]> code.delx.au - gnu-emacs/blob - src/floatfns.c
(FLOAT_TO_INT, FLOAT_TO_INT2, range_error2): New macros.
[gnu-emacs] / src / floatfns.c
1 /* Primitive operations on floating point for GNU Emacs Lisp interpreter.
2 Copyright (C) 1988, 1993 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* ANSI C requires only these float functions:
22 acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
23 frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.
24
25 Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
26 Define HAVE_CBRT if you have cbrt.
27 Define HAVE_RINT if you have rint.
28 If you don't define these, then the appropriate routines will be simulated.
29
30 Define HAVE_MATHERR if on a system supporting the SysV matherr callback.
31 (This should happen automatically.)
32
33 Define FLOAT_CHECK_ERRNO if the float library routines set errno.
34 This has no effect if HAVE_MATHERR is defined.
35
36 Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL.
37 (What systems actually do this? Please let us know.)
38
39 Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
40 either setting errno, or signalling SIGFPE/SIGILL. Otherwise, domain and
41 range checking will happen before calling the float routines. This has
42 no effect if HAVE_MATHERR is defined (since matherr will be called when
43 a domain error occurs.)
44 */
45
46 #include <signal.h>
47
48 #include <config.h>
49 #include "lisp.h"
50 #include "syssignal.h"
51
52 Lisp_Object Qarith_error;
53
54 #ifdef LISP_FLOAT_TYPE
55
56 #if 0 /* That is untrue--XINT is used below, and it uses INTBITS.
57 What in the world is values.h, anyway? */
58 #ifdef MSDOS
59 /* These are redefined in <values.h> and not used here */
60 #undef INTBITS
61 #undef LONGBITS
62 #undef SHORTBITS
63 #endif
64 #endif
65
66 /* Work around a problem that happens because math.h on hpux 7
67 defines two static variables--which, in Emacs, are not really static,
68 because `static' is defined as nothing. The problem is that they are
69 defined both here and in lread.c.
70 These macros prevent the name conflict. */
71 #if defined (HPUX) && !defined (HPUX8)
72 #define _MAXLDBL floatfns_maxldbl
73 #define _NMAXLDBL floatfns_nmaxldbl
74 #endif
75
76 #include <math.h>
77
78 /* This declaration is omitted on some systems, like Ultrix. */
79 #if !defined (hpux) && defined (HAVE_LOGB)
80 extern double logb ();
81 #endif /* !hpux && HAVE_LOGB */
82
83 #ifndef MSDOS
84 #if defined(DOMAIN) && defined(SING) && defined(OVERFLOW)
85 /* If those are defined, then this is probably a `matherr' machine. */
86 # ifndef HAVE_MATHERR
87 # define HAVE_MATHERR
88 # endif
89 #endif
90 #endif
91
92 #ifdef NO_MATHERR
93 #undef HAVE_MATHERR
94 #endif
95
96 #ifdef HAVE_MATHERR
97 # ifdef FLOAT_CHECK_ERRNO
98 # undef FLOAT_CHECK_ERRNO
99 # endif
100 # ifdef FLOAT_CHECK_DOMAIN
101 # undef FLOAT_CHECK_DOMAIN
102 # endif
103 #endif
104
105 #ifndef NO_FLOAT_CHECK_ERRNO
106 #define FLOAT_CHECK_ERRNO
107 #endif
108
109 #ifdef FLOAT_CHECK_ERRNO
110 # include <errno.h>
111
112 extern int errno;
113 #endif
114
115 /* Avoid traps on VMS from sinh and cosh.
116 All the other functions set errno instead. */
117
118 #ifdef VMS
119 #undef cosh
120 #undef sinh
121 #define cosh(x) ((exp(x)+exp(-x))*0.5)
122 #define sinh(x) ((exp(x)-exp(-x))*0.5)
123 #endif /* VMS */
124
125 #ifndef HAVE_RINT
126 #define rint(x) (floor((x)+0.5))
127 #endif
128
129 static SIGTYPE float_error ();
130
131 /* Nonzero while executing in floating point.
