]> code.delx.au - gnu-emacs/blob - src/lisp.h
Merge branch 'master' into xwidget
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2015 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #define DECLARE_GDB_SYM(type, id) type const id EXTERNALLY_VISIBLE
48 #ifdef MAIN_PROGRAM
49 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) DECLARE_GDB_SYM (type, id)
50 # define DEFINE_GDB_SYMBOL_END(id) = id;
51 #else
52 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) extern DECLARE_GDB_SYM (type, id)
53 # define DEFINE_GDB_SYMBOL_END(val) ;
54 #endif
55
56 /* The ubiquitous max and min macros. */
57 #undef min
58 #undef max
59 #define max(a, b) ((a) > (b) ? (a) : (b))
60 #define min(a, b) ((a) < (b) ? (a) : (b))
61
62 /* Number of elements in an array. */
63 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
64
65 /* Number of bits in a Lisp_Object tag. */
66 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
67 #define GCTYPEBITS 3
68 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
69
70 /* The number of bits needed in an EMACS_INT over and above the number
71 of bits in a pointer. This is 0 on systems where:
72 1. We can specify multiple-of-8 alignment on static variables.
73 2. We know malloc returns a multiple of 8. */
74 #if (defined alignas \
75 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
76 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
77 || defined CYGWIN))
78 # define NONPOINTER_BITS 0
79 #else
80 # define NONPOINTER_BITS GCTYPEBITS
81 #endif
82
83 /* EMACS_INT - signed integer wide enough to hold an Emacs value
84 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
85 pI - printf length modifier for EMACS_INT
86 EMACS_UINT - unsigned variant of EMACS_INT */
87 #ifndef EMACS_INT_MAX
88 # if INTPTR_MAX <= 0
89 # error "INTPTR_MAX misconfigured"
90 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
91 typedef int EMACS_INT;
92 typedef unsigned int EMACS_UINT;
93 # define EMACS_INT_MAX INT_MAX
94 # define pI ""
95 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
96 typedef long int EMACS_INT;
97 typedef unsigned long EMACS_UINT;
98 # define EMACS_INT_MAX LONG_MAX
99 # define pI "l"
100 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
101 In theory this is not safe, but in practice it seems to be OK. */
102 # elif INTPTR_MAX <= LLONG_MAX
103 typedef long long int EMACS_INT;
104 typedef unsigned long long int EMACS_UINT;
105 # define EMACS_INT_MAX LLONG_MAX
106 # define pI "ll"
107 # else
108 # error "INTPTR_MAX too large"
109 # endif
110 #endif
111
112 /* Number of bits to put in each character in the internal representation
113 of bool vectors. This should not vary across implementations. */
114 enum { BOOL_VECTOR_BITS_PER_CHAR =
115 #define BOOL_VECTOR_BITS_PER_CHAR 8
116 BOOL_VECTOR_BITS_PER_CHAR
117 };
118
119 /* An unsigned integer type representing a fixed-length bit sequence,
120 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
121 for speed, but it is unsigned char on weird platforms. */
122 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
123 typedef size_t bits_word;
124 # define BITS_WORD_MAX SIZE_MAX
125 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
126 #else
127 typedef unsigned char bits_word;
128 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
129 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
130 #endif
131 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
132
133 /* Number of bits in some machine integer types. */
134 enum
135 {
136 BITS_PER_CHAR = CHAR_BIT,
137 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
138 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
139 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
140 };
141
142 /* printmax_t and uprintmax_t are types for printing large integers.
143 These are the widest integers that are supported for printing.
144 pMd etc. are conversions for printing them.
145 On C99 hosts, there's no problem, as even the widest integers work.
146 Fall back on EMACS_INT on pre-C99 hosts. */
147 #ifdef PRIdMAX
148 typedef intmax_t printmax_t;
149 typedef uintmax_t uprintmax_t;
150 # define pMd PRIdMAX
151 # define pMu PRIuMAX
152 #else
153 typedef EMACS_INT printmax_t;
154 typedef EMACS_UINT uprintmax_t;
155 # define pMd pI"d"
156 # define pMu pI"u"
157 #endif
158
159 /* Use pD to format ptrdiff_t values, which suffice for indexes into
160 buffers and strings. Emacs never allocates objects larger than
161 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
162 In C99, pD can always be "t"; configure it here for the sake of
163 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
164 #if PTRDIFF_MAX == INT_MAX
165 # define pD ""
166 #elif PTRDIFF_MAX == LONG_MAX
167 # define pD "l"
168 #elif PTRDIFF_MAX == LLONG_MAX
169 # define pD "ll"
170 #else
171 # define pD "t"
172 #endif
173
174 /* Extra internal type checking? */
175
176 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
177 'assume (COND)'. COND should be free of side effects, as it may or
178 may not be evaluated.
179
180 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
181 defined and suppress_checking is false, and does nothing otherwise.
182 Emacs dies if COND is checked and is false. The suppress_checking
183 variable is initialized to 0 in alloc.c. Set it to 1 using a
184 debugger to temporarily disable aborting on detected internal
185 inconsistencies or error conditions.
186
187 In some cases, a good compiler may be able to optimize away the
188 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
189 uses eassert to test STRINGP (x), but a particular use of XSTRING
190 is invoked only after testing that STRINGP (x) is true, making the
191 test redundant.
192
193 eassume is like eassert except that it also causes the compiler to
194 assume that COND is true afterwards, regardless of whether runtime
195 checking is enabled. This can improve performance in some cases,
196 though it can degrade performance in others. It's often suboptimal
197 for COND to call external functions or access volatile storage. */
198
199 #ifndef ENABLE_CHECKING
200 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
201 # define eassume(cond) assume (cond)
202 #else /* ENABLE_CHECKING */
203
204 extern _Noreturn void die (const char *, const char *, int);
205
206 extern bool suppress_checking EXTERNALLY_VISIBLE;
207
208 # define eassert(cond) \
209 (suppress_checking || (cond) \
210 ? (void) 0 \
211 : die (# cond, __FILE__, __LINE__))
212 # define eassume(cond) \
213 (suppress_checking \
214 ? assume (cond) \
215 : (cond) \
216 ? (void) 0 \
217 : die (# cond, __FILE__, __LINE__))
218 #endif /* ENABLE_CHECKING */
219
220 \f
221 /* Use the configure flag --enable-check-lisp-object-type to make
222 Lisp_Object use a struct type instead of the default int. The flag
223 causes CHECK_LISP_OBJECT_TYPE to be defined. */
224
225 /***** Select the tagging scheme. *****/
226 /* The following option controls the tagging scheme:
227 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
228 always 0, and we can thus use them to hold tag bits, without
229 restricting our addressing space.
230
231 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
232 restricting our possible address range.
233
234 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
235 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
236 on the few static Lisp_Objects used: lispsym, all the defsubr, and
237 the two special buffers buffer_defaults and buffer_local_symbols. */
238
239 enum Lisp_Bits
240 {
241 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
242 integer constant, for MSVC. */
243 #define GCALIGNMENT 8
244
245 /* Number of bits in a Lisp_Object value, not counting the tag. */
246 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
247
248 /* Number of bits in a Lisp fixnum tag. */
249 INTTYPEBITS = GCTYPEBITS - 1,
250
251 /* Number of bits in a Lisp fixnum value, not counting the tag. */
252 FIXNUM_BITS = VALBITS + 1
253 };
254
255 #if GCALIGNMENT != 1 << GCTYPEBITS
256 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
257 #endif
258
259 /* The maximum value that can be stored in a EMACS_INT, assuming all
260 bits other than the type bits contribute to a nonnegative signed value.
261 This can be used in #if, e.g., '#if USB_TAG' below expands to an
262 expression involving VAL_MAX. */
263 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
264
265 /* Whether the least-significant bits of an EMACS_INT contain the tag.
266 On hosts where pointers-as-ints do not exceed VAL_MAX / 2, USE_LSB_TAG is:
267 a. unnecessary, because the top bits of an EMACS_INT are unused, and
268 b. slower, because it typically requires extra masking.
269 So, USE_LSB_TAG is true only on hosts where it might be useful. */
270 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
271 #define USE_LSB_TAG (VAL_MAX / 2 < INTPTR_MAX)
272 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
273
274 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
275 # error "USE_LSB_TAG not supported on this platform; please report this." \
276 "Try 'configure --with-wide-int' to work around the problem."
277 error !;
278 #endif
279
280 #ifndef alignas
281 # define alignas(alignment) /* empty */
282 # if USE_LSB_TAG
283 # error "USE_LSB_TAG requires alignas"
284 # endif
285 #endif
286
287 #ifdef HAVE_STRUCT_ATTRIBUTE_ALIGNED
288 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
289 #else
290 # define GCALIGNED /* empty */
291 #endif
292
293 /* Some operations are so commonly executed that they are implemented
294 as macros, not functions, because otherwise runtime performance would
295 suffer too much when compiling with GCC without optimization.
296 There's no need to inline everything, just the operations that
297 would otherwise cause a serious performance problem.
298
299 For each such operation OP, define a macro lisp_h_OP that contains
300 the operation's implementation. That way, OP can be implemented
301 via a macro definition like this:
302
303 #define OP(x) lisp_h_OP (x)
304
305 and/or via a function definition like this:
306
307 LISP_MACRO_DEFUN (OP, Lisp_Object, (Lisp_Object x), (x))
308
309 which macro-expands to this:
310
311 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
312
313 without worrying about the implementations diverging, since
314 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
315 are intended to be private to this include file, and should not be
316 used elsewhere.
317
318 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
319 functions, once most developers have access to GCC 4.8 or later and
320 can use "gcc -Og" to debug. Maybe in the year 2016. See
321 Bug#11935.
322
323 Commentary for these macros can be found near their corresponding
324 functions, below. */
325
326 #if CHECK_LISP_OBJECT_TYPE
327 # define lisp_h_XLI(o) ((o).i)
328 # define lisp_h_XIL(i) ((Lisp_Object) { i })
329 #else
330 # define lisp_h_XLI(o) (o)
331 # define lisp_h_XIL(i) (i)
332 #endif
333 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
334 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
335 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
336 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
337 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
338 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
339 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
340 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
341 #define lisp_h_INTEGERP(x) ((XTYPE (x) & (Lisp_Int0 | ~Lisp_Int1)) == Lisp_Int0)
342 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
343 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
344 #define lisp_h_NILP(x) EQ (x, Qnil)
345 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
346 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
347 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
348 #define lisp_h_SYMBOL_VAL(sym) \
349 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
350 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
351 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
352 #define lisp_h_XCAR(c) XCONS (c)->car
353 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
354 #define lisp_h_XCONS(a) \
355 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
356 #define lisp_h_XHASH(a) XUINT (a)
357 #define lisp_h_XPNTR(a) \
358 (SYMBOLP (a) ? XSYMBOL (a) : (void *) ((intptr_t) (XLI (a) & VALMASK)))
359 #ifndef GC_CHECK_CONS_LIST
360 # define lisp_h_check_cons_list() ((void) 0)
361 #endif
362 #if USE_LSB_TAG
363 # define lisp_h_make_number(n) \
364 XIL ((EMACS_INT) (((EMACS_UINT) (n) << INTTYPEBITS) + Lisp_Int0))
365 # define lisp_h_XFASTINT(a) XINT (a)
366 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
367 # define lisp_h_XSYMBOL(a) \
368 (eassert (SYMBOLP (a)), \
369 (struct Lisp_Symbol *) ((uintptr_t) XLI (a) - Lisp_Symbol \
370 + (char *) lispsym))
371 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
372 # define lisp_h_XUNTAG(a, type) ((void *) (intptr_t) (XLI (a) - (type)))
373 #endif
374
375 /* When compiling via gcc -O0, define the key operations as macros, as
376 Emacs is too slow otherwise. To disable this optimization, compile
377 with -DINLINING=false. */
378 #if (defined __NO_INLINE__ \
379 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
380 && ! (defined INLINING && ! INLINING))
381 # define XLI(o) lisp_h_XLI (o)
382 # define XIL(i) lisp_h_XIL (i)
383 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
384 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
385 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
386 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
387 # define CONSP(x) lisp_h_CONSP (x)
388 # define EQ(x, y) lisp_h_EQ (x, y)
389 # define FLOATP(x) lisp_h_FLOATP (x)
390 # define INTEGERP(x) lisp_h_INTEGERP (x)
391 # define MARKERP(x) lisp_h_MARKERP (x)
392 # define MISCP(x) lisp_h_MISCP (x)
393 # define NILP(x) lisp_h_NILP (x)
394 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
395 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
396 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
397 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
398 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
399 # define XCAR(c) lisp_h_XCAR (c)
400 # define XCDR(c) lisp_h_XCDR (c)
401 # define XCONS(a) lisp_h_XCONS (a)
402 # define XHASH(a) lisp_h_XHASH (a)
403 # define XPNTR(a) lisp_h_XPNTR (a)
404 # ifndef GC_CHECK_CONS_LIST
405 # define check_cons_list() lisp_h_check_cons_list ()
406 # endif
407 # if USE_LSB_TAG
408 # define make_number(n) lisp_h_make_number (n)
409 # define XFASTINT(a) lisp_h_XFASTINT (a)
410 # define XINT(a) lisp_h_XINT (a)
411 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
412 # define XTYPE(a) lisp_h_XTYPE (a)
413 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
414 # endif
415 #endif
416
417 /* Define NAME as a lisp.h inline function that returns TYPE and has
418 arguments declared as ARGDECLS and passed as ARGS. ARGDECLS and
419 ARGS should be parenthesized. Implement the function by calling
420 lisp_h_NAME ARGS. */
421 #define LISP_MACRO_DEFUN(name, type, argdecls, args) \
422 INLINE type (name) argdecls { return lisp_h_##name args; }
423
424 /* like LISP_MACRO_DEFUN, except NAME returns void. */
425 #define LISP_MACRO_DEFUN_VOID(name, argdecls, args) \
426 INLINE void (name) argdecls { lisp_h_##name args; }
427
428
429 /* Define the fundamental Lisp data structures. */
430
431 /* This is the set of Lisp data types. If you want to define a new
432 data type, read the comments after Lisp_Fwd_Type definition
433 below. */
434
435 /* Lisp integers use 2 tags, to give them one extra bit, thus
436 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
437 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
438 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
439
440 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
441 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
442 vociferously about them. */
443 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
444 || (defined __SUNPRO_C && __STDC__))
445 #define ENUM_BF(TYPE) unsigned int
446 #else
447 #define ENUM_BF(TYPE) enum TYPE
448 #endif
449
450
451 enum Lisp_Type
452 {
453 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
454 Lisp_Symbol = 0,
455
456 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
457 whose first member indicates the subtype. */
458 Lisp_Misc = 1,
459
460 /* Integer. XINT (obj) is the integer value. */
461 Lisp_Int0 = 2,
462 Lisp_Int1 = USE_LSB_TAG ? 6 : 3,
463
464 /* String. XSTRING (object) points to a struct Lisp_String.
465 The length of the string, and its contents, are stored therein. */
466 Lisp_String = 4,
467
468 /* Vector of Lisp objects, or something resembling it.
469 XVECTOR (object) points to a struct Lisp_Vector, which contains
470 the size and contents. The size field also contains the type
471 information, if it's not a real vector object. */
472 Lisp_Vectorlike = 5,
473
474 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
475 Lisp_Cons = USE_LSB_TAG ? 3 : 6,
476
477 Lisp_Float = 7
478 };
479
480 /* This is the set of data types that share a common structure.
481 The first member of the structure is a type code from this set.
482 The enum values are arbitrary, but we'll use large numbers to make it
483 more likely that we'll spot the error if a random word in memory is
484 mistakenly interpreted as a Lisp_Misc. */
485 enum Lisp_Misc_Type
486 {
487 Lisp_Misc_Free = 0x5eab,
488 Lisp_Misc_Marker,
489 Lisp_Misc_Overlay,
490 Lisp_Misc_Save_Value,
491 /* Currently floats are not a misc type,
492 but let's define this in case we want to change that. */
493 Lisp_Misc_Float,
494 /* This is not a type code. It is for range checking. */
495 Lisp_Misc_Limit
496 };
497
498 /* These are the types of forwarding objects used in the value slot
499 of symbols for special built-in variables whose value is stored in
500 C variables. */
501 enum Lisp_Fwd_Type
502 {
503 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
504 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
505 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
506 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
507 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
508 };
509
510 /* If you want to define a new Lisp data type, here are some
511 instructions. See the thread at
512 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
513 for more info.
514
515 First, there are already a couple of Lisp types that can be used if
516 your new type does not need to be exposed to Lisp programs nor
517 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
518 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
519 is suitable for temporarily stashing away pointers and integers in
520 a Lisp object. The latter is useful for vector-like Lisp objects
521 that need to be used as part of other objects, but which are never
522 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
523 an example).
524
525 These two types don't look pretty when printed, so they are
526 unsuitable for Lisp objects that can be exposed to users.
527
528 To define a new data type, add one more Lisp_Misc subtype or one
529 more pseudovector subtype. Pseudovectors are more suitable for
530 objects with several slots that need to support fast random access,
531 while Lisp_Misc types are for everything else. A pseudovector object
532 provides one or more slots for Lisp objects, followed by struct
533 members that are accessible only from C. A Lisp_Misc object is a
534 wrapper for a C struct that can contain anything you like.
535
536 Explicit freeing is discouraged for Lisp objects in general. But if
537 you really need to exploit this, use Lisp_Misc (check free_misc in
538 alloc.c to see why). There is no way to free a vectorlike object.
539
540 To add a new pseudovector type, extend the pvec_type enumeration;
541 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
542
543 For a Lisp_Misc, you will also need to add your entry to union
544 Lisp_Misc (but make sure the first word has the same structure as
545 the others, starting with a 16-bit member of the Lisp_Misc_Type
546 enumeration and a 1-bit GC markbit) and make sure the overall size
547 of the union is not increased by your addition.
