]> code.delx.au - gnu-emacs/blob - src/search.c
(Advising Functions): Don't imply one part of Emacs
[gnu-emacs] / src / search.c
1 /* String search routines for GNU Emacs.
2 Copyright (C) 1985, 86,87,93,94,97,98, 1999, 2004
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 #include <config.h>
24 #include "lisp.h"
25 #include "syntax.h"
26 #include "category.h"
27 #include "buffer.h"
28 #include "charset.h"
29 #include "region-cache.h"
30 #include "commands.h"
31 #include "blockinput.h"
32 #include "intervals.h"
33
34 #include <sys/types.h>
35 #include "regex.h"
36
37 #define REGEXP_CACHE_SIZE 20
38
39 /* If the regexp is non-nil, then the buffer contains the compiled form
40 of that regexp, suitable for searching. */
41 struct regexp_cache
42 {
43 struct regexp_cache *next;
44 Lisp_Object regexp, whitespace_regexp;
45 struct re_pattern_buffer buf;
46 char fastmap[0400];
47 /* Nonzero means regexp was compiled to do full POSIX backtracking. */
48 char posix;
49 };
50
51 /* The instances of that struct. */
52 struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];
53
54 /* The head of the linked list; points to the most recently used buffer. */
55 struct regexp_cache *searchbuf_head;
56
57
58 /* Every call to re_match, etc., must pass &search_regs as the regs
59 argument unless you can show it is unnecessary (i.e., if re_match
60 is certainly going to be called again before region-around-match
61 can be called).
62
63 Since the registers are now dynamically allocated, we need to make
64 sure not to refer to the Nth register before checking that it has
65 been allocated by checking search_regs.num_regs.
66
67 The regex code keeps track of whether it has allocated the search
68 buffer using bits in the re_pattern_buffer. This means that whenever
69 you compile a new pattern, it completely forgets whether it has
70 allocated any registers, and will allocate new registers the next
71 time you call a searching or matching function. Therefore, we need
72 to call re_set_registers after compiling a new pattern or after
73 setting the match registers, so that the regex functions will be
74 able to free or re-allocate it properly. */
75 static struct re_registers search_regs;
76
77 /* The buffer in which the last search was performed, or
78 Qt if the last search was done in a string;
79 Qnil if no searching has been done yet. */
80 static Lisp_Object last_thing_searched;
81
82 /* error condition signaled when regexp compile_pattern fails */
83
84 Lisp_Object Qinvalid_regexp;
85
86 Lisp_Object Vsearch_spaces_regexp;
87
88 static void set_search_regs ();
89 static void save_search_regs ();
90 static int simple_search ();
91 static int boyer_moore ();
92 static int search_buffer ();
93
94 static void
95 matcher_overflow ()
96 {
97 error ("Stack overflow in regexp matcher");
98 }
99
100 /* Compile a regexp and signal a Lisp error if anything goes wrong.
101 PATTERN is the pattern to compile.
102 CP is the place to put the result.
103 TRANSLATE is a translation table for ignoring case, or nil for none.
104 REGP is the structure that says where to store the "register"
105 values that will result from matching this pattern.
106 If it is 0, we should compile the pattern not to record any
107 subexpression bounds.
108 POSIX is nonzero if we want full backtracking (POSIX style)
109 for this pattern. 0 means backtrack only enough to get a valid match.
110 MULTIBYTE is nonzero if we want to handle multibyte characters in
111 PATTERN. 0 means all multibyte characters are recognized just as
112 sequences of binary data.
113
114 The behavior also depends on Vsearch_spaces_regexp. */
115
116 static void
117 compile_pattern_1 (cp, pattern, translate, regp, posix, multibyte)
118 struct regexp_cache *cp;
119 Lisp_Object pattern;
120 Lisp_Object translate;
121 struct re_registers *regp;
122 int posix;
123 int multibyte;
124 {
125 unsigned char *raw_pattern;
126 int raw_pattern_size;
127 char *val;
128 reg_syntax_t old;
129
130 /* MULTIBYTE says whether the text to be searched is multibyte.
131 We must convert PATTERN to match that, or we will not really
132 find things right. */
133
134 if (multibyte == STRING_MULTIBYTE (pattern))
135 {
136 raw_pattern = (unsigned char *) SDATA (pattern);
137 raw_pattern_size = SBYTES (pattern);
138 }
139 else if (multibyte)
140 {
141 raw_pattern_size = count_size_as_multibyte (SDATA (pattern),
142 SCHARS (pattern));
143 raw_pattern = (unsigned char *) alloca (raw_pattern_size + 1);
144 copy_text (SDATA (pattern), raw_pattern,
145 SCHARS (pattern), 0, 1);
146 }
147 else
148 {
149 /* Converting multibyte to single-byte.
150
151 ??? Perhaps this conversion should be done in a special way
152 by subtracting nonascii-insert-offset from each non-ASCII char,
153 so that only the multibyte chars which really correspond to
154 the chosen single-byte character set can possibly match. */
155 raw_pattern_size = SCHARS (pattern);
156 raw_pattern = (unsigned char *) alloca (raw_pattern_size + 1);
157 copy_text (SDATA (pattern), raw_pattern,
158 SBYTES (pattern), 1, 0);
159 }
160
161 cp->regexp = Qnil;
162 cp->buf.translate = (! NILP (translate) ? translate : make_number (0));
163 cp->posix = posix;
164 cp->buf.multibyte = multibyte;
165 cp->whitespace_regexp = Vsearch_spaces_regexp;
166 BLOCK_INPUT;
167 old = re_set_syntax (RE_SYNTAX_EMACS
168 | (posix ? 0 : RE_NO_POSIX_BACKTRACKING));
169
170 re_set_whitespace_regexp (NILP (Vsearch_spaces_regexp) ? NULL
171 : SDATA (Vsearch_spaces_regexp));
172
173 val = (char *) re_compile_pattern ((char *)raw_pattern,
174 raw_pattern_size, &cp->buf);
175
176 re_set_whitespace_regexp (NULL);
177
178 re_set_syntax (old);
179 UNBLOCK_INPUT;
180 if (val)
181 Fsignal (Qinvalid_regexp, Fcons (build_string (val), Qnil));
182
183 cp->regexp = Fcopy_sequence (pattern);
184 }
185
186 /* Shrink each compiled regexp buffer in the cache
187 to the size actually used right now.
188 This is called from garbage collection. */
189
190 void
191 shrink_regexp_cache ()
192 {
193 struct regexp_cache *cp;
194
195 for (cp = searchbuf_head; cp != 0; cp = cp->next)
196 {
197 cp->buf.allocated = cp->buf.used;
198 cp->buf.buffer
199 = (unsigned char *) xrealloc (cp->buf.buffer, cp->buf.used);
200 }
201 }
202
203 /* Compile a regexp if necessary, but first check to see if there's one in
204 the cache.
205 PATTERN is the pattern to compile.
206 TRANSLATE is a translation table for ignoring case, or nil for none.
207 REGP is the structure that says where to store the "register"
208 values that will result from matching this pattern.
209 If it is 0, we should compile the pattern not to record any
210 subexpression bounds.
211 POSIX is nonzero if we want full backtracking (POSIX style)
212 for this pattern. 0 means backtrack only enough to get a valid match. */
213
214 struct re_pattern_buffer *
215 compile_pattern (pattern, regp, translate, posix, multibyte)
216 Lisp_Object pattern;
217 struct re_registers *regp;
218 Lisp_Object translate;
219 int posix, multibyte;
220 {
221 struct regexp_cache *cp, **cpp;
222
223 for (cpp = &searchbuf_head; ; cpp = &cp->next)
224 {
225 cp = *cpp;
226 /* Entries are initialized to nil, and may be set to nil by
227 compile_pattern_1 if the pattern isn't valid. Don't apply
228 string accessors in those cases. However, compile_pattern_1
229 is only applied to the cache entry we pick here to reuse. So
230 nil should never appear before a non-nil entry. */
231 if (NILP (cp->regexp))
232 goto compile_it;
233 if (SCHARS (cp->regexp) == SCHARS (pattern)
234 && STRING_MULTIBYTE (cp->regexp) == STRING_MULTIBYTE (pattern)
235 && !NILP (Fstring_equal (cp->regexp, pattern))
236 && EQ (cp->buf.translate, (! NILP (translate) ? translate : make_number (0)))
237 && cp->posix == posix
238 && cp->buf.multibyte == multibyte
239 && !NILP (Fequal (cp->whitespace_regexp, Vsearch_spaces_regexp)))
240 break;
241
242 /* If we're at the end of the cache, compile into the nil cell
243 we found, or the last (least recently used) cell with a
244 string value. */
245 if (cp->next == 0)
246 {
247 compile_it:
248 compile_pattern_1 (cp, pattern, translate, regp, posix, multibyte);
249 break;
250 }
251 }
252
253 /* When we get here, cp (aka *cpp) contains the compiled pattern,
254 either because we found it in the cache or because we just compiled it.
255 Move it to the front of the queue to mark it as most recently used. */
256 *cpp = cp->next;
257 cp->next = searchbuf_head;
258 searchbuf_head = cp;
259
260 /* Advise the searching functions about the space we have allocated
261 for register data. */
262 if (regp)
263 re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);
264
265 return &cp->buf;
266 }
267
268 /* Error condition used for failing searches */
269 Lisp_Object Qsearch_failed;
270
271 Lisp_Object
272 signal_failure (arg)
273 Lisp_Object arg;
274 {
275 Fsignal (Qsearch_failed, Fcons (arg, Qnil));
276 return Qnil;
277 }
278 \f
279 static Lisp_Object
280 looking_at_1 (string, posix)
281 Lisp_Object string;
282 int posix;
283 {
284 Lisp_Object val;
285 unsigned char *p1, *p2;
286 int s1, s2;
287 register int i;
288 struct re_pattern_buffer *bufp;
289
290 if (running_asynch_code)
291 save_search_regs ();
292
293 CHECK_STRING (string);
294 bufp = compile_pattern (string, &search_regs,
295 (!NILP (current_buffer->case_fold_search)
296 ? DOWNCASE_TABLE : Qnil),
297 posix,
298 !NILP (current_buffer->enable_multibyte_characters));
299
300 immediate_quit = 1;
301 QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
302
303 /* Get pointers and sizes of the two strings
304 that make up the visible portion of the buffer. */
305
306 p1 = BEGV_ADDR;
307 s1 = GPT_BYTE - BEGV_BYTE;
308 p2 = GAP_END_ADDR;
309 s2 = ZV_BYTE - GPT_BYTE;
310 if (s1 < 0)
311 {
312 p2 = p1;
313 s2 = ZV_BYTE - BEGV_BYTE;
314 s1 = 0;
315 }
316 if (s2 < 0)
317 {
318 s1 = ZV_BYTE - BEGV_BYTE;
319 s2 = 0;
320 }
321
322 re_match_object = Qnil;
323
324 i = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
325 PT_BYTE - BEGV_BYTE, &search_regs,
326 ZV_BYTE - BEGV_BYTE);
327 immediate_quit = 0;
328
329 if (i == -2)
330 matcher_overflow ();
331
332 val = (0 <= i ? Qt : Qnil);
333 if (i >= 0)
334 for (i = 0; i < search_regs.num_regs; i++)
335 if (search_regs.start[i] >= 0)
336 {
337 search_regs.start[i]
338 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
339 search_regs.end[i]
340 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
341 }
342 XSETBUFFER (last_thing_searched, current_buffer);
343 return val;
344 }
345
346 DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
347 doc: /* Return t if text after point matches regular expression REGEXP.
348 This function modifies the match data that `match-beginning',
349 `match-end' and `match-data' access; save and restore the match
350 data if you want to preserve them. */)
351 (regexp)
352 Lisp_Object regexp;
353 {
354 return looking_at_1 (regexp, 0);
355 }
356
357 DEFUN ("posix-looking-at", Fposix_looking_at, Sposix_looking_at, 1, 1, 0,
358 doc: /* Return t if text after point matches regular expression REGEXP.