132 This tells float_error what to do. */
133
134 static int in_float;
135
136 /* If an argument is out of range for a mathematical function,
137 here is the actual argument value to use in the error message. */
138
139 static Lisp_Object float_error_arg, float_error_arg2;
140
141 static char *float_error_fn_name;
142
143 /* Evaluate the floating point expression D, recording NUM
144 as the original argument for error messages.
145 D is normally an assignment expression.
146 Handle errors which may result in signals or may set errno.
147
148 Note that float_error may be declared to return void, so you can't
149 just cast the zero after the colon to (SIGTYPE) to make the types
150 check properly. */
151
152 #ifdef FLOAT_CHECK_ERRNO
153 #define IN_FLOAT(d, name, num) \
154 do { \
155 float_error_arg = num; \
156 float_error_fn_name = name; \
157 in_float = 1; errno = 0; (d); in_float = 0; \
158 switch (errno) { \
159 case 0: break; \
160 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
161 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
162 default: arith_error (float_error_fn_name, float_error_arg); \
163 } \
164 } while (0)
165 #define IN_FLOAT2(d, name, num, num2) \
166 do { \
167 float_error_arg = num; \
168 float_error_arg2 = num2; \
169 float_error_fn_name = name; \
170 in_float = 1; errno = 0; (d); in_float = 0; \
171 switch (errno) { \
172 case 0: break; \
173 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
174 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
175 default: arith_error (float_error_fn_name, float_error_arg); \
176 } \
177 } while (0)
178 #else
179 #define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
180 #define IN_FLOAT2(d, name, num, num2) (in_float = 1, (d), in_float = 0)
181 #endif
182
183 /* Convert float to Lisp_Int if it fits, else signal a range error
184 using the given arguments. */
185 #define FLOAT_TO_INT(x, i, name, num) \
186 do \
187 { \
188 if ((x) >= (1 << (VALBITS-1)) || (x) <= - (1 << (VALBITS-1)) - 1) \
189 range_error (name, num); \
190 XSET (i, Lisp_Int, (int)(x)); \
191 } \
192 while (0)
193 #define FLOAT_TO_INT2(x, i, name, num1, num2) \
194 do \
195 { \
196 if ((x) >= (1 << (VALBITS-1)) || (x) <= - (1 << (VALBITS-1)) - 1) \
197 range_error2 (name, num1, num2); \
198 XSET (i, Lisp_Int, (int)(x)); \
199 } \
200 while (0)
201
202 #define arith_error(op,arg) \
203 Fsignal (Qarith_error, Fcons (build_string ((op)), Fcons ((arg), Qnil)))
204 #define range_error(op,arg) \
205 Fsignal (Qrange_error, Fcons (build_string ((op)), Fcons ((arg), Qnil)))
206 #define range_error2(op,a1,a2) \
207 Fsignal (Qrange_error, Fcons (build_string ((op)), \
208 Fcons ((a1), Fcons ((a2), Qnil))))
209 #define domain_error(op,arg) \
210 Fsignal (Qdomain_error, Fcons (build_string ((op)), Fcons ((arg), Qnil)))
211 #define domain_error2(op,a1,a2) \
212 Fsignal (Qdomain_error, Fcons (build_string ((op)), \
213 Fcons ((a1), Fcons ((a2), Qnil))))
214
215 /* Extract a Lisp number as a `double', or signal an error. */
216
217 double
218 extract_float (num)
219 Lisp_Object num;
220 {
221 CHECK_NUMBER_OR_FLOAT (num, 0);
222
223 if (XTYPE (num) == Lisp_Float)
224 return XFLOAT (num)->data;
225 return (double) XINT (num);
226 }
227 \f
228 /* Trig functions. */
229
230 DEFUN ("acos", Facos, Sacos, 1, 1, 0,
231 "Return the inverse cosine of ARG.")
232 (arg)
233 register Lisp_Object arg;
234 {
235 double d = extract_float (arg);
236 #ifdef FLOAT_CHECK_DOMAIN
237 if (d > 1.0 || d < -1.0)
238 domain_error ("acos", arg);
239 #endif
240 IN_FLOAT (d = acos (d), "acos", arg);
241 return make_float (d);
242 }
243
244 DEFUN ("asin", Fasin, Sasin, 1, 1, 0,
245 "Return the inverse sine of ARG.")
