]> code.delx.au - gnu-emacs/blob - src/unexmacosx.c
Switch from NO_RETURN to C11's _Noreturn.
[gnu-emacs] / src / unexmacosx.c
1 /* Dump Emacs in Mach-O format for use on Mac OS X.
2 Copyright (C) 2001-2012 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* Contributed by Andrew Choi (akochoi@mac.com). */
20
21 /* Documentation note.
22
23 Consult the following documents/files for a description of the
24 Mach-O format: the file loader.h, man pages for Mach-O and ld, old
25 NEXTSTEP documents of the Mach-O format. The tool otool dumps the
26 mach header (-h option) and the load commands (-l option) in a
27 Mach-O file. The tool nm on Mac OS X displays the symbol table in
28 a Mach-O file. For examples of unexec for the Mach-O format, see
29 the file unexnext.c in the GNU Emacs distribution, the file
30 unexdyld.c in the Darwin port of GNU Emacs 20.7, and unexdyld.c in
31 the Darwin port of XEmacs 21.1. Also the Darwin Libc source
32 contains the source code for malloc_freezedry and malloc_jumpstart.
33 Read that to see what they do. This file was written completely
34 from scratch, making use of information from the above sources. */
35
36 /* The Mac OS X implementation of unexec makes use of Darwin's `zone'
37 memory allocator. All calls to malloc, realloc, and free in Emacs
38 are redirected to unexec_malloc, unexec_realloc, and unexec_free in
39 this file. When temacs is run, all memory requests are handled in
40 the zone EmacsZone. The Darwin memory allocator library calls
41 maintain the data structures to manage this zone. Dumping writes
42 its contents to data segments of the executable file. When emacs
43 is run, the loader recreates the contents of the zone in memory.
44 However since the initialization routine of the zone memory
45 allocator is run again, this `zone' can no longer be used as a
46 heap. That is why emacs uses the ordinary malloc system call to
47 allocate memory. Also, when a block of memory needs to be
48 reallocated and the new size is larger than the old one, a new
49 block must be obtained by malloc and the old contents copied to
50 it. */
51
52 /* Peculiarity of the Mach-O files generated by ld in Mac OS X
53 (possible causes of future bugs if changed).
54
55 The file offset of the start of the __TEXT segment is zero. Since
56 the Mach header and load commands are located at the beginning of a
57 Mach-O file, copying the contents of the __TEXT segment from the
58 input file overwrites them in the output file. Despite this,
59 unexec works fine as written below because the segment load command
60 for __TEXT appears, and is therefore processed, before all other
61 load commands except the segment load command for __PAGEZERO, which
62 remains unchanged.
63
64 Although the file offset of the start of the __TEXT segment is
65 zero, none of the sections it contains actually start there. In
66 fact, the earliest one starts a few hundred bytes beyond the end of
67 the last load command. The linker option -headerpad controls the
68 minimum size of this padding. Its setting can be changed in
69 s/darwin.h. A value of 0x690, e.g., leaves room for 30 additional
70 load commands for the newly created __DATA segments (at 56 bytes
71 each). Unexec fails if there is not enough room for these new
72 segments.
73
74 The __TEXT segment contains the sections __text, __cstring,
75 __picsymbol_stub, and __const and the __DATA segment contains the
76 sections __data, __la_symbol_ptr, __nl_symbol_ptr, __dyld, __bss,
77 and __common. The other segments do not contain any sections.
78 These sections are copied from the input file to the output file,
79 except for __data, __bss, and __common, which are dumped from
80 memory. The types of the sections __bss and __common are changed
81 from S_ZEROFILL to S_REGULAR. Note that the number of sections and
82 their relative order in the input and output files remain
83 unchanged. Otherwise all n_sect fields in the nlist records in the
84 symbol table (specified by the LC_SYMTAB load command) will have to
85 be changed accordingly.
86 */
87
88 /* config.h #define:s malloc/realloc/free and then includes stdlib.h.
89 We want the undefined versions, but if config.h includes stdlib.h
90 with the #define:s in place, the prototypes will be wrong and we get
91 warnings. To prevent that, include stdlib.h before config.h. */
92
93 #include <stdlib.h>
94 #include <config.h>
95 #undef malloc
96 #undef realloc
97 #undef free
98
99 #include "unexec.h"
100
101 #include <stdio.h>
102 #include <fcntl.h>
103 #include <stdarg.h>
104 #include <sys/types.h>
105 #include <unistd.h>
106 #include <mach/mach.h>
107 #include <mach-o/loader.h>
108 #include <mach-o/reloc.h>
109 #if defined (__ppc__)
110 #include <mach-o/ppc/reloc.h>
111 #endif
112 #ifdef HAVE_MALLOC_MALLOC_H
113 #include <malloc/malloc.h>
114 #else
115 #include <objc/malloc.h>
116 #endif
117
118 #include <assert.h>
119
120 #ifdef _LP64
121 #define mach_header mach_header_64
122 #define segment_command segment_command_64
123 #undef VM_REGION_BASIC_INFO_COUNT
124 #define VM_REGION_BASIC_INFO_COUNT VM_REGION_BASIC_INFO_COUNT_64
125 #undef VM_REGION_BASIC_INFO
126 #define VM_REGION_BASIC_INFO VM_REGION_BASIC_INFO_64
127 #undef LC_SEGMENT
128 #define LC_SEGMENT LC_SEGMENT_64
129 #define vm_region vm_region_64
130 #define section section_64
131 #undef MH_MAGIC
132 #define MH_MAGIC MH_MAGIC_64
133 #endif
134
135 #define VERBOSE 1
136
137 /* Size of buffer used to copy data from the input file to the output
138 file in function unexec_copy. */
139 #define UNEXEC_COPY_BUFSZ 1024
140
141 /* Regions with memory addresses above this value are assumed to be
142 mapped to dynamically loaded libraries and will not be dumped. */
143 #define VM_DATA_TOP (20 * 1024 * 1024)
144
145 /* Type of an element on the list of regions to be dumped. */
146 struct region_t {
147 vm_address_t address;
148 vm_size_t size;
149 vm_prot_t protection;
150 vm_prot_t max_protection;
151
152 struct region_t *next;
153 };
154
155 /* Head and tail of the list of regions to be dumped. */
156 static struct region_t *region_list_head = 0;
157 static struct region_t *region_list_tail = 0;
158
159 /* Pointer to array of load commands. */
160 static struct load_command **lca;
161
162 /* Number of load commands. */
163 static int nlc;
164
165 /* The highest VM address of segments loaded by the input file.