359 Find the longest match, in accord with Posix regular expression rules.
360 This function modifies the match data that `match-beginning',
361 `match-end' and `match-data' access; save and restore the match
362 data if you want to preserve them. */)
363 (regexp)
364 Lisp_Object regexp;
365 {
366 return looking_at_1 (regexp, 1);
367 }
368 \f
369 static Lisp_Object
370 string_match_1 (regexp, string, start, posix)
371 Lisp_Object regexp, string, start;
372 int posix;
373 {
374 int val;
375 struct re_pattern_buffer *bufp;
376 int pos, pos_byte;
377 int i;
378
379 if (running_asynch_code)
380 save_search_regs ();
381
382 CHECK_STRING (regexp);
383 CHECK_STRING (string);
384
385 if (NILP (start))
386 pos = 0, pos_byte = 0;
387 else
388 {
389 int len = SCHARS (string);
390
391 CHECK_NUMBER (start);
392 pos = XINT (start);
393 if (pos < 0 && -pos <= len)
394 pos = len + pos;
395 else if (0 > pos || pos > len)
396 args_out_of_range (string, start);
397 pos_byte = string_char_to_byte (string, pos);
398 }
399
400 bufp = compile_pattern (regexp, &search_regs,
401 (!NILP (current_buffer->case_fold_search)
402 ? DOWNCASE_TABLE : Qnil),
403 posix,
404 STRING_MULTIBYTE (string));
405 immediate_quit = 1;
406 re_match_object = string;
407
408 val = re_search (bufp, (char *) SDATA (string),
409 SBYTES (string), pos_byte,
410 SBYTES (string) - pos_byte,
411 &search_regs);
412 immediate_quit = 0;
413 last_thing_searched = Qt;
414 if (val == -2)
415 matcher_overflow ();
416 if (val < 0) return Qnil;
417
418 for (i = 0; i < search_regs.num_regs; i++)
419 if (search_regs.start[i] >= 0)
420 {
421 search_regs.start[i]
422 = string_byte_to_char (string, search_regs.start[i]);
423 search_regs.end[i]
424 = string_byte_to_char (string, search_regs.end[i]);
425 }
426
427 return make_number (string_byte_to_char (string, val));
428 }
429
430 DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
431 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
432 Case is ignored if `case-fold-search' is non-nil in the current buffer.
433 If third arg START is non-nil, start search at that index in STRING.
434 For index of first char beyond the match, do (match-end 0).
435 `match-end' and `match-beginning' also give indices of substrings
436 matched by parenthesis constructs in the pattern.
437
438 You can use the function `match-string' to extract the substrings
439 matched by the parenthesis constructions in REGEXP. */)
440 (regexp, string, start)
441 Lisp_Object regexp, string, start;
442 {
443 return string_match_1 (regexp, string, start, 0);
444 }
445
446 DEFUN ("posix-string-match", Fposix_string_match, Sposix_string_match, 2, 3, 0,
447 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
448 Find the longest match, in accord with Posix regular expression rules.
449 Case is ignored if `case-fold-search' is non-nil in the current buffer.
450 If third arg START is non-nil, start search at that index in STRING.
451 For index of first char beyond the match, do (match-end 0).
452 `match-end' and `match-beginning' also give indices of substrings
453 matched by parenthesis constructs in the pattern. */)
454 (regexp, string, start)
455 Lisp_Object regexp, string, start;
456 {
457 return string_match_1 (regexp, string, start, 1);
458 }
459
460 /* Match REGEXP against STRING, searching all of STRING,
461 and return the index of the match, or negative on failure.
462 This does not clobber the match data. */
463
464 int
465 fast_string_match (regexp, string)
466 Lisp_Object regexp, string;
467 {
468 int val;
469 struct re_pattern_buffer *bufp;
470
471 bufp = compile_pattern (regexp, 0, Qnil,
472 0, STRING_MULTIBYTE (string));
473 immediate_quit = 1;
474 re_match_object = string;
475
476 val = re_search (bufp, (char *) SDATA (string),
477 SBYTES (string), 0,
478 SBYTES (string), 0);
479 immediate_quit = 0;
480 return val;
481 }
482
483 /* Match REGEXP against STRING, searching all of STRING ignoring case,
484 and return the index of the match, or negative on failure.
485 This does not clobber the match data.
486 We assume that STRING contains single-byte characters. */
487
488 extern Lisp_Object Vascii_downcase_table;
489
490 int
491 fast_c_string_match_ignore_case (regexp, string)
492 Lisp_Object regexp;
493 const char *string;
494 {
495 int val;
496 struct re_pattern_buffer *bufp;
497 int len = strlen (string);
498
499 regexp = string_make_unibyte (regexp);
500 re_match_object = Qt;
501 bufp = compile_pattern (regexp, 0,
502 Vascii_downcase_table, 0,
503 0);
504 immediate_quit = 1;
505 val = re_search (bufp, string, len, 0, len, 0);
506 immediate_quit = 0;
507 return val;
508 }
509
510 /* Like fast_string_match but ignore case. */
511
512 int
513 fast_string_match_ignore_case (regexp, string)
514 Lisp_Object regexp, string;
515 {
516 int val;
517 struct re_pattern_buffer *bufp;
518
519 bufp = compile_pattern (regexp, 0, Vascii_downcase_table,
520 0, STRING_MULTIBYTE (string));
521 immediate_quit = 1;
522 re_match_object = string;
523
524 val = re_search (bufp, (char *) SDATA (string),
525 SBYTES (string), 0,
526 SBYTES (string), 0);
527 immediate_quit = 0;
528 return val;
529 }
530 \f
531 /* The newline cache: remembering which sections of text have no newlines. */
532
533 /* If the user has requested newline caching, make sure it's on.
534 Otherwise, make sure it's off.
535 This is our cheezy way of associating an action with the change of
536 state of a buffer-local variable. */
537 static void
538 newline_cache_on_off (buf)
539 struct buffer *buf;
540 {
541 if (NILP (buf->cache_long_line_scans))
542 {
543 /* It should be off. */
544 if (buf->newline_cache)
545 {
546 free_region_cache (buf->newline_cache);
547 buf->newline_cache = 0;
548 }
549 }
550 else
551 {
552 /* It should be on. */
553 if (buf->newline_cache == 0)
554 buf->newline_cache = new_region_cache ();
555 }
556 }
557
558 \f
559 /* Search for COUNT instances of the character TARGET between START and END.
560
561 If COUNT is positive, search forwards; END must be >= START.
562 If COUNT is negative, search backwards for the -COUNTth instance;
563 END must be <= START.
564 If COUNT is zero, do anything you please; run rogue, for all I care.
565
566 If END is zero, use BEGV or ZV instead, as appropriate for the
567 direction indicated by COUNT.
568
569 If we find COUNT instances, set *SHORTAGE to zero, and return the
570 position past the COUNTth match. Note that for reverse motion
571 this is not the same as the usual convention for Emacs motion commands.
572
573 If we don't find COUNT instances before reaching END, set *SHORTAGE
574 to the number of TARGETs left unfound, and return END.
575
576 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
577 except when inside redisplay. */
578
579 int
580 scan_buffer (target, start, end, count, shortage, allow_quit)
581 register int target;
582 int start, end;
583 int count;
584 int *shortage;
585 int allow_quit;
586 {
587 struct region_cache *newline_cache;
588 int direction;
589
590 if (count > 0)
591 {
592 direction = 1;
593 if (! end) end = ZV;
594 }
595 else
596 {
597 direction = -1;
598 if (! end) end = BEGV;
599 }
600
601 newline_cache_on_off (current_buffer);
602 newline_cache = current_buffer->newline_cache;
603
604 if (shortage != 0)
605 *shortage = 0;
606
607 immediate_quit = allow_quit;
608
609 if (count > 0)
610 while (start != end)
611 {
612 /* Our innermost scanning loop is very simple; it doesn't know
613 about gaps, buffer ends, or the newline cache. ceiling is
614 the position of the last character before the next such
615 obstacle --- the last character the dumb search loop should
616 examine. */
617 int ceiling_byte = CHAR_TO_BYTE (end) - 1;
618 int start_byte = CHAR_TO_BYTE (start);
619 int tem;
620
621 /* If we're looking for a newline, consult the newline cache
622 to see where we can avoid some scanning. */
623 if (target == '\n' && newline_cache)
624 {
625 int next_change;
626 immediate_quit = 0;
627 while (region_cache_forward
628 (current_buffer, newline_cache, start_byte, &next_change))
629 start_byte = next_change;
630 immediate_quit = allow_quit;
631
632 /* START should never be after END. */
633 if (start_byte > ceiling_byte)
634 start_byte = ceiling_byte;
635
636 /* Now the text after start is an unknown region, and
637 next_change is the position of the next known region. */
638 ceiling_byte = min (next_change - 1, ceiling_byte);
639 }
640
641 /* The dumb loop can only scan text stored in contiguous
642 bytes. BUFFER_CEILING_OF returns the last character
643 position that is contiguous, so the ceiling is the
644 position after that. */
645 tem = BUFFER_CEILING_OF (start_byte);
646 ceiling_byte = min (tem, ceiling_byte);
647
648 {
649 /* The termination address of the dumb loop. */
650 register unsigned char *ceiling_addr
651 = BYTE_POS_ADDR (ceiling_byte) + 1;
652 register unsigned char *cursor
653 = BYTE_POS_ADDR (start_byte);
654 unsigned char *base = cursor;
655
656 while (cursor < ceiling_addr)
657 {
658 unsigned char *scan_start = cursor;
659
660 /* The dumb loop. */
661 while (*cursor != target && ++cursor < ceiling_addr)
662 ;
663
664 /* If we're looking for newlines, cache the fact that
665 the region from start to cursor is free of them. */
666 if (target == '\n' && newline_cache)
667 know_region_cache (current_buffer, newline_cache,
668 start_byte + scan_start - base,
669 start_byte + cursor - base);
670
671 /* Did we find the target character? */
672 if (cursor < ceiling_addr)
673 {
674 if (--count == 0)
675 {
676 immediate_quit = 0;
677 return BYTE_TO_CHAR (start_byte + cursor - base + 1);
678 }
679 cursor++;
680 }
681 }
682
683 start = BYTE_TO_CHAR (start_byte + cursor - base);
684 }
685 }
686 else
687 while (start > end)
688 {
689 /* The last character to check before the next obstacle. */
690 int ceiling_byte = CHAR_TO_BYTE (end);
691 int start_byte = CHAR_TO_BYTE (start);
692 int tem;
693
694 /* Consult the newline cache, if appropriate. */
695 if (target == '\n' && newline_cache)
696 {
697 int next_change;
698 immediate_quit = 0;
699 while (region_cache_backward
700 (current_buffer, newline_cache, start_byte, &next_change))
701 start_byte = next_change;
702 immediate_quit = allow_quit;
703
704 /* Start should never be at or before end. */
705 if (start_byte <= ceiling_byte)
706 start_byte = ceiling_byte + 1;
707
708 /* Now the text before start is an unknown region, and
709 next_change is the position of the next known region. */
710 ceiling_byte = max (next_change, ceiling_byte);
711 }
712
713 /* Stop scanning before the gap. */
714 tem = BUFFER_FLOOR_OF (start_byte - 1);
715 ceiling_byte = max (tem, ceiling_byte);
716
717 {
718 /* The termination address of the dumb loop. */
719 register unsigned char *ceiling_addr = BYTE_POS_ADDR (ceiling_byte);
720 register unsigned char *cursor = BYTE_POS_ADDR (start_byte - 1);
721 unsigned char *base = cursor;
722
723 while (cursor >= ceiling_addr)
724 {
725 unsigned char *scan_start = cursor;
726
727 while (*cursor != target && --cursor >= ceiling_addr)
728 ;
729
730 /* If we're looking for newlines, cache the fact that
731 the region from after the cursor to start is free of them. */
732 if (target == '\n' && newline_cache)
733 know_region_cache (current_buffer, newline_cache,
734 start_byte + cursor - base,
735 start_byte + scan_start - base);
736
737 /* Did we find the target character? */
738 if (cursor >= ceiling_addr)
739 {
740 if (++count >= 0)
741 {
742 immediate_quit = 0;
743 return BYTE_TO_CHAR (start_byte + cursor - base);
744 }
745 cursor--;
746 }
747 }
748
749 start = BYTE_TO_CHAR (start_byte + cursor - base);
750 }
751 }
752
753 immediate_quit = 0;
754 if (shortage != 0)
755 *shortage = count * direction;
756 return start;
757 }
758 \f
759 /* Search for COUNT instances of a line boundary, which means either a
760 newline or (if selective display enabled) a carriage return.
761 Start at START. If COUNT is negative, search backwards.
762
763 We report the resulting position by calling TEMP_SET_PT_BOTH.
764
765 If we find COUNT instances. we position after (always after,
766 even if scanning backwards) the COUNTth match, and return 0.
767
768 If we don't find COUNT instances before reaching the end of the
769 buffer (or the beginning, if scanning backwards), we return
770 the number of line boundaries left unfound, and position at
771 the limit we bumped up against.