246 (arg)
247 register Lisp_Object arg;
248 {
249 double d = extract_float (arg);
250 #ifdef FLOAT_CHECK_DOMAIN
251 if (d > 1.0 || d < -1.0)
252 domain_error ("asin", arg);
253 #endif
254 IN_FLOAT (d = asin (d), "asin", arg);
255 return make_float (d);
256 }
257
258 DEFUN ("atan", Fatan, Satan, 1, 1, 0,
259 "Return the inverse tangent of ARG.")
260 (arg)
261 register Lisp_Object arg;
262 {
263 double d = extract_float (arg);
264 IN_FLOAT (d = atan (d), "atan", arg);
265 return make_float (d);
266 }
267
268 DEFUN ("cos", Fcos, Scos, 1, 1, 0,
269 "Return the cosine of ARG.")
270 (arg)
271 register Lisp_Object arg;
272 {
273 double d = extract_float (arg);
274 IN_FLOAT (d = cos (d), "cos", arg);
275 return make_float (d);
276 }
277
278 DEFUN ("sin", Fsin, Ssin, 1, 1, 0,
279 "Return the sine of ARG.")
280 (arg)
281 register Lisp_Object arg;
282 {
283 double d = extract_float (arg);
284 IN_FLOAT (d = sin (d), "sin", arg);
285 return make_float (d);
286 }
287
288 DEFUN ("tan", Ftan, Stan, 1, 1, 0,
289 "Return the tangent of ARG.")
290 (arg)
291 register Lisp_Object arg;
292 {
293 double d = extract_float (arg);
294 double c = cos (d);
295 #ifdef FLOAT_CHECK_DOMAIN
296 if (c == 0.0)
297 domain_error ("tan", arg);
298 #endif
299 IN_FLOAT (d = sin (d) / c, "tan", arg);
300 return make_float (d);
301 }
302 \f
303 #if 0 /* Leave these out unless we find there's a reason for them. */
304
305 DEFUN ("bessel-j0", Fbessel_j0, Sbessel_j0, 1, 1, 0,
306 "Return the bessel function j0 of ARG.")
307 (arg)
308 register Lisp_Object arg;
309 {
310 double d = extract_float (arg);
311 IN_FLOAT (d = j0 (d), "bessel-j0", arg);
312 return make_float (d);
313 }
314
315 DEFUN ("bessel-j1", Fbessel_j1, Sbessel_j1, 1, 1, 0,
316 "Return the bessel function j1 of ARG.")
317 (arg)
318 register Lisp_Object arg;
319 {
320 double d = extract_float (arg);
321 IN_FLOAT (d = j1 (d), "bessel-j1", arg);
322 return make_float (d);
323 }
324
325 DEFUN ("bessel-jn", Fbessel_jn, Sbessel_jn, 2, 2, 0,
326 "Return the order N bessel function output jn of ARG.\n\
327 The first arg (the order) is truncated to an integer.")
328 (arg1, arg2)
329 register Lisp_Object arg1, arg2;
330 {
331 int i1 = extract_float (arg1);
332 double f2 = extract_float (arg2);
333
334 IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", arg1);
335 return make_float (f2);
336 }
337
338 DEFUN ("bessel-y0", Fbessel_y0, Sbessel_y0, 1, 1, 0,
339 "Return the bessel function y0 of ARG.")
340 (arg)
341 register Lisp_Object arg;
342 {
343 double d = extract_float (arg);
344 IN_FLOAT (d = y0 (d), "bessel-y0", arg);
345 return make_float (d);
346 }
347
348 DEFUN ("bessel-y1", Fbessel_y1, Sbessel_y1, 1, 1, 0,
349 "Return the bessel function y1 of ARG.")
350 (arg)
351 register Lisp_Object arg;
352 {
353 double d = extract_float (arg);
354 IN_FLOAT (d = y1 (d), "bessel-y0", arg);
355 return make_float (d);
356 }
357
358 DEFUN ("bessel-yn", Fbessel_yn, Sbessel_yn, 2, 2, 0,
359 "Return the order N bessel function output yn of ARG.\n\
360 The first arg (the order) is truncated to an integer.")
361 (arg1, arg2)
362 register Lisp_Object arg1, arg2;
363 {
364 int i1 = extract_float (arg1);
365 double f2 = extract_float (arg2);
366
367 IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", arg1);
368 return make_float (f2);
369 }
370
371 #endif
372 \f
373 #if 0 /* Leave these out unless we see they are worth having. */
374
375 DEFUN ("erf", Ferf, Serf, 1, 1, 0,
376 "Return the mathematical error function of ARG.")