166 Regions with addresses beyond this are assumed to be allocated
167 dynamically and thus require dumping. */
168 static vm_address_t infile_lc_highest_addr = 0;
169
170 /* The lowest file offset used by the all sections in the __TEXT
171 segments. This leaves room at the beginning of the file to store
172 the Mach-O header. Check this value against header size to ensure
173 the added load commands for the new __DATA segments did not
174 overwrite any of the sections in the __TEXT segment. */
175 static unsigned long text_seg_lowest_offset = 0x10000000;
176
177 /* Mach header. */
178 static struct mach_header mh;
179
180 /* Offset at which the next load command should be written. */
181 static unsigned long curr_header_offset = sizeof (struct mach_header);
182
183 /* Offset at which the next segment should be written. */
184 static unsigned long curr_file_offset = 0;
185
186 static unsigned long pagesize;
187 #define ROUNDUP_TO_PAGE_BOUNDARY(x) (((x) + pagesize - 1) & ~(pagesize - 1))
188
189 static int infd, outfd;
190
191 static int in_dumped_exec = 0;
192
193 static malloc_zone_t *emacs_zone;
194
195 /* file offset of input file's data segment */
196 static off_t data_segment_old_fileoff = 0;
197
198 static struct segment_command *data_segment_scp;
199
200 /* Read N bytes from infd into memory starting at address DEST.
201 Return true if successful, false otherwise. */
202 static int
203 unexec_read (void *dest, size_t n)
204 {
205 return n == read (infd, dest, n);
206 }
207
208 /* Write COUNT bytes from memory starting at address SRC to outfd
209 starting at offset DEST. Return true if successful, false
210 otherwise. */
211 static int
212 unexec_write (off_t dest, const void *src, size_t count)
213 {
214 if (lseek (outfd, dest, SEEK_SET) != dest)
215 return 0;
216
217 return write (outfd, src, count) == count;
218 }
219
220 /* Write COUNT bytes of zeros to outfd starting at offset DEST.
221 Return true if successful, false otherwise. */
222 static int
223 unexec_write_zero (off_t dest, size_t count)
224 {
225 char buf[UNEXEC_COPY_BUFSZ];
226 ssize_t bytes;
227
228 memset (buf, 0, UNEXEC_COPY_BUFSZ);
229 if (lseek (outfd, dest, SEEK_SET) != dest)
230 return 0;
231
232 while (count > 0)
233 {
234 bytes = count > UNEXEC_COPY_BUFSZ ? UNEXEC_COPY_BUFSZ : count;
235 if (write (outfd, buf, bytes) != bytes)
236 return 0;
237 count -= bytes;
238 }
239
240 return 1;
241 }
242
243 /* Copy COUNT bytes from starting offset SRC in infd to starting
244 offset DEST in outfd. Return true if successful, false
245 otherwise. */
246 static int
247 unexec_copy (off_t dest, off_t src, ssize_t count)
248 {
249 ssize_t bytes_read;
250 ssize_t bytes_to_read;
251
252 char buf[UNEXEC_COPY_BUFSZ];
253
254 if (lseek (infd, src, SEEK_SET) != src)
255 return 0;
256
257 if (lseek (outfd, dest, SEEK_SET) != dest)
258 return 0;
259
260 while (count > 0)
261 {
262 bytes_to_read = count > UNEXEC_COPY_BUFSZ ? UNEXEC_COPY_BUFSZ : count;
263 bytes_read = read (infd, buf, bytes_to_read);
264 if (bytes_read <= 0)
265 return 0;
266 if (write (outfd, buf, bytes_read) != bytes_read)
267 return 0;
268 count -= bytes_read;
269 }
270
271 return 1;
272 }
273
274 /* Debugging and informational messages routines. */
275
276 static _Noreturn void
277 unexec_error (const char *format, ...)
278 {
279 va_list ap;
280
281 va_start (ap, format);
282 fprintf (stderr, "unexec: ");
283 vfprintf (stderr, format, ap);
284 fprintf (stderr, "\n");
285 va_end (ap);
286 exit (1);
287 }
288
289 static void
290 print_prot (vm_prot_t prot)
291 {
292 if (prot == VM_PROT_NONE)
293 printf ("none");
294 else
295 {
296 putchar (prot & VM_PROT_READ ? 'r' : ' ');
297 putchar (prot & VM_PROT_WRITE ? 'w' : ' ');
298 putchar (prot & VM_PROT_EXECUTE ? 'x' : ' ');
299 putchar (' ');
300 }
301 }
302
303 static void
304 print_region (vm_address_t address, vm_size_t size, vm_prot_t prot,
305 vm_prot_t max_prot)
306 {
307 printf ("%#10lx %#8lx ", (long) address, (long) size);
308 print_prot (prot);
309 putchar (' ');
310 print_prot (max_prot);
311 putchar ('\n');
312 }
313
314 static void
315 print_region_list (void)
316 {
317 struct region_t *r;
318
319 printf (" address size prot maxp\n");
320
321 for (r = region_list_head; r; r = r->next)
322 print_region (r->address, r->size, r->protection, r->max_protection);
323 }
324
325 static void
326 print_regions (void)
327 {
328 task_t target_task = mach_task_self ();
329 vm_address_t address = (vm_address_t) 0;
330 vm_size_t size;
331 struct vm_region_basic_info info;
332 mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT;
333 mach_port_t object_name;
334
335 printf (" address size prot maxp\n");
336
337 while (vm_region (target_task, &address, &size, VM_REGION_BASIC_INFO,
338 (vm_region_info_t) &info, &info_count, &object_name)
339 == KERN_SUCCESS && info_count == VM_REGION_BASIC_INFO_COUNT)
340 {
341 print_region (address, size, info.protection, info.max_protection);
342
343 if (object_name != MACH_PORT_NULL)
344 mach_port_deallocate (target_task, object_name);
345
346 address += size;
347 }
348 }
349
350 /* Build the list of regions that need to be dumped. Regions with
351 addresses above VM_DATA_TOP are omitted. Adjacent regions with
352 identical protection are merged. Note that non-writable regions
353 cannot be omitted because they some regions created at run time are
354 read-only. */
355 static void
356 build_region_list (void)
357 {
358 task_t target_task = mach_task_self ();
359 vm_address_t address = (vm_address_t) 0;
360 vm_size_t size;