772
773 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
774 except in special cases. */
775
776 int
777 scan_newline (start, start_byte, limit, limit_byte, count, allow_quit)
778 int start, start_byte;
779 int limit, limit_byte;
780 register int count;
781 int allow_quit;
782 {
783 int direction = ((count > 0) ? 1 : -1);
784
785 register unsigned char *cursor;
786 unsigned char *base;
787
788 register int ceiling;
789 register unsigned char *ceiling_addr;
790
791 int old_immediate_quit = immediate_quit;
792
793 /* The code that follows is like scan_buffer
794 but checks for either newline or carriage return. */
795
796 if (allow_quit)
797 immediate_quit++;
798
799 start_byte = CHAR_TO_BYTE (start);
800
801 if (count > 0)
802 {
803 while (start_byte < limit_byte)
804 {
805 ceiling = BUFFER_CEILING_OF (start_byte);
806 ceiling = min (limit_byte - 1, ceiling);
807 ceiling_addr = BYTE_POS_ADDR (ceiling) + 1;
808 base = (cursor = BYTE_POS_ADDR (start_byte));
809 while (1)
810 {
811 while (*cursor != '\n' && ++cursor != ceiling_addr)
812 ;
813
814 if (cursor != ceiling_addr)
815 {
816 if (--count == 0)
817 {
818 immediate_quit = old_immediate_quit;
819 start_byte = start_byte + cursor - base + 1;
820 start = BYTE_TO_CHAR (start_byte);
821 TEMP_SET_PT_BOTH (start, start_byte);
822 return 0;
823 }
824 else
825 if (++cursor == ceiling_addr)
826 break;
827 }
828 else
829 break;
830 }
831 start_byte += cursor - base;
832 }
833 }
834 else
835 {
836 while (start_byte > limit_byte)
837 {
838 ceiling = BUFFER_FLOOR_OF (start_byte - 1);
839 ceiling = max (limit_byte, ceiling);
840 ceiling_addr = BYTE_POS_ADDR (ceiling) - 1;
841 base = (cursor = BYTE_POS_ADDR (start_byte - 1) + 1);
842 while (1)
843 {
844 while (--cursor != ceiling_addr && *cursor != '\n')
845 ;
846
847 if (cursor != ceiling_addr)
848 {
849 if (++count == 0)
850 {
851 immediate_quit = old_immediate_quit;
852 /* Return the position AFTER the match we found. */
853 start_byte = start_byte + cursor - base + 1;
854 start = BYTE_TO_CHAR (start_byte);
855 TEMP_SET_PT_BOTH (start, start_byte);
856 return 0;
857 }
858 }
859 else
860 break;
861 }
862 /* Here we add 1 to compensate for the last decrement
863 of CURSOR, which took it past the valid range. */
864 start_byte += cursor - base + 1;
865 }
866 }
867
868 TEMP_SET_PT_BOTH (limit, limit_byte);
869 immediate_quit = old_immediate_quit;
870
871 return count * direction;
872 }
873
874 int
875 find_next_newline_no_quit (from, cnt)
876 register int from, cnt;
877 {
878 return scan_buffer ('\n', from, 0, cnt, (int *) 0, 0);
879 }
880
881 /* Like find_next_newline, but returns position before the newline,
882 not after, and only search up to TO. This isn't just
883 find_next_newline (...)-1, because you might hit TO. */
884
885 int
886 find_before_next_newline (from, to, cnt)
887 int from, to, cnt;
888 {
889 int shortage;
890 int pos = scan_buffer ('\n', from, to, cnt, &shortage, 1);
891
892 if (shortage == 0)
893 pos--;
894
895 return pos;
896 }
897 \f
898 /* Subroutines of Lisp buffer search functions. */
899
900 static Lisp_Object
901 search_command (string, bound, noerror, count, direction, RE, posix)
902 Lisp_Object string, bound, noerror, count;
903 int direction;
904 int RE;
905 int posix;
906 {
907 register int np;
908 int lim, lim_byte;
909 int n = direction;
910
911 if (!NILP (count))
912 {
913 CHECK_NUMBER (count);
914 n *= XINT (count);
915 }
916
917 CHECK_STRING (string);
918 if (NILP (bound))
919 {
920 if (n > 0)
921 lim = ZV, lim_byte = ZV_BYTE;
922 else
923 lim = BEGV, lim_byte = BEGV_BYTE;
924 }
925 else
926 {
927 CHECK_NUMBER_COERCE_MARKER (bound);
928 lim = XINT (bound);
929 if (n > 0 ? lim < PT : lim > PT)
930 error ("Invalid search bound (wrong side of point)");
931 if (lim > ZV)
932 lim = ZV, lim_byte = ZV_BYTE;
933 else if (lim < BEGV)
934 lim = BEGV, lim_byte = BEGV_BYTE;
935 else
936 lim_byte = CHAR_TO_BYTE (lim);
937 }
938
939 np = search_buffer (string, PT, PT_BYTE, lim, lim_byte, n, RE,
940 (!NILP (current_buffer->case_fold_search)
941 ? current_buffer->case_canon_table
942 : Qnil),
943 (!NILP (current_buffer->case_fold_search)
944 ? current_buffer->case_eqv_table
945 : Qnil),
946 posix);
947 if (np <= 0)
948 {
949 if (NILP (noerror))
950 return signal_failure (string);
951 if (!EQ (noerror, Qt))
952 {
953 if (lim < BEGV || lim > ZV)
954 abort ();
955 SET_PT_BOTH (lim, lim_byte);
956 return Qnil;
957 #if 0 /* This would be clean, but maybe programs depend on
958 a value of nil here. */
959 np = lim;
960 #endif
961 }
962 else
963 return Qnil;
964 }
965
966 if (np < BEGV || np > ZV)
967 abort ();
968
969 SET_PT (np);
970
971 return make_number (np);
972 }
973 \f
974 /* Return 1 if REGEXP it matches just one constant string. */
975
976 static int
977 trivial_regexp_p (regexp)
978 Lisp_Object regexp;
979 {
980 int len = SBYTES (regexp);
981 unsigned char *s = SDATA (regexp);
982 while (--len >= 0)
983 {
984 switch (*s++)
985 {
986 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
987 return 0;
988 case '\\':
989 if (--len < 0)
990 return 0;
991 switch (*s++)
992 {
993 case '|': case '(': case ')': case '`': case '\'': case 'b':
994 case 'B': case '<': case '>': case 'w': case 'W': case 's':
995 case 'S': case '=': case '{': case '}': case '_':
996 case 'c': case 'C': /* for categoryspec and notcategoryspec */
997 case '1': case '2': case '3': case '4': case '5':
998 case '6': case '7': case '8': case '9':
999 return 0;
1000 }
1001 }
1002 }
1003 return 1;
1004 }
1005
1006 /* Search for the n'th occurrence of STRING in the current buffer,
1007 starting at position POS and stopping at position LIM,
1008 treating STRING as a literal string if RE is false or as
1009 a regular expression if RE is true.
1010
1011 If N is positive, searching is forward and LIM must be greater than POS.
1012 If N is negative, searching is backward and LIM must be less than POS.
1013
1014 Returns -x if x occurrences remain to be found (x > 0),
1015 or else the position at the beginning of the Nth occurrence
1016 (if searching backward) or the end (if searching forward).
1017
1018 POSIX is nonzero if we want full backtracking (POSIX style)
1019 for this pattern. 0 means backtrack only enough to get a valid match. */
1020
1021 #define TRANSLATE(out, trt, d) \
1022 do \
1023 { \
1024 if (! NILP (trt)) \
1025 { \
1026 Lisp_Object temp; \
1027 temp = Faref (trt, make_number (d)); \
1028 if (INTEGERP (temp)) \
1029 out = XINT (temp); \
1030 else \
1031 out = d; \
1032 } \
1033 else \
1034 out = d; \
1035 } \
1036 while (0)
1037
1038 static int
1039 search_buffer (string, pos, pos_byte, lim, lim_byte, n,
1040 RE, trt, inverse_trt, posix)
1041 Lisp_Object string;
1042 int pos;
1043 int pos_byte;
1044 int lim;
1045 int lim_byte;
1046 int n;
1047 int RE;
1048 Lisp_Object trt;
1049 Lisp_Object inverse_trt;
1050 int posix;
1051 {
1052 int len = SCHARS (string);
1053 int len_byte = SBYTES (string);
1054 register int i;
1055
1056 if (running_asynch_code)
1057 save_search_regs ();
1058
1059 /* Searching 0 times means don't move. */
1060 /* Null string is found at starting position. */
1061 if (len == 0 || n == 0)
1062 {
1063 set_search_regs (pos_byte, 0);
1064 return pos;
1065 }
1066
1067 if (RE && !(trivial_regexp_p (string) && NILP (Vsearch_spaces_regexp)))
1068 {
1069 unsigned char *p1, *p2;
1070 int s1, s2;
1071 struct re_pattern_buffer *bufp;
1072
1073 bufp = compile_pattern (string, &search_regs, trt, posix,
1074 !NILP (current_buffer->enable_multibyte_characters));
1075
1076 immediate_quit = 1; /* Quit immediately if user types ^G,
1077 because letting this function finish
1078 can take too long. */
1079 QUIT; /* Do a pending quit right away,
1080 to avoid paradoxical behavior */
1081 /* Get pointers and sizes of the two strings
1082 that make up the visible portion of the buffer. */
1083
1084 p1 = BEGV_ADDR;
1085 s1 = GPT_BYTE - BEGV_BYTE;
1086 p2 = GAP_END_ADDR;
1087 s2 = ZV_BYTE - GPT_BYTE;
1088 if (s1 < 0)
1089 {
1090 p2 = p1;
1091 s2 = ZV_BYTE - BEGV_BYTE;
1092 s1 = 0;
1093 }
1094 if (s2 < 0)
1095 {
1096 s1 = ZV_BYTE - BEGV_BYTE;
1097 s2 = 0;
1098 }
1099 re_match_object = Qnil;
1100
1101 while (n < 0)
1102 {
1103 int val;
1104 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1105 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1106 &search_regs,
1107 /* Don't allow match past current point */
1108 pos_byte - BEGV_BYTE);
1109 if (val == -2)
1110 {
1111 matcher_overflow ();
1112 }
1113 if (val >= 0)
1114 {
1115 pos_byte = search_regs.start[0] + BEGV_BYTE;
1116 for (i = 0; i < search_regs.num_regs; i++)
1117 if (search_regs.start[i] >= 0)
1118 {
1119 search_regs.start[i]
1120 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1121 search_regs.end[i]
1122 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1123 }
1124 XSETBUFFER (last_thing_searched, current_buffer);
1125 /* Set pos to the new position. */
1126 pos = search_regs.start[0];
1127 }
1128 else
1129 {
1130 immediate_quit = 0;
1131 return (n);
1132 }
1133 n++;
1134 }
1135 while (n > 0)
1136 {
1137 int val;
1138 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1139 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1140 &search_regs,
1141 lim_byte - BEGV_BYTE);
1142 if (val == -2)
1143 {
1144 matcher_overflow ();
1145 }
1146 if (val >= 0)
1147 {
1148 pos_byte = search_regs.end[0] + BEGV_BYTE;
1149 for (i = 0; i < search_regs.num_regs; i++)
1150 if (search_regs.start[i] >= 0)
1151 {
1152 search_regs.start[i]
1153 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1154 search_regs.end[i]
1155 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1156 }
1157 XSETBUFFER (last_thing_searched, current_buffer);
1158 pos = search_regs.end[0];
1159 }
1160 else
1161 {
1162 immediate_quit = 0;
1163 return (0 - n);
1164 }
1165 n--;
1166 }
1167 immediate_quit = 0;
1168 return (pos);
1169 }
1170 else /* non-RE case */
1171 {
1172 unsigned char *raw_pattern, *pat;
1173 int raw_pattern_size;
1174 int raw_pattern_size_byte;
1175 unsigned char *patbuf;
1176 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
1177 unsigned char *base_pat = SDATA (string);
1178 int charset_base = -1;
1179 int boyer_moore_ok = 1;
1180
1181 /* MULTIBYTE says whether the text to be searched is multibyte.
1182 We must convert PATTERN to match that, or we will not really
1183 find things right. */
1184
1185 if (multibyte == STRING_MULTIBYTE (string))
1186 {
1187 raw_pattern = (unsigned char *) SDATA (string);
1188 raw_pattern_size = SCHARS (string);
1189 raw_pattern_size_byte = SBYTES (string);
1190 }
1191 else if (multibyte)
1192 {
1193 raw_pattern_size = SCHARS (string);
1194 raw_pattern_size_byte
1195 = count_size_as_multibyte (SDATA (string),
1196 raw_pattern_size);
1197 raw_pattern = (unsigned char *) alloca (raw_pattern_size_byte + 1);
1198 copy_text (SDATA (string), raw_pattern,
1199 SCHARS (string), 0, 1);
1200 }
1201 else
1202 {
1203 /* Converting multibyte to single-byte.