548
549 For a new pseudovector, it's highly desirable to limit the size
550 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
551 Otherwise you will need to change sweep_vectors (also in alloc.c).
552
553 Then you will need to add switch branches in print.c (in
554 print_object, to print your object, and possibly also in
555 print_preprocess) and to alloc.c, to mark your object (in
556 mark_object) and to free it (in gc_sweep). The latter is also the
557 right place to call any code specific to your data type that needs
558 to run when the object is recycled -- e.g., free any additional
559 resources allocated for it that are not Lisp objects. You can even
560 make a pointer to the function that frees the resources a slot in
561 your object -- this way, the same object could be used to represent
562 several disparate C structures. */
563
564 #ifdef CHECK_LISP_OBJECT_TYPE
565
566 typedef struct { EMACS_INT i; } Lisp_Object;
567
568 #define LISP_INITIALLY(i) {i}
569
570 #undef CHECK_LISP_OBJECT_TYPE
571 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
572 #else /* CHECK_LISP_OBJECT_TYPE */
573
574 /* If a struct type is not wanted, define Lisp_Object as just a number. */
575
576 typedef EMACS_INT Lisp_Object;
577 #define LISP_INITIALLY(i) (i)
578 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
579 #endif /* CHECK_LISP_OBJECT_TYPE */
580
581 #define LISP_INITIALLY_ZERO LISP_INITIALLY (0)
582 \f
583 /* Forward declarations. */
584
585 /* Defined in this file. */
586 union Lisp_Fwd;
587 INLINE bool BOOL_VECTOR_P (Lisp_Object);
588 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
589 INLINE bool BUFFERP (Lisp_Object);
590 INLINE bool CHAR_TABLE_P (Lisp_Object);
591 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
592 INLINE bool (CONSP) (Lisp_Object);
593 INLINE bool (FLOATP) (Lisp_Object);
594 INLINE bool functionp (Lisp_Object);
595 INLINE bool (INTEGERP) (Lisp_Object);
596 INLINE bool (MARKERP) (Lisp_Object);
597 INLINE bool (MISCP) (Lisp_Object);
598 INLINE bool (NILP) (Lisp_Object);
599 INLINE bool OVERLAYP (Lisp_Object);
600 INLINE bool PROCESSP (Lisp_Object);
601 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
602 INLINE bool SAVE_VALUEP (Lisp_Object);
603 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
604 Lisp_Object);
605 INLINE bool STRINGP (Lisp_Object);
606 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
607 INLINE bool SUBRP (Lisp_Object);
608 INLINE bool (SYMBOLP) (Lisp_Object);
609 INLINE bool (VECTORLIKEP) (Lisp_Object);
610 INLINE bool WINDOWP (Lisp_Object);
611 INLINE bool TERMINALP (Lisp_Object);
612 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
613 INLINE struct Lisp_Symbol *(XSYMBOL) (Lisp_Object);
614 INLINE void *(XUNTAG) (Lisp_Object, int);
615
616 /* Defined in chartab.c. */
617 extern Lisp_Object char_table_ref (Lisp_Object, int);
618 extern void char_table_set (Lisp_Object, int, Lisp_Object);
619
620 /* Defined in data.c. */
621 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
622 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
623
624 /* Defined in emacs.c. */
625 extern bool might_dump;
626 /* True means Emacs has already been initialized.
627 Used during startup to detect startup of dumped Emacs. */
628 extern bool initialized;
629
630 /* Defined in floatfns.c. */
631 extern double extract_float (Lisp_Object);
632
633 \f
634 /* Interned state of a symbol. */
635
636 enum symbol_interned
637 {
638 SYMBOL_UNINTERNED = 0,
639 SYMBOL_INTERNED = 1,
640 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
641 };
642
643 enum symbol_redirect
644 {
645 SYMBOL_PLAINVAL = 4,
646 SYMBOL_VARALIAS = 1,
647 SYMBOL_LOCALIZED = 2,
648 SYMBOL_FORWARDED = 3
649 };
650
651 struct Lisp_Symbol
652 {
653 bool_bf gcmarkbit : 1;
654
655 /* Indicates where the value can be found:
656 0 : it's a plain var, the value is in the `value' field.
657 1 : it's a varalias, the value is really in the `alias' symbol.
658 2 : it's a localized var, the value is in the `blv' object.
659 3 : it's a forwarding variable, the value is in `forward'. */
660 ENUM_BF (symbol_redirect) redirect : 3;
661
662 /* Non-zero means symbol is constant, i.e. changing its value
663 should signal an error. If the value is 3, then the var
664 can be changed, but only by `defconst'. */
665 unsigned constant : 2;
666
667 /* Interned state of the symbol. This is an enumerator from
668 enum symbol_interned. */
669 unsigned interned : 2;
670
671 /* True means that this variable has been explicitly declared
672 special (with `defvar' etc), and shouldn't be lexically bound. */
673 bool_bf declared_special : 1;
674
675 /* True if pointed to from purespace and hence can't be GC'd. */
676 bool_bf pinned : 1;
677
678 /* The symbol's name, as a Lisp string. */
679 Lisp_Object name;
680
681 /* Value of the symbol or Qunbound if unbound. Which alternative of the
682 union is used depends on the `redirect' field above. */
683 union {
684 Lisp_Object value;
685 struct Lisp_Symbol *alias;
686 struct Lisp_Buffer_Local_Value *blv;
687 union Lisp_Fwd *fwd;
688 } val;
689
690 /* Function value of the symbol or Qnil if not fboundp. */
691 Lisp_Object function;
692
693 /* The symbol's property list. */
694 Lisp_Object plist;
695
696 /* Next symbol in obarray bucket, if the symbol is interned. */
697 struct Lisp_Symbol *next;
698 };
699
700 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
701 meaning as in the DEFUN macro, and is used to construct a prototype. */
702 /* We can use the same trick as in the DEFUN macro to generate the
703 appropriate prototype. */
704 #define EXFUN(fnname, maxargs) \
705 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
706
707 /* Note that the weird token-substitution semantics of ANSI C makes
708 this work for MANY and UNEVALLED. */
709 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
710 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
711 #define DEFUN_ARGS_0 (void)
712 #define DEFUN_ARGS_1 (Lisp_Object)
713 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
714 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
715 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
716 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
717 Lisp_Object)
718 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
719 Lisp_Object, Lisp_Object)
720 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
721 Lisp_Object, Lisp_Object, Lisp_Object)
722 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
723 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
724
725 /* Yield an integer that contains TAG along with PTR. */
726 #define TAG_PTR(tag, ptr) \
727 ((USE_LSB_TAG ? (tag) : (EMACS_UINT) (tag) << VALBITS) + (uintptr_t) (ptr))
728
729 /* Yield an integer that contains a symbol tag along with OFFSET.
730 OFFSET should be the offset in bytes from 'lispsym' to the symbol. */
731 #define TAG_SYMOFFSET(offset) \
732 TAG_PTR (Lisp_Symbol, \
733 ((uintptr_t) (offset) >> (USE_LSB_TAG ? 0 : GCTYPEBITS)))
734
735 /* XLI_BUILTIN_LISPSYM (iQwhatever) is equivalent to
736 XLI (builtin_lisp_symbol (Qwhatever)),
737 except the former expands to an integer constant expression. */
738 #define XLI_BUILTIN_LISPSYM(iname) TAG_SYMOFFSET ((iname) * sizeof *lispsym)
739
740 /* Declare extern constants for Lisp symbols. These can be helpful
741 when using a debugger like GDB, on older platforms where the debug
742 format does not represent C macros. */
743 #define DEFINE_LISP_SYMBOL_BEGIN(name) \
744 DEFINE_GDB_SYMBOL_BEGIN (Lisp_Object, name)
745 #define DEFINE_LISP_SYMBOL_END(name) \
746 DEFINE_GDB_SYMBOL_END (LISP_INITIALLY (XLI_BUILTIN_LISPSYM (i##name)))
747
748 #include "globals.h"
749
750 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
751 At the machine level, these operations are no-ops. */
752 LISP_MACRO_DEFUN (XLI, EMACS_INT, (Lisp_Object o), (o))
753 LISP_MACRO_DEFUN (XIL, Lisp_Object, (EMACS_INT i), (i))
754
755 /* In the size word of a vector, this bit means the vector has been marked. */
756
757 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
758 # define ARRAY_MARK_FLAG PTRDIFF_MIN
759 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
760
761 /* In the size word of a struct Lisp_Vector, this bit means it's really
762 some other vector-like object. */
763 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
764 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
765 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
766
767 /* In a pseudovector, the size field actually contains a word with one
768 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
769 with PVEC_TYPE_MASK to indicate the actual type. */
770 enum pvec_type
771 {
772 PVEC_NORMAL_VECTOR,
773 PVEC_FREE,
774 PVEC_PROCESS,
775 PVEC_FRAME,
776 PVEC_WINDOW,
777 PVEC_BOOL_VECTOR,
778 PVEC_BUFFER,
779 PVEC_HASH_TABLE,
780 PVEC_TERMINAL,
781 PVEC_WINDOW_CONFIGURATION,
782 PVEC_SUBR,
783 PVEC_OTHER,
784 #ifdef HAVE_XWIDGETS
785 PVEC_XWIDGET,
786 PVEC_XWIDGET_VIEW,
787 #endif
788
789 /* These should be last, check internal_equal to see why. */
790 PVEC_COMPILED,
791 PVEC_CHAR_TABLE,
792 PVEC_SUB_CHAR_TABLE,
793 PVEC_FONT /* Should be last because it's used for range checking. */
794 };
795
796 enum More_Lisp_Bits
797 {
798 /* For convenience, we also store the number of elements in these bits.
799 Note that this size is not necessarily the memory-footprint size, but
800 only the number of Lisp_Object fields (that need to be traced by GC).
801 The distinction is used, e.g., by Lisp_Process, which places extra
802 non-Lisp_Object fields at the end of the structure. */
803 PSEUDOVECTOR_SIZE_BITS = 12,
804 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
805
806 /* To calculate the memory footprint of the pseudovector, it's useful
807 to store the size of non-Lisp area in word_size units here. */
808 PSEUDOVECTOR_REST_BITS = 12,
809 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
810 << PSEUDOVECTOR_SIZE_BITS),
811
812 /* Used to extract pseudovector subtype information. */
813 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
814 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
815 };
816 \f
817 /* These functions extract various sorts of values from a Lisp_Object.
818 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
819 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
820 that cons. */
821
822 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
823 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
824 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
825 DEFINE_GDB_SYMBOL_END (VALMASK)
826
827 /* Largest and smallest representable fixnum values. These are the C
828 values. They are macros for use in static initializers. */
829 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
830 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
831
832 #if USE_LSB_TAG
833
834 LISP_MACRO_DEFUN (make_number, Lisp_Object, (EMACS_INT n), (n))
835 LISP_MACRO_DEFUN (XINT, EMACS_INT, (Lisp_Object a), (a))
836 LISP_MACRO_DEFUN (XFASTINT, EMACS_INT, (Lisp_Object a), (a))
837 LISP_MACRO_DEFUN (XSYMBOL, struct Lisp_Symbol *, (Lisp_Object a), (a))
838 LISP_MACRO_DEFUN (XTYPE, enum Lisp_Type, (Lisp_Object a), (a))
839 LISP_MACRO_DEFUN (XUNTAG, void *, (Lisp_Object a, int type), (a, type))
840
841 #else /* ! USE_LSB_TAG */
842
843 /* Although compiled only if ! USE_LSB_TAG, the following functions
844 also work when USE_LSB_TAG; this is to aid future maintenance when
845 the lisp_h_* macros are eventually removed. */
846
847 /* Make a Lisp integer representing the value of the low order
848 bits of N. */
849 INLINE Lisp_Object
850 make_number (EMACS_INT n)
851 {
852 EMACS_INT int0 = Lisp_Int0;
853 if (USE_LSB_TAG)
854 {
855 EMACS_UINT u = n;
856 n = u << INTTYPEBITS;
857 n += int0;
858 }
859 else
860 {
861 n &= INTMASK;
862 n += (int0 << VALBITS);
863 }
864 return XIL (n);
865 }
866
867 /* Extract A's value as a signed integer. */
868 INLINE EMACS_INT
869 XINT (Lisp_Object a)
870 {
871 EMACS_INT i = XLI (a);
872 if (! USE_LSB_TAG)
873 {
874 EMACS_UINT u = i;
875 i = u << INTTYPEBITS;
876 }
877 return i >> INTTYPEBITS;
878 }
879
880 /* Like XINT (A), but may be faster. A must be nonnegative.
881 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
882 integers have zero-bits in their tags. */
883 INLINE EMACS_INT
884 XFASTINT (Lisp_Object a)
885 {
886 EMACS_INT int0 = Lisp_Int0;
887 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a) - (int0 << VALBITS);
888 eassert (0 <= n);
889 return n;
890 }
891
892 /* Extract A's value as a symbol. */
893 INLINE struct Lisp_Symbol *
894 XSYMBOL (Lisp_Object a)
895 {
896 uintptr_t i = (uintptr_t) XUNTAG (a, Lisp_Symbol);
897 if (! USE_LSB_TAG)
898 i <<= GCTYPEBITS;
899 void *p = (char *) lispsym + i;
900 return p;
901 }
902
903 /* Extract A's type. */
904 INLINE enum Lisp_Type
905 XTYPE (Lisp_Object a)
906 {
907 EMACS_UINT i = XLI (a);
908 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
909 }
910
911 /* Extract A's pointer value, assuming A's type is TYPE. */
912 INLINE void *
913 XUNTAG (Lisp_Object a, int type)
914 {
915 intptr_t i = USE_LSB_TAG ? XLI (a) - type : XLI (a) & VALMASK;
916 return (void *) i;
917 }
918
919 #endif /* ! USE_LSB_TAG */
920
921 /* Extract the pointer hidden within A. */
922 LISP_MACRO_DEFUN (XPNTR, void *, (Lisp_Object a), (a))
923
924 /* Extract A's value as an unsigned integer. */
925 INLINE EMACS_UINT
926 XUINT (Lisp_Object a)
927 {
928 EMACS_UINT i = XLI (a);
929 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
930 }
931
932 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
933 right now, but XUINT should only be applied to objects we know are
934 integers. */
935 LISP_MACRO_DEFUN (XHASH, EMACS_INT, (Lisp_Object a), (a))
936
937 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
938 INLINE Lisp_Object
939 make_natnum (EMACS_INT n)
940 {
941 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
942 EMACS_INT int0 = Lisp_Int0;
943 return USE_LSB_TAG ? make_number (n) : XIL (n + (int0 << VALBITS));
944 }
945
946 /* Return true if X and Y are the same object. */
947 LISP_MACRO_DEFUN (EQ, bool, (Lisp_Object x, Lisp_Object y), (x, y))
948
949 /* Value is true if I doesn't fit into a Lisp fixnum. It is
950 written this way so that it also works if I is of unsigned
951 type or if I is a NaN. */
952
953 #define FIXNUM_OVERFLOW_P(i) \
954 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
955
956 INLINE ptrdiff_t
957 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
958 {
959 return num < lower ? lower : num <= upper ? num : upper;
960 }
961 \f
962
963 /* Extract a value or address from a Lisp_Object. */
964
965 LISP_MACRO_DEFUN (XCONS, struct Lisp_Cons *, (Lisp_Object a), (a))
966
967 INLINE struct Lisp_Vector *
968 XVECTOR (Lisp_Object a)
969 {
970 eassert (VECTORLIKEP (a));
971 return XUNTAG (a, Lisp_Vectorlike);
972 }
973
974 INLINE struct Lisp_String *
975 XSTRING (Lisp_Object a)
976 {
977 eassert (STRINGP (a));
978 return XUNTAG (a, Lisp_String);
979 }
980
981 /* The index of the C-defined Lisp symbol SYM.
982 This can be used in a static initializer. */
983 #define SYMBOL_INDEX(sym) i##sym
984
985 INLINE struct Lisp_Float *
986 XFLOAT (Lisp_Object a)
987 {
988 eassert (FLOATP (a));
989 return XUNTAG (a, Lisp_Float);
990 }
991
992 /* Pseudovector types. */
993
994 INLINE struct Lisp_Process *
995 XPROCESS (Lisp_Object a)
996 {
997 eassert (PROCESSP (a));
998 return XUNTAG (a, Lisp_Vectorlike);
999 }
1000
1001 INLINE struct window *
1002 XWINDOW (Lisp_Object a)
1003 {
1004 eassert (WINDOWP (a));
1005 return XUNTAG (a, Lisp_Vectorlike);
1006 }
1007
1008 INLINE struct terminal *
1009 XTERMINAL (Lisp_Object a)
1010 {
1011 eassert (TERMINALP (a));
1012 return XUNTAG (a, Lisp_Vectorlike);
1013 }
1014
1015 INLINE struct Lisp_Subr *
1016 XSUBR (Lisp_Object a)
1017 {
1018 eassert (SUBRP (a));
1019 return XUNTAG (a, Lisp_Vectorlike);
1020 }
1021
1022 INLINE struct buffer *
1023 XBUFFER (Lisp_Object a)
1024 {
1025 eassert (BUFFERP (a));
1026 return XUNTAG (a, Lisp_Vectorlike);
1027 }
1028
1029 INLINE struct Lisp_Char_Table *
1030 XCHAR_TABLE (Lisp_Object a)
1031 {
1032 eassert (CHAR_TABLE_P (a));
1033 return XUNTAG (a, Lisp_Vectorlike);
1034 }
1035
1036 INLINE struct Lisp_Sub_Char_Table *
1037 XSUB_CHAR_TABLE (Lisp_Object a)
1038 {
1039 eassert (SUB_CHAR_TABLE_P (a));
1040 return XUNTAG (a, Lisp_Vectorlike);
1041 }
1042
1043 INLINE struct Lisp_Bool_Vector *
1044 XBOOL_VECTOR (Lisp_Object a)
1045 {
1046 eassert (BOOL_VECTOR_P (a));
1047 return XUNTAG (a, Lisp_Vectorlike);
1048 }
1049
1050 /* Construct a Lisp_Object from a value or address. */
1051
1052 INLINE Lisp_Object
1053 make_lisp_ptr (void *ptr, enum Lisp_Type type)
1054 {
1055 Lisp_Object a = XIL (TAG_PTR (type, ptr));
1056 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
1057 return a;
1058 }
1059
1060 INLINE Lisp_Object
1061 make_lisp_symbol (struct Lisp_Symbol *sym)
1062 {
1063 Lisp_Object a = XIL (TAG_SYMOFFSET ((char *) sym - (char *) lispsym));
1064 eassert (XSYMBOL (a) == sym);
1065 return a;
1066 }
1067
1068 INLINE Lisp_Object
1069 builtin_lisp_symbol (int index)
1070 {
1071 return make_lisp_symbol (lispsym + index);
1072 }
1073
1074 #define XSETINT(a, b) ((a) = make_number (b))
1075 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
1076 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
1077 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
1078 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
1079 #define XSETSYMBOL(a, b) ((a) = make_lisp_symbol (b))
1080 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
1081 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
1082
1083 /* Pseudovector types. */
1084
1085 #define XSETPVECTYPE(v, code) \
1086 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
1087 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
1088 ((v)->header.size = (PSEUDOVECTOR_FLAG \
1089 | ((code) << PSEUDOVECTOR_AREA_BITS) \
1090 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
1091 | (lispsize)))
1092
1093 /* The cast to struct vectorlike_header * avoids aliasing issues. */
1094 #define XSETPSEUDOVECTOR(a, b, code) \
1095 XSETTYPED_PSEUDOVECTOR (a, b, \
1096 (((struct vectorlike_header *) \
1097 XUNTAG (a, Lisp_Vectorlike)) \
1098 ->size), \
1099 code)
1100 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
1101 (XSETVECTOR (a, b), \
1102 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
1103 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
1104
1105 #define XSETWINDOW_CONFIGURATION(a, b) \
1106 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
1107 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
1108 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
1109 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
1110 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
1111 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
1112 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
1113 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1114 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1115 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1116
1117 /* Efficiently convert a pointer to a Lisp object and back. The
1118 pointer is represented as a Lisp integer, so the garbage collector
1119 does not know about it. The pointer should not have both Lisp_Int1
1120 bits set, which makes this conversion inherently unportable. */
1121
1122 INLINE void *
1123 XINTPTR (Lisp_Object a)
1124 {
1125 return XUNTAG (a, Lisp_Int0);
1126 }
1127
1128 INLINE Lisp_Object
1129 make_pointer_integer (void *p)
1130 {
1131 Lisp_Object a = XIL (TAG_PTR (Lisp_Int0, p));
1132 eassert (INTEGERP (a) && XINTPTR (a) == p);
1133 return a;
1134 }
1135
1136 /* Type checking. */
1137
1138 LISP_MACRO_DEFUN_VOID (CHECK_TYPE,
1139 (int ok, Lisp_Object predicate, Lisp_Object x),
1140 (ok, predicate, x))
1141
1142 /* Deprecated and will be removed soon. */
1143
1144 #define INTERNAL_FIELD(field) field ## _
1145
1146 /* See the macros in intervals.h. */
1147
1148 typedef struct interval *INTERVAL;
1149
1150 struct GCALIGNED Lisp_Cons
1151 {
1152 /* Car of this cons cell. */
1153 Lisp_Object car;
1154
1155 union
1156 {
1157 /* Cdr of this cons cell. */
1158 Lisp_Object cdr;
1159
1160 /* Used to chain conses on a free list. */
1161 struct Lisp_Cons *chain;
1162 } u;
1163 };
1164
1165 /* Take the car or cdr of something known to be a cons cell. */
1166 /* The _addr functions shouldn't be used outside of the minimal set
1167 of code that has to know what a cons cell looks like. Other code not
1168 part of the basic lisp implementation should assume that the car and cdr
1169 fields are not accessible. (What if we want to switch to
1170 a copying collector someday? Cached cons cell field addresses may be
1171 invalidated at arbitrary points.) */
1172 INLINE Lisp_Object *
1173 xcar_addr (Lisp_Object c)
1174 {
1175 return &XCONS (c)->car;
1176 }
1177 INLINE Lisp_Object *
1178 xcdr_addr (Lisp_Object c)
1179 {
1180 return &XCONS (c)->u.cdr;
1181 }
1182
1183 /* Use these from normal code. */
1184 LISP_MACRO_DEFUN (XCAR, Lisp_Object, (Lisp_Object c), (c))
1185 LISP_MACRO_DEFUN (XCDR, Lisp_Object, (Lisp_Object c), (c))
1186
1187 /* Use these to set the fields of a cons cell.
