]> code.delx.au - gnu-emacs/blob - src/alloc.c
Perform font-specific cleanup when font object is swept by GC. See
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2013 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
29
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
33
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
46 #include TERM_HEADER
47 #endif /* HAVE_WINDOW_SYSTEM */
48
49 #include <verify.h>
50
51 #if (defined ENABLE_CHECKING \
52 && defined HAVE_VALGRIND_VALGRIND_H \
53 && !defined USE_VALGRIND)
54 # define USE_VALGRIND 1
55 #endif
56
57 #if USE_VALGRIND
58 #include <valgrind/valgrind.h>
59 #include <valgrind/memcheck.h>
60 static bool valgrind_p;
61 #endif
62
63 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
64 Doable only if GC_MARK_STACK. */
65 #if ! GC_MARK_STACK
66 # undef GC_CHECK_MARKED_OBJECTS
67 #endif
68
69 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
70 memory. Can do this only if using gmalloc.c and if not checking
71 marked objects. */
72
73 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
74 || defined GC_CHECK_MARKED_OBJECTS)
75 #undef GC_MALLOC_CHECK
76 #endif
77
78 #include <unistd.h>
79 #include <fcntl.h>
80
81 #ifdef USE_GTK
82 # include "gtkutil.h"
83 #endif
84 #ifdef WINDOWSNT
85 #include "w32.h"
86 #include "w32heap.h" /* for sbrk */
87 #endif
88
89 #ifdef DOUG_LEA_MALLOC
90
91 #include <malloc.h>
92
93 /* Specify maximum number of areas to mmap. It would be nice to use a
94 value that explicitly means "no limit". */
95
96 #define MMAP_MAX_AREAS 100000000
97
98 #endif /* not DOUG_LEA_MALLOC */
99
100 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
101 to a struct Lisp_String. */
102
103 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
104 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
105 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
106
107 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
108 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
109 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
110
111 /* Default value of gc_cons_threshold (see below). */
112
113 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
114
115 /* Global variables. */
116 struct emacs_globals globals;
117
118 /* Number of bytes of consing done since the last gc. */
119
120 EMACS_INT consing_since_gc;
121
122 /* Similar minimum, computed from Vgc_cons_percentage. */
123
124 EMACS_INT gc_relative_threshold;
125
126 /* Minimum number of bytes of consing since GC before next GC,
127 when memory is full. */
128
129 EMACS_INT memory_full_cons_threshold;
130
131 /* True during GC. */
132
133 bool gc_in_progress;
134
135 /* True means abort if try to GC.
136 This is for code which is written on the assumption that
137 no GC will happen, so as to verify that assumption. */
138
139 bool abort_on_gc;
140
141 /* Number of live and free conses etc. */
142
143 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
144 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
145 static EMACS_INT total_free_floats, total_floats;
146
147 /* Points to memory space allocated as "spare", to be freed if we run
148 out of memory. We keep one large block, four cons-blocks, and
149 two string blocks. */
150
151 static char *spare_memory[7];
152
153 /* Amount of spare memory to keep in large reserve block, or to see
154 whether this much is available when malloc fails on a larger request. */
155
156 #define SPARE_MEMORY (1 << 14)
157
158 /* Initialize it to a nonzero value to force it into data space
159 (rather than bss space). That way unexec will remap it into text
160 space (pure), on some systems. We have not implemented the
161 remapping on more recent systems because this is less important
162 nowadays than in the days of small memories and timesharing. */
163
164 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
165 #define PUREBEG (char *) pure
166
167 /* Pointer to the pure area, and its size. */
168
169 static char *purebeg;
170 static ptrdiff_t pure_size;
171
172 /* Number of bytes of pure storage used before pure storage overflowed.
173 If this is non-zero, this implies that an overflow occurred. */
174
175 static ptrdiff_t pure_bytes_used_before_overflow;
176
177 /* True if P points into pure space. */
178
179 #define PURE_POINTER_P(P) \
180 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
181
182 /* Index in pure at which next pure Lisp object will be allocated.. */
183
184 static ptrdiff_t pure_bytes_used_lisp;
185
186 /* Number of bytes allocated for non-Lisp objects in pure storage. */
187
188 static ptrdiff_t pure_bytes_used_non_lisp;
189
190 /* If nonzero, this is a warning delivered by malloc and not yet
191 displayed. */
192
193 const char *pending_malloc_warning;
194
195 /* Maximum amount of C stack to save when a GC happens. */
196
197 #ifndef MAX_SAVE_STACK
198 #define MAX_SAVE_STACK 16000
199 #endif
200
201 /* Buffer in which we save a copy of the C stack at each GC. */
202
203 #if MAX_SAVE_STACK > 0
204 static char *stack_copy;
205 static ptrdiff_t stack_copy_size;
206 #endif
207
208 static Lisp_Object Qconses;
209 static Lisp_Object Qsymbols;
210 static Lisp_Object Qmiscs;
211 static Lisp_Object Qstrings;
212 static Lisp_Object Qvectors;
213 static Lisp_Object Qfloats;
214 static Lisp_Object Qintervals;
215 static Lisp_Object Qbuffers;
216 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
217 static Lisp_Object Qgc_cons_threshold;
218 Lisp_Object Qautomatic_gc;
219 Lisp_Object Qchar_table_extra_slots;
220
221 /* Hook run after GC has finished. */
222
223 static Lisp_Object Qpost_gc_hook;
224
225 static void mark_terminals (void);
226 static void gc_sweep (void);
227 static Lisp_Object make_pure_vector (ptrdiff_t);
228 static void mark_buffer (struct buffer *);
229
230 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
231 static void refill_memory_reserve (void);
232 #endif
233 static void compact_small_strings (void);
234 static void free_large_strings (void);
235 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
236
237 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
238 what memory allocated via lisp_malloc and lisp_align_malloc is intended
239 for what purpose. This enumeration specifies the type of memory. */
240
241 enum mem_type
242 {
243 MEM_TYPE_NON_LISP,
244 MEM_TYPE_BUFFER,
245 MEM_TYPE_CONS,
246 MEM_TYPE_STRING,
247 MEM_TYPE_MISC,
248 MEM_TYPE_SYMBOL,
249 MEM_TYPE_FLOAT,
250 /* Since all non-bool pseudovectors are small enough to be
251 allocated from vector blocks, this memory type denotes
252 large regular vectors and large bool pseudovectors. */
253 MEM_TYPE_VECTORLIKE,
254 /* Special type to denote vector blocks. */
255 MEM_TYPE_VECTOR_BLOCK,
256 /* Special type to denote reserved memory. */
257 MEM_TYPE_SPARE
258 };
259
260 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
261
262 /* A unique object in pure space used to make some Lisp objects
263 on free lists recognizable in O(1). */
264
265 static Lisp_Object Vdead;
266 #define DEADP(x) EQ (x, Vdead)
267
268 #ifdef GC_MALLOC_CHECK
269
270 enum mem_type allocated_mem_type;
271
272 #endif /* GC_MALLOC_CHECK */
273
274 /* A node in the red-black tree describing allocated memory containing
275 Lisp data. Each such block is recorded with its start and end
276 address when it is allocated, and removed from the tree when it
277 is freed.
278
279 A red-black tree is a balanced binary tree with the following
280 properties:
281
282 1. Every node is either red or black.
283 2. Every leaf is black.
284 3. If a node is red, then both of its children are black.
285 4. Every simple path from a node to a descendant leaf contains
286 the same number of black nodes.
287 5. The root is always black.
288
289 When nodes are inserted into the tree, or deleted from the tree,
290 the tree is "fixed" so that these properties are always true.
291
292 A red-black tree with N internal nodes has height at most 2
293 log(N+1). Searches, insertions and deletions are done in O(log N).
294 Please see a text book about data structures for a detailed
295 description of red-black trees. Any book worth its salt should
296 describe them. */
297
298 struct mem_node
299 {
300 /* Children of this node. These pointers are never NULL. When there
301 is no child, the value is MEM_NIL, which points to a dummy node. */
302 struct mem_node *left, *right;
303
304 /* The parent of this node. In the root node, this is NULL. */
305 struct mem_node *parent;
306
307 /* Start and end of allocated region. */
308 void *start, *end;
309
310 /* Node color. */
311 enum {MEM_BLACK, MEM_RED} color;
312
313 /* Memory type. */
314 enum mem_type type;
315 };
316
317 /* Base address of stack. Set in main. */
318
319 Lisp_Object *stack_base;
320
321 /* Root of the tree describing allocated Lisp memory. */
322
323 static struct mem_node *mem_root;
324
325 /* Lowest and highest known address in the heap. */
326
327 static void *min_heap_address, *max_heap_address;
328
329 /* Sentinel node of the tree. */
330
331 static struct mem_node mem_z;
332 #define MEM_NIL &mem_z
333
334 static struct mem_node *mem_insert (void *, void *, enum mem_type);
335 static void mem_insert_fixup (struct mem_node *);
336 static void mem_rotate_left (struct mem_node *);
337 static void mem_rotate_right (struct mem_node *);
338 static void mem_delete (struct mem_node *);
339 static void mem_delete_fixup (struct mem_node *);
340 static struct mem_node *mem_find (void *);
341
342 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
343
344 #ifndef DEADP
345 # define DEADP(x) 0
346 #endif
347
348 /* Recording what needs to be marked for gc. */
349
350 struct gcpro *gcprolist;
351
352 /* Addresses of staticpro'd variables. Initialize it to a nonzero
353 value; otherwise some compilers put it into BSS. */
354
355 enum { NSTATICS = 2048 };
356 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
357
358 /* Index of next unused slot in staticvec. */
359
360 static int staticidx;
361
362 static void *pure_alloc (size_t, int);
363
364
365 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
366 ALIGNMENT must be a power of 2. */
367
368 #define ALIGN(ptr, ALIGNMENT) \
369 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
370 & ~ ((ALIGNMENT) - 1)))
371
372 static void
373 XFLOAT_INIT (Lisp_Object f, double n)
374 {
375 XFLOAT (f)->u.data = n;
376 }
377
378 \f
379 /************************************************************************
380 Malloc
381 ************************************************************************/
382
383 /* Function malloc calls this if it finds we are near exhausting storage. */
384
385 void
386 malloc_warning (const char *str)
387 {
388 pending_malloc_warning = str;
389 }
390
391
392 /* Display an already-pending malloc warning. */
393
394 void
395 display_malloc_warning (void)
396 {
397 call3 (intern ("display-warning"),
398 intern ("alloc"),
399 build_string (pending_malloc_warning),
400 intern ("emergency"));
401 pending_malloc_warning = 0;
402 }
403 \f
404 /* Called if we can't allocate relocatable space for a buffer. */
405
406 void
407 buffer_memory_full (ptrdiff_t nbytes)
408 {
409 /* If buffers use the relocating allocator, no need to free
410 spare_memory, because we may have plenty of malloc space left
411 that we could get, and if we don't, the malloc that fails will
412 itself cause spare_memory to be freed. If buffers don't use the
413 relocating allocator, treat this like any other failing
414 malloc. */
415
416 #ifndef REL_ALLOC
417 memory_full (nbytes);
418 #else
419 /* This used to call error, but if we've run out of memory, we could
420 get infinite recursion trying to build the string. */
421 xsignal (Qnil, Vmemory_signal_data);
422 #endif
423 }
424
425 /* A common multiple of the positive integers A and B. Ideally this
426 would be the least common multiple, but there's no way to do that
427 as a constant expression in C, so do the best that we can easily do. */
428 #define COMMON_MULTIPLE(a, b) \
429 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
430
431 #ifndef XMALLOC_OVERRUN_CHECK
432 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
433 #else
434
435 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
436 around each block.