361 struct vm_region_basic_info info;
362 mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT;
363 mach_port_t object_name;
364 struct region_t *r;
365
366 #if VERBOSE
367 printf ("--- List of All Regions ---\n");
368 printf (" address size prot maxp\n");
369 #endif
370
371 while (vm_region (target_task, &address, &size, VM_REGION_BASIC_INFO,
372 (vm_region_info_t) &info, &info_count, &object_name)
373 == KERN_SUCCESS && info_count == VM_REGION_BASIC_INFO_COUNT)
374 {
375 /* Done when we reach addresses of shared libraries, which are
376 loaded in high memory. */
377 if (address >= VM_DATA_TOP)
378 break;
379
380 #if VERBOSE
381 print_region (address, size, info.protection, info.max_protection);
382 #endif
383
384 /* If a region immediately follows the previous one (the one
385 most recently added to the list) and has identical
386 protection, merge it with the latter. Otherwise create a
387 new list element for it. */
388 if (region_list_tail
389 && info.protection == region_list_tail->protection
390 && info.max_protection == region_list_tail->max_protection
391 && region_list_tail->address + region_list_tail->size == address)
392 {
393 region_list_tail->size += size;
394 }
395 else
396 {
397 r = (struct region_t *) malloc (sizeof (struct region_t));
398
399 if (!r)
400 unexec_error ("cannot allocate region structure");
401
402 r->address = address;
403 r->size = size;
404 r->protection = info.protection;
405 r->max_protection = info.max_protection;
406
407 r->next = 0;
408 if (region_list_head == 0)
409 {
410 region_list_head = r;
411 region_list_tail = r;
412 }
413 else
414 {
415 region_list_tail->next = r;
416 region_list_tail = r;
417 }
418
419 /* Deallocate (unused) object name returned by
420 vm_region. */
421 if (object_name != MACH_PORT_NULL)
422 mach_port_deallocate (target_task, object_name);
423 }
424
425 address += size;
426 }
427
428 printf ("--- List of Regions to be Dumped ---\n");
429 print_region_list ();
430 }
431
432
433 #define MAX_UNEXEC_REGIONS 400
434
435 static int num_unexec_regions;
436 typedef struct {
437 vm_range_t range;
438 vm_size_t filesize;
439 } unexec_region_info;
440 static unexec_region_info unexec_regions[MAX_UNEXEC_REGIONS];
441
442 static void
443 unexec_regions_recorder (task_t task, void *rr, unsigned type,
444 vm_range_t *ranges, unsigned num)
445 {
446 vm_address_t p;
447 vm_size_t filesize;
448
449 while (num && num_unexec_regions < MAX_UNEXEC_REGIONS)
450 {
451 /* Subtract the size of trailing null bytes from filesize. It
452 can be smaller than vmsize in segment commands. In such a
453 case, trailing bytes are initialized with zeros. */
454 for (p = ranges->address + ranges->size; p > ranges->address; p--)
455 if (*(((char *) p)-1))
456 break;
457 filesize = p - ranges->address;
458
459 unexec_regions[num_unexec_regions].filesize = filesize;
460 unexec_regions[num_unexec_regions++].range = *ranges;
461 printf ("%#10lx (sz: %#8lx/%#8lx)\n", (long) (ranges->address),
462 (long) filesize, (long) (ranges->size));
463 ranges++; num--;
464 }
465 }
466
467 static kern_return_t
468 unexec_reader (task_t task, vm_address_t address, vm_size_t size, void **ptr)
469 {
470 *ptr = (void *) address;
471 return KERN_SUCCESS;
472 }
473
474 static void
475 find_emacs_zone_regions (void)
476 {
477 num_unexec_regions = 0;
478
479 emacs_zone->introspect->enumerator (mach_task_self (), 0,
480 MALLOC_PTR_REGION_RANGE_TYPE
481 | MALLOC_ADMIN_REGION_RANGE_TYPE,
482 (vm_address_t) emacs_zone,
483 unexec_reader,
484 unexec_regions_recorder);
485
486 if (num_unexec_regions == MAX_UNEXEC_REGIONS)
487 unexec_error ("find_emacs_zone_regions: too many regions");
488 }
489
490 static int
491 unexec_regions_sort_compare (const void *a, const void *b)
492 {
493 vm_address_t aa = ((unexec_region_info *) a)->range.address;
494 vm_address_t bb = ((unexec_region_info *) b)->range.address;
495
496 if (aa < bb)
497 return -1;
498 else if (aa > bb)
499 return 1;
500 else
501 return 0;
502 }
503
504 static void
505 unexec_regions_merge (void)
506 {
507 int i, n;
508 unexec_region_info r;
509 vm_size_t padsize;
510
511 qsort (unexec_regions, num_unexec_regions, sizeof (unexec_regions[0]),
512 &unexec_regions_sort_compare);
513 n = 0;
514 r = unexec_regions[0];
515 padsize = r.range.address & (pagesize - 1);
516 if (padsize)
517 {
518 r.range.address -= padsize;
519 r.range.size += padsize;
520 r.filesize += padsize;
521 }
522 for (i = 1; i < num_unexec_regions; i++)
523 {
524 if (r.range.address + r.range.size == unexec_regions[i].range.address
525 && r.range.size - r.filesize < 2 * pagesize)
526 {
527 r.filesize = r.range.size + unexec_regions[i].filesize;
528 r.range.size += unexec_regions[i].range.size;
529 }
530 else
531 {
532 unexec_regions[n++] = r;
533 r = unexec_regions[i];
534 padsize = r.range.address & (pagesize - 1);
535 if (padsize)
536 {
537 if ((unexec_regions[n-1].range.address
538 + unexec_regions[n-1].range.size) == r.range.address)
539 unexec_regions[n-1].range.size -= padsize;
540
541 r.range.address -= padsize;
542 r.range.size += padsize;
543 r.filesize += padsize;
544 }
545 }
546 }
547 unexec_regions[n++] = r;
548 num_unexec_regions = n;
549 }
550
551
552 /* More informational messages routines. */
553
554 static void
555 print_load_command_name (int lc)
556 {
557 switch (lc)
558 {
559 case LC_SEGMENT:
560 #ifndef _LP64
561 printf ("LC_SEGMENT ");
562 #else
563 printf ("LC_SEGMENT_64 ");
564 #endif
565 break;
566 case LC_LOAD_DYLINKER:
567 printf ("LC_LOAD_DYLINKER ");
568 break;
