]> code.delx.au - gnu-emacs/blob - lisp/emacs-lisp/byte-opt.el
Comments censored.
[gnu-emacs] / lisp / emacs-lisp / byte-opt.el
1 ;;; byte-opt.el --- the optimization passes of the emacs-lisp byte compiler.
2
3 ;;; Copyright (c) 1991, 1994 Free Software Foundation, Inc.
4
5 ;; Author: Jamie Zawinski <jwz@lucid.com>
6 ;; Hallvard Furuseth <hbf@ulrik.uio.no>
7 ;; Keywords: internal
8
9 ;; This file is part of GNU Emacs.
10
11 ;; GNU Emacs is free software; you can redistribute it and/or modify
12 ;; it under the terms of the GNU General Public License as published by
13 ;; the Free Software Foundation; either version 2, or (at your option)
14 ;; any later version.
15
16 ;; GNU Emacs is distributed in the hope that it will be useful,
17 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 ;; GNU General Public License for more details.
20
21 ;; You should have received a copy of the GNU General Public License
22 ;; along with GNU Emacs; see the file COPYING. If not, write to the
23 ;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
24 ;; Boston, MA 02111-1307, USA.
25
26 ;;; Commentary:
27
28 ;;; This file has been censored by the Communications Decency Act.
29 ;;; That law was passed under the guise of a ban on pornography, but
30 ;;; it bans far more than that. This file did not contain pornography,
31 ;;; but it was censored nonetheless.
32
33 ;;; For information on US government censorship of the Internet, and
34 ;;; what you can do to bring back freedom of the press, see the web
35 ;;; site http://www.vtw.org/
36
37 ;; ========================================================================
38 ;; "No matter how hard you try, you can't make a racehorse out of a pig.
39 ;; You can, however, make a faster pig."
40 ;;
41 ;; Or, to put it another way, the emacs byte compiler is a VW Bug. This code
42 ;; makes it be a VW Bug with fuel injection and a turbocharger... You're
43 ;; still not going to make it go faster than 70 mph, but it might be easier
44 ;; to get it there.
45 ;;
46
47 ;; TO DO:
48 ;;
49 ;; (apply '(lambda (x &rest y) ...) 1 (foo))
50 ;;
51 ;; maintain a list of functions known not to access any global variables
52 ;; (actually, give them a 'dynamically-safe property) and then
53 ;; (let ( v1 v2 ... vM vN ) <...dynamically-safe...> ) ==>
54 ;; (let ( v1 v2 ... vM ) vN <...dynamically-safe...> )
55 ;; by recursing on this, we might be able to eliminate the entire let.
56 ;; However certain variables should never have their bindings optimized
57 ;; away, because they affect everything.
58 ;; (put 'debug-on-error 'binding-is-magic t)
59 ;; (put 'debug-on-abort 'binding-is-magic t)
60 ;; (put 'debug-on-next-call 'binding-is-magic t)
61 ;; (put 'mocklisp-arguments 'binding-is-magic t)
62 ;; (put 'inhibit-quit 'binding-is-magic t)
63 ;; (put 'quit-flag 'binding-is-magic t)
64 ;; (put 't 'binding-is-magic t)
65 ;; (put 'nil 'binding-is-magic t)
66 ;; possibly also
67 ;; (put 'gc-cons-threshold 'binding-is-magic t)
68 ;; (put 'track-mouse 'binding-is-magic t)
69 ;; others?
70 ;;
71 ;; Simple defsubsts often produce forms like
72 ;; (let ((v1 (f1)) (v2 (f2)) ...)
73 ;; (FN v1 v2 ...))
74 ;; It would be nice if we could optimize this to
75 ;; (FN (f1) (f2) ...)
76 ;; but we can't unless FN is dynamically-safe (it might be dynamically
77 ;; referring to the bindings that the lambda arglist established.)
78 ;; One of the uncountable lossages introduced by dynamic scope...
79 ;;
80 ;; Maybe there should be a control-structure that says "turn on
81 ;; fast-and-loose type-assumptive optimizations here." Then when
82 ;; we see a form like (car foo) we can from then on assume that
83 ;; the variable foo is of type cons, and optimize based on that.
84 ;; But, this won't win much because of (you guessed it) dynamic
85 ;; scope. Anything down the stack could change the value.
86 ;; (Another reason it doesn't work is that it is perfectly valid
87 ;; to call car with a null argument.) A better approach might
88 ;; be to allow type-specification of the form
89 ;; (put 'foo 'arg-types '(float (list integer) dynamic))
90 ;; (put 'foo 'result-type 'bool)
91 ;; It should be possible to have these types checked to a certain
92 ;; degree.
93 ;;
94 ;; collapse common subexpressions
95 ;;
96 ;; It would be nice if redundant sequences could be factored out as well,
97 ;; when they are known to have no side-effects:
98 ;; (list (+ a b c) (+ a b c)) --> a b add c add dup list-2
99 ;; but beware of traps like
100 ;; (cons (list x y) (list x y))
101 ;;
102 ;; Tail-recursion elimination is not really possible in Emacs Lisp.
103 ;; Tail-recursion elimination is almost always impossible when all variables
104 ;; have dynamic scope, but given that the "return" byteop requires the
105 ;; binding stack to be empty (rather than emptying it itself), there can be
106 ;; no truly tail-recursive Emacs Lisp functions that take any arguments or
107 ;; make any bindings.
108 ;;
109 ;; Here is an example of an Emacs Lisp function which could safely be
110 ;; byte-compiled tail-recursively:
111 ;;
112 ;; (defun tail-map (fn list)
113 ;; (cond (list
114 ;; (funcall fn (car list))
115 ;; (tail-map fn (cdr list)))))
116 ;;
117 ;; However, if there was even a single let-binding around the COND,
118 ;; it could not be byte-compiled, because there would be an "unbind"
119 ;; byte-op between the final "call" and "return." Adding a
120 ;; Bunbind_all byteop would fix this.
121 ;;
122 ;; (defun foo (x y z) ... (foo a b c))
123 ;; ... (const foo) (varref a) (varref b) (varref c) (call 3) END: (return)
124 ;; ... (varref a) (varbind x) (varref b) (varbind y) (varref c) (varbind z) (goto 0) END: (unbind-all) (return)
125 ;; ... (varref a) (varset x) (varref b) (varset y) (varref c) (varset z) (goto 0) END: (return)
126 ;;
127 ;; this also can be considered tail recursion:
128 ;;
129 ;; ... (const foo) (varref a) (call 1) (goto X) ... X: (return)
130 ;; could generalize this by doing the optimization
131 ;; (goto X) ... X: (return) --> (return)
132 ;;
133 ;; But this doesn't solve all of the problems: although by doing tail-
134 ;; recursion elimination in this way, the call-stack does not grow, the
135 ;; binding-stack would grow with each recursive step, and would eventually
136 ;; overflow. I don't believe there is any way around this without lexical
137 ;; scope.
138 ;;
139 ;; Wouldn't it be nice if Emacs Lisp had lexical scope.
140 ;;
141 ;; Idea: the form (lexical-scope) in a file means that the file may be
142 ;; compiled lexically. This proclamation is file-local. Then, within
143 ;; that file, "let" would establish lexical bindings, and "let-dynamic"
144 ;; would do things the old way. (Or we could use CL "declare" forms.)
145 ;; We'd have to notice defvars and defconsts, since those variables should
146 ;; always be dynamic, and attempting to do a lexical binding of them
147 ;; should simply do a dynamic binding instead.
148 ;; But! We need to know about variables that were not necessarily defvarred
149 ;; in the file being compiled (doing a boundp check isn't good enough.)
150 ;; Fdefvar() would have to be modified to add something to the plist.
151 ;;
152 ;; A major disadvantage of this scheme is that the interpreter and compiler
153 ;; would have different semantics for files compiled with (dynamic-scope).
154 ;; Since this would be a file-local optimization, there would be no way to
155 ;; modify the interpreter to obey this (unless the loader was hacked
156 ;; in some grody way, but that's a really bad idea.)
157
158 ;; Other things to consider:
159
160 ;;;;; Associative math should recognize subcalls to identical function:
161 ;;;(disassemble (lambda (x) (+ (+ (foo) 1) (+ (bar) 2))))
162 ;;;;; This should generate the same as (1+ x) and (1- x)
163
164 ;;;(disassemble (lambda (x) (cons (+ x 1) (- x 1))))
165 ;;;;; An awful lot of functions always return a non-nil value. If they're
166 ;;;;; error free also they may act as true-constants.
167
168 ;;;(disassemble (lambda (x) (and (point) (foo))))
169 ;;;;; When
170 ;;;;; - all but one arguments to a function are constant
171 ;;;;; - the non-constant argument is an if-expression (cond-expression?)
172 ;;;;; then the outer function can be distributed. If the guarding
173 ;;;;; condition is side-effect-free [assignment-free] then the other
174 ;;;;; arguments may be any expressions. Since, however, the code size
175 ;;;;; can increase this way they should be "simple". Compare:
176
177 ;;;(disassemble (lambda (x) (eq (if (point) 'a 'b) 'c)))
178 ;;;(disassemble (lambda (x) (if (point) (eq 'a 'c) (eq 'b 'c))))
179
180 ;;;;; (car (cons A B)) -> (progn B A)
181 ;;;(disassemble (lambda (x) (car (cons (foo) 42))))
182
183 ;;;;; (cdr (cons A B)) -> (progn A B)
184 ;;;(disassemble (lambda (x) (cdr (cons 42 (foo)))))
185
186 ;;;;; (car (list A B ...)) -> (progn B ... A)
187 ;;;(disassemble (lambda (x) (car (list (foo) 42 (bar)))))
188
189 ;;;;; (cdr (list A B ...)) -> (progn A (list B ...))
190 ;;;(disassemble (lambda (x) (cdr (list 42 (foo) (bar)))))
191
192
193 ;;; Code:
194
195 (defun byte-compile-log-lap-1 (format &rest args)
196 (if (aref byte-code-vector 0)
197 (error "The old version of the disassembler is loaded. Reload new-bytecomp as well."))
198 (byte-compile-log-1
199 (apply 'format format
200 (let (c a)
201 (mapcar '(lambda (arg)
202 (if (not (consp arg))
203 (if (and (symbolp arg)
204 (string-match "^byte-" (symbol-name arg)))
205 (intern (substring (symbol-name arg) 5))
206 arg)
207 (if (integerp (setq c (car arg)))
208 (error "non-symbolic byte-op %s" c))
209 (if (eq c 'TAG)
210 (setq c arg)
211 (setq a (cond ((memq c byte-goto-ops)
212 (car (cdr (cdr arg))))
213 ((memq c byte-constref-ops)
214 (car (cdr arg)))
215 (t (cdr arg))))
216 (setq c (symbol-name c))
217 (if (string-match "^byte-." c)
218 (setq c (intern (substring c 5)))))
219 (if (eq c 'constant) (setq c 'const))
220 (if (and (eq (cdr arg) 0)
221 (not (memq c '(unbind call const))))
222 c
223 (format "(%s %s)" c a))))
224 args)))))
225
226 (defmacro byte-compile-log-lap (format-string &rest args)
227 (list 'and
228 '(memq byte-optimize-log '(t byte))
229 (cons 'byte-compile-log-lap-1
230 (cons format-string args))))
231
232 \f
233 ;;; byte-compile optimizers to support inlining
234
235 (put 'inline 'byte-optimizer 'byte-optimize-inline-handler)
236
237 (defun byte-optimize-inline-handler (form)
238 "byte-optimize-handler for the `inline' special-form."