1204
1205 ??? Perhaps this conversion should be done in a special way
1206 by subtracting nonascii-insert-offset from each non-ASCII char,
1207 so that only the multibyte chars which really correspond to
1208 the chosen single-byte character set can possibly match. */
1209 raw_pattern_size = SCHARS (string);
1210 raw_pattern_size_byte = SCHARS (string);
1211 raw_pattern = (unsigned char *) alloca (raw_pattern_size + 1);
1212 copy_text (SDATA (string), raw_pattern,
1213 SBYTES (string), 1, 0);
1214 }
1215
1216 /* Copy and optionally translate the pattern. */
1217 len = raw_pattern_size;
1218 len_byte = raw_pattern_size_byte;
1219 patbuf = (unsigned char *) alloca (len_byte);
1220 pat = patbuf;
1221 base_pat = raw_pattern;
1222 if (multibyte)
1223 {
1224 while (--len >= 0)
1225 {
1226 unsigned char str[MAX_MULTIBYTE_LENGTH];
1227 int c, translated, inverse;
1228 int in_charlen, charlen;
1229
1230 /* If we got here and the RE flag is set, it's because we're
1231 dealing with a regexp known to be trivial, so the backslash
1232 just quotes the next character. */
1233 if (RE && *base_pat == '\\')
1234 {
1235 len--;
1236 len_byte--;
1237 base_pat++;
1238 }
1239
1240 c = STRING_CHAR_AND_LENGTH (base_pat, len_byte, in_charlen);
1241
1242 /* Translate the character, if requested. */
1243 TRANSLATE (translated, trt, c);
1244 /* If translation changed the byte-length, go back
1245 to the original character. */
1246 charlen = CHAR_STRING (translated, str);
1247 if (in_charlen != charlen)
1248 {
1249 translated = c;
1250 charlen = CHAR_STRING (c, str);
1251 }
1252
1253 /* If we are searching for something strange,
1254 an invalid multibyte code, don't use boyer-moore. */
1255 if (! ASCII_BYTE_P (translated)
1256 && (charlen == 1 /* 8bit code */
1257 || charlen != in_charlen /* invalid multibyte code */
1258 ))
1259 boyer_moore_ok = 0;
1260
1261 TRANSLATE (inverse, inverse_trt, c);
1262
1263 /* Did this char actually get translated?
1264 Would any other char get translated into it? */
1265 if (translated != c || inverse != c)
1266 {
1267 /* Keep track of which character set row
1268 contains the characters that need translation. */
1269 int charset_base_code = c & ~CHAR_FIELD3_MASK;
1270 int inverse_charset_base = inverse & ~CHAR_FIELD3_MASK;
1271
1272 if (charset_base_code != inverse_charset_base)
1273 boyer_moore_ok = 0;
1274 else if (charset_base == -1)
1275 charset_base = charset_base_code;
1276 else if (charset_base != charset_base_code)
1277 /* If two different rows appear, needing translation,
1278 then we cannot use boyer_moore search. */
1279 boyer_moore_ok = 0;
1280 }
1281
1282 /* Store this character into the translated pattern. */
1283 bcopy (str, pat, charlen);
1284 pat += charlen;
1285 base_pat += in_charlen;
1286 len_byte -= in_charlen;
1287 }
1288 }
1289 else
1290 {
1291 /* Unibyte buffer. */
1292 charset_base = 0;
1293 while (--len >= 0)
1294 {
1295 int c, translated;
1296
1297 /* If we got here and the RE flag is set, it's because we're
1298 dealing with a regexp known to be trivial, so the backslash
1299 just quotes the next character. */
1300 if (RE && *base_pat == '\\')
1301 {
1302 len--;
1303 base_pat++;
1304 }
1305 c = *base_pat++;
1306 TRANSLATE (translated, trt, c);
1307 *pat++ = translated;
1308 }
1309 }
1310
1311 len_byte = pat - patbuf;
1312 len = raw_pattern_size;
1313 pat = base_pat = patbuf;
1314
1315 if (boyer_moore_ok)
1316 return boyer_moore (n, pat, len, len_byte, trt, inverse_trt,
1317 pos, pos_byte, lim, lim_byte,
1318 charset_base);
1319 else
1320 return simple_search (n, pat, len, len_byte, trt,
1321 pos, pos_byte, lim, lim_byte);
1322 }
1323 }
1324 \f
1325 /* Do a simple string search N times for the string PAT,
1326 whose length is LEN/LEN_BYTE,
1327 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1328 TRT is the translation table.
1329
1330 Return the character position where the match is found.
1331 Otherwise, if M matches remained to be found, return -M.
1332
1333 This kind of search works regardless of what is in PAT and
1334 regardless of what is in TRT. It is used in cases where
1335 boyer_moore cannot work. */
1336
1337 static int
1338 simple_search (n, pat, len, len_byte, trt, pos, pos_byte, lim, lim_byte)
1339 int n;
1340 unsigned char *pat;
1341 int len, len_byte;
1342 Lisp_Object trt;
1343 int pos, pos_byte;
1344 int lim, lim_byte;
1345 {
1346 int multibyte = ! NILP (current_buffer->enable_multibyte_characters);
1347 int forward = n > 0;
1348
1349 if (lim > pos && multibyte)
1350 while (n > 0)
1351 {
1352 while (1)
1353 {
1354 /* Try matching at position POS. */
1355 int this_pos = pos;
1356 int this_pos_byte = pos_byte;
1357 int this_len = len;
1358 int this_len_byte = len_byte;
1359 unsigned char *p = pat;
1360 if (pos + len > lim)
1361 goto stop;
1362
1363 while (this_len > 0)
1364 {
1365 int charlen, buf_charlen;
1366 int pat_ch, buf_ch;
1367
1368 pat_ch = STRING_CHAR_AND_LENGTH (p, this_len_byte, charlen);
1369 buf_ch = STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte),
1370 ZV_BYTE - this_pos_byte,
1371 buf_charlen);
1372 TRANSLATE (buf_ch, trt, buf_ch);
1373
1374 if (buf_ch != pat_ch)
1375 break;
1376
1377 this_len_byte -= charlen;
1378 this_len--;
1379 p += charlen;
1380
1381 this_pos_byte += buf_charlen;
1382 this_pos++;
1383 }
1384
1385 if (this_len == 0)
1386 {
1387 pos += len;
1388 pos_byte += len_byte;
1389 break;
1390 }
1391
1392 INC_BOTH (pos, pos_byte);
1393 }
1394
1395 n--;
1396 }
1397 else if (lim > pos)
1398 while (n > 0)
1399 {
1400 while (1)
1401 {
1402 /* Try matching at position POS. */
1403 int this_pos = pos;
1404 int this_len = len;
1405 unsigned char *p = pat;
1406
1407 if (pos + len > lim)
1408 goto stop;
1409
1410 while (this_len > 0)
1411 {
1412 int pat_ch = *p++;
1413 int buf_ch = FETCH_BYTE (this_pos);
1414 TRANSLATE (buf_ch, trt, buf_ch);
1415
1416 if (buf_ch != pat_ch)
1417 break;
1418
1419 this_len--;
1420 this_pos++;
1421 }
1422
1423 if (this_len == 0)
1424 {
1425 pos += len;
1426 break;
1427 }
1428
1429 pos++;
1430 }
1431
1432 n--;
1433 }
1434 /* Backwards search. */
1435 else if (lim < pos && multibyte)
1436 while (n < 0)
1437 {
1438 while (1)
1439 {
1440 /* Try matching at position POS. */
1441 int this_pos = pos - len;
1442 int this_pos_byte = pos_byte - len_byte;
1443 int this_len = len;
1444 int this_len_byte = len_byte;
1445 unsigned char *p = pat;
1446
1447 if (pos - len < lim)
1448 goto stop;
1449
1450 while (this_len > 0)
1451 {
1452 int charlen, buf_charlen;
1453 int pat_ch, buf_ch;
1454
1455 pat_ch = STRING_CHAR_AND_LENGTH (p, this_len_byte, charlen);
1456 buf_ch = STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte),
1457 ZV_BYTE - this_pos_byte,
1458 buf_charlen);
1459 TRANSLATE (buf_ch, trt, buf_ch);
1460
1461 if (buf_ch != pat_ch)
1462 break;
1463
1464 this_len_byte -= charlen;
1465 this_len--;
1466 p += charlen;
1467 this_pos_byte += buf_charlen;
1468 this_pos++;
1469 }
1470
1471 if (this_len == 0)
1472 {
1473 pos -= len;
1474 pos_byte -= len_byte;
1475 break;
1476 }
1477
1478 DEC_BOTH (pos, pos_byte);
1479 }
1480
1481 n++;
1482 }
1483 else if (lim < pos)
1484 while (n < 0)
1485 {
1486 while (1)
1487 {
1488 /* Try matching at position POS. */
1489 int this_pos = pos - len;
1490 int this_len = len;
1491 unsigned char *p = pat;
1492
1493 if (pos - len < lim)
1494 goto stop;
1495
1496 while (this_len > 0)
1497 {
1498 int pat_ch = *p++;
1499 int buf_ch = FETCH_BYTE (this_pos);
1500 TRANSLATE (buf_ch, trt, buf_ch);
1501
1502 if (buf_ch != pat_ch)
1503 break;
1504 this_len--;
1505 this_pos++;
1506 }
1507
1508 if (this_len == 0)
1509 {
1510 pos -= len;
1511 break;
1512 }
1513
1514 pos--;
1515 }
1516
1517 n++;
1518 }
1519
1520 stop:
1521 if (n == 0)
1522 {
1523 if (forward)
1524 set_search_regs ((multibyte ? pos_byte : pos) - len_byte, len_byte);
1525 else
1526 set_search_regs (multibyte ? pos_byte : pos, len_byte);
1527
1528 return pos;
1529 }
1530 else if (n > 0)
1531 return -n;
1532 else
1533 return n;
1534 }
1535 \f
1536 /* Do Boyer-Moore search N times for the string PAT,
1537 whose length is LEN/LEN_BYTE,
1538 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1539 DIRECTION says which direction we search in.
1540 TRT and INVERSE_TRT are translation tables.
1541
1542 This kind of search works if all the characters in PAT that have
1543 nontrivial translation are the same aside from the last byte. This
1544 makes it possible to translate just the last byte of a character,
1545 and do so after just a simple test of the context.
1546
1547 If that criterion is not satisfied, do not call this function. */
1548
1549 static int
1550 boyer_moore (n, base_pat, len, len_byte, trt, inverse_trt,
1551 pos, pos_byte, lim, lim_byte, charset_base)
1552 int n;
1553 unsigned char *base_pat;
1554 int len, len_byte;
1555 Lisp_Object trt;
1556 Lisp_Object inverse_trt;
1557 int pos, pos_byte;
1558 int lim, lim_byte;
1559 int charset_base;
1560 {
1561 int direction = ((n > 0) ? 1 : -1);
1562 register int dirlen;
1563 int infinity, limit, stride_for_teases = 0;
1564 register int *BM_tab;
1565 int *BM_tab_base;
1566 register unsigned char *cursor, *p_limit;
1567 register int i, j;
1568 unsigned char *pat, *pat_end;
1569 int multibyte = ! NILP (current_buffer->enable_multibyte_characters);
1570
1571 unsigned char simple_translate[0400];
1572 int translate_prev_byte = 0;
1573 int translate_anteprev_byte = 0;
1574
1575 #ifdef C_ALLOCA
1576 int BM_tab_space[0400];
1577 BM_tab = &BM_tab_space[0];
1578 #else
1579 BM_tab = (int *) alloca (0400 * sizeof (int));
1580 #endif
1581 /* The general approach is that we are going to maintain that we know */
1582 /* the first (closest to the present position, in whatever direction */
1583 /* we're searching) character that could possibly be the last */
1584 /* (furthest from present position) character of a valid match. We */
1585 /* advance the state of our knowledge by looking at that character */
1586 /* and seeing whether it indeed matches the last character of the */
1587 /* pattern. If it does, we take a closer look. If it does not, we */
1588 /* move our pointer (to putative last characters) as far as is */
1589 /* logically possible. This amount of movement, which I call a */
1590 /* stride, will be the length of the pattern if the actual character */
1591 /* appears nowhere in the pattern, otherwise it will be the distance */
1592 /* from the last occurrence of that character to the end of the */
1593 /* pattern. */
1594 /* As a coding trick, an enormous stride is coded into the table for */
1595 /* characters that match the last character. This allows use of only */
1596 /* a single test, a test for having gone past the end of the */
1597 /* permissible match region, to test for both possible matches (when */
1598 /* the stride goes past the end immediately) and failure to */
1599 /* match (where you get nudged past the end one stride at a time). */
1600
1601 /* Here we make a "mickey mouse" BM table. The stride of the search */
1602 /* is determined only by the last character of the putative match. */
1603 /* If that character does not match, we will stride the proper */
1604 /* distance to propose a match that superimposes it on the last */
1605 /* instance of a character that matches it (per trt), or misses */
1606 /* it entirely if there is none. */
1607
1608 dirlen = len_byte * direction;
1609 infinity = dirlen - (lim_byte + pos_byte + len_byte + len_byte) * direction;
1610
1611 /* Record position after the end of the pattern. */
1612 pat_end = base_pat + len_byte;
1613 /* BASE_PAT points to a character that we start scanning from.
