Lisp_Object c), (c))
1177
1178 /* Use these to set the fields of a cons cell.
1179
1180 Note that both arguments may refer to the same object, so 'n'
1181 should not be read after 'c' is first modified. */
1182 INLINE void
1183 XSETCAR (Lisp_Object c, Lisp_Object n)
1184 {
1185 *xcar_addr (c) = n;
1186 }
1187 INLINE void
1188 XSETCDR (Lisp_Object c, Lisp_Object n)
1189 {
1190 *xcdr_addr (c) = n;
1191 }
1192
1193 /* Take the car or cdr of something whose type is not known. */
1194 INLINE Lisp_Object
1195 CAR (Lisp_Object c)
1196 {
1197 return (CONSP (c) ? XCAR (c)
1198 : NILP (c) ? Qnil
1199 : wrong_type_argument (Qlistp, c));
1200 }
1201 INLINE Lisp_Object
1202 CDR (Lisp_Object c)
1203 {
1204 return (CONSP (c) ? XCDR (c)
1205 : NILP (c) ? Qnil
1206 : wrong_type_argument (Qlistp, c));
1207 }
1208
1209 /* Take the car or cdr of something whose type is not known. */
1210 INLINE Lisp_Object
1211 CAR_SAFE (Lisp_Object c)
1212 {
1213 return CONSP (c) ? XCAR (c) : Qnil;
1214 }
1215 INLINE Lisp_Object
1216 CDR_SAFE (Lisp_Object c)
1217 {
1218 return CONSP (c) ? XCDR (c) : Qnil;
1219 }
1220
1221 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1222
1223 struct GCALIGNED Lisp_String
1224 {
1225 ptrdiff_t size;
1226 ptrdiff_t size_byte;
1227 INTERVAL intervals; /* Text properties in this string. */
1228 unsigned char *data;
1229 };
1230
1231 /* True if STR is a multibyte string. */
1232 INLINE bool
1233 STRING_MULTIBYTE (Lisp_Object str)
1234 {
1235 return 0 <= XSTRING (str)->size_byte;
1236 }
1237
1238 /* An upper bound on the number of bytes in a Lisp string, not
1239 counting the terminating null. This a tight enough bound to
1240 prevent integer overflow errors that would otherwise occur during
1241 string size calculations. A string cannot contain more bytes than
1242 a fixnum can represent, nor can it be so long that C pointer
1243 arithmetic stops working on the string plus its terminating null.
1244 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1245 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1246 would expose alloc.c internal details that we'd rather keep
1247 private.
1248
1249 This is a macro for use in static initializers. The cast to
1250 ptrdiff_t ensures that the macro is signed. */
1251 #define STRING_BYTES_BOUND \
1252 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1253
1254 /* Mark STR as a unibyte string. */
1255 #define STRING_SET_UNIBYTE(STR) \
1256 do { \
1257 if (EQ (STR, empty_multibyte_string)) \
1258 (STR) = empty_unibyte_string; \
1259 else \
1260 XSTRING (STR)->size_byte = -1; \
1261 } while (false)
1262
1263 /* Mark STR as a multibyte string. Assure that STR contains only
1264 ASCII characters in advance. */
1265 #define STRING_SET_MULTIBYTE(STR) \
1266 do { \
1267 if (EQ (STR, empty_unibyte_string)) \
1268 (STR) = empty_multibyte_string; \
1269 else \
1270 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1271 } while (false)
1272
1273 /* Convenience functions for dealing with Lisp strings. */
1274
1275 INLINE unsigned char *
1276 SDATA (Lisp_Object string)
1277 {
1278 return XSTRING (string)->data;
1279 }
1280 INLINE char *
1281 SSDATA (Lisp_Object string)
1282 {
1283 /* Avoid "differ in sign" warnings. */
1284 return (char *) SDATA (string);
1285 }
1286 INLINE unsigned char
1287 SREF (Lisp_Object string, ptrdiff_t index)
1288 {
1289 return SDATA (string)[index];
1290 }
1291 INLINE void
1292 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1293 {
1294 SDATA (string)[index] = new;
1295 }
1296 INLINE ptrdiff_t
1297 SCHARS (Lisp_Object string)
1298 {
1299 return XSTRING (string)->size;
1300 }
1301
1302 #ifdef GC_CHECK_STRING_BYTES
1303 extern ptrdiff_t string_bytes (struct Lisp_String *);
1304 #endif
1305 INLINE ptrdiff_t
1306 STRING_BYTES (struct Lisp_String *s)
1307 {
1308 #ifdef GC_CHECK_STRING_BYTES
1309 return string_bytes (s);
1310 #else
1311 return s->size_byte < 0 ? s->size : s->size_byte;
1312 #endif
1313 }
1314
1315 INLINE ptrdiff_t
1316 SBYTES (Lisp_Object string)
1317 {
1318 return STRING_BYTES (XSTRING (string));
1319 }
1320 INLINE void
1321 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1322 {
1323 XSTRING (string)->size = newsize;
1324 }
1325
1326 /* Header of vector-like objects. This documents the layout constraints on
1327 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1328 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1329 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1330 because when two such pointers potentially alias, a compiler won't
1331 incorrectly reorder loads and stores to their size fields. See
1332 Bug#8546. */
1333 struct vectorlike_header
1334 {
1335 /* The only field contains various pieces of information:
1336 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1337 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1338 vector (0) or a pseudovector (1).
1339 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1340 of slots) of the vector.
1341 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1342 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1343 - b) number of Lisp_Objects slots at the beginning of the object
1344 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1345 traced by the GC;
1346 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1347 measured in word_size units. Rest fields may also include
1348 Lisp_Objects, but these objects usually needs some special treatment
1349 during GC.
1350 There are some exceptions. For PVEC_FREE, b) is always zero. For
1351 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1352 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1353 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1354 ptrdiff_t size;
1355 };
1356
1357 /* A regular vector is just a header plus an array of Lisp_Objects. */
1358
1359 struct Lisp_Vector
1360 {
1361 struct vectorlike_header header;
1362 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1363 };
1364
1365 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1366 enum
1367 {
1368 ALIGNOF_STRUCT_LISP_VECTOR
1369 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1370 };
1371
1372 /* A boolvector is a kind of vectorlike, with contents like a string. */
1373
1374 struct Lisp_Bool_Vector
1375 {
1376 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1377 just the subtype information. */
1378 struct vectorlike_header header;
1379 /* This is the size in bits. */
1380 EMACS_INT size;
1381 /* The actual bits, packed into bytes.
1382 Zeros fill out the last word if needed.
1383 The bits are in little-endian order in the bytes, and
1384 the bytes are in little-endian order in the words. */
1385 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1386 };
1387
1388 INLINE EMACS_INT
1389 bool_vector_size (Lisp_Object a)
1390 {
1391 EMACS_INT size = XBOOL_VECTOR (a)->size;
1392 eassume (0 <= size);
1393 return size;
1394 }
1395
1396 INLINE bits_word *
1397 bool_vector_data (Lisp_Object a)
1398 {
1399 return XBOOL_VECTOR (a)->data;
1400 }
1401
1402 INLINE unsigned char *
1403 bool_vector_uchar_data (Lisp_Object a)
1404 {
1405 return (unsigned char *) bool_vector_data (a);
1406 }
1407
1408 /* The number of data words and bytes in a bool vector with SIZE bits. */
1409
1410 INLINE EMACS_INT
1411 bool_vector_words (EMACS_INT size)
1412 {
1413 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1414 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1415 }
1416
1417 INLINE EMACS_INT
1418 bool_vector_bytes (EMACS_INT size)
1419 {
1420 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1421 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1422 }
1423
1424 /* True if A's Ith bit is set. */
1425
1426 INLINE bool
1427 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1428 {
1429 eassume (0 <= i && i < bool_vector_size (a));
1430 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1431 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1432 }
1433
1434 INLINE Lisp_Object
1435 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1436 {
1437 return bool_vector_bitref (a, i) ? Qt : Qnil;
1438 }
1439
1440 /* Set A's Ith bit to B. */
1441
1442 INLINE void
1443 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1444 {
1445 unsigned char *addr;
1446
1447 eassume (0 <= i && i < bool_vector_size (a));
1448 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1449
1450 if (b)
1451 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1452 else
1453 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1454 }
1455
1456 /* Some handy constants for calculating sizes
1457 and offsets, mostly of vectorlike objects. */
1458
1459 enum
1460 {
1461 header_size = offsetof (struct Lisp_Vector, contents),
1462 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1463 word_size = sizeof (Lisp_Object)
1464 };
1465
1466 /* Conveniences for dealing with Lisp arrays. */
1467
1468 INLINE Lisp_Object
1469 AREF (Lisp_Object array, ptrdiff_t idx)
1470 {
1471 return XVECTOR (array)->contents[idx];
1472 }
1473
1474 INLINE Lisp_Object *
1475 aref_addr (Lisp_Object array, ptrdiff_t idx)
1476 {
1477 return & XVECTOR (array)->contents[idx];
1478 }
1479
1480 INLINE ptrdiff_t
1481 ASIZE (Lisp_Object array)
1482 {
1483 return XVECTOR (array)->header.size;
1484 }
1485
1486 INLINE void
1487 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1488 {
1489 eassert (0 <= idx && idx < ASIZE (array));
1490 XVECTOR (array)->contents[idx] = val;
1491 }
1492
1493 INLINE void
1494 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1495 {
1496 /* Like ASET, but also can be used in the garbage collector:
1497 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1498 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1499 XVECTOR (array)->contents[idx] = val;
1500 }
1501
1502 /* If a struct is made to look like a vector, this macro returns the length
1503 of the shortest vector that would hold that struct. */
1504
1505 #define VECSIZE(type) \
1506 ((sizeof (type) - header_size + word_size - 1) / word_size)
1507
1508 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1509 at the end and we need to compute the number of Lisp_Object fields (the
1510 ones that the GC needs to trace). */
1511
1512 #define PSEUDOVECSIZE(type, nonlispfield) \
1513 ((offsetof (type, nonlispfield) - header_size) / word_size)
1514
1515 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1516 should be integer expressions. This is not the same as
1517 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1518 returns true. For efficiency, prefer plain unsigned comparison if A
1519 and B's sizes both fit (after integer promotion). */
1520 #define UNSIGNED_CMP(a, op, b) \
1521 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1522 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1523 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1524
1525 /* True iff C is an ASCII character. */
1526 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1527
1528 /* A char-table is a kind of vectorlike, with contents are like a
1529 vector but with a few other slots. For some purposes, it makes
1530 sense to handle a char-table with type struct Lisp_Vector. An
1531 element of a char table can be any Lisp objects, but if it is a sub
1532 char-table, we treat it a table that contains information of a
1533 specific range of characters. A sub char-table is like a vector but
1534 with two integer fields between the header and Lisp data, which means
1535 that it has to be marked with some precautions (see mark_char_table
1536 in alloc.c). A sub char-table appears only in an element of a char-table,
1537 and there's no way to access it directly from Emacs Lisp program. */
1538
1539 enum CHARTAB_SIZE_BITS
1540 {
1541 CHARTAB_SIZE_BITS_0 = 6,
1542 CHARTAB_SIZE_BITS_1 = 4,
1543 CHARTAB_SIZE_BITS_2 = 5,
1544 CHARTAB_SIZE_BITS_3 = 7
1545 };
1546
1547 extern const int chartab_size[4];
1548
1549 struct Lisp_Char_Table
1550 {
1551 /* HEADER.SIZE is the vector's size field, which also holds the
1552 pseudovector type information. It holds the size, too.
1553 The size counts the defalt, parent, purpose, ascii,
1554 contents, and extras slots. */
1555 struct vectorlike_header header;
1556
1557 /* This holds a default value,
1558 which is used whenever the value for a specific character is nil. */
1559 Lisp_Object defalt;
1560
1561 /* This points to another char table, which we inherit from when the
1562 value for a specific character is nil. The `defalt' slot takes
1563 precedence over this. */
1564 Lisp_Object parent;
1565
1566 /* This is a symbol which says what kind of use this char-table is
1567 meant for. */
1568 Lisp_Object purpose;
1569
1570 /* The bottom sub char-table for characters of the range 0..127. It
1571 is nil if none of ASCII character has a specific value. */
1572 Lisp_Object ascii;
1573
1574 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1575
1576 /* These hold additional data. It is a vector. */
1577 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1578 };
1579
1580 struct Lisp_Sub_Char_Table
1581 {
1582 /* HEADER.SIZE is the vector's size field, which also holds the
1583 pseudovector type information. It holds the size, too. */
1584 struct vectorlike_header header;
1585
1586 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1587 char-table of depth 1 contains 16 elements, and each element
1588 covers 4096 (128*32) characters. A sub char-table of depth 2
1589 contains 32 elements, and each element covers 128 characters. A
1590 sub char-table of depth 3 contains 128 elements, and each element
1591 is for one character. */
1592 int depth;
1593
1594 /* Minimum character covered by the sub char-table. */
1595 int min_char;
1596
1597 /* Use set_sub_char_table_contents to set this. */
1598 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1599 };
1600
1601 INLINE Lisp_Object
1602 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1603 {
1604 struct Lisp_Char_Table *tbl = NULL;
1605 Lisp_Object val;
1606 do
1607 {
1608 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1609 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1610 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1611 if (NILP (val))
1612 val = tbl->defalt;
1613 }
1614 while (NILP (val) && ! NILP (tbl->parent));
1615
1616 return val;
1617 }
1618
1619 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1620 characters. Do not check validity of CT. */
1621 INLINE Lisp_Object
1622 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1623 {
1624 return (ASCII_CHAR_P (idx)
1625 ? CHAR_TABLE_REF_ASCII (ct, idx)
1626 : char_table_ref (ct, idx));
1627 }
1628
1629 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1630 8-bit European characters. Do not check validity of CT. */
1631 INLINE void
1632 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1633 {
1634 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1635 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1636 else
1637 char_table_set (ct, idx, val);
1638 }
1639
1640 /* This structure describes a built-in function.