437
438 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
439 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
440 block size in little-endian order. The trailer consists of
441 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
442
443 The header is used to detect whether this block has been allocated
444 through these functions, as some low-level libc functions may
445 bypass the malloc hooks. */
446
447 #define XMALLOC_OVERRUN_CHECK_SIZE 16
448 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
449 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
450
451 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
452 hold a size_t value and (2) the header size is a multiple of the
453 alignment that Emacs needs for C types and for USE_LSB_TAG. */
454 #define XMALLOC_BASE_ALIGNMENT \
455 alignof (union { long double d; intmax_t i; void *p; })
456
457 #if USE_LSB_TAG
458 # define XMALLOC_HEADER_ALIGNMENT \
459 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
460 #else
461 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
462 #endif
463 #define XMALLOC_OVERRUN_SIZE_SIZE \
464 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
465 + XMALLOC_HEADER_ALIGNMENT - 1) \
466 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
467 - XMALLOC_OVERRUN_CHECK_SIZE)
468
469 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
470 { '\x9a', '\x9b', '\xae', '\xaf',
471 '\xbf', '\xbe', '\xce', '\xcf',
472 '\xea', '\xeb', '\xec', '\xed',
473 '\xdf', '\xde', '\x9c', '\x9d' };
474
475 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
476 { '\xaa', '\xab', '\xac', '\xad',
477 '\xba', '\xbb', '\xbc', '\xbd',
478 '\xca', '\xcb', '\xcc', '\xcd',
479 '\xda', '\xdb', '\xdc', '\xdd' };
480
481 /* Insert and extract the block size in the header. */
482
483 static void
484 xmalloc_put_size (unsigned char *ptr, size_t size)
485 {
486 int i;
487 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
488 {
489 *--ptr = size & ((1 << CHAR_BIT) - 1);
490 size >>= CHAR_BIT;
491 }
492 }
493
494 static size_t
495 xmalloc_get_size (unsigned char *ptr)
496 {
497 size_t size = 0;
498 int i;
499 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
500 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
501 {
502 size <<= CHAR_BIT;
503 size += *ptr++;
504 }
505 return size;
506 }
507
508
509 /* Like malloc, but wraps allocated block with header and trailer. */
510
511 static void *
512 overrun_check_malloc (size_t size)
513 {
514 register unsigned char *val;
515 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
516 emacs_abort ();
517
518 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
519 if (val)
520 {
521 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
522 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
523 xmalloc_put_size (val, size);
524 memcpy (val + size, xmalloc_overrun_check_trailer,
525 XMALLOC_OVERRUN_CHECK_SIZE);
526 }
527 return val;
528 }
529
530
531 /* Like realloc, but checks old block for overrun, and wraps new block
532 with header and trailer. */
533
534 static void *
535 overrun_check_realloc (void *block, size_t size)
536 {
537 register unsigned char *val = (unsigned char *) block;
538 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
539 emacs_abort ();
540
541 if (val
542 && memcmp (xmalloc_overrun_check_header,
543 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
544 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
545 {
546 size_t osize = xmalloc_get_size (val);
547 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
548 XMALLOC_OVERRUN_CHECK_SIZE))
549 emacs_abort ();
550 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
551 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
552 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
553 }
554
555 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
556
557 if (val)
558 {
559 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
560 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
561 xmalloc_put_size (val, size);
562 memcpy (val + size, xmalloc_overrun_check_trailer,
563 XMALLOC_OVERRUN_CHECK_SIZE);
564 }
565 return val;
566 }
567
568 /* Like free, but checks block for overrun. */
569
570 static void
571 overrun_check_free (void *block)
572 {
573 unsigned char *val = (unsigned char *) block;
574
575 if (val
576 && memcmp (xmalloc_overrun_check_header,
577 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
578 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
579 {
580 size_t osize = xmalloc_get_size (val);
581 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
582 XMALLOC_OVERRUN_CHECK_SIZE))
583 emacs_abort ();
584 #ifdef XMALLOC_CLEAR_FREE_MEMORY
585 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
586 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
587 #else
588 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
589 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
590 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
591 #endif
592 }
593
594 free (val);
595 }
596
597 #undef malloc
598 #undef realloc
599 #undef free
600 #define malloc overrun_check_malloc
601 #define realloc overrun_check_realloc
602 #define free overrun_check_free
603 #endif
604
605 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
606 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
607 If that variable is set, block input while in one of Emacs's memory
608 allocation functions. There should be no need for this debugging
609 option, since signal handlers do not allocate memory, but Emacs
610 formerly allocated memory in signal handlers and this compile-time
611 option remains as a way to help debug the issue should it rear its
612 ugly head again. */
613 #ifdef XMALLOC_BLOCK_INPUT_CHECK
614 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
615 static void
616 malloc_block_input (void)
617 {
618 if (block_input_in_memory_allocators)
619 block_input ();
620 }
621 static void
622 malloc_unblock_input (void)
623 {
624 if (block_input_in_memory_allocators)
625 unblock_input ();
626 }
627 # define MALLOC_BLOCK_INPUT malloc_block_input ()
628 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
629 #else
630 # define MALLOC_BLOCK_INPUT ((void) 0)
631 # define MALLOC_UNBLOCK_INPUT ((void) 0)
632 #endif
633
634 #define MALLOC_PROBE(size) \
635 do { \
636 if (profiler_memory_running) \
637 malloc_probe (size); \
638 } while (0)
639
640
641 /* Like malloc but check for no memory and block interrupt input.. */
642
643 void *
644 xmalloc (size_t size)
645 {
646 void *val;
647
648 MALLOC_BLOCK_INPUT;
649 val = malloc (size);
650 MALLOC_UNBLOCK_INPUT;
651
652 if (!val && size)
653 memory_full (size);
654 MALLOC_PROBE (size);
655 return val;
656 }
657
658 /* Like the above, but zeroes out the memory just allocated. */
659
660 void *
661 xzalloc (size_t size)
662 {
663 void *val;
664
665 MALLOC_BLOCK_INPUT;
666 val = malloc (size);
667 MALLOC_UNBLOCK_INPUT;
668
669 if (!val && size)
670 memory_full (size);
671 memset (val, 0, size);
672 MALLOC_PROBE (size);
673 return val;
674 }
675
676 /* Like realloc but check for no memory and block interrupt input.. */
677
678 void *
679 xrealloc (void *block, size_t size)
680 {
681 void *val;
682
683 MALLOC_BLOCK_INPUT;
684 /* We must call malloc explicitly when BLOCK is 0, since some
685 reallocs don't do this. */
686 if (! block)
687 val = malloc (size);
688 else
689 val = realloc (block, size);
690 MALLOC_UNBLOCK_INPUT;
691
692 if (!val && size)
693 memory_full (size);
694 MALLOC_PROBE (size);
695 return val;
696 }
697
698
699 /* Like free but block interrupt input. */
700
701 void
702 xfree (void *block)
703 {
704 if (!block)
705 return;
706 MALLOC_BLOCK_INPUT;
707 free (block);
708 MALLOC_UNBLOCK_INPUT;
709 /* We don't call refill_memory_reserve here
710 because in practice the call in r_alloc_free seems to suffice. */
711 }
712
713
714 /* Other parts of Emacs pass large int values to allocator functions
715 expecting ptrdiff_t. This is portable in practice, but check it to
716 be safe. */
717 verify (INT_MAX <= PTRDIFF_MAX);
718
719
720 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
721 Signal an error on memory exhaustion, and block interrupt input. */
722
723 void *
724 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
725 {
726 eassert (0 <= nitems && 0 < item_size);
727 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
728 memory_full (SIZE_MAX);
729 return xmalloc (nitems * item_size);
730 }
731
732
733 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
734 Signal an error on memory exhaustion, and block interrupt input. */
735
736 void *
737 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
738 {
739 eassert (0 <= nitems && 0 < item_size);
740 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
741 memory_full (SIZE_MAX);
742 return xrealloc (pa, nitems * item_size);
743 }
744
745
746 /* Grow PA, which points to an array of *NITEMS items, and return the
747 location of the reallocated array, updating *NITEMS to reflect its
748 new size. The new array will contain at least NITEMS_INCR_MIN more
749 items, but will not contain more than NITEMS_MAX items total.
750 ITEM_SIZE is the size of each item, in bytes.
751
752 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
753 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
754 infinity.
755
756 If PA is null, then allocate a new array instead of reallocating
757 the old one.
758
759 Block interrupt input as needed. If memory exhaustion occurs, set
760 *NITEMS to zero if PA is null, and signal an error (i.e., do not
761 return).
762
763 Thus, to grow an array A without saving its old contents, do
764 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
765 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
766 and signals an error, and later this code is reexecuted and
767 attempts to free A. */
768
769 void *
770 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
771 ptrdiff_t nitems_max, ptrdiff_t item_size)
772 {
773 /* The approximate size to use for initial small allocation
774 requests. This is the largest "small" request for the GNU C
775 library malloc. */
776 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
777
778 /* If the array is tiny, grow it to about (but no greater than)
779 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
780 ptrdiff_t n = *nitems;
781 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
782 ptrdiff_t half_again = n >> 1;
783 ptrdiff_t incr_estimate = max (tiny_max, half_again);
784
785 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
786 NITEMS_MAX, and what the C language can represent safely. */
787 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
788 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
789 ? nitems_max : C_language_max);
790 ptrdiff_t nitems_incr_max = n_max - n;
791 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
792
793 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
794 if (! pa)
795 *nitems = 0;
796 if (nitems_incr_max < incr)
797 memory_full (SIZE_MAX);
798 n += incr;
799 pa = xrealloc (pa, n * item_size);
800 *nitems = n;
801 return pa;
802 }
803
804
805 /* Like strdup, but uses xmalloc. */
806
807 char *
808 xstrdup (const char *s)
809 {
810 ptrdiff_t size;
811 eassert (s);
812 size = strlen (s) + 1;
813 return memcpy (xmalloc (size), s, size);
814 }
815
816 /* Like above, but duplicates Lisp string to C string. */
817
818 char *
819 xlispstrdup (Lisp_Object string)
820 {
821 ptrdiff_t size = SBYTES (string) + 1;
822 return memcpy (xmalloc (size), SSDATA (string), size);
823 }
824
825 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
826 argument is a const pointer. */
827
828 void
829 xputenv (char const *string)
830 {
831 if (putenv ((char *) string) != 0)
832 memory_full (0);
833 }
834
835 /* Return a newly allocated memory block of SIZE bytes, remembering
836 to free it when unwinding. */
837 void *
838 record_xmalloc (size_t size)
839 {
840 void *p = xmalloc (size);
841 record_unwind_protect_ptr (xfree, p);
842 return p;
843 }
844
845
846 /* Like malloc but used for allocating Lisp data. NBYTES is the
847 number of bytes to allocate, TYPE describes the intended use of the
848 allocated memory block (for strings, for conses, ...). */
849
850 #if ! USE_LSB_TAG
851 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
852 #endif
853
854 static void *
855 lisp_malloc (size_t nbytes, enum mem_type type)
856 {
857 register void *val;
858
859 MALLOC_BLOCK_INPUT;
860
861 #ifdef GC_MALLOC_CHECK
862 allocated_mem_type = type;
863 #endif
864
865 val = malloc (nbytes);
866
867 #if ! USE_LSB_TAG
868 /* If the memory just allocated cannot be addressed thru a Lisp
869 object's pointer, and it needs to be,
870 that's equivalent to running out of memory. */
871 if (val && type != MEM_TYPE_NON_LISP)
872 {
873 Lisp_Object tem;
874 XSETCONS (tem, (char *) val + nbytes - 1);
875 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
876 {
877 lisp_malloc_loser = val;
878 free (val);
879 val = 0;
880 }
881 }
882 #endif
883
884 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
885 if (val && type != MEM_TYPE_NON_LISP)
886 mem_insert (val, (char *) val + nbytes, type);
887 #endif
888
889 MALLOC_UNBLOCK_INPUT;
890 if (!val && nbytes)
891 memory_full (nbytes);
892 MALLOC_PROBE (nbytes);
893 return val;
894 }
895
896 /* Free BLOCK. This must be called to free memory allocated with a
897 call to lisp_malloc. */
898
899 static void
900 lisp_free (void *block)
901 {
902 MALLOC_BLOCK_INPUT;
903 free (block);
904 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
905 mem_delete (mem_find (block));
906 #endif
907 MALLOC_UNBLOCK_INPUT;
908 }
909
910 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
911
912 /* The entry point is lisp_align_malloc which returns blocks of at most
913 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
914
915 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
916 #define USE_POSIX_MEMALIGN 1
917 #endif
918
919 /* BLOCK_ALIGN has to be a power of 2. */
920 #define BLOCK_ALIGN (1 << 10)
921
922 /* Padding to leave at the end of a malloc'd block. This is to give
923 malloc a chance to minimize the amount of memory wasted to alignment.
924 It should be tuned to the particular malloc library used.
925 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
926 posix_memalign on the other hand would ideally prefer a value of 4
927 because otherwise, there's 1020 bytes wasted between each ablocks.
928 In Emacs, testing shows that those 1020 can most of the time be
929 efficiently used by malloc to place other objects, so a value of 0 can
930 still preferable unless you have a lot of aligned blocks and virtually
931 nothing else. */
932 #define BLOCK_PADDING 0
933 #define BLOCK_BYTES \
934 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
935
936 /* Internal data structures and constants. */
937
938 #define ABLOCKS_SIZE 16
939
940 /* An aligned block of memory. */
941 struct ablock
942 {
943 union
944 {
945 char payload[BLOCK_BYTES];
946 struct ablock *next_free;
947 } x;
948 /* `abase' is the aligned base of the ablocks. */
949 /* It is overloaded to hold the virtual `busy' field that counts
950 the number of used ablock in the parent ablocks.