1614 It is the first character in a forward search,
1615 the last character in a backward search. */
1616 if (direction < 0)
1617 base_pat = pat_end - 1;
1618
1619 BM_tab_base = BM_tab;
1620 BM_tab += 0400;
1621 j = dirlen; /* to get it in a register */
1622 /* A character that does not appear in the pattern induces a */
1623 /* stride equal to the pattern length. */
1624 while (BM_tab_base != BM_tab)
1625 {
1626 *--BM_tab = j;
1627 *--BM_tab = j;
1628 *--BM_tab = j;
1629 *--BM_tab = j;
1630 }
1631
1632 /* We use this for translation, instead of TRT itself.
1633 We fill this in to handle the characters that actually
1634 occur in the pattern. Others don't matter anyway! */
1635 bzero (simple_translate, sizeof simple_translate);
1636 for (i = 0; i < 0400; i++)
1637 simple_translate[i] = i;
1638
1639 i = 0;
1640 while (i != infinity)
1641 {
1642 unsigned char *ptr = base_pat + i;
1643 i += direction;
1644 if (i == dirlen)
1645 i = infinity;
1646 if (! NILP (trt))
1647 {
1648 int ch;
1649 int untranslated;
1650 int this_translated = 1;
1651
1652 if (multibyte
1653 /* Is *PTR the last byte of a character? */
1654 && (pat_end - ptr == 1 || CHAR_HEAD_P (ptr[1])))
1655 {
1656 unsigned char *charstart = ptr;
1657 while (! CHAR_HEAD_P (*charstart))
1658 charstart--;
1659 untranslated = STRING_CHAR (charstart, ptr - charstart + 1);
1660 if (charset_base == (untranslated & ~CHAR_FIELD3_MASK))
1661 {
1662 TRANSLATE (ch, trt, untranslated);
1663 if (! CHAR_HEAD_P (*ptr))
1664 {
1665 translate_prev_byte = ptr[-1];
1666 if (! CHAR_HEAD_P (translate_prev_byte))
1667 translate_anteprev_byte = ptr[-2];
1668 }
1669 }
1670 else
1671 {
1672 this_translated = 0;
1673 ch = *ptr;
1674 }
1675 }
1676 else if (!multibyte)
1677 TRANSLATE (ch, trt, *ptr);
1678 else
1679 {
1680 ch = *ptr;
1681 this_translated = 0;
1682 }
1683
1684 if (ch > 0400)
1685 j = ((unsigned char) ch) | 0200;
1686 else
1687 j = (unsigned char) ch;
1688
1689 if (i == infinity)
1690 stride_for_teases = BM_tab[j];
1691
1692 BM_tab[j] = dirlen - i;
1693 /* A translation table is accompanied by its inverse -- see */
1694 /* comment following downcase_table for details */
1695 if (this_translated)
1696 {
1697 int starting_ch = ch;
1698 int starting_j = j;
1699 while (1)
1700 {
1701 TRANSLATE (ch, inverse_trt, ch);
1702 if (ch > 0400)
1703 j = ((unsigned char) ch) | 0200;
1704 else
1705 j = (unsigned char) ch;
1706
1707 /* For all the characters that map into CH,
1708 set up simple_translate to map the last byte
1709 into STARTING_J. */
1710 simple_translate[j] = starting_j;
1711 if (ch == starting_ch)
1712 break;
1713 BM_tab[j] = dirlen - i;
1714 }
1715 }
1716 }
1717 else
1718 {
1719 j = *ptr;
1720
1721 if (i == infinity)
1722 stride_for_teases = BM_tab[j];
1723 BM_tab[j] = dirlen - i;
1724 }
1725 /* stride_for_teases tells how much to stride if we get a */
1726 /* match on the far character but are subsequently */
1727 /* disappointed, by recording what the stride would have been */
1728 /* for that character if the last character had been */
1729 /* different. */
1730 }
1731 infinity = dirlen - infinity;
1732 pos_byte += dirlen - ((direction > 0) ? direction : 0);
1733 /* loop invariant - POS_BYTE points at where last char (first
1734 char if reverse) of pattern would align in a possible match. */
1735 while (n != 0)
1736 {
1737 int tail_end;
1738 unsigned char *tail_end_ptr;
1739
1740 /* It's been reported that some (broken) compiler thinks that
1741 Boolean expressions in an arithmetic context are unsigned.
1742 Using an explicit ?1:0 prevents this. */
1743 if ((lim_byte - pos_byte - ((direction > 0) ? 1 : 0)) * direction
1744 < 0)
1745 return (n * (0 - direction));
1746 /* First we do the part we can by pointers (maybe nothing) */
1747 QUIT;
1748 pat = base_pat;
1749 limit = pos_byte - dirlen + direction;
1750 if (direction > 0)
1751 {
1752 limit = BUFFER_CEILING_OF (limit);
1753 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1754 can take on without hitting edge of buffer or the gap. */
1755 limit = min (limit, pos_byte + 20000);
1756 limit = min (limit, lim_byte - 1);
1757 }
1758 else
1759 {
1760 limit = BUFFER_FLOOR_OF (limit);
1761 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1762 can take on without hitting edge of buffer or the gap. */
1763 limit = max (limit, pos_byte - 20000);
1764 limit = max (limit, lim_byte);
1765 }
1766 tail_end = BUFFER_CEILING_OF (pos_byte) + 1;
1767 tail_end_ptr = BYTE_POS_ADDR (tail_end);
1768
1769 if ((limit - pos_byte) * direction > 20)
1770 {
1771 unsigned char *p2;
1772
1773 p_limit = BYTE_POS_ADDR (limit);
1774 p2 = (cursor = BYTE_POS_ADDR (pos_byte));
1775 /* In this loop, pos + cursor - p2 is the surrogate for pos */
1776 while (1) /* use one cursor setting as long as i can */
1777 {
1778 if (direction > 0) /* worth duplicating */
1779 {
1780 /* Use signed comparison if appropriate
1781 to make cursor+infinity sure to be > p_limit.
1782 Assuming that the buffer lies in a range of addresses
1783 that are all "positive" (as ints) or all "negative",
1784 either kind of comparison will work as long
1785 as we don't step by infinity. So pick the kind
1786 that works when we do step by infinity. */
1787 if ((EMACS_INT) (p_limit + infinity) > (EMACS_INT) p_limit)
1788 while ((EMACS_INT) cursor <= (EMACS_INT) p_limit)
1789 cursor += BM_tab[*cursor];
1790 else
1791 while ((EMACS_UINT) cursor <= (EMACS_UINT) p_limit)
1792 cursor += BM_tab[*cursor];
1793 }
1794 else
1795 {
1796 if ((EMACS_INT) (p_limit + infinity) < (EMACS_INT) p_limit)
1797 while ((EMACS_INT) cursor >= (EMACS_INT) p_limit)
1798 cursor += BM_tab[*cursor];
1799 else
1800 while ((EMACS_UINT) cursor >= (EMACS_UINT) p_limit)
1801 cursor += BM_tab[*cursor];
1802 }
1803 /* If you are here, cursor is beyond the end of the searched region. */
1804 /* This can happen if you match on the far character of the pattern, */
1805 /* because the "stride" of that character is infinity, a number able */
1806 /* to throw you well beyond the end of the search. It can also */
1807 /* happen if you fail to match within the permitted region and would */
1808 /* otherwise try a character beyond that region */
1809 if ((cursor - p_limit) * direction <= len_byte)
1810 break; /* a small overrun is genuine */
1811 cursor -= infinity; /* large overrun = hit */
1812 i = dirlen - direction;
1813 if (! NILP (trt))
1814 {
1815 while ((i -= direction) + direction != 0)
1816 {
1817 int ch;
1818 cursor -= direction;
1819 /* Translate only the last byte of a character. */
1820 if (! multibyte
1821 || ((cursor == tail_end_ptr
1822 || CHAR_HEAD_P (cursor[1]))
1823 && (CHAR_HEAD_P (cursor[0])
1824 || (translate_prev_byte == cursor[-1]
1825 && (CHAR_HEAD_P (translate_prev_byte)
1826 || translate_anteprev_byte == cursor[-2])))))
1827 ch = simple_translate[*cursor];
1828 else
1829 ch = *cursor;
1830 if (pat[i] != ch)
1831 break;
1832 }
1833 }
1834 else
1835 {
1836 while ((i -= direction) + direction != 0)
1837 {
1838 cursor -= direction;
1839 if (pat[i] != *cursor)
1840 break;
1841 }
1842 }
1843 cursor += dirlen - i - direction; /* fix cursor */
1844 if (i + direction == 0)
1845 {
1846 int position;
1847
1848 cursor -= direction;
1849
1850 position = pos_byte + cursor - p2 + ((direction > 0)
1851 ? 1 - len_byte : 0);
1852 set_search_regs (position, len_byte);
1853
1854 if ((n -= direction) != 0)
1855 cursor += dirlen; /* to resume search */
1856 else
1857 return ((direction > 0)
1858 ? search_regs.end[0] : search_regs.start[0]);
1859 }
1860 else
1861 cursor += stride_for_teases; /* <sigh> we lose - */
1862 }
1863 pos_byte += cursor - p2;
1864 }
1865 else
1866 /* Now we'll pick up a clump that has to be done the hard */
1867 /* way because it covers a discontinuity */
1868 {
1869 limit = ((direction > 0)
1870 ? BUFFER_CEILING_OF (pos_byte - dirlen + 1)
1871 : BUFFER_FLOOR_OF (pos_byte - dirlen - 1));
1872 limit = ((direction > 0)
1873 ? min (limit + len_byte, lim_byte - 1)
1874 : max (limit - len_byte, lim_byte));
1875 /* LIMIT is now the last value POS_BYTE can have
1876 and still be valid for a possible match. */
1877 while (1)
1878 {
1879 /* This loop can be coded for space rather than */
1880 /* speed because it will usually run only once. */
1881 /* (the reach is at most len + 21, and typically */
1882 /* does not exceed len) */
1883 while ((limit - pos_byte) * direction >= 0)
1884 pos_byte += BM_tab[FETCH_BYTE (pos_byte)];
1885 /* now run the same tests to distinguish going off the */
1886 /* end, a match or a phony match. */
1887 if ((pos_byte - limit) * direction <= len_byte)
1888 break; /* ran off the end */
1889 /* Found what might be a match.
1890 Set POS_BYTE back to last (first if reverse) pos. */
1891 pos_byte -= infinity;
1892 i = dirlen - direction;
1893 while ((i -= direction) + direction != 0)
1894 {
1895 int ch;
1896 unsigned char *ptr;
1897 pos_byte -= direction;
1898 ptr = BYTE_POS_ADDR (pos_byte);
1899 /* Translate only the last byte of a character. */
1900 if (! multibyte
1901 || ((ptr == tail_end_ptr
1902 || CHAR_HEAD_P (ptr[1]))
1903 && (CHAR_HEAD_P (ptr[0])
1904 || (translate_prev_byte == ptr[-1]
1905 && (CHAR_HEAD_P (translate_prev_byte)
1906 || translate_anteprev_byte == ptr[-2])))))
1907 ch = simple_translate[*ptr];
1908 else
1909 ch = *ptr;
1910 if (pat[i] != ch)
1911 break;
1912 }
1913 /* Above loop has moved POS_BYTE part or all the way
1914 back to the first pos (last pos if reverse).
1915 Set it once again at the last (first if reverse) char. */
1916 pos_byte += dirlen - i- direction;
1917 if (i + direction == 0)
1918 {
1919 int position;
1920 pos_byte -= direction;
1921
1922 position = pos_byte + ((direction > 0) ? 1 - len_byte : 0);
1923
1924 set_search_regs (position, len_byte);
1925
1926 if ((n -= direction) != 0)
1927 pos_byte += dirlen; /* to resume search */
1928 else
1929 return ((direction > 0)
1930 ? search_regs.end[0] : search_regs.start[0]);
1931 }
1932 else
1933 pos_byte += stride_for_teases;
1934 }
1935 }
1936 /* We have done one clump. Can we continue? */
1937 if ((lim_byte - pos_byte) * direction < 0)
1938 return ((0 - n) * direction);
1939 }
1940 return BYTE_TO_CHAR (pos_byte);
1941 }
1942
1943 /* Record beginning BEG_BYTE and end BEG_BYTE + NBYTES
1944 for the overall match just found in the current buffer.