1641 It is generated by the DEFUN macro only.
1642 defsubr makes it into a Lisp object. */
1643
1644 struct Lisp_Subr
1645 {
1646 struct vectorlike_header header;
1647 union {
1648 Lisp_Object (*a0) (void);
1649 Lisp_Object (*a1) (Lisp_Object);
1650 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1651 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1652 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1653 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1654 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1655 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1656 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1657 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1658 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1659 } function;
1660 short min_args, max_args;
1661 const char *symbol_name;
1662 const char *intspec;
1663 const char *doc;
1664 };
1665
1666 enum char_table_specials
1667 {
1668 /* This is the number of slots that every char table must have. This
1669 counts the ordinary slots and the top, defalt, parent, and purpose
1670 slots. */
1671 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1672
1673 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1674 when the latter is treated as an ordinary Lisp_Vector. */
1675 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1676 };
1677
1678 /* Return the number of "extra" slots in the char table CT. */
1679
1680 INLINE int
1681 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1682 {
1683 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1684 - CHAR_TABLE_STANDARD_SLOTS);
1685 }
1686
1687 /* Make sure that sub char-table contents slot is where we think it is. */
1688 verify (offsetof (struct Lisp_Sub_Char_Table, contents)
1689 == offsetof (struct Lisp_Vector, contents[SUB_CHAR_TABLE_OFFSET]));
1690
1691 /***********************************************************************
1692 Symbols
1693 ***********************************************************************/
1694
1695 /* Value is name of symbol. */
1696
1697 LISP_MACRO_DEFUN (SYMBOL_VAL, Lisp_Object, (struct Lisp_Symbol *sym), (sym))
1698
1699 INLINE struct Lisp_Symbol *
1700 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1701 {
1702 eassert (sym->redirect == SYMBOL_VARALIAS);
1703 return sym->val.alias;
1704 }
1705 INLINE struct Lisp_Buffer_Local_Value *
1706 SYMBOL_BLV (struct Lisp_Symbol *sym)
1707 {
1708 eassert (sym->redirect == SYMBOL_LOCALIZED);
1709 return sym->val.blv;
1710 }
1711 INLINE union Lisp_Fwd *
1712 SYMBOL_FWD (struct Lisp_Symbol *sym)
1713 {
1714 eassert (sym->redirect == SYMBOL_FORWARDED);
1715 return sym->val.fwd;
1716 }
1717
1718 LISP_MACRO_DEFUN_VOID (SET_SYMBOL_VAL,
1719 (struct Lisp_Symbol *sym, Lisp_Object v), (sym, v))
1720
1721 INLINE void
1722 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1723 {
1724 eassert (sym->redirect == SYMBOL_VARALIAS);
1725 sym->val.alias = v;
1726 }
1727 INLINE void
1728 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1729 {
1730 eassert (sym->redirect == SYMBOL_LOCALIZED);
1731 sym->val.blv = v;
1732 }
1733 INLINE void
1734 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1735 {
1736 eassert (sym->redirect == SYMBOL_FORWARDED);
1737 sym->val.fwd = v;
1738 }
1739
1740 INLINE Lisp_Object
1741 SYMBOL_NAME (Lisp_Object sym)
1742 {
1743 return XSYMBOL (sym)->name;
1744 }
1745
1746 /* Value is true if SYM is an interned symbol. */
1747
1748 INLINE bool
1749 SYMBOL_INTERNED_P (Lisp_Object sym)
1750 {
1751 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1752 }
1753
1754 /* Value is true if SYM is interned in initial_obarray. */
1755
1756 INLINE bool
1757 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1758 {
1759 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1760 }
1761
1762 /* Value is non-zero if symbol is considered a constant, i.e. its
1763 value cannot be changed (there is an exception for keyword symbols,
1764 whose value can be set to the keyword symbol itself). */
1765
1766 LISP_MACRO_DEFUN (SYMBOL_CONSTANT_P, int, (Lisp_Object sym), (sym))
1767
1768 /* Placeholder for make-docfile to process. The actual symbol
1769 definition is done by lread.c's defsym. */
1770 #define DEFSYM(sym, name) /* empty */
1771
1772 \f
1773 /***********************************************************************
1774 Hash Tables
1775 ***********************************************************************/
1776
1777 /* The structure of a Lisp hash table. */
1778
1779 struct hash_table_test
1780 {
1781 /* Name of the function used to compare keys. */
1782 Lisp_Object name;
1783
1784 /* User-supplied hash function, or nil. */
1785 Lisp_Object user_hash_function;
1786
1787 /* User-supplied key comparison function, or nil. */
1788 Lisp_Object user_cmp_function;
1789
1790 /* C function to compare two keys. */
1791 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1792
1793 /* C function to compute hash code. */
1794 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1795 };
1796
1797 struct Lisp_Hash_Table
1798 {
1799 /* This is for Lisp; the hash table code does not refer to it. */
1800 struct vectorlike_header header;
1801
1802 /* Nil if table is non-weak. Otherwise a symbol describing the
1803 weakness of the table. */
1804 Lisp_Object weak;
1805
1806 /* When the table is resized, and this is an integer, compute the
1807 new size by adding this to the old size. If a float, compute the
1808 new size by multiplying the old size with this factor. */
1809 Lisp_Object rehash_size;
1810
1811 /* Resize hash table when number of entries/ table size is >= this
1812 ratio, a float. */
1813 Lisp_Object rehash_threshold;
1814
1815 /* Vector of hash codes. If hash[I] is nil, this means that the
1816 I-th entry is unused. */
1817 Lisp_Object hash;
1818
1819 /* Vector used to chain entries. If entry I is free, next[I] is the
1820 entry number of the next free item. If entry I is non-free,
1821 next[I] is the index of the next entry in the collision chain. */
1822 Lisp_Object next;
1823
1824 /* Index of first free entry in free list. */
1825 Lisp_Object next_free;
1826
1827 /* Bucket vector. A non-nil entry is the index of the first item in
1828 a collision chain. This vector's size can be larger than the
1829 hash table size to reduce collisions. */
1830 Lisp_Object index;
1831
1832 /* Only the fields above are traced normally by the GC. The ones below
1833 `count' are special and are either ignored by the GC or traced in
1834 a special way (e.g. because of weakness). */
1835
1836 /* Number of key/value entries in the table. */
1837 ptrdiff_t count;
1838
1839 /* Vector of keys and values. The key of item I is found at index
1840 2 * I, the value is found at index 2 * I + 1.
1841 This is gc_marked specially if the table is weak. */
1842 Lisp_Object key_and_value;
1843
1844 /* The comparison and hash functions. */
1845 struct hash_table_test test;
1846
1847 /* Next weak hash table if this is a weak hash table. The head
1848 of the list is in weak_hash_tables. */
1849 struct Lisp_Hash_Table *next_weak;
1850 };
1851
1852
1853 INLINE struct Lisp_Hash_Table *
1854 XHASH_TABLE (Lisp_Object a)
1855 {
1856 return XUNTAG (a, Lisp_Vectorlike);
1857 }
1858
1859 #define XSET_HASH_TABLE(VAR, PTR) \
1860 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1861
1862 INLINE bool
1863 HASH_TABLE_P (Lisp_Object a)
1864 {
1865 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1866 }
1867
1868 /* Value is the key part of entry IDX in hash table H. */
1869 INLINE Lisp_Object
1870 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1871 {
1872 return AREF (h->key_and_value, 2 * idx);
1873 }
1874
1875 /* Value is the value part of entry IDX in hash table H. */
1876 INLINE Lisp_Object
1877 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1878 {
1879 return AREF (h->key_and_value, 2 * idx + 1);
1880 }
1881
1882 /* Value is the index of the next entry following the one at IDX
1883 in hash table H. */
1884 INLINE Lisp_Object
1885 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1886 {
1887 return AREF (h->next, idx);
1888 }
1889
1890 /* Value is the hash code computed for entry IDX in hash table H. */
1891 INLINE Lisp_Object
1892 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1893 {
1894 return AREF (h->hash, idx);
1895 }
1896
1897 /* Value is the index of the element in hash table H that is the
1898 start of the collision list at index IDX in the index vector of H. */
1899 INLINE Lisp_Object
1900 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1901 {
1902 return AREF (h->index, idx);
1903 }
1904
1905 /* Value is the size of hash table H. */
1906 INLINE ptrdiff_t
1907 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1908 {
1909 return ASIZE (h->next);
1910 }
1911
1912 /* Default size for hash tables if not specified. */
1913
1914 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1915
1916 /* Default threshold specifying when to resize a hash table. The
1917 value gives the ratio of current entries in the hash table and the
1918 size of the hash table. */
1919
1920 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
1921
1922 /* Default factor by which to increase the size of a hash table. */
1923
1924 static double const DEFAULT_REHASH_SIZE = 1.5;
1925
1926 /* Combine two integers X and Y for hashing. The result might not fit
1927 into a Lisp integer. */
1928
1929 INLINE EMACS_UINT
1930 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
1931 {
1932 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
1933 }
1934
1935 /* Hash X, returning a value that fits into a fixnum. */
1936
1937 INLINE EMACS_UINT
1938 SXHASH_REDUCE (EMACS_UINT x)
1939 {
1940 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
1941 }
1942
1943 /* These structures are used for various misc types. */
1944
1945 struct Lisp_Misc_Any /* Supertype of all Misc types. */
1946 {
1947 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
1948 bool_bf gcmarkbit : 1;
1949 unsigned spacer : 15;
1950 };
1951
1952 struct Lisp_Marker
1953 {
1954 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
1955 bool_bf gcmarkbit : 1;
1956 unsigned spacer : 13;
1957 /* This flag is temporarily used in the functions
1958 decode/encode_coding_object to record that the marker position
1959 must be adjusted after the conversion. */
1960 bool_bf need_adjustment : 1;
1961 /* True means normal insertion at the marker's position
1962 leaves the marker after the inserted text. */
1963 bool_bf insertion_type : 1;
1964 /* This is the buffer that the marker points into, or 0 if it points nowhere.
1965 Note: a chain of markers can contain markers pointing into different
1966 buffers (the chain is per buffer_text rather than per buffer, so it's
1967 shared between indirect buffers). */
1968 /* This is used for (other than NULL-checking):
1969 - Fmarker_buffer
1970 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
1971 - unchain_marker: to find the list from which to unchain.
1972 - Fkill_buffer: to only unchain the markers of current indirect buffer.
1973 */
1974 struct buffer *buffer;
1975
1976 /* The remaining fields are meaningless in a marker that
1977 does not point anywhere. */
1978
1979 /* For markers that point somewhere,
1980 this is used to chain of all the markers in a given buffer. */
1981 /* We could remove it and use an array in buffer_text instead.
1982 That would also allow to preserve it ordered. */
1983 struct Lisp_Marker *next;
1984 /* This is the char position where the marker points. */
1985 ptrdiff_t charpos;
1986 /* This is the byte position.
1987 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
1988 used to implement the functionality of markers, but rather to (ab)use
1989 markers as a cache for char<->byte mappings). */
1990 ptrdiff_t bytepos;
1991 };
1992
1993 /* START and END are markers in the overlay's buffer, and
1994 PLIST is the overlay's property list. */
1995 struct Lisp_Overlay
1996 /* An overlay's real data content is:
1997 - plist
1998 - buffer (really there are two buffer pointers, one per marker,
1999 and both points to the same buffer)
2000 - insertion type of both ends (per-marker fields)
2001 - start & start byte (of start marker)
2002 - end & end byte (of end marker)
2003 - next (singly linked list of overlays)
2004 - next fields of start and end markers (singly linked list of markers).
2005 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
2006 */
2007 {
2008 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
2009 bool_bf gcmarkbit : 1;
2010 unsigned spacer : 15;
2011 struct Lisp_Overlay *next;
2012 Lisp_Object start;
2013 Lisp_Object end;
2014 Lisp_Object plist;
2015 };
2016
2017 /* Types of data which may be saved in a Lisp_Save_Value. */
2018
2019 enum
2020 {
2021 SAVE_UNUSED,
2022 SAVE_INTEGER,
2023 SAVE_FUNCPOINTER,
2024 SAVE_POINTER,
2025 SAVE_OBJECT
2026 };
2027
2028 /* Number of bits needed to store one of the above values. */
2029 enum { SAVE_SLOT_BITS = 3 };
2030
2031 /* Number of slots in a save value where save_type is nonzero. */
2032 enum { SAVE_VALUE_SLOTS = 4 };
2033
2034 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
2035
2036 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
2037
2038 enum Lisp_Save_Type
2039 {
2040 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2041 SAVE_TYPE_INT_INT_INT
2042 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
2043 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
2044 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
2045 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
2046 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
2047 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2048 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
2049 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
2050 SAVE_TYPE_FUNCPTR_PTR_OBJ
2051 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
2052
2053 /* This has an extra bit indicating it's raw memory. */
2054 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
2055 };
2056
2057 /* Special object used to hold a different values for later use.
2058
2059 This is mostly used to package C integers and pointers to call
2060 record_unwind_protect when two or more values need to be saved.
2061 For example:
2062
2063 ...
2064 struct my_data *md = get_my_data ();
2065 ptrdiff_t mi = get_my_integer ();
2066 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2067 ...
2068
2069 Lisp_Object my_unwind (Lisp_Object arg)
2070 {
2071 struct my_data *md = XSAVE_POINTER (arg, 0);
2072 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2073 ...
2074 }
2075
2076 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2077 saved objects and raise eassert if type of the saved object doesn't match
2078 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2079 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2080 slot 0 is a pointer. */
2081
2082 typedef void (*voidfuncptr) (void);
2083
2084 struct Lisp_Save_Value
2085 {
2086 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2087 bool_bf gcmarkbit : 1;
2088 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2089
2090 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2091 V's data entries are determined by V->save_type. E.g., if
2092 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2093 V->data[1] is an integer, and V's other data entries are unused.