1188
1189 Note that both arguments may refer to the same object, so 'n'
1190 should not be read after 'c' is first modified. */
1191 INLINE void
1192 XSETCAR (Lisp_Object c, Lisp_Object n)
1193 {
1194 *xcar_addr (c) = n;
1195 }
1196 INLINE void
1197 XSETCDR (Lisp_Object c, Lisp_Object n)
1198 {
1199 *xcdr_addr (c) = n;
1200 }
1201
1202 /* Take the car or cdr of something whose type is not known. */
1203 INLINE Lisp_Object
1204 CAR (Lisp_Object c)
1205 {
1206 return (CONSP (c) ? XCAR (c)
1207 : NILP (c) ? Qnil
1208 : wrong_type_argument (Qlistp, c));
1209 }
1210 INLINE Lisp_Object
1211 CDR (Lisp_Object c)
1212 {
1213 return (CONSP (c) ? XCDR (c)
1214 : NILP (c) ? Qnil
1215 : wrong_type_argument (Qlistp, c));
1216 }
1217
1218 /* Take the car or cdr of something whose type is not known. */
1219 INLINE Lisp_Object
1220 CAR_SAFE (Lisp_Object c)
1221 {
1222 return CONSP (c) ? XCAR (c) : Qnil;
1223 }
1224 INLINE Lisp_Object
1225 CDR_SAFE (Lisp_Object c)
1226 {
1227 return CONSP (c) ? XCDR (c) : Qnil;
1228 }
1229
1230 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1231
1232 struct GCALIGNED Lisp_String
1233 {
1234 ptrdiff_t size;
1235 ptrdiff_t size_byte;
1236 INTERVAL intervals; /* Text properties in this string. */
1237 unsigned char *data;
1238 };
1239
1240 /* True if STR is a multibyte string. */
1241 INLINE bool
1242 STRING_MULTIBYTE (Lisp_Object str)
1243 {
1244 return 0 <= XSTRING (str)->size_byte;
1245 }
1246
1247 /* An upper bound on the number of bytes in a Lisp string, not
1248 counting the terminating null. This a tight enough bound to
1249 prevent integer overflow errors that would otherwise occur during
1250 string size calculations. A string cannot contain more bytes than
1251 a fixnum can represent, nor can it be so long that C pointer
1252 arithmetic stops working on the string plus its terminating null.
1253 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1254 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1255 would expose alloc.c internal details that we'd rather keep
1256 private.
1257
1258 This is a macro for use in static initializers. The cast to
1259 ptrdiff_t ensures that the macro is signed. */
1260 #define STRING_BYTES_BOUND \
1261 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1262
1263 /* Mark STR as a unibyte string. */
1264 #define STRING_SET_UNIBYTE(STR) \
1265 do { \
1266 if (EQ (STR, empty_multibyte_string)) \
1267 (STR) = empty_unibyte_string; \
1268 else \
1269 XSTRING (STR)->size_byte = -1; \
1270 } while (false)
1271
1272 /* Mark STR as a multibyte string. Assure that STR contains only
1273 ASCII characters in advance. */
1274 #define STRING_SET_MULTIBYTE(STR) \
1275 do { \
1276 if (EQ (STR, empty_unibyte_string)) \
1277 (STR) = empty_multibyte_string; \
1278 else \
1279 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1280 } while (false)
1281
1282 /* Convenience functions for dealing with Lisp strings. */
1283
1284 INLINE unsigned char *
1285 SDATA (Lisp_Object string)
1286 {
1287 return XSTRING (string)->data;
1288 }
1289 INLINE char *
1290 SSDATA (Lisp_Object string)
1291 {
1292 /* Avoid "differ in sign" warnings. */
1293 return (char *) SDATA (string);
1294 }
1295 INLINE unsigned char
1296 SREF (Lisp_Object string, ptrdiff_t index)
1297 {
1298 return SDATA (string)[index];
1299 }
1300 INLINE void
1301 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1302 {
1303 SDATA (string)[index] = new;
1304 }
1305 INLINE ptrdiff_t
1306 SCHARS (Lisp_Object string)
1307 {
1308 return XSTRING (string)->size;
1309 }
1310
1311 #ifdef GC_CHECK_STRING_BYTES
1312 extern ptrdiff_t string_bytes (struct Lisp_String *);
1313 #endif
1314 INLINE ptrdiff_t
1315 STRING_BYTES (struct Lisp_String *s)
1316 {
1317 #ifdef GC_CHECK_STRING_BYTES
1318 return string_bytes (s);
1319 #else
1320 return s->size_byte < 0 ? s->size : s->size_byte;
1321 #endif
1322 }
1323
1324 INLINE ptrdiff_t
1325 SBYTES (Lisp_Object string)
1326 {
1327 return STRING_BYTES (XSTRING (string));
1328 }
1329 INLINE void
1330 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1331 {
1332 XSTRING (string)->size = newsize;
1333 }
1334
1335 /* Header of vector-like objects. This documents the layout constraints on
1336 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1337 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1338 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1339 because when two such pointers potentially alias, a compiler won't
1340 incorrectly reorder loads and stores to their size fields. See
1341 Bug#8546. */
1342 struct vectorlike_header
1343 {
1344 /* The only field contains various pieces of information:
1345 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1346 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1347 vector (0) or a pseudovector (1).
1348 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1349 of slots) of the vector.
1350 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1351 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1352 - b) number of Lisp_Objects slots at the beginning of the object
1353 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1354 traced by the GC;
1355 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1356 measured in word_size units. Rest fields may also include
1357 Lisp_Objects, but these objects usually needs some special treatment
1358 during GC.
1359 There are some exceptions. For PVEC_FREE, b) is always zero. For
1360 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1361 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1362 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1363 ptrdiff_t size;
1364 };
1365
1366 /* A regular vector is just a header plus an array of Lisp_Objects. */
1367
1368 struct Lisp_Vector
1369 {
1370 struct vectorlike_header header;
1371 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1372 };
1373
1374 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1375 enum
1376 {
1377 ALIGNOF_STRUCT_LISP_VECTOR
1378 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1379 };
1380
1381 /* A boolvector is a kind of vectorlike, with contents like a string. */
1382
1383 struct Lisp_Bool_Vector
1384 {
1385 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1386 just the subtype information. */
1387 struct vectorlike_header header;
1388 /* This is the size in bits. */
1389 EMACS_INT size;
1390 /* The actual bits, packed into bytes.
1391 Zeros fill out the last word if needed.
1392 The bits are in little-endian order in the bytes, and
1393 the bytes are in little-endian order in the words. */
1394 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1395 };
1396
1397 INLINE EMACS_INT
1398 bool_vector_size (Lisp_Object a)
1399 {
1400 EMACS_INT size = XBOOL_VECTOR (a)->size;
1401 eassume (0 <= size);
1402 return size;
1403 }
1404
1405 INLINE bits_word *
1406 bool_vector_data (Lisp_Object a)
1407 {
1408 return XBOOL_VECTOR (a)->data;
1409 }
1410
1411 INLINE unsigned char *
1412 bool_vector_uchar_data (Lisp_Object a)
1413 {
1414 return (unsigned char *) bool_vector_data (a);
1415 }
1416
1417 /* The number of data words and bytes in a bool vector with SIZE bits. */
1418
1419 INLINE EMACS_INT
1420 bool_vector_words (EMACS_INT size)
1421 {
1422 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1423 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1424 }
1425
1426 INLINE EMACS_INT
1427 bool_vector_bytes (EMACS_INT size)
1428 {
1429 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1430 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1431 }
1432
1433 /* True if A's Ith bit is set. */
1434
1435 INLINE bool
1436 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1437 {
1438 eassume (0 <= i && i < bool_vector_size (a));
1439 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1440 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1441 }
1442
1443 INLINE Lisp_Object
1444 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1445 {
1446 return bool_vector_bitref (a, i) ? Qt : Qnil;
1447 }
1448
1449 /* Set A's Ith bit to B. */
1450
1451 INLINE void
1452 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1453 {
1454 unsigned char *addr;
1455
1456 eassume (0 <= i && i < bool_vector_size (a));
1457 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1458
1459 if (b)
1460 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1461 else
1462 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1463 }
1464
1465 /* Some handy constants for calculating sizes
1466 and offsets, mostly of vectorlike objects. */
1467
1468 enum
1469 {
1470 header_size = offsetof (struct Lisp_Vector, contents),
1471 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1472 word_size = sizeof (Lisp_Object)
1473 };
1474
1475 /* Conveniences for dealing with Lisp arrays. */
1476
1477 INLINE Lisp_Object
1478 AREF (Lisp_Object array, ptrdiff_t idx)
1479 {
1480 return XVECTOR (array)->contents[idx];
1481 }
1482
1483 INLINE Lisp_Object *
1484 aref_addr (Lisp_Object array, ptrdiff_t idx)
1485 {
1486 return & XVECTOR (array)->contents[idx];
1487 }
1488
1489 INLINE ptrdiff_t
1490 ASIZE (Lisp_Object array)
1491 {
1492 return XVECTOR (array)->header.size;
1493 }
1494
1495 INLINE void
1496 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1497 {
1498 eassert (0 <= idx && idx < ASIZE (array));
1499 XVECTOR (array)->contents[idx] = val;
1500 }
1501
1502 INLINE void
1503 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1504 {
1505 /* Like ASET, but also can be used in the garbage collector:
1506 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1507 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1508 XVECTOR (array)->contents[idx] = val;
1509 }
1510
1511 /* True, since Qnil's representation is zero. Every place in the code
1512 that assumes Qnil is zero should verify (NIL_IS_ZERO), to make it easy
1513 to find such assumptions later if we change Qnil to be nonzero. */
1514 enum { NIL_IS_ZERO = XLI_BUILTIN_LISPSYM (iQnil) == 0 };
1515
1516 /* Set a Lisp_Object array V's N entries to nil. */
1517 INLINE void
1518 memsetnil (Lisp_Object *v, ptrdiff_t n)
1519 {
1520 eassert (0 <= n);
1521 verify (NIL_IS_ZERO);
1522 memset (v, 0, n * sizeof *v);
1523 }
1524
1525 /* If a struct is made to look like a vector, this macro returns the length
1526 of the shortest vector that would hold that struct. */
1527
1528 #define VECSIZE(type) \
1529 ((sizeof (type) - header_size + word_size - 1) / word_size)
1530
1531 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1532 at the end and we need to compute the number of Lisp_Object fields (the
1533 ones that the GC needs to trace). */
1534
1535 #define PSEUDOVECSIZE(type, nonlispfield) \
1536 ((offsetof (type, nonlispfield) - header_size) / word_size)
1537
1538 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1539 should be integer expressions. This is not the same as
1540 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1541 returns true. For efficiency, prefer plain unsigned comparison if A
1542 and B's sizes both fit (after integer promotion). */
1543 #define UNSIGNED_CMP(a, op, b) \
1544 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1545 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1546 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1547
1548 /* True iff C is an ASCII character. */
1549 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1550
1551 /* A char-table is a kind of vectorlike, with contents are like a
1552 vector but with a few other slots. For some purposes, it makes
1553 sense to handle a char-table with type struct Lisp_Vector. An
1554 element of a char table can be any Lisp objects, but if it is a sub
1555 char-table, we treat it a table that contains information of a
1556 specific range of characters. A sub char-table is like a vector but
1557 with two integer fields between the header and Lisp data, which means
1558 that it has to be marked with some precautions (see mark_char_table
1559 in alloc.c). A sub char-table appears only in an element of a char-table,
1560 and there's no way to access it directly from Emacs Lisp program. */
1561
1562 enum CHARTAB_SIZE_BITS
1563 {
1564 CHARTAB_SIZE_BITS_0 = 6,
1565 CHARTAB_SIZE_BITS_1 = 4,
1566 CHARTAB_SIZE_BITS_2 = 5,
1567 CHARTAB_SIZE_BITS_3 = 7
1568 };
1569
1570 extern const int chartab_size[4];
1571
1572 struct Lisp_Char_Table
1573 {
1574 /* HEADER.SIZE is the vector's size field, which also holds the
1575 pseudovector type information. It holds the size, too.
1576 The size counts the defalt, parent, purpose, ascii,
1577 contents, and extras slots. */
1578 struct vectorlike_header header;
1579
1580 /* This holds a default value,
1581 which is used whenever the value for a specific character is nil. */
1582 Lisp_Object defalt;
1583
1584 /* This points to another char table, which we inherit from when the
1585 value for a specific character is nil. The `defalt' slot takes
1586 precedence over this. */
1587 Lisp_Object parent;
1588
1589 /* This is a symbol which says what kind of use this char-table is
1590 meant for. */
1591 Lisp_Object purpose;
1592
1593 /* The bottom sub char-table for characters of the range 0..127. It
1594 is nil if none of ASCII character has a specific value. */
1595 Lisp_Object ascii;
1596
1597 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1598
1599 /* These hold additional data. It is a vector. */
1600 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1601 };
1602
1603 struct Lisp_Sub_Char_Table
1604 {
1605 /* HEADER.SIZE is the vector's size field, which also holds the
1606 pseudovector type information. It holds the size, too. */
1607 struct vectorlike_header header;
1608
1609 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1610 char-table of depth 1 contains 16 elements, and each element
1611 covers 4096 (128*32) characters. A sub char-table of depth 2
1612 contains 32 elements, and each element covers 128 characters. A
1613 sub char-table of depth 3 contains 128 elements, and each element
1614 is for one character. */
1615 int depth;
1616
1617 /* Minimum character covered by the sub char-table. */
1618 int min_char;
1619
1620 /* Use set_sub_char_table_contents to set this. */
1621 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1622 };
1623
1624 INLINE Lisp_Object
1625 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1626 {
1627 struct Lisp_Char_Table *tbl = NULL;
1628 Lisp_Object val;
1629 do
1630 {
1631 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1632 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1633 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1634 if (NILP (val))
1635 val = tbl->defalt;
1636 }
1637 while (NILP (val) && ! NILP (tbl->parent));
1638
1639 return val;
1640 }
1641
1642 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1643 characters. Do not check validity of CT. */
1644 INLINE Lisp_Object
1645 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1646 {
1647 return (ASCII_CHAR_P (idx)
1648 ? CHAR_TABLE_REF_ASCII (ct, idx)
1649 : char_table_ref (ct, idx));
1650 }
1651
1652 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1653 8-bit European characters. Do not check validity of CT. */
1654 INLINE void
1655 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1656 {
1657 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1658 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1659 else
1660 char_table_set (ct, idx, val);
1661 }
1662
1663 /* This structure describes a built-in function.