1945 Also clear out the match data for registers 1 and up. */
1946
1947 static void
1948 set_search_regs (beg_byte, nbytes)
1949 int beg_byte, nbytes;
1950 {
1951 int i;
1952
1953 /* Make sure we have registers in which to store
1954 the match position. */
1955 if (search_regs.num_regs == 0)
1956 {
1957 search_regs.start = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
1958 search_regs.end = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
1959 search_regs.num_regs = 2;
1960 }
1961
1962 /* Clear out the other registers. */
1963 for (i = 1; i < search_regs.num_regs; i++)
1964 {
1965 search_regs.start[i] = -1;
1966 search_regs.end[i] = -1;
1967 }
1968
1969 search_regs.start[0] = BYTE_TO_CHAR (beg_byte);
1970 search_regs.end[0] = BYTE_TO_CHAR (beg_byte + nbytes);
1971 XSETBUFFER (last_thing_searched, current_buffer);
1972 }
1973 \f
1974 /* Given a string of words separated by word delimiters,
1975 compute a regexp that matches those exact words
1976 separated by arbitrary punctuation. */
1977
1978 static Lisp_Object
1979 wordify (string)
1980 Lisp_Object string;
1981 {
1982 register unsigned char *p, *o;
1983 register int i, i_byte, len, punct_count = 0, word_count = 0;
1984 Lisp_Object val;
1985 int prev_c = 0;
1986 int adjust;
1987
1988 CHECK_STRING (string);
1989 p = SDATA (string);
1990 len = SCHARS (string);
1991
1992 for (i = 0, i_byte = 0; i < len; )
1993 {
1994 int c;
1995
1996 FETCH_STRING_CHAR_ADVANCE (c, string, i, i_byte);
1997
1998 if (SYNTAX (c) != Sword)
1999 {
2000 punct_count++;
2001 if (i > 0 && SYNTAX (prev_c) == Sword)
2002 word_count++;
2003 }
2004
2005 prev_c = c;
2006 }
2007
2008 if (SYNTAX (prev_c) == Sword)
2009 word_count++;
2010 if (!word_count)
2011 return empty_string;
2012
2013 adjust = - punct_count + 5 * (word_count - 1) + 4;
2014 if (STRING_MULTIBYTE (string))
2015 val = make_uninit_multibyte_string (len + adjust,
2016 SBYTES (string)
2017 + adjust);
2018 else
2019 val = make_uninit_string (len + adjust);
2020
2021 o = SDATA (val);
2022 *o++ = '\\';
2023 *o++ = 'b';
2024 prev_c = 0;
2025
2026 for (i = 0, i_byte = 0; i < len; )
2027 {
2028 int c;
2029 int i_byte_orig = i_byte;
2030
2031 FETCH_STRING_CHAR_ADVANCE (c, string, i, i_byte);
2032
2033 if (SYNTAX (c) == Sword)
2034 {
2035 bcopy (SDATA (string) + i_byte_orig, o,
2036 i_byte - i_byte_orig);
2037 o += i_byte - i_byte_orig;
2038 }
2039 else if (i > 0 && SYNTAX (prev_c) == Sword && --word_count)
2040 {
2041 *o++ = '\\';
2042 *o++ = 'W';
2043 *o++ = '\\';
2044 *o++ = 'W';
2045 *o++ = '*';
2046 }
2047
2048 prev_c = c;
2049 }
2050
2051 *o++ = '\\';
2052 *o++ = 'b';
2053
2054 return val;
2055 }
2056 \f
2057 DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
2058 "MSearch backward: ",
2059 doc: /* Search backward from point for STRING.
2060 Set point to the beginning of the occurrence found, and return point.
2061 An optional second argument bounds the search; it is a buffer position.
2062 The match found must not extend before that position.
2063 Optional third argument, if t, means if fail just return nil (no error).
2064 If not nil and not t, position at limit of search and return nil.
2065 Optional fourth argument is repeat count--search for successive occurrences.
2066
2067 Search case-sensitivity is determined by the value of the variable
2068 `case-fold-search', which see.
2069
2070 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2071 (string, bound, noerror, count)
2072 Lisp_Object string, bound, noerror, count;
2073 {
2074 return search_command (string, bound, noerror, count, -1, 0, 0);
2075 }
2076
2077 DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "MSearch: ",
2078 doc: /* Search forward from point for STRING.
2079 Set point to the end of the occurrence found, and return point.
2080 An optional second argument bounds the search; it is a buffer position.
2081 The match found must not extend after that position. nil is equivalent
2082 to (point-max).
2083 Optional third argument, if t, means if fail just return nil (no error).
2084 If not nil and not t, move to limit of search and return nil.
2085 Optional fourth argument is repeat count--search for successive occurrences.
2086
2087 Search case-sensitivity is determined by the value of the variable
2088 `case-fold-search', which see.
2089
2090 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2091 (string, bound, noerror, count)
2092 Lisp_Object string, bound, noerror, count;
2093 {
2094 return search_command (string, bound, noerror, count, 1, 0, 0);
2095 }
2096
2097 DEFUN ("word-search-backward", Fword_search_backward, Sword_search_backward, 1, 4,
2098 "sWord search backward: ",
2099 doc: /* Search backward from point for STRING, ignoring differences in punctuation.
2100 Set point to the beginning of the occurrence found, and return point.
2101 An optional second argument bounds the search; it is a buffer position.
2102 The match found must not extend before that position.
2103 Optional third argument, if t, means if fail just return nil (no error).
2104 If not nil and not t, move to limit of search and return nil.
2105 Optional fourth argument is repeat count--search for successive occurrences. */)
2106 (string, bound, noerror, count)
2107 Lisp_Object string, bound, noerror, count;
2108 {
2109 return search_command (wordify (string), bound, noerror, count, -1, 1, 0);
2110 }
2111
2112 DEFUN ("word-search-forward", Fword_search_forward, Sword_search_forward, 1, 4,
2113 "sWord search: ",
2114 doc: /* Search forward from point for STRING, ignoring differences in punctuation.
2115 Set point to the end of the occurrence found, and return point.
2116 An optional second argument bounds the search; it is a buffer position.
2117 The match found must not extend after that position.
2118 Optional third argument, if t, means if fail just return nil (no error).
2119 If not nil and not t, move to limit of search and return nil.
2120 Optional fourth argument is repeat count--search for successive occurrences. */)
2121 (string, bound, noerror, count)
2122 Lisp_Object string, bound, noerror, count;
2123 {
2124 return search_command (wordify (string), bound, noerror, count, 1, 1, 0);
2125 }
2126
2127 DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
2128 "sRE search backward: ",
2129 doc: /* Search backward from point for match for regular expression REGEXP.
2130 Set point to the beginning of the match, and return point.
2131 The match found is the one starting last in the buffer
2132 and yet ending before the origin of the search.
2133 An optional second argument bounds the search; it is a buffer position.
2134 The match found must start at or after that position.
2135 Optional third argument, if t, means if fail just return nil (no error).
2136 If not nil and not t, move to limit of search and return nil.
2137 Optional fourth argument is repeat count--search for successive occurrences.
2138 See also the functions `match-beginning', `match-end', `match-string',
2139 and `replace-match'. */)
2140 (regexp, bound, noerror, count)
2141 Lisp_Object regexp, bound, noerror, count;
2142 {
2143 return search_command (regexp, bound, noerror, count, -1, 1, 0);
2144 }
2145
2146 DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
2147 "sRE search: ",
2148 doc: /* Search forward from point for regular expression REGEXP.
2149 Set point to the end of the occurrence found, and return point.
2150 An optional second argument bounds the search; it is a buffer position.
2151 The match found must not extend after that position.
2152 Optional third argument, if t, means if fail just return nil (no error).
2153 If not nil and not t, move to limit of search and return nil.
2154 Optional fourth argument is repeat count--search for successive occurrences.
2155 See also the functions `match-beginning', `match-end', `match-string',
2156 and `replace-match'. */)
2157 (regexp, bound, noerror, count)
2158 Lisp_Object regexp, bound, noerror, count;
2159 {
2160 return search_command (regexp, bound, noerror, count, 1, 1, 0);
2161 }
2162
2163 DEFUN ("posix-search-backward", Fposix_search_backward, Sposix_search_backward, 1, 4,
2164 "sPosix search backward: ",
2165 doc: /* Search backward from point for match for regular expression REGEXP.
2166 Find the longest match in accord with Posix regular expression rules.
2167 Set point to the beginning of the match, and return point.
2168 The match found is the one starting last in the buffer
2169 and yet ending before the origin of the search.
2170 An optional second argument bounds the search; it is a buffer position.
2171 The match found must start at or after that position.
2172 Optional third argument, if t, means if fail just return nil (no error).
2173 If not nil and not t, move to limit of search and return nil.
2174 Optional fourth argument is repeat count--search for successive occurrences.
2175 See also the functions `match-beginning', `match-end', `match-string',
2176 and `replace-match'. */)
2177 (regexp, bound, noerror, count)
2178 Lisp_Object regexp, bound, noerror, count;
2179 {
2180 return search_command (regexp, bound, noerror, count, -1, 1, 1);
2181 }
2182
2183 DEFUN ("posix-search-forward", Fposix_search_forward, Sposix_search_forward, 1, 4,
2184 "sPosix search: ",
2185 doc: /* Search forward from point for regular expression REGEXP.
2186 Find the longest match in accord with Posix regular expression rules.
2187 Set point to the end of the occurrence found, and return point.
2188 An optional second argument bounds the search; it is a buffer position.
2189 The match found must not extend after that position.
2190 Optional third argument, if t, means if fail just return nil (no error).
2191 If not nil and not t, move to limit of search and return nil.
2192 Optional fourth argument is repeat count--search for successive occurrences.
2193 See also the functions `match-beginning', `match-end', `match-string',
2194 and `replace-match'. */)
2195 (regexp, bound, noerror, count)
2196 Lisp_Object regexp, bound, noerror, count;
2197 {
2198 return search_command (regexp, bound, noerror, count, 1, 1, 1);
2199 }
2200 \f
2201 DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 5, 0,
2202 doc: /* Replace text matched by last search with NEWTEXT.
2203 Leave point at the end of the replacement text.
2204
2205 If second arg FIXEDCASE is non-nil, do not alter case of replacement text.
2206 Otherwise maybe capitalize the whole text, or maybe just word initials,
2207 based on the replaced text.
2208 If the replaced text has only capital letters
2209 and has at least one multiletter word, convert NEWTEXT to all caps.
2210 Otherwise if all words are capitalized in the replaced text,
2211 capitalize each word in NEWTEXT.
2212
2213 If third arg LITERAL is non-nil, insert NEWTEXT literally.
2214 Otherwise treat `\\' as special:
2215 `\\&' in NEWTEXT means substitute original matched text.
2216 `\\N' means substitute what matched the Nth `\\(...\\)'.
2217 If Nth parens didn't match, substitute nothing.
2218 `\\\\' means insert one `\\'.
2219 Case conversion does not apply to these substitutions.
2220
2221 FIXEDCASE and LITERAL are optional arguments.
2222
2223 The optional fourth argument STRING can be a string to modify.
2224 This is meaningful when the previous match was done against STRING,
2225 using `string-match'. When used this way, `replace-match'
2226 creates and returns a new string made by copying STRING and replacing
2227 the part of STRING that was matched.
2228
2229 The optional fifth argument SUBEXP specifies a subexpression;
2230 it says to replace just that subexpression with NEWTEXT,
2231 rather than replacing the entire matched text.