2094
2095 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2096 a memory area containing V->data[1].integer potential Lisp_Objects. */
2097 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2098 union {
2099 void *pointer;
2100 voidfuncptr funcpointer;
2101 ptrdiff_t integer;
2102 Lisp_Object object;
2103 } data[SAVE_VALUE_SLOTS];
2104 };
2105
2106 /* Return the type of V's Nth saved value. */
2107 INLINE int
2108 save_type (struct Lisp_Save_Value *v, int n)
2109 {
2110 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2111 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2112 }
2113
2114 /* Get and set the Nth saved pointer. */
2115
2116 INLINE void *
2117 XSAVE_POINTER (Lisp_Object obj, int n)
2118 {
2119 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2120 return XSAVE_VALUE (obj)->data[n].pointer;
2121 }
2122 INLINE void
2123 set_save_pointer (Lisp_Object obj, int n, void *val)
2124 {
2125 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2126 XSAVE_VALUE (obj)->data[n].pointer = val;
2127 }
2128 INLINE voidfuncptr
2129 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2130 {
2131 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2132 return XSAVE_VALUE (obj)->data[n].funcpointer;
2133 }
2134
2135 /* Likewise for the saved integer. */
2136
2137 INLINE ptrdiff_t
2138 XSAVE_INTEGER (Lisp_Object obj, int n)
2139 {
2140 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2141 return XSAVE_VALUE (obj)->data[n].integer;
2142 }
2143 INLINE void
2144 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2145 {
2146 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2147 XSAVE_VALUE (obj)->data[n].integer = val;
2148 }
2149
2150 /* Extract Nth saved object. */
2151
2152 INLINE Lisp_Object
2153 XSAVE_OBJECT (Lisp_Object obj, int n)
2154 {
2155 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2156 return XSAVE_VALUE (obj)->data[n].object;
2157 }
2158
2159 /* A miscellaneous object, when it's on the free list. */
2160 struct Lisp_Free
2161 {
2162 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2163 bool_bf gcmarkbit : 1;
2164 unsigned spacer : 15;
2165 union Lisp_Misc *chain;
2166 };
2167
2168 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2169 It uses one of these struct subtypes to get the type field. */
2170
2171 union Lisp_Misc
2172 {
2173 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2174 struct Lisp_Free u_free;
2175 struct Lisp_Marker u_marker;
2176 struct Lisp_Overlay u_overlay;
2177 struct Lisp_Save_Value u_save_value;
2178 };
2179
2180 INLINE union Lisp_Misc *
2181 XMISC (Lisp_Object a)
2182 {
2183 return XUNTAG (a, Lisp_Misc);
2184 }
2185
2186 INLINE struct Lisp_Misc_Any *
2187 XMISCANY (Lisp_Object a)
2188 {
2189 eassert (MISCP (a));
2190 return & XMISC (a)->u_any;
2191 }
2192
2193 INLINE enum Lisp_Misc_Type
2194 XMISCTYPE (Lisp_Object a)
2195 {
2196 return XMISCANY (a)->type;
2197 }
2198
2199 INLINE struct Lisp_Marker *
2200 XMARKER (Lisp_Object a)
2201 {
2202 eassert (MARKERP (a));
2203 return & XMISC (a)->u_marker;
2204 }
2205
2206 INLINE struct Lisp_Overlay *
2207 XOVERLAY (Lisp_Object a)
2208 {
2209 eassert (OVERLAYP (a));
2210 return & XMISC (a)->u_overlay;
2211 }
2212
2213 INLINE struct Lisp_Save_Value *
2214 XSAVE_VALUE (Lisp_Object a)
2215 {
2216 eassert (SAVE_VALUEP (a));
2217 return & XMISC (a)->u_save_value;
2218 }
2219 \f
2220 /* Forwarding pointer to an int variable.
2221 This is allowed only in the value cell of a symbol,
2222 and it means that the symbol's value really lives in the
2223 specified int variable. */
2224 struct Lisp_Intfwd
2225 {
2226 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2227 EMACS_INT *intvar;
2228 };
2229
2230 /* Boolean forwarding pointer to an int variable.
2231 This is like Lisp_Intfwd except that the ostensible
2232 "value" of the symbol is t if the bool variable is true,
2233 nil if it is false. */
2234 struct Lisp_Boolfwd
2235 {
2236 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2237 bool *boolvar;
2238 };
2239
2240 /* Forwarding pointer to a Lisp_Object variable.
2241 This is allowed only in the value cell of a symbol,
2242 and it means that the symbol's value really lives in the
2243 specified variable. */
2244 struct Lisp_Objfwd
2245 {
2246 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2247 Lisp_Object *objvar;
2248 };
2249
2250 /* Like Lisp_Objfwd except that value lives in a slot in the
2251 current buffer. Value is byte index of slot within buffer. */
2252 struct Lisp_Buffer_Objfwd
2253 {
2254 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2255 int offset;
2256 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2257 Lisp_Object predicate;
2258 };
2259
2260 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2261 the symbol has buffer-local or frame-local bindings. (Exception:
2262 some buffer-local variables are built-in, with their values stored
2263 in the buffer structure itself. They are handled differently,
2264 using struct Lisp_Buffer_Objfwd.)
2265
2266 The `realvalue' slot holds the variable's current value, or a
2267 forwarding pointer to where that value is kept. This value is the
2268 one that corresponds to the loaded binding. To read or set the
2269 variable, you must first make sure the right binding is loaded;
2270 then you can access the value in (or through) `realvalue'.
2271
2272 `buffer' and `frame' are the buffer and frame for which the loaded
2273 binding was found. If those have changed, to make sure the right
2274 binding is loaded it is necessary to find which binding goes with
2275 the current buffer and selected frame, then load it. To load it,
2276 first unload the previous binding, then copy the value of the new
2277 binding into `realvalue' (or through it). Also update
2278 LOADED-BINDING to point to the newly loaded binding.
2279
2280 `local_if_set' indicates that merely setting the variable creates a
2281 local binding for the current buffer. Otherwise the latter, setting
2282 the variable does not do that; only make-local-variable does that. */
2283
2284 struct Lisp_Buffer_Local_Value
2285 {
2286 /* True means that merely setting the variable creates a local
2287 binding for the current buffer. */
2288 bool_bf local_if_set : 1;
2289 /* True means this variable can have frame-local bindings, otherwise, it is
2290 can have buffer-local bindings. The two cannot be combined. */
2291 bool_bf frame_local : 1;
2292 /* True means that the binding now loaded was found.
2293 Presumably equivalent to (defcell!=valcell). */
2294 bool_bf found : 1;
2295 /* If non-NULL, a forwarding to the C var where it should also be set. */
2296 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2297 /* The buffer or frame for which the loaded binding was found. */
2298 Lisp_Object where;
2299 /* A cons cell that holds the default value. It has the form
2300 (SYMBOL . DEFAULT-VALUE). */
2301 Lisp_Object defcell;
2302 /* The cons cell from `where's parameter alist.
2303 It always has the form (SYMBOL . VALUE)
2304 Note that if `forward' is non-nil, VALUE may be out of date.
2305 Also if the currently loaded binding is the default binding, then
2306 this is `eq'ual to defcell. */
2307 Lisp_Object valcell;
2308 };
2309
2310 /* Like Lisp_Objfwd except that value lives in a slot in the
2311 current kboard. */
2312 struct Lisp_Kboard_Objfwd
2313 {
2314 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2315 int offset;
2316 };
2317
2318 union Lisp_Fwd
2319 {
2320 struct Lisp_Intfwd u_intfwd;
2321 struct Lisp_Boolfwd u_boolfwd;
2322 struct Lisp_Objfwd u_objfwd;
2323 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2324 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2325 };
2326
2327 INLINE enum Lisp_Fwd_Type
2328 XFWDTYPE (union Lisp_Fwd *a)
2329 {
2330 return a->u_intfwd.type;
2331 }
2332
2333 INLINE struct Lisp_Buffer_Objfwd *
2334 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2335 {
2336 eassert (BUFFER_OBJFWDP (a));
2337 return &a->u_buffer_objfwd;
2338 }
2339 \f
2340 /* Lisp floating point type. */
2341 struct Lisp_Float
2342 {
2343 union
2344 {
2345 double data;
2346 struct Lisp_Float *chain;
2347 } u;
2348 };
2349
2350 INLINE double
2351 XFLOAT_DATA (Lisp_Object f)
2352 {
2353 return XFLOAT (f)->u.data;
2354 }
2355
2356 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2357 representations, have infinities and NaNs, and do not trap on
2358 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2359 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2360 wanted here, but is not quite right because Emacs does not require
2361 all the features of C11 Annex F (and does not require C11 at all,
2362 for that matter). */
2363 enum
2364 {
2365 IEEE_FLOATING_POINT
2366 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2367 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2368 };
2369
2370 /* A character, declared with the following typedef, is a member
2371 of some character set associated with the current buffer. */
2372 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2373 #define _UCHAR_T
2374 typedef unsigned char UCHAR;
2375 #endif
2376
2377 /* Meanings of slots in a Lisp_Compiled: */
2378
2379 enum Lisp_Compiled
2380 {
2381 COMPILED_ARGLIST = 0,
2382 COMPILED_BYTECODE = 1,
2383 COMPILED_CONSTANTS = 2,
2384 COMPILED_STACK_DEPTH = 3,
2385 COMPILED_DOC_STRING = 4,
2386 COMPILED_INTERACTIVE = 5
2387 };
2388
2389 /* Flag bits in a character. These also get used in termhooks.h.
2390 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2391 (MUlti-Lingual Emacs) might need 22 bits for the character value
2392 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2393 enum char_bits
2394 {
2395 CHAR_ALT = 0x0400000,
2396 CHAR_SUPER = 0x0800000,
2397 CHAR_HYPER = 0x1000000,
2398 CHAR_SHIFT = 0x2000000,
2399 CHAR_CTL = 0x4000000,
2400 CHAR_META = 0x8000000,
2401
2402 CHAR_MODIFIER_MASK =
2403 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2404
2405 /* Actually, the current Emacs uses 22 bits for the character value
2406 itself. */
2407 CHARACTERBITS = 22
2408 };
2409 \f
2410 /* Data type checking. */
2411
2412 LISP_MACRO_DEFUN (NILP, bool, (Lisp_Object x), (x))
2413
2414 INLINE bool
2415 NUMBERP (Lisp_Object x)
2416 {
2417 return INTEGERP (x) || FLOATP (x);
2418 }
2419 INLINE bool
2420 NATNUMP (Lisp_Object x)
2421 {
2422 return INTEGERP (x) && 0 <= XINT (x);
2423 }
2424
2425 INLINE bool
2426 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2427 {
2428 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2429 }
2430
2431 #define TYPE_RANGED_INTEGERP(type, x) \
2432 (INTEGERP (x) \
2433 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2434 && XINT (x) <= TYPE_MAXIMUM (type))
2435
2436 LISP_MACRO_DEFUN (CONSP, bool, (Lisp_Object x), (x))
2437 LISP_MACRO_DEFUN (FLOATP, bool, (Lisp_Object x), (x))
2438 LISP_MACRO_DEFUN (MISCP, bool, (Lisp_Object x), (x))
2439 LISP_MACRO_DEFUN (SYMBOLP, bool, (Lisp_Object x), (x))
2440 LISP_MACRO_DEFUN (INTEGERP, bool, (Lisp_Object x), (x))
2441 LISP_MACRO_DEFUN (VECTORLIKEP, bool, (Lisp_Object x), (x))
2442 LISP_MACRO_DEFUN (MARKERP, bool, (Lisp_Object x), (x))
2443
2444 INLINE bool
2445 STRINGP (Lisp_Object x)
2446 {
2447 return XTYPE (x) == Lisp_String;
2448 }
2449 INLINE bool
2450 VECTORP (Lisp_Object x)
2451 {
2452 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2453 }
2454 INLINE bool
2455 OVERLAYP (Lisp_Object x)
2456 {
2457 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2458 }
2459 INLINE bool
2460 SAVE_VALUEP (Lisp_Object x)
2461 {
2462 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2463 }
2464
2465 INLINE bool
2466 AUTOLOADP (Lisp_Object x)
2467 {
2468 return CONSP (x) && EQ (Qautoload, XCAR (x));
2469 }
2470
2471 INLINE bool
2472 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2473 {
2474 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2475 }
2476
2477 INLINE bool
2478 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2479 {
2480 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2481 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2482 }
2483
2484 /* True if A is a pseudovector whose code is CODE. */
2485 INLINE bool
2486 PSEUDOVECTORP (Lisp_Object a, int code)
2487 {
2488 if (! VECTORLIKEP (a))
2489 return false;
2490 else
2491 {
2492 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2493 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2494 return PSEUDOVECTOR_TYPEP (h, code);
2495 }
2496 }
2497
2498
2499 /* Test for specific pseudovector types. */
2500
2501 INLINE bool
2502 WINDOW_CONFIGURATIONP (Lisp_Object a)
2503 {
2504 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2505 }
2506
2507 INLINE bool
2508 PROCESSP (Lisp_Object a)
2509 {
2510 return PSEUDOVECTORP (a, PVEC_PROCESS);
2511 }
2512
2513 INLINE bool
2514 WINDOWP (Lisp_Object a)
2515 {
2516 return PSEUDOVECTORP (a, PVEC_WINDOW);
2517 }
2518
2519 INLINE bool
2520 TERMINALP (Lisp_Object a)
2521 {
2522 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2523 }
2524
2525 INLINE bool
2526 SUBRP (Lisp_Object a)
2527 {
2528 return PSEUDOVECTORP (a, PVEC_SUBR);
2529 }
2530
2531 INLINE bool
2532 COMPILEDP (Lisp_Object a)
2533 {
2534 return PSEUDOVECTORP (a, PVEC_COMPILED);
2535 }
2536
2537 INLINE bool
2538 BUFFERP (Lisp_Object a)
2539 {
2540 return PSEUDOVECTORP (a, PVEC_BUFFER);
2541 }
2542
2543 INLINE bool
2544 CHAR_TABLE_P (Lisp_Object a)
2545 {
2546 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2547 }
2548
2549 INLINE bool
2550 SUB_CHAR_TABLE_P (Lisp_Object a)
2551 {
2552 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2553 }
2554
2555 INLINE bool
2556 BOOL_VECTOR_P (Lisp_Object a)
2557 {
2558 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2559 }
2560
2561 INLINE bool
2562 FRAMEP (Lisp_Object a)
2563 {
2564 return PSEUDOVECTORP (a, PVEC_FRAME);
2565 }
2566
2567 /* Test for image (image . spec) */
2568 INLINE bool
2569 IMAGEP (Lisp_Object x)
2570 {
2571 return CONSP (x) && EQ (XCAR (x), Qimage);
2572 }
2573
2574 /* Array types. */
2575 INLINE bool
2576 ARRAYP (Lisp_Object x)
2577 {
2578 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2579 }
2580 \f
2581 INLINE void
2582 CHECK_LIST (Lisp_Object x)
2583 {
2584 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2585 }
2586
2587 LISP_MACRO_DEFUN_VOID (CHECK_LIST_CONS, (Lisp_Object x, Lisp_Object y), (x, y))
2588 LISP_MACRO_DEFUN_VOID (CHECK_SYMBOL, (Lisp_Object x), (x))
2589 LISP_MACRO_DEFUN_VOID (CHECK_NUMBER, (Lisp_Object x), (x))
2590
2591 INLINE void
2592 CHECK_STRING (Lisp_Object x)
2593 {
2594 CHECK_TYPE (STRINGP (x), Qstringp, x);
2595 }
2596 INLINE void
2597 CHECK_STRING_CAR (Lisp_Object x)
2598 {
2599 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2600 }
2601 INLINE void
2602 CHECK_CONS (Lisp_Object x)
2603 {
2604 CHECK_TYPE (CONSP (x), Qconsp, x);
2605 }
2606 INLINE void
2607 CHECK_VECTOR (Lisp_Object x)
2608 {
2609 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2610 }
2611 INLINE void
2612 CHECK_BOOL_VECTOR (Lisp_Object x)
2613 {
2614 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2615 }
2616 /* This is a bit special because we always need size afterwards. */
2617 INLINE ptrdiff_t
2618 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2619 {
2620 if (VECTORP (x))
2621 return ASIZE (x);
2622 if (STRINGP (x))
2623 return SCHARS (x);
2624 wrong_type_argument (Qarrayp, x);
2625 }
2626 INLINE void
2627 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2628 {
2629 CHECK_TYPE (ARRAYP (x), predicate, x);
2630 }
2631 INLINE void
2632 CHECK_BUFFER (Lisp_Object x)
2633 {
2634 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2635 }
2636 INLINE void
2637 CHECK_WINDOW (Lisp_Object x)
2638 {
2639 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2640 }
2641 #ifdef subprocesses
2642 INLINE void
2643 CHECK_PROCESS (Lisp_Object x)
2644 {
2645 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2646 }
2647 #endif
2648 INLINE void
2649 CHECK_NATNUM (Lisp_Object x)
2650 {
2651 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2652 }
2653
2654 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2655 do { \
2656 CHECK_NUMBER (x); \
2657 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2658 args_out_of_range_3 \
2659 (x, \
2660 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2661 ? MOST_NEGATIVE_FIXNUM \
2662 : (lo)), \
2663 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2664 } while (false)
2665 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2666 do { \
2667 if (TYPE_SIGNED (type)) \
2668 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2669 else \
2670 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2671 } while (false)
2672
2673 #define CHECK_NUMBER_COERCE_MARKER(x) \
2674 do { \
2675 if (MARKERP ((x))) \
2676 XSETFASTINT (x, marker_position (x)); \
2677 else \
2678 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2679 } while (false)
2680
2681 INLINE double
2682 XFLOATINT (Lisp_Object n)
2683 {
2684 return extract_float (n);
2685 }
2686
2687 INLINE void
2688 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2689 {
2690 CHECK_TYPE (FLOATP (x) || INTEGERP (x), Qnumberp, x);
2691 }
2692
2693 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2694 do { \
2695 if (MARKERP (x)) \
2696 XSETFASTINT (x, marker_position (x)); \
2697 else \
2698 CHECK_TYPE (INTEGERP (x) || FLOATP (x), Qnumber_or_marker_p, x); \
2699 } while (false)
2700
2701 /* Since we can't assign directly to the CAR or CDR fields of a cons
2702 cell, use these when checking that those fields contain numbers. */
2703 INLINE void
2704 CHECK_NUMBER_CAR (Lisp_Object x)
2705 {
2706 Lisp_Object tmp = XCAR (x);
2707 CHECK_NUMBER (tmp);
2708 XSETCAR (x, tmp);
2709 }
2710
2711 INLINE void
2712 CHECK_NUMBER_CDR (Lisp_Object x)
2713 {
2714 Lisp_Object tmp = XCDR (x);
2715 CHECK_NUMBER (tmp);
2716 XSETCDR (x, tmp);
2717 }
2718 \f
2719 /* Define a built-in function for calling from Lisp.