569 case LC_LOAD_DYLIB:
570 printf ("LC_LOAD_DYLIB ");
571 break;
572 case LC_SYMTAB:
573 printf ("LC_SYMTAB ");
574 break;
575 case LC_DYSYMTAB:
576 printf ("LC_DYSYMTAB ");
577 break;
578 case LC_UNIXTHREAD:
579 printf ("LC_UNIXTHREAD ");
580 break;
581 case LC_PREBOUND_DYLIB:
582 printf ("LC_PREBOUND_DYLIB");
583 break;
584 case LC_TWOLEVEL_HINTS:
585 printf ("LC_TWOLEVEL_HINTS");
586 break;
587 #ifdef LC_UUID
588 case LC_UUID:
589 printf ("LC_UUID ");
590 break;
591 #endif
592 #ifdef LC_DYLD_INFO
593 case LC_DYLD_INFO:
594 printf ("LC_DYLD_INFO ");
595 break;
596 case LC_DYLD_INFO_ONLY:
597 printf ("LC_DYLD_INFO_ONLY");
598 break;
599 #endif
600 #ifdef LC_VERSION_MIN_MACOSX
601 case LC_VERSION_MIN_MACOSX:
602 printf ("LC_VERSION_MIN_MACOSX");
603 break;
604 #endif
605 #ifdef LC_FUNCTION_STARTS
606 case LC_FUNCTION_STARTS:
607 printf ("LC_FUNCTION_STARTS");
608 break;
609 #endif
610 default:
611 printf ("unknown ");
612 }
613 }
614
615 static void
616 print_load_command (struct load_command *lc)
617 {
618 print_load_command_name (lc->cmd);
619 printf ("%8d", lc->cmdsize);
620
621 if (lc->cmd == LC_SEGMENT)
622 {
623 struct segment_command *scp;
624 struct section *sectp;
625 int j;
626
627 scp = (struct segment_command *) lc;
628 printf (" %-16.16s %#10lx %#8lx\n",
629 scp->segname, (long) (scp->vmaddr), (long) (scp->vmsize));
630
631 sectp = (struct section *) (scp + 1);
632 for (j = 0; j < scp->nsects; j++)
633 {
634 printf (" %-16.16s %#10lx %#8lx\n",
635 sectp->sectname, (long) (sectp->addr), (long) (sectp->size));
636 sectp++;
637 }
638 }
639 else
640 printf ("\n");
641 }
642
643 /* Read header and load commands from input file. Store the latter in
644 the global array lca. Store the total number of load commands in
645 global variable nlc. */
646 static void
647 read_load_commands (void)
648 {
649 int i;
650
651 if (!unexec_read (&mh, sizeof (struct mach_header)))
652 unexec_error ("cannot read mach-o header");
653
654 if (mh.magic != MH_MAGIC)
655 unexec_error ("input file not in Mach-O format");
656
657 if (mh.filetype != MH_EXECUTE)
658 unexec_error ("input Mach-O file is not an executable object file");
659
660 #if VERBOSE
661 printf ("--- Header Information ---\n");
662 printf ("Magic = 0x%08x\n", mh.magic);
663 printf ("CPUType = %d\n", mh.cputype);
664 printf ("CPUSubType = %d\n", mh.cpusubtype);
665 printf ("FileType = 0x%x\n", mh.filetype);
666 printf ("NCmds = %d\n", mh.ncmds);
667 printf ("SizeOfCmds = %d\n", mh.sizeofcmds);
668 printf ("Flags = 0x%08x\n", mh.flags);
669 #endif
670
671 nlc = mh.ncmds;
672 lca = (struct load_command **) malloc (nlc * sizeof (struct load_command *));
673
674 for (i = 0; i < nlc; i++)
675 {
676 struct load_command lc;
677 /* Load commands are variable-size: so read the command type and
678 size first and then read the rest. */
679 if (!unexec_read (&lc, sizeof (struct load_command)))
680 unexec_error ("cannot read load command");
681 lca[i] = (struct load_command *) malloc (lc.cmdsize);
682 memcpy (lca[i], &lc, sizeof (struct load_command));
683 if (!unexec_read (lca[i] + 1, lc.cmdsize - sizeof (struct load_command)))
684 unexec_error ("cannot read content of load command");
685 if (lc.cmd == LC_SEGMENT)
686 {
687 struct segment_command *scp = (struct segment_command *) lca[i];
688
689 if (scp->vmaddr + scp->vmsize > infile_lc_highest_addr)
690 infile_lc_highest_addr = scp->vmaddr + scp->vmsize;
691
692 if (strncmp (scp->segname, SEG_TEXT, 16) == 0)
693 {
694 struct section *sectp = (struct section *) (scp + 1);
695 int j;
696
697 for (j = 0; j < scp->nsects; j++)
698 if (sectp->offset < text_seg_lowest_offset)
699 text_seg_lowest_offset = sectp->offset;
700 }
701 }
702 }
703
704 printf ("Highest address of load commands in input file: %#8lx\n",
705 (unsigned long)infile_lc_highest_addr);
706
707 printf ("Lowest offset of all sections in __TEXT segment: %#8lx\n",
708 text_seg_lowest_offset);
709
710 printf ("--- List of Load Commands in Input File ---\n");
711 printf ("# cmd cmdsize name address size\n");
712
713 for (i = 0; i < nlc; i++)
714 {
715 printf ("%1d ", i);
716 print_load_command (lca[i]);
717 }
718 }
719
720 /* Copy a LC_SEGMENT load command other than the __DATA segment from
721 the input file to the output file, adjusting the file offset of the
722 segment and the file offsets of sections contained in it. */
723 static void
724 copy_segment (struct load_command *lc)
725 {
726 struct segment_command *scp = (struct segment_command *) lc;
727 unsigned long old_fileoff = scp->fileoff;
728 struct section *sectp;
729 int j;
730
731 scp->fileoff = curr_file_offset;
732
733 sectp = (struct section *) (scp + 1);
734 for (j = 0; j < scp->nsects; j++)
735 {
736 sectp->offset += curr_file_offset - old_fileoff;
737 sectp++;
738 }
739
740 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
741 scp->segname, (long) (scp->fileoff), (long) (scp->filesize),
742 (long) (scp->vmsize), (long) (scp->vmaddr));
743
744 if (!unexec_copy (scp->fileoff, old_fileoff, scp->filesize))
745 unexec_error ("cannot copy segment from input to output file");
746 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (scp->filesize);
747
748 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
749 unexec_error ("cannot write load command to header");
750
751 curr_header_offset += lc->cmdsize;
752 }
753
754 /* Copy a LC_SEGMENT load command for the __DATA segment in the input
755 file to the output file. We assume that only one such segment load
756 command exists in the input file and it contains the sections