2232 This is, in a vague sense, the inverse of using `\\N' in NEWTEXT;
2233 `\\N' copies subexp N into NEWTEXT, but using N as SUBEXP puts
2234 NEWTEXT in place of subexp N.
2235 This is useful only after a regular expression search or match,
2236 since only regular expressions have distinguished subexpressions. */)
2237 (newtext, fixedcase, literal, string, subexp)
2238 Lisp_Object newtext, fixedcase, literal, string, subexp;
2239 {
2240 enum { nochange, all_caps, cap_initial } case_action;
2241 register int pos, pos_byte;
2242 int some_multiletter_word;
2243 int some_lowercase;
2244 int some_uppercase;
2245 int some_nonuppercase_initial;
2246 register int c, prevc;
2247 int sub;
2248 int opoint, newpoint;
2249
2250 CHECK_STRING (newtext);
2251
2252 if (! NILP (string))
2253 CHECK_STRING (string);
2254
2255 case_action = nochange; /* We tried an initialization */
2256 /* but some C compilers blew it */
2257
2258 if (search_regs.num_regs <= 0)
2259 error ("replace-match called before any match found");
2260
2261 if (NILP (subexp))
2262 sub = 0;
2263 else
2264 {
2265 CHECK_NUMBER (subexp);
2266 sub = XINT (subexp);
2267 if (sub < 0 || sub >= search_regs.num_regs)
2268 args_out_of_range (subexp, make_number (search_regs.num_regs));
2269 }
2270
2271 if (NILP (string))
2272 {
2273 if (search_regs.start[sub] < BEGV
2274 || search_regs.start[sub] > search_regs.end[sub]
2275 || search_regs.end[sub] > ZV)
2276 args_out_of_range (make_number (search_regs.start[sub]),
2277 make_number (search_regs.end[sub]));
2278 }
2279 else
2280 {
2281 if (search_regs.start[sub] < 0
2282 || search_regs.start[sub] > search_regs.end[sub]
2283 || search_regs.end[sub] > SCHARS (string))
2284 args_out_of_range (make_number (search_regs.start[sub]),
2285 make_number (search_regs.end[sub]));
2286 }
2287
2288 if (NILP (fixedcase))
2289 {
2290 /* Decide how to casify by examining the matched text. */
2291 int last;
2292
2293 pos = search_regs.start[sub];
2294 last = search_regs.end[sub];
2295
2296 if (NILP (string))
2297 pos_byte = CHAR_TO_BYTE (pos);
2298 else
2299 pos_byte = string_char_to_byte (string, pos);
2300
2301 prevc = '\n';
2302 case_action = all_caps;
2303
2304 /* some_multiletter_word is set nonzero if any original word
2305 is more than one letter long. */
2306 some_multiletter_word = 0;
2307 some_lowercase = 0;
2308 some_nonuppercase_initial = 0;
2309 some_uppercase = 0;
2310
2311 while (pos < last)
2312 {
2313 if (NILP (string))
2314 {
2315 c = FETCH_CHAR (pos_byte);
2316 INC_BOTH (pos, pos_byte);
2317 }
2318 else
2319 FETCH_STRING_CHAR_ADVANCE (c, string, pos, pos_byte);
2320
2321 if (LOWERCASEP (c))
2322 {
2323 /* Cannot be all caps if any original char is lower case */
2324
2325 some_lowercase = 1;
2326 if (SYNTAX (prevc) != Sword)
2327 some_nonuppercase_initial = 1;
2328 else
2329 some_multiletter_word = 1;
2330 }
2331 else if (!NOCASEP (c))
2332 {
2333 some_uppercase = 1;
2334 if (SYNTAX (prevc) != Sword)
2335 ;
2336 else
2337 some_multiletter_word = 1;
2338 }
2339 else
2340 {
2341 /* If the initial is a caseless word constituent,
2342 treat that like a lowercase initial. */
2343 if (SYNTAX (prevc) != Sword)
2344 some_nonuppercase_initial = 1;
2345 }
2346
2347 prevc = c;
2348 }
2349
2350 /* Convert to all caps if the old text is all caps
2351 and has at least one multiletter word. */
2352 if (! some_lowercase && some_multiletter_word)
2353 case_action = all_caps;
2354 /* Capitalize each word, if the old text has all capitalized words. */
2355 else if (!some_nonuppercase_initial && some_multiletter_word)
2356 case_action = cap_initial;
2357 else if (!some_nonuppercase_initial && some_uppercase)
2358 /* Should x -> yz, operating on X, give Yz or YZ?
2359 We'll assume the latter. */
2360 case_action = all_caps;
2361 else
2362 case_action = nochange;
2363 }
2364
2365 /* Do replacement in a string. */
2366 if (!NILP (string))
2367 {
2368 Lisp_Object before, after;
2369
2370 before = Fsubstring (string, make_number (0),
2371 make_number (search_regs.start[sub]));
2372 after = Fsubstring (string, make_number (search_regs.end[sub]), Qnil);
2373
2374 /* Substitute parts of the match into NEWTEXT
2375 if desired. */
2376 if (NILP (literal))
2377 {
2378 int lastpos = 0;
2379 int lastpos_byte = 0;
2380 /* We build up the substituted string in ACCUM. */
2381 Lisp_Object accum;
2382 Lisp_Object middle;
2383 int length = SBYTES (newtext);
2384
2385 accum = Qnil;
2386
2387 for (pos_byte = 0, pos = 0; pos_byte < length;)
2388 {
2389 int substart = -1;
2390 int subend = 0;
2391 int delbackslash = 0;
2392
2393 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2394
2395 if (c == '\\')
2396 {
2397 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2398
2399 if (c == '&')
2400 {
2401 substart = search_regs.start[sub];
2402 subend = search_regs.end[sub];
2403 }
2404 else if (c >= '1' && c <= '9')
2405 {
2406 if (search_regs.start[c - '0'] >= 0
2407 && c <= search_regs.num_regs + '0')
2408 {
2409 substart = search_regs.start[c - '0'];
2410 subend = search_regs.end[c - '0'];
2411 }
2412 else
2413 {
2414 /* If that subexp did not match,
2415 replace \\N with nothing. */
2416 substart = 0;
2417 subend = 0;
2418 }
2419 }
2420 else if (c == '\\')
2421 delbackslash = 1;
2422 else
2423 error ("Invalid use of `\\' in replacement text");
2424 }
2425 if (substart >= 0)
2426 {
2427 if (pos - 2 != lastpos)
2428 middle = substring_both (newtext, lastpos,
2429 lastpos_byte,
2430 pos - 2, pos_byte - 2);
2431 else
2432 middle = Qnil;
2433 accum = concat3 (accum, middle,
2434 Fsubstring (string,
2435 make_number (substart),
2436 make_number (subend)));
2437 lastpos = pos;
2438 lastpos_byte = pos_byte;
2439 }
2440 else if (delbackslash)
2441 {
2442 middle = substring_both (newtext, lastpos,
2443 lastpos_byte,
2444 pos - 1, pos_byte - 1);
2445
2446 accum = concat2 (accum, middle);
2447 lastpos = pos;
2448 lastpos_byte = pos_byte;
2449 }
2450 }
2451
2452 if (pos != lastpos)
2453 middle = substring_both (newtext, lastpos,
2454 lastpos_byte,
2455 pos, pos_byte);
2456 else
2457 middle = Qnil;
2458
2459 newtext = concat2 (accum, middle);
2460 }
2461
2462 /* Do case substitution in NEWTEXT if desired. */
2463 if (case_action == all_caps)
2464 newtext = Fupcase (newtext);
2465 else if (case_action == cap_initial)
2466 newtext = Fupcase_initials (newtext);
2467
2468 return concat3 (before, newtext, after);
2469 }
2470
2471 /* Record point, then move (quietly) to the start of the match. */
2472 if (PT >= search_regs.end[sub])
2473 opoint = PT - ZV;
2474 else if (PT > search_regs.start[sub])
2475 opoint = search_regs.end[sub] - ZV;
2476 else
2477 opoint = PT;
2478
2479 /* If we want non-literal replacement,
2480 perform substitution on the replacement string. */
2481 if (NILP (literal))
2482 {
2483 int length = SBYTES (newtext);
2484 unsigned char *substed;
2485 int substed_alloc_size, substed_len;
2486 int buf_multibyte = !NILP (current_buffer->enable_multibyte_characters);
2487 int str_multibyte = STRING_MULTIBYTE (newtext);
2488 Lisp_Object rev_tbl;
2489 int really_changed = 0;
2490
2491 rev_tbl= (!buf_multibyte && CHAR_TABLE_P (Vnonascii_translation_table)
2492 ? Fchar_table_extra_slot (Vnonascii_translation_table,
2493 make_number (0))
2494 : Qnil);
2495
2496 substed_alloc_size = length * 2 + 100;
2497 substed = (unsigned char *) xmalloc (substed_alloc_size + 1);
2498 substed_len = 0;
2499
2500 /* Go thru NEWTEXT, producing the actual text to insert in
2501 SUBSTED while adjusting multibyteness to that of the current
2502 buffer. */
2503
2504 for (pos_byte = 0, pos = 0; pos_byte < length;)
2505 {
2506 unsigned char str[MAX_MULTIBYTE_LENGTH];
2507 unsigned char *add_stuff = NULL;
2508 int add_len = 0;
2509 int idx = -1;
2510
2511 if (str_multibyte)
2512 {
2513 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext, pos, pos_byte);
2514 if (!buf_multibyte)
2515 c = multibyte_char_to_unibyte (c, rev_tbl);
2516 }
2517 else
2518 {
2519 /* Note that we don't have to increment POS. */
2520 c = SREF (newtext, pos_byte++);
2521 if (buf_multibyte)
2522 c = unibyte_char_to_multibyte (c);
2523 }
2524
2525 /* Either set ADD_STUFF and ADD_LEN to the text to put in SUBSTED,
2526 or set IDX to a match index, which means put that part
2527 of the buffer text into SUBSTED. */
2528
2529 if (c == '\\')
2530 {
2531 really_changed = 1;
2532
2533 if (str_multibyte)
2534 {
2535 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext,
2536 pos, pos_byte);
2537 if (!buf_multibyte && !SINGLE_BYTE_CHAR_P (c))
2538 c = multibyte_char_to_unibyte (c, rev_tbl);
2539 }
2540 else
2541 {
2542 c = SREF (newtext, pos_byte++);
2543 if (buf_multibyte)
2544 c = unibyte_char_to_multibyte (c);
2545 }
2546
2547 if (c == '&')
2548 idx = sub;
2549 else if (c >= '1' && c <= '9' && c <= search_regs.num_regs + '0')
2550 {
2551 if (search_regs.start[c - '0'] >= 1)
2552 idx = c - '0';
2553 }
2554 else if (c == '\\')
2555 add_len = 1, add_stuff = "\\";
2556 else
2557 {
2558 xfree (substed);
2559 error ("Invalid use of `\\' in replacement text");
2560 }
2561 }
2562 else
2563 {
2564 add_len = CHAR_STRING (c, str);
2565 add_stuff = str;
2566 }
2567
2568 /* If we want to copy part of a previous match,
2569 set up ADD_STUFF and ADD_LEN to point to it. */
2570 if (idx >= 0)
2571 {
2572 int begbyte = CHAR_TO_BYTE (search_regs.start[idx]);
2573 add_len = CHAR_TO_BYTE (search_regs.end[idx]) - begbyte;
2574 if (search_regs.start[idx] < GPT && GPT < search_regs.end[idx])
2575 move_gap (search_regs.start[idx]);
2576 add_stuff = BYTE_POS_ADDR (begbyte);
2577 }
2578
2579 /* Now the stuff we want to add to SUBSTED
2580 is invariably ADD_LEN bytes starting at ADD_STUFF. */
2581
2582 /* Make sure SUBSTED is big enough. */
2583 if (substed_len + add_len >= substed_alloc_size)
2584 {
2585 substed_alloc_size = substed_len + add_len + 500;
2586 substed = (unsigned char *) xrealloc (substed,
2587 substed_alloc_size + 1);
2588 }
2589
2590 /* Now add to the end of SUBSTED. */
2591 if (add_stuff)
2592 {
2593 bcopy (add_stuff, substed + substed_len, add_len);
2594 substed_len += add_len;
2595 }
2596 }
2597
2598 if (really_changed)
2599 {
2600 if (buf_multibyte)
2601 {
2602 int nchars = multibyte_chars_in_text (substed, substed_len);
2603
2604 newtext = make_multibyte_string (substed, nchars, substed_len);
2605 }
2606 else
2607 newtext = make_unibyte_string (substed, substed_len);
2608 }
2609 xfree (substed);
2610 }
2611
2612 /* Replace the old text with the new in the cleanest possible way. */
2613 replace_range (search_regs.start[sub], search_regs.end[sub],
2614 newtext, 1, 0, 1);
2615 newpoint = search_regs.start[sub] + SCHARS (newtext);
2616
2617 if (case_action == all_caps)
2618 Fupcase_region (make_number (search_regs.start[sub]),
2619 make_number (newpoint));
2620 else if (case_action == cap_initial)
2621 Fupcase_initials_region (make_number (search_regs.start[sub]),
2622 make_number (newpoint));
2623
2624 /* Adjust search data for this change. */
2625 {
2626 int oldend = search_regs.end[sub];
2627 int oldstart = search_regs.start[sub];
2628 int change = newpoint - search_regs.end[sub];
2629 int i;
2630
2631 for (i = 0; i < search_regs.num_regs; i++)
2632 {
2633 if (search_regs.start[i] >= oldend)
2634 search_regs.start[i] += change;
2635 else if (search_regs.start[i] > oldstart)
2636 search_regs.start[i] = oldstart;
2637 if (search_regs.end[i] >= oldend)
2638 search_regs.end[i] += change;
2639 else if (search_regs.end[i] > oldstart)
2640 search_regs.end[i] = oldstart;
2641 }
2642 }
2643
2644 /* Put point back where it was in the text. */
2645 if (opoint <= 0)
2646 TEMP_SET_PT (opoint + ZV);
2647 else
2648 TEMP_SET_PT (opoint);
2649
2650 /* Now move point "officially" to the start of the inserted replacement. */
2651 move_if_not_intangible (newpoint);
2652
2653 return Qnil;
2654 }
2655 \f
2656 static Lisp_Object
2657 match_limit (num, beginningp)
2658 Lisp_Object num;
2659 int beginningp;
2660 {
2661 register int n;
2662
2663 CHECK_NUMBER (num);
2664 n = XINT (num);
2665 if (n < 0)
2666 args_out_of_range (num, make_number (0));
2667 if (search_regs.num_regs <= 0)
2668 error ("No match data, because no search succeeded");
2669 if (n >= search_regs.num_regs
2670 || search_regs.start[n] < 0)
2671 return Qnil;
2672 return (make_number ((beginningp) ? search_regs.start[n]
2673 : search_regs.end[n]));
2674 }
2675
2676 DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
2677 doc: /* Return position of start of text matched by last search.