951 The first ablock has the `busy' field, the others have the `abase'
952 field. To tell the difference, we assume that pointers will have
953 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
954 is used to tell whether the real base of the parent ablocks is `abase'
955 (if not, the word before the first ablock holds a pointer to the
956 real base). */
957 struct ablocks *abase;
958 /* The padding of all but the last ablock is unused. The padding of
959 the last ablock in an ablocks is not allocated. */
960 #if BLOCK_PADDING
961 char padding[BLOCK_PADDING];
962 #endif
963 };
964
965 /* A bunch of consecutive aligned blocks. */
966 struct ablocks
967 {
968 struct ablock blocks[ABLOCKS_SIZE];
969 };
970
971 /* Size of the block requested from malloc or posix_memalign. */
972 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
973
974 #define ABLOCK_ABASE(block) \
975 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
976 ? (struct ablocks *)(block) \
977 : (block)->abase)
978
979 /* Virtual `busy' field. */
980 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
981
982 /* Pointer to the (not necessarily aligned) malloc block. */
983 #ifdef USE_POSIX_MEMALIGN
984 #define ABLOCKS_BASE(abase) (abase)
985 #else
986 #define ABLOCKS_BASE(abase) \
987 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
988 #endif
989
990 /* The list of free ablock. */
991 static struct ablock *free_ablock;
992
993 /* Allocate an aligned block of nbytes.
994 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
995 smaller or equal to BLOCK_BYTES. */
996 static void *
997 lisp_align_malloc (size_t nbytes, enum mem_type type)
998 {
999 void *base, *val;
1000 struct ablocks *abase;
1001
1002 eassert (nbytes <= BLOCK_BYTES);
1003
1004 MALLOC_BLOCK_INPUT;
1005
1006 #ifdef GC_MALLOC_CHECK
1007 allocated_mem_type = type;
1008 #endif
1009
1010 if (!free_ablock)
1011 {
1012 int i;
1013 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1014
1015 #ifdef DOUG_LEA_MALLOC
1016 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1017 because mapped region contents are not preserved in
1018 a dumped Emacs. */
1019 mallopt (M_MMAP_MAX, 0);
1020 #endif
1021
1022 #ifdef USE_POSIX_MEMALIGN
1023 {
1024 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1025 if (err)
1026 base = NULL;
1027 abase = base;
1028 }
1029 #else
1030 base = malloc (ABLOCKS_BYTES);
1031 abase = ALIGN (base, BLOCK_ALIGN);
1032 #endif
1033
1034 if (base == 0)
1035 {
1036 MALLOC_UNBLOCK_INPUT;
1037 memory_full (ABLOCKS_BYTES);
1038 }
1039
1040 aligned = (base == abase);
1041 if (!aligned)
1042 ((void **) abase)[-1] = base;
1043
1044 #ifdef DOUG_LEA_MALLOC
1045 /* Back to a reasonable maximum of mmap'ed areas. */
1046 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1047 #endif
1048
1049 #if ! USE_LSB_TAG
1050 /* If the memory just allocated cannot be addressed thru a Lisp
1051 object's pointer, and it needs to be, that's equivalent to
1052 running out of memory. */
1053 if (type != MEM_TYPE_NON_LISP)
1054 {
1055 Lisp_Object tem;
1056 char *end = (char *) base + ABLOCKS_BYTES - 1;
1057 XSETCONS (tem, end);
1058 if ((char *) XCONS (tem) != end)
1059 {
1060 lisp_malloc_loser = base;
1061 free (base);
1062 MALLOC_UNBLOCK_INPUT;
1063 memory_full (SIZE_MAX);
1064 }
1065 }
1066 #endif
1067
1068 /* Initialize the blocks and put them on the free list.
1069 If `base' was not properly aligned, we can't use the last block. */
1070 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1071 {
1072 abase->blocks[i].abase = abase;
1073 abase->blocks[i].x.next_free = free_ablock;
1074 free_ablock = &abase->blocks[i];
1075 }
1076 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1077
1078 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1079 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1080 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1081 eassert (ABLOCKS_BASE (abase) == base);
1082 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1083 }
1084
1085 abase = ABLOCK_ABASE (free_ablock);
1086 ABLOCKS_BUSY (abase) =
1087 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1088 val = free_ablock;
1089 free_ablock = free_ablock->x.next_free;
1090
1091 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1092 if (type != MEM_TYPE_NON_LISP)
1093 mem_insert (val, (char *) val + nbytes, type);
1094 #endif
1095
1096 MALLOC_UNBLOCK_INPUT;
1097
1098 MALLOC_PROBE (nbytes);
1099
1100 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1101 return val;
1102 }
1103
1104 static void
1105 lisp_align_free (void *block)
1106 {
1107 struct ablock *ablock = block;
1108 struct ablocks *abase = ABLOCK_ABASE (ablock);
1109
1110 MALLOC_BLOCK_INPUT;
1111 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1112 mem_delete (mem_find (block));
1113 #endif
1114 /* Put on free list. */
1115 ablock->x.next_free = free_ablock;
1116 free_ablock = ablock;
1117 /* Update busy count. */
1118 ABLOCKS_BUSY (abase)
1119 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1120
1121 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1122 { /* All the blocks are free. */
1123 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1124 struct ablock **tem = &free_ablock;
1125 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1126
1127 while (*tem)
1128 {
1129 if (*tem >= (struct ablock *) abase && *tem < atop)
1130 {
1131 i++;
1132 *tem = (*tem)->x.next_free;
1133 }
1134 else
1135 tem = &(*tem)->x.next_free;
1136 }
1137 eassert ((aligned & 1) == aligned);
1138 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1139 #ifdef USE_POSIX_MEMALIGN
1140 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1141 #endif
1142 free (ABLOCKS_BASE (abase));
1143 }
1144 MALLOC_UNBLOCK_INPUT;
1145 }
1146
1147 \f
1148 /***********************************************************************
1149 Interval Allocation
1150 ***********************************************************************/
1151
1152 /* Number of intervals allocated in an interval_block structure.
1153 The 1020 is 1024 minus malloc overhead. */
1154
1155 #define INTERVAL_BLOCK_SIZE \
1156 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1157
1158 /* Intervals are allocated in chunks in the form of an interval_block
1159 structure. */
1160
1161 struct interval_block
1162 {
1163 /* Place `intervals' first, to preserve alignment. */
1164 struct interval intervals[INTERVAL_BLOCK_SIZE];
1165 struct interval_block *next;
1166 };
1167
1168 /* Current interval block. Its `next' pointer points to older
1169 blocks. */
1170
1171 static struct interval_block *interval_block;
1172
1173 /* Index in interval_block above of the next unused interval
1174 structure. */
1175
1176 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1177
1178 /* Number of free and live intervals. */
1179
1180 static EMACS_INT total_free_intervals, total_intervals;
1181
1182 /* List of free intervals. */
1183
1184 static INTERVAL interval_free_list;
1185
1186 /* Return a new interval. */
1187
1188 INTERVAL
1189 make_interval (void)
1190 {
1191 INTERVAL val;
1192
1193 MALLOC_BLOCK_INPUT;
1194
1195 if (interval_free_list)
1196 {
1197 val = interval_free_list;
1198 interval_free_list = INTERVAL_PARENT (interval_free_list);
1199 }
1200 else
1201 {
1202 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1203 {
1204 struct interval_block *newi
1205 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1206
1207 newi->next = interval_block;
1208 interval_block = newi;
1209 interval_block_index = 0;
1210 total_free_intervals += INTERVAL_BLOCK_SIZE;
1211 }
1212 val = &interval_block->intervals[interval_block_index++];
1213 }
1214
1215 MALLOC_UNBLOCK_INPUT;
1216
1217 consing_since_gc += sizeof (struct interval);
1218 intervals_consed++;
1219 total_free_intervals--;
1220 RESET_INTERVAL (val);
1221 val->gcmarkbit = 0;
1222 return val;
1223 }
1224
1225
1226 /* Mark Lisp objects in interval I. */
1227
1228 static void
1229 mark_interval (register INTERVAL i, Lisp_Object dummy)
1230 {
1231 /* Intervals should never be shared. So, if extra internal checking is
1232 enabled, GC aborts if it seems to have visited an interval twice. */
1233 eassert (!i->gcmarkbit);
1234 i->gcmarkbit = 1;
1235 mark_object (i->plist);
1236 }
1237
1238 /* Mark the interval tree rooted in I. */
1239
1240 #define MARK_INTERVAL_TREE(i) \
1241 do { \
1242 if (i && !i->gcmarkbit) \
1243 traverse_intervals_noorder (i, mark_interval, Qnil); \
1244 } while (0)
1245
1246 /***********************************************************************
1247 String Allocation
1248 ***********************************************************************/
1249
1250 /* Lisp_Strings are allocated in string_block structures. When a new
1251 string_block is allocated, all the Lisp_Strings it contains are
1252 added to a free-list string_free_list. When a new Lisp_String is
1253 needed, it is taken from that list. During the sweep phase of GC,
1254 string_blocks that are entirely free are freed, except two which
1255 we keep.
1256
1257 String data is allocated from sblock structures. Strings larger
1258 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1259 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1260
1261 Sblocks consist internally of sdata structures, one for each
1262 Lisp_String. The sdata structure points to the Lisp_String it
1263 belongs to. The Lisp_String points back to the `u.data' member of
1264 its sdata structure.
1265
1266 When a Lisp_String is freed during GC, it is put back on
1267 string_free_list, and its `data' member and its sdata's `string'
1268 pointer is set to null. The size of the string is recorded in the
1269 `n.nbytes' member of the sdata. So, sdata structures that are no
1270 longer used, can be easily recognized, and it's easy to compact the
1271 sblocks of small strings which we do in compact_small_strings. */
1272
1273 /* Size in bytes of an sblock structure used for small strings. This
1274 is 8192 minus malloc overhead. */
1275
1276 #define SBLOCK_SIZE 8188
1277
1278 /* Strings larger than this are considered large strings. String data
1279 for large strings is allocated from individual sblocks. */
1280
1281 #define LARGE_STRING_BYTES 1024
1282
1283 /* Struct or union describing string memory sub-allocated from an sblock.
1284 This is where the contents of Lisp strings are stored. */
1285
1286 #ifdef GC_CHECK_STRING_BYTES
1287
1288 typedef struct
1289 {
1290 /* Back-pointer to the string this sdata belongs to. If null, this
1291 structure is free, and the NBYTES member of the union below
1292 contains the string's byte size (the same value that STRING_BYTES
1293 would return if STRING were non-null). If non-null, STRING_BYTES
1294 (STRING) is the size of the data, and DATA contains the string's
1295 contents. */
1296 struct Lisp_String *string;
1297
1298 ptrdiff_t nbytes;
1299 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1300 } sdata;
1301
1302 #define SDATA_NBYTES(S) (S)->nbytes
1303 #define SDATA_DATA(S) (S)->data
1304 #define SDATA_SELECTOR(member) member
1305
1306 #else
1307
1308 typedef union
1309 {
1310 struct Lisp_String *string;
1311
1312 /* When STRING is non-null. */
1313 struct
1314 {
1315 struct Lisp_String *string;
1316 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1317 } u;
1318
1319 /* When STRING is null. */
1320 struct
1321 {
1322 struct Lisp_String *string;
1323 ptrdiff_t nbytes;
1324 } n;
1325 } sdata;
1326
1327 #define SDATA_NBYTES(S) (S)->n.nbytes
1328 #define SDATA_DATA(S) (S)->u.data
1329 #define SDATA_SELECTOR(member) u.member
1330
1331 #endif /* not GC_CHECK_STRING_BYTES */
1332
1333 #define SDATA_DATA_OFFSET offsetof (sdata, SDATA_SELECTOR (data))
1334
1335
1336 /* Structure describing a block of memory which is sub-allocated to
1337 obtain string data memory for strings. Blocks for small strings
1338 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1339 as large as needed. */
1340
1341 struct sblock
1342 {
1343 /* Next in list. */
1344 struct sblock *next;
1345
1346 /* Pointer to the next free sdata block. This points past the end
1347 of the sblock if there isn't any space left in this block. */
1348 sdata *next_free;
1349
1350 /* Start of data. */
1351 sdata first_data;
1352 };
1353
1354 /* Number of Lisp strings in a string_block structure. The 1020 is
1355 1024 minus malloc overhead. */
1356
1357 #define STRING_BLOCK_SIZE \
1358 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1359
1360 /* Structure describing a block from which Lisp_String structures
1361 are allocated. */
1362
1363 struct string_block
1364 {
1365 /* Place `strings' first, to preserve alignment. */
1366 struct Lisp_String strings[STRING_BLOCK_SIZE];
1367 struct string_block *next;
1368 };
1369
1370 /* Head and tail of the list of sblock structures holding Lisp string
1371 data. We always allocate from current_sblock. The NEXT pointers
1372 in the sblock structures go from oldest_sblock to current_sblock. */
1373
1374 static struct sblock *oldest_sblock, *current_sblock;
1375
1376 /* List of sblocks for large strings. */
1377
1378 static struct sblock *large_sblocks;
1379
1380 /* List of string_block structures. */
1381
1382 static struct string_block *string_blocks;
1383
1384 /* Free-list of Lisp_Strings. */
1385
1386 static struct Lisp_String *string_free_list;
1387
1388 /* Number of live and free Lisp_Strings. */
1389
1390 static EMACS_INT total_strings, total_free_strings;
1391
1392 /* Number of bytes used by live strings. */
1393
1394 static EMACS_INT total_string_bytes;
1395
1396 /* Given a pointer to a Lisp_String S which is on the free-list
1397 string_free_list, return a pointer to its successor in the
1398 free-list. */
1399
1400 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1401
1402 /* Return a pointer to the sdata structure belonging to Lisp string S.