1664 It is generated by the DEFUN macro only.
1665 defsubr makes it into a Lisp object. */
1666
1667 struct Lisp_Subr
1668 {
1669 struct vectorlike_header header;
1670 union {
1671 Lisp_Object (*a0) (void);
1672 Lisp_Object (*a1) (Lisp_Object);
1673 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1674 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1675 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1676 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1677 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1678 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1679 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1680 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1681 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1682 } function;
1683 short min_args, max_args;
1684 const char *symbol_name;
1685 const char *intspec;
1686 const char *doc;
1687 };
1688
1689 enum char_table_specials
1690 {
1691 /* This is the number of slots that every char table must have. This
1692 counts the ordinary slots and the top, defalt, parent, and purpose
1693 slots. */
1694 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1695
1696 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1697 when the latter is treated as an ordinary Lisp_Vector. */
1698 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1699 };
1700
1701 /* Return the number of "extra" slots in the char table CT. */
1702
1703 INLINE int
1704 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1705 {
1706 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1707 - CHAR_TABLE_STANDARD_SLOTS);
1708 }
1709
1710 /* Make sure that sub char-table contents slot is where we think it is. */
1711 verify (offsetof (struct Lisp_Sub_Char_Table, contents)
1712 == offsetof (struct Lisp_Vector, contents[SUB_CHAR_TABLE_OFFSET]));
1713
1714 /***********************************************************************
1715 Symbols
1716 ***********************************************************************/
1717
1718 /* Value is name of symbol. */
1719
1720 LISP_MACRO_DEFUN (SYMBOL_VAL, Lisp_Object, (struct Lisp_Symbol *sym), (sym))
1721
1722 INLINE struct Lisp_Symbol *
1723 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1724 {
1725 eassert (sym->redirect == SYMBOL_VARALIAS);
1726 return sym->val.alias;
1727 }
1728 INLINE struct Lisp_Buffer_Local_Value *
1729 SYMBOL_BLV (struct Lisp_Symbol *sym)
1730 {
1731 eassert (sym->redirect == SYMBOL_LOCALIZED);
1732 return sym->val.blv;
1733 }
1734 INLINE union Lisp_Fwd *
1735 SYMBOL_FWD (struct Lisp_Symbol *sym)
1736 {
1737 eassert (sym->redirect == SYMBOL_FORWARDED);
1738 return sym->val.fwd;
1739 }
1740
1741 LISP_MACRO_DEFUN_VOID (SET_SYMBOL_VAL,
1742 (struct Lisp_Symbol *sym, Lisp_Object v), (sym, v))
1743
1744 INLINE void
1745 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1746 {
1747 eassert (sym->redirect == SYMBOL_VARALIAS);
1748 sym->val.alias = v;
1749 }
1750 INLINE void
1751 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1752 {
1753 eassert (sym->redirect == SYMBOL_LOCALIZED);
1754 sym->val.blv = v;
1755 }
1756 INLINE void
1757 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1758 {
1759 eassert (sym->redirect == SYMBOL_FORWARDED);
1760 sym->val.fwd = v;
1761 }
1762
1763 INLINE Lisp_Object
1764 SYMBOL_NAME (Lisp_Object sym)
1765 {
1766 return XSYMBOL (sym)->name;
1767 }
1768
1769 /* Value is true if SYM is an interned symbol. */
1770
1771 INLINE bool
1772 SYMBOL_INTERNED_P (Lisp_Object sym)
1773 {
1774 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1775 }
1776
1777 /* Value is true if SYM is interned in initial_obarray. */
1778
1779 INLINE bool
1780 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1781 {
1782 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1783 }
1784
1785 /* Value is non-zero if symbol is considered a constant, i.e. its
1786 value cannot be changed (there is an exception for keyword symbols,
1787 whose value can be set to the keyword symbol itself). */
1788
1789 LISP_MACRO_DEFUN (SYMBOL_CONSTANT_P, int, (Lisp_Object sym), (sym))
1790
1791 /* Placeholder for make-docfile to process. The actual symbol
1792 definition is done by lread.c's defsym. */
1793 #define DEFSYM(sym, name) /* empty */
1794
1795 \f
1796 /***********************************************************************
1797 Hash Tables
1798 ***********************************************************************/
1799
1800 /* The structure of a Lisp hash table. */
1801
1802 struct hash_table_test
1803 {
1804 /* Name of the function used to compare keys. */
1805 Lisp_Object name;
1806
1807 /* User-supplied hash function, or nil. */
1808 Lisp_Object user_hash_function;
1809
1810 /* User-supplied key comparison function, or nil. */
1811 Lisp_Object user_cmp_function;
1812
1813 /* C function to compare two keys. */
1814 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1815
1816 /* C function to compute hash code. */
1817 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1818 };
1819
1820 struct Lisp_Hash_Table
1821 {
1822 /* This is for Lisp; the hash table code does not refer to it. */
1823 struct vectorlike_header header;
1824
1825 /* Nil if table is non-weak. Otherwise a symbol describing the
1826 weakness of the table. */
1827 Lisp_Object weak;
1828
1829 /* When the table is resized, and this is an integer, compute the
1830 new size by adding this to the old size. If a float, compute the
1831 new size by multiplying the old size with this factor. */
1832 Lisp_Object rehash_size;
1833
1834 /* Resize hash table when number of entries/ table size is >= this
1835 ratio, a float. */
1836 Lisp_Object rehash_threshold;
1837
1838 /* Vector of hash codes. If hash[I] is nil, this means that the
1839 I-th entry is unused. */
1840 Lisp_Object hash;
1841
1842 /* Vector used to chain entries. If entry I is free, next[I] is the
1843 entry number of the next free item. If entry I is non-free,
1844 next[I] is the index of the next entry in the collision chain. */
1845 Lisp_Object next;
1846
1847 /* Index of first free entry in free list. */
1848 Lisp_Object next_free;
1849
1850 /* Bucket vector. A non-nil entry is the index of the first item in
1851 a collision chain. This vector's size can be larger than the
1852 hash table size to reduce collisions. */
1853 Lisp_Object index;
1854
1855 /* Only the fields above are traced normally by the GC. The ones below
1856 `count' are special and are either ignored by the GC or traced in
1857 a special way (e.g. because of weakness). */
1858
1859 /* Number of key/value entries in the table. */
1860 ptrdiff_t count;
1861
1862 /* Vector of keys and values. The key of item I is found at index
1863 2 * I, the value is found at index 2 * I + 1.
1864 This is gc_marked specially if the table is weak. */
1865 Lisp_Object key_and_value;
1866
1867 /* The comparison and hash functions. */
1868 struct hash_table_test test;
1869
1870 /* Next weak hash table if this is a weak hash table. The head
1871 of the list is in weak_hash_tables. */
1872 struct Lisp_Hash_Table *next_weak;
1873 };
1874
1875
1876 INLINE struct Lisp_Hash_Table *
1877 XHASH_TABLE (Lisp_Object a)
1878 {
1879 return XUNTAG (a, Lisp_Vectorlike);
1880 }
1881
1882 #define XSET_HASH_TABLE(VAR, PTR) \
1883 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1884
1885 INLINE bool
1886 HASH_TABLE_P (Lisp_Object a)
1887 {
1888 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1889 }
1890
1891 /* Value is the key part of entry IDX in hash table H. */
1892 INLINE Lisp_Object
1893 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1894 {
1895 return AREF (h->key_and_value, 2 * idx);
1896 }
1897
1898 /* Value is the value part of entry IDX in hash table H. */
1899 INLINE Lisp_Object
1900 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1901 {
1902 return AREF (h->key_and_value, 2 * idx + 1);
1903 }
1904
1905 /* Value is the index of the next entry following the one at IDX
1906 in hash table H. */
1907 INLINE Lisp_Object
1908 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1909 {
1910 return AREF (h->next, idx);
1911 }
1912
1913 /* Value is the hash code computed for entry IDX in hash table H. */
1914 INLINE Lisp_Object
1915 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1916 {
1917 return AREF (h->hash, idx);
1918 }
1919
1920 /* Value is the index of the element in hash table H that is the
1921 start of the collision list at index IDX in the index vector of H. */
1922 INLINE Lisp_Object
1923 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1924 {
1925 return AREF (h->index, idx);
1926 }
1927
1928 /* Value is the size of hash table H. */
1929 INLINE ptrdiff_t
1930 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1931 {
1932 return ASIZE (h->next);
1933 }
1934
1935 /* Default size for hash tables if not specified. */
1936
1937 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1938
1939 /* Default threshold specifying when to resize a hash table. The
1940 value gives the ratio of current entries in the hash table and the
1941 size of the hash table. */
1942
1943 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
1944
1945 /* Default factor by which to increase the size of a hash table. */
1946
1947 static double const DEFAULT_REHASH_SIZE = 1.5;
1948
1949 /* Combine two integers X and Y for hashing. The result might not fit
1950 into a Lisp integer. */
1951
1952 INLINE EMACS_UINT
1953 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
1954 {
1955 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
1956 }
1957
1958 /* Hash X, returning a value that fits into a fixnum. */
1959
1960 INLINE EMACS_UINT
1961 SXHASH_REDUCE (EMACS_UINT x)
1962 {
1963 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
1964 }
1965
1966 /* These structures are used for various misc types. */
1967
1968 struct Lisp_Misc_Any /* Supertype of all Misc types. */
1969 {
1970 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
1971 bool_bf gcmarkbit : 1;
1972 unsigned spacer : 15;
1973 };
1974
1975 struct Lisp_Marker
1976 {
1977 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
1978 bool_bf gcmarkbit : 1;
1979 unsigned spacer : 13;
1980 /* This flag is temporarily used in the functions
1981 decode/encode_coding_object to record that the marker position
1982 must be adjusted after the conversion. */
1983 bool_bf need_adjustment : 1;
1984 /* True means normal insertion at the marker's position
1985 leaves the marker after the inserted text. */
1986 bool_bf insertion_type : 1;
1987 /* This is the buffer that the marker points into, or 0 if it points nowhere.
1988 Note: a chain of markers can contain markers pointing into different
1989 buffers (the chain is per buffer_text rather than per buffer, so it's
1990 shared between indirect buffers). */
1991 /* This is used for (other than NULL-checking):
1992 - Fmarker_buffer
1993 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
1994 - unchain_marker: to find the list from which to unchain.
1995 - Fkill_buffer: to only unchain the markers of current indirect buffer.
1996 */
1997 struct buffer *buffer;
1998
1999 /* The remaining fields are meaningless in a marker that
2000 does not point anywhere. */
2001
2002 /* For markers that point somewhere,
2003 this is used to chain of all the markers in a given buffer. */
2004 /* We could remove it and use an array in buffer_text instead.
2005 That would also allow to preserve it ordered. */
2006 struct Lisp_Marker *next;
2007 /* This is the char position where the marker points. */
2008 ptrdiff_t charpos;
2009 /* This is the byte position.
2010 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
2011 used to implement the functionality of markers, but rather to (ab)use
2012 markers as a cache for char<->byte mappings). */
2013 ptrdiff_t bytepos;
2014 };
2015
2016 /* START and END are markers in the overlay's buffer, and
2017 PLIST is the overlay's property list. */
2018 struct Lisp_Overlay
2019 /* An overlay's real data content is:
2020 - plist
2021 - buffer (really there are two buffer pointers, one per marker,
2022 and both points to the same buffer)
2023 - insertion type of both ends (per-marker fields)
2024 - start & start byte (of start marker)
2025 - end & end byte (of end marker)
2026 - next (singly linked list of overlays)
2027 - next fields of start and end markers (singly linked list of markers).
2028 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
2029 */
2030 {
2031 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
2032 bool_bf gcmarkbit : 1;
2033 unsigned spacer : 15;
2034 struct Lisp_Overlay *next;
2035 Lisp_Object start;
2036 Lisp_Object end;
2037 Lisp_Object plist;
2038 };
2039
2040 /* Types of data which may be saved in a Lisp_Save_Value. */
2041
2042 enum
2043 {
2044 SAVE_UNUSED,
2045 SAVE_INTEGER,
2046 SAVE_FUNCPOINTER,
2047 SAVE_POINTER,
2048 SAVE_OBJECT
2049 };
2050
2051 /* Number of bits needed to store one of the above values. */
2052 enum { SAVE_SLOT_BITS = 3 };
2053
2054 /* Number of slots in a save value where save_type is nonzero. */
2055 enum { SAVE_VALUE_SLOTS = 4 };
2056
2057 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
2058
2059 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
2060
2061 enum Lisp_Save_Type
2062 {
2063 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2064 SAVE_TYPE_INT_INT_INT
2065 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
2066 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
2067 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
2068 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
2069 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
2070 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2071 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
2072 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
2073 SAVE_TYPE_FUNCPTR_PTR_OBJ
2074 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
2075
2076 /* This has an extra bit indicating it's raw memory. */
2077 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
2078 };
2079
2080 /* Special object used to hold a different values for later use.
2081
2082 This is mostly used to package C integers and pointers to call
2083 record_unwind_protect when two or more values need to be saved.
2084 For example:
2085
2086 ...
2087 struct my_data *md = get_my_data ();
2088 ptrdiff_t mi = get_my_integer ();
2089 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2090 ...
2091
2092 Lisp_Object my_unwind (Lisp_Object arg)
2093 {
2094 struct my_data *md = XSAVE_POINTER (arg, 0);
2095 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2096 ...
2097 }
2098
2099 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2100 saved objects and raise eassert if type of the saved object doesn't match
2101 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2102 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2103 slot 0 is a pointer. */
2104
2105 typedef void (*voidfuncptr) (void);
2106
2107 struct Lisp_Save_Value
2108 {
2109 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2110 bool_bf gcmarkbit : 1;
2111 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2112
2113 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2114 V's data entries are determined by V->save_type. E.g., if
2115 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2116 V->data[1] is an integer, and V's other data entries are unused.
2117
2118 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2119 a memory area containing V->data[1].integer potential Lisp_Objects. */
2120 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2121 union {
2122 void *pointer;
2123 voidfuncptr funcpointer;
2124 ptrdiff_t integer;
2125 Lisp_Object object;
2126 } data[SAVE_VALUE_SLOTS];
2127 };
2128
2129 /* Return the type of V's Nth saved value. */
2130 INLINE int
2131 save_type (struct Lisp_Save_Value *v, int n)
2132 {
2133 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2134 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2135 }
2136
2137 /* Get and set the Nth saved pointer. */
2138
2139 INLINE void *
2140 XSAVE_POINTER (Lisp_Object obj, int n)
2141 {
2142 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2143 return XSAVE_VALUE (obj)->data[n].pointer;
2144 }
2145 INLINE void
2146 set_save_pointer (Lisp_Object obj, int n, void *val)
2147 {
2148 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2149 XSAVE_VALUE (obj)->data[n].pointer = val;
2150 }
2151 INLINE voidfuncptr
2152 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2153 {
2154 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2155 return XSAVE_VALUE (obj)->data[n].funcpointer;
2156 }
2157
2158 /* Likewise for the saved integer. */
2159
2160 INLINE ptrdiff_t
2161 XSAVE_INTEGER (Lisp_Object obj, int n)
2162 {
2163 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2164 return XSAVE_VALUE (obj)->data[n].integer;
2165 }
2166 INLINE void
2167 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2168 {
2169 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2170 XSAVE_VALUE (obj)->data[n].integer = val;
2171 }
2172
2173 /* Extract Nth saved object. */
2174
2175 INLINE Lisp_Object
2176 XSAVE_OBJECT (Lisp_Object obj, int n)
2177 {
2178 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2179 return XSAVE_VALUE (obj)->data[n].object;
2180 }
2181
2182 /* A miscellaneous object, when it's on the free list. */
2183 struct Lisp_Free
2184 {
2185 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2186 bool_bf gcmarkbit : 1;
2187 unsigned spacer : 15;
2188 union Lisp_Misc *chain;
2189 };
2190
2191 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2192 It uses one of these struct subtypes to get the type field. */
2193
2194 union Lisp_Misc
2195 {
2196 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2197 struct Lisp_Free u_free;
2198 struct Lisp_Marker u_marker;
2199 struct Lisp_Overlay u_overlay;
2200 struct Lisp_Save_Value u_save_value;
2201 };
2202
2203 INLINE union Lisp_Misc *
2204 XMISC (Lisp_Object a)
2205 {
2206 return XUNTAG (a, Lisp_Misc);
2207 }
2208
2209 INLINE struct Lisp_Misc_Any *
2210 XMISCANY (Lisp_Object a)
2211 {
2212 eassert (MISCP (a));
2213 return & XMISC (a)->u_any;
2214 }
2215
2216 INLINE enum Lisp_Misc_Type
2217 XMISCTYPE (Lisp_Object a)
2218 {
2219 return XMISCANY (a)->type;
2220 }
2221
2222 INLINE struct Lisp_Marker *
2223 XMARKER (Lisp_Object a)
2224 {
2225 eassert (MARKERP (a));
2226 return & XMISC (a)->u_marker;
2227 }
2228
2229 INLINE struct Lisp_Overlay *
2230 XOVERLAY (Lisp_Object a)
2231 {
2232 eassert (OVERLAYP (a));
2233 return & XMISC (a)->u_overlay;
2234 }
2235
2236 INLINE struct Lisp_Save_Value *
2237 XSAVE_VALUE (Lisp_Object a)
2238 {
2239 eassert (SAVE_VALUEP (a));
2240 return & XMISC (a)->u_save_value;
2241 }
2242 \f
2243 /* Forwarding pointer to an int variable.
2244 This is allowed only in the value cell of a symbol,
2245 and it means that the symbol's value really lives in the
2246 specified int variable. */
2247 struct Lisp_Intfwd
2248 {
2249 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2250 EMACS_INT *intvar;
2251 };
2252
2253 /* Boolean forwarding pointer to an int variable.
2254 This is like Lisp_Intfwd except that the ostensible
2255 "value" of the symbol is t if the bool variable is true,
2256 nil if it is false. */
2257 struct Lisp_Boolfwd
2258 {
2259 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2260 bool *boolvar;
2261 };
2262
2263 /* Forwarding pointer to a Lisp_Object variable.
2264 This is allowed only in the value cell of a symbol,
2265 and it means that the symbol's value really lives in the
2266 specified variable. */
2267 struct Lisp_Objfwd
2268 {
2269 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2270 Lisp_Object *objvar;
2271 };
2272
2273 /* Like Lisp_Objfwd except that value lives in a slot in the
2274 current buffer. Value is byte index of slot within buffer. */
2275 struct Lisp_Buffer_Objfwd
2276 {
2277 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2278 int offset;
2279 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2280 Lisp_Object predicate;
2281 };
2282
2283 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2284 the symbol has buffer-local or frame-local bindings. (Exception:
2285 some buffer-local variables are built-in, with their values stored
2286 in the buffer structure itself. They are handled differently,
2287 using struct Lisp_Buffer_Objfwd.)
2288
2289 The `realvalue' slot holds the variable's current value, or a
2290 forwarding pointer to where that value is kept. This value is the
2291 one that corresponds to the loaded binding. To read or set the
2292 variable, you must first make sure the right binding is loaded;
2293 then you can access the value in (or through) `realvalue'.
2294
2295 `buffer' and `frame' are the buffer and frame for which the loaded
2296 binding was found. If those have changed, to make sure the right
2297 binding is loaded it is necessary to find which binding goes with
2298 the current buffer and selected frame, then load it. To load it,
2299 first unload the previous binding, then copy the value of the new
2300 binding into `realvalue' (or through it). Also update
2301 LOADED-BINDING to point to the newly loaded binding.
2302
2303 `local_if_set' indicates that merely setting the variable creates a
2304 local binding for the current buffer. Otherwise the latter, setting
2305 the variable does not do that; only make-local-variable does that. */
2306
2307 struct Lisp_Buffer_Local_Value
2308 {
2309 /* True means that merely setting the variable creates a local
2310 binding for the current buffer. */
2311 bool_bf local_if_set : 1;
2312 /* True means this variable can have frame-local bindings, otherwise, it is
2313 can have buffer-local bindings. The two cannot be combined. */
2314 bool_bf frame_local : 1;
2315 /* True means that the binding now loaded was found.
2316 Presumably equivalent to (defcell!=valcell). */
2317 bool_bf found : 1;
2318 /* If non-NULL, a forwarding to the C var where it should also be set. */
2319 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2320 /* The buffer or frame for which the loaded binding was found. */
2321 Lisp_Object where;
2322 /* A cons cell that holds the default value. It has the form
2323 (SYMBOL . DEFAULT-VALUE). */
2324 Lisp_Object defcell;
2325 /* The cons cell from `where's parameter alist.
2326 It always has the form (SYMBOL . VALUE)
2327 Note that if `forward' is non-nil, VALUE may be out of date.
2328 Also if the currently loaded binding is the default binding, then
2329 this is `eq'ual to defcell. */
2330 Lisp_Object valcell;
2331 };
2332
2333 /* Like Lisp_Objfwd except that value lives in a slot in the
2334 current kboard. */
2335 struct Lisp_Kboard_Objfwd
2336 {
2337 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2338 int offset;
2339 };
2340
2341 union Lisp_Fwd
2342 {
2343 struct Lisp_Intfwd u_intfwd;
2344 struct Lisp_Boolfwd u_boolfwd;
2345 struct Lisp_Objfwd u_objfwd;
2346 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2347 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2348 };
2349
2350 INLINE enum Lisp_Fwd_Type
2351 XFWDTYPE (union Lisp_Fwd *a)
2352 {
2353 return a->u_intfwd.type;
2354 }
2355
2356 INLINE struct Lisp_Buffer_Objfwd *
2357 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2358 {
2359 eassert (BUFFER_OBJFWDP (a));
2360 return &a->u_buffer_objfwd;
2361 }
2362 \f
2363 /* Lisp floating point type. */
2364 struct Lisp_Float
2365 {
2366 union
2367 {
2368 double data;
2369 struct Lisp_Float *chain;
2370 } u;
2371 };
2372
2373 INLINE double
2374 XFLOAT_DATA (Lisp_Object f)
2375 {
2376 return XFLOAT (f)->u.data;
2377 }
2378
2379 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2380 representations, have infinities and NaNs, and do not trap on
2381 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2382 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2383 wanted here, but is not quite right because Emacs does not require
2384 all the features of C11 Annex F (and does not require C11 at all,
2385 for that matter). */
2386 enum
2387 {
2388 IEEE_FLOATING_POINT
2389 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2390 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2391 };
2392
2393 /* A character, declared with the following typedef, is a member
2394 of some character set associated with the current buffer. */
2395 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2396 #define _UCHAR_T
2397 typedef unsigned char UCHAR;
2398 #endif
2399
2400 /* Meanings of slots in a Lisp_Compiled: */
2401
2402 enum Lisp_Compiled
2403 {
2404 COMPILED_ARGLIST = 0,
2405 COMPILED_BYTECODE = 1,
2406 COMPILED_CONSTANTS = 2,
2407 COMPILED_STACK_DEPTH = 3,
2408 COMPILED_DOC_STRING = 4,
2409 COMPILED_INTERACTIVE = 5
2410 };
2411
2412 /* Flag bits in a character. These also get used in termhooks.h.