2720 `lname' should be the name to give the function in Lisp,
2721 as a null-terminated C string.
2722 `fnname' should be the name of the function in C.
2723 By convention, it starts with F.
2724 `sname' should be the name for the C constant structure
2725 that records information on this function for internal use.
2726 By convention, it should be the same as `fnname' but with S instead of F.
2727 It's too bad that C macros can't compute this from `fnname'.
2728 `minargs' should be a number, the minimum number of arguments allowed.
2729 `maxargs' should be a number, the maximum number of arguments allowed,
2730 or else MANY or UNEVALLED.
2731 MANY means pass a vector of evaluated arguments,
2732 in the form of an integer number-of-arguments
2733 followed by the address of a vector of Lisp_Objects
2734 which contains the argument values.
2735 UNEVALLED means pass the list of unevaluated arguments
2736 `intspec' says how interactive arguments are to be fetched.
2737 If the string starts with a `(', `intspec' is evaluated and the resulting
2738 list is the list of arguments.
2739 If it's a string that doesn't start with `(', the value should follow
2740 the one of the doc string for `interactive'.
2741 A null string means call interactively with no arguments.
2742 `doc' is documentation for the user. */
2743
2744 /* This version of DEFUN declares a function prototype with the right
2745 arguments, so we can catch errors with maxargs at compile-time. */
2746 #ifdef _MSC_VER
2747 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2748 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2749 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2750 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2751 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2752 { (Lisp_Object (__cdecl *)(void))fnname }, \
2753 minargs, maxargs, lname, intspec, 0}; \
2754 Lisp_Object fnname
2755 #else /* not _MSC_VER */
2756 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2757 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2758 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2759 { .a ## maxargs = fnname }, \
2760 minargs, maxargs, lname, intspec, 0}; \
2761 Lisp_Object fnname
2762 #endif
2763
2764 /* True if OBJ is a Lisp function. */
2765 INLINE bool
2766 FUNCTIONP (Lisp_Object obj)
2767 {
2768 return functionp (obj);
2769 }
2770
2771 /* defsubr (Sname);
2772 is how we define the symbol for function `name' at start-up time. */
2773 extern void defsubr (struct Lisp_Subr *);
2774
2775 enum maxargs
2776 {
2777 MANY = -2,
2778 UNEVALLED = -1
2779 };
2780
2781 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2782 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2783 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2784 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2785 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2786
2787 /* Macros we use to define forwarded Lisp variables.
2788 These are used in the syms_of_FILENAME functions.
2789
2790 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2791 lisp variable is actually a field in `struct emacs_globals'. The
2792 field's name begins with "f_", which is a convention enforced by
2793 these macros. Each such global has a corresponding #define in
2794 globals.h; the plain name should be used in the code.
2795
2796 E.g., the global "cons_cells_consed" is declared as "int
2797 f_cons_cells_consed" in globals.h, but there is a define:
2798
2799 #define cons_cells_consed globals.f_cons_cells_consed
2800
2801 All C code uses the `cons_cells_consed' name. This is all done
2802 this way to support indirection for multi-threaded Emacs. */
2803
2804 #define DEFVAR_LISP(lname, vname, doc) \
2805 do { \
2806 static struct Lisp_Objfwd o_fwd; \
2807 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
2808 } while (false)
2809 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
2810 do { \
2811 static struct Lisp_Objfwd o_fwd; \
2812 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
2813 } while (false)
2814 #define DEFVAR_BOOL(lname, vname, doc) \
2815 do { \
2816 static struct Lisp_Boolfwd b_fwd; \
2817 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
2818 } while (false)
2819 #define DEFVAR_INT(lname, vname, doc) \
2820 do { \
2821 static struct Lisp_Intfwd i_fwd; \
2822 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
2823 } while (false)
2824
2825 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
2826 do { \
2827 static struct Lisp_Objfwd o_fwd; \
2828 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
2829 } while (false)
2830
2831 #define DEFVAR_KBOARD(lname, vname, doc) \
2832 do { \
2833 static struct Lisp_Kboard_Objfwd ko_fwd; \
2834 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
2835 } while (false)
2836 \f
2837 /* Save and restore the instruction and environment pointers,
2838 without affecting the signal mask. */
2839
2840 #ifdef HAVE__SETJMP
2841 typedef jmp_buf sys_jmp_buf;
2842 # define sys_setjmp(j) _setjmp (j)
2843 # define sys_longjmp(j, v) _longjmp (j, v)
2844 #elif defined HAVE_SIGSETJMP
2845 typedef sigjmp_buf sys_jmp_buf;
2846 # define sys_setjmp(j) sigsetjmp (j, 0)
2847 # define sys_longjmp(j, v) siglongjmp (j, v)
2848 #else
2849 /* A platform that uses neither _longjmp nor siglongjmp; assume
2850 longjmp does not affect the sigmask. */
2851 typedef jmp_buf sys_jmp_buf;
2852 # define sys_setjmp(j) setjmp (j)
2853 # define sys_longjmp(j, v) longjmp (j, v)
2854 #endif
2855
2856 \f
2857 /* Elisp uses several stacks:
2858 - the C stack.
2859 - the bytecode stack: used internally by the bytecode interpreter.
2860 Allocated from the C stack.
2861 - The specpdl stack: keeps track of active unwind-protect and
2862 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
2863 managed stack.
2864 - The handler stack: keeps track of active catch tags and condition-case
2865 handlers. Allocated in a manually managed stack implemented by a
2866 doubly-linked list allocated via xmalloc and never freed. */
2867
2868 /* Structure for recording Lisp call stack for backtrace purposes. */
2869
2870 /* The special binding stack holds the outer values of variables while
2871 they are bound by a function application or a let form, stores the
2872 code to be executed for unwind-protect forms.
2873
2874 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
2875 used all over the place, needs to be fast, and needs to know the size of
2876 union specbinding. But only eval.c should access it. */
2877
2878 enum specbind_tag {
2879 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
2880 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
2881 SPECPDL_UNWIND_INT, /* Likewise, on int. */
2882 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
2883 SPECPDL_BACKTRACE, /* An element of the backtrace. */
2884 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
2885 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
2886 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
2887 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
2888 };
2889
2890 union specbinding
2891 {
2892 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2893 struct {
2894 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2895 void (*func) (Lisp_Object);
2896 Lisp_Object arg;
2897 } unwind;
2898 struct {
2899 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2900 void (*func) (void *);
2901 void *arg;
2902 } unwind_ptr;
2903 struct {
2904 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2905 void (*func) (int);
2906 int arg;
2907 } unwind_int;
2908 struct {
2909 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2910 void (*func) (void);
2911 } unwind_void;
2912 struct {
2913 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2914 /* `where' is not used in the case of SPECPDL_LET. */
2915 Lisp_Object symbol, old_value, where;
2916 } let;
2917 struct {
2918 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2919 bool_bf debug_on_exit : 1;
2920 Lisp_Object function;
2921 Lisp_Object *args;
2922 ptrdiff_t nargs;
2923 } bt;
2924 };
2925
2926 extern union specbinding *specpdl;
2927 extern union specbinding *specpdl_ptr;
2928 extern ptrdiff_t specpdl_size;
2929
2930 INLINE ptrdiff_t
2931 SPECPDL_INDEX (void)
2932 {
2933 return specpdl_ptr - specpdl;
2934 }
2935
2936 /* This structure helps implement the `catch/throw' and `condition-case/signal'
2937 control structures. A struct handler contains all the information needed to
2938 restore the state of the interpreter after a non-local jump.
2939
2940 handler structures are chained together in a doubly linked list; the `next'
2941 member points to the next outer catchtag and the `nextfree' member points in
2942 the other direction to the next inner element (which is typically the next
2943 free element since we mostly use it on the deepest handler).
2944
2945 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
2946 member is TAG, and then unbinds to it. The `val' member is used to
2947 hold VAL while the stack is unwound; `val' is returned as the value
2948 of the catch form.
2949
2950 All the other members are concerned with restoring the interpreter
2951 state.
2952
2953 Members are volatile if their values need to survive _longjmp when
2954 a 'struct handler' is a local variable. */
2955
2956 enum handlertype { CATCHER, CONDITION_CASE };
2957
2958 struct handler
2959 {
2960 enum handlertype type;
2961 Lisp_Object tag_or_ch;
2962 Lisp_Object val;
2963 struct handler *next;
2964 struct handler *nextfree;
2965
2966 /* The bytecode interpreter can have several handlers active at the same
2967 time, so when we longjmp to one of them, it needs to know which handler
2968 this was and what was the corresponding internal state. This is stored
2969 here, and when we longjmp we make sure that handlerlist points to the
2970 proper handler. */
2971 Lisp_Object *bytecode_top;
2972 int bytecode_dest;
2973
2974 /* Most global vars are reset to their value via the specpdl mechanism,
2975 but a few others are handled by storing their value here. */
2976 #if true /* GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS, but defined later. */
2977 struct gcpro *gcpro;
2978 #endif
2979 sys_jmp_buf jmp;
2980 EMACS_INT lisp_eval_depth;
2981 ptrdiff_t pdlcount;
2982 int poll_suppress_count;
2983 int interrupt_input_blocked;
2984 struct byte_stack *byte_stack;
2985 };
2986
2987 /* Fill in the components of c, and put it on the list. */
2988 #define PUSH_HANDLER(c, tag_ch_val, handlertype) \
2989 if (handlerlist->nextfree) \
2990 (c) = handlerlist->nextfree; \
2991 else \
2992 { \
2993 (c) = xmalloc (sizeof (struct handler)); \
2994 (c)->nextfree = NULL; \
2995 handlerlist->nextfree = (c); \
2996 } \
2997 (c)->type = (handlertype); \
2998 (c)->tag_or_ch = (tag_ch_val); \
2999 (c)->val = Qnil; \
3000 (c)->next = handlerlist; \
3001 (c)->lisp_eval_depth = lisp_eval_depth; \
3002 (c)->pdlcount = SPECPDL_INDEX (); \
3003 (c)->poll_suppress_count = poll_suppress_count; \
3004 (c)->interrupt_input_blocked = interrupt_input_blocked;\
3005 (c)->gcpro = gcprolist; \
3006 (c)->byte_stack = byte_stack_list; \
3007 handlerlist = (c);
3008
3009
3010 extern Lisp_Object memory_signal_data;
3011
3012 /* An address near the bottom of the stack.