1403 S must be live, i.e. S->data must not be null. S->data is actually
1404 a pointer to the `u.data' member of its sdata structure; the
1405 structure starts at a constant offset in front of that. */
1406
1407 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1408
1409
1410 #ifdef GC_CHECK_STRING_OVERRUN
1411
1412 /* We check for overrun in string data blocks by appending a small
1413 "cookie" after each allocated string data block, and check for the
1414 presence of this cookie during GC. */
1415
1416 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1417 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1418 { '\xde', '\xad', '\xbe', '\xef' };
1419
1420 #else
1421 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1422 #endif
1423
1424 /* Value is the size of an sdata structure large enough to hold NBYTES
1425 bytes of string data. The value returned includes a terminating
1426 NUL byte, the size of the sdata structure, and padding. */
1427
1428 #ifdef GC_CHECK_STRING_BYTES
1429
1430 #define SDATA_SIZE(NBYTES) \
1431 ((SDATA_DATA_OFFSET \
1432 + (NBYTES) + 1 \
1433 + sizeof (ptrdiff_t) - 1) \
1434 & ~(sizeof (ptrdiff_t) - 1))
1435
1436 #else /* not GC_CHECK_STRING_BYTES */
1437
1438 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1439 less than the size of that member. The 'max' is not needed when
1440 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1441 alignment code reserves enough space. */
1442
1443 #define SDATA_SIZE(NBYTES) \
1444 ((SDATA_DATA_OFFSET \
1445 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1446 ? NBYTES \
1447 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1448 + 1 \
1449 + sizeof (ptrdiff_t) - 1) \
1450 & ~(sizeof (ptrdiff_t) - 1))
1451
1452 #endif /* not GC_CHECK_STRING_BYTES */
1453
1454 /* Extra bytes to allocate for each string. */
1455
1456 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1457
1458 /* Exact bound on the number of bytes in a string, not counting the
1459 terminating null. A string cannot contain more bytes than
1460 STRING_BYTES_BOUND, nor can it be so long that the size_t
1461 arithmetic in allocate_string_data would overflow while it is
1462 calculating a value to be passed to malloc. */
1463 static ptrdiff_t const STRING_BYTES_MAX =
1464 min (STRING_BYTES_BOUND,
1465 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1466 - GC_STRING_EXTRA
1467 - offsetof (struct sblock, first_data)
1468 - SDATA_DATA_OFFSET)
1469 & ~(sizeof (EMACS_INT) - 1)));
1470
1471 /* Initialize string allocation. Called from init_alloc_once. */
1472
1473 static void
1474 init_strings (void)
1475 {
1476 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1477 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1478 }
1479
1480
1481 #ifdef GC_CHECK_STRING_BYTES
1482
1483 static int check_string_bytes_count;
1484
1485 /* Like STRING_BYTES, but with debugging check. Can be
1486 called during GC, so pay attention to the mark bit. */
1487
1488 ptrdiff_t
1489 string_bytes (struct Lisp_String *s)
1490 {
1491 ptrdiff_t nbytes =
1492 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1493
1494 if (!PURE_POINTER_P (s)
1495 && s->data
1496 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1497 emacs_abort ();
1498 return nbytes;
1499 }
1500
1501 /* Check validity of Lisp strings' string_bytes member in B. */
1502
1503 static void
1504 check_sblock (struct sblock *b)
1505 {
1506 sdata *from, *end, *from_end;
1507
1508 end = b->next_free;
1509
1510 for (from = &b->first_data; from < end; from = from_end)
1511 {
1512 /* Compute the next FROM here because copying below may
1513 overwrite data we need to compute it. */
1514 ptrdiff_t nbytes;
1515
1516 /* Check that the string size recorded in the string is the
1517 same as the one recorded in the sdata structure. */
1518 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1519 : SDATA_NBYTES (from));
1520 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1521 }
1522 }
1523
1524
1525 /* Check validity of Lisp strings' string_bytes member. ALL_P
1526 means check all strings, otherwise check only most
1527 recently allocated strings. Used for hunting a bug. */
1528
1529 static void
1530 check_string_bytes (bool all_p)
1531 {
1532 if (all_p)
1533 {
1534 struct sblock *b;
1535
1536 for (b = large_sblocks; b; b = b->next)
1537 {
1538 struct Lisp_String *s = b->first_data.string;
1539 if (s)
1540 string_bytes (s);
1541 }
1542
1543 for (b = oldest_sblock; b; b = b->next)
1544 check_sblock (b);
1545 }
1546 else if (current_sblock)
1547 check_sblock (current_sblock);
1548 }
1549
1550 #else /* not GC_CHECK_STRING_BYTES */
1551
1552 #define check_string_bytes(all) ((void) 0)
1553
1554 #endif /* GC_CHECK_STRING_BYTES */
1555
1556 #ifdef GC_CHECK_STRING_FREE_LIST
1557
1558 /* Walk through the string free list looking for bogus next pointers.
1559 This may catch buffer overrun from a previous string. */
1560
1561 static void
1562 check_string_free_list (void)
1563 {
1564 struct Lisp_String *s;
1565
1566 /* Pop a Lisp_String off the free-list. */
1567 s = string_free_list;
1568 while (s != NULL)
1569 {
1570 if ((uintptr_t) s < 1024)
1571 emacs_abort ();
1572 s = NEXT_FREE_LISP_STRING (s);
1573 }
1574 }
1575 #else
1576 #define check_string_free_list()
1577 #endif
1578
1579 /* Return a new Lisp_String. */
1580
1581 static struct Lisp_String *
1582 allocate_string (void)
1583 {
1584 struct Lisp_String *s;
1585
1586 MALLOC_BLOCK_INPUT;
1587
1588 /* If the free-list is empty, allocate a new string_block, and
1589 add all the Lisp_Strings in it to the free-list. */
1590 if (string_free_list == NULL)
1591 {
1592 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1593 int i;
1594
1595 b->next = string_blocks;
1596 string_blocks = b;
1597
1598 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1599 {
1600 s = b->strings + i;
1601 /* Every string on a free list should have NULL data pointer. */
1602 s->data = NULL;
1603 NEXT_FREE_LISP_STRING (s) = string_free_list;
1604 string_free_list = s;
1605 }
1606
1607 total_free_strings += STRING_BLOCK_SIZE;
1608 }
1609
1610 check_string_free_list ();
1611
1612 /* Pop a Lisp_String off the free-list. */
1613 s = string_free_list;
1614 string_free_list = NEXT_FREE_LISP_STRING (s);
1615
1616 MALLOC_UNBLOCK_INPUT;
1617
1618 --total_free_strings;
1619 ++total_strings;
1620 ++strings_consed;
1621 consing_since_gc += sizeof *s;
1622
1623 #ifdef GC_CHECK_STRING_BYTES
1624 if (!noninteractive)
1625 {
1626 if (++check_string_bytes_count == 200)
1627 {
1628 check_string_bytes_count = 0;
1629 check_string_bytes (1);
1630 }
1631 else
1632 check_string_bytes (0);
1633 }
1634 #endif /* GC_CHECK_STRING_BYTES */
1635
1636 return s;
1637 }
1638
1639
1640 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1641 plus a NUL byte at the end. Allocate an sdata structure for S, and
1642 set S->data to its `u.data' member. Store a NUL byte at the end of
1643 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1644 S->data if it was initially non-null. */
1645
1646 void
1647 allocate_string_data (struct Lisp_String *s,
1648 EMACS_INT nchars, EMACS_INT nbytes)
1649 {
1650 sdata *data, *old_data;
1651 struct sblock *b;
1652 ptrdiff_t needed, old_nbytes;
1653
1654 if (STRING_BYTES_MAX < nbytes)
1655 string_overflow ();
1656
1657 /* Determine the number of bytes needed to store NBYTES bytes
1658 of string data. */
1659 needed = SDATA_SIZE (nbytes);
1660 if (s->data)
1661 {
1662 old_data = SDATA_OF_STRING (s);
1663 old_nbytes = STRING_BYTES (s);
1664 }
1665 else
1666 old_data = NULL;
1667
1668 MALLOC_BLOCK_INPUT;
1669
1670 if (nbytes > LARGE_STRING_BYTES)
1671 {
1672 size_t size = offsetof (struct sblock, first_data) + needed;
1673
1674 #ifdef DOUG_LEA_MALLOC
1675 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1676 because mapped region contents are not preserved in
1677 a dumped Emacs.