239 (cons 'progn
240 (mapcar
241 '(lambda (sexp)
242 (let ((fn (car-safe sexp)))
243 (if (and (symbolp fn)
244 (or (cdr (assq fn byte-compile-function-environment))
245 (and (fboundp fn)
246 (not (or (cdr (assq fn byte-compile-macro-environment))
247 (and (consp (setq fn (symbol-function fn)))
248 (eq (car fn) 'macro))
249 (subrp fn))))))
250 (byte-compile-inline-expand sexp)
251 sexp)))
252 (cdr form))))
253
254
255 ;; Splice the given lap code into the current instruction stream.
256 ;; If it has any labels in it, you're responsible for making sure there
257 ;; are no collisions, and that byte-compile-tag-number is reasonable
258 ;; after this is spliced in. The provided list is destroyed.
259 (defun byte-inline-lapcode (lap)
260 (setq byte-compile-output (nconc (nreverse lap) byte-compile-output)))
261
262
263 (defun byte-compile-inline-expand (form)
264 (let* ((name (car form))
265 (fn (or (cdr (assq name byte-compile-function-environment))
266 (and (fboundp name) (symbol-function name)))))
267 (if (null fn)
268 (progn
269 (byte-compile-warn "attempt to inline %s before it was defined" name)
270 form)
271 ;; else
272 (if (and (consp fn) (eq (car fn) 'autoload))
273 (load (nth 1 fn)))
274 (if (and (consp fn) (eq (car fn) 'autoload))
275 (error "file \"%s\" didn't define \"%s\"" (nth 1 fn) name))
276 (if (symbolp fn)
277 (byte-compile-inline-expand (cons fn (cdr form)))
278 (if (byte-code-function-p fn)
279 (progn
280 (fetch-bytecode fn)
281 (cons (list 'lambda (aref fn 0)
282 (list 'byte-code (aref fn 1) (aref fn 2) (aref fn 3)))
283 (cdr form)))
284 (if (not (eq (car fn) 'lambda)) (error "%s is not a lambda" name))
285 (cons fn (cdr form)))))))
286
287 ;;; ((lambda ...) ...)
288 ;;;
289 (defun byte-compile-unfold-lambda (form &optional name)
290 (or name (setq name "anonymous lambda"))
291 (let ((lambda (car form))
292 (values (cdr form)))
293 (if (byte-code-function-p lambda)
294 (setq lambda (list 'lambda (aref lambda 0)
295 (list 'byte-code (aref lambda 1)
296 (aref lambda 2) (aref lambda 3)))))
297 (let ((arglist (nth 1 lambda))
298 (body (cdr (cdr lambda)))
299 optionalp restp
300 bindings)
301 (if (and (stringp (car body)) (cdr body))
302 (setq body (cdr body)))
303 (if (and (consp (car body)) (eq 'interactive (car (car body))))
304 (setq body (cdr body)))
305 (while arglist
306 (cond ((eq (car arglist) '&optional)
307 ;; ok, I'll let this slide because funcall_lambda() does...
308 ;; (if optionalp (error "multiple &optional keywords in %s" name))
309 (if restp (error "&optional found after &rest in %s" name))
310 (if (null (cdr arglist))
311 (error "nothing after &optional in %s" name))
312 (setq optionalp t))
313 ((eq (car arglist) '&rest)
314 ;; ...but it is by no stretch of the imagination a reasonable
315 ;; thing that funcall_lambda() allows (&rest x y) and
316 ;; (&rest x &optional y) in arglists.
317 (if (null (cdr arglist))
318 (error "nothing after &rest in %s" name))
319 (if (cdr (cdr arglist))
320 (error "multiple vars after &rest in %s" name))
321 (setq restp t))
322 (restp
323 (setq bindings (cons (list (car arglist)
324 (and values (cons 'list values)))
325 bindings)
326 values nil))
327 ((and (not optionalp) (null values))
328 (byte-compile-warn "attempt to open-code %s with too few arguments" name)
329 (setq arglist nil values 'too-few))
330 (t
331 (setq bindings (cons (list (car arglist) (car values))
332 bindings)
333 values (cdr values))))
334 (setq arglist (cdr arglist)))
335 (if values
336 (progn
337 (or (eq values 'too-few)
338 (byte-compile-warn
339 "attempt to open-code %s with too many arguments" name))
340 form)
341 (setq body (mapcar 'byte-optimize-form body))
342 (let ((newform
343 (if bindings
344 (cons 'let (cons (nreverse bindings) body))
345 (cons 'progn body))))
346 (byte-compile-log " %s\t==>\t%s" form newform)
347 newform)))))
348
349 \f
350 ;;; implementing source-level optimizers
351
352 (defun byte-optimize-form-code-walker (form for-effect)
353 ;;
354 ;; For normal function calls, We can just mapcar the optimizer the cdr. But
355 ;; we need to have special knowledge of the syntax of the special forms
356 ;; like let and defun (that's why they're special forms :-). (Actually,
357 ;; the important aspect is that they are subrs that don't evaluate all of
358 ;; their args.)
359 ;;
360 (let ((fn (car-safe form))
361 tmp)
362 (cond ((not (consp form))
363 (if (not (and for-effect
364 (or byte-compile-delete-errors
365 (not (symbolp form))
366 (eq form t))))
367 form))
368 ((eq fn 'quote)
369 (if (cdr (cdr form))
370 (byte-compile-warn "malformed quote form: %s"
371 (prin1-to-string form)))
372 ;; map (quote nil) to nil to simplify optimizer logic.
373 ;; map quoted constants to nil if for-effect (just because).
374 (and (nth 1 form)
375 (not for-effect)
376 form))
377 ((or (byte-code-function-p fn)
378 (eq 'lambda (car-safe fn)))
379 (byte-compile-unfold-lambda form))
380 ((memq fn '(let let*))
381 ;; recursively enter the optimizer for the bindings and body
382 ;; of a let or let*. This for depth-firstness: forms that
383 ;; are more deeply nested are optimized first.
384 (cons fn
385 (cons
386 (mapcar '(lambda (binding)
387 (if (symbolp binding)
388 binding
389 (if (cdr (cdr binding))
390 (byte-compile-warn "malformed let binding: %s"
391 (prin1-to-string binding)))
392 (list (car binding)
393 (byte-optimize-form (nth 1 binding) nil))))
394 (nth 1 form))
395 (byte-optimize-body (cdr (cdr form)) for-effect))))
396 ((eq fn 'cond)
397 (cons fn
398 (mapcar '(lambda (clause)
399 (if (consp clause)
400 (cons
401 (byte-optimize-form (car clause) nil)
402 (byte-optimize-body (cdr clause) for-effect))
403 (byte-compile-warn "malformed cond form: %s"
404 (prin1-to-string clause))
405 clause))
406 (cdr form))))
407 ((eq fn 'progn)
408 ;; as an extra added bonus, this simplifies (progn <x>) --> <x>
409 (if (cdr (cdr form))
410 (progn
411 (setq tmp (byte-optimize-body (cdr form) for-effect))
412 (if (cdr tmp) (cons 'progn tmp) (car tmp)))
413 (byte-optimize-form (nth 1 form) for-effect)))
414 ((eq fn 'prog1)
415 (if (cdr (cdr form))
416 (cons 'prog1
417 (cons (byte-optimize-form (nth 1 form) for-effect)
418 (byte-optimize-body (cdr (cdr form)) t)))
419 (byte-optimize-form (nth 1 form) for-effect)))
420 ((eq fn 'prog2)
421 (cons 'prog2
422 (cons (byte-optimize-form (nth 1 form) t)
423 (cons (byte-optimize-form (nth 2 form) for-effect)
424 (byte-optimize-body (cdr (cdr (cdr form))) t)))))
425
426 ((memq fn '(save-excursion save-restriction))
427 ;; those subrs which have an implicit progn; it's not quite good
428 ;; enough to treat these like normal function calls.
429 ;; This can turn (save-excursion ...) into (save-excursion) which
430 ;; will be optimized away in the lap-optimize pass.
431 (cons fn (byte-optimize-body (cdr form) for-effect)))
432
433 ((eq fn 'with-output-to-temp-buffer)
434 ;; this is just like the above, except for the first argument.
435 (cons fn
436 (cons
437 (byte-optimize-form (nth 1 form) nil)
438 (byte-optimize-body (cdr (cdr form)) for-effect))))
439
440 ((eq fn 'if)
441 (cons fn
442 (cons (byte-optimize-form (nth 1 form) nil)
443 (cons
444 (byte-optimize-form (nth 2 form) for-effect)
445 (byte-optimize-body (nthcdr 3 form) for-effect)))))
446
447 ((memq fn '(and or)) ; remember, and/or are control structures.
448 ;; take forms off the back until we can't any more.
449 ;; In the future it could conceivably be a problem that the
450 ;; subexpressions of these forms are optimized in the reverse
451 ;; order, but it's ok for now.
452 (if for-effect
453 (let ((backwards (reverse (cdr form))))
454 (while (and backwards
455 (null (setcar backwards
456 (byte-optimize-form (car backwards)
457 for-effect))))
458 (setq backwards (cdr backwards)))
459 (if (and (cdr form) (null backwards))
460 (byte-compile-log
461 " all subforms of %s called for effect; deleted" form))
462 (and backwards
463 (cons fn (nreverse backwards))))
464 (cons fn (mapcar 'byte-optimize-form (cdr form)))))
465
466 ((eq fn 'interactive)
467 (byte-compile-warn "misplaced interactive spec: %s"
468 (prin1-to-string form))
469 nil)
470
471 ((memq fn '(defun defmacro function
472 condition-case save-window-excursion))
473 ;; These forms are compiled as constants or by breaking out
474 ;; all the subexpressions and compiling them separately.
475 form)
476
477 ((eq fn 'unwind-protect)
478 ;; the "protected" part of an unwind-protect is compiled (and thus
479 ;; optimized) as a top-level form, so don't do it here. But the
480 ;; non-protected part has the same for-effect status as the
481 ;; unwind-protect itself. (The protected part is always for effect,
482 ;; but that isn't handled properly yet.)