377 (arg)
378 register Lisp_Object arg;
379 {
380 double d = extract_float (arg);
381 IN_FLOAT (d = erf (d), "erf", arg);
382 return make_float (d);
383 }
384
385 DEFUN ("erfc", Ferfc, Serfc, 1, 1, 0,
386 "Return the complementary error function of ARG.")
387 (arg)
388 register Lisp_Object arg;
389 {
390 double d = extract_float (arg);
391 IN_FLOAT (d = erfc (d), "erfc", arg);
392 return make_float (d);
393 }
394
395 DEFUN ("log-gamma", Flog_gamma, Slog_gamma, 1, 1, 0,
396 "Return the log gamma of ARG.")
397 (arg)
398 register Lisp_Object arg;
399 {
400 double d = extract_float (arg);
401 IN_FLOAT (d = lgamma (d), "log-gamma", arg);
402 return make_float (d);
403 }
404
405 DEFUN ("cube-root", Fcube_root, Scube_root, 1, 1, 0,
406 "Return the cube root of ARG.")
407 (arg)
408 register Lisp_Object arg;
409 {
410 double d = extract_float (arg);
411 #ifdef HAVE_CBRT
412 IN_FLOAT (d = cbrt (d), "cube-root", arg);
413 #else
414 if (d >= 0.0)
415 IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", arg);
416 else
417 IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", arg);
418 #endif
419 return make_float (d);
420 }
421
422 #endif
423 \f
424 DEFUN ("exp", Fexp, Sexp, 1, 1, 0,
425 "Return the exponential base e of ARG.")
426 (arg)
427 register Lisp_Object arg;
428 {
429 double d = extract_float (arg);
430 #ifdef FLOAT_CHECK_DOMAIN
431 if (d > 709.7827) /* Assume IEEE doubles here */
432 range_error ("exp", arg);
433 else if (d < -709.0)
434 return make_float (0.0);
435 else
436 #endif
437 IN_FLOAT (d = exp (d), "exp", arg);
438 return make_float (d);
439 }
440
441 DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0,
442 "Return the exponential X ** Y.")
443 (arg1, arg2)
444 register Lisp_Object arg1, arg2;
445 {
446 double f1, f2;
447
448 CHECK_NUMBER_OR_FLOAT (arg1, 0);
449 CHECK_NUMBER_OR_FLOAT (arg2, 0);
450 if (XTYPE (arg1) == Lisp_Int /* common lisp spec */
451 && XTYPE (arg2) == Lisp_Int) /* don't promote, if both are ints */
452 { /* this can be improved by pre-calculating */
453 int acc, x, y; /* some binary powers of x then accumulating */
454 Lisp_Object val;
455
456 x = XINT (arg1);
457 y = XINT (arg2);
458 acc = 1;
459
460 if (y < 0)
461 {
462 if (x == 1)
463 acc = 1;
464 else if (x == -1)
465 acc = (y & 1) ? -1 : 1;
466 else
467 acc = 0;
468 }
469 else
470 {
471 while (y > 0)
472 {
473 if (y & 1)
474 acc *= x;
475 x *= x;
476 y = (unsigned)y >> 1;
477 }
478 }
479 XSET (val, Lisp_Int, acc);
480 return val;
481 }
482 f1 = (XTYPE (arg1) == Lisp_Float) ? XFLOAT (arg1)->data : XINT (arg1);
483 f2 = (XTYPE (arg2) == Lisp_Float) ? XFLOAT (arg2)->data : XINT (arg2);
484 /* Really should check for overflow, too */
485 if (f1 == 0.0 && f2 == 0.0)
486 f1 = 1.0;
487 #ifdef FLOAT_CHECK_DOMAIN
488 else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2)))
489 domain_error2 ("expt", arg1, arg2);
490 #endif
491 IN_FLOAT2 (f1 = pow (f1, f2), "expt", arg1, arg2);
492 return make_float (f1);