1678
1679 In case you think of allowing it in a dumped Emacs at the
1680 cost of not being able to re-dump, there's another reason:
1681 mmap'ed data typically have an address towards the top of the
1682 address space, which won't fit into an EMACS_INT (at least on
1683 32-bit systems with the current tagging scheme). --fx */
1684 mallopt (M_MMAP_MAX, 0);
1685 #endif
1686
1687 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1688
1689 #ifdef DOUG_LEA_MALLOC
1690 /* Back to a reasonable maximum of mmap'ed areas. */
1691 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1692 #endif
1693
1694 b->next_free = &b->first_data;
1695 b->first_data.string = NULL;
1696 b->next = large_sblocks;
1697 large_sblocks = b;
1698 }
1699 else if (current_sblock == NULL
1700 || (((char *) current_sblock + SBLOCK_SIZE
1701 - (char *) current_sblock->next_free)
1702 < (needed + GC_STRING_EXTRA)))
1703 {
1704 /* Not enough room in the current sblock. */
1705 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1706 b->next_free = &b->first_data;
1707 b->first_data.string = NULL;
1708 b->next = NULL;
1709
1710 if (current_sblock)
1711 current_sblock->next = b;
1712 else
1713 oldest_sblock = b;
1714 current_sblock = b;
1715 }
1716 else
1717 b = current_sblock;
1718
1719 data = b->next_free;
1720 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1721
1722 MALLOC_UNBLOCK_INPUT;
1723
1724 data->string = s;
1725 s->data = SDATA_DATA (data);
1726 #ifdef GC_CHECK_STRING_BYTES
1727 SDATA_NBYTES (data) = nbytes;
1728 #endif
1729 s->size = nchars;
1730 s->size_byte = nbytes;
1731 s->data[nbytes] = '\0';
1732 #ifdef GC_CHECK_STRING_OVERRUN
1733 memcpy ((char *) data + needed, string_overrun_cookie,
1734 GC_STRING_OVERRUN_COOKIE_SIZE);
1735 #endif
1736
1737 /* Note that Faset may call to this function when S has already data
1738 assigned. In this case, mark data as free by setting it's string
1739 back-pointer to null, and record the size of the data in it. */
1740 if (old_data)
1741 {
1742 SDATA_NBYTES (old_data) = old_nbytes;
1743 old_data->string = NULL;
1744 }
1745
1746 consing_since_gc += needed;
1747 }
1748
1749
1750 /* Sweep and compact strings. */
1751
1752 static void
1753 sweep_strings (void)
1754 {
1755 struct string_block *b, *next;
1756 struct string_block *live_blocks = NULL;
1757
1758 string_free_list = NULL;
1759 total_strings = total_free_strings = 0;
1760 total_string_bytes = 0;
1761
1762 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1763 for (b = string_blocks; b; b = next)
1764 {
1765 int i, nfree = 0;
1766 struct Lisp_String *free_list_before = string_free_list;
1767
1768 next = b->next;
1769
1770 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1771 {
1772 struct Lisp_String *s = b->strings + i;
1773
1774 if (s->data)
1775 {
1776 /* String was not on free-list before. */
1777 if (STRING_MARKED_P (s))
1778 {
1779 /* String is live; unmark it and its intervals. */
1780 UNMARK_STRING (s);
1781
1782 /* Do not use string_(set|get)_intervals here. */
1783 s->intervals = balance_intervals (s->intervals);
1784
1785 ++total_strings;
1786 total_string_bytes += STRING_BYTES (s);
1787 }
1788 else
1789 {
1790 /* String is dead. Put it on the free-list. */
1791 sdata *data = SDATA_OF_STRING (s);
1792
1793 /* Save the size of S in its sdata so that we know
1794 how large that is. Reset the sdata's string
1795 back-pointer so that we know it's free. */
1796 #ifdef GC_CHECK_STRING_BYTES
1797 if (string_bytes (s) != SDATA_NBYTES (data))
1798 emacs_abort ();
1799 #else
1800 data->n.nbytes = STRING_BYTES (s);
1801 #endif
1802 data->string = NULL;
1803
1804 /* Reset the strings's `data' member so that we
1805 know it's free. */
1806 s->data = NULL;
1807
1808 /* Put the string on the free-list. */
1809 NEXT_FREE_LISP_STRING (s) = string_free_list;
1810 string_free_list = s;
1811 ++nfree;
1812 }
1813 }
1814 else
1815 {
1816 /* S was on the free-list before. Put it there again. */
1817 NEXT_FREE_LISP_STRING (s) = string_free_list;
1818 string_free_list = s;
1819 ++nfree;
1820 }
1821 }
1822
1823 /* Free blocks that contain free Lisp_Strings only, except
1824 the first two of them. */
1825 if (nfree == STRING_BLOCK_SIZE
1826 && total_free_strings > STRING_BLOCK_SIZE)
1827 {
1828 lisp_free (b);
1829 string_free_list = free_list_before;
1830 }
1831 else
1832 {
1833 total_free_strings += nfree;
1834 b->next = live_blocks;
1835 live_blocks = b;
1836 }
1837 }
1838
1839 check_string_free_list ();
1840
1841 string_blocks = live_blocks;
1842 free_large_strings ();
1843 compact_small_strings ();
1844
1845 check_string_free_list ();
1846 }
1847
1848
1849 /* Free dead large strings. */
1850
1851 static void
1852 free_large_strings (void)
1853 {
1854 struct sblock *b, *next;
1855 struct sblock *live_blocks = NULL;
1856
1857 for (b = large_sblocks; b; b = next)
1858 {
1859 next = b->next;
1860
1861 if (b->first_data.string == NULL)
1862 lisp_free (b);
1863 else
1864 {
1865 b->next = live_blocks;
1866 live_blocks = b;
1867 }
1868 }
1869
1870 large_sblocks = live_blocks;
1871 }
1872
1873
1874 /* Compact data of small strings. Free sblocks that don't contain
1875 data of live strings after compaction. */
1876
1877 static void
1878 compact_small_strings (void)
1879 {
1880 struct sblock *b, *tb, *next;
1881 sdata *from, *to, *end, *tb_end;
1882 sdata *to_end, *from_end;
1883
1884 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1885 to, and TB_END is the end of TB. */
1886 tb = oldest_sblock;
1887 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1888 to = &tb->first_data;
1889
1890 /* Step through the blocks from the oldest to the youngest. We
1891 expect that old blocks will stabilize over time, so that less
1892 copying will happen this way. */
1893 for (b = oldest_sblock; b; b = b->next)
1894 {
1895 end = b->next_free;
1896 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1897
1898 for (from = &b->first_data; from < end; from = from_end)
1899 {
1900 /* Compute the next FROM here because copying below may
1901 overwrite data we need to compute it. */
1902 ptrdiff_t nbytes;
1903 struct Lisp_String *s = from->string;
1904
1905 #ifdef GC_CHECK_STRING_BYTES
1906 /* Check that the string size recorded in the string is the
1907 same as the one recorded in the sdata structure. */
1908 if (s && string_bytes (s) != SDATA_NBYTES (from))
1909 emacs_abort ();
1910 #endif /* GC_CHECK_STRING_BYTES */
1911
1912 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1913 eassert (nbytes <= LARGE_STRING_BYTES);
1914
1915 nbytes = SDATA_SIZE (nbytes);
1916 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1917
1918 #ifdef GC_CHECK_STRING_OVERRUN
1919 if (memcmp (string_overrun_cookie,
1920 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1921 GC_STRING_OVERRUN_COOKIE_SIZE))
1922 emacs_abort ();
1923 #endif
1924
1925 /* Non-NULL S means it's alive. Copy its data. */
1926 if (s)
1927 {
1928 /* If TB is full, proceed with the next sblock. */
1929 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1930 if (to_end > tb_end)
1931 {
1932 tb->next_free = to;
1933 tb = tb->next;
1934 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1935 to = &tb->first_data;
1936 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1937 }
1938
1939 /* Copy, and update the string's `data' pointer. */
1940 if (from != to)
1941 {
1942 eassert (tb != b || to < from);
1943 memmove (to, from, nbytes + GC_STRING_EXTRA);
1944 to->string->data = SDATA_DATA (to);
1945 }
1946
1947 /* Advance past the sdata we copied to. */
1948 to = to_end;
1949 }
1950 }
1951 }
1952
1953 /* The rest of the sblocks following TB don't contain live data, so
1954 we can free them. */
1955 for (b = tb->next; b; b = next)
1956 {
1957 next = b->next;
1958 lisp_free (b);
1959 }
1960
1961 tb->next_free = to;
1962 tb->next = NULL;
1963 current_sblock = tb;
1964 }
1965
1966 void
1967 string_overflow (void)
1968 {
1969 error ("Maximum string size exceeded");
1970 }
1971
1972 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1973 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1974 LENGTH must be an integer.
1975 INIT must be an integer that represents a character. */)
1976 (Lisp_Object length, Lisp_Object init)
1977 {
1978 register Lisp_Object val;
1979 int c;
1980 EMACS_INT nbytes;
1981
1982 CHECK_NATNUM (length);
1983 CHECK_CHARACTER (init);
1984
1985 c = XFASTINT (init);
1986 if (ASCII_CHAR_P (c))
1987 {
1988 nbytes = XINT (length);
1989 val = make_uninit_string (nbytes);
1990 memset (SDATA (val), c, nbytes);
1991 SDATA (val)[nbytes] = 0;
1992 }
1993 else
1994 {
1995 unsigned char str[MAX_MULTIBYTE_LENGTH];
1996 ptrdiff_t len = CHAR_STRING (c, str);
1997 EMACS_INT string_len = XINT (length);
1998 unsigned char *p, *beg, *end;
1999
2000 if (string_len > STRING_BYTES_MAX / len)
2001 string_overflow ();
2002 nbytes = len * string_len;
2003 val = make_uninit_multibyte_string (string_len, nbytes);
2004 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2005 {
2006 /* First time we just copy `str' to the data of `val'. */
2007 if (p == beg)
2008 memcpy (p, str, len);
2009 else
2010 {
2011 /* Next time we copy largest possible chunk from
2012 initialized to uninitialized part of `val'. */
2013 len = min (p - beg, end - p);
2014 memcpy (p, beg, len);
2015 }
2016 }
2017 *p = 0;
2018 }
2019
2020 return val;
2021 }
2022
2023 verify (sizeof (size_t) * CHAR_BIT == BITS_PER_BITS_WORD);
2024 verify ((BITS_PER_BITS_WORD & (BITS_PER_BITS_WORD - 1)) == 0);
2025
2026 static ptrdiff_t
2027 bool_vector_payload_bytes (ptrdiff_t nr_bits,
2028 ptrdiff_t *exact_needed_bytes_out)
2029 {
2030 ptrdiff_t exact_needed_bytes;
2031 ptrdiff_t needed_bytes;
2032
2033 eassume (nr_bits >= 0);
2034
2035 exact_needed_bytes = ROUNDUP ((size_t) nr_bits, CHAR_BIT) / CHAR_BIT;
2036 needed_bytes = ROUNDUP ((size_t) nr_bits, BITS_PER_BITS_WORD) / CHAR_BIT;
2037
2038 if (needed_bytes == 0)
2039 {
2040 /* Always allocate at least one machine word of payload so that
2041 bool-vector operations in data.c don't need a special case
2042 for empty vectors. */
2043 needed_bytes = sizeof (bits_word);
2044 }
2045
2046 if (exact_needed_bytes_out != NULL)
2047 *exact_needed_bytes_out = exact_needed_bytes;
2048
2049 return needed_bytes;
2050 }
2051
2052 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2053 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2054 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2055 (Lisp_Object length, Lisp_Object init)
2056 {
2057 register Lisp_Object val;
2058 struct Lisp_Bool_Vector *p;
2059 ptrdiff_t exact_payload_bytes;
2060 ptrdiff_t total_payload_bytes;
2061 ptrdiff_t needed_elements;
2062
2063 CHECK_NATNUM (length);
2064 if (PTRDIFF_MAX < XFASTINT (length))
2065 memory_full (SIZE_MAX);
2066
2067 total_payload_bytes = bool_vector_payload_bytes
2068 (XFASTINT (length), &exact_payload_bytes);
2069
2070 eassume (exact_payload_bytes <= total_payload_bytes);
2071 eassume (0 <= exact_payload_bytes);
2072
2073 needed_elements = ROUNDUP ((size_t) ((bool_header_size - header_size)
2074 + total_payload_bytes),
2075 word_size) / word_size;
2076
2077 p = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2078 XSETVECTOR (val, p);
2079 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2080
2081 p->size = XFASTINT (length);
2082 if (exact_payload_bytes)
2083 {
2084 memset (p->data, ! NILP (init) ? -1 : 0, exact_payload_bytes);
2085
2086 /* Clear any extraneous bits in the last byte. */
2087 p->data[exact_payload_bytes - 1]
2088 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2089 }
2090
2091 /* Clear padding at the end. */
2092 memset (p->data + exact_payload_bytes,
2093 0,
2094 total_payload_bytes - exact_payload_bytes);
2095
2096 return val;
2097 }
2098
2099
2100 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2101 of characters from the contents. This string may be unibyte or
2102 multibyte, depending on the contents. */
2103
2104 Lisp_Object
2105 make_string (const char *contents, ptrdiff_t nbytes)
2106 {
2107 register Lisp_Object val;
2108 ptrdiff_t nchars, multibyte_nbytes;
2109
2110 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2111 &nchars, &multibyte_nbytes);
2112 if (nbytes == nchars || nbytes != multibyte_nbytes)
2113 /* CONTENTS contains no multibyte sequences or contains an invalid
2114 multibyte sequence. We must make unibyte string. */
2115 val = make_unibyte_string (contents, nbytes);
2116 else
2117 val = make_multibyte_string (contents, nchars, nbytes);
2118 return val;
2119 }
2120
2121
2122 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2123
2124 Lisp_Object
2125 make_unibyte_string (const char *contents, ptrdiff_t length)
2126 {
2127 register Lisp_Object val;
2128 val = make_uninit_string (length);
2129 memcpy (SDATA (val), contents, length);
2130 return val;
2131 }
2132
2133
2134 /* Make a multibyte string from NCHARS characters occupying NBYTES
2135 bytes at CONTENTS. */
2136
2137 Lisp_Object
2138 make_multibyte_string (const char *contents,
2139 ptrdiff_t nchars, ptrdiff_t nbytes)
2140 {
2141 register Lisp_Object val;
2142 val = make_uninit_multibyte_string (nchars, nbytes);
2143 memcpy (SDATA (val), contents, nbytes);
2144 return val;
2145 }
2146
2147
2148 /* Make a string from NCHARS characters occupying NBYTES bytes at
2149 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2150
2151 Lisp_Object
2152 make_string_from_bytes (const char *contents,
2153 ptrdiff_t nchars, ptrdiff_t nbytes)
2154 {
2155 register Lisp_Object val;
2156 val = make_uninit_multibyte_string (nchars, nbytes);
2157 memcpy (SDATA (val), contents, nbytes);
2158 if (SBYTES (val) == SCHARS (val))
2159 STRING_SET_UNIBYTE (val);
2160 return val;
2161 }
2162
2163
2164 /* Make a string from NCHARS characters occupying NBYTES bytes at
2165 CONTENTS. The argument MULTIBYTE controls whether to label the
2166 string as multibyte. If NCHARS is negative, it counts the number of
2167 characters by itself. */
2168
2169 Lisp_Object
2170 make_specified_string (const char *contents,
2171 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2172 {
2173 Lisp_Object val;
2174
2175 if (nchars < 0)
2176 {
2177 if (multibyte)
2178 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2179 nbytes);
2180 else
2181 nchars = nbytes;
2182 }
2183 val = make_uninit_multibyte_string (nchars, nbytes);
2184 memcpy (SDATA (val), contents, nbytes);
2185 if (!multibyte)
2186 STRING_SET_UNIBYTE (val);
2187 return val;
2188 }
2189
2190
2191 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2192 occupying LENGTH bytes. */
2193
2194 Lisp_Object
2195 make_uninit_string (EMACS_INT length)
2196 {
2197 Lisp_Object val;
2198
2199 if (!length)
2200 return empty_unibyte_string;
2201 val = make_uninit_multibyte_string (length, length);
2202 STRING_SET_UNIBYTE (val);
2203 return val;
2204 }
2205
2206
2207 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2208 which occupy NBYTES bytes. */
2209
2210 Lisp_Object
2211 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2212 {
2213 Lisp_Object string;
2214 struct Lisp_String *s;
2215
2216 if (nchars < 0)
2217 emacs_abort ();
2218 if (!nbytes)
2219 return empty_multibyte_string;
2220
2221 s = allocate_string ();
2222 s->intervals = NULL;
2223 allocate_string_data (s, nchars, nbytes);
2224 XSETSTRING (string, s);
2225 string_chars_consed += nbytes;
2226 return string;
2227 }
2228
2229 /* Print arguments to BUF according to a FORMAT, then return
2230 a Lisp_String initialized with the data from BUF. */
2231
2232 Lisp_Object
2233 make_formatted_string (char *buf, const char *format, ...)