483 (cons fn
484 (cons (byte-optimize-form (nth 1 form) for-effect)
485 (cdr (cdr form)))))
486
487 ((eq fn 'catch)
488 ;; the body of a catch is compiled (and thus optimized) as a
489 ;; top-level form, so don't do it here. The tag is never
490 ;; for-effect. The body should have the same for-effect status
491 ;; as the catch form itself, but that isn't handled properly yet.
492 (cons fn
493 (cons (byte-optimize-form (nth 1 form) nil)
494 (cdr (cdr form)))))
495
496 ;; If optimization is on, this is the only place that macros are
497 ;; expanded. If optimization is off, then macroexpansion happens
498 ;; in byte-compile-form. Otherwise, the macros are already expanded
499 ;; by the time that is reached.
500 ((not (eq form
501 (setq form (macroexpand form
502 byte-compile-macro-environment))))
503 (byte-optimize-form form for-effect))
504
505 ((not (symbolp fn))
506 (or (eq 'mocklisp (car-safe fn)) ; ha!
507 (byte-compile-warn "%s is a malformed function"
508 (prin1-to-string fn)))
509 form)
510
511 ((and for-effect (setq tmp (get fn 'side-effect-free))
512 (or byte-compile-delete-errors
513 (eq tmp 'error-free)
514 (progn
515 (byte-compile-warn "%s called for effect"
516 (prin1-to-string form))
517 nil)))
518 (byte-compile-log " %s called for effect; deleted" fn)
519 ;; appending a nil here might not be necessary, but it can't hurt.
520 (byte-optimize-form
521 (cons 'progn (append (cdr form) '(nil))) t))
522
523 (t
524 ;; Otherwise, no args can be considered to be for-effect,
525 ;; even if the called function is for-effect, because we
526 ;; don't know anything about that function.
527 (cons fn (mapcar 'byte-optimize-form (cdr form)))))))
528
529
530 (defun byte-optimize-form (form &optional for-effect)
531 "The source-level pass of the optimizer."
532 ;;
533 ;; First, optimize all sub-forms of this one.
534 (setq form (byte-optimize-form-code-walker form for-effect))
535 ;;
536 ;; after optimizing all subforms, optimize this form until it doesn't
537 ;; optimize any further. This means that some forms will be passed through
538 ;; the optimizer many times, but that's necessary to make the for-effect
539 ;; processing do as much as possible.
540 ;;
541 (let (opt new)
542 (if (and (consp form)
543 (symbolp (car form))
544 (or (and for-effect
545 ;; we don't have any of these yet, but we might.
546 (setq opt (get (car form) 'byte-for-effect-optimizer)))
547 (setq opt (get (car form) 'byte-optimizer)))
548 (not (eq form (setq new (funcall opt form)))))
549 (progn
550 ;; (if (equal form new) (error "bogus optimizer -- %s" opt))
551 (byte-compile-log " %s\t==>\t%s" form new)
552 (setq new (byte-optimize-form new for-effect))
553 new)
554 form)))
555
556
557 (defun byte-optimize-body (forms all-for-effect)
558 ;; optimize the cdr of a progn or implicit progn; all forms is a list of
559 ;; forms, all but the last of which are optimized with the assumption that
560 ;; they are being called for effect. the last is for-effect as well if
561 ;; all-for-effect is true. returns a new list of forms.
562 (let ((rest forms)
563 (result nil)
564 fe new)
565 (while rest
566 (setq fe (or all-for-effect (cdr rest)))
567 (setq new (and (car rest) (byte-optimize-form (car rest) fe)))
568 (if (or new (not fe))
569 (setq result (cons new result)))
570 (setq rest (cdr rest)))
571 (nreverse result)))
572
573 \f
574 ;;; some source-level optimizers
575 ;;;
576 ;;; when writing optimizers, be VERY careful that the optimizer returns
577 ;;; something not EQ to its argument if and ONLY if it has made a change.
578 ;;; This implies that you cannot simply destructively modify the list;
579 ;;; you must return something not EQ to it if you make an optimization.
580 ;;;
581 ;;; It is now safe to optimize code such that it introduces new bindings.
582
583 ;; I'd like this to be a defsubst, but let's not be self-referential...
584 (defmacro byte-compile-trueconstp (form)
585 ;; Returns non-nil if FORM is a non-nil constant.
586 (` (cond ((consp (, form)) (eq (car (, form)) 'quote))
587 ((not (symbolp (, form))))
588 ((eq (, form) t)))))
589
590 ;; If the function is being called with constant numeric args,
591 ;; evaluate as much as possible at compile-time. This optimizer
592 ;; assumes that the function is associative, like + or *.
593 (defun byte-optimize-associative-math (form)
594 (let ((args nil)
595 (constants nil)
596 (rest (cdr form)))
597 (while rest
598 (if (numberp (car rest))
599 (setq constants (cons (car rest) constants))
600 (setq args (cons (car rest) args)))
601 (setq rest (cdr rest)))
602 (if (cdr constants)
603 (if args
604 (list (car form)
605 (apply (car form) constants)
606 (if (cdr args)
607 (cons (car form) (nreverse args))
608 (car args)))
609 (apply (car form) constants))
610 form)))
611
612 ;; If the function is being called with constant numeric args,
613 ;; evaluate as much as possible at compile-time. This optimizer
614 ;; assumes that the function satisfies
615 ;; (op x1 x2 ... xn) == (op ...(op (op x1 x2) x3) ...xn)
616 ;; like - and /.
617 (defun byte-optimize-nonassociative-math (form)
618 (if (or (not (numberp (car (cdr form))))
619 (not (numberp (car (cdr (cdr form))))))
620 form
621 (let ((constant (car (cdr form)))
622 (rest (cdr (cdr form))))
623 (while (numberp (car rest))
624 (setq constant (funcall (car form) constant (car rest))
625 rest (cdr rest)))
626 (if rest
627 (cons (car form) (cons constant rest))
628 constant))))
629
630 ;;(defun byte-optimize-associative-two-args-math (form)
631 ;; (setq form (byte-optimize-associative-math form))
632 ;; (if (consp form)
633 ;; (byte-optimize-two-args-left form)
634 ;; form))
635
636 ;;(defun byte-optimize-nonassociative-two-args-math (form)
637 ;; (setq form (byte-optimize-nonassociative-math form))
638 ;; (if (consp form)
639 ;; (byte-optimize-two-args-right form)
640 ;; form))
641
642 (defun byte-optimize-approx-equal (x y)
643 (< (* (abs (- x y)) 100) (abs (+ x y))))
644
645 ;; Collect all the constants from FORM, after the STARTth arg,
646 ;; and apply FUN to them to make one argument at the end.
647 ;; For functions that can handle floats, that optimization
648 ;; can be incorrect because reordering can cause an overflow
649 ;; that would otherwise be avoided by encountering an arg that is a float.
650 ;; We avoid this problem by (1) not moving float constants and
651 ;; (2) not moving anything if it would cause an overflow.
652 (defun byte-optimize-delay-constants-math (form start fun)
653 ;; Merge all FORM's constants from number START, call FUN on them
654 ;; and put the result at the end.
655 (let ((rest (nthcdr (1- start) form))
656 (orig form)
657 ;; t means we must check for overflow.
658 (overflow (memq fun '(+ *))))
659 (while (cdr (setq rest (cdr rest)))
660 (if (integerp (car rest))
661 (let (constants)
662 (setq form (copy-sequence form)
663 rest (nthcdr (1- start) form))
664 (while (setq rest (cdr rest))
665 (cond ((integerp (car rest))
666 (setq constants (cons (car rest) constants))
667 (setcar rest nil))))
668 ;; If necessary, check now for overflow
669 ;; that might be caused by reordering.
670 (if (and overflow
671 ;; We have overflow if the result of doing the arithmetic
672 ;; on floats is not even close to the result
673 ;; of doing it on integers.
674 (not (byte-optimize-approx-equal
675 (apply fun (mapcar 'float constants))
676 (float (apply fun constants)))))
677 (setq form orig)
678 (setq form (nconc (delq nil form)
679 (list (apply fun (nreverse constants)))))))))
680 form))
681
682 (defun byte-optimize-plus (form)
683 (setq form (byte-optimize-delay-constants-math form 1 '+))
684 (if (memq 0 form) (setq form (delq 0 (copy-sequence form))))
685 ;;(setq form (byte-optimize-associative-two-args-math form))
686 (cond ((null (cdr form))
687 (condition-case ()
688 (eval form)
689 (error form)))
690 ;;; It is not safe to delete the function entirely
691 ;;; (actually, it would be safe if we know the sole arg
692 ;;; is not a marker).
693 ;; ((null (cdr (cdr form))) (nth 1 form))
694 (t form)))
695
696 (defun byte-optimize-minus (form)
697 ;; Put constants at the end, except the last constant.
698 (setq form (byte-optimize-delay-constants-math form 2 '+))
699 ;; Now only first and last element can be a number.
700 (let ((last (car (reverse (nthcdr 3 form)))))
701 (cond ((eq 0 last)
702 ;; (- x y ... 0) --> (- x y ...)
703 (setq form (copy-sequence form))
704 (setcdr (cdr (cdr form)) (delq 0 (nthcdr 3 form))))
705 ;; If form is (- CONST foo... CONST), merge first and last.
706 ((and (numberp (nth 1 form))
707 (numberp last))
708 (setq form (nconc (list '- (- (nth 1 form) last) (nth 2 form))
709 (delq last (copy-sequence (nthcdr 3 form))))))))
710 ;;; It is not safe to delete the function entirely
711 ;;; (actually, it would be safe if we know the sole arg
712 ;;; is not a marker).
713 ;;; (if (eq (nth 2 form) 0)
714 ;;; (nth 1 form) ; (- x 0) --> x
715 (byte-optimize-predicate
716 (if (and (null (cdr (cdr (cdr form))))
717 (eq (nth 1 form) 0)) ; (- 0 x) --> (- x)
718 (cons (car form) (cdr (cdr form)))
719 form))
720 ;;; )
721 )
722
723 (defun byte-optimize-multiply (form)
724 (setq form (byte-optimize-delay-constants-math form 1 '*))
725 ;; If there is a constant in FORM, it is now the last element.
726 (cond ((null (cdr form)) 1)
727 ;;; It is not safe to delete the function entirely
728 ;;; (actually, it would be safe if we know the sole arg
729 ;;; is not a marker or if it appears in other arithmetic).