493 }
494
495 DEFUN ("log", Flog, Slog, 1, 2, 0,
496 "Return the natural logarithm of ARG.\n\
497 If second optional argument BASE is given, return log ARG using that base.")
498 (arg, base)
499 register Lisp_Object arg, base;
500 {
501 double d = extract_float (arg);
502
503 #ifdef FLOAT_CHECK_DOMAIN
504 if (d <= 0.0)
505 domain_error2 ("log", arg, base);
506 #endif
507 if (NILP (base))
508 IN_FLOAT (d = log (d), "log", arg);
509 else
510 {
511 double b = extract_float (base);
512
513 #ifdef FLOAT_CHECK_DOMAIN
514 if (b <= 0.0 || b == 1.0)
515 domain_error2 ("log", arg, base);
516 #endif
517 if (b == 10.0)
518 IN_FLOAT2 (d = log10 (d), "log", arg, base);
519 else
520 IN_FLOAT2 (d = log (d) / log (b), "log", arg, base);
521 }
522 return make_float (d);
523 }
524
525 DEFUN ("log10", Flog10, Slog10, 1, 1, 0,
526 "Return the logarithm base 10 of ARG.")
527 (arg)
528 register Lisp_Object arg;
529 {
530 double d = extract_float (arg);
531 #ifdef FLOAT_CHECK_DOMAIN
532 if (d <= 0.0)
533 domain_error ("log10", arg);
534 #endif
535 IN_FLOAT (d = log10 (d), "log10", arg);
536 return make_float (d);
537 }
538
539 DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0,
540 "Return the square root of ARG.")
541 (arg)
542 register Lisp_Object arg;
543 {
544 double d = extract_float (arg);
545 #ifdef FLOAT_CHECK_DOMAIN
546 if (d < 0.0)
547 domain_error ("sqrt", arg);
548 #endif
549 IN_FLOAT (d = sqrt (d), "sqrt", arg);
550 return make_float (d);
551 }
552 \f
553 #if 0 /* Not clearly worth adding. */
554
555 DEFUN ("acosh", Facosh, Sacosh, 1, 1, 0,
556 "Return the inverse hyperbolic cosine of ARG.")
557 (arg)
558 register Lisp_Object arg;
559 {
560 double d = extract_float (arg);
561 #ifdef FLOAT_CHECK_DOMAIN
562 if (d < 1.0)
563 domain_error ("acosh", arg);
564 #endif
565 #ifdef HAVE_INVERSE_HYPERBOLIC
566 IN_FLOAT (d = acosh (d), "acosh", arg);
567 #else
568 IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", arg);
569 #endif
570 return make_float (d);
571 }
572
573 DEFUN ("asinh", Fasinh, Sasinh, 1, 1, 0,
574 "Return the inverse hyperbolic sine of ARG.")
575 (arg)
576 register Lisp_Object arg;
577 {
578 double d = extract_float (arg);
579 #ifdef HAVE_INVERSE_HYPERBOLIC
580 IN_FLOAT (d = asinh (d), "asinh", arg);
581 #else
582 IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", arg);
583 #endif
584 return make_float (d);
585 }
586
587 DEFUN ("atanh", Fatanh, Satanh, 1, 1, 0,
588 "Return the inverse hyperbolic tangent of ARG.")
589 (arg)
590 register Lisp_Object arg;
591 {
592 double d = extract_float (arg);
593 #ifdef FLOAT_CHECK_DOMAIN
594 if (d >= 1.0 || d <= -1.0)
595 domain_error ("atanh", arg);
596 #endif
597 #ifdef HAVE_INVERSE_HYPERBOLIC
598 IN_FLOAT (d = atanh (d), "atanh", arg);
599 #else
600 IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", arg);
601 #endif
602 return make_float (d);
603 }
604
605 DEFUN ("cosh", Fcosh, Scosh, 1, 1, 0,
606 "Return the hyperbolic cosine of ARG.")
607 (arg)
608 register Lisp_Object arg;
609 {
610 double d = extract_float (arg);
611 #ifdef FLOAT_CHECK_DOMAIN
612 if (d > 710.0 || d < -710.0)
613 range_error ("cosh", arg);
614 #endif
615 IN_FLOAT (d = cosh (d), "cosh", arg);
616 return make_float (d);
617 }
618
619 DEFUN ("sinh", Fsinh, Ssinh, 1, 1, 0,
620 "Return the hyperbolic sine of ARG.")