2234 {
2235 va_list ap;
2236 int length;
2237
2238 va_start (ap, format);
2239 length = vsprintf (buf, format, ap);
2240 va_end (ap);
2241 return make_string (buf, length);
2242 }
2243
2244 \f
2245 /***********************************************************************
2246 Float Allocation
2247 ***********************************************************************/
2248
2249 /* We store float cells inside of float_blocks, allocating a new
2250 float_block with malloc whenever necessary. Float cells reclaimed
2251 by GC are put on a free list to be reallocated before allocating
2252 any new float cells from the latest float_block. */
2253
2254 #define FLOAT_BLOCK_SIZE \
2255 (((BLOCK_BYTES - sizeof (struct float_block *) \
2256 /* The compiler might add padding at the end. */ \
2257 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2258 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2259
2260 #define GETMARKBIT(block,n) \
2261 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2262 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2263 & 1)
2264
2265 #define SETMARKBIT(block,n) \
2266 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2267 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2268
2269 #define UNSETMARKBIT(block,n) \
2270 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2271 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2272
2273 #define FLOAT_BLOCK(fptr) \
2274 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2275
2276 #define FLOAT_INDEX(fptr) \
2277 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2278
2279 struct float_block
2280 {
2281 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2282 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2283 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2284 struct float_block *next;
2285 };
2286
2287 #define FLOAT_MARKED_P(fptr) \
2288 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2289
2290 #define FLOAT_MARK(fptr) \
2291 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2292
2293 #define FLOAT_UNMARK(fptr) \
2294 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2295
2296 /* Current float_block. */
2297
2298 static struct float_block *float_block;
2299
2300 /* Index of first unused Lisp_Float in the current float_block. */
2301
2302 static int float_block_index = FLOAT_BLOCK_SIZE;
2303
2304 /* Free-list of Lisp_Floats. */
2305
2306 static struct Lisp_Float *float_free_list;
2307
2308 /* Return a new float object with value FLOAT_VALUE. */
2309
2310 Lisp_Object
2311 make_float (double float_value)
2312 {
2313 register Lisp_Object val;
2314
2315 MALLOC_BLOCK_INPUT;
2316
2317 if (float_free_list)
2318 {
2319 /* We use the data field for chaining the free list
2320 so that we won't use the same field that has the mark bit. */
2321 XSETFLOAT (val, float_free_list);
2322 float_free_list = float_free_list->u.chain;
2323 }
2324 else
2325 {
2326 if (float_block_index == FLOAT_BLOCK_SIZE)
2327 {
2328 struct float_block *new
2329 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2330 new->next = float_block;
2331 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2332 float_block = new;
2333 float_block_index = 0;
2334 total_free_floats += FLOAT_BLOCK_SIZE;
2335 }
2336 XSETFLOAT (val, &float_block->floats[float_block_index]);
2337 float_block_index++;
2338 }
2339
2340 MALLOC_UNBLOCK_INPUT;
2341
2342 XFLOAT_INIT (val, float_value);
2343 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2344 consing_since_gc += sizeof (struct Lisp_Float);
2345 floats_consed++;
2346 total_free_floats--;
2347 return val;
2348 }
2349
2350
2351 \f
2352 /***********************************************************************
2353 Cons Allocation
2354 ***********************************************************************/
2355
2356 /* We store cons cells inside of cons_blocks, allocating a new
2357 cons_block with malloc whenever necessary. Cons cells reclaimed by
2358 GC are put on a free list to be reallocated before allocating
2359 any new cons cells from the latest cons_block. */
2360
2361 #define CONS_BLOCK_SIZE \
2362 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2363 /* The compiler might add padding at the end. */ \
2364 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2365 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2366
2367 #define CONS_BLOCK(fptr) \
2368 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2369
2370 #define CONS_INDEX(fptr) \
2371 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2372
2373 struct cons_block
2374 {
2375 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2376 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2377 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2378 struct cons_block *next;
2379 };
2380
2381 #define CONS_MARKED_P(fptr) \
2382 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2383
2384 #define CONS_MARK(fptr) \
2385 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2386
2387 #define CONS_UNMARK(fptr) \
2388 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2389
2390 /* Current cons_block. */
2391
2392 static struct cons_block *cons_block;
2393
2394 /* Index of first unused Lisp_Cons in the current block. */
2395
2396 static int cons_block_index = CONS_BLOCK_SIZE;
2397
2398 /* Free-list of Lisp_Cons structures. */
2399
2400 static struct Lisp_Cons *cons_free_list;
2401
2402 /* Explicitly free a cons cell by putting it on the free-list. */
2403
2404 void
2405 free_cons (struct Lisp_Cons *ptr)
2406 {
2407 ptr->u.chain = cons_free_list;
2408 #if GC_MARK_STACK
2409 ptr->car = Vdead;
2410 #endif
2411 cons_free_list = ptr;
2412 consing_since_gc -= sizeof *ptr;
2413 total_free_conses++;
2414 }
2415
2416 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2417 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2418 (Lisp_Object car, Lisp_Object cdr)
2419 {
2420 register Lisp_Object val;
2421
2422 MALLOC_BLOCK_INPUT;
2423
2424 if (cons_free_list)
2425 {
2426 /* We use the cdr for chaining the free list
2427 so that we won't use the same field that has the mark bit. */
2428 XSETCONS (val, cons_free_list);
2429 cons_free_list = cons_free_list->u.chain;
2430 }
2431 else
2432 {
2433 if (cons_block_index == CONS_BLOCK_SIZE)
2434 {
2435 struct cons_block *new
2436 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2437 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2438 new->next = cons_block;
2439 cons_block = new;
2440 cons_block_index = 0;
2441 total_free_conses += CONS_BLOCK_SIZE;
2442 }
2443 XSETCONS (val, &cons_block->conses[cons_block_index]);
2444 cons_block_index++;
2445 }
2446
2447 MALLOC_UNBLOCK_INPUT;
2448
2449 XSETCAR (val, car);
2450 XSETCDR (val, cdr);
2451 eassert (!CONS_MARKED_P (XCONS (val)));
2452 consing_since_gc += sizeof (struct Lisp_Cons);
2453 total_free_conses--;
2454 cons_cells_consed++;
2455 return val;
2456 }
2457
2458 #ifdef GC_CHECK_CONS_LIST
2459 /* Get an error now if there's any junk in the cons free list. */
2460 void
2461 check_cons_list (void)
2462 {
2463 struct Lisp_Cons *tail = cons_free_list;
2464
2465 while (tail)
2466 tail = tail->u.chain;
2467 }
2468 #endif
2469
2470 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2471
2472 Lisp_Object
2473 list1 (Lisp_Object arg1)
2474 {
2475 return Fcons (arg1, Qnil);
2476 }
2477
2478 Lisp_Object
2479 list2 (Lisp_Object arg1, Lisp_Object arg2)
2480 {
2481 return Fcons (arg1, Fcons (arg2, Qnil));
2482 }
2483
2484
2485 Lisp_Object
2486 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2487 {
2488 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2489 }
2490
2491
2492 Lisp_Object
2493 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2494 {
2495 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2496 }
2497
2498
2499 Lisp_Object
2500 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2501 {
2502 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2503 Fcons (arg5, Qnil)))));
2504 }
2505
2506 /* Make a list of COUNT Lisp_Objects, where ARG is the
2507 first one. Allocate conses from pure space if TYPE
2508 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2509
2510 Lisp_Object
2511 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2512 {
2513 va_list ap;
2514 ptrdiff_t i;
2515 Lisp_Object val, *objp;
2516
2517 /* Change to SAFE_ALLOCA if you hit this eassert. */
2518 eassert (count <= MAX_ALLOCA / word_size);
2519
2520 objp = alloca (count * word_size);
2521 objp[0] = arg;
2522 va_start (ap, arg);
2523 for (i = 1; i < count; i++)
2524 objp[i] = va_arg (ap, Lisp_Object);
2525 va_end (ap);
2526
2527 for (val = Qnil, i = count - 1; i >= 0; i--)
2528 {
2529 if (type == CONSTYPE_PURE)
2530 val = pure_cons (objp[i], val);
2531 else if (type == CONSTYPE_HEAP)
2532 val = Fcons (objp[i], val);
2533 else
2534 emacs_abort ();
2535 }
2536 return val;
2537 }
2538
2539 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2540 doc: /* Return a newly created list with specified arguments as elements.