3013 Tells GC how to save a copy of the stack. */
3014 extern char *stack_bottom;
3015
3016 /* Check quit-flag and quit if it is non-nil.
3017 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
3018 So the program needs to do QUIT at times when it is safe to quit.
3019 Every loop that might run for a long time or might not exit
3020 ought to do QUIT at least once, at a safe place.
3021 Unless that is impossible, of course.
3022 But it is very desirable to avoid creating loops where QUIT is impossible.
3023
3024 Exception: if you set immediate_quit to true,
3025 then the handler that responds to the C-g does the quit itself.
3026 This is a good thing to do around a loop that has no side effects
3027 and (in particular) cannot call arbitrary Lisp code.
3028
3029 If quit-flag is set to `kill-emacs' the SIGINT handler has received
3030 a request to exit Emacs when it is safe to do. */
3031
3032 extern void process_pending_signals (void);
3033 extern bool volatile pending_signals;
3034
3035 extern void process_quit_flag (void);
3036 #define QUIT \
3037 do { \
3038 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
3039 process_quit_flag (); \
3040 else if (pending_signals) \
3041 process_pending_signals (); \
3042 } while (false)
3043
3044
3045 /* True if ought to quit now. */
3046
3047 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3048 \f
3049 extern Lisp_Object Vascii_downcase_table;
3050 extern Lisp_Object Vascii_canon_table;
3051 \f
3052 /* Structure for recording stack slots that need marking. */
3053
3054 /* This is a chain of structures, each of which points at a Lisp_Object
3055 variable whose value should be marked in garbage collection.
3056 Normally every link of the chain is an automatic variable of a function,
3057 and its `val' points to some argument or local variable of the function.
3058 On exit to the function, the chain is set back to the value it had on entry.
3059 This way, no link remains in the chain when the stack frame containing the
3060 link disappears.
3061
3062 Every function that can call Feval must protect in this fashion all
3063 Lisp_Object variables whose contents will be used again. */
3064
3065 extern struct gcpro *gcprolist;
3066
3067 struct gcpro
3068 {
3069 struct gcpro *next;
3070
3071 /* Address of first protected variable. */
3072 volatile Lisp_Object *var;
3073
3074 /* Number of consecutive protected variables. */
3075 ptrdiff_t nvars;
3076
3077 #ifdef DEBUG_GCPRO
3078 /* File name where this record is used. */
3079 const char *name;
3080
3081 /* Line number in this file. */
3082 int lineno;
3083
3084 /* Index in the local chain of records. */
3085 int idx;
3086
3087 /* Nesting level. */
3088 int level;
3089 #endif
3090 };
3091
3092 /* Values of GC_MARK_STACK during compilation:
3093
3094 0 Use GCPRO as before
3095 1 Do the real thing, make GCPROs and UNGCPRO no-ops.
3096 2 Mark the stack, and check that everything GCPRO'd is
3097 marked.
3098 3 Mark using GCPRO's, mark stack last, and count how many
3099 dead objects are kept alive.
3100
3101 Formerly, method 0 was used. Currently, method 1 is used unless
3102 otherwise specified by hand when building, e.g.,
3103 "make CPPFLAGS='-DGC_MARK_STACK=GC_USE_GCPROS_AS_BEFORE'".
3104 Methods 2 and 3 are present mainly to debug the transition from 0 to 1. */
3105
3106 #define GC_USE_GCPROS_AS_BEFORE 0
3107 #define GC_MAKE_GCPROS_NOOPS 1
3108 #define GC_MARK_STACK_CHECK_GCPROS 2
3109 #define GC_USE_GCPROS_CHECK_ZOMBIES 3
3110
3111 #ifndef GC_MARK_STACK
3112 #define GC_MARK_STACK GC_MAKE_GCPROS_NOOPS
3113 #endif
3114
3115 /* Whether we do the stack marking manually. */
3116 #define BYTE_MARK_STACK !(GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
3117 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
3118
3119
3120 #if GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS
3121
3122 /* Do something silly with gcproN vars just so gcc shuts up. */
3123 /* You get warnings from MIPSPro... */
3124
3125 #define GCPRO1(varname) ((void) gcpro1)
3126 #define GCPRO2(varname1, varname2) ((void) gcpro2, (void) gcpro1)
3127 #define GCPRO3(varname1, varname2, varname3) \
3128 ((void) gcpro3, (void) gcpro2, (void) gcpro1)
3129 #define GCPRO4(varname1, varname2, varname3, varname4) \
3130 ((void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3131 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3132 ((void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3133 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3134 ((void) gcpro6, (void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, \
3135 (void) gcpro1)
3136 #define GCPRO7(a, b, c, d, e, f, g) (GCPRO6 (a, b, c, d, e, f), (void) gcpro7)
3137 #define UNGCPRO ((void) 0)
3138
3139 #else /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3140
3141 #ifndef DEBUG_GCPRO
3142
3143 #define GCPRO1(a) \
3144 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3145 gcprolist = &gcpro1; }
3146
3147 #define GCPRO2(a, b) \
3148 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3149 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3150 gcprolist = &gcpro2; }
3151
3152 #define GCPRO3(a, b, c) \
3153 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3154 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3155 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3156 gcprolist = &gcpro3; }
3157
3158 #define GCPRO4(a, b, c, d) \
3159 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3160 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3161 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3162 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3163 gcprolist = &gcpro4; }
3164
3165 #define GCPRO5(a, b, c, d, e) \
3166 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3167 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3168 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3169 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3170 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3171 gcprolist = &gcpro5; }
3172
3173 #define GCPRO6(a, b, c, d, e, f) \
3174 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3175 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3176 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3177 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3178 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3179 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3180 gcprolist = &gcpro6; }
3181
3182 #define GCPRO7(a, b, c, d, e, f, g) \
3183 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3184 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3185 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3186 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3187 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3188 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3189 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3190 gcprolist = &gcpro7; }
3191
3192 #define UNGCPRO (gcprolist = gcpro1.next)
3193
3194 #else /* !DEBUG_GCPRO */
3195
3196 extern int gcpro_level;
3197
3198 #define GCPRO1(a) \
3199 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3200 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3201 gcpro1.level = gcpro_level++; \
3202 gcprolist = &gcpro1; }
3203
3204 #define GCPRO2(a, b) \
3205 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3206 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3207 gcpro1.level = gcpro_level; \
3208 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3209 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3210 gcpro2.level = gcpro_level++; \
3211 gcprolist = &gcpro2; }
3212
3213 #define GCPRO3(a, b, c) \
3214 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3215 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3216 gcpro1.level = gcpro_level; \
3217 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3218 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3219 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3220 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3221 gcpro3.level = gcpro_level++; \
3222 gcprolist = &gcpro3; }
3223
3224 #define GCPRO4(a, b, c, d) \
3225 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3226 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3227 gcpro1.level = gcpro_level; \
3228 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3229 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3230 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3231 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3232 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3233 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3234 gcpro4.level = gcpro_level++; \
3235 gcprolist = &gcpro4; }
3236
3237 #define GCPRO5(a, b, c, d, e) \
3238 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3239 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3240 gcpro1.level = gcpro_level; \
3241 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3242 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3243 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3244 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3245 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3246 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3247 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3248 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3249 gcpro5.level = gcpro_level++; \
3250 gcprolist = &gcpro5; }
3251
3252 #define GCPRO6(a, b, c, d, e, f) \
3253 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3254 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3255 gcpro1.level = gcpro_level; \
3256 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3257 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3258 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3259 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3260 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3261 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3262 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3263 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3264 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3265 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3266 gcpro6.level = gcpro_level++; \
3267 gcprolist = &gcpro6; }
3268
3269 #define GCPRO7(a, b, c, d, e, f, g) \
3270 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3271 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3272 gcpro1.level = gcpro_level; \
3273 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3274 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3275 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3276 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3277 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3278 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3279 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3280 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3281 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3282 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3283 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3284 gcpro7.name = __FILE__; gcpro7.lineno = __LINE__; gcpro7.idx = 7; \
3285 gcpro7.level = gcpro_level++; \
3286 gcprolist = &gcpro7; }
3287
3288 #define UNGCPRO \
3289 (--gcpro_level != gcpro1.level \
3290 ? emacs_abort () \
3291 : (void) (gcprolist = gcpro1.next))
3292
3293 #endif /* DEBUG_GCPRO */
3294 #endif /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3295
3296
3297 /* Evaluate expr, UNGCPRO, and then return the value of expr. */
3298 #define RETURN_UNGCPRO(expr) \
3299 do \
3300 { \
3301 Lisp_Object ret_ungc_val; \
3302 ret_ungc_val = (expr); \
3303 UNGCPRO; \
3304 return ret_ungc_val; \
3305 } \
3306 while (false)
3307
3308 /* Call staticpro (&var) to protect static variable `var'. */
3309
3310 void staticpro (Lisp_Object *);
3311 \f
3312 /* Forward declarations for prototypes. */
3313 struct window;
3314 struct frame;
3315
3316 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3317
3318 INLINE void
3319 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3320 {
3321 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3322 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3323 }
3324
3325 /* Functions to modify hash tables. */
3326
3327 INLINE void
3328 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3329 {
3330 gc_aset (h->key_and_value, 2 * idx, val);
3331 }
3332
3333 INLINE void
3334 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3335 {
3336 gc_aset (h->key_and_value, 2 * idx + 1, val);
3337 }
3338
3339 /* Use these functions to set Lisp_Object
3340 or pointer slots of struct Lisp_Symbol. */
3341
3342 INLINE void
3343 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3344 {
3345 XSYMBOL (sym)->function = function;
3346 }
3347
3348 INLINE void
3349 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3350 {
3351 XSYMBOL (sym)->plist = plist;
3352 }
3353
3354 INLINE void
3355 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3356 {
3357 XSYMBOL (sym)->next = next;
3358 }
3359
3360 /* Buffer-local (also frame-local) variable access functions. */
3361
3362 INLINE int
3363 blv_found (struct Lisp_Buffer_Local_Value *blv)
3364 {
3365 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3366 return blv->found;
3367 }
3368
3369 /* Set overlay's property list. */
3370
3371 INLINE void
3372 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3373 {
3374 XOVERLAY (overlay)->plist = plist;
3375 }
3376
3377 /* Get text properties of S. */
3378
3379 INLINE INTERVAL
3380 string_intervals (Lisp_Object s)
3381 {
3382 return XSTRING (s)->intervals;
3383 }
3384
3385 /* Set text properties of S to I. */
3386
3387 INLINE void
3388 set_string_intervals (Lisp_Object s, INTERVAL i)
3389 {
3390 XSTRING (s)->intervals = i;
3391 }
3392
3393 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3394 of setting slots directly. */
3395
3396 INLINE void
3397 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3398 {
3399 XCHAR_TABLE (table)->defalt = val;
3400 }
3401 INLINE void
3402 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3403 {
3404 XCHAR_TABLE (table)->purpose = val;
3405 }
3406
3407 /* Set different slots in (sub)character tables. */
3408
3409 INLINE void
3410 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3411 {
3412 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3413 XCHAR_TABLE (table)->extras[idx] = val;
3414 }
3415
3416 INLINE void
3417 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3418 {
3419 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3420 XCHAR_TABLE (table)->contents[idx] = val;
3421 }
3422
3423 INLINE void
3424 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3425 {
3426 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3427 }
3428
3429 /* Defined in data.c. */
3430 extern Lisp_Object indirect_function (Lisp_Object);
3431 extern Lisp_Object find_symbol_value (Lisp_Object);
3432 enum Arith_Comparison {
3433 ARITH_EQUAL,
3434 ARITH_NOTEQUAL,
3435 ARITH_LESS,
3436 ARITH_GRTR,
3437 ARITH_LESS_OR_EQUAL,
3438 ARITH_GRTR_OR_EQUAL
3439 };
3440 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3441 enum Arith_Comparison comparison);
3442
3443 /* Convert the integer I to an Emacs representation, either the integer
3444 itself, or a cons of two or three integers, or if all else fails a float.