2413 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2414 (MUlti-Lingual Emacs) might need 22 bits for the character value
2415 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2416 enum char_bits
2417 {
2418 CHAR_ALT = 0x0400000,
2419 CHAR_SUPER = 0x0800000,
2420 CHAR_HYPER = 0x1000000,
2421 CHAR_SHIFT = 0x2000000,
2422 CHAR_CTL = 0x4000000,
2423 CHAR_META = 0x8000000,
2424
2425 CHAR_MODIFIER_MASK =
2426 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2427
2428 /* Actually, the current Emacs uses 22 bits for the character value
2429 itself. */
2430 CHARACTERBITS = 22
2431 };
2432 \f
2433 /* Data type checking. */
2434
2435 LISP_MACRO_DEFUN (NILP, bool, (Lisp_Object x), (x))
2436
2437 INLINE bool
2438 NUMBERP (Lisp_Object x)
2439 {
2440 return INTEGERP (x) || FLOATP (x);
2441 }
2442 INLINE bool
2443 NATNUMP (Lisp_Object x)
2444 {
2445 return INTEGERP (x) && 0 <= XINT (x);
2446 }
2447
2448 INLINE bool
2449 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2450 {
2451 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2452 }
2453
2454 #define TYPE_RANGED_INTEGERP(type, x) \
2455 (INTEGERP (x) \
2456 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2457 && XINT (x) <= TYPE_MAXIMUM (type))
2458
2459 LISP_MACRO_DEFUN (CONSP, bool, (Lisp_Object x), (x))
2460 LISP_MACRO_DEFUN (FLOATP, bool, (Lisp_Object x), (x))
2461 LISP_MACRO_DEFUN (MISCP, bool, (Lisp_Object x), (x))
2462 LISP_MACRO_DEFUN (SYMBOLP, bool, (Lisp_Object x), (x))
2463 LISP_MACRO_DEFUN (INTEGERP, bool, (Lisp_Object x), (x))
2464 LISP_MACRO_DEFUN (VECTORLIKEP, bool, (Lisp_Object x), (x))
2465 LISP_MACRO_DEFUN (MARKERP, bool, (Lisp_Object x), (x))
2466
2467 INLINE bool
2468 STRINGP (Lisp_Object x)
2469 {
2470 return XTYPE (x) == Lisp_String;
2471 }
2472 INLINE bool
2473 VECTORP (Lisp_Object x)
2474 {
2475 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2476 }
2477 INLINE bool
2478 OVERLAYP (Lisp_Object x)
2479 {
2480 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2481 }
2482 INLINE bool
2483 SAVE_VALUEP (Lisp_Object x)
2484 {
2485 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2486 }
2487
2488 INLINE bool
2489 AUTOLOADP (Lisp_Object x)
2490 {
2491 return CONSP (x) && EQ (Qautoload, XCAR (x));
2492 }
2493
2494 INLINE bool
2495 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2496 {
2497 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2498 }
2499
2500 INLINE bool
2501 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2502 {
2503 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2504 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2505 }
2506
2507 /* True if A is a pseudovector whose code is CODE. */
2508 INLINE bool
2509 PSEUDOVECTORP (Lisp_Object a, int code)
2510 {
2511 if (! VECTORLIKEP (a))
2512 return false;
2513 else
2514 {
2515 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2516 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2517 return PSEUDOVECTOR_TYPEP (h, code);
2518 }
2519 }
2520
2521
2522 /* Test for specific pseudovector types. */
2523
2524 INLINE bool
2525 WINDOW_CONFIGURATIONP (Lisp_Object a)
2526 {
2527 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2528 }
2529
2530 INLINE bool
2531 PROCESSP (Lisp_Object a)
2532 {
2533 return PSEUDOVECTORP (a, PVEC_PROCESS);
2534 }
2535
2536 INLINE bool
2537 WINDOWP (Lisp_Object a)
2538 {
2539 return PSEUDOVECTORP (a, PVEC_WINDOW);
2540 }
2541
2542 INLINE bool
2543 TERMINALP (Lisp_Object a)
2544 {
2545 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2546 }
2547
2548 INLINE bool
2549 SUBRP (Lisp_Object a)
2550 {
2551 return PSEUDOVECTORP (a, PVEC_SUBR);
2552 }
2553
2554 INLINE bool
2555 COMPILEDP (Lisp_Object a)
2556 {
2557 return PSEUDOVECTORP (a, PVEC_COMPILED);
2558 }
2559
2560 INLINE bool
2561 BUFFERP (Lisp_Object a)
2562 {
2563 return PSEUDOVECTORP (a, PVEC_BUFFER);
2564 }
2565
2566 INLINE bool
2567 CHAR_TABLE_P (Lisp_Object a)
2568 {
2569 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2570 }
2571
2572 INLINE bool
2573 SUB_CHAR_TABLE_P (Lisp_Object a)
2574 {
2575 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2576 }
2577
2578 INLINE bool
2579 BOOL_VECTOR_P (Lisp_Object a)
2580 {
2581 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2582 }
2583
2584 INLINE bool
2585 FRAMEP (Lisp_Object a)
2586 {
2587 return PSEUDOVECTORP (a, PVEC_FRAME);
2588 }
2589
2590 /* Test for image (image . spec) */
2591 INLINE bool
2592 IMAGEP (Lisp_Object x)
2593 {
2594 return CONSP (x) && EQ (XCAR (x), Qimage);
2595 }
2596
2597 /* Array types. */
2598 INLINE bool
2599 ARRAYP (Lisp_Object x)
2600 {
2601 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2602 }
2603 \f
2604 INLINE void
2605 CHECK_LIST (Lisp_Object x)
2606 {
2607 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2608 }
2609
2610 LISP_MACRO_DEFUN_VOID (CHECK_LIST_CONS, (Lisp_Object x, Lisp_Object y), (x, y))
2611 LISP_MACRO_DEFUN_VOID (CHECK_SYMBOL, (Lisp_Object x), (x))
2612 LISP_MACRO_DEFUN_VOID (CHECK_NUMBER, (Lisp_Object x), (x))
2613
2614 INLINE void
2615 CHECK_STRING (Lisp_Object x)
2616 {
2617 CHECK_TYPE (STRINGP (x), Qstringp, x);
2618 }
2619 INLINE void
2620 CHECK_STRING_CAR (Lisp_Object x)
2621 {
2622 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2623 }
2624 INLINE void
2625 CHECK_CONS (Lisp_Object x)
2626 {
2627 CHECK_TYPE (CONSP (x), Qconsp, x);
2628 }
2629 INLINE void
2630 CHECK_VECTOR (Lisp_Object x)
2631 {
2632 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2633 }
2634 INLINE void
2635 CHECK_BOOL_VECTOR (Lisp_Object x)
2636 {
2637 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2638 }
2639 /* This is a bit special because we always need size afterwards. */
2640 INLINE ptrdiff_t
2641 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2642 {
2643 if (VECTORP (x))
2644 return ASIZE (x);
2645 if (STRINGP (x))
2646 return SCHARS (x);
2647 wrong_type_argument (Qarrayp, x);
2648 }
2649 INLINE void
2650 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2651 {
2652 CHECK_TYPE (ARRAYP (x), predicate, x);
2653 }
2654 INLINE void
2655 CHECK_BUFFER (Lisp_Object x)
2656 {
2657 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2658 }
2659 INLINE void
2660 CHECK_WINDOW (Lisp_Object x)
2661 {
2662 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2663 }
2664 #ifdef subprocesses
2665 INLINE void
2666 CHECK_PROCESS (Lisp_Object x)
2667 {
2668 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2669 }
2670 #endif
2671 INLINE void
2672 CHECK_NATNUM (Lisp_Object x)
2673 {
2674 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2675 }
2676
2677 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2678 do { \
2679 CHECK_NUMBER (x); \
2680 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2681 args_out_of_range_3 \
2682 (x, \
2683 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2684 ? MOST_NEGATIVE_FIXNUM \
2685 : (lo)), \
2686 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2687 } while (false)
2688 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2689 do { \
2690 if (TYPE_SIGNED (type)) \
2691 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2692 else \
2693 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2694 } while (false)
2695
2696 #define CHECK_NUMBER_COERCE_MARKER(x) \
2697 do { \
2698 if (MARKERP ((x))) \
2699 XSETFASTINT (x, marker_position (x)); \
2700 else \
2701 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2702 } while (false)
2703
2704 INLINE double
2705 XFLOATINT (Lisp_Object n)
2706 {
2707 return extract_float (n);
2708 }
2709
2710 INLINE void
2711 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2712 {
2713 CHECK_TYPE (FLOATP (x) || INTEGERP (x), Qnumberp, x);
2714 }
2715
2716 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2717 do { \
2718 if (MARKERP (x)) \
2719 XSETFASTINT (x, marker_position (x)); \
2720 else \
2721 CHECK_TYPE (INTEGERP (x) || FLOATP (x), Qnumber_or_marker_p, x); \
2722 } while (false)
2723
2724 /* Since we can't assign directly to the CAR or CDR fields of a cons
2725 cell, use these when checking that those fields contain numbers. */
2726 INLINE void
2727 CHECK_NUMBER_CAR (Lisp_Object x)
2728 {
2729 Lisp_Object tmp = XCAR (x);
2730 CHECK_NUMBER (tmp);
2731 XSETCAR (x, tmp);
2732 }
2733
2734 INLINE void
2735 CHECK_NUMBER_CDR (Lisp_Object x)
2736 {
2737 Lisp_Object tmp = XCDR (x);
2738 CHECK_NUMBER (tmp);
2739 XSETCDR (x, tmp);
2740 }
2741 \f
2742 /* Define a built-in function for calling from Lisp.
2743 `lname' should be the name to give the function in Lisp,
2744 as a null-terminated C string.
2745 `fnname' should be the name of the function in C.
2746 By convention, it starts with F.
2747 `sname' should be the name for the C constant structure
2748 that records information on this function for internal use.
2749 By convention, it should be the same as `fnname' but with S instead of F.
2750 It's too bad that C macros can't compute this from `fnname'.
2751 `minargs' should be a number, the minimum number of arguments allowed.
2752 `maxargs' should be a number, the maximum number of arguments allowed,
2753 or else MANY or UNEVALLED.
2754 MANY means pass a vector of evaluated arguments,
2755 in the form of an integer number-of-arguments
2756 followed by the address of a vector of Lisp_Objects
2757 which contains the argument values.
2758 UNEVALLED means pass the list of unevaluated arguments
2759 `intspec' says how interactive arguments are to be fetched.
2760 If the string starts with a `(', `intspec' is evaluated and the resulting
2761 list is the list of arguments.
2762 If it's a string that doesn't start with `(', the value should follow
2763 the one of the doc string for `interactive'.
2764 A null string means call interactively with no arguments.
2765 `doc' is documentation for the user. */
2766
2767 /* This version of DEFUN declares a function prototype with the right
2768 arguments, so we can catch errors with maxargs at compile-time. */
2769 #ifdef _MSC_VER
2770 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2771 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2772 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2773 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2774 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2775 { (Lisp_Object (__cdecl *)(void))fnname }, \
2776 minargs, maxargs, lname, intspec, 0}; \
2777 Lisp_Object fnname
2778 #else /* not _MSC_VER */
2779 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2780 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2781 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2782 { .a ## maxargs = fnname }, \
2783 minargs, maxargs, lname, intspec, 0}; \
2784 Lisp_Object fnname
2785 #endif
2786
2787 /* True if OBJ is a Lisp function. */
2788 INLINE bool
2789 FUNCTIONP (Lisp_Object obj)
2790 {
2791 return functionp (obj);
2792 }
2793
2794 /* defsubr (Sname);
2795 is how we define the symbol for function `name' at start-up time. */
2796 extern void defsubr (struct Lisp_Subr *);
2797
2798 enum maxargs
2799 {
2800 MANY = -2,
2801 UNEVALLED = -1
2802 };
2803
2804 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2805 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2806 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2807 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2808 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2809
2810 /* Macros we use to define forwarded Lisp variables.
2811 These are used in the syms_of_FILENAME functions.
2812
2813 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2814 lisp variable is actually a field in `struct emacs_globals'. The
2815 field's name begins with "f_", which is a convention enforced by
2816 these macros. Each such global has a corresponding #define in
2817 globals.h; the plain name should be used in the code.
2818
2819 E.g., the global "cons_cells_consed" is declared as "int
2820 f_cons_cells_consed" in globals.h, but there is a define:
2821
2822 #define cons_cells_consed globals.f_cons_cells_consed
2823
2824 All C code uses the `cons_cells_consed' name. This is all done
2825 this way to support indirection for multi-threaded Emacs. */
2826
2827 #define DEFVAR_LISP(lname, vname, doc) \
2828 do { \
2829 static struct Lisp_Objfwd o_fwd; \
2830 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
2831 } while (false)
2832 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
2833 do { \
2834 static struct Lisp_Objfwd o_fwd; \
2835 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
2836 } while (false)
2837 #define DEFVAR_BOOL(lname, vname, doc) \
2838 do { \
2839 static struct Lisp_Boolfwd b_fwd; \
2840 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
2841 } while (false)
2842 #define DEFVAR_INT(lname, vname, doc) \
2843 do { \
2844 static struct Lisp_Intfwd i_fwd; \
2845 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
2846 } while (false)
2847
2848 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
2849 do { \
2850 static struct Lisp_Objfwd o_fwd; \
2851 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
2852 } while (false)
2853
2854 #define DEFVAR_KBOARD(lname, vname, doc) \
2855 do { \
2856 static struct Lisp_Kboard_Objfwd ko_fwd; \
2857 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
2858 } while (false)
2859 \f
2860 /* Save and restore the instruction and environment pointers,
2861 without affecting the signal mask. */
2862
2863 #ifdef HAVE__SETJMP
2864 typedef jmp_buf sys_jmp_buf;
2865 # define sys_setjmp(j) _setjmp (j)
2866 # define sys_longjmp(j, v) _longjmp (j, v)
2867 #elif defined HAVE_SIGSETJMP
2868 typedef sigjmp_buf sys_jmp_buf;
2869 # define sys_setjmp(j) sigsetjmp (j, 0)
2870 # define sys_longjmp(j, v) siglongjmp (j, v)
2871 #else
2872 /* A platform that uses neither _longjmp nor siglongjmp; assume
2873 longjmp does not affect the sigmask. */
2874 typedef jmp_buf sys_jmp_buf;
2875 # define sys_setjmp(j) setjmp (j)
2876 # define sys_longjmp(j, v) longjmp (j, v)
2877 #endif
2878
2879 \f
2880 /* Elisp uses several stacks:
2881 - the C stack.
2882 - the bytecode stack: used internally by the bytecode interpreter.
2883 Allocated from the C stack.
2884 - The specpdl stack: keeps track of active unwind-protect and
2885 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
2886 managed stack.
2887 - The handler stack: keeps track of active catch tags and condition-case
2888 handlers. Allocated in a manually managed stack implemented by a
2889 doubly-linked list allocated via xmalloc and never freed. */
2890
2891 /* Structure for recording Lisp call stack for backtrace purposes. */
2892
2893 /* The special binding stack holds the outer values of variables while
2894 they are bound by a function application or a let form, stores the
2895 code to be executed for unwind-protect forms.
2896
2897 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
2898 used all over the place, needs to be fast, and needs to know the size of
2899 union specbinding. But only eval.c should access it. */
2900
2901 enum specbind_tag {
2902 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
2903 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
2904 SPECPDL_UNWIND_INT, /* Likewise, on int. */
2905 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
2906 SPECPDL_BACKTRACE, /* An element of the backtrace. */
2907 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
2908 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
2909 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
2910 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
2911 };
2912
2913 union specbinding
2914 {
2915 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2916 struct {
2917 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2918 void (*func) (Lisp_Object);
2919 Lisp_Object arg;
2920 } unwind;
2921 struct {
2922 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2923 void (*func) (void *);
2924 void *arg;
2925 } unwind_ptr;
2926 struct {
2927 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2928 void (*func) (int);
2929 int arg;
2930 } unwind_int;
2931 struct {
2932 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2933 void (*func) (void);
2934 } unwind_void;
2935 struct {
2936 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2937 /* `where' is not used in the case of SPECPDL_LET. */
2938 Lisp_Object symbol, old_value, where;
2939 } let;
2940 struct {
2941 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2942 bool_bf debug_on_exit : 1;
2943 Lisp_Object function;
2944 Lisp_Object *args;
2945 ptrdiff_t nargs;
2946 } bt;
2947 };
2948
2949 extern union specbinding *specpdl;
2950 extern union specbinding *specpdl_ptr;
2951 extern ptrdiff_t specpdl_size;
2952
2953 INLINE ptrdiff_t
2954 SPECPDL_INDEX (void)
2955 {
2956 return specpdl_ptr - specpdl;
2957 }
2958
2959 /* This structure helps implement the `catch/throw' and `condition-case/signal'
2960 control structures. A struct handler contains all the information needed to
2961 restore the state of the interpreter after a non-local jump.
2962
2963 handler structures are chained together in a doubly linked list; the `next'
2964 member points to the next outer catchtag and the `nextfree' member points in
2965 the other direction to the next inner element (which is typically the next
2966 free element since we mostly use it on the deepest handler).
2967
2968 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
2969 member is TAG, and then unbinds to it. The `val' member is used to
2970 hold VAL while the stack is unwound; `val' is returned as the value
2971 of the catch form.
2972
2973 All the other members are concerned with restoring the interpreter
2974 state.