621 (arg)
622 register Lisp_Object arg;
623 {
624 double d = extract_float (arg);
625 #ifdef FLOAT_CHECK_DOMAIN
626 if (d > 710.0 || d < -710.0)
627 range_error ("sinh", arg);
628 #endif
629 IN_FLOAT (d = sinh (d), "sinh", arg);
630 return make_float (d);
631 }
632
633 DEFUN ("tanh", Ftanh, Stanh, 1, 1, 0,
634 "Return the hyperbolic tangent of ARG.")
635 (arg)
636 register Lisp_Object arg;
637 {
638 double d = extract_float (arg);
639 IN_FLOAT (d = tanh (d), "tanh", arg);
640 return make_float (d);
641 }
642 #endif
643 \f
644 DEFUN ("abs", Fabs, Sabs, 1, 1, 0,
645 "Return the absolute value of ARG.")
646 (arg)
647 register Lisp_Object arg;
648 {
649 CHECK_NUMBER_OR_FLOAT (arg, 0);
650
651 if (XTYPE (arg) == Lisp_Float)
652 IN_FLOAT (arg = make_float (fabs (XFLOAT (arg)->data)), "abs", arg);
653 else if (XINT (arg) < 0)
654 XSETINT (arg, - XFASTINT (arg));
655
656 return arg;
657 }
658
659 DEFUN ("float", Ffloat, Sfloat, 1, 1, 0,
660 "Return the floating point number equal to ARG.")
661 (arg)
662 register Lisp_Object arg;
663 {
664 CHECK_NUMBER_OR_FLOAT (arg, 0);
665
666 if (XTYPE (arg) == Lisp_Int)
667 return make_float ((double) XINT (arg));
668 else /* give 'em the same float back */
669 return arg;
670 }
671
672 DEFUN ("logb", Flogb, Slogb, 1, 1, 0,
673 "Returns largest integer <= the base 2 log of the magnitude of ARG.\n\
674 This is the same as the exponent of a float.")
675 (arg)
676 Lisp_Object arg;
677 {
678 Lisp_Object val;
679 int value;
680 double f = extract_float (arg);
681
682 if (f == 0.0)
683 value = -(VALMASK >> 1);
684 else
685 {
686 #ifdef HAVE_LOGB
687 IN_FLOAT (value = logb (f), "logb", arg);
688 #else
689 #ifdef HAVE_FREXP
690 IN_FLOAT (frexp (f, &value), "logb", arg);
691 value--;
692 #else
693 int i;
694 double d;
695 if (f < 0.0)
696 f = -f;
697 value = -1;
698 while (f < 0.5)
699 {
700 for (i = 1, d = 0.5; d * d >= f; i += i)
701 d *= d;
702 f /= d;
703 value -= i;
704 }
705 while (f >= 1.0)
706 {
707 for (i = 1, d = 2.0; d * d <= f; i += i)
708 d *= d;
709 f /= d;
710 value += i;
711 }
712 #endif
713 #endif
714 }
715 XSET (val, Lisp_Int, value);
716 return val;
717 }
718
719 /* the rounding functions */
720
721 DEFUN ("ceiling", Fceiling, Sceiling, 1, 1, 0,
722 "Return the smallest integer no less than ARG. (Round toward +inf.)")
723 (arg)
724 register Lisp_Object arg;
725 {
726 CHECK_NUMBER_OR_FLOAT (arg, 0);
727
728 if (XTYPE (arg) == Lisp_Float)
729 {
730 double d;
731
732 IN_FLOAT (d = ceil (XFLOAT (arg)->data), "ceiling", arg);
733 FLOAT_TO_INT (d, arg, "ceiling", arg);
734 }
735
736 return arg;