757 __data, __bss, __common, __la_symbol_ptr, __nl_symbol_ptr, and
758 __dyld. The first three of these should be dumped from memory and
759 the rest should be copied from the input file. Note that the
760 sections __bss and __common contain no data in the input file
761 because their flag fields have the value S_ZEROFILL. Dumping these
762 from memory makes it necessary to adjust file offset fields in
763 subsequently dumped load commands. Then, create new __DATA segment
764 load commands for regions on the region list other than the one
765 corresponding to the __DATA segment in the input file. */
766 static void
767 copy_data_segment (struct load_command *lc)
768 {
769 struct segment_command *scp = (struct segment_command *) lc;
770 struct section *sectp;
771 int j;
772 unsigned long header_offset, old_file_offset;
773
774 /* The new filesize of the segment is set to its vmsize because data
775 blocks for segments must start at region boundaries. Note that
776 this may leave unused locations at the end of the segment data
777 block because the total of the sizes of all sections in the
778 segment is generally smaller than vmsize. */
779 scp->filesize = scp->vmsize;
780
781 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
782 scp->segname, curr_file_offset, (long)(scp->filesize),
783 (long)(scp->vmsize), (long) (scp->vmaddr));
784
785 /* Offsets in the output file for writing the next section structure
786 and segment data block, respectively. */
787 header_offset = curr_header_offset + sizeof (struct segment_command);
788
789 sectp = (struct section *) (scp + 1);
790 for (j = 0; j < scp->nsects; j++)
791 {
792 old_file_offset = sectp->offset;
793 sectp->offset = sectp->addr - scp->vmaddr + curr_file_offset;
794 /* The __data section is dumped from memory. The __bss and
795 __common sections are also dumped from memory but their flag
796 fields require changing (from S_ZEROFILL to S_REGULAR). The
797 other three kinds of sections are just copied from the input
798 file. */
799 if (strncmp (sectp->sectname, SECT_DATA, 16) == 0)
800 {
801 if (!unexec_write (sectp->offset, (void *) sectp->addr, sectp->size))
802 unexec_error ("cannot write section %s", SECT_DATA);
803 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
804 unexec_error ("cannot write section %s's header", SECT_DATA);
805 }
806 else if (strncmp (sectp->sectname, SECT_COMMON, 16) == 0)
807 {
808 sectp->flags = S_REGULAR;
809 if (!unexec_write (sectp->offset, (void *) sectp->addr, sectp->size))
810 unexec_error ("cannot write section %.16s", sectp->sectname);
811 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
812 unexec_error ("cannot write section %.16s's header", sectp->sectname);
813 }
814 else if (strncmp (sectp->sectname, SECT_BSS, 16) == 0)
815 {
816 extern char *my_endbss_static;
817 unsigned long my_size;
818
819 sectp->flags = S_REGULAR;
820
821 /* Clear uninitialized local variables in statically linked
822 libraries. In particular, function pointers stored by
823 libSystemStub.a, which is introduced in Mac OS X 10.4 for
824 binary compatibility with respect to long double, are
825 cleared so that they will be reinitialized when the
826 dumped binary is executed on other versions of OS. */
827 my_size = (unsigned long)my_endbss_static - sectp->addr;
828 if (!(sectp->addr <= (unsigned long)my_endbss_static
829 && my_size <= sectp->size))
830 unexec_error ("my_endbss_static is not in section %.16s",
831 sectp->sectname);
832 if (!unexec_write (sectp->offset, (void *) sectp->addr, my_size))
833 unexec_error ("cannot write section %.16s", sectp->sectname);
834 if (!unexec_write_zero (sectp->offset + my_size,
835 sectp->size - my_size))
836 unexec_error ("cannot write section %.16s", sectp->sectname);
837 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
838 unexec_error ("cannot write section %.16s's header", sectp->sectname);
839 }
840 else if (strncmp (sectp->sectname, "__la_symbol_ptr", 16) == 0
841 || strncmp (sectp->sectname, "__nl_symbol_ptr", 16) == 0
842 || strncmp (sectp->sectname, "__got", 16) == 0
843 || strncmp (sectp->sectname, "__la_sym_ptr2", 16) == 0
844 || strncmp (sectp->sectname, "__dyld", 16) == 0
845 || strncmp (sectp->sectname, "__const", 16) == 0
846 || strncmp (sectp->sectname, "__cfstring", 16) == 0
847 || strncmp (sectp->sectname, "__gcc_except_tab", 16) == 0
848 || strncmp (sectp->sectname, "__program_vars", 16) == 0
849 || strncmp (sectp->sectname, "__objc_", 7) == 0)
850 {
851 if (!unexec_copy (sectp->offset, old_file_offset, sectp->size))
852 unexec_error ("cannot copy section %.16s", sectp->sectname);
853 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
854 unexec_error ("cannot write section %.16s's header", sectp->sectname);
855 }
856 else
857 unexec_error ("unrecognized section %.16s in __DATA segment",
858 sectp->sectname);
859
860 printf (" section %-16.16s at %#8lx - %#8lx (sz: %#8lx)\n",
861 sectp->sectname, (long) (sectp->offset),
862 (long) (sectp->offset + sectp->size), (long) (sectp->size));
863
864 header_offset += sizeof (struct section);
865 sectp++;
866 }
867
868 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (scp->filesize);
869
870 if (!unexec_write (curr_header_offset, scp, sizeof (struct segment_command)))
871 unexec_error ("cannot write header of __DATA segment");
872 curr_header_offset += lc->cmdsize;
873
874 /* Create new __DATA segment load commands for regions on the region
875 list that do not corresponding to any segment load commands in
876 the input file.