730 ;;; ((null (cdr (cdr form))) (nth 1 form))
731 ((let ((last (car (reverse form))))
732 (cond ((eq 0 last) (cons 'progn (cdr form)))
733 ((eq 1 last) (delq 1 (copy-sequence form)))
734 ((eq -1 last) (list '- (delq -1 (copy-sequence form))))
735 ((and (eq 2 last)
736 (memq t (mapcar 'symbolp (cdr form))))
737 (prog1 (setq form (delq 2 (copy-sequence form)))
738 (while (not (symbolp (car (setq form (cdr form))))))
739 (setcar form (list '+ (car form) (car form)))))
740 (form))))))
741
742 (defsubst byte-compile-butlast (form)
743 (nreverse (cdr (reverse form))))
744
745 (defun byte-optimize-divide (form)
746 (setq form (byte-optimize-delay-constants-math form 2 '*))
747 (let ((last (car (reverse (cdr (cdr form))))))
748 (if (numberp last)
749 (cond ((= (length form) 3)
750 (if (and (numberp (nth 1 form))
751 (not (zerop last))
752 (condition-case nil
753 (/ (nth 1 form) last)
754 (error nil)))
755 (setq form (list 'progn (/ (nth 1 form) last)))))
756 ((= last 1)
757 (setq form (byte-compile-butlast form)))
758 ((numberp (nth 1 form))
759 (setq form (cons (car form)
760 (cons (/ (nth 1 form) last)
761 (byte-compile-butlast (cdr (cdr form)))))
762 last nil))))
763 (cond
764 ;;; ((null (cdr (cdr form)))
765 ;;; (nth 1 form))
766 ((eq (nth 1 form) 0)
767 (append '(progn) (cdr (cdr form)) '(0)))
768 ((eq last -1)
769 (list '- (if (nthcdr 3 form)
770 (byte-compile-butlast form)
771 (nth 1 form))))
772 (form))))
773
774 (defun byte-optimize-logmumble (form)
775 (setq form (byte-optimize-delay-constants-math form 1 (car form)))
776 (byte-optimize-predicate
777 (cond ((memq 0 form)
778 (setq form (if (eq (car form) 'logand)
779 (cons 'progn (cdr form))
780 (delq 0 (copy-sequence form)))))
781 ((and (eq (car-safe form) 'logior)
782 (memq -1 form))
783 (cons 'progn (cdr form)))
784 (form))))
785
786
787 (defun byte-optimize-binary-predicate (form)
788 (if (byte-compile-constp (nth 1 form))
789 (if (byte-compile-constp (nth 2 form))
790 (condition-case ()
791 (list 'quote (eval form))
792 (error form))
793 ;; This can enable some lapcode optimizations.
794 (list (car form) (nth 2 form) (nth 1 form)))
795 form))
796
797 (defun byte-optimize-predicate (form)
798 (let ((ok t)
799 (rest (cdr form)))
800 (while (and rest ok)
801 (setq ok (byte-compile-constp (car rest))
802 rest (cdr rest)))
803 (if ok
804 (condition-case ()
805 (list 'quote (eval form))
806 (error form))
807 form)))
808
809 (defun byte-optimize-identity (form)
810 (if (and (cdr form) (null (cdr (cdr form))))
811 (nth 1 form)
812 (byte-compile-warn "identity called with %d arg%s, but requires 1"
813 (length (cdr form))
814 (if (= 1 (length (cdr form))) "" "s"))
815 form))
816
817 (put 'identity 'byte-optimizer 'byte-optimize-identity)
818
819 (put '+ 'byte-optimizer 'byte-optimize-plus)
820 (put '* 'byte-optimizer 'byte-optimize-multiply)
821 (put '- 'byte-optimizer 'byte-optimize-minus)
822 (put '/ 'byte-optimizer 'byte-optimize-divide)
823 (put 'max 'byte-optimizer 'byte-optimize-associative-math)
824 (put 'min 'byte-optimizer 'byte-optimize-associative-math)
825
826 (put '= 'byte-optimizer 'byte-optimize-binary-predicate)
827 (put 'eq 'byte-optimizer 'byte-optimize-binary-predicate)
828 (put 'eql 'byte-optimizer 'byte-optimize-binary-predicate)
829 (put 'equal 'byte-optimizer 'byte-optimize-binary-predicate)
830 (put 'string= 'byte-optimizer 'byte-optimize-binary-predicate)
831 (put 'string-equal 'byte-optimizer 'byte-optimize-binary-predicate)
832
833 (put '< 'byte-optimizer 'byte-optimize-predicate)
834 (put '> 'byte-optimizer 'byte-optimize-predicate)
835 (put '<= 'byte-optimizer 'byte-optimize-predicate)
836 (put '>= 'byte-optimizer 'byte-optimize-predicate)
837 (put '1+ 'byte-optimizer 'byte-optimize-predicate)
838 (put '1- 'byte-optimizer 'byte-optimize-predicate)
839 (put 'not 'byte-optimizer 'byte-optimize-predicate)
840 (put 'null 'byte-optimizer 'byte-optimize-predicate)
841 (put 'memq 'byte-optimizer 'byte-optimize-predicate)
842 (put 'consp 'byte-optimizer 'byte-optimize-predicate)
843 (put 'listp 'byte-optimizer 'byte-optimize-predicate)
844 (put 'symbolp 'byte-optimizer 'byte-optimize-predicate)
845 (put 'stringp 'byte-optimizer 'byte-optimize-predicate)
846 (put 'string< 'byte-optimizer 'byte-optimize-predicate)
847 (put 'string-lessp 'byte-optimizer 'byte-optimize-predicate)
848
849 (put 'logand 'byte-optimizer 'byte-optimize-logmumble)
850 (put 'logior 'byte-optimizer 'byte-optimize-logmumble)
851 (put 'logxor 'byte-optimizer 'byte-optimize-logmumble)
852 (put 'lognot 'byte-optimizer 'byte-optimize-predicate)
853
854 (put 'car 'byte-optimizer 'byte-optimize-predicate)
855 (put 'cdr 'byte-optimizer 'byte-optimize-predicate)
856 (put 'car-safe 'byte-optimizer 'byte-optimize-predicate)
857 (put 'cdr-safe 'byte-optimizer 'byte-optimize-predicate)
858
859
860 ;; I'm not convinced that this is necessary. Doesn't the optimizer loop
861 ;; take care of this? - Jamie
862 ;; I think this may some times be necessary to reduce ie (quote 5) to 5,
863 ;; so arithmetic optimizers recognize the numeric constant. - Hallvard
864 (put 'quote 'byte-optimizer 'byte-optimize-quote)
865 (defun byte-optimize-quote (form)
866 (if (or (consp (nth 1 form))
867 (and (symbolp (nth 1 form))
868 (not (memq (nth 1 form) '(nil t)))))
869 form
870 (nth 1 form)))
871
872 (defun byte-optimize-zerop (form)
873 (cond ((numberp (nth 1 form))
874 (eval form))
875 (byte-compile-delete-errors
876 (list '= (nth 1 form) 0))
877 (form)))
878
879 (put 'zerop 'byte-optimizer 'byte-optimize-zerop)
880
881 (defun byte-optimize-and (form)
882 ;; Simplify if less than 2 args.
883 ;; if there is a literal nil in the args to `and', throw it and following
884 ;; forms away, and surround the `and' with (progn ... nil).
885 (cond ((null (cdr form)))
886 ((memq nil form)
887 (list 'progn
888 (byte-optimize-and
889 (prog1 (setq form (copy-sequence form))
890 (while (nth 1 form)
891 (setq form (cdr form)))
892 (setcdr form nil)))
893 nil))
894 ((null (cdr (cdr form)))
895 (nth 1 form))
896 ((byte-optimize-predicate form))))
897
898 (defun byte-optimize-or (form)
899 ;; Throw away nil's, and simplify if less than 2 args.
900 ;; If there is a literal non-nil constant in the args to `or', throw away all
901 ;; following forms.
902 (if (memq nil form)
903 (setq form (delq nil (copy-sequence form))))
904 (let ((rest form))
905 (while (cdr (setq rest (cdr rest)))
906 (if (byte-compile-trueconstp (car rest))
907 (setq form (copy-sequence form)
908 rest (setcdr (memq (car rest) form) nil))))
909 (if (cdr (cdr form))
910 (byte-optimize-predicate form)
911 (nth 1 form))))
912
913 (defun byte-optimize-cond (form)
914 ;; if any clauses have a literal nil as their test, throw them away.
915 ;; if any clause has a literal non-nil constant as its test, throw
916 ;; away all following clauses.
917 (let (rest)
918 ;; This must be first, to reduce (cond (t ...) (nil)) to (progn t ...)
919 (while (setq rest (assq nil (cdr form)))
920 (setq form (delq rest (copy-sequence form))))
921 (if (memq nil (cdr form))
922 (setq form (delq nil (copy-sequence form))))
923 (setq rest form)
924 (while (setq rest (cdr rest))
925 (cond ((byte-compile-trueconstp (car-safe (car rest)))
926 (cond ((eq rest (cdr form))
927 (setq form
928 (if (cdr (car rest))
929 (if (cdr (cdr (car rest)))
930 (cons 'progn (cdr (car rest)))
931 (nth 1 (car rest)))
932 (car (car rest)))))
933 ((cdr rest)
934 (setq form (copy-sequence form))
935 (setcdr (memq (car rest) form) nil)))
936 (setq rest nil)))))
937 ;;
938 ;; Turn (cond (( <x> )) ... ) into (or <x> (cond ... ))
939 (if (eq 'cond (car-safe form))
940 (let ((clauses (cdr form)))
941 (if (and (consp (car clauses))
942 (null (cdr (car clauses))))
943 (list 'or (car (car clauses))
944 (byte-optimize-cond
945 (cons (car form) (cdr (cdr form)))))
946 form))
947 form))
948
949 (defun byte-optimize-if (form)
950 ;; (if <true-constant> <then> <else...>) ==> <then>
951 ;; (if <false-constant> <then> <else...>) ==> (progn <else...>)
952 ;; (if <test> nil <else...>) ==> (if (not <test>) (progn <else...>))
953 ;; (if <test> <then> nil) ==> (if <test> <then>)
954 (let ((clause (nth 1 form)))
955 (cond ((byte-compile-trueconstp clause)
956 (nth 2 form))
957 ((null clause)
958 (if (nthcdr 4 form)
959 (cons 'progn (nthcdr 3 form))
960 (nth 3 form)))
961 ((nth 2 form)
962 (if (equal '(nil) (nthcdr 3 form))
963 (list 'if clause (nth 2 form))
964 form))
965 ((or (nth 3 form) (nthcdr 4 form))
966 (list 'if
967 ;; Don't make a double negative;
968 ;; instead, take away the one that is there.
969 (if (and (consp clause) (memq (car clause) '(not null))
970 (= (length clause) 2)) ; (not xxxx) or (not (xxxx))
971 (nth 1 clause)
972 (list 'not clause))
973 (if (nthcdr 4 form)
974 (cons 'progn (nthcdr 3 form))
975 (nth 3 form))))
976 (t
977 (list 'progn clause nil)))))
978
979 (defun byte-optimize-while (form)
980 (if (nth 1 form)
981 form))
982
983 (put 'and 'byte-optimizer 'byte-optimize-and)
984 (put 'or 'byte-optimizer 'byte-optimize-or)
985 (put 'cond 'byte-optimizer 'byte-optimize-cond)
986 (put 'if 'byte-optimizer 'byte-optimize-if)
987 (put 'while 'byte-optimizer 'byte-optimize-while)
988
989 ;; byte-compile-negation-optimizer lives in bytecomp.el
990 (put '/= 'byte-optimizer 'byte-compile-negation-optimizer)
991 (put 'atom 'byte-optimizer 'byte-compile-negation-optimizer)
992 (put 'nlistp 'byte-optimizer 'byte-compile-negation-optimizer)
993
994
995 (defun byte-optimize-funcall (form)
996 ;; (funcall '(lambda ...) ...) ==> ((lambda ...) ...)