2975
2976 Members are volatile if their values need to survive _longjmp when
2977 a 'struct handler' is a local variable. */
2978
2979 enum handlertype { CATCHER, CONDITION_CASE };
2980
2981 struct handler
2982 {
2983 enum handlertype type;
2984 Lisp_Object tag_or_ch;
2985 Lisp_Object val;
2986 struct handler *next;
2987 struct handler *nextfree;
2988
2989 /* The bytecode interpreter can have several handlers active at the same
2990 time, so when we longjmp to one of them, it needs to know which handler
2991 this was and what was the corresponding internal state. This is stored
2992 here, and when we longjmp we make sure that handlerlist points to the
2993 proper handler. */
2994 Lisp_Object *bytecode_top;
2995 int bytecode_dest;
2996
2997 /* Most global vars are reset to their value via the specpdl mechanism,
2998 but a few others are handled by storing their value here. */
2999 #if true /* GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS, but defined later. */
3000 struct gcpro *gcpro;
3001 #endif
3002 sys_jmp_buf jmp;
3003 EMACS_INT lisp_eval_depth;
3004 ptrdiff_t pdlcount;
3005 int poll_suppress_count;
3006 int interrupt_input_blocked;
3007 struct byte_stack *byte_stack;
3008 };
3009
3010 /* Fill in the components of c, and put it on the list. */
3011 #define PUSH_HANDLER(c, tag_ch_val, handlertype) \
3012 if (handlerlist->nextfree) \
3013 (c) = handlerlist->nextfree; \
3014 else \
3015 { \
3016 (c) = xmalloc (sizeof (struct handler)); \
3017 (c)->nextfree = NULL; \
3018 handlerlist->nextfree = (c); \
3019 } \
3020 (c)->type = (handlertype); \
3021 (c)->tag_or_ch = (tag_ch_val); \
3022 (c)->val = Qnil; \
3023 (c)->next = handlerlist; \
3024 (c)->lisp_eval_depth = lisp_eval_depth; \
3025 (c)->pdlcount = SPECPDL_INDEX (); \
3026 (c)->poll_suppress_count = poll_suppress_count; \
3027 (c)->interrupt_input_blocked = interrupt_input_blocked;\
3028 (c)->gcpro = gcprolist; \
3029 (c)->byte_stack = byte_stack_list; \
3030 handlerlist = (c);
3031
3032
3033 extern Lisp_Object memory_signal_data;
3034
3035 /* An address near the bottom of the stack.
3036 Tells GC how to save a copy of the stack. */
3037 extern char *stack_bottom;
3038
3039 /* Check quit-flag and quit if it is non-nil.
3040 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
3041 So the program needs to do QUIT at times when it is safe to quit.
3042 Every loop that might run for a long time or might not exit
3043 ought to do QUIT at least once, at a safe place.
3044 Unless that is impossible, of course.
3045 But it is very desirable to avoid creating loops where QUIT is impossible.
3046
3047 Exception: if you set immediate_quit to true,
3048 then the handler that responds to the C-g does the quit itself.
3049 This is a good thing to do around a loop that has no side effects
3050 and (in particular) cannot call arbitrary Lisp code.
3051
3052 If quit-flag is set to `kill-emacs' the SIGINT handler has received
3053 a request to exit Emacs when it is safe to do. */
3054
3055 extern void process_pending_signals (void);
3056 extern bool volatile pending_signals;
3057
3058 extern void process_quit_flag (void);
3059 #define QUIT \
3060 do { \
3061 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
3062 process_quit_flag (); \
3063 else if (pending_signals) \
3064 process_pending_signals (); \
3065 } while (false)
3066
3067
3068 /* True if ought to quit now. */
3069
3070 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3071 \f
3072 extern Lisp_Object Vascii_downcase_table;
3073 extern Lisp_Object Vascii_canon_table;
3074 \f
3075 /* Structure for recording stack slots that need marking. */
3076
3077 /* This is a chain of structures, each of which points at a Lisp_Object
3078 variable whose value should be marked in garbage collection.
3079 Normally every link of the chain is an automatic variable of a function,
3080 and its `val' points to some argument or local variable of the function.
3081 On exit to the function, the chain is set back to the value it had on entry.
3082 This way, no link remains in the chain when the stack frame containing the
3083 link disappears.
3084
3085 Every function that can call Feval must protect in this fashion all
3086 Lisp_Object variables whose contents will be used again. */
3087
3088 extern struct gcpro *gcprolist;
3089
3090 struct gcpro
3091 {
3092 struct gcpro *next;
3093
3094 /* Address of first protected variable. */
3095 volatile Lisp_Object *var;
3096
3097 /* Number of consecutive protected variables. */
3098 ptrdiff_t nvars;
3099
3100 #ifdef DEBUG_GCPRO
3101 /* File name where this record is used. */
3102 const char *name;
3103
3104 /* Line number in this file. */
3105 int lineno;
3106
3107 /* Index in the local chain of records. */
3108 int idx;
3109
3110 /* Nesting level. */
3111 int level;
3112 #endif
3113 };
3114
3115 /* Values of GC_MARK_STACK during compilation:
3116
3117 0 Use GCPRO as before
3118 1 Do the real thing, make GCPROs and UNGCPRO no-ops.
3119 2 Mark the stack, and check that everything GCPRO'd is
3120 marked.
3121 3 Mark using GCPRO's, mark stack last, and count how many
3122 dead objects are kept alive.
3123
3124 Formerly, method 0 was used. Currently, method 1 is used unless
3125 otherwise specified by hand when building, e.g.,
3126 "make CPPFLAGS='-DGC_MARK_STACK=GC_USE_GCPROS_AS_BEFORE'".
3127 Methods 2 and 3 are present mainly to debug the transition from 0 to 1. */
3128
3129 #define GC_USE_GCPROS_AS_BEFORE 0
3130 #define GC_MAKE_GCPROS_NOOPS 1
3131 #define GC_MARK_STACK_CHECK_GCPROS 2
3132 #define GC_USE_GCPROS_CHECK_ZOMBIES 3
3133
3134 #ifndef GC_MARK_STACK
3135 #define GC_MARK_STACK GC_MAKE_GCPROS_NOOPS
3136 #endif
3137
3138 /* Whether we do the stack marking manually. */
3139 #define BYTE_MARK_STACK !(GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
3140 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
3141
3142
3143 #if GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS
3144
3145 /* Do something silly with gcproN vars just so gcc shuts up. */
3146 /* You get warnings from MIPSPro... */
3147
3148 #define GCPRO1(varname) ((void) gcpro1)
3149 #define GCPRO2(varname1, varname2) ((void) gcpro2, (void) gcpro1)
3150 #define GCPRO3(varname1, varname2, varname3) \
3151 ((void) gcpro3, (void) gcpro2, (void) gcpro1)
3152 #define GCPRO4(varname1, varname2, varname3, varname4) \
3153 ((void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3154 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3155 ((void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3156 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3157 ((void) gcpro6, (void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, \
3158 (void) gcpro1)
3159 #define GCPRO7(a, b, c, d, e, f, g) (GCPRO6 (a, b, c, d, e, f), (void) gcpro7)
3160 #define UNGCPRO ((void) 0)
3161
3162 #else /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3163
3164 #ifndef DEBUG_GCPRO
3165
3166 #define GCPRO1(a) \
3167 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3168 gcprolist = &gcpro1; }
3169
3170 #define GCPRO2(a, b) \
3171 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3172 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3173 gcprolist = &gcpro2; }
3174
3175 #define GCPRO3(a, b, c) \
3176 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3177 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3178 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3179 gcprolist = &gcpro3; }
3180
3181 #define GCPRO4(a, b, c, d) \
3182 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3183 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3184 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3185 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3186 gcprolist = &gcpro4; }
3187
3188 #define GCPRO5(a, b, c, d, e) \
3189 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3190 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3191 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3192 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3193 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3194 gcprolist = &gcpro5; }
3195
3196 #define GCPRO6(a, b, c, d, e, f) \
3197 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3198 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3199 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3200 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3201 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3202 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3203 gcprolist = &gcpro6; }
3204
3205 #define GCPRO7(a, b, c, d, e, f, g) \
3206 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3207 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3208 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3209 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3210 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3211 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3212 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3213 gcprolist = &gcpro7; }
3214
3215 #define UNGCPRO (gcprolist = gcpro1.next)
3216
3217 #else /* !DEBUG_GCPRO */
3218
3219 extern int gcpro_level;
3220
3221 #define GCPRO1(a) \
3222 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3223 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3224 gcpro1.level = gcpro_level++; \
3225 gcprolist = &gcpro1; }
3226
3227 #define GCPRO2(a, b) \
3228 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3229 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3230 gcpro1.level = gcpro_level; \
3231 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3232 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3233 gcpro2.level = gcpro_level++; \
3234 gcprolist = &gcpro2; }
3235
3236 #define GCPRO3(a, b, c) \
3237 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3238 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3239 gcpro1.level = gcpro_level; \
3240 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3241 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3242 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3243 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3244 gcpro3.level = gcpro_level++; \
3245 gcprolist = &gcpro3; }
3246
3247 #define GCPRO4(a, b, c, d) \
3248 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3249 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3250 gcpro1.level = gcpro_level; \
3251 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3252 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3253 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3254 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3255 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3256 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3257 gcpro4.level = gcpro_level++; \
3258 gcprolist = &gcpro4; }
3259
3260 #define GCPRO5(a, b, c, d, e) \
3261 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3262 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3263 gcpro1.level = gcpro_level; \
3264 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3265 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3266 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3267 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3268 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3269 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3270 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3271 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3272 gcpro5.level = gcpro_level++; \
3273 gcprolist = &gcpro5; }
3274
3275 #define GCPRO6(a, b, c, d, e, f) \
3276 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3277 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3278 gcpro1.level = gcpro_level; \
3279 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3280 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3281 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3282 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3283 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3284 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3285 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3286 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3287 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3288 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3289 gcpro6.level = gcpro_level++; \
3290 gcprolist = &gcpro6; }
3291
3292 #define GCPRO7(a, b, c, d, e, f, g) \
3293 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3294 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3295 gcpro1.level = gcpro_level; \
3296 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3297 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3298 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3299 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3300 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3301 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3302 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3303 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3304 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3305 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3306 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3307 gcpro7.name = __FILE__; gcpro7.lineno = __LINE__; gcpro7.idx = 7; \
3308 gcpro7.level = gcpro_level++; \
3309 gcprolist = &gcpro7; }
3310
3311 #define UNGCPRO \
3312 (--gcpro_level != gcpro1.level \
3313 ? emacs_abort () \
3314 : (void) (gcprolist = gcpro1.next))
3315
3316 #endif /* DEBUG_GCPRO */
3317 #endif /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3318
3319
3320 /* Evaluate expr, UNGCPRO, and then return the value of expr. */
3321 #define RETURN_UNGCPRO(expr) \
3322 do \
3323 { \
3324 Lisp_Object ret_ungc_val; \
3325 ret_ungc_val = (expr); \
3326 UNGCPRO; \
3327 return ret_ungc_val; \
3328 } \
3329 while (false)
3330
3331 /* Call staticpro (&var) to protect static variable `var'. */
3332
3333 void staticpro (Lisp_Object *);
3334 \f
3335 /* Forward declarations for prototypes. */
3336 struct window;
3337 struct frame;
3338
3339 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3340
3341 INLINE void
3342 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3343 {
3344 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3345 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3346 }
3347
3348 /* Functions to modify hash tables. */
3349
3350 INLINE void
3351 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3352 {
3353 gc_aset (h->key_and_value, 2 * idx, val);
3354 }
3355
3356 INLINE void
3357 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3358 {
3359 gc_aset (h->key_and_value, 2 * idx + 1, val);
3360 }
3361
3362 /* Use these functions to set Lisp_Object
3363 or pointer slots of struct Lisp_Symbol. */
3364
3365 INLINE void
3366 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3367 {
3368 XSYMBOL (sym)->function = function;
3369 }
3370
3371 INLINE void
3372 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3373 {
3374 XSYMBOL (sym)->plist = plist;
3375 }
3376
3377 INLINE void
3378 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3379 {
3380 XSYMBOL (sym)->next = next;
3381 }
3382
3383 /* Buffer-local (also frame-local) variable access functions. */
3384
3385 INLINE int
3386 blv_found (struct Lisp_Buffer_Local_Value *blv)
3387 {
3388 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3389 return blv->found;
3390 }
3391
3392 /* Set overlay's property list. */
3393
3394 INLINE void
3395 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3396 {
3397 XOVERLAY (overlay)->plist = plist;
3398 }
3399
3400 /* Get text properties of S. */
3401
3402 INLINE INTERVAL
3403 string_intervals (Lisp_Object s)
3404 {
3405 return XSTRING (s)->intervals;
3406 }
3407
3408 /* Set text properties of S to I. */
3409
3410 INLINE void
3411 set_string_intervals (Lisp_Object s, INTERVAL i)
3412 {
3413 XSTRING (s)->intervals = i;
3414 }
3415
3416 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3417 of setting slots directly. */
3418
3419 INLINE void
3420 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3421 {
3422 XCHAR_TABLE (table)->defalt = val;
3423 }
3424 INLINE void
3425 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3426 {
3427 XCHAR_TABLE (table)->purpose = val;
3428 }
3429
3430 /* Set different slots in (sub)character tables. */
3431
3432 INLINE void
3433 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3434 {
3435 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3436 XCHAR_TABLE (table)->extras[idx] = val;
3437 }
3438
3439 INLINE void
3440 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3441 {
3442 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3443 XCHAR_TABLE (table)->contents[idx] = val;
3444 }
3445
3446 INLINE void
3447 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3448 {
3449 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3450 }
3451
3452 /* Defined in data.c. */
3453 extern Lisp_Object indirect_function (Lisp_Object);
3454 extern Lisp_Object find_symbol_value (Lisp_Object);
3455 enum Arith_Comparison {
3456 ARITH_EQUAL,
3457 ARITH_NOTEQUAL,
3458 ARITH_LESS,
3459 ARITH_GRTR,
3460 ARITH_LESS_OR_EQUAL,
3461 ARITH_GRTR_OR_EQUAL
3462 };
3463 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3464 enum Arith_Comparison comparison);
3465
3466 /* Convert the integer I to an Emacs representation, either the integer
3467 itself, or a cons of two or three integers, or if all else fails a float.
3468 I should not have side effects. */
3469 #define INTEGER_TO_CONS(i) \
3470 (! FIXNUM_OVERFLOW_P (i) \
3471 ? make_number (i) \
3472 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16) \
3473 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16)) \
3474 && FIXNUM_OVERFLOW_P ((i) >> 16)) \
3475 ? Fcons (make_number ((i) >> 16), make_number ((i) & 0xffff)) \
3476 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16 >> 24) \
3477 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16 >> 24)) \
3478 && FIXNUM_OVERFLOW_P ((i) >> 16 >> 24)) \
3479 ? Fcons (make_number ((i) >> 16 >> 24), \
3480 Fcons (make_number ((i) >> 16 & 0xffffff), \
3481 make_number ((i) & 0xffff))) \
3482 : make_float (i))
3483
3484 /* Convert the Emacs representation CONS back to an integer of type
3485 TYPE, storing the result the variable VAR. Signal an error if CONS
3486 is not a valid representation or is out of range for TYPE. */
3487 #define CONS_TO_INTEGER(cons, type, var) \
3488 (TYPE_SIGNED (type) \
3489 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3490 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3491 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3492 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3493
3494 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3495 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3496 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3497 Lisp_Object);
3498 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3499 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3500 extern void syms_of_data (void);
3501 extern void swap_in_global_binding (struct Lisp_Symbol *);
3502
3503 /* Defined in cmds.c */
3504 extern void syms_of_cmds (void);
3505 extern void keys_of_cmds (void);
3506
3507 /* Defined in coding.c. */
3508 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3509 ptrdiff_t, bool, bool, Lisp_Object);
3510 extern void init_coding (void);
3511 extern void init_coding_once (void);
3512 extern void syms_of_coding (void);
3513
3514 /* Defined in character.c. */
3515 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3516 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3517 extern void syms_of_character (void);
3518
3519 /* Defined in charset.c. */
3520 extern void init_charset (void);
3521 extern void init_charset_once (void);
3522 extern void syms_of_charset (void);
3523 /* Structure forward declarations. */
3524 struct charset;
3525
3526 /* Defined in syntax.c. */
3527 extern void init_syntax_once (void);
3528 extern void syms_of_syntax (void);
3529
3530 /* Defined in fns.c. */
3531 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3532 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3533 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3534 extern void sweep_weak_hash_tables (void);
3535 EMACS_UINT hash_string (char const *, ptrdiff_t);
3536 EMACS_UINT sxhash (Lisp_Object, int);
3537 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3538 Lisp_Object, Lisp_Object);
3539 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3540 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3541 EMACS_UINT);
3542 extern struct hash_table_test hashtest_eql, hashtest_equal;
3543 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3544 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3545 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3546 ptrdiff_t, ptrdiff_t);
3547 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3548 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3549 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3550 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3551 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3552 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3553 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3554 extern void clear_string_char_byte_cache (void);
3555 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3556 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3557 extern Lisp_Object string_to_multibyte (Lisp_Object);
3558 extern Lisp_Object string_make_unibyte (Lisp_Object);
3559 extern void syms_of_fns (void);
3560
3561 /* Defined in floatfns.c. */
3562 extern void syms_of_floatfns (void);
3563 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3564
3565 /* Defined in fringe.c. */
3566 extern void syms_of_fringe (void);
3567 extern void init_fringe (void);
3568 #ifdef HAVE_WINDOW_SYSTEM
3569 extern void mark_fringe_data (void);
3570 extern void init_fringe_once (void);
3571 #endif /* HAVE_WINDOW_SYSTEM */
3572
3573 /* Defined in image.c. */
3574 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3575 extern void reset_image_types (void);
3576 extern void syms_of_image (void);
3577
3578 /* Defined in insdel.c. */
3579 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3580 extern _Noreturn void buffer_overflow (void);
3581 extern void make_gap (ptrdiff_t);
3582 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3583 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3584 ptrdiff_t, bool, bool);
3585 extern int count_combining_before (const unsigned char *,
3586 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3587 extern int count_combining_after (const unsigned char *,
3588 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3589 extern void insert (const char *, ptrdiff_t);
3590 extern void insert_and_inherit (const char *, ptrdiff_t);
3591 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3592 bool, bool, bool);
3593 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3594 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3595 ptrdiff_t, ptrdiff_t, bool);
3596 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3597 extern void insert_char (int);
3598 extern void insert_string (const char *);
3599 extern void insert_before_markers (const char *, ptrdiff_t);
3600 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3601 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3602 ptrdiff_t, ptrdiff_t,
3603 ptrdiff_t, bool);
3604 extern void del_range (ptrdiff_t, ptrdiff_t);
3605 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3606 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3607 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3608 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3609 ptrdiff_t, ptrdiff_t, bool);
3610 extern void modify_text (ptrdiff_t, ptrdiff_t);
3611 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3612 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3613 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3614 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3615 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3616 ptrdiff_t, ptrdiff_t);
3617 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3618 ptrdiff_t, ptrdiff_t);
3619 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3620 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3621 const char *, ptrdiff_t, ptrdiff_t, bool);
3622 extern void syms_of_insdel (void);
3623
3624 /* Defined in dispnew.c. */
3625 #if (defined PROFILING \
3626 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3627 _Noreturn void __executable_start (void);
3628 #endif
3629 extern Lisp_Object Vwindow_system;
3630 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3631
3632 /* Defined in xdisp.c. */
3633 extern bool noninteractive_need_newline;
3634 extern Lisp_Object echo_area_buffer[2];
3635 extern void add_to_log (const char *, Lisp_Object, Lisp_Object);
3636 extern void check_message_stack (void);
3637 extern void setup_echo_area_for_printing (int);
3638 extern bool push_message (void);
3639 extern void pop_message_unwind (void);
3640 extern Lisp_Object restore_message_unwind (Lisp_Object);
3641 extern void restore_message (void);
3642 extern Lisp_Object current_message (void);
3643 extern void clear_message (bool, bool);
3644 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3645 extern void message1 (const char *);
3646 extern void message1_nolog (const char *);
3647 extern void message3 (Lisp_Object);
3648 extern void message3_nolog (Lisp_Object);
3649 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3650 extern void message_with_string (const char *, Lisp_Object, int);
3651 extern void message_log_maybe_newline (void);
3652 extern void update_echo_area (void);
3653 extern void truncate_echo_area (ptrdiff_t);
3654 extern void redisplay (void);
3655
3656 void set_frame_cursor_types (struct frame *, Lisp_Object);
3657 extern void syms_of_xdisp (void);
3658 extern void init_xdisp (void);
3659 extern Lisp_Object safe_eval (Lisp_Object);
3660 extern int pos_visible_p (struct window *, ptrdiff_t, int *,
3661 int *, int *, int *, int *, int *);
3662
3663 /* Defined in xsettings.c. */
3664 extern void syms_of_xsettings (void);
3665
3666 /* Defined in vm-limit.c. */
3667 extern void memory_warnings (void *, void (*warnfun) (const char *));
3668
3669 /* Defined in character.c. */
3670 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3671 ptrdiff_t *, ptrdiff_t *);
3672
3673 /* Defined in alloc.c. */
3674 extern void check_pure_size (void);
3675 extern void free_misc (Lisp_Object);
3676 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3677 extern void malloc_warning (const char *);
3678 extern _Noreturn void memory_full (size_t);
3679 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3680 extern bool survives_gc_p (Lisp_Object);