877 */
878 for (j = 0; j < num_unexec_regions; j++)
879 {
880 struct segment_command sc;
881
882 sc.cmd = LC_SEGMENT;
883 sc.cmdsize = sizeof (struct segment_command);
884 strncpy (sc.segname, SEG_DATA, 16);
885 sc.vmaddr = unexec_regions[j].range.address;
886 sc.vmsize = unexec_regions[j].range.size;
887 sc.fileoff = curr_file_offset;
888 sc.filesize = unexec_regions[j].filesize;
889 sc.maxprot = VM_PROT_READ | VM_PROT_WRITE;
890 sc.initprot = VM_PROT_READ | VM_PROT_WRITE;
891 sc.nsects = 0;
892 sc.flags = 0;
893
894 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
895 sc.segname, (long) (sc.fileoff), (long) (sc.filesize),
896 (long) (sc.vmsize), (long) (sc.vmaddr));
897
898 if (!unexec_write (sc.fileoff, (void *) sc.vmaddr, sc.filesize))
899 unexec_error ("cannot write new __DATA segment");
900 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (sc.filesize);
901
902 if (!unexec_write (curr_header_offset, &sc, sc.cmdsize))
903 unexec_error ("cannot write new __DATA segment's header");
904 curr_header_offset += sc.cmdsize;
905 mh.ncmds++;
906 }
907 }
908
909 /* Copy a LC_SYMTAB load command from the input file to the output
910 file, adjusting the file offset fields. */
911 static void
912 copy_symtab (struct load_command *lc, long delta)
913 {
914 struct symtab_command *stp = (struct symtab_command *) lc;
915
916 stp->symoff += delta;
917 stp->stroff += delta;
918
919 printf ("Writing LC_SYMTAB command\n");
920
921 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
922 unexec_error ("cannot write symtab command to header");
923
924 curr_header_offset += lc->cmdsize;
925 }
926
927 /* Fix up relocation entries. */
928 static void
929 unrelocate (const char *name, off_t reloff, int nrel, vm_address_t base)
930 {
931 int i, unreloc_count;
932 struct relocation_info reloc_info;
933 struct scattered_relocation_info *sc_reloc_info
934 = (struct scattered_relocation_info *) &reloc_info;
935 vm_address_t location;
936
937 for (unreloc_count = 0, i = 0; i < nrel; i++)
938 {
939 if (lseek (infd, reloff, L_SET) != reloff)
940 unexec_error ("unrelocate: %s:%d cannot seek to reloc_info", name, i);
941 if (!unexec_read (&reloc_info, sizeof (reloc_info)))
942 unexec_error ("unrelocate: %s:%d cannot read reloc_info", name, i);
943 reloff += sizeof (reloc_info);
944
945 if (sc_reloc_info->r_scattered == 0)
946 switch (reloc_info.r_type)
947 {
948 case GENERIC_RELOC_VANILLA:
949 location = base + reloc_info.r_address;
950 if (location >= data_segment_scp->vmaddr
951 && location < (data_segment_scp->vmaddr
952 + data_segment_scp->vmsize))
953 {
954 off_t src_off = data_segment_old_fileoff
955 + (location - data_segment_scp->vmaddr);
956 off_t dst_off = data_segment_scp->fileoff
957 + (location - data_segment_scp->vmaddr);
958
959 if (!unexec_copy (dst_off, src_off, 1 << reloc_info.r_length))
960 unexec_error ("unrelocate: %s:%d cannot copy original value",
961 name, i);
962 unreloc_count++;
963 }
964 break;
965 default:
966 unexec_error ("unrelocate: %s:%d cannot handle type = %d",
967 name, i, reloc_info.r_type);
968 }
969 else
970 switch (sc_reloc_info->r_type)
971 {
972 #if defined (__ppc__)
973 case PPC_RELOC_PB_LA_PTR:
974 /* nothing to do for prebound lazy pointer */
975 break;
976 #endif
977 default:
978 unexec_error ("unrelocate: %s:%d cannot handle scattered type = %d",
979 name, i, sc_reloc_info->r_type);
980 }
981 }
982
983 if (nrel > 0)
984 printf ("Fixed up %d/%d %s relocation entries in data segment.\n",
985 unreloc_count, nrel, name);
986 }
987
988 #if __ppc64__
989 /* Rebase r_address in the relocation table. */
990 static void
991 rebase_reloc_address (off_t reloff, int nrel, long linkedit_delta, long diff)
992 {
993 int i;
994 struct relocation_info reloc_info;
995 struct scattered_relocation_info *sc_reloc_info
996 = (struct scattered_relocation_info *) &reloc_info;
997
998 for (i = 0; i < nrel; i++, reloff += sizeof (reloc_info))
999 {
1000 if (lseek (infd, reloff - linkedit_delta, L_SET)
1001 != reloff - linkedit_delta)
1002 unexec_error ("rebase_reloc_table: cannot seek to reloc_info");
1003 if (!unexec_read (&reloc_info, sizeof (reloc_info)))
1004 unexec_error ("rebase_reloc_table: cannot read reloc_info");
1005
1006 if (sc_reloc_info->r_scattered == 0
1007 && reloc_info.r_type == GENERIC_RELOC_VANILLA)
1008 {
1009 reloc_info.r_address -= diff;
1010 if (!unexec_write (reloff, &reloc_info, sizeof (reloc_info)))
1011 unexec_error ("rebase_reloc_table: cannot write reloc_info");
1012 }
1013 }
1014 }
1015 #endif
1016
1017 /* Copy a LC_DYSYMTAB load command from the input file to the output
1018 file, adjusting the file offset fields. */
1019 static void
1020 copy_dysymtab (struct load_command *lc, long delta)
1021 {
1022 struct dysymtab_command *dstp = (struct dysymtab_command *) lc;
1023 vm_address_t base;
1024
1025 #ifdef _LP64
1026 #if __ppc64__
1027 {
1028 int i;
1029
1030 base = 0;
1031 for (i = 0; i < nlc; i++)
1032 if (lca[i]->cmd == LC_SEGMENT)
1033 {
1034 struct segment_command *scp = (struct segment_command *) lca[i];