997 ;; (funcall 'foo ...) ==> (foo ...)
998 (let ((fn (nth 1 form)))
999 (if (memq (car-safe fn) '(quote function))
1000 (cons (nth 1 fn) (cdr (cdr form)))
1001 form)))
1002
1003 (defun byte-optimize-apply (form)
1004 ;; If the last arg is a literal constant, turn this into a funcall.
1005 ;; The funcall optimizer can then transform (funcall 'foo ...) -> (foo ...).
1006 (let ((fn (nth 1 form))
1007 (last (nth (1- (length form)) form))) ; I think this really is fastest
1008 (or (if (or (null last)
1009 (eq (car-safe last) 'quote))
1010 (if (listp (nth 1 last))
1011 (let ((butlast (nreverse (cdr (reverse (cdr (cdr form)))))))
1012 (nconc (list 'funcall fn) butlast
1013 (mapcar '(lambda (x) (list 'quote x)) (nth 1 last))))
1014 (byte-compile-warn
1015 "last arg to apply can't be a literal atom: %s"
1016 (prin1-to-string last))
1017 nil))
1018 form)))
1019
1020 (put 'funcall 'byte-optimizer 'byte-optimize-funcall)
1021 (put 'apply 'byte-optimizer 'byte-optimize-apply)
1022
1023
1024 (put 'let 'byte-optimizer 'byte-optimize-letX)
1025 (put 'let* 'byte-optimizer 'byte-optimize-letX)
1026 (defun byte-optimize-letX (form)
1027 (cond ((null (nth 1 form))
1028 ;; No bindings
1029 (cons 'progn (cdr (cdr form))))
1030 ((or (nth 2 form) (nthcdr 3 form))
1031 form)
1032 ;; The body is nil
1033 ((eq (car form) 'let)
1034 (append '(progn) (mapcar 'car-safe (mapcar 'cdr-safe (nth 1 form)))
1035 '(nil)))
1036 (t
1037 (let ((binds (reverse (nth 1 form))))
1038 (list 'let* (reverse (cdr binds)) (nth 1 (car binds)) nil)))))
1039
1040
1041 (put 'nth 'byte-optimizer 'byte-optimize-nth)
1042 (defun byte-optimize-nth (form)
1043 (if (and (= (safe-length form) 3) (memq (nth 1 form) '(0 1)))
1044 (list 'car (if (zerop (nth 1 form))
1045 (nth 2 form)
1046 (list 'cdr (nth 2 form))))
1047 (byte-optimize-predicate form)))
1048
1049 (put 'nthcdr 'byte-optimizer 'byte-optimize-nthcdr)
1050 (defun byte-optimize-nthcdr (form)
1051 (if (and (= (safe-length form) 3) (not (memq (nth 1 form) '(0 1 2))))
1052 (byte-optimize-predicate form)
1053 (let ((count (nth 1 form)))
1054 (setq form (nth 2 form))
1055 (while (>= (setq count (1- count)) 0)
1056 (setq form (list 'cdr form)))
1057 form)))
1058 \f
1059 ;;; enumerating those functions which need not be called if the returned
1060 ;;; value is not used. That is, something like
1061 ;;; (progn (list (something-with-side-effects) (yow))
1062 ;;; (foo))
1063 ;;; may safely be turned into
1064 ;;; (progn (progn (something-with-side-effects) (yow))
1065 ;;; (foo))
1066 ;;; Further optimizations will turn (progn (list 1 2 3) 'foo) into 'foo.
1067
1068 ;;; I wonder if I missed any :-\)
1069 (let ((side-effect-free-fns
1070 '(% * + - / /= 1+ 1- < <= = > >= abs acos append aref ash asin atan
1071 assoc assq
1072 boundp buffer-file-name buffer-local-variables buffer-modified-p
1073 buffer-substring
1074 capitalize car-less-than-car car cdr ceiling concat coordinates-in-window-p
1075 copy-marker cos count-lines
1076 default-boundp default-value documentation downcase
1077 elt exp expt fboundp featurep
1078 file-directory-p file-exists-p file-locked-p file-name-absolute-p
1079 file-newer-than-file-p file-readable-p file-symlink-p file-writable-p
1080 float floor format
1081 get get-buffer get-buffer-window getenv get-file-buffer
1082 int-to-string
1083 length log log10 logand logb logior lognot logxor lsh
1084 marker-buffer max member memq min mod
1085 next-window nth nthcdr number-to-string
1086 parse-colon-path previous-window
1087 radians-to-degrees rassq regexp-quote reverse round
1088 sin sqrt string< string= string-equal string-lessp string-to-char
1089 string-to-int string-to-number substring symbol-plist
1090 tan upcase user-variable-p vconcat
1091 window-buffer window-dedicated-p window-edges window-height
1092 window-hscroll window-minibuffer-p window-width
1093 zerop))
1094 (side-effect-and-error-free-fns
1095 '(arrayp atom
1096 bobp bolp buffer-end buffer-list buffer-size buffer-string bufferp
1097 car-safe case-table-p cdr-safe char-or-string-p commandp cons consp
1098 current-buffer
1099 dot dot-marker eobp eolp eq eql equal eventp floatp framep
1100 get-largest-window get-lru-window
1101 identity ignore integerp integer-or-marker-p interactive-p
1102 invocation-directory invocation-name
1103 keymapp list listp
1104 make-marker mark mark-marker markerp memory-limit minibuffer-window
1105 mouse-movement-p
1106 natnump nlistp not null number-or-marker-p numberp
1107 one-window-p overlayp
1108 point point-marker point-min point-max processp
1109 selected-window sequencep stringp subrp symbolp syntax-table-p
1110 user-full-name user-login-name user-original-login-name
1111 user-real-login-name user-real-uid user-uid
1112 vector vectorp
1113 window-configuration-p window-live-p windowp)))
1114 (while side-effect-free-fns
1115 (put (car side-effect-free-fns) 'side-effect-free t)
1116 (setq side-effect-free-fns (cdr side-effect-free-fns)))
1117 (while side-effect-and-error-free-fns
1118 (put (car side-effect-and-error-free-fns) 'side-effect-free 'error-free)
1119 (setq side-effect-and-error-free-fns (cdr side-effect-and-error-free-fns)))
1120 nil)
1121
1122
1123 (defun byte-compile-splice-in-already-compiled-code (form)
1124 ;; form is (byte-code "..." [...] n)
1125 (if (not (memq byte-optimize '(t lap)))
1126 (byte-compile-normal-call form)
1127 (byte-inline-lapcode
1128 (byte-decompile-bytecode-1 (nth 1 form) (nth 2 form) t))
1129 (setq byte-compile-maxdepth (max (+ byte-compile-depth (nth 3 form))
1130 byte-compile-maxdepth))
1131 (setq byte-compile-depth (1+ byte-compile-depth))))
1132
1133 (put 'byte-code 'byte-compile 'byte-compile-splice-in-already-compiled-code)
1134
1135 \f
1136 (defconst byte-constref-ops
1137 '(byte-constant byte-constant2 byte-varref byte-varset byte-varbind))
1138
1139 ;;; This function extracts the bitfields from variable-length opcodes.
1140 ;;; Originally defined in disass.el (which no longer uses it.)
1141
1142 (defun disassemble-offset ()
1143 "Don't call this!"
1144 ;; fetch and return the offset for the current opcode.
1145 ;; return NIL if this opcode has no offset
1146 ;; OP, PTR and BYTES are used and set dynamically
1147 (defvar op)
1148 (defvar ptr)
1149 (defvar bytes)
1150 (cond ((< op byte-nth)
1151 (let ((tem (logand op 7)))
1152 (setq op (logand op 248))
1153 (cond ((eq tem 6)
1154 (setq ptr (1+ ptr)) ;offset in next byte
1155 (aref bytes ptr))
1156 ((eq tem 7)
1157 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1158 (+ (aref bytes ptr)
1159 (progn (setq ptr (1+ ptr))
1160 (lsh (aref bytes ptr) 8))))
1161 (t tem)))) ;offset was in opcode
1162 ((>= op byte-constant)
1163 (prog1 (- op byte-constant) ;offset in opcode
1164 (setq op byte-constant)))
1165 ((and (>= op byte-constant2)
1166 (<= op byte-goto-if-not-nil-else-pop))
1167 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1168 (+ (aref bytes ptr)
1169 (progn (setq ptr (1+ ptr))
1170 (lsh (aref bytes ptr) 8))))
1171 ((and (>= op byte-listN)
1172 (<= op byte-insertN))
1173 (setq ptr (1+ ptr)) ;offset in next byte
1174 (aref bytes ptr))))
1175
1176
1177 ;;; This de-compiler is used for inline expansion of compiled functions,
1178 ;;; and by the disassembler.
1179 ;;;
1180 ;;; This list contains numbers, which are pc values,
1181 ;;; before each instruction.
1182 (defun byte-decompile-bytecode (bytes constvec)
1183 "Turns BYTECODE into lapcode, referring to CONSTVEC."
1184 (let ((byte-compile-constants nil)
1185 (byte-compile-variables nil)
1186 (byte-compile-tag-number 0))
1187 (byte-decompile-bytecode-1 bytes constvec)))
1188
1189 ;; As byte-decompile-bytecode, but updates
1190 ;; byte-compile-{constants, variables, tag-number}.
1191 ;; If MAKE-SPLICEABLE is true, then `return' opcodes are replaced
1192 ;; with `goto's destined for the end of the code.
1193 ;; That is for use by the compiler.
1194 ;; If MAKE-SPLICEABLE is nil, we are being called for the disassembler.
1195 ;; In that case, we put a pc value into the list
1196 ;; before each insn (or its label).