737 }
738
739 #endif /* LISP_FLOAT_TYPE */
740
741
742 DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0,
743 "Return the largest integer no greater than ARG. (Round towards -inf.)\n\
744 With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR.")
745 (arg, divisor)
746 register Lisp_Object arg, divisor;
747 {
748 CHECK_NUMBER_OR_FLOAT (arg, 0);
749
750 if (! NILP (divisor))
751 {
752 int i1, i2;
753
754 CHECK_NUMBER_OR_FLOAT (divisor, 1);
755
756 #ifdef LISP_FLOAT_TYPE
757 if (XTYPE (arg) == Lisp_Float || XTYPE (divisor) == Lisp_Float)
758 {
759 double f1, f2;
760
761 f1 = XTYPE (arg) == Lisp_Float ? XFLOAT (arg)->data : XINT (arg);
762 f2 = (XTYPE (divisor) == Lisp_Float
763 ? XFLOAT (divisor)->data : XINT (divisor));
764 if (f2 == 0)
765 Fsignal (Qarith_error, Qnil);
766
767 IN_FLOAT2 (f1 = floor (f1 / f2), "floor", arg, divisor);
768 FLOAT_TO_INT2 (f1, arg, "floor", arg, divisor);
769 return arg;
770 }
771 #endif
772
773 i1 = XINT (arg);
774 i2 = XINT (divisor);
775
776 if (i2 == 0)
777 Fsignal (Qarith_error, Qnil);
778
779 /* With C's /, the result is implementation-defined if either operand
780 is negative, so use only nonnegative operands. */
781 i1 = (i2 < 0
782 ? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2))
783 : (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2));
784
785 XSET (arg, Lisp_Int, i1);
786 return arg;
787 }
788
789 #ifdef LISP_FLOAT_TYPE
790 if (XTYPE (arg) == Lisp_Float)
791 {
792 double d;
793 IN_FLOAT (d = floor (XFLOAT (arg)->data), "floor", arg);
794 FLOAT_TO_INT (d, arg, "floor", arg);
795 }
796 #endif
797
798 return arg;
799 }
800
801 #ifdef LISP_FLOAT_TYPE
802
803 DEFUN ("round", Fround, Sround, 1, 1, 0,
804 "Return the nearest integer to ARG.")
805 (arg)
806 register Lisp_Object arg;
807 {
808 CHECK_NUMBER_OR_FLOAT (arg, 0);
809
810 if (XTYPE (arg) == Lisp_Float)
811 {
812 double d;
813
814 /* Screw the prevailing rounding mode. */
815 IN_FLOAT (d = rint (XFLOAT (arg)->data), "round", arg);
816 FLOAT_TO_INT (d, arg, "round", arg);
817 }
818
819 return arg;
820 }
821
822 DEFUN ("truncate", Ftruncate, Struncate, 1, 1, 0,
823 "Truncate a floating point number to an int.\n\
824 Rounds the value toward zero.")
825 (arg)
826 register Lisp_Object arg;
827 {
828 CHECK_NUMBER_OR_FLOAT (arg, 0);
829
830 if (XTYPE (arg) == Lisp_Float)
831 {
832 double d;
833
834 d = XFLOAT (arg)->data;
835 FLOAT_TO_INT (d, arg, "truncate", arg);
836 }
837
838 return arg;
839 }
840 \f
841 /* It's not clear these are worth adding. */
842
843 DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0,
844 "Return the smallest integer no less than ARG, as a float.\n\
845 \(Round toward +inf.\)")
846 (arg)
847 register Lisp_Object arg;
848 {
849 double d = extract_float (arg);
850 IN_FLOAT (d = ceil (d), "fceiling", arg);
851 return make_float (d);
852 }
853
854 DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0,
855 "Return the largest integer no greater than ARG, as a float.\n\
856 \(Round towards -inf.\)")
857 (arg)
858 register Lisp_Object arg;
859 {
860 double d = extract_float (arg);
861 IN_FLOAT (d = floor (d), "ffloor", arg);
862 return make_float (d);
863 }
864
865 DEFUN ("fround", Ffround, Sfround, 1, 1, 0,
866 "Return the nearest integer to ARG, as a float.")