2678 SUBEXP, a number, specifies which parenthesized expression in the last
2679 regexp.
2680 Value is nil if SUBEXPth pair didn't match, or there were less than
2681 SUBEXP pairs.
2682 Zero means the entire text matched by the whole regexp or whole string. */)
2683 (subexp)
2684 Lisp_Object subexp;
2685 {
2686 return match_limit (subexp, 1);
2687 }
2688
2689 DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
2690 doc: /* Return position of end of text matched by last search.
2691 SUBEXP, a number, specifies which parenthesized expression in the last
2692 regexp.
2693 Value is nil if SUBEXPth pair didn't match, or there were less than
2694 SUBEXP pairs.
2695 Zero means the entire text matched by the whole regexp or whole string. */)
2696 (subexp)
2697 Lisp_Object subexp;
2698 {
2699 return match_limit (subexp, 0);
2700 }
2701
2702 DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 2, 0,
2703 doc: /* Return a list containing all info on what the last search matched.
2704 Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.
2705 All the elements are markers or nil (nil if the Nth pair didn't match)
2706 if the last match was on a buffer; integers or nil if a string was matched.
2707 Use `store-match-data' to reinstate the data in this list.
2708
2709 If INTEGERS (the optional first argument) is non-nil, always use
2710 integers \(rather than markers) to represent buffer positions. In
2711 this case, and if the last match was in a buffer, the buffer will get
2712 stored as one additional element at the end of the list.
2713
2714 If REUSE is a list, reuse it as part of the value. If REUSE is long enough
2715 to hold all the values, and if INTEGERS is non-nil, no consing is done.
2716
2717 Return value is undefined if the last search failed. */)
2718 (integers, reuse)
2719 Lisp_Object integers, reuse;
2720 {
2721 Lisp_Object tail, prev;
2722 Lisp_Object *data;
2723 int i, len;
2724
2725 if (NILP (last_thing_searched))
2726 return Qnil;
2727
2728 prev = Qnil;
2729
2730 data = (Lisp_Object *) alloca ((2 * search_regs.num_regs + 1)
2731 * sizeof (Lisp_Object));
2732
2733 len = 0;
2734 for (i = 0; i < search_regs.num_regs; i++)
2735 {
2736 int start = search_regs.start[i];
2737 if (start >= 0)
2738 {
2739 if (EQ (last_thing_searched, Qt)
2740 || ! NILP (integers))
2741 {
2742 XSETFASTINT (data[2 * i], start);
2743 XSETFASTINT (data[2 * i + 1], search_regs.end[i]);
2744 }
2745 else if (BUFFERP (last_thing_searched))
2746 {
2747 data[2 * i] = Fmake_marker ();
2748 Fset_marker (data[2 * i],
2749 make_number (start),
2750 last_thing_searched);
2751 data[2 * i + 1] = Fmake_marker ();
2752 Fset_marker (data[2 * i + 1],
2753 make_number (search_regs.end[i]),
2754 last_thing_searched);
2755 }
2756 else
2757 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
2758 abort ();
2759
2760 len = 2*(i+1);
2761 }
2762 else
2763 data[2 * i] = data [2 * i + 1] = Qnil;
2764 }
2765
2766 if (BUFFERP (last_thing_searched) && !NILP (integers))
2767 {
2768 data[len] = last_thing_searched;
2769 len++;
2770 }
2771
2772 /* If REUSE is not usable, cons up the values and return them. */
2773 if (! CONSP (reuse))
2774 return Flist (len, data);
2775
2776 /* If REUSE is a list, store as many value elements as will fit
2777 into the elements of REUSE. */
2778 for (i = 0, tail = reuse; CONSP (tail);
2779 i++, tail = XCDR (tail))
2780 {
2781 if (i < len)
2782 XSETCAR (tail, data[i]);
2783 else
2784 XSETCAR (tail, Qnil);
2785 prev = tail;
2786 }
2787
2788 /* If we couldn't fit all value elements into REUSE,
2789 cons up the rest of them and add them to the end of REUSE. */
2790 if (i < len)
2791 XSETCDR (prev, Flist (len - i, data + i));
2792
2793 return reuse;
2794 }
2795
2796
2797 DEFUN ("set-match-data", Fset_match_data, Sset_match_data, 1, 1, 0,
2798 doc: /* Set internal data on last search match from elements of LIST.
2799 LIST should have been created by calling `match-data' previously. */)
2800 (list)
2801 register Lisp_Object list;
2802 {
2803 register int i;
2804 register Lisp_Object marker;
2805
2806 if (running_asynch_code)
2807 save_search_regs ();
2808
2809 if (!CONSP (list) && !NILP (list))
2810 list = wrong_type_argument (Qconsp, list);
2811
2812 /* Unless we find a marker with a buffer or an explicit buffer
2813 in LIST, assume that this match data came from a string. */
2814 last_thing_searched = Qt;
2815
2816 /* Allocate registers if they don't already exist. */
2817 {
2818 int length = XFASTINT (Flength (list)) / 2;
2819
2820 if (length > search_regs.num_regs)
2821 {
2822 if (search_regs.num_regs == 0)
2823 {
2824 search_regs.start
2825 = (regoff_t *) xmalloc (length * sizeof (regoff_t));
2826 search_regs.end
2827 = (regoff_t *) xmalloc (length * sizeof (regoff_t));
2828 }
2829 else
2830 {
2831 search_regs.start
2832 = (regoff_t *) xrealloc (search_regs.start,
2833 length * sizeof (regoff_t));
2834 search_regs.end
2835 = (regoff_t *) xrealloc (search_regs.end,
2836 length * sizeof (regoff_t));
2837 }
2838
2839 for (i = search_regs.num_regs; i < length; i++)
2840 search_regs.start[i] = -1;
2841
2842 search_regs.num_regs = length;
2843 }
2844
2845 for (i = 0;; i++)
2846 {
2847 marker = Fcar (list);
2848 if (BUFFERP (marker))
2849 {
2850 last_thing_searched = marker;
2851 break;
2852 }
2853 if (i >= length)
2854 break;
2855 if (NILP (marker))
2856 {
2857 search_regs.start[i] = -1;
2858 list = Fcdr (list);
2859 }
2860 else
2861 {
2862 int from;
2863
2864 if (MARKERP (marker))
2865 {
2866 if (XMARKER (marker)->buffer == 0)
2867 XSETFASTINT (marker, 0);
2868 else
2869 XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
2870 }
2871
2872 CHECK_NUMBER_COERCE_MARKER (marker);
2873 from = XINT (marker);
2874 list = Fcdr (list);
2875
2876 marker = Fcar (list);
2877 if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
2878 XSETFASTINT (marker, 0);
2879
2880 CHECK_NUMBER_COERCE_MARKER (marker);
2881 search_regs.start[i] = from;
2882 search_regs.end[i] = XINT (marker);
2883 }
2884 list = Fcdr (list);
2885 }
2886
2887 for (; i < search_regs.num_regs; i++)
2888 search_regs.start[i] = -1;
2889 }
2890
2891 return Qnil;
2892 }
2893
2894 /* If non-zero the match data have been saved in saved_search_regs
2895 during the execution of a sentinel or filter. */
2896 static int search_regs_saved;
2897 static struct re_registers saved_search_regs;
2898 static Lisp_Object saved_last_thing_searched;
2899
2900 /* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
2901 if asynchronous code (filter or sentinel) is running. */
2902 static void
2903 save_search_regs ()
2904 {
2905 if (!search_regs_saved)
2906 {
2907 saved_search_regs.num_regs = search_regs.num_regs;
2908 saved_search_regs.start = search_regs.start;
2909 saved_search_regs.end = search_regs.end;
2910 saved_last_thing_searched = last_thing_searched;
2911 last_thing_searched = Qnil;
2912 search_regs.num_regs = 0;
2913 search_regs.start = 0;
2914 search_regs.end = 0;
2915
2916 search_regs_saved = 1;
2917 }
2918 }
2919
2920 /* Called upon exit from filters and sentinels. */
2921 void
2922 restore_match_data ()
2923 {
2924 if (search_regs_saved)
2925 {
2926 if (search_regs.num_regs > 0)
2927 {
2928 xfree (search_regs.start);
2929 xfree (search_regs.end);
2930 }
2931 search_regs.num_regs = saved_search_regs.num_regs;
2932 search_regs.start = saved_search_regs.start;
2933 search_regs.end = saved_search_regs.end;
2934 last_thing_searched = saved_last_thing_searched;
2935 saved_last_thing_searched = Qnil;
2936 search_regs_saved = 0;
2937 }
2938 }
2939
2940 /* Quote a string to inactivate reg-expr chars */
2941
2942 DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
2943 doc: /* Return a regexp string which matches exactly STRING and nothing else. */)
2944 (string)
2945 Lisp_Object string;
2946 {
2947 register unsigned char *in, *out, *end;
2948 register unsigned char *temp;
2949 int backslashes_added = 0;
2950
2951 CHECK_STRING (string);
2952
2953 temp = (unsigned char *) alloca (SBYTES (string) * 2);
2954
2955 /* Now copy the data into the new string, inserting escapes. */
2956
2957 in = SDATA (string);
2958 end = in + SBYTES (string);
2959 out = temp;
2960
2961 for (; in != end; in++)
2962 {
2963 if (*in == '[' || *in == ']'
2964 || *in == '*' || *in == '.' || *in == '\\'
2965 || *in == '?' || *in == '+'
2966 || *in == '^' || *in == '$')
2967 *out++ = '\\', backslashes_added++;
2968 *out++ = *in;
2969 }
2970
2971 return make_specified_string (temp,
2972 SCHARS (string) + backslashes_added,
2973 out - temp,
2974 STRING_MULTIBYTE (string));
2975 }
2976 \f
2977 void
2978 syms_of_search ()
2979 {
2980 register int i;
2981
2982 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
2983 {
2984 searchbufs[i].buf.allocated = 100;
2985 searchbufs[i].buf.buffer = (unsigned char *) xmalloc (100);
2986 searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
2987 searchbufs[i].regexp = Qnil;
2988 searchbufs[i].whitespace_regexp = Qnil;
2989 staticpro (&searchbufs[i].regexp);
2990 searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
2991 }
2992 searchbuf_head = &searchbufs[0];
2993
2994 Qsearch_failed = intern ("search-failed");
2995 staticpro (&Qsearch_failed);
2996 Qinvalid_regexp = intern ("invalid-regexp");
2997 staticpro (&Qinvalid_regexp);
2998
2999 Fput (Qsearch_failed, Qerror_conditions,
3000 Fcons (Qsearch_failed, Fcons (Qerror, Qnil)));
3001 Fput (Qsearch_failed, Qerror_message,
3002 build_string ("Search failed"));
3003
3004 Fput (Qinvalid_regexp, Qerror_conditions,
3005 Fcons (Qinvalid_regexp, Fcons (Qerror, Qnil)));
3006 Fput (Qinvalid_regexp, Qerror_message,
3007 build_string ("Invalid regexp"));
3008
3009 last_thing_searched = Qnil;
3010 staticpro (&last_thing_searched);
3011
3012 saved_last_thing_searched = Qnil;
3013 staticpro (&saved_last_thing_searched);
3014
3015 DEFVAR_LISP ("search-spaces-regexp", &Vsearch_spaces_regexp,
3016 doc: /* Regexp to substitute for bunches of spaces in regexp search.
3017 Some commands use this for user-specified regexps.
3018 Spaces that occur inside character classes or repetition operators
3019 or other such regexp constructs are not replaced with this.
3020 A value of nil (which is the normal value) means treat spaces literally. */);
3021 Vsearch_spaces_regexp = Qnil;
3022
3023 defsubr (&Slooking_at);
3024 defsubr (&Sposix_looking_at);
3025 defsubr (&Sstring_match);
3026 defsubr (&Sposix_string_match);
3027 defsubr (&Ssearch_forward);
3028 defsubr (&Ssearch_backward);
3029 defsubr (&Sword_search_forward);
3030 defsubr (&Sword_search_backward);
3031 defsubr (&Sre_search_forward);
3032 defsubr (&Sre_search_backward);
3033 defsubr (&Sposix_search_forward);
3034 defsubr (&Sposix_search_backward);
3035 defsubr (&Sreplace_match);
3036 defsubr (&Smatch_beginning);
3037 defsubr (&Smatch_end);
3038 defsubr (&Smatch_data);
3039 defsubr (&Sset_match_data);
3040 defsubr (&Sregexp_quote);
3041 }
3042
3043 /* arch-tag: a6059d79-0552-4f14-a2cb-d379a4e3c78f
3044 (do not change this comment) */