1035
1036 if (scp->vmaddr + scp->vmsize > 0x100000000
1037 && (scp->initprot & VM_PROT_WRITE) != 0)
1038 {
1039 base = data_segment_scp->vmaddr;
1040 break;
1041 }
1042 }
1043 }
1044 #else
1045 /* First writable segment address. */
1046 base = data_segment_scp->vmaddr;
1047 #endif
1048 #else
1049 /* First segment address in the file (unless MH_SPLIT_SEGS set). */
1050 base = 0;
1051 #endif
1052
1053 unrelocate ("local", dstp->locreloff, dstp->nlocrel, base);
1054 unrelocate ("external", dstp->extreloff, dstp->nextrel, base);
1055
1056 if (dstp->nextrel > 0) {
1057 dstp->extreloff += delta;
1058 }
1059
1060 if (dstp->nlocrel > 0) {
1061 dstp->locreloff += delta;
1062 }
1063
1064 if (dstp->nindirectsyms > 0)
1065 dstp->indirectsymoff += delta;
1066
1067 printf ("Writing LC_DYSYMTAB command\n");
1068
1069 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1070 unexec_error ("cannot write symtab command to header");
1071
1072 curr_header_offset += lc->cmdsize;
1073
1074 #if __ppc64__
1075 /* Check if the relocation base needs to be changed. */
1076 if (base == 0)
1077 {
1078 vm_address_t newbase = 0;
1079 int i;
1080
1081 for (i = 0; i < num_unexec_regions; i++)
1082 if (unexec_regions[i].range.address + unexec_regions[i].range.size
1083 > 0x100000000)
1084 {
1085 newbase = data_segment_scp->vmaddr;
1086 break;
1087 }
1088
1089 if (newbase)
1090 {
1091 rebase_reloc_address (dstp->locreloff, dstp->nlocrel, delta, newbase);
1092 rebase_reloc_address (dstp->extreloff, dstp->nextrel, delta, newbase);
1093 }
1094 }
1095 #endif
1096 }
1097
1098 /* Copy a LC_TWOLEVEL_HINTS load command from the input file to the output
1099 file, adjusting the file offset fields. */
1100 static void
1101 copy_twolevelhints (struct load_command *lc, long delta)
1102 {
1103 struct twolevel_hints_command *tlhp = (struct twolevel_hints_command *) lc;
1104
1105 if (tlhp->nhints > 0) {
1106 tlhp->offset += delta;
1107 }
1108
1109 printf ("Writing LC_TWOLEVEL_HINTS command\n");
1110
1111 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1112 unexec_error ("cannot write two level hint command to header");
1113
1114 curr_header_offset += lc->cmdsize;
1115 }
1116
1117 #ifdef LC_DYLD_INFO
1118 /* Copy a LC_DYLD_INFO(_ONLY) load command from the input file to the output
1119 file, adjusting the file offset fields. */
1120 static void
1121 copy_dyld_info (struct load_command *lc, long delta)
1122 {
1123 struct dyld_info_command *dip = (struct dyld_info_command *) lc;
1124
1125 if (dip->rebase_off > 0)
1126 dip->rebase_off += delta;
1127 if (dip->bind_off > 0)
1128 dip->bind_off += delta;
1129 if (dip->weak_bind_off > 0)
1130 dip->weak_bind_off += delta;
1131 if (dip->lazy_bind_off > 0)
1132 dip->lazy_bind_off += delta;
1133 if (dip->export_off > 0)
1134 dip->export_off += delta;
1135
1136 printf ("Writing ");
1137 print_load_command_name (lc->cmd);
1138 printf (" command\n");
1139
1140 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1141 unexec_error ("cannot write dyld info command to header");
1142
1143 curr_header_offset += lc->cmdsize;
1144 }
1145 #endif
1146
1147 #ifdef LC_FUNCTION_STARTS
1148 /* Copy a LC_FUNCTION_STARTS load command from the input file to the
1149 output file, adjusting the data offset field. */
1150 static void
1151 copy_linkedit_data (struct load_command *lc, long delta)
1152 {
1153 struct linkedit_data_command *ldp = (struct linkedit_data_command *) lc;
1154
1155 if (ldp->dataoff > 0)
1156 ldp->dataoff += delta;
1157
1158 printf ("Writing ");
1159 print_load_command_name (lc->cmd);
1160 printf (" command\n");
1161
1162 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1163 unexec_error ("cannot write linkedit data command to header");
1164
1165 curr_header_offset += lc->cmdsize;
1166 }
1167 #endif
1168
1169 /* Copy other kinds of load commands from the input file to the output
1170 file, ones that do not require adjustments of file offsets. */
1171 static void
1172 copy_other (struct load_command *lc)
1173 {
1174 printf ("Writing ");
1175 print_load_command_name (lc->cmd);
1176 printf (" command\n");
1177
1178 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1179 unexec_error ("cannot write symtab command to header");
1180
1181 curr_header_offset += lc->cmdsize;
1182 }
1183
1184 /* Loop through all load commands and dump them. Then write the Mach
1185 header. */
1186 static void
1187 dump_it (void)
1188 {
1189 int i;
1190 long linkedit_delta = 0;
1191
1192 printf ("--- Load Commands written to Output File ---\n");
1193
1194 for (i = 0; i < nlc; i++)
1195 switch (lca[i]->cmd)
1196 {
1197 case LC_SEGMENT:
1198 {
1199 struct segment_command *scp = (struct segment_command *) lca[i];
1200 if (strncmp (scp->segname, SEG_DATA, 16) == 0)
1201 {
1202 /* save data segment file offset and segment_command for
1203 unrelocate */
1204 if (data_segment_old_fileoff)
1205 unexec_error ("cannot handle multiple DATA segments"
1206 " in input file");
1207 data_segment_old_fileoff = scp->fileoff;