867 (arg)
868 register Lisp_Object arg;
869 {
870 double d = extract_float (arg);
871 IN_FLOAT (d = rint (d), "fround", arg);
872 return make_float (d);
873 }
874
875 DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0,
876 "Truncate a floating point number to an integral float value.\n\
877 Rounds the value toward zero.")
878 (arg)
879 register Lisp_Object arg;
880 {
881 double d = extract_float (arg);
882 if (d >= 0.0)
883 IN_FLOAT (d = floor (d), "ftruncate", arg);
884 else
885 IN_FLOAT (d = ceil (d), "ftruncate", arg);
886 return make_float (d);
887 }
888 \f
889 #ifdef FLOAT_CATCH_SIGILL
890 static SIGTYPE
891 float_error (signo)
892 int signo;
893 {
894 if (! in_float)
895 fatal_error_signal (signo);
896
897 #ifdef BSD
898 #ifdef BSD4_1
899 sigrelse (SIGILL);
900 #else /* not BSD4_1 */
901 sigsetmask (SIGEMPTYMASK);
902 #endif /* not BSD4_1 */
903 #else
904 /* Must reestablish handler each time it is called. */
905 signal (SIGILL, float_error);
906 #endif /* BSD */
907
908 in_float = 0;
909
910 Fsignal (Qarith_error, Fcons (float_error_arg, Qnil));
911 }
912
913 /* Another idea was to replace the library function `infnan'
914 where SIGILL is signaled. */
915
916 #endif /* FLOAT_CATCH_SIGILL */
917
918 #ifdef HAVE_MATHERR
919 int
920 matherr (x)
921 struct exception *x;
922 {
923 Lisp_Object args;
924 if (! in_float)
925 /* Not called from emacs-lisp float routines; do the default thing. */
926 return 0;
927 if (!strcmp (x->name, "pow"))
928 x->name = "expt";
929
930 args
931 = Fcons (build_string (x->name),
932 Fcons (make_float (x->arg1),
933 ((!strcmp (x->name, "log") || !strcmp (x->name, "pow"))
934 ? Fcons (make_float (x->arg2), Qnil)
935 : Qnil)));
936 switch (x->type)
937 {
938 case DOMAIN: Fsignal (Qdomain_error, args); break;
939 case SING: Fsignal (Qsingularity_error, args); break;
940 case OVERFLOW: Fsignal (Qoverflow_error, args); break;
941 case UNDERFLOW: Fsignal (Qunderflow_error, args); break;
942 default: Fsignal (Qarith_error, args); break;
943 }
944 return (1); /* don't set errno or print a message */
945 }
946 #endif /* HAVE_MATHERR */
947
948 init_floatfns ()
949 {
950 #ifdef FLOAT_CATCH_SIGILL
951 signal (SIGILL, float_error);
952 #endif
953 in_float = 0;
954 }
955
956 #else /* not LISP_FLOAT_TYPE */
957
958 init_floatfns ()
959 {}
960
961 #endif /* not LISP_FLOAT_TYPE */
962
963 syms_of_floatfns ()
964 {
965 #ifdef LISP_FLOAT_TYPE
966 defsubr (&Sacos);
967 defsubr (&Sasin);
968 defsubr (&Satan);
969 defsubr (&Scos);
970 defsubr (&Ssin);
971 defsubr (&Stan);
972 #if 0
973 defsubr (&Sacosh);
974 defsubr (&Sasinh);
975 defsubr (&Satanh);
976 defsubr (&Scosh);
977 defsubr (&Ssinh);
978 defsubr (&Stanh);
979 defsubr (&Sbessel_y0);
980 defsubr (&Sbessel_y1);
981 defsubr (&Sbessel_yn);
982 defsubr (&Sbessel_j0);
983 defsubr (&Sbessel_j1);
984 defsubr (&Sbessel_jn);
985 defsubr (&Serf);
986 defsubr (&Serfc);
987 defsubr (&Slog_gamma);
988 defsubr (&Scube_root);
989 #endif
990 defsubr (&Sfceiling);
991 defsubr (&Sffloor);
992 defsubr (&Sfround);
993 defsubr (&Sftruncate);
994 defsubr (&Sexp);
995 defsubr (&Sexpt);
996 defsubr (&Slog);
997 defsubr (&Slog10);
998 defsubr (&Ssqrt);
999
1000 defsubr (&Sabs);
1001 defsubr (&Sfloat);
1002 defsubr (&Slogb);
1003 defsubr (&Sceiling);
1004 defsubr (&Sround);
1005 defsubr (&Struncate);
1006 #endif /* LISP_FLOAT_TYPE */
1007 defsubr (&Sfloor);
1008 }