2541 Any number of arguments, even zero arguments, are allowed.
2542 usage: (list &rest OBJECTS) */)
2543 (ptrdiff_t nargs, Lisp_Object *args)
2544 {
2545 register Lisp_Object val;
2546 val = Qnil;
2547
2548 while (nargs > 0)
2549 {
2550 nargs--;
2551 val = Fcons (args[nargs], val);
2552 }
2553 return val;
2554 }
2555
2556
2557 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2558 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2559 (register Lisp_Object length, Lisp_Object init)
2560 {
2561 register Lisp_Object val;
2562 register EMACS_INT size;
2563
2564 CHECK_NATNUM (length);
2565 size = XFASTINT (length);
2566
2567 val = Qnil;
2568 while (size > 0)
2569 {
2570 val = Fcons (init, val);
2571 --size;
2572
2573 if (size > 0)
2574 {
2575 val = Fcons (init, val);
2576 --size;
2577
2578 if (size > 0)
2579 {
2580 val = Fcons (init, val);
2581 --size;
2582
2583 if (size > 0)
2584 {
2585 val = Fcons (init, val);
2586 --size;
2587
2588 if (size > 0)
2589 {
2590 val = Fcons (init, val);
2591 --size;
2592 }
2593 }
2594 }
2595 }
2596
2597 QUIT;
2598 }
2599
2600 return val;
2601 }
2602
2603
2604 \f
2605 /***********************************************************************
2606 Vector Allocation
2607 ***********************************************************************/
2608
2609 /* This value is balanced well enough to avoid too much internal overhead
2610 for the most common cases; it's not required to be a power of two, but
2611 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2612
2613 #define VECTOR_BLOCK_SIZE 4096
2614
2615 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2616 enum
2617 {
2618 roundup_size = COMMON_MULTIPLE (word_size, USE_LSB_TAG ? GCALIGNMENT : 1)
2619 };
2620
2621 /* Verify assumptions described above. */
2622 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2623 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2624
2625 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2626 #define vroundup_ct(x) ROUNDUP ((size_t) (x), roundup_size)
2627 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2628 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2629
2630 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2631
2632 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2633
2634 /* Size of the minimal vector allocated from block. */
2635
2636 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2637
2638 /* Size of the largest vector allocated from block. */
2639
2640 #define VBLOCK_BYTES_MAX \
2641 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2642
2643 /* We maintain one free list for each possible block-allocated
2644 vector size, and this is the number of free lists we have. */
2645
2646 #define VECTOR_MAX_FREE_LIST_INDEX \
2647 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2648
2649 /* Common shortcut to advance vector pointer over a block data. */
2650
2651 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2652
2653 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2654
2655 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2656
2657 /* Common shortcut to setup vector on a free list. */
2658
2659 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2660 do { \
2661 (tmp) = ((nbytes - header_size) / word_size); \
2662 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2663 eassert ((nbytes) % roundup_size == 0); \
2664 (tmp) = VINDEX (nbytes); \
2665 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2666 v->u.next = vector_free_lists[tmp]; \
2667 vector_free_lists[tmp] = (v); \
2668 total_free_vector_slots += (nbytes) / word_size; \
2669 } while (0)
2670
2671 /* This internal type is used to maintain the list of large vectors
2672 which are allocated at their own, e.g. outside of vector blocks. */
2673
2674 struct large_vector
2675 {
2676 union {
2677 struct large_vector *vector;
2678 #if USE_LSB_TAG
2679 /* We need to maintain ROUNDUP_SIZE alignment for the vector member. */
2680 unsigned char c[vroundup_ct (sizeof (struct large_vector *))];
2681 #endif
2682 } next;
2683 struct Lisp_Vector v;
2684 };
2685
2686 /* This internal type is used to maintain an underlying storage
2687 for small vectors. */
2688
2689 struct vector_block
2690 {
2691 char data[VECTOR_BLOCK_BYTES];
2692 struct vector_block *next;
2693 };
2694
2695 /* Chain of vector blocks. */
2696
2697 static struct vector_block *vector_blocks;
2698
2699 /* Vector free lists, where NTH item points to a chain of free
2700 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2701
2702 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2703
2704 /* Singly-linked list of large vectors. */
2705
2706 static struct large_vector *large_vectors;
2707
2708 /* The only vector with 0 slots, allocated from pure space. */
2709
2710 Lisp_Object zero_vector;
2711
2712 /* Number of live vectors. */
2713
2714 static EMACS_INT total_vectors;
2715
2716 /* Total size of live and free vectors, in Lisp_Object units. */
2717
2718 static EMACS_INT total_vector_slots, total_free_vector_slots;
2719
2720 /* Get a new vector block. */
2721
2722 static struct vector_block *
2723 allocate_vector_block (void)
2724 {
2725 struct vector_block *block = xmalloc (sizeof *block);
2726
2727 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2728 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2729 MEM_TYPE_VECTOR_BLOCK);
2730 #endif
2731
2732 block->next = vector_blocks;
2733 vector_blocks = block;
2734 return block;
2735 }
2736
2737 /* Called once to initialize vector allocation. */
2738
2739 static void
2740 init_vectors (void)
2741 {
2742 zero_vector = make_pure_vector (0);
2743 }
2744
2745 /* Allocate vector from a vector block. */
2746
2747 static struct Lisp_Vector *
2748 allocate_vector_from_block (size_t nbytes)
2749 {
2750 struct Lisp_Vector *vector;
2751 struct vector_block *block;
2752 size_t index, restbytes;
2753
2754 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2755 eassert (nbytes % roundup_size == 0);
2756
2757 /* First, try to allocate from a free list
2758 containing vectors of the requested size. */
2759 index = VINDEX (nbytes);
2760 if (vector_free_lists[index])
2761 {
2762 vector = vector_free_lists[index];
2763 vector_free_lists[index] = vector->u.next;
2764 total_free_vector_slots -= nbytes / word_size;
2765 return vector;
2766 }
2767
2768 /* Next, check free lists containing larger vectors. Since
2769 we will split the result, we should have remaining space
2770 large enough to use for one-slot vector at least. */
2771 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2772 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2773 if (vector_free_lists[index])
2774 {
2775 /* This vector is larger than requested. */
2776 vector = vector_free_lists[index];
2777 vector_free_lists[index] = vector->u.next;
2778 total_free_vector_slots -= nbytes / word_size;
2779
2780 /* Excess bytes are used for the smaller vector,
2781 which should be set on an appropriate free list. */
2782 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2783 eassert (restbytes % roundup_size == 0);
2784 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2785 return vector;
2786 }
2787
2788 /* Finally, need a new vector block. */
2789 block = allocate_vector_block ();
2790
2791 /* New vector will be at the beginning of this block. */
2792 vector = (struct Lisp_Vector *) block->data;
2793
2794 /* If the rest of space from this block is large enough
2795 for one-slot vector at least, set up it on a free list. */
2796 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2797 if (restbytes >= VBLOCK_BYTES_MIN)
2798 {
2799 eassert (restbytes % roundup_size == 0);
2800 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2801 }
2802 return vector;
2803 }
2804
2805 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2806
2807 #define VECTOR_IN_BLOCK(vector, block) \
2808 ((char *) (vector) <= (block)->data \
2809 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2810
2811 /* Return the memory footprint of V in bytes. */
2812
2813 static ptrdiff_t
2814 vector_nbytes (struct Lisp_Vector *v)
2815 {
2816 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2817
2818 if (size & PSEUDOVECTOR_FLAG)
2819 {
2820 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2821 {
2822 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2823 ptrdiff_t payload_bytes =
2824 bool_vector_payload_bytes (bv->size, NULL);
2825
2826 eassume (payload_bytes >= 0);
2827 size = bool_header_size + ROUNDUP (payload_bytes, word_size);
2828 }
2829 else
2830 size = (header_size
2831 + ((size & PSEUDOVECTOR_SIZE_MASK)
2832 + ((size & PSEUDOVECTOR_REST_MASK)
2833 >> PSEUDOVECTOR_SIZE_BITS)) * word_size);
2834 }
2835 else
2836 size = header_size + size * word_size;
2837 return vroundup (size);
2838 }
2839
2840 /* Release extra resources still in use by VECTOR, which may be any
2841 vector-like object. For now, this is used just to free data in
2842 font objects. */
2843
2844 static void
2845 cleanup_vector (struct Lisp_Vector *vector)
2846 {
2847 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
2848 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
2849 == FONT_OBJECT_MAX))
2850 ((struct font *) vector)->driver->close ((struct font *) vector);
2851 }
2852
2853 /* Reclaim space used by unmarked vectors. */
2854
2855 static void
2856 sweep_vectors (void)
2857 {
2858 struct vector_block *block, **bprev = &vector_blocks;
2859 struct large_vector *lv, **lvprev = &large_vectors;
2860 struct Lisp_Vector *vector, *next;
2861
2862 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2863 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2864
2865 /* Looking through vector blocks. */
2866
2867 for (block = vector_blocks; block; block = *bprev)
2868 {
2869 bool free_this_block = 0;
2870 ptrdiff_t nbytes;
2871
2872 for (vector = (struct Lisp_Vector *) block->data;
2873 VECTOR_IN_BLOCK (vector, block); vector = next)
2874 {
2875 if (VECTOR_MARKED_P (vector))
2876 {
2877 VECTOR_UNMARK (vector);
2878 total_vectors++;
2879 nbytes = vector_nbytes (vector);
2880 total_vector_slots += nbytes / word_size;
2881 next = ADVANCE (vector, nbytes);
2882 }
2883 else
2884 {
2885 ptrdiff_t total_bytes;
2886
2887 cleanup_vector (vector);
2888 nbytes = vector_nbytes (vector);
2889 total_bytes = nbytes;
2890 next = ADVANCE (vector, nbytes);
2891
2892 /* While NEXT is not marked, try to coalesce with VECTOR,
2893 thus making VECTOR of the largest possible size. */
2894
2895 while (VECTOR_IN_BLOCK (next, block))
2896 {
2897 if (VECTOR_MARKED_P (next))
2898 break;
2899 cleanup_vector (next);
2900 nbytes = vector_nbytes (next);
2901 total_bytes += nbytes;
2902 next = ADVANCE (next, nbytes);
2903 }
2904
2905 eassert (total_bytes % roundup_size == 0);
2906
2907 if (vector == (struct Lisp_Vector *) block->data
2908 && !VECTOR_IN_BLOCK (next, block))
2909 /* This block should be freed because all of it's
2910 space was coalesced into the only free vector. */
2911 free_this_block = 1;
2912 else
2913 {
2914 size_t tmp;
2915 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2916 }
2917 }
2918 }
2919
2920 if (free_this_block)
2921 {
2922 *bprev = block->next;
2923 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2924 mem_delete (mem_find (block->data));
2925 #endif
2926 xfree (block);
2927 }
2928 else
2929 bprev = &block->next;
2930 }
2931
2932 /* Sweep large vectors. */
2933
2934 for (lv = large_vectors; lv; lv = *lvprev)
2935 {
2936 vector = &lv->v;
2937 if (VECTOR_MARKED_P (vector))
2938 {
2939 VECTOR_UNMARK (vector);
2940 total_vectors++;
2941 if (vector->header.size & PSEUDOVECTOR_FLAG)
2942 {
2943 /* All non-bool pseudovectors are small enough to be allocated
2944 from vector blocks. This code should be redesigned if some
2945 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2946 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2947 total_vector_slots += vector_nbytes (vector) / word_size;
2948 }
2949 else
2950 total_vector_slots
2951 += header_size / word_size + vector->header.size;
2952 lvprev = &lv->next.vector;
2953 }
2954 else
2955 {
2956 *lvprev = lv->next.vector;
2957 lisp_free (lv);
2958 }
2959 }
2960 }
2961
2962 /* Value is a pointer to a newly allocated Lisp_Vector structure
2963 with room for LEN Lisp_Objects. */
2964
2965 static struct Lisp_Vector *
2966 allocate_vectorlike (ptrdiff_t len)
2967 {
2968 struct Lisp_Vector *p;
2969
2970 MALLOC_BLOCK_INPUT;
2971
2972 if (len == 0)
2973 p = XVECTOR (zero_vector);
2974 else
2975 {
2976 size_t nbytes = header_size + len * word_size;
2977
2978 #ifdef DOUG_LEA_MALLOC
2979 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2980 because mapped region contents are not preserved in
2981 a dumped Emacs. */
2982 mallopt (M_MMAP_MAX, 0);
2983 #endif
2984
2985 if (nbytes <= VBLOCK_BYTES_MAX)
2986 p = allocate_vector_from_block (vroundup (nbytes));
2987 else
2988 {
2989 struct large_vector *lv
2990 = lisp_malloc ((offsetof (struct large_vector, v.u.contents)
2991 + len * word_size),
2992 MEM_TYPE_VECTORLIKE);
2993 lv->next.vector = large_vectors;
2994 large_vectors = lv;
2995 p = &lv->v;
2996 }
2997
2998 #ifdef DOUG_LEA_MALLOC
2999 /* Back to a reasonable maximum of mmap'ed areas. */
3000 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3001 #endif
3002
3003 consing_since_gc += nbytes;
3004 vector_cells_consed += len;
3005 }
3006
3007 MALLOC_UNBLOCK_INPUT;
3008
3009 return p;
3010 }
3011
3012
3013 /* Allocate a vector with LEN slots. */
3014
3015 struct Lisp_Vector *
3016 allocate_vector (EMACS_INT len)
3017 {
3018 struct Lisp_Vector *v;
3019 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3020
3021 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3022 memory_full (SIZE_MAX);
3023 v = allocate_vectorlike (len);
3024 v->header.size = len;
3025 return v;
3026 }
3027
3028
3029 /* Allocate other vector-like structures. */
3030
3031 struct Lisp_Vector *
3032 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
3033 {
3034 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3035 int i;
3036
3037 /* Catch bogus values. */
3038 eassert (tag <= PVEC_FONT);
3039 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3040 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3041
3042 /* Only the first lisplen slots will be traced normally by the GC. */
3043 for (i = 0; i < lisplen; ++i)
3044 v->u.contents[i] = Qnil;
3045
3046 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3047 return v;
3048 }
3049
3050 struct buffer *
3051 allocate_buffer (void)
3052 {
3053 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3054
3055 BUFFER_PVEC_INIT (b);
3056 /* Put B on the chain of all buffers including killed ones. */
3057 b->next = all_buffers;
3058 all_buffers = b;
3059 /* Note that the rest fields of B are not initialized. */
3060 return b;
3061 }
3062
3063 struct Lisp_Hash_Table *
3064 allocate_hash_table (void)
3065 {
3066 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3067 }
3068
3069 struct window *
3070 allocate_window (void)
3071 {
3072 struct window *w;
3073
3074 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3075 /* Users assumes that non-Lisp data is zeroed. */
3076 memset (&w->current_matrix, 0,
3077 sizeof (*w) - offsetof (struct window, current_matrix));
3078 return w;
3079 }
3080
3081 struct terminal *
3082 allocate_terminal (void)
3083 {
3084 struct terminal *t;
3085
3086 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3087 /* Users assumes that non-Lisp data is zeroed. */
3088 memset (&t->next_terminal, 0,
3089 sizeof (*t) - offsetof (struct terminal, next_terminal));
3090 return t;
3091 }
3092
3093 struct frame *
3094 allocate_frame (void)
3095 {
3096 struct frame *f;
3097
3098 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3099 /* Users assumes that non-Lisp data is zeroed. */
3100 memset (&f->face_cache, 0,
3101 sizeof (*f) - offsetof (struct frame, face_cache));
3102 return f;
3103 }
3104
3105 struct Lisp_Process *
3106 allocate_process (void)
3107 {
3108 struct Lisp_Process *p;
3109
3110 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3111 /* Users assumes that non-Lisp data is zeroed. */
3112 memset (&p->pid, 0,
3113 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3114 return p;
3115 }
3116
3117 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3118 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3119 See also the function `vector'. */)
3120 (register Lisp_Object length, Lisp_Object init)
3121 {
3122 Lisp_Object vector;
3123 register ptrdiff_t sizei;
3124 register ptrdiff_t i;
3125 register struct Lisp_Vector *p;
3126
3127 CHECK_NATNUM (length);
3128
3129 p = allocate_vector (XFASTINT (length));
3130 sizei = XFASTINT (length);
3131 for (i = 0; i < sizei; i++)
3132 p->u.contents[i] = init;
3133
3134 XSETVECTOR (vector, p);
3135 return vector;
3136 }
3137
3138
3139 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3140 doc: /* Return a newly created vector with specified arguments as elements.