3681 extern void mark_object (Lisp_Object);
3682 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3683 extern void refill_memory_reserve (void);
3684 #endif
3685 extern const char *pending_malloc_warning;
3686 extern Lisp_Object zero_vector;
3687 extern Lisp_Object *stack_base;
3688 extern EMACS_INT consing_since_gc;
3689 extern EMACS_INT gc_relative_threshold;
3690 extern EMACS_INT memory_full_cons_threshold;
3691 extern Lisp_Object list1 (Lisp_Object);
3692 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3693 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3694 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3695 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3696 Lisp_Object);
3697 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3698 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3699
3700 /* Build a frequently used 2/3/4-integer lists. */
3701
3702 INLINE Lisp_Object
3703 list2i (EMACS_INT x, EMACS_INT y)
3704 {
3705 return list2 (make_number (x), make_number (y));
3706 }
3707
3708 INLINE Lisp_Object
3709 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3710 {
3711 return list3 (make_number (x), make_number (y), make_number (w));
3712 }
3713
3714 INLINE Lisp_Object
3715 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3716 {
3717 return list4 (make_number (x), make_number (y),
3718 make_number (w), make_number (h));
3719 }
3720
3721 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3722 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3723 extern _Noreturn void string_overflow (void);
3724 extern Lisp_Object make_string (const char *, ptrdiff_t);
3725 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3726 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3727 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3728
3729 /* Make unibyte string from C string when the length isn't known. */
3730
3731 INLINE Lisp_Object
3732 build_unibyte_string (const char *str)
3733 {
3734 return make_unibyte_string (str, strlen (str));
3735 }
3736
3737 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3738 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3739 extern Lisp_Object make_uninit_string (EMACS_INT);
3740 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3741 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3742 extern Lisp_Object make_specified_string (const char *,
3743 ptrdiff_t, ptrdiff_t, bool);
3744 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3745 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3746
3747 /* Make a string allocated in pure space, use STR as string data. */
3748
3749 INLINE Lisp_Object
3750 build_pure_c_string (const char *str)
3751 {
3752 return make_pure_c_string (str, strlen (str));
3753 }
3754
3755 /* Make a string from the data at STR, treating it as multibyte if the
3756 data warrants. */
3757
3758 INLINE Lisp_Object
3759 build_string (const char *str)
3760 {
3761 return make_string (str, strlen (str));
3762 }
3763
3764 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3765 extern void make_byte_code (struct Lisp_Vector *);
3766 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3767
3768 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3769 be sure that GC cannot happen until the vector is completely
3770 initialized. E.g. the following code is likely to crash:
3771
3772 v = make_uninit_vector (3);
3773 ASET (v, 0, obj0);
3774 ASET (v, 1, Ffunction_can_gc ());
3775 ASET (v, 2, obj1); */
3776
3777 INLINE Lisp_Object
3778 make_uninit_vector (ptrdiff_t size)
3779 {
3780 Lisp_Object v;
3781 struct Lisp_Vector *p;
3782
3783 p = allocate_vector (size);
3784 XSETVECTOR (v, p);
3785 return v;
3786 }
3787
3788 /* Like above, but special for sub char-tables. */
3789
3790 INLINE Lisp_Object
3791 make_uninit_sub_char_table (int depth, int min_char)
3792 {
3793 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3794 Lisp_Object v = make_uninit_vector (slots);
3795
3796 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3797 XSUB_CHAR_TABLE (v)->depth = depth;
3798 XSUB_CHAR_TABLE (v)->min_char = min_char;
3799 return v;
3800 }
3801
3802 extern struct Lisp_Vector *allocate_pseudovector (int, int, int,
3803 enum pvec_type);
3804
3805 /* Allocate partially initialized pseudovector where all Lisp_Object
3806 slots are set to Qnil but the rest (if any) is left uninitialized. */
3807
3808 #define ALLOCATE_PSEUDOVECTOR(type, field, tag) \
3809 ((type *) allocate_pseudovector (VECSIZE (type), \
3810 PSEUDOVECSIZE (type, field), \
3811 PSEUDOVECSIZE (type, field), tag))
3812
3813 /* Allocate fully initialized pseudovector where all Lisp_Object
3814 slots are set to Qnil and the rest (if any) is zeroed. */
3815
3816 #define ALLOCATE_ZEROED_PSEUDOVECTOR(type, field, tag) \
3817 ((type *) allocate_pseudovector (VECSIZE (type), \
3818 PSEUDOVECSIZE (type, field), \
3819 VECSIZE (type), tag))
3820
3821 extern bool gc_in_progress;
3822 extern bool abort_on_gc;
3823 extern Lisp_Object make_float (double);
3824 extern void display_malloc_warning (void);
3825 extern ptrdiff_t inhibit_garbage_collection (void);
3826 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3827 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3828 Lisp_Object, Lisp_Object);
3829 extern Lisp_Object make_save_ptr (void *);
3830 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3831 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3832 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3833 Lisp_Object);
3834 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3835 extern void free_save_value (Lisp_Object);
3836 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3837 extern void free_marker (Lisp_Object);
3838 extern void free_cons (struct Lisp_Cons *);
3839 extern void init_alloc_once (void);
3840 extern void init_alloc (void);
3841 extern void syms_of_alloc (void);
3842 extern struct buffer * allocate_buffer (void);
3843 extern int valid_lisp_object_p (Lisp_Object);
3844 extern int relocatable_string_data_p (const char *);
3845 #ifdef GC_CHECK_CONS_LIST
3846 extern void check_cons_list (void);
3847 #else
3848 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3849 #endif
3850
3851 #ifdef REL_ALLOC
3852 /* Defined in ralloc.c. */
3853 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3854 extern void r_alloc_free (void **);
3855 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3856 extern void r_alloc_reset_variable (void **, void **);
3857 extern void r_alloc_inhibit_buffer_relocation (int);
3858 #endif
3859
3860 /* Defined in chartab.c. */
3861 extern Lisp_Object copy_char_table (Lisp_Object);
3862 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3863 int *, int *);
3864 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3865 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3866 Lisp_Object),
3867 Lisp_Object, Lisp_Object, Lisp_Object);
3868 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3869 Lisp_Object, Lisp_Object,
3870 Lisp_Object, struct charset *,
3871 unsigned, unsigned);
3872 extern Lisp_Object uniprop_table (Lisp_Object);
3873 extern void syms_of_chartab (void);
3874
3875 /* Defined in print.c. */
3876 extern Lisp_Object Vprin1_to_string_buffer;
3877 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3878 extern void temp_output_buffer_setup (const char *);
3879 extern int print_level;
3880 extern void write_string (const char *, int);
3881 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3882 Lisp_Object);
3883 extern Lisp_Object internal_with_output_to_temp_buffer
3884 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3885 #define FLOAT_TO_STRING_BUFSIZE 350
3886 extern int float_to_string (char *, double);
3887 extern void init_print_once (void);
3888 extern void syms_of_print (void);
3889
3890 /* Defined in doprnt.c. */
3891 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3892 va_list);
3893 extern ptrdiff_t esprintf (char *, char const *, ...)
3894 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3895 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3896 char const *, ...)
3897 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3898 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3899 char const *, va_list)
3900 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3901
3902 /* Defined in lread.c. */
3903 extern Lisp_Object check_obarray (Lisp_Object);
3904 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3905 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3906 extern Lisp_Object intern_driver (Lisp_Object, Lisp_Object, Lisp_Object);
3907 extern void init_symbol (Lisp_Object, Lisp_Object);
3908 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3909 INLINE void
3910 LOADHIST_ATTACH (Lisp_Object x)
3911 {
3912 if (initialized)
3913 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3914 }
3915 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3916 Lisp_Object *, Lisp_Object, bool);
3917 extern Lisp_Object string_to_number (char const *, int, bool);
3918 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3919 Lisp_Object);
3920 extern void dir_warning (const char *, Lisp_Object);
3921 extern void init_obarray (void);
3922 extern void init_lread (void);
3923 extern void syms_of_lread (void);
3924
3925 INLINE Lisp_Object
3926 intern (const char *str)
3927 {
3928 return intern_1 (str, strlen (str));
3929 }
3930
3931 INLINE Lisp_Object
3932 intern_c_string (const char *str)
3933 {
3934 return intern_c_string_1 (str, strlen (str));
3935 }
3936
3937 /* Defined in eval.c. */
3938 extern EMACS_INT lisp_eval_depth;
3939 extern Lisp_Object Vautoload_queue;
3940 extern Lisp_Object Vrun_hooks;
3941 extern Lisp_Object Vsignaling_function;
3942 extern Lisp_Object inhibit_lisp_code;
3943 extern struct handler *handlerlist;
3944
3945 /* To run a normal hook, use the appropriate function from the list below.
3946 The calling convention:
3947
3948 if (!NILP (Vrun_hooks))
3949 call1 (Vrun_hooks, Qmy_funny_hook);
3950
3951 should no longer be used. */
3952 extern void run_hook (Lisp_Object);
3953 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3954 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3955 Lisp_Object (*funcall)
3956 (ptrdiff_t nargs, Lisp_Object *args));
3957 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3958 extern _Noreturn void xsignal0 (Lisp_Object);
3959 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3960 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3961 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3962 Lisp_Object);
3963 extern _Noreturn void signal_error (const char *, Lisp_Object);
3964 extern Lisp_Object eval_sub (Lisp_Object form);
3965 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3966 extern Lisp_Object call0 (Lisp_Object);
3967 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3968 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3969 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3970 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3971 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3972 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3973 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3974 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3975 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3976 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3977 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3978 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3979 extern Lisp_Object internal_condition_case_n
3980 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3981 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3982 extern void specbind (Lisp_Object, Lisp_Object);
3983 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3984 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3985 extern void record_unwind_protect_int (void (*) (int), int);
3986 extern void record_unwind_protect_void (void (*) (void));
3987 extern void record_unwind_protect_nothing (void);
3988 extern void clear_unwind_protect (ptrdiff_t);
3989 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3990 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3991 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3992 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3993 extern _Noreturn void verror (const char *, va_list)
3994 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3995 extern void un_autoload (Lisp_Object);
3996 extern Lisp_Object call_debugger (Lisp_Object arg);
3997 extern void init_eval_once (void);
3998 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3999 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
4000 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
4001 extern void init_eval (void);
4002 extern void syms_of_eval (void);
4003 extern void unwind_body (Lisp_Object);
4004 extern ptrdiff_t record_in_backtrace (Lisp_Object, Lisp_Object *, ptrdiff_t);
4005 extern void mark_specpdl (void);
4006 extern void get_backtrace (Lisp_Object array);
4007 Lisp_Object backtrace_top_function (void);
4008 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
4009 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
4010
4011
4012 /* Defined in editfns.c. */
4013 extern void insert1 (Lisp_Object);
4014 extern Lisp_Object format2 (const char *, Lisp_Object, Lisp_Object);
4015 extern Lisp_Object save_excursion_save (void);
4016 extern Lisp_Object save_restriction_save (void);
4017 extern void save_excursion_restore (Lisp_Object);
4018 extern void save_restriction_restore (Lisp_Object);
4019 extern _Noreturn void time_overflow (void);
4020 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
4021 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
4022 ptrdiff_t, bool);
4023 extern void init_editfns (void);
4024 extern void syms_of_editfns (void);
4025
4026 /* Defined in buffer.c. */
4027 extern bool mouse_face_overlay_overlaps (Lisp_Object);
4028 extern _Noreturn void nsberror (Lisp_Object);
4029 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
4030 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
4031 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
4032 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
4033 Lisp_Object, Lisp_Object, Lisp_Object);
4034 extern bool overlay_touches_p (ptrdiff_t);
4035 extern Lisp_Object other_buffer_safely (Lisp_Object);
4036 extern Lisp_Object get_truename_buffer (Lisp_Object);
4037 extern void init_buffer_once (void);
4038 extern void init_buffer (int);
4039 extern void syms_of_buffer (void);
4040 extern void keys_of_buffer (void);
4041
4042 /* Defined in marker.c. */
4043
4044 extern ptrdiff_t marker_position (Lisp_Object);
4045 extern ptrdiff_t marker_byte_position (Lisp_Object);
4046 extern void clear_charpos_cache (struct buffer *);
4047 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
4048 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
4049 extern void unchain_marker (struct Lisp_Marker *marker);
4050 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
4051 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
4052 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
4053 ptrdiff_t, ptrdiff_t);
4054 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
4055 extern void syms_of_marker (void);
4056
4057 /* Defined in fileio.c. */
4058
4059 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
4060 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
4061 Lisp_Object, Lisp_Object, Lisp_Object,
4062 Lisp_Object, int);
4063 extern void close_file_unwind (int);
4064 extern void fclose_unwind (void *);
4065 extern void restore_point_unwind (Lisp_Object);
4066 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
4067 extern _Noreturn void report_file_error (const char *, Lisp_Object);
4068 extern bool internal_delete_file (Lisp_Object);
4069 extern Lisp_Object emacs_readlinkat (int, const char *);
4070 extern bool file_directory_p (const char *);
4071 extern bool file_accessible_directory_p (Lisp_Object);
4072 extern void init_fileio (void);
4073 extern void syms_of_fileio (void);
4074 extern Lisp_Object make_temp_name (Lisp_Object, bool);
4075
4076 /* Defined in search.c. */
4077 extern void shrink_regexp_cache (void);
4078 extern void restore_search_regs (void);
4079 extern void record_unwind_save_match_data (void);
4080 struct re_registers;
4081 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4082 struct re_registers *,
4083 Lisp_Object, bool, bool);
4084 extern ptrdiff_t fast_string_match_internal (Lisp_Object, Lisp_Object,
4085 Lisp_Object);
4086
4087 INLINE ptrdiff_t
4088 fast_string_match (Lisp_Object regexp, Lisp_Object string)
4089 {
4090 return fast_string_match_internal (regexp, string, Qnil);
4091 }
4092
4093 INLINE ptrdiff_t
4094 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
4095 {
4096 return fast_string_match_internal (regexp, string, Vascii_canon_table);
4097 }
4098
4099 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4100 ptrdiff_t);
4101 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4102 ptrdiff_t, ptrdiff_t, Lisp_Object);
4103 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4104 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4105 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4106 ptrdiff_t, bool);
4107 extern ptrdiff_t scan_newline_from_point (ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
4108 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4109 ptrdiff_t, ptrdiff_t *);
4110 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4111 ptrdiff_t, ptrdiff_t *);
4112 extern void syms_of_search (void);
4113 extern void clear_regexp_cache (void);
4114
4115 /* Defined in minibuf.c. */
4116
4117 extern Lisp_Object Vminibuffer_list;
4118 extern Lisp_Object last_minibuf_string;
4119 extern Lisp_Object get_minibuffer (EMACS_INT);
4120 extern void init_minibuf_once (void);
4121 extern void syms_of_minibuf (void);
4122
4123 /* Defined in callint.c. */
4124
4125 extern void syms_of_callint (void);
4126
4127 /* Defined in casefiddle.c. */
4128
4129 extern void syms_of_casefiddle (void);
4130 extern void keys_of_casefiddle (void);
4131
4132 /* Defined in casetab.c. */
4133
4134 extern void init_casetab_once (void);
4135 extern void syms_of_casetab (void);
4136
4137 /* Defined in keyboard.c. */
4138
4139 extern Lisp_Object echo_message_buffer;
4140 extern struct kboard *echo_kboard;
4141 extern void cancel_echoing (void);
4142 extern Lisp_Object last_undo_boundary;
4143 extern bool input_pending;
4144 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4145 extern sigjmp_buf return_to_command_loop;
4146 #endif
4147 extern Lisp_Object menu_bar_items (Lisp_Object);
4148 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4149 extern void discard_mouse_events (void);
4150 #ifdef USABLE_SIGIO
4151 void handle_input_available_signal (int);
4152 #endif
4153 extern Lisp_Object pending_funcalls;
4154 extern bool detect_input_pending (void);
4155 extern bool detect_input_pending_ignore_squeezables (void);
4156 extern bool detect_input_pending_run_timers (bool);
4157 extern void safe_run_hooks (Lisp_Object);
4158 extern void cmd_error_internal (Lisp_Object, const char *);
4159 extern Lisp_Object command_loop_1 (void);
4160 extern Lisp_Object read_menu_command (void);
4161 extern Lisp_Object recursive_edit_1 (void);
4162 extern void record_auto_save (void);
4163 extern void force_auto_save_soon (void);
4164 extern void init_keyboard (void);
4165 extern void syms_of_keyboard (void);
4166 extern void keys_of_keyboard (void);
4167
4168 /* Defined in indent.c. */
4169 extern ptrdiff_t current_column (void);
4170 extern void invalidate_current_column (void);
4171 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4172 extern void syms_of_indent (void);
4173
4174 /* Defined in frame.c. */
4175 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4176 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4177 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4178 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4179 extern void frames_discard_buffer (Lisp_Object);
4180 extern void syms_of_frame (void);
4181
4182 /* Defined in emacs.c. */
4183 extern char **initial_argv;
4184 extern int initial_argc;
4185 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4186 extern bool display_arg;
4187 #endif
4188 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4189 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4190 extern _Noreturn void terminate_due_to_signal (int, int);
4191 #ifdef WINDOWSNT
4192 extern Lisp_Object Vlibrary_cache;
4193 #endif
4194 #if HAVE_SETLOCALE
4195 void fixup_locale (void);
4196 void synchronize_system_messages_locale (void);
4197 void synchronize_system_time_locale (void);
4198 #else
4199 INLINE void fixup_locale (void) {}
4200 INLINE void synchronize_system_messages_locale (void) {}
4201 INLINE void synchronize_system_time_locale (void) {}
4202 #endif
4203 extern void shut_down_emacs (int, Lisp_Object);
4204
4205 /* True means don't do interactive redisplay and don't change tty modes. */
4206 extern bool noninteractive;
4207
4208 /* True means remove site-lisp directories from load-path. */
4209 extern bool no_site_lisp;
4210
4211 /* Pipe used to send exit notification to the daemon parent at
4212 startup. */
4213 extern int daemon_pipe[2];
4214 #define IS_DAEMON (daemon_pipe[1] != 0)
4215
4216 /* True if handling a fatal error already. */
4217 extern bool fatal_error_in_progress;
4218
4219 /* True means don't do use window-system-specific display code. */
4220 extern bool inhibit_window_system;
4221 /* True means that a filter or a sentinel is running. */
4222 extern bool running_asynch_code;
4223
4224 /* Defined in process.c. */
4225 extern void kill_buffer_processes (Lisp_Object);
4226 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4227 struct Lisp_Process *, int);
4228 /* Max value for the first argument of wait_reading_process_output. */
4229 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4230 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4231 The bug merely causes a bogus warning, but the warning is annoying. */
4232 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4233 #else
4234 # define WAIT_READING_MAX INTMAX_MAX
4235 #endif
4236 #ifdef HAVE_TIMERFD
4237 extern void add_timer_wait_descriptor (int);
4238 #endif
4239 extern void add_keyboard_wait_descriptor (int);
4240 extern void delete_keyboard_wait_descriptor (int);
4241 #ifdef HAVE_GPM
4242 extern void add_gpm_wait_descriptor (int);
4243 extern void delete_gpm_wait_descriptor (int);
4244 #endif
4245 extern void init_process_emacs (void);
4246 extern void syms_of_process (void);
4247 extern void setup_process_coding_systems (Lisp_Object);
4248
4249 /* Defined in callproc.c. */
4250 #ifndef DOS_NT
4251 _Noreturn
4252 #endif
4253 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4254 extern void init_callproc_1 (void);
4255 extern void init_callproc (void);
4256 extern void set_initial_environment (void);
4257 extern void syms_of_callproc (void);
4258
4259 /* Defined in doc.c. */
4260 extern Lisp_Object read_doc_string (Lisp_Object);
4261 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4262 extern void syms_of_doc (void);
4263 extern int read_bytecode_char (bool);
4264
4265 /* Defined in bytecode.c. */
4266 extern void syms_of_bytecode (void);
4267 extern struct byte_stack *byte_stack_list;
4268 #if BYTE_MARK_STACK
4269 extern void mark_byte_stack (void);
4270 #endif
4271 extern void unmark_byte_stack (void);
4272 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4273 Lisp_Object, ptrdiff_t, Lisp_Object *);
4274
4275 /* Defined in macros.c. */
4276 extern void init_macros (void);
4277 extern void syms_of_macros (void);
4278
4279 /* Defined in undo.c. */
4280 extern void truncate_undo_list (struct buffer *);
4281 extern void record_insert (ptrdiff_t, ptrdiff_t);
4282 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4283 extern void record_first_change (void);
4284 extern void record_change (ptrdiff_t, ptrdiff_t);
4285 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4286 Lisp_Object, Lisp_Object,
4287 Lisp_Object);
4288 extern void syms_of_undo (void);
4289
4290 /* Defined in textprop.c. */
4291 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4292
4293 /* Defined in menu.c. */
4294 extern void syms_of_menu (void);
4295
4296 /* Defined in xmenu.c. */
4297 extern void syms_of_xmenu (void);
4298
4299 /* Defined in termchar.h. */
4300 struct tty_display_info;
4301
4302 /* Defined in termhooks.h. */
4303 struct terminal;
4304
4305 /* Defined in sysdep.c. */
4306 #ifndef HAVE_GET_CURRENT_DIR_NAME
4307 extern char *get_current_dir_name (void);
4308 #endif
4309 extern void stuff_char (char c);
4310 extern void init_foreground_group (void);
4311 extern void sys_subshell (void);
4312 extern void sys_suspend (void);
4313 extern void discard_tty_input (void);
4314 extern void init_sys_modes (struct tty_display_info *);
4315 extern void reset_sys_modes (struct tty_display_info *);
4316 extern void init_all_sys_modes (void);
4317 extern void reset_all_sys_modes (void);
4318 extern void child_setup_tty (int);
4319 extern void setup_pty (int);
4320 extern int set_window_size (int, int, int);
4321 extern EMACS_INT get_random (void);
4322 extern void seed_random (void *, ptrdiff_t);
4323 extern void init_random (void);
4324 extern void emacs_backtrace (int);
4325 extern _Noreturn void emacs_abort (void) NO_INLINE;
4326 extern int emacs_open (const char *, int, int);
4327 extern int emacs_pipe (int[2]);
4328 extern int emacs_close (int);
4329 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4330 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4331 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4332 extern void emacs_perror (char const *);
4333
4334 extern void unlock_all_files (void);
4335 extern void lock_file (Lisp_Object);
4336 extern void unlock_file (Lisp_Object);
4337 extern void unlock_buffer (struct buffer *);
4338 extern void syms_of_filelock (void);
4339 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4340
4341 /* Defined in sound.c. */
4342 extern void syms_of_sound (void);
4343
4344 /* Defined in category.c. */
4345 extern void init_category_once (void);
4346 extern Lisp_Object char_category_set (int);
4347 extern void syms_of_category (void);
4348
4349 /* Defined in ccl.c. */
4350 extern void syms_of_ccl (void);
4351
4352 /* Defined in dired.c. */
4353 extern void syms_of_dired (void);
4354 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4355 Lisp_Object, Lisp_Object,
4356 bool, Lisp_Object);
4357
4358 /* Defined in term.c. */
4359 extern int *char_ins_del_vector;
4360 extern void syms_of_term (void);
4361 extern _Noreturn void fatal (const char *msgid, ...)