3445 I should not have side effects. */
3446 #define INTEGER_TO_CONS(i) \
3447 (! FIXNUM_OVERFLOW_P (i) \
3448 ? make_number (i) \
3449 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16) \
3450 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16)) \
3451 && FIXNUM_OVERFLOW_P ((i) >> 16)) \
3452 ? Fcons (make_number ((i) >> 16), make_number ((i) & 0xffff)) \
3453 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16 >> 24) \
3454 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16 >> 24)) \
3455 && FIXNUM_OVERFLOW_P ((i) >> 16 >> 24)) \
3456 ? Fcons (make_number ((i) >> 16 >> 24), \
3457 Fcons (make_number ((i) >> 16 & 0xffffff), \
3458 make_number ((i) & 0xffff))) \
3459 : make_float (i))
3460
3461 /* Convert the Emacs representation CONS back to an integer of type
3462 TYPE, storing the result the variable VAR. Signal an error if CONS
3463 is not a valid representation or is out of range for TYPE. */
3464 #define CONS_TO_INTEGER(cons, type, var) \
3465 (TYPE_SIGNED (type) \
3466 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3467 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3468 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3469 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3470
3471 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3472 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3473 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3474 Lisp_Object);
3475 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3476 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3477 extern void syms_of_data (void);
3478 extern void swap_in_global_binding (struct Lisp_Symbol *);
3479
3480 /* Defined in cmds.c */
3481 extern void syms_of_cmds (void);
3482 extern void keys_of_cmds (void);
3483
3484 /* Defined in coding.c. */
3485 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3486 ptrdiff_t, bool, bool, Lisp_Object);
3487 extern void init_coding (void);
3488 extern void init_coding_once (void);
3489 extern void syms_of_coding (void);
3490
3491 /* Defined in character.c. */
3492 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3493 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3494 extern void syms_of_character (void);
3495
3496 /* Defined in charset.c. */
3497 extern void init_charset (void);
3498 extern void init_charset_once (void);
3499 extern void syms_of_charset (void);
3500 /* Structure forward declarations. */
3501 struct charset;
3502
3503 /* Defined in syntax.c. */
3504 extern void init_syntax_once (void);
3505 extern void syms_of_syntax (void);
3506
3507 /* Defined in fns.c. */
3508 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3509 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3510 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3511 extern void sweep_weak_hash_tables (void);
3512 EMACS_UINT hash_string (char const *, ptrdiff_t);
3513 EMACS_UINT sxhash (Lisp_Object, int);
3514 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3515 Lisp_Object, Lisp_Object);
3516 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3517 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3518 EMACS_UINT);
3519 extern struct hash_table_test hashtest_eql, hashtest_equal;
3520 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3521 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3522 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3523 ptrdiff_t, ptrdiff_t);
3524 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3525 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3526 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3527 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3528 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3529 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3530 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3531 extern void clear_string_char_byte_cache (void);
3532 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3533 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3534 extern Lisp_Object string_to_multibyte (Lisp_Object);
3535 extern Lisp_Object string_make_unibyte (Lisp_Object);
3536 extern void syms_of_fns (void);
3537
3538 /* Defined in floatfns.c. */
3539 extern void syms_of_floatfns (void);
3540 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3541
3542 /* Defined in fringe.c. */
3543 extern void syms_of_fringe (void);
3544 extern void init_fringe (void);
3545 #ifdef HAVE_WINDOW_SYSTEM
3546 extern void mark_fringe_data (void);
3547 extern void init_fringe_once (void);
3548 #endif /* HAVE_WINDOW_SYSTEM */
3549
3550 /* Defined in image.c. */
3551 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3552 extern void reset_image_types (void);
3553 extern void syms_of_image (void);
3554
3555 /* Defined in insdel.c. */
3556 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3557 extern _Noreturn void buffer_overflow (void);
3558 extern void make_gap (ptrdiff_t);
3559 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3560 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3561 ptrdiff_t, bool, bool);
3562 extern int count_combining_before (const unsigned char *,
3563 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3564 extern int count_combining_after (const unsigned char *,
3565 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3566 extern void insert (const char *, ptrdiff_t);
3567 extern void insert_and_inherit (const char *, ptrdiff_t);
3568 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3569 bool, bool, bool);
3570 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3571 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3572 ptrdiff_t, ptrdiff_t, bool);
3573 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3574 extern void insert_char (int);
3575 extern void insert_string (const char *);
3576 extern void insert_before_markers (const char *, ptrdiff_t);
3577 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3578 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3579 ptrdiff_t, ptrdiff_t,
3580 ptrdiff_t, bool);
3581 extern void del_range (ptrdiff_t, ptrdiff_t);
3582 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3583 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3584 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3585 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3586 ptrdiff_t, ptrdiff_t, bool);
3587 extern void modify_text (ptrdiff_t, ptrdiff_t);
3588 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3589 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3590 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3591 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3592 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3593 ptrdiff_t, ptrdiff_t);
3594 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3595 ptrdiff_t, ptrdiff_t);
3596 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3597 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3598 const char *, ptrdiff_t, ptrdiff_t, bool);
3599 extern void syms_of_insdel (void);
3600
3601 /* Defined in dispnew.c. */
3602 #if (defined PROFILING \
3603 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3604 _Noreturn void __executable_start (void);
3605 #endif
3606 extern Lisp_Object Vwindow_system;
3607 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3608
3609 /* Defined in xdisp.c. */
3610 extern bool noninteractive_need_newline;
3611 extern Lisp_Object echo_area_buffer[2];
3612 extern void add_to_log (const char *, Lisp_Object, Lisp_Object);
3613 extern void check_message_stack (void);
3614 extern void setup_echo_area_for_printing (int);
3615 extern bool push_message (void);
3616 extern void pop_message_unwind (void);
3617 extern Lisp_Object restore_message_unwind (Lisp_Object);
3618 extern void restore_message (void);
3619 extern Lisp_Object current_message (void);
3620 extern void clear_message (bool, bool);
3621 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3622 extern void message1 (const char *);
3623 extern void message1_nolog (const char *);
3624 extern void message3 (Lisp_Object);
3625 extern void message3_nolog (Lisp_Object);
3626 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3627 extern void message_with_string (const char *, Lisp_Object, int);
3628 extern void message_log_maybe_newline (void);
3629 extern void update_echo_area (void);
3630 extern void truncate_echo_area (ptrdiff_t);
3631 extern void redisplay (void);
3632
3633 void set_frame_cursor_types (struct frame *, Lisp_Object);
3634 extern void syms_of_xdisp (void);
3635 extern void init_xdisp (void);
3636 extern Lisp_Object safe_eval (Lisp_Object);
3637 extern int pos_visible_p (struct window *, ptrdiff_t, int *,
3638 int *, int *, int *, int *, int *);
3639
3640 /* Defined in xsettings.c. */
3641 extern void syms_of_xsettings (void);
3642
3643 /* Defined in vm-limit.c. */
3644 extern void memory_warnings (void *, void (*warnfun) (const char *));
3645
3646 /* Defined in character.c. */
3647 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3648 ptrdiff_t *, ptrdiff_t *);
3649
3650 /* Defined in alloc.c. */
3651 extern void check_pure_size (void);
3652 extern void free_misc (Lisp_Object);
3653 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3654 extern void malloc_warning (const char *);
3655 extern _Noreturn void memory_full (size_t);
3656 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3657 extern bool survives_gc_p (Lisp_Object);
3658 extern void mark_object (Lisp_Object);
3659 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3660 extern void refill_memory_reserve (void);
3661 #endif
3662 extern const char *pending_malloc_warning;
3663 extern Lisp_Object zero_vector;
3664 extern Lisp_Object *stack_base;
3665 extern EMACS_INT consing_since_gc;
3666 extern EMACS_INT gc_relative_threshold;
3667 extern EMACS_INT memory_full_cons_threshold;
3668 extern Lisp_Object list1 (Lisp_Object);
3669 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3670 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3671 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3672 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3673 Lisp_Object);
3674 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3675 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3676
3677 /* Build a frequently used 2/3/4-integer lists. */
3678
3679 INLINE Lisp_Object
3680 list2i (EMACS_INT x, EMACS_INT y)
3681 {
3682 return list2 (make_number (x), make_number (y));
3683 }
3684
3685 INLINE Lisp_Object
3686 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3687 {
3688 return list3 (make_number (x), make_number (y), make_number (w));
3689 }
3690
3691 INLINE Lisp_Object
3692 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3693 {
3694 return list4 (make_number (x), make_number (y),
3695 make_number (w), make_number (h));
3696 }
3697
3698 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3699 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3700 extern _Noreturn void string_overflow (void);
3701 extern Lisp_Object make_string (const char *, ptrdiff_t);
3702 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3703 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3704 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3705
3706 /* Make unibyte string from C string when the length isn't known. */
3707
3708 INLINE Lisp_Object
3709 build_unibyte_string (const char *str)
3710 {
3711 return make_unibyte_string (str, strlen (str));
3712 }
3713
3714 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3715 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3716 extern Lisp_Object make_uninit_string (EMACS_INT);
3717 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3718 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3719 extern Lisp_Object make_specified_string (const char *,
3720 ptrdiff_t, ptrdiff_t, bool);
3721 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3722 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3723
3724 /* Make a string allocated in pure space, use STR as string data. */
3725
3726 INLINE Lisp_Object
3727 build_pure_c_string (const char *str)
3728 {
3729 return make_pure_c_string (str, strlen (str));
3730 }
3731
3732 /* Make a string from the data at STR, treating it as multibyte if the
3733 data warrants. */
3734
3735 INLINE Lisp_Object
3736 build_string (const char *str)
3737 {
3738 return make_string (str, strlen (str));
3739 }
3740
3741 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3742 extern void make_byte_code (struct Lisp_Vector *);
3743 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3744
3745 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3746 be sure that GC cannot happen until the vector is completely
3747 initialized. E.g. the following code is likely to crash:
3748
3749 v = make_uninit_vector (3);
3750 ASET (v, 0, obj0);
3751 ASET (v, 1, Ffunction_can_gc ());
3752 ASET (v, 2, obj1); */
3753
3754 INLINE Lisp_Object
3755 make_uninit_vector (ptrdiff_t size)
3756 {
3757 Lisp_Object v;
3758 struct Lisp_Vector *p;
3759
3760 p = allocate_vector (size);
3761 XSETVECTOR (v, p);
3762 return v;
3763 }
3764
3765 /* Like above, but special for sub char-tables. */
3766
3767 INLINE Lisp_Object
3768 make_uninit_sub_char_table (int depth, int min_char)
3769 {
3770 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3771 Lisp_Object v = make_uninit_vector (slots);
3772
3773 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3774 XSUB_CHAR_TABLE (v)->depth = depth;
3775 XSUB_CHAR_TABLE (v)->min_char = min_char;
3776 return v;
3777 }
3778
3779 extern struct Lisp_Vector *allocate_pseudovector (int, int, int,
3780 enum pvec_type);
3781
3782 /* Allocate partially initialized pseudovector where all Lisp_Object
3783 slots are set to Qnil but the rest (if any) is left uninitialized. */
3784
3785 #define ALLOCATE_PSEUDOVECTOR(type, field, tag) \
3786 ((type *) allocate_pseudovector (VECSIZE (type), \
3787 PSEUDOVECSIZE (type, field), \
3788 PSEUDOVECSIZE (type, field), tag))
3789
3790 /* Allocate fully initialized pseudovector where all Lisp_Object
3791 slots are set to Qnil and the rest (if any) is zeroed. */
3792
3793 #define ALLOCATE_ZEROED_PSEUDOVECTOR(type, field, tag) \
3794 ((type *) allocate_pseudovector (VECSIZE (type), \
3795 PSEUDOVECSIZE (type, field), \
3796 VECSIZE (type), tag))
3797
3798 extern bool gc_in_progress;
3799 extern bool abort_on_gc;
3800 extern Lisp_Object make_float (double);
3801 extern void display_malloc_warning (void);
3802 extern ptrdiff_t inhibit_garbage_collection (void);
3803 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3804 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3805 Lisp_Object, Lisp_Object);
3806 extern Lisp_Object make_save_ptr (void *);
3807 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3808 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3809 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3810 Lisp_Object);
3811 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3812 extern void free_save_value (Lisp_Object);
3813 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3814 extern void free_marker (Lisp_Object);
3815 extern void free_cons (struct Lisp_Cons *);
3816 extern void init_alloc_once (void);
3817 extern void init_alloc (void);
3818 extern void syms_of_alloc (void);
3819 extern struct buffer * allocate_buffer (void);
3820 extern int valid_lisp_object_p (Lisp_Object);
3821 extern int relocatable_string_data_p (const char *);
3822 #ifdef GC_CHECK_CONS_LIST
3823 extern void check_cons_list (void);
3824 #else
3825 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3826 #endif
3827
3828 #ifdef REL_ALLOC
3829 /* Defined in ralloc.c. */
3830 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3831 extern void r_alloc_free (void **);
3832 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3833 extern void r_alloc_reset_variable (void **, void **);
3834 extern void r_alloc_inhibit_buffer_relocation (int);
3835 #endif
3836
3837 /* Defined in chartab.c. */
3838 extern Lisp_Object copy_char_table (Lisp_Object);
3839 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3840 int *, int *);
3841 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3842 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3843 Lisp_Object),
3844 Lisp_Object, Lisp_Object, Lisp_Object);
3845 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3846 Lisp_Object, Lisp_Object,
3847 Lisp_Object, struct charset *,
3848 unsigned, unsigned);
3849 extern Lisp_Object uniprop_table (Lisp_Object);
3850 extern void syms_of_chartab (void);
3851
3852 /* Defined in print.c. */
3853 extern Lisp_Object Vprin1_to_string_buffer;
3854 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3855 extern void temp_output_buffer_setup (const char *);
3856 extern int print_level;
3857 extern void write_string (const char *, int);
3858 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3859 Lisp_Object);
3860 extern Lisp_Object internal_with_output_to_temp_buffer
3861 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3862 #define FLOAT_TO_STRING_BUFSIZE 350
3863 extern int float_to_string (char *, double);
3864 extern void init_print_once (void);
3865 extern void syms_of_print (void);
3866
3867 /* Defined in doprnt.c. */
3868 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3869 va_list);
3870 extern ptrdiff_t esprintf (char *, char const *, ...)
3871 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3872 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3873 char const *, ...)
3874 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3875 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3876 char const *, va_list)
3877 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3878
3879 /* Defined in lread.c. */
3880 extern Lisp_Object check_obarray (Lisp_Object);
3881 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3882 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3883 extern Lisp_Object intern_driver (Lisp_Object, Lisp_Object, Lisp_Object);
3884 extern void init_symbol (Lisp_Object, Lisp_Object);
3885 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3886 INLINE void
3887 LOADHIST_ATTACH (Lisp_Object x)
3888 {
3889 if (initialized)
3890 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3891 }
3892 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3893 Lisp_Object *, Lisp_Object, bool);
3894 extern Lisp_Object string_to_number (char const *, int, bool);
3895 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3896 Lisp_Object);
3897 extern void dir_warning (const char *, Lisp_Object);
3898 extern void init_obarray (void);
3899 extern void init_lread (void);
3900 extern void syms_of_lread (void);
3901
3902 INLINE Lisp_Object
3903 intern (const char *str)
3904 {
3905 return intern_1 (str, strlen (str));
3906 }
3907
3908 INLINE Lisp_Object
3909 intern_c_string (const char *str)
3910 {
3911 return intern_c_string_1 (str, strlen (str));
3912 }
3913
3914 /* Defined in eval.c. */
3915 extern EMACS_INT lisp_eval_depth;
3916 extern Lisp_Object Vautoload_queue;
3917 extern Lisp_Object Vrun_hooks;
3918 extern Lisp_Object Vsignaling_function;
3919 extern Lisp_Object inhibit_lisp_code;
3920 extern struct handler *handlerlist;
3921
3922 /* To run a normal hook, use the appropriate function from the list below.