1197 (defun byte-decompile-bytecode-1 (bytes constvec &optional make-spliceable)
1198 (let ((length (length bytes))
1199 (ptr 0) optr tag tags op offset
1200 lap tmp
1201 endtag
1202 (retcount 0))
1203 (while (not (= ptr length))
1204 (or make-spliceable
1205 (setq lap (cons ptr lap)))
1206 (setq op (aref bytes ptr)
1207 optr ptr
1208 offset (disassemble-offset)) ; this does dynamic-scope magic
1209 (setq op (aref byte-code-vector op))
1210 (cond ((memq op byte-goto-ops)
1211 ;; it's a pc
1212 (setq offset
1213 (cdr (or (assq offset tags)
1214 (car (setq tags
1215 (cons (cons offset
1216 (byte-compile-make-tag))
1217 tags)))))))
1218 ((cond ((eq op 'byte-constant2) (setq op 'byte-constant) t)
1219 ((memq op byte-constref-ops)))
1220 (setq tmp (aref constvec offset)
1221 offset (if (eq op 'byte-constant)
1222 (byte-compile-get-constant tmp)
1223 (or (assq tmp byte-compile-variables)
1224 (car (setq byte-compile-variables
1225 (cons (list tmp)
1226 byte-compile-variables)))))))
1227 ((and make-spliceable
1228 (eq op 'byte-return))
1229 (if (= ptr (1- length))
1230 (setq op nil)
1231 (setq offset (or endtag (setq endtag (byte-compile-make-tag)))
1232 op 'byte-goto))))
1233 ;; lap = ( [ (pc . (op . arg)) ]* )
1234 (setq lap (cons (cons optr (cons op (or offset 0)))
1235 lap))
1236 (setq ptr (1+ ptr)))
1237 ;; take off the dummy nil op that we replaced a trailing "return" with.
1238 (let ((rest lap))
1239 (while rest
1240 (cond ((numberp (car rest)))
1241 ((setq tmp (assq (car (car rest)) tags))
1242 ;; this addr is jumped to
1243 (setcdr rest (cons (cons nil (cdr tmp))
1244 (cdr rest)))
1245 (setq tags (delq tmp tags))
1246 (setq rest (cdr rest))))
1247 (setq rest (cdr rest))))
1248 (if tags (error "optimizer error: missed tags %s" tags))
1249 (if (null (car (cdr (car lap))))
1250 (setq lap (cdr lap)))
1251 (if endtag
1252 (setq lap (cons (cons nil endtag) lap)))
1253 ;; remove addrs, lap = ( [ (op . arg) | (TAG tagno) ]* )
1254 (mapcar (function (lambda (elt)
1255 (if (numberp elt)
1256 elt
1257 (cdr elt))))
1258 (nreverse lap))))
1259
1260 \f
1261 ;;; peephole optimizer
1262
1263 (defconst byte-tagref-ops (cons 'TAG byte-goto-ops))
1264
1265 (defconst byte-conditional-ops
1266 '(byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop
1267 byte-goto-if-not-nil-else-pop))
1268
1269 (defconst byte-after-unbind-ops
1270 '(byte-constant byte-dup
1271 byte-symbolp byte-consp byte-stringp byte-listp byte-numberp byte-integerp
1272 byte-eq byte-equal byte-not
1273 byte-cons byte-list1 byte-list2 ; byte-list3 byte-list4
1274 byte-interactive-p)
1275 ;; How about other side-effect-free-ops? Is it safe to move an
1276 ;; error invocation (such as from nth) out of an unwind-protect?
1277 "Byte-codes that can be moved past an unbind.")
1278
1279 (defconst byte-compile-side-effect-and-error-free-ops
1280 '(byte-constant byte-dup byte-symbolp byte-consp byte-stringp byte-listp
1281 byte-integerp byte-numberp byte-eq byte-equal byte-not byte-car-safe
1282 byte-cdr-safe byte-cons byte-list1 byte-list2 byte-point byte-point-max
1283 byte-point-min byte-following-char byte-preceding-char
1284 byte-current-column byte-eolp byte-eobp byte-bolp byte-bobp
1285 byte-current-buffer byte-interactive-p))
1286
1287 (defconst byte-compile-side-effect-free-ops
1288 (nconc
1289 '(byte-varref byte-nth byte-memq byte-car byte-cdr byte-length byte-aref
1290 byte-symbol-value byte-get byte-concat2 byte-concat3 byte-sub1 byte-add1
1291 byte-eqlsign byte-gtr byte-lss byte-leq byte-geq byte-diff byte-negate
1292 byte-plus byte-max byte-min byte-mult byte-char-after byte-char-syntax
1293 byte-buffer-substring byte-string= byte-string< byte-nthcdr byte-elt
1294 byte-member byte-assq byte-quo byte-rem)
1295 byte-compile-side-effect-and-error-free-ops))
1296
1297 ;;; This crock is because of the way DEFVAR_BOOL variables work.
1298 ;;; Consider the code
1299 ;;;
1300 ;;; (defun foo (flag)
1301 ;;; (let ((old-pop-ups pop-up-windows)
1302 ;;; (pop-up-windows flag))
1303 ;;; (cond ((not (eq pop-up-windows old-pop-ups))
1304 ;;; (setq old-pop-ups pop-up-windows)
1305 ;;; ...))))
1306 ;;;
1307 ;;; Uncompiled, old-pop-ups will always be set to nil or t, even if FLAG is
1308 ;;; something else. But if we optimize
1309 ;;;
1310 ;;; varref flag
1311 ;;; varbind pop-up-windows
1312 ;;; varref pop-up-windows
1313 ;;; not
1314 ;;; to
1315 ;;; varref flag
1316 ;;; dup
1317 ;;; varbind pop-up-windows
1318 ;;; not
1319 ;;;
1320 ;;; we break the program, because it will appear that pop-up-windows and
1321 ;;; old-pop-ups are not EQ when really they are. So we have to know what
1322 ;;; the BOOL variables are, and not perform this optimization on them.
1323 ;;;
1324 (defconst byte-boolean-vars
1325 '(abbrev-all-caps abbrevs-changed byte-metering-on
1326 cannot-suspend completion-auto-help completion-ignore-case
1327 cursor-in-echo-area debug-on-next-call debug-on-quit
1328 delete-exited-processes enable-recursive-minibuffers
1329 highlight-nonselected-windows indent-tabs-mode inhibit-local-menu-bar-menus
1330 insert-default-directory inverse-video load-force-doc-strings
1331 load-in-progress menu-prompting minibuffer-auto-raise
1332 mode-line-inverse-video multiple-frames no-redraw-on-reenter noninteractive
1333 parse-sexp-ignore-comments pop-up-frames pop-up-windows
1334 print-escape-newlines system-uses-terminfo truncate-partial-width-windows
1335 visible-bell vms-stmlf-recfm words-include-escapes)
1336 "DEFVAR_BOOL variables. Giving these any non-nil value sets them to t.
1337 If this does not enumerate all DEFVAR_BOOL variables, the byte-optimizer
1338 may generate incorrect code.")
1339
1340 (defun byte-optimize-lapcode (lap &optional for-effect)
1341 "Simple peephole optimizer. LAP is both modified and returned."
1342 (let (lap0 off0
1343 lap1 off1
1344 lap2 off2
1345 (keep-going 'first-time)
1346 (add-depth 0)
1347 rest tmp tmp2 tmp3
1348 (side-effect-free (if byte-compile-delete-errors
1349 byte-compile-side-effect-free-ops
1350 byte-compile-side-effect-and-error-free-ops)))
1351 (while keep-going
1352 (or (eq keep-going 'first-time)
1353 (byte-compile-log-lap " ---- next pass"))
1354 (setq rest lap
1355 keep-going nil)
1356 (while rest
1357 (setq lap0 (car rest)
1358 lap1 (nth 1 rest)
1359 lap2 (nth 2 rest))
1360
1361 ;; You may notice that sequences like "dup varset discard" are
1362 ;; optimized but sequences like "dup varset TAG1: discard" are not.
1363 ;; You may be tempted to change this; resist that temptation.
1364 (cond ;;
1365 ;; <side-effect-free> pop --> <deleted>
1366 ;; ...including:
1367 ;; const-X pop --> <deleted>
1368 ;; varref-X pop --> <deleted>
1369 ;; dup pop --> <deleted>
1370 ;;
1371 ((and (eq 'byte-discard (car lap1))
1372 (memq (car lap0) side-effect-free))
1373 (setq keep-going t)
1374 (setq tmp (aref byte-stack+-info (symbol-value (car lap0))))
1375 (setq rest (cdr rest))
1376 (cond ((= tmp 1)
1377 (byte-compile-log-lap
1378 " %s discard\t-->\t<deleted>" lap0)
1379 (setq lap (delq lap0 (delq lap1 lap))))
1380 ((= tmp 0)
1381 (byte-compile-log-lap
1382 " %s discard\t-->\t<deleted> discard" lap0)
1383 (setq lap (delq lap0 lap)))
1384 ((= tmp -1)
1385 (byte-compile-log-lap
1386 " %s discard\t-->\tdiscard discard" lap0)
1387 (setcar lap0 'byte-discard)
1388 (setcdr lap0 0))
1389 ((error "Optimizer error: too much on the stack"))))
1390 ;;
1391 ;; goto*-X X: --> X:
1392 ;;
1393 ((and (memq (car lap0) byte-goto-ops)
1394 (eq (cdr lap0) lap1))
1395 (cond ((eq (car lap0) 'byte-goto)
1396 (setq lap (delq lap0 lap))
1397 (setq tmp "<deleted>"))
1398 ((memq (car lap0) byte-goto-always-pop-ops)
1399 (setcar lap0 (setq tmp 'byte-discard))
1400 (setcdr lap0 0))
1401 ((error "Depth conflict at tag %d" (nth 2 lap0))))
1402 (and (memq byte-optimize-log '(t byte))
1403 (byte-compile-log " (goto %s) %s:\t-->\t%s %s:"
1404 (nth 1 lap1) (nth 1 lap1)
1405 tmp (nth 1 lap1)))
1406 (setq keep-going t))
1407 ;;
1408 ;; varset-X varref-X --> dup varset-X
1409 ;; varbind-X varref-X --> dup varbind-X
1410 ;; const/dup varset-X varref-X --> const/dup varset-X const/dup
1411 ;; const/dup varbind-X varref-X --> const/dup varbind-X const/dup
1412 ;; The latter two can enable other optimizations.
1413 ;;
1414 ((and (eq 'byte-varref (car lap2))
1415 (eq (cdr lap1) (cdr lap2))
1416 (memq (car lap1) '(byte-varset byte-varbind)))
1417 (if (and (setq tmp (memq (car (cdr lap2)) byte-boolean-vars))
1418 (not (eq (car lap0) 'byte-constant)))
1419 nil
1420 (setq keep-going t)
1421 (if (memq (car lap0) '(byte-constant byte-dup))
1422 (progn
1423 (setq tmp (if (or (not tmp)
1424 (memq (car (cdr lap0)) '(nil t)))
1425 (cdr lap0)
1426 (byte-compile-get-constant t)))
1427 (byte-compile-log-lap " %s %s %s\t-->\t%s %s %s"
1428 lap0 lap1 lap2 lap0 lap1
1429 (cons (car lap0) tmp))
1430 (setcar lap2 (car lap0))
1431 (setcdr lap2 tmp))
1432 (byte-compile-log-lap " %s %s\t-->\tdup %s" lap1 lap2 lap1)
1433 (setcar lap2 (car lap1))
1434 (setcar lap1 'byte-dup)
1435 (setcdr lap1 0)
1436 ;; The stack depth gets locally increased, so we will
1437 ;; increase maxdepth in case depth = maxdepth here.