4362 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4363
4364 /* Defined in terminal.c. */
4365 extern void syms_of_terminal (void);
4366
4367 /* Defined in font.c. */
4368 extern void syms_of_font (void);
4369 extern void init_font (void);
4370
4371 #ifdef HAVE_WINDOW_SYSTEM
4372 /* Defined in fontset.c. */
4373 extern void syms_of_fontset (void);
4374 #endif
4375
4376 /* Defined in gfilenotify.c */
4377 #ifdef HAVE_GFILENOTIFY
4378 extern void globals_of_gfilenotify (void);
4379 extern void syms_of_gfilenotify (void);
4380 #endif
4381
4382 /* Defined in inotify.c */
4383 #ifdef HAVE_INOTIFY
4384 extern void syms_of_inotify (void);
4385 #endif
4386
4387 #ifdef HAVE_W32NOTIFY
4388 /* Defined on w32notify.c. */
4389 extern void syms_of_w32notify (void);
4390 #endif
4391
4392 /* Defined in xfaces.c. */
4393 extern Lisp_Object Vface_alternative_font_family_alist;
4394 extern Lisp_Object Vface_alternative_font_registry_alist;
4395 extern void syms_of_xfaces (void);
4396
4397 #ifdef HAVE_X_WINDOWS
4398 /* Defined in xfns.c. */
4399 extern void syms_of_xfns (void);
4400
4401 /* Defined in xsmfns.c. */
4402 extern void syms_of_xsmfns (void);
4403
4404 /* Defined in xselect.c. */
4405 extern void syms_of_xselect (void);
4406
4407 /* Defined in xterm.c. */
4408 extern void init_xterm (void);
4409 extern void syms_of_xterm (void);
4410 #endif /* HAVE_X_WINDOWS */
4411
4412 #ifdef HAVE_WINDOW_SYSTEM
4413 /* Defined in xterm.c, nsterm.m, w32term.c. */
4414 extern char *x_get_keysym_name (int);
4415 #endif /* HAVE_WINDOW_SYSTEM */
4416
4417 #ifdef HAVE_LIBXML2
4418 /* Defined in xml.c. */
4419 extern void syms_of_xml (void);
4420 extern void xml_cleanup_parser (void);
4421 #endif
4422
4423 #ifdef HAVE_ZLIB
4424 /* Defined in decompress.c. */
4425 extern void syms_of_decompress (void);
4426 #endif
4427
4428 #ifdef HAVE_DBUS
4429 /* Defined in dbusbind.c. */
4430 void init_dbusbind (void);
4431 void syms_of_dbusbind (void);
4432 #endif
4433
4434
4435 /* Defined in profiler.c. */
4436 extern bool profiler_memory_running;
4437 extern void malloc_probe (size_t);
4438 extern void syms_of_profiler (void);
4439
4440
4441 #ifdef DOS_NT
4442 /* Defined in msdos.c, w32.c. */
4443 extern char *emacs_root_dir (void);
4444 #endif /* DOS_NT */
4445
4446 /* Defined in lastfile.c. */
4447 extern char my_edata[];
4448 extern char my_endbss[];
4449 extern char *my_endbss_static;
4450
4451 /* True means ^G can quit instantly. */
4452 extern bool immediate_quit;
4453
4454 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4455 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4456 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4457 extern void xfree (void *);
4458 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4459 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4460 ATTRIBUTE_ALLOC_SIZE ((2,3));
4461 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4462
4463 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4464 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4465 extern void dupstring (char **, char const *);
4466
4467 /* Make DEST a copy of STRING's data. Return a pointer to DEST's terminating
4468 null byte. This is like stpcpy, except the source is a Lisp string. */
4469
4470 INLINE char *
4471 lispstpcpy (char *dest, Lisp_Object string)
4472 {
4473 ptrdiff_t len = SBYTES (string);
4474 memcpy (dest, SDATA (string), len + 1);
4475 return dest + len;
4476 }
4477
4478 extern void xputenv (const char *);
4479
4480 extern char *egetenv_internal (const char *, ptrdiff_t);
4481
4482 INLINE char *
4483 egetenv (const char *var)
4484 {
4485 /* When VAR is a string literal, strlen can be optimized away. */
4486 return egetenv_internal (var, strlen (var));
4487 }
4488
4489 /* Set up the name of the machine we're running on. */
4490 extern void init_system_name (void);
4491
4492 /* Return the absolute value of X. X should be a signed integer
4493 expression without side effects, and X's absolute value should not
4494 exceed the maximum for its promoted type. This is called 'eabs'
4495 because 'abs' is reserved by the C standard. */
4496 #define eabs(x) ((x) < 0 ? -(x) : (x))
4497
4498 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4499 fixnum. */
4500
4501 #define make_fixnum_or_float(val) \
4502 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4503
4504 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4505 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4506
4507 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4508
4509 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4510
4511 #define USE_SAFE_ALLOCA \
4512 ptrdiff_t sa_avail = MAX_ALLOCA; \
4513 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4514
4515 #define AVAIL_ALLOCA(size) (sa_avail -= (size), alloca (size))
4516
4517 /* SAFE_ALLOCA allocates a simple buffer. */
4518
4519 #define SAFE_ALLOCA(size) ((size) <= sa_avail \
4520 ? AVAIL_ALLOCA (size) \
4521 : (sa_must_free = true, record_xmalloc (size)))
4522
4523 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4524 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4525 positive. The code is tuned for MULTIPLIER being a constant. */
4526
4527 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4528 do { \
4529 if ((nitems) <= sa_avail / sizeof *(buf) / (multiplier)) \
4530 (buf) = AVAIL_ALLOCA (sizeof *(buf) * (multiplier) * (nitems)); \
4531 else \
4532 { \
4533 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4534 sa_must_free = true; \
4535 record_unwind_protect_ptr (xfree, buf); \
4536 } \
4537 } while (false)
4538
4539 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4540
4541 #define SAFE_ALLOCA_STRING(ptr, string) \
4542 do { \
4543 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4544 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4545 } while (false)
4546
4547 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4548
4549 #define SAFE_FREE() \
4550 do { \
4551 if (sa_must_free) { \
4552 sa_must_free = false; \
4553 unbind_to (sa_count, Qnil); \
4554 } \
4555 } while (false)
4556
4557
4558 /* Return floor (NBYTES / WORD_SIZE). */
4559
4560 INLINE ptrdiff_t
4561 lisp_word_count (ptrdiff_t nbytes)
4562 {
4563 if (-1 >> 1 == -1)
4564 switch (word_size)
4565 {
4566 case 2: return nbytes >> 1;
4567 case 4: return nbytes >> 2;
4568 case 8: return nbytes >> 3;
4569 case 16: return nbytes >> 4;
4570 }
4571 return nbytes / word_size - (nbytes % word_size < 0);
4572 }
4573
4574 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4575
4576 #define SAFE_ALLOCA_LISP(buf, nelt) \
4577 do { \
4578 if ((nelt) <= lisp_word_count (sa_avail)) \
4579 (buf) = AVAIL_ALLOCA ((nelt) * word_size); \
4580 else if ((nelt) <= min (PTRDIFF_MAX, SIZE_MAX) / word_size) \
4581 { \
4582 Lisp_Object arg_; \
4583 (buf) = xmalloc ((nelt) * word_size); \
4584 arg_ = make_save_memory (buf, nelt); \
4585 sa_must_free = true; \
4586 record_unwind_protect (free_save_value, arg_); \
4587 } \
4588 else \
4589 memory_full (SIZE_MAX); \
4590 } while (false)
4591
4592
4593 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that allocate
4594 block-scoped conses and strings. These objects are not
4595 managed by the garbage collector, so they are dangerous: passing them
4596 out of their scope (e.g., to user code) results in undefined behavior.
4597 Conversely, they have better performance because GC is not involved.
4598
4599 This feature is experimental and requires careful debugging.
4600 Build with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS=0' to disable it. */
4601
4602 #ifndef USE_STACK_LISP_OBJECTS
4603 # define USE_STACK_LISP_OBJECTS true
4604 #endif
4605
4606 /* USE_STACK_LISP_OBJECTS requires GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS. */
4607
4608 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
4609 # undef USE_STACK_LISP_OBJECTS
4610 # define USE_STACK_LISP_OBJECTS false
4611 #endif
4612
4613 #ifdef GC_CHECK_STRING_BYTES
4614 enum { defined_GC_CHECK_STRING_BYTES = true };
4615 #else
4616 enum { defined_GC_CHECK_STRING_BYTES = false };
4617 #endif
4618
4619 /* Struct inside unions that are typically no larger and aligned enough. */
4620
4621 union Aligned_Cons
4622 {
4623 struct Lisp_Cons s;
4624 double d; intmax_t i; void *p;
4625 };
4626
4627 union Aligned_String
4628 {
4629 struct Lisp_String s;
4630 double d; intmax_t i; void *p;
4631 };
4632
4633 /* True for stack-based cons and string implementations, respectively.
4634 Use stack-based strings only if stack-based cons also works.
4635 Otherwise, STACK_CONS would create heap-based cons cells that
4636 could point to stack-based strings, which is a no-no. */
4637
4638 enum
4639 {
4640 USE_STACK_CONS = (USE_STACK_LISP_OBJECTS
4641 && alignof (union Aligned_Cons) % GCALIGNMENT == 0),
4642 USE_STACK_STRING = (USE_STACK_CONS
4643 && !defined_GC_CHECK_STRING_BYTES
4644 && alignof (union Aligned_String) % GCALIGNMENT == 0)
4645 };
4646
4647 /* Auxiliary macros used for auto allocation of Lisp objects. Please
4648 use these only in macros like AUTO_CONS that declare a local
4649 variable whose lifetime will be clear to the programmer. */
4650 #define STACK_CONS(a, b) \
4651 make_lisp_ptr (&(union Aligned_Cons) { { a, { b } } }.s, Lisp_Cons)
4652 #define AUTO_CONS_EXPR(a, b) \
4653 (USE_STACK_CONS ? STACK_CONS (a, b) : Fcons (a, b))
4654
4655 /* Declare NAME as an auto Lisp cons or short list if possible, a
4656 GC-based one otherwise. This is in the sense of the C keyword
4657 'auto'; i.e., the object has the lifetime of the containing block.
4658 The resulting object should not be made visible to user Lisp code. */
4659
4660 #define AUTO_CONS(name, a, b) Lisp_Object name = AUTO_CONS_EXPR (a, b)
4661 #define AUTO_LIST1(name, a) \
4662 Lisp_Object name = (USE_STACK_CONS ? STACK_CONS (a, Qnil) : list1 (a))
4663 #define AUTO_LIST2(name, a, b) \
4664 Lisp_Object name = (USE_STACK_CONS \
4665 ? STACK_CONS (a, STACK_CONS (b, Qnil)) \
4666 : list2 (a, b))
4667 #define AUTO_LIST3(name, a, b, c) \
4668 Lisp_Object name = (USE_STACK_CONS \
4669 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, Qnil))) \
4670 : list3 (a, b, c))
4671 #define AUTO_LIST4(name, a, b, c, d) \
4672 Lisp_Object name \
4673 = (USE_STACK_CONS \
4674 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, \
4675 STACK_CONS (d, Qnil)))) \
4676 : list4 (a, b, c, d))
4677
4678 /* Check whether stack-allocated strings are ASCII-only. */
4679
4680 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
4681 extern const char *verify_ascii (const char *);
4682 #else
4683 # define verify_ascii(str) (str)
4684 #endif
4685
4686 /* Declare NAME as an auto Lisp string if possible, a GC-based one if not.
4687 Take its value from STR. STR is not necessarily copied and should
4688 contain only ASCII characters. The resulting Lisp string should
4689 not be modified or made visible to user code. */
4690
4691 #define AUTO_STRING(name, str) \
4692 Lisp_Object name = \
4693 (USE_STACK_STRING \
4694 ? (make_lisp_ptr \
4695 ((&(union Aligned_String) \
4696 {{strlen (str), -1, 0, (unsigned char *) verify_ascii (str)}}.s), \
4697 Lisp_String)) \
4698 : build_string (verify_ascii (str)))
4699
4700 /* Loop over all tails of a list, checking for cycles.
4701 FIXME: Make tortoise and n internal declarations.
4702 FIXME: Unroll the loop body so we don't need `n'. */
4703 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4704 for ((tortoise) = (hare) = (list), (n) = true; \
4705 CONSP (hare); \
4706 (hare = XCDR (hare), (n) = !(n), \
4707 ((n) \
4708 ? (EQ (hare, tortoise) \
4709 ? xsignal1 (Qcircular_list, list) \
4710 : (void) 0) \
4711 /* Move tortoise before the next iteration, in case */ \
4712 /* the next iteration does an Fsetcdr. */ \
4713 : (void) ((tortoise) = XCDR (tortoise)))))
4714
4715 /* Do a `for' loop over alist values. */
4716
4717 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4718 for ((list_var) = (head_var); \
4719 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4720 (list_var) = XCDR (list_var))
4721
4722 /* Check whether it's time for GC, and run it if so. */
4723
4724 INLINE void
4725 maybe_gc (void)
4726 {
4727 if ((consing_since_gc > gc_cons_threshold
4728 && consing_since_gc > gc_relative_threshold)
4729 || (!NILP (Vmemory_full)
4730 && consing_since_gc > memory_full_cons_threshold))
4731 Fgarbage_collect ();
4732 }
4733
4734 INLINE bool
4735 functionp (Lisp_Object object)
4736 {
4737 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4738 {
4739 object = Findirect_function (object, Qt);
4740
4741 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4742 {
4743 /* Autoloaded symbols are functions, except if they load
4744 macros or keymaps. */
4745 int i;
4746 for (i = 0; i < 4 && CONSP (object); i++)
4747 object = XCDR (object);
4748
4749 return ! (CONSP (object) && !NILP (XCAR (object)));
4750 }
4751 }
4752
4753 if (SUBRP (object))
4754 return XSUBR (object)->max_args != UNEVALLED;
4755 else if (COMPILEDP (object))
4756 return true;
4757 else if (CONSP (object))
4758 {
4759 Lisp_Object car = XCAR (object);
4760 return EQ (car, Qlambda) || EQ (car, Qclosure);
4761 }
4762 else
4763 return false;
4764 }
4765
4766 INLINE_HEADER_END
4767
4768 #endif /* EMACS_LISP_H */