3923 The calling convention:
3924
3925 if (!NILP (Vrun_hooks))
3926 call1 (Vrun_hooks, Qmy_funny_hook);
3927
3928 should no longer be used. */
3929 extern void run_hook (Lisp_Object);
3930 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3931 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3932 Lisp_Object (*funcall)
3933 (ptrdiff_t nargs, Lisp_Object *args));
3934 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3935 extern _Noreturn void xsignal0 (Lisp_Object);
3936 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3937 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3938 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3939 Lisp_Object);
3940 extern _Noreturn void signal_error (const char *, Lisp_Object);
3941 extern Lisp_Object eval_sub (Lisp_Object form);
3942 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3943 extern Lisp_Object call0 (Lisp_Object);
3944 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3945 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3946 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3947 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3948 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3949 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3950 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3951 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3952 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3953 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3954 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3955 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3956 extern Lisp_Object internal_condition_case_n
3957 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3958 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3959 extern void specbind (Lisp_Object, Lisp_Object);
3960 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3961 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3962 extern void record_unwind_protect_int (void (*) (int), int);
3963 extern void record_unwind_protect_void (void (*) (void));
3964 extern void record_unwind_protect_nothing (void);
3965 extern void clear_unwind_protect (ptrdiff_t);
3966 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3967 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3968 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3969 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3970 extern _Noreturn void verror (const char *, va_list)
3971 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3972 extern void un_autoload (Lisp_Object);
3973 extern Lisp_Object call_debugger (Lisp_Object arg);
3974 extern void init_eval_once (void);
3975 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3976 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
3977 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3978 extern void init_eval (void);
3979 extern void syms_of_eval (void);
3980 extern void unwind_body (Lisp_Object);
3981 extern ptrdiff_t record_in_backtrace (Lisp_Object, Lisp_Object *, ptrdiff_t);
3982 extern void mark_specpdl (void);
3983 extern void get_backtrace (Lisp_Object array);
3984 Lisp_Object backtrace_top_function (void);
3985 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
3986 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
3987
3988
3989 /* Defined in editfns.c. */
3990 extern void insert1 (Lisp_Object);
3991 extern Lisp_Object format2 (const char *, Lisp_Object, Lisp_Object);
3992 extern Lisp_Object save_excursion_save (void);
3993 extern Lisp_Object save_restriction_save (void);
3994 extern void save_excursion_restore (Lisp_Object);
3995 extern void save_restriction_restore (Lisp_Object);
3996 extern _Noreturn void time_overflow (void);
3997 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
3998 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3999 ptrdiff_t, bool);
4000 extern void init_editfns (void);
4001 extern void syms_of_editfns (void);
4002
4003 /* Defined in buffer.c. */
4004 extern bool mouse_face_overlay_overlaps (Lisp_Object);
4005 extern _Noreturn void nsberror (Lisp_Object);
4006 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
4007 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
4008 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
4009 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
4010 Lisp_Object, Lisp_Object, Lisp_Object);
4011 extern bool overlay_touches_p (ptrdiff_t);
4012 extern Lisp_Object other_buffer_safely (Lisp_Object);
4013 extern Lisp_Object get_truename_buffer (Lisp_Object);
4014 extern void init_buffer_once (void);
4015 extern void init_buffer (int);
4016 extern void syms_of_buffer (void);
4017 extern void keys_of_buffer (void);
4018
4019 /* Defined in marker.c. */
4020
4021 extern ptrdiff_t marker_position (Lisp_Object);
4022 extern ptrdiff_t marker_byte_position (Lisp_Object);
4023 extern void clear_charpos_cache (struct buffer *);
4024 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
4025 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
4026 extern void unchain_marker (struct Lisp_Marker *marker);
4027 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
4028 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
4029 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
4030 ptrdiff_t, ptrdiff_t);
4031 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
4032 extern void syms_of_marker (void);
4033
4034 /* Defined in fileio.c. */
4035
4036 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
4037 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
4038 Lisp_Object, Lisp_Object, Lisp_Object,
4039 Lisp_Object, int);
4040 extern void close_file_unwind (int);
4041 extern void fclose_unwind (void *);
4042 extern void restore_point_unwind (Lisp_Object);
4043 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
4044 extern _Noreturn void report_file_error (const char *, Lisp_Object);
4045 extern bool internal_delete_file (Lisp_Object);
4046 extern Lisp_Object emacs_readlinkat (int, const char *);
4047 extern bool file_directory_p (const char *);
4048 extern bool file_accessible_directory_p (Lisp_Object);
4049 extern void init_fileio (void);
4050 extern void syms_of_fileio (void);
4051 extern Lisp_Object make_temp_name (Lisp_Object, bool);
4052
4053 /* Defined in search.c. */
4054 extern void shrink_regexp_cache (void);
4055 extern void restore_search_regs (void);
4056 extern void record_unwind_save_match_data (void);
4057 struct re_registers;
4058 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4059 struct re_registers *,
4060 Lisp_Object, bool, bool);
4061 extern ptrdiff_t fast_string_match_internal (Lisp_Object, Lisp_Object,
4062 Lisp_Object);
4063
4064 INLINE ptrdiff_t
4065 fast_string_match (Lisp_Object regexp, Lisp_Object string)
4066 {
4067 return fast_string_match_internal (regexp, string, Qnil);
4068 }
4069
4070 INLINE ptrdiff_t
4071 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
4072 {
4073 return fast_string_match_internal (regexp, string, Vascii_canon_table);
4074 }
4075
4076 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4077 ptrdiff_t);
4078 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4079 ptrdiff_t, ptrdiff_t, Lisp_Object);
4080 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4081 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4082 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4083 ptrdiff_t, bool);
4084 extern ptrdiff_t scan_newline_from_point (ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
4085 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4086 ptrdiff_t, ptrdiff_t *);
4087 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4088 ptrdiff_t, ptrdiff_t *);
4089 extern void syms_of_search (void);
4090 extern void clear_regexp_cache (void);
4091
4092 /* Defined in minibuf.c. */
4093
4094 extern Lisp_Object Vminibuffer_list;
4095 extern Lisp_Object last_minibuf_string;
4096 extern Lisp_Object get_minibuffer (EMACS_INT);
4097 extern void init_minibuf_once (void);
4098 extern void syms_of_minibuf (void);
4099
4100 /* Defined in callint.c. */
4101
4102 extern void syms_of_callint (void);
4103
4104 /* Defined in casefiddle.c. */
4105
4106 extern void syms_of_casefiddle (void);
4107 extern void keys_of_casefiddle (void);
4108
4109 /* Defined in casetab.c. */
4110
4111 extern void init_casetab_once (void);
4112 extern void syms_of_casetab (void);
4113
4114 /* Defined in keyboard.c. */
4115
4116 extern Lisp_Object echo_message_buffer;
4117 extern struct kboard *echo_kboard;
4118 extern void cancel_echoing (void);
4119 extern Lisp_Object last_undo_boundary;
4120 extern bool input_pending;
4121 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4122 extern sigjmp_buf return_to_command_loop;
4123 #endif
4124 extern Lisp_Object menu_bar_items (Lisp_Object);
4125 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4126 extern void discard_mouse_events (void);
4127 #ifdef USABLE_SIGIO
4128 void handle_input_available_signal (int);
4129 #endif
4130 extern Lisp_Object pending_funcalls;
4131 extern bool detect_input_pending (void);
4132 extern bool detect_input_pending_ignore_squeezables (void);
4133 extern bool detect_input_pending_run_timers (bool);
4134 extern void safe_run_hooks (Lisp_Object);
4135 extern void cmd_error_internal (Lisp_Object, const char *);
4136 extern Lisp_Object command_loop_1 (void);
4137 extern Lisp_Object read_menu_command (void);
4138 extern Lisp_Object recursive_edit_1 (void);
4139 extern void record_auto_save (void);
4140 extern void force_auto_save_soon (void);
4141 extern void init_keyboard (void);
4142 extern void syms_of_keyboard (void);
4143 extern void keys_of_keyboard (void);
4144
4145 /* Defined in indent.c. */
4146 extern ptrdiff_t current_column (void);
4147 extern void invalidate_current_column (void);
4148 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4149 extern void syms_of_indent (void);
4150
4151 /* Defined in frame.c. */
4152 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4153 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4154 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4155 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4156 extern void frames_discard_buffer (Lisp_Object);
4157 extern void syms_of_frame (void);
4158
4159 /* Defined in emacs.c. */
4160 extern char **initial_argv;
4161 extern int initial_argc;
4162 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4163 extern bool display_arg;
4164 #endif
4165 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4166 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4167 extern _Noreturn void terminate_due_to_signal (int, int);
4168 #ifdef WINDOWSNT
4169 extern Lisp_Object Vlibrary_cache;
4170 #endif
4171 #if HAVE_SETLOCALE
4172 void fixup_locale (void);
4173 void synchronize_system_messages_locale (void);
4174 void synchronize_system_time_locale (void);
4175 #else
4176 INLINE void fixup_locale (void) {}
4177 INLINE void synchronize_system_messages_locale (void) {}
4178 INLINE void synchronize_system_time_locale (void) {}
4179 #endif
4180 extern void shut_down_emacs (int, Lisp_Object);
4181
4182 /* True means don't do interactive redisplay and don't change tty modes. */
4183 extern bool noninteractive;
4184
4185 /* True means remove site-lisp directories from load-path. */
4186 extern bool no_site_lisp;
4187
4188 /* Pipe used to send exit notification to the daemon parent at
4189 startup. */
4190 extern int daemon_pipe[2];
4191 #define IS_DAEMON (daemon_pipe[1] != 0)
4192
4193 /* True if handling a fatal error already. */
4194 extern bool fatal_error_in_progress;
4195
4196 /* True means don't do use window-system-specific display code. */
4197 extern bool inhibit_window_system;
4198 /* True means that a filter or a sentinel is running. */
4199 extern bool running_asynch_code;
4200
4201 /* Defined in process.c. */
4202 extern void kill_buffer_processes (Lisp_Object);
4203 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4204 struct Lisp_Process *, int);
4205 /* Max value for the first argument of wait_reading_process_output. */
4206 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4207 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4208 The bug merely causes a bogus warning, but the warning is annoying. */
4209 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4210 #else
4211 # define WAIT_READING_MAX INTMAX_MAX
4212 #endif
4213 #ifdef HAVE_TIMERFD
4214 extern void add_timer_wait_descriptor (int);
4215 #endif
4216 extern void add_keyboard_wait_descriptor (int);
4217 extern void delete_keyboard_wait_descriptor (int);
4218 #ifdef HAVE_GPM
4219 extern void add_gpm_wait_descriptor (int);
4220 extern void delete_gpm_wait_descriptor (int);
4221 #endif
4222 extern void init_process_emacs (void);
4223 extern void syms_of_process (void);
4224 extern void setup_process_coding_systems (Lisp_Object);
4225
4226 /* Defined in callproc.c. */
4227 #ifndef DOS_NT
4228 _Noreturn
4229 #endif
4230 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4231 extern void init_callproc_1 (void);
4232 extern void init_callproc (void);
4233 extern void set_initial_environment (void);
4234 extern void syms_of_callproc (void);
4235
4236 /* Defined in doc.c. */
4237 extern Lisp_Object read_doc_string (Lisp_Object);
4238 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4239 extern void syms_of_doc (void);
4240 extern int read_bytecode_char (bool);
4241
4242 /* Defined in bytecode.c. */
4243 extern void syms_of_bytecode (void);
4244 extern struct byte_stack *byte_stack_list;
4245 #if BYTE_MARK_STACK
4246 extern void mark_byte_stack (void);
4247 #endif
4248 extern void unmark_byte_stack (void);
4249 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4250 Lisp_Object, ptrdiff_t, Lisp_Object *);
4251
4252 /* Defined in macros.c. */
4253 extern void init_macros (void);
4254 extern void syms_of_macros (void);
4255
4256 /* Defined in undo.c. */
4257 extern void truncate_undo_list (struct buffer *);
4258 extern void record_insert (ptrdiff_t, ptrdiff_t);
4259 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4260 extern void record_first_change (void);
4261 extern void record_change (ptrdiff_t, ptrdiff_t);
4262 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4263 Lisp_Object, Lisp_Object,
4264 Lisp_Object);
4265 extern void syms_of_undo (void);
4266
4267 /* Defined in textprop.c. */
4268 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4269
4270 /* Defined in menu.c. */
4271 extern void syms_of_menu (void);
4272
4273 /* Defined in xmenu.c. */
4274 extern void syms_of_xmenu (void);
4275
4276 /* Defined in termchar.h. */
4277 struct tty_display_info;
4278
4279 /* Defined in termhooks.h. */
4280 struct terminal;
4281
4282 /* Defined in sysdep.c. */
4283 #ifndef HAVE_GET_CURRENT_DIR_NAME
4284 extern char *get_current_dir_name (void);
4285 #endif
4286 extern void stuff_char (char c);
4287 extern void init_foreground_group (void);
4288 extern void sys_subshell (void);
4289 extern void sys_suspend (void);
4290 extern void discard_tty_input (void);
4291 extern void init_sys_modes (struct tty_display_info *);
4292 extern void reset_sys_modes (struct tty_display_info *);
4293 extern void init_all_sys_modes (void);
4294 extern void reset_all_sys_modes (void);
4295 extern void child_setup_tty (int);
4296 extern void setup_pty (int);
4297 extern int set_window_size (int, int, int);
4298 extern EMACS_INT get_random (void);
4299 extern void seed_random (void *, ptrdiff_t);
4300 extern void init_random (void);
4301 extern void emacs_backtrace (int);
4302 extern _Noreturn void emacs_abort (void) NO_INLINE;
4303 extern int emacs_open (const char *, int, int);
4304 extern int emacs_pipe (int[2]);
4305 extern int emacs_close (int);
4306 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4307 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4308 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4309 extern void emacs_perror (char const *);
4310
4311 extern void unlock_all_files (void);
4312 extern void lock_file (Lisp_Object);
4313 extern void unlock_file (Lisp_Object);
4314 extern void unlock_buffer (struct buffer *);
4315 extern void syms_of_filelock (void);
4316 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4317
4318 /* Defined in sound.c. */
4319 extern void syms_of_sound (void);
4320
4321 /* Defined in category.c. */
4322 extern void init_category_once (void);
4323 extern Lisp_Object char_category_set (int);
4324 extern void syms_of_category (void);
4325
4326 /* Defined in ccl.c. */
4327 extern void syms_of_ccl (void);
4328
4329 /* Defined in dired.c. */
4330 extern void syms_of_dired (void);
4331 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4332 Lisp_Object, Lisp_Object,
4333 bool, Lisp_Object);
4334
4335 /* Defined in term.c. */
4336 extern int *char_ins_del_vector;
4337 extern void syms_of_term (void);
4338 extern _Noreturn void fatal (const char *msgid, ...)