1438 ;; This can cause the third argument to byte-code to
1439 ;; be larger than necessary.
1440 (setq add-depth 1))))
1441 ;;
1442 ;; dup varset-X discard --> varset-X
1443 ;; dup varbind-X discard --> varbind-X
1444 ;; (the varbind variant can emerge from other optimizations)
1445 ;;
1446 ((and (eq 'byte-dup (car lap0))
1447 (eq 'byte-discard (car lap2))
1448 (memq (car lap1) '(byte-varset byte-varbind)))
1449 (byte-compile-log-lap " dup %s discard\t-->\t%s" lap1 lap1)
1450 (setq keep-going t
1451 rest (cdr rest))
1452 (setq lap (delq lap0 (delq lap2 lap))))
1453 ;;
1454 ;; not goto-X-if-nil --> goto-X-if-non-nil
1455 ;; not goto-X-if-non-nil --> goto-X-if-nil
1456 ;;
1457 ;; it is wrong to do the same thing for the -else-pop variants.
1458 ;;
1459 ((and (eq 'byte-not (car lap0))
1460 (or (eq 'byte-goto-if-nil (car lap1))
1461 (eq 'byte-goto-if-not-nil (car lap1))))
1462 (byte-compile-log-lap " not %s\t-->\t%s"
1463 lap1
1464 (cons
1465 (if (eq (car lap1) 'byte-goto-if-nil)
1466 'byte-goto-if-not-nil
1467 'byte-goto-if-nil)
1468 (cdr lap1)))
1469 (setcar lap1 (if (eq (car lap1) 'byte-goto-if-nil)
1470 'byte-goto-if-not-nil
1471 'byte-goto-if-nil))
1472 (setq lap (delq lap0 lap))
1473 (setq keep-going t))
1474 ;;
1475 ;; goto-X-if-nil goto-Y X: --> goto-Y-if-non-nil X:
1476 ;; goto-X-if-non-nil goto-Y X: --> goto-Y-if-nil X:
1477 ;;
1478 ;; it is wrong to do the same thing for the -else-pop variants.
1479 ;;
1480 ((and (or (eq 'byte-goto-if-nil (car lap0))
1481 (eq 'byte-goto-if-not-nil (car lap0))) ; gotoX
1482 (eq 'byte-goto (car lap1)) ; gotoY
1483 (eq (cdr lap0) lap2)) ; TAG X
1484 (let ((inverse (if (eq 'byte-goto-if-nil (car lap0))
1485 'byte-goto-if-not-nil 'byte-goto-if-nil)))
1486 (byte-compile-log-lap " %s %s %s:\t-->\t%s %s:"
1487 lap0 lap1 lap2
1488 (cons inverse (cdr lap1)) lap2)
1489 (setq lap (delq lap0 lap))
1490 (setcar lap1 inverse)
1491 (setq keep-going t)))
1492 ;;
1493 ;; const goto-if-* --> whatever
1494 ;;
1495 ((and (eq 'byte-constant (car lap0))
1496 (memq (car lap1) byte-conditional-ops))
1497 (cond ((if (or (eq (car lap1) 'byte-goto-if-nil)
1498 (eq (car lap1) 'byte-goto-if-nil-else-pop))
1499 (car (cdr lap0))
1500 (not (car (cdr lap0))))
1501 (byte-compile-log-lap " %s %s\t-->\t<deleted>"
1502 lap0 lap1)
1503 (setq rest (cdr rest)
1504 lap (delq lap0 (delq lap1 lap))))
1505 (t
1506 (if (memq (car lap1) byte-goto-always-pop-ops)
1507 (progn
1508 (byte-compile-log-lap " %s %s\t-->\t%s"
1509 lap0 lap1 (cons 'byte-goto (cdr lap1)))
1510 (setq lap (delq lap0 lap)))
1511 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1512 (cons 'byte-goto (cdr lap1))))
1513 (setcar lap1 'byte-goto)))
1514 (setq keep-going t))
1515 ;;
1516 ;; varref-X varref-X --> varref-X dup
1517 ;; varref-X [dup ...] varref-X --> varref-X [dup ...] dup
1518 ;; We don't optimize the const-X variations on this here,
1519 ;; because that would inhibit some goto optimizations; we
1520 ;; optimize the const-X case after all other optimizations.
1521 ;;
1522 ((and (eq 'byte-varref (car lap0))
1523 (progn
1524 (setq tmp (cdr rest))
1525 (while (eq (car (car tmp)) 'byte-dup)
1526 (setq tmp (cdr tmp)))
1527 t)
1528 (eq (cdr lap0) (cdr (car tmp)))
1529 (eq 'byte-varref (car (car tmp))))
1530 (if (memq byte-optimize-log '(t byte))
1531 (let ((str ""))
1532 (setq tmp2 (cdr rest))
1533 (while (not (eq tmp tmp2))
1534 (setq tmp2 (cdr tmp2)
1535 str (concat str " dup")))
1536 (byte-compile-log-lap " %s%s %s\t-->\t%s%s dup"
1537 lap0 str lap0 lap0 str)))
1538 (setq keep-going t)
1539 (setcar (car tmp) 'byte-dup)
1540 (setcdr (car tmp) 0)
1541 (setq rest tmp))
1542 ;;
1543 ;; TAG1: TAG2: --> TAG1: <deleted>
1544 ;; (and other references to TAG2 are replaced with TAG1)
1545 ;;
1546 ((and (eq (car lap0) 'TAG)
1547 (eq (car lap1) 'TAG))
1548 (and (memq byte-optimize-log '(t byte))
1549 (byte-compile-log " adjacent tags %d and %d merged"
1550 (nth 1 lap1) (nth 1 lap0)))
1551 (setq tmp3 lap)
1552 (while (setq tmp2 (rassq lap0 tmp3))
1553 (setcdr tmp2 lap1)
1554 (setq tmp3 (cdr (memq tmp2 tmp3))))
1555 (setq lap (delq lap0 lap)
1556 keep-going t))
1557 ;;
1558 ;; unused-TAG: --> <deleted>
1559 ;;
1560 ((and (eq 'TAG (car lap0))
1561 (not (rassq lap0 lap)))
1562 (and (memq byte-optimize-log '(t byte))
1563 (byte-compile-log " unused tag %d removed" (nth 1 lap0)))
1564 (setq lap (delq lap0 lap)
1565 keep-going t))
1566 ;;
1567 ;; goto ... --> goto <delete until TAG or end>
1568 ;; return ... --> return <delete until TAG or end>
1569 ;;
1570 ((and (memq (car lap0) '(byte-goto byte-return))
1571 (not (memq (car lap1) '(TAG nil))))
1572 (setq tmp rest)
1573 (let ((i 0)
1574 (opt-p (memq byte-optimize-log '(t lap)))
1575 str deleted)
1576 (while (and (setq tmp (cdr tmp))
1577 (not (eq 'TAG (car (car tmp)))))
1578 (if opt-p (setq deleted (cons (car tmp) deleted)
1579 str (concat str " %s")
1580 i (1+ i))))
1581 (if opt-p
1582 (let ((tagstr
1583 (if (eq 'TAG (car (car tmp)))
1584 (format "%d:" (car (cdr (car tmp))))
1585 (or (car tmp) ""))))
1586 (if (< i 6)
1587 (apply 'byte-compile-log-lap-1
1588 (concat " %s" str
1589 " %s\t-->\t%s <deleted> %s")
1590 lap0
1591 (nconc (nreverse deleted)
1592 (list tagstr lap0 tagstr)))
1593 (byte-compile-log-lap
1594 " %s <%d unreachable op%s> %s\t-->\t%s <deleted> %s"
1595 lap0 i (if (= i 1) "" "s")
1596 tagstr lap0 tagstr))))
1597 (rplacd rest tmp))
1598 (setq keep-going t))
1599 ;;
1600 ;; <safe-op> unbind --> unbind <safe-op>
1601 ;; (this may enable other optimizations.)
1602 ;;
1603 ((and (eq 'byte-unbind (car lap1))
1604 (memq (car lap0) byte-after-unbind-ops))
1605 (byte-compile-log-lap " %s %s\t-->\t%s %s" lap0 lap1 lap1 lap0)
1606 (setcar rest lap1)
1607 (setcar (cdr rest) lap0)
1608 (setq keep-going t))
1609 ;;
1610 ;; varbind-X unbind-N --> discard unbind-(N-1)
1611 ;; save-excursion unbind-N --> unbind-(N-1)
1612 ;; save-restriction unbind-N --> unbind-(N-1)
1613 ;;
1614 ((and (eq 'byte-unbind (car lap1))
1615 (memq (car lap0) '(byte-varbind byte-save-excursion
1616 byte-save-restriction))
1617 (< 0 (cdr lap1)))
1618 (if (zerop (setcdr lap1 (1- (cdr lap1))))
1619 (delq lap1 rest))
1620 (if (eq (car lap0) 'byte-varbind)
1621 (setcar rest (cons 'byte-discard 0))
1622 (setq lap (delq lap0 lap)))
1623 (byte-compile-log-lap " %s %s\t-->\t%s %s"
1624 lap0 (cons (car lap1) (1+ (cdr lap1)))
1625 (if (eq (car lap0) 'byte-varbind)
1626 (car rest)
1627 (car (cdr rest)))
1628 (if (and (/= 0 (cdr lap1))
1629 (eq (car lap0) 'byte-varbind))
1630 (car (cdr rest))
1631 ""))
1632 (setq keep-going t))
1633 ;;
1634 ;; goto*-X ... X: goto-Y --> goto*-Y
1635 ;; goto-X ... X: return --> return
1636 ;;
1637 ((and (memq (car lap0) byte-goto-ops)
1638 (memq (car (setq tmp (nth 1 (memq (cdr lap0) lap))))
1639 '(byte-goto byte-return)))
1640 (cond ((and (not (eq tmp lap0))
1641 (or (eq (car lap0) 'byte-goto)
1642 (eq (car tmp) 'byte-goto)))
1643 (byte-compile-log-lap " %s [%s]\t-->\t%s"
1644 (car lap0) tmp tmp)
1645 (if (eq (car tmp) 'byte-return)
1646 (setcar lap0 'byte-return))
1647 (setcdr lap0 (cdr tmp))
1648 (setq keep-going t))))
1649 ;;
1650 ;; goto-*-else-pop X ... X: goto-if-* --> whatever
1651 ;; goto-*-else-pop X ... X: discard --> whatever
1652 ;;
1653 ((and (memq (car lap0) '(byte-goto-if-nil-else-pop
1654 byte-goto-if-not-nil-else-pop))
1655 (memq (car (car (setq tmp (cdr (memq (cdr lap0) lap)))))
1656 (eval-when-compile
1657 (cons 'byte-discard byte-conditional-ops)))
1658 (not (eq lap0 (car tmp))))
1659 (setq tmp2 (car tmp))
1660 (setq tmp3 (assq (car lap0) '((byte-goto-if-nil-else-pop
1661 byte-goto-if-nil)
1662 (byte-goto-if-not-nil-else-pop
1663 byte-goto-if-not-nil))))
1664 (if (memq (car tmp2) tmp3)
1665 (progn (setcar lap0 (car tmp2))
1666 (setcdr lap0 (cdr tmp2))
1667 (byte-compile-log-lap " %s-else-pop [%s]\t-->\t%s"
1668 (car lap0) tmp2 lap0))
1669 ;; Get rid of the -else-pop's and jump one step further.