1208 data_segment_scp = scp;
1209
1210 copy_data_segment (lca[i]);
1211 }
1212 else
1213 {
1214 if (strncmp (scp->segname, SEG_LINKEDIT, 16) == 0)
1215 {
1216 if (linkedit_delta)
1217 unexec_error ("cannot handle multiple LINKEDIT segments"
1218 " in input file");
1219 linkedit_delta = curr_file_offset - scp->fileoff;
1220 }
1221
1222 copy_segment (lca[i]);
1223 }
1224 }
1225 break;
1226 case LC_SYMTAB:
1227 copy_symtab (lca[i], linkedit_delta);
1228 break;
1229 case LC_DYSYMTAB:
1230 copy_dysymtab (lca[i], linkedit_delta);
1231 break;
1232 case LC_TWOLEVEL_HINTS:
1233 copy_twolevelhints (lca[i], linkedit_delta);
1234 break;
1235 #ifdef LC_DYLD_INFO
1236 case LC_DYLD_INFO:
1237 case LC_DYLD_INFO_ONLY:
1238 copy_dyld_info (lca[i], linkedit_delta);
1239 break;
1240 #endif
1241 #ifdef LC_FUNCTION_STARTS
1242 case LC_FUNCTION_STARTS:
1243 copy_linkedit_data (lca[i], linkedit_delta);
1244 break;
1245 #endif
1246 default:
1247 copy_other (lca[i]);
1248 break;
1249 }
1250
1251 if (curr_header_offset > text_seg_lowest_offset)
1252 unexec_error ("not enough room for load commands for new __DATA segments");
1253
1254 printf ("%ld unused bytes follow Mach-O header\n",
1255 text_seg_lowest_offset - curr_header_offset);
1256
1257 mh.sizeofcmds = curr_header_offset - sizeof (struct mach_header);
1258 if (!unexec_write (0, &mh, sizeof (struct mach_header)))
1259 unexec_error ("cannot write final header contents");
1260 }
1261
1262 /* Take a snapshot of Emacs and make a Mach-O format executable file
1263 from it. The file names of the output and input files are outfile
1264 and infile, respectively. The three other parameters are
1265 ignored. */
1266 void
1267 unexec (const char *outfile, const char *infile)
1268 {
1269 if (in_dumped_exec)
1270 unexec_error ("Unexec from a dumped executable is not supported.");
1271
1272 pagesize = getpagesize ();
1273 infd = open (infile, O_RDONLY, 0);
1274 if (infd < 0)
1275 {
1276 unexec_error ("cannot open input file `%s'", infile);
1277 }
1278
1279 outfd = open (outfile, O_WRONLY | O_TRUNC | O_CREAT, 0755);
1280 if (outfd < 0)
1281 {
1282 close (infd);
1283 unexec_error ("cannot open output file `%s'", outfile);
1284 }
1285
1286 build_region_list ();
1287 read_load_commands ();
1288
1289 find_emacs_zone_regions ();
1290 unexec_regions_merge ();
1291
1292 in_dumped_exec = 1;
1293
1294 dump_it ();
1295
1296 close (outfd);
1297 }
1298
1299
1300 void
1301 unexec_init_emacs_zone (void)
1302 {
1303 emacs_zone = malloc_create_zone (0, 0);
1304 malloc_set_zone_name (emacs_zone, "EmacsZone");
1305 }
1306
1307 #ifndef MACOSX_MALLOC_MULT16
1308 #define MACOSX_MALLOC_MULT16 1
1309 #endif
1310
1311 typedef struct unexec_malloc_header {
1312 union {
1313 char c[8];
1314 size_t size;
1315 } u;
1316 } unexec_malloc_header_t;
1317
1318 #if MACOSX_MALLOC_MULT16
1319
1320 #define ptr_in_unexec_regions(p) ((((vm_address_t) (p)) & 8) != 0)
1321
1322 #else
1323
1324 int
1325 ptr_in_unexec_regions (void *ptr)
1326 {
1327 int i;
1328
1329 for (i = 0; i < num_unexec_regions; i++)
1330 if ((vm_address_t) ptr - unexec_regions[i].range.address
1331 < unexec_regions[i].range.size)
1332 return 1;
1333
1334 return 0;
1335 }
1336
1337 #endif
1338
1339 void *
1340 unexec_malloc (size_t size)
1341 {
1342 if (in_dumped_exec)
1343 {
1344 void *p;
1345
1346 p = malloc (size);
1347 #if MACOSX_MALLOC_MULT16
1348 assert (((vm_address_t) p % 16) == 0);
1349 #endif
1350 return p;
1351 }
1352 else
1353 {
1354 unexec_malloc_header_t *ptr;
1355
1356 ptr = (unexec_malloc_header_t *)
1357 malloc_zone_malloc (emacs_zone, size + sizeof (unexec_malloc_header_t));
1358 ptr->u.size = size;
1359 ptr++;
1360 #if MACOSX_MALLOC_MULT16
1361 assert (((vm_address_t) ptr % 16) == 8);
1362 #endif
1363 return (void *) ptr;
1364 }
1365 }
1366
1367 void *
1368 unexec_realloc (void *old_ptr, size_t new_size)
1369 {
1370 if (in_dumped_exec)
1371 {
1372 void *p;
1373
1374 if (ptr_in_unexec_regions (old_ptr))
1375 {
1376 size_t old_size = ((unexec_malloc_header_t *) old_ptr)[-1].u.size;
1377 size_t size = new_size > old_size ? old_size : new_size;
1378
1379 p = (size_t *) malloc (new_size);
1380 if (size)
1381 memcpy (p, old_ptr, size);
1382 }
1383 else
1384 {
1385 p = realloc (old_ptr, new_size);
1386 }
1387 #if MACOSX_MALLOC_MULT16
1388 assert (((vm_address_t) p % 16) == 0);
1389 #endif
1390 return p;
1391 }
1392 else
1393 {
1394 unexec_malloc_header_t *ptr;
1395
1396 ptr = (unexec_malloc_header_t *)
1397 malloc_zone_realloc (emacs_zone, (unexec_malloc_header_t *) old_ptr - 1,
1398 new_size + sizeof (unexec_malloc_header_t));
1399 ptr->u.size = new_size;
1400 ptr++;
1401 #if MACOSX_MALLOC_MULT16
1402 assert (((vm_address_t) ptr % 16) == 8);
1403 #endif
1404 return (void *) ptr;
1405 }
1406 }
1407
1408 void
1409 unexec_free (void *ptr)
1410 {
1411 if (ptr == NULL)
1412 return;
1413 if (in_dumped_exec)
1414 {
1415 if (!ptr_in_unexec_regions (ptr))
1416 free (ptr);
1417 }
1418 else
1419 malloc_zone_free (emacs_zone, (unexec_malloc_header_t *) ptr - 1);
1420 }