3141 Any number of arguments, even zero arguments, are allowed.
3142 usage: (vector &rest OBJECTS) */)
3143 (ptrdiff_t nargs, Lisp_Object *args)
3144 {
3145 ptrdiff_t i;
3146 register Lisp_Object val = make_uninit_vector (nargs);
3147 register struct Lisp_Vector *p = XVECTOR (val);
3148
3149 for (i = 0; i < nargs; i++)
3150 p->u.contents[i] = args[i];
3151 return val;
3152 }
3153
3154 void
3155 make_byte_code (struct Lisp_Vector *v)
3156 {
3157 /* Don't allow the global zero_vector to become a byte code object. */
3158 eassert(0 < v->header.size);
3159 if (v->header.size > 1 && STRINGP (v->u.contents[1])
3160 && STRING_MULTIBYTE (v->u.contents[1]))
3161 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3162 earlier because they produced a raw 8-bit string for byte-code
3163 and now such a byte-code string is loaded as multibyte while
3164 raw 8-bit characters converted to multibyte form. Thus, now we
3165 must convert them back to the original unibyte form. */
3166 v->u.contents[1] = Fstring_as_unibyte (v->u.contents[1]);
3167 XSETPVECTYPE (v, PVEC_COMPILED);
3168 }
3169
3170 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3171 doc: /* Create a byte-code object with specified arguments as elements.
3172 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3173 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3174 and (optional) INTERACTIVE-SPEC.
3175 The first four arguments are required; at most six have any
3176 significance.
3177 The ARGLIST can be either like the one of `lambda', in which case the arguments
3178 will be dynamically bound before executing the byte code, or it can be an
3179 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3180 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3181 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3182 argument to catch the left-over arguments. If such an integer is used, the
3183 arguments will not be dynamically bound but will be instead pushed on the
3184 stack before executing the byte-code.
3185 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3186 (ptrdiff_t nargs, Lisp_Object *args)
3187 {
3188 ptrdiff_t i;
3189 register Lisp_Object val = make_uninit_vector (nargs);
3190 register struct Lisp_Vector *p = XVECTOR (val);
3191
3192 /* We used to purecopy everything here, if purify-flag was set. This worked
3193 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3194 dangerous, since make-byte-code is used during execution to build
3195 closures, so any closure built during the preload phase would end up
3196 copied into pure space, including its free variables, which is sometimes
3197 just wasteful and other times plainly wrong (e.g. those free vars may want
3198 to be setcar'd). */
3199
3200 for (i = 0; i < nargs; i++)
3201 p->u.contents[i] = args[i];
3202 make_byte_code (p);
3203 XSETCOMPILED (val, p);
3204 return val;
3205 }
3206
3207
3208 \f
3209 /***********************************************************************
3210 Symbol Allocation
3211 ***********************************************************************/
3212
3213 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3214 of the required alignment if LSB tags are used. */
3215
3216 union aligned_Lisp_Symbol
3217 {
3218 struct Lisp_Symbol s;
3219 #if USE_LSB_TAG
3220 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3221 & -GCALIGNMENT];
3222 #endif
3223 };
3224
3225 /* Each symbol_block is just under 1020 bytes long, since malloc
3226 really allocates in units of powers of two and uses 4 bytes for its
3227 own overhead. */
3228
3229 #define SYMBOL_BLOCK_SIZE \
3230 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3231
3232 struct symbol_block
3233 {
3234 /* Place `symbols' first, to preserve alignment. */
3235 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3236 struct symbol_block *next;
3237 };
3238
3239 /* Current symbol block and index of first unused Lisp_Symbol
3240 structure in it. */
3241
3242 static struct symbol_block *symbol_block;
3243 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3244
3245 /* List of free symbols. */
3246
3247 static struct Lisp_Symbol *symbol_free_list;
3248
3249 static void
3250 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3251 {
3252 XSYMBOL (sym)->name = name;
3253 }
3254
3255 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3256 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3257 Its value is void, and its function definition and property list are nil. */)
3258 (Lisp_Object name)
3259 {
3260 register Lisp_Object val;
3261 register struct Lisp_Symbol *p;
3262
3263 CHECK_STRING (name);
3264
3265 MALLOC_BLOCK_INPUT;
3266
3267 if (symbol_free_list)
3268 {
3269 XSETSYMBOL (val, symbol_free_list);
3270 symbol_free_list = symbol_free_list->next;
3271 }
3272 else
3273 {
3274 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3275 {
3276 struct symbol_block *new
3277 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3278 new->next = symbol_block;
3279 symbol_block = new;
3280 symbol_block_index = 0;
3281 total_free_symbols += SYMBOL_BLOCK_SIZE;
3282 }
3283 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3284 symbol_block_index++;
3285 }
3286
3287 MALLOC_UNBLOCK_INPUT;
3288
3289 p = XSYMBOL (val);
3290 set_symbol_name (val, name);
3291 set_symbol_plist (val, Qnil);
3292 p->redirect = SYMBOL_PLAINVAL;
3293 SET_SYMBOL_VAL (p, Qunbound);
3294 set_symbol_function (val, Qnil);
3295 set_symbol_next (val, NULL);
3296 p->gcmarkbit = 0;
3297 p->interned = SYMBOL_UNINTERNED;
3298 p->constant = 0;
3299 p->declared_special = 0;
3300 consing_since_gc += sizeof (struct Lisp_Symbol);
3301 symbols_consed++;
3302 total_free_symbols--;
3303 return val;
3304 }
3305
3306
3307 \f
3308 /***********************************************************************
3309 Marker (Misc) Allocation
3310 ***********************************************************************/
3311
3312 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3313 the required alignment when LSB tags are used. */
3314
3315 union aligned_Lisp_Misc
3316 {
3317 union Lisp_Misc m;
3318 #if USE_LSB_TAG
3319 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3320 & -GCALIGNMENT];
3321 #endif
3322 };
3323
3324 /* Allocation of markers and other objects that share that structure.
3325 Works like allocation of conses. */
3326
3327 #define MARKER_BLOCK_SIZE \
3328 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3329
3330 struct marker_block
3331 {
3332 /* Place `markers' first, to preserve alignment. */
3333 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3334 struct marker_block *next;
3335 };
3336
3337 static struct marker_block *marker_block;
3338 static int marker_block_index = MARKER_BLOCK_SIZE;
3339
3340 static union Lisp_Misc *marker_free_list;
3341
3342 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3343
3344 static Lisp_Object
3345 allocate_misc (enum Lisp_Misc_Type type)
3346 {
3347 Lisp_Object val;
3348
3349 MALLOC_BLOCK_INPUT;
3350
3351 if (marker_free_list)
3352 {
3353 XSETMISC (val, marker_free_list);
3354 marker_free_list = marker_free_list->u_free.chain;
3355 }
3356 else
3357 {
3358 if (marker_block_index == MARKER_BLOCK_SIZE)
3359 {
3360 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3361 new->next = marker_block;
3362 marker_block = new;
3363 marker_block_index = 0;
3364 total_free_markers += MARKER_BLOCK_SIZE;
3365 }
3366 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3367 marker_block_index++;
3368 }
3369
3370 MALLOC_UNBLOCK_INPUT;
3371
3372 --total_free_markers;
3373 consing_since_gc += sizeof (union Lisp_Misc);
3374 misc_objects_consed++;
3375 XMISCANY (val)->type = type;
3376 XMISCANY (val)->gcmarkbit = 0;
3377 return val;
3378 }
3379
3380 /* Free a Lisp_Misc object. */
3381
3382 void
3383 free_misc (Lisp_Object misc)
3384 {
3385 XMISCANY (misc)->type = Lisp_Misc_Free;
3386 XMISC (misc)->u_free.chain = marker_free_list;
3387 marker_free_list = XMISC (misc);
3388 consing_since_gc -= sizeof (union Lisp_Misc);
3389 total_free_markers++;
3390 }
3391
3392 /* Verify properties of Lisp_Save_Value's representation
3393 that are assumed here and elsewhere. */
3394
3395 verify (SAVE_UNUSED == 0);
3396 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3397 >> SAVE_SLOT_BITS)
3398 == 0);
3399
3400 /* Return Lisp_Save_Value objects for the various combinations
3401 that callers need. */
3402
3403 Lisp_Object
3404 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3405 {
3406 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3407 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3408 p->save_type = SAVE_TYPE_INT_INT_INT;
3409 p->data[0].integer = a;
3410 p->data[1].integer = b;
3411 p->data[2].integer = c;
3412 return val;
3413 }
3414
3415 Lisp_Object
3416 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3417 Lisp_Object d)
3418 {
3419 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3420 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3421 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3422 p->data[0].object = a;
3423 p->data[1].object = b;
3424 p->data[2].object = c;
3425 p->data[3].object = d;
3426 return val;
3427 }
3428
3429 Lisp_Object
3430 make_save_ptr (void *a)
3431 {
3432 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3433 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3434 p->save_type = SAVE_POINTER;
3435 p->data[0].pointer = a;
3436 return val;
3437 }
3438
3439 Lisp_Object
3440 make_save_ptr_int (void *a, ptrdiff_t b)
3441 {
3442 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3443 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3444 p->save_type = SAVE_TYPE_PTR_INT;
3445 p->data[0].pointer = a;
3446 p->data[1].integer = b;
3447 return val;
3448 }
3449
3450 #if defined HAVE_MENUS && ! (defined USE_X_TOOLKIT || defined USE_GTK)
3451 Lisp_Object
3452 make_save_ptr_ptr (void *a, void *b)
3453 {
3454 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3455 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3456 p->save_type = SAVE_TYPE_PTR_PTR;
3457 p->data[0].pointer = a;
3458 p->data[1].pointer = b;
3459 return val;
3460 }
3461 #endif
3462
3463 Lisp_Object
3464 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3465 {
3466 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3467 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3468 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3469 p->data[0].funcpointer = a;
3470 p->data[1].pointer = b;
3471 p->data[2].object = c;
3472 return val;
3473 }
3474
3475 /* Return a Lisp_Save_Value object that represents an array A
3476 of N Lisp objects. */
3477
3478 Lisp_Object
3479 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3480 {
3481 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3482 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3483 p->save_type = SAVE_TYPE_MEMORY;
3484 p->data[0].pointer = a;
3485 p->data[1].integer = n;
3486 return val;
3487 }
3488
3489 /* Free a Lisp_Save_Value object. Do not use this function
3490 if SAVE contains pointer other than returned by xmalloc. */
3491
3492 void
3493 free_save_value (Lisp_Object save)
3494 {
3495 xfree (XSAVE_POINTER (save, 0));
3496 free_misc (save);
3497 }
3498
3499 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3500
3501 Lisp_Object
3502 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3503 {
3504 register Lisp_Object overlay;
3505
3506 overlay = allocate_misc (Lisp_Misc_Overlay);
3507 OVERLAY_START (overlay) = start;
3508 OVERLAY_END (overlay) = end;
3509 set_overlay_plist (overlay, plist);
3510 XOVERLAY (overlay)->next = NULL;
3511 return overlay;
3512 }
3513
3514 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3515 doc: /* Return a newly allocated marker which does not point at any place. */)
3516 (void)
3517 {
3518 register Lisp_Object val;
3519 register struct Lisp_Marker *p;
3520
3521 val = allocate_misc (Lisp_Misc_Marker);
3522 p = XMARKER (val);
3523 p->buffer = 0;
3524 p->bytepos = 0;
3525 p->charpos = 0;
3526 p->next = NULL;
3527 p->insertion_type = 0;
3528 p->need_adjustment = 0;
3529 return val;
3530 }
3531
3532 /* Return a newly allocated marker which points into BUF
3533 at