1670 (or (eq 'TAG (car (nth 1 tmp)))
1671 (setcdr tmp (cons (byte-compile-make-tag)
1672 (cdr tmp))))
1673 (byte-compile-log-lap " %s [%s]\t-->\t%s <skip>"
1674 (car lap0) tmp2 (nth 1 tmp3))
1675 (setcar lap0 (nth 1 tmp3))
1676 (setcdr lap0 (nth 1 tmp)))
1677 (setq keep-going t))
1678 ;;
1679 ;; const goto-X ... X: goto-if-* --> whatever
1680 ;; const goto-X ... X: discard --> whatever
1681 ;;
1682 ((and (eq (car lap0) 'byte-constant)
1683 (eq (car lap1) 'byte-goto)
1684 (memq (car (car (setq tmp (cdr (memq (cdr lap1) lap)))))
1685 (eval-when-compile
1686 (cons 'byte-discard byte-conditional-ops)))
1687 (not (eq lap1 (car tmp))))
1688 (setq tmp2 (car tmp))
1689 (cond ((memq (car tmp2)
1690 (if (null (car (cdr lap0)))
1691 '(byte-goto-if-nil byte-goto-if-nil-else-pop)
1692 '(byte-goto-if-not-nil
1693 byte-goto-if-not-nil-else-pop)))
1694 (byte-compile-log-lap " %s goto [%s]\t-->\t%s %s"
1695 lap0 tmp2 lap0 tmp2)
1696 (setcar lap1 (car tmp2))
1697 (setcdr lap1 (cdr tmp2))
1698 ;; Let next step fix the (const,goto-if*) sequence.
1699 (setq rest (cons nil rest)))
1700 (t
1701 ;; Jump one step further
1702 (byte-compile-log-lap
1703 " %s goto [%s]\t-->\t<deleted> goto <skip>"
1704 lap0 tmp2)
1705 (or (eq 'TAG (car (nth 1 tmp)))
1706 (setcdr tmp (cons (byte-compile-make-tag)
1707 (cdr tmp))))
1708 (setcdr lap1 (car (cdr tmp)))
1709 (setq lap (delq lap0 lap))))
1710 (setq keep-going t))
1711 ;;
1712 ;; X: varref-Y ... varset-Y goto-X -->
1713 ;; X: varref-Y Z: ... dup varset-Y goto-Z
1714 ;; (varset-X goto-BACK, BACK: varref-X --> copy the varref down.)
1715 ;; (This is so usual for while loops that it is worth handling).
1716 ;;
1717 ((and (eq (car lap1) 'byte-varset)
1718 (eq (car lap2) 'byte-goto)
1719 (not (memq (cdr lap2) rest)) ;Backwards jump
1720 (eq (car (car (setq tmp (cdr (memq (cdr lap2) lap)))))
1721 'byte-varref)
1722 (eq (cdr (car tmp)) (cdr lap1))
1723 (not (memq (car (cdr lap1)) byte-boolean-vars)))
1724 ;;(byte-compile-log-lap " Pulled %s to end of loop" (car tmp))
1725 (let ((newtag (byte-compile-make-tag)))
1726 (byte-compile-log-lap
1727 " %s: %s ... %s %s\t-->\t%s: %s %s: ... %s %s %s"
1728 (nth 1 (cdr lap2)) (car tmp)
1729 lap1 lap2
1730 (nth 1 (cdr lap2)) (car tmp)
1731 (nth 1 newtag) 'byte-dup lap1
1732 (cons 'byte-goto newtag)
1733 )
1734 (setcdr rest (cons (cons 'byte-dup 0) (cdr rest)))
1735 (setcdr tmp (cons (setcdr lap2 newtag) (cdr tmp))))
1736 (setq add-depth 1)
1737 (setq keep-going t))
1738 ;;
1739 ;; goto-X Y: ... X: goto-if*-Y --> goto-if-not-*-X+1 Y:
1740 ;; (This can pull the loop test to the end of the loop)
1741 ;;
1742 ((and (eq (car lap0) 'byte-goto)
1743 (eq (car lap1) 'TAG)
1744 (eq lap1
1745 (cdr (car (setq tmp (cdr (memq (cdr lap0) lap))))))
1746 (memq (car (car tmp))
1747 '(byte-goto byte-goto-if-nil byte-goto-if-not-nil
1748 byte-goto-if-nil-else-pop)))
1749 ;; (byte-compile-log-lap " %s %s, %s %s --> moved conditional"
1750 ;; lap0 lap1 (cdr lap0) (car tmp))
1751 (let ((newtag (byte-compile-make-tag)))
1752 (byte-compile-log-lap
1753 "%s %s: ... %s: %s\t-->\t%s ... %s:"
1754 lap0 (nth 1 lap1) (nth 1 (cdr lap0)) (car tmp)
1755 (cons (cdr (assq (car (car tmp))
1756 '((byte-goto-if-nil . byte-goto-if-not-nil)
1757 (byte-goto-if-not-nil . byte-goto-if-nil)
1758 (byte-goto-if-nil-else-pop .
1759 byte-goto-if-not-nil-else-pop)
1760 (byte-goto-if-not-nil-else-pop .
1761 byte-goto-if-nil-else-pop))))
1762 newtag)
1763
1764 (nth 1 newtag)
1765 )
1766 (setcdr tmp (cons (setcdr lap0 newtag) (cdr tmp)))
1767 (if (eq (car (car tmp)) 'byte-goto-if-nil-else-pop)
1768 ;; We can handle this case but not the -if-not-nil case,
1769 ;; because we won't know which non-nil constant to push.
1770 (setcdr rest (cons (cons 'byte-constant
1771 (byte-compile-get-constant nil))
1772 (cdr rest))))
1773 (setcar lap0 (nth 1 (memq (car (car tmp))
1774 '(byte-goto-if-nil-else-pop
1775 byte-goto-if-not-nil
1776 byte-goto-if-nil
1777 byte-goto-if-not-nil
1778 byte-goto byte-goto))))
1779 )
1780 (setq keep-going t))
1781 )
1782 (setq rest (cdr rest)))
1783 )
1784 ;; Cleanup stage:
1785 ;; Rebuild byte-compile-constants / byte-compile-variables.
1786 ;; Simple optimizations that would inhibit other optimizations if they
1787 ;; were done in the optimizing loop, and optimizations which there is no
1788 ;; need to do more than once.
1789 (setq byte-compile-constants nil
1790 byte-compile-variables nil)
1791 (setq rest lap)
1792 (while rest
1793 (setq lap0 (car rest)
1794 lap1 (nth 1 rest))
1795 (if (memq (car lap0) byte-constref-ops)
1796 (if (eq (cdr lap0) 'byte-constant)
1797 (or (memq (cdr lap0) byte-compile-variables)
1798 (setq byte-compile-variables (cons (cdr lap0)
1799 byte-compile-variables)))
1800 (or (memq (cdr lap0) byte-compile-constants)
1801 (setq byte-compile-constants (cons (cdr lap0)
1802 byte-compile-constants)))))
1803 (cond (;;
1804 ;; const-C varset-X const-C --> const-C dup varset-X
1805 ;; const-C varbind-X const-C --> const-C dup varbind-X
1806 ;;
1807 (and (eq (car lap0) 'byte-constant)
1808 (eq (car (nth 2 rest)) 'byte-constant)
1809 (eq (cdr lap0) (car (nth 2 rest)))
1810 (memq (car lap1) '(byte-varbind byte-varset)))
1811 (byte-compile-log-lap " %s %s %s\t-->\t%s dup %s"
1812 lap0 lap1 lap0 lap0 lap1)
1813 (setcar (cdr (cdr rest)) (cons (car lap1) (cdr lap1)))
1814 (setcar (cdr rest) (cons 'byte-dup 0))
1815 (setq add-depth 1))
1816 ;;
1817 ;; const-X [dup/const-X ...] --> const-X [dup ...] dup
1818 ;; varref-X [dup/varref-X ...] --> varref-X [dup ...] dup
1819 ;;
1820 ((memq (car lap0) '(byte-constant byte-varref))
1821 (setq tmp rest
1822 tmp2 nil)
1823 (while (progn
1824 (while (eq 'byte-dup (car (car (setq tmp (cdr tmp))))))
1825 (and (eq (cdr lap0) (cdr (car tmp)))
1826 (eq (car lap0) (car (car tmp)))))
1827 (setcar tmp (cons 'byte-dup 0))
1828 (setq tmp2 t))
1829 (if tmp2
1830 (byte-compile-log-lap
1831 " %s [dup/%s]...\t-->\t%s dup..." lap0 lap0 lap0)))
1832 ;;
1833 ;; unbind-N unbind-M --> unbind-(N+M)
1834 ;;
1835 ((and (eq 'byte-unbind (car lap0))
1836 (eq 'byte-unbind (car lap1)))
1837 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1838 (cons 'byte-unbind
1839 (+ (cdr lap0) (cdr lap1))))
1840 (setq keep-going t)
1841 (setq lap (delq lap0 lap))
1842 (setcdr lap1 (+ (cdr lap1) (cdr lap0))))
1843 )
1844 (setq rest (cdr rest)))
1845 (setq byte-compile-maxdepth (+ byte-compile-maxdepth add-depth)))
1846 lap)
1847
1848 (provide 'byte-optimize)
1849
1850 \f
1851 ;; To avoid "lisp nesting exceeds max-lisp-eval-depth" when this file compiles
1852 ;; itself, compile some of its most used recursive functions (at load time).
1853 ;;
1854 (eval-when-compile
1855 (or (byte-code-function-p (symbol-function 'byte-optimize-form))
1856 (assq 'byte-code (symbol-function 'byte-optimize-form))
1857 (let ((byte-optimize nil)
1858 (byte-compile-warnings nil))
1859 (mapcar '(lambda (x)
1860 (or noninteractive (message "compiling %s..." x))
1861 (byte-compile x)
1862 (or noninteractive (message "compiling %s...done" x)))
1863 '(byte-optimize-form
1864 byte-optimize-body
1865 byte-optimize-predicate
1866 byte-optimize-binary-predicate
1867 ;; Inserted some more than necessary, to speed it up.
1868 byte-optimize-form-code-walker
1869 byte-optimize-lapcode))))
1870 nil)
1871
1872 ;;; byte-opt.el ends here