4339 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4340
4341 /* Defined in terminal.c. */
4342 extern void syms_of_terminal (void);
4343
4344 /* Defined in font.c. */
4345 extern void syms_of_font (void);
4346 extern void init_font (void);
4347
4348 #ifdef HAVE_WINDOW_SYSTEM
4349 /* Defined in fontset.c. */
4350 extern void syms_of_fontset (void);
4351 #endif
4352
4353 /* Defined in gfilenotify.c */
4354 #ifdef HAVE_GFILENOTIFY
4355 extern void globals_of_gfilenotify (void);
4356 extern void syms_of_gfilenotify (void);
4357 #endif
4358
4359 /* Defined in inotify.c */
4360 #ifdef HAVE_INOTIFY
4361 extern void syms_of_inotify (void);
4362 #endif
4363
4364 #ifdef HAVE_W32NOTIFY
4365 /* Defined on w32notify.c. */
4366 extern void syms_of_w32notify (void);
4367 #endif
4368
4369 /* Defined in xfaces.c. */
4370 extern Lisp_Object Vface_alternative_font_family_alist;
4371 extern Lisp_Object Vface_alternative_font_registry_alist;
4372 extern void syms_of_xfaces (void);
4373
4374 #ifdef HAVE_X_WINDOWS
4375 /* Defined in xfns.c. */
4376 extern void syms_of_xfns (void);
4377
4378 /* Defined in xsmfns.c. */
4379 extern void syms_of_xsmfns (void);
4380
4381 /* Defined in xselect.c. */
4382 extern void syms_of_xselect (void);
4383
4384 /* Defined in xterm.c. */
4385 extern void init_xterm (void);
4386 extern void syms_of_xterm (void);
4387 #endif /* HAVE_X_WINDOWS */
4388
4389 #ifdef HAVE_WINDOW_SYSTEM
4390 /* Defined in xterm.c, nsterm.m, w32term.c. */
4391 extern char *x_get_keysym_name (int);
4392 #endif /* HAVE_WINDOW_SYSTEM */
4393
4394 #ifdef HAVE_LIBXML2
4395 /* Defined in xml.c. */
4396 extern void syms_of_xml (void);
4397 extern void xml_cleanup_parser (void);
4398 #endif
4399
4400 #ifdef HAVE_ZLIB
4401 /* Defined in decompress.c. */
4402 extern void syms_of_decompress (void);
4403 #endif
4404
4405 #ifdef HAVE_DBUS
4406 /* Defined in dbusbind.c. */
4407 void init_dbusbind (void);
4408 void syms_of_dbusbind (void);
4409 #endif
4410
4411
4412 /* Defined in profiler.c. */
4413 extern bool profiler_memory_running;
4414 extern void malloc_probe (size_t);
4415 extern void syms_of_profiler (void);
4416
4417
4418 #ifdef DOS_NT
4419 /* Defined in msdos.c, w32.c. */
4420 extern char *emacs_root_dir (void);
4421 #endif /* DOS_NT */
4422
4423 /* Defined in lastfile.c. */
4424 extern char my_edata[];
4425 extern char my_endbss[];
4426 extern char *my_endbss_static;
4427
4428 /* True means ^G can quit instantly. */
4429 extern bool immediate_quit;
4430
4431 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4432 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4433 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4434 extern void xfree (void *);
4435 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4436 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4437 ATTRIBUTE_ALLOC_SIZE ((2,3));
4438 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4439
4440 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4441 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4442 extern void dupstring (char **, char const *);
4443
4444 /* Make DEST a copy of STRING's data. Return a pointer to DEST's terminating
4445 null byte. This is like stpcpy, except the source is a Lisp string. */
4446
4447 INLINE char *
4448 lispstpcpy (char *dest, Lisp_Object string)
4449 {
4450 ptrdiff_t len = SBYTES (string);
4451 memcpy (dest, SDATA (string), len + 1);
4452 return dest + len;
4453 }
4454
4455 extern void xputenv (const char *);
4456
4457 extern char *egetenv_internal (const char *, ptrdiff_t);
4458
4459 INLINE char *
4460 egetenv (const char *var)
4461 {
4462 /* When VAR is a string literal, strlen can be optimized away. */
4463 return egetenv_internal (var, strlen (var));
4464 }
4465
4466 /* Set up the name of the machine we're running on. */
4467 extern void init_system_name (void);
4468
4469 /* Return the absolute value of X. X should be a signed integer
4470 expression without side effects, and X's absolute value should not
4471 exceed the maximum for its promoted type. This is called 'eabs'
4472 because 'abs' is reserved by the C standard. */
4473 #define eabs(x) ((x) < 0 ? -(x) : (x))
4474
4475 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4476 fixnum. */
4477
4478 #define make_fixnum_or_float(val) \
4479 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4480
4481 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4482 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4483
4484 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4485
4486 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4487
4488 #define USE_SAFE_ALLOCA \
4489 ptrdiff_t sa_avail = MAX_ALLOCA; \
4490 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4491
4492 #define AVAIL_ALLOCA(size) (sa_avail -= (size), alloca (size))
4493
4494 /* SAFE_ALLOCA allocates a simple buffer. */
4495
4496 #define SAFE_ALLOCA(size) ((size) <= sa_avail \
4497 ? AVAIL_ALLOCA (size) \
4498 : (sa_must_free = true, record_xmalloc (size)))
4499
4500 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4501 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4502 positive. The code is tuned for MULTIPLIER being a constant. */
4503
4504 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4505 do { \
4506 if ((nitems) <= sa_avail / sizeof *(buf) / (multiplier)) \
4507 (buf) = AVAIL_ALLOCA (sizeof *(buf) * (multiplier) * (nitems)); \
4508 else \
4509 { \
4510 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4511 sa_must_free = true; \
4512 record_unwind_protect_ptr (xfree, buf); \
4513 } \
4514 } while (false)
4515
4516 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4517
4518 #define SAFE_ALLOCA_STRING(ptr, string) \
4519 do { \
4520 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4521 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4522 } while (false)
4523
4524 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4525
4526 #define SAFE_FREE() \
4527 do { \
4528 if (sa_must_free) { \
4529 sa_must_free = false; \
4530 unbind_to (sa_count, Qnil); \
4531 } \
4532 } while (false)
4533
4534
4535 /* Return floor (NBYTES / WORD_SIZE). */
4536
4537 INLINE ptrdiff_t
4538 lisp_word_count (ptrdiff_t nbytes)
4539 {
4540 if (-1 >> 1 == -1)
4541 switch (word_size)
4542 {
4543 case 2: return nbytes >> 1;
4544 case 4: return nbytes >> 2;
4545 case 8: return nbytes >> 3;
4546 case 16: return nbytes >> 4;
4547 }
4548 return nbytes / word_size - (nbytes % word_size < 0);
4549 }
4550
4551 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4552
4553 #define SAFE_ALLOCA_LISP(buf, nelt) \
4554 do { \
4555 if ((nelt) <= lisp_word_count (sa_avail)) \
4556 (buf) = AVAIL_ALLOCA ((nelt) * word_size); \
4557 else if ((nelt) <= min (PTRDIFF_MAX, SIZE_MAX) / word_size) \
4558 { \
4559 Lisp_Object arg_; \
4560 (buf) = xmalloc ((nelt) * word_size); \
4561 arg_ = make_save_memory (buf, nelt); \
4562 sa_must_free = true; \
4563 record_unwind_protect (free_save_value, arg_); \
4564 } \
4565 else \
4566 memory_full (SIZE_MAX); \
4567 } while (false)
4568
4569
4570 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that allocate
4571 block-scoped conses and strings. These objects are not
4572 managed by the garbage collector, so they are dangerous: passing them
4573 out of their scope (e.g., to user code) results in undefined behavior.
4574 Conversely, they have better performance because GC is not involved.
4575
4576 This feature is experimental and requires careful debugging.
4577 Build with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS=0' to disable it. */
4578
4579 #ifndef USE_STACK_LISP_OBJECTS
4580 # define USE_STACK_LISP_OBJECTS true
4581 #endif
4582
4583 /* USE_STACK_LISP_OBJECTS requires GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS. */
4584
4585 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
4586 # undef USE_STACK_LISP_OBJECTS
4587 # define USE_STACK_LISP_OBJECTS false
4588 #endif
4589
4590 #ifdef GC_CHECK_STRING_BYTES
4591 enum { defined_GC_CHECK_STRING_BYTES = true };
4592 #else
4593 enum { defined_GC_CHECK_STRING_BYTES = false };
4594 #endif
4595
4596 /* Struct inside unions that are typically no larger and aligned enough. */
4597
4598 union Aligned_Cons
4599 {
4600 struct Lisp_Cons s;
4601 double d; intmax_t i; void *p;
4602 };
4603
4604 union Aligned_String
4605 {
4606 struct Lisp_String s;
4607 double d; intmax_t i; void *p;
4608 };
4609
4610 /* True for stack-based cons and string implementations, respectively.
4611 Use stack-based strings only if stack-based cons also works.
4612 Otherwise, STACK_CONS would create heap-based cons cells that
4613 could point to stack-based strings, which is a no-no. */
4614
4615 enum
4616 {
4617 USE_STACK_CONS = (USE_STACK_LISP_OBJECTS
4618 && alignof (union Aligned_Cons) % GCALIGNMENT == 0),
4619 USE_STACK_STRING = (USE_STACK_CONS
4620 && !defined_GC_CHECK_STRING_BYTES
4621 && alignof (union Aligned_String) % GCALIGNMENT == 0)
4622 };
4623
4624 /* Auxiliary macros used for auto allocation of Lisp objects. Please
4625 use these only in macros like AUTO_CONS that declare a local
4626 variable whose lifetime will be clear to the programmer. */
4627 #define STACK_CONS(a, b) \
4628 make_lisp_ptr (&(union Aligned_Cons) { { a, { b } } }.s, Lisp_Cons)
4629 #define AUTO_CONS_EXPR(a, b) \
4630 (USE_STACK_CONS ? STACK_CONS (a, b) : Fcons (a, b))
4631
4632 /* Declare NAME as an auto Lisp cons or short list if possible, a
4633 GC-based one otherwise. This is in the sense of the C keyword
4634 'auto'; i.e., the object has the lifetime of the containing block.
4635 The resulting object should not be made visible to user Lisp code. */
4636
4637 #define AUTO_CONS(name, a, b) Lisp_Object name = AUTO_CONS_EXPR (a, b)
4638 #define AUTO_LIST1(name, a) \
4639 Lisp_Object name = (USE_STACK_CONS ? STACK_CONS (a, Qnil) : list1 (a))
4640 #define AUTO_LIST2(name, a, b) \
4641 Lisp_Object name = (USE_STACK_CONS \
4642 ? STACK_CONS (a, STACK_CONS (b, Qnil)) \
4643 : list2 (a, b))
4644 #define AUTO_LIST3(name, a, b, c) \
4645 Lisp_Object name = (USE_STACK_CONS \
4646 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, Qnil))) \
4647 : list3 (a, b, c))
4648 #define AUTO_LIST4(name, a, b, c, d) \
4649 Lisp_Object name \
4650 = (USE_STACK_CONS \
4651 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, \
4652 STACK_CONS (d, Qnil)))) \
4653 : list4 (a, b, c, d))
4654
4655 /* Check whether stack-allocated strings are ASCII-only. */
4656
4657 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
4658 extern const char *verify_ascii (const char *);
4659 #else
4660 # define verify_ascii(str) (str)
4661 #endif
4662
4663 /* Declare NAME as an auto Lisp string if possible, a GC-based one if not.
4664 Take its value from STR. STR is not necessarily copied and should
4665 contain only ASCII characters. The resulting Lisp string should
4666 not be modified or made visible to user code. */
4667
4668 #define AUTO_STRING(name, str) \
4669 Lisp_Object name = \
4670 (USE_STACK_STRING \
4671 ? (make_lisp_ptr \
4672 ((&(union Aligned_String) \
4673 {{strlen (str), -1, 0, (unsigned char *) verify_ascii (str)}}.s), \
4674 Lisp_String)) \
4675 : build_string (verify_ascii (str)))
4676
4677 /* Loop over all tails of a list, checking for cycles.
4678 FIXME: Make tortoise and n internal declarations.
4679 FIXME: Unroll the loop body so we don't need `n'. */
4680 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4681 for ((tortoise) = (hare) = (list), (n) = true; \
4682 CONSP (hare); \
4683 (hare = XCDR (hare), (n) = !(n), \
4684 ((n) \
4685 ? (EQ (hare, tortoise) \
4686 ? xsignal1 (Qcircular_list, list) \
4687 : (void) 0) \
4688 /* Move tortoise before the next iteration, in case */ \
4689 /* the next iteration does an Fsetcdr. */ \
4690 : (void) ((tortoise) = XCDR (tortoise)))))
4691
4692 /* Do a `for' loop over alist values. */
4693
4694 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4695 for ((list_var) = (head_var); \
4696 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4697 (list_var) = XCDR (list_var))
4698
4699 /* Check whether it's time for GC, and run it if so. */
4700
4701 INLINE void
4702 maybe_gc (void)
4703 {
4704 if ((consing_since_gc > gc_cons_threshold
4705 && consing_since_gc > gc_relative_threshold)
4706 || (!NILP (Vmemory_full)
4707 && consing_since_gc > memory_full_cons_threshold))
4708 Fgarbage_collect ();
4709 }
4710
4711 INLINE bool
4712 functionp (Lisp_Object object)
4713 {
4714 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4715 {
4716 object = Findirect_function (object, Qt);
4717
4718 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4719 {
4720 /* Autoloaded symbols are functions, except if they load
4721 macros or keymaps. */
4722 int i;
4723 for (i = 0; i < 4 && CONSP (object); i++)
4724 object = XCDR (object);
4725
4726 return ! (CONSP (object) && !NILP (XCAR (object)));
4727 }
4728 }
4729
4730 if (SUBRP (object))
4731 return XSUBR (object)->max_args != UNEVALLED;
4732 else if (COMPILEDP (object))
4733 return true;
4734 else if (CONSP (object))
4735 {
4736 Lisp_Object car = XCAR (object);
4737 return EQ (car, Qlambda) || EQ (car, Qclosure);
4738 }
4739 else
4740 return false;
4741 }
4742
4743 INLINE_HEADER_END
4744
4745 #endif /* EMACS_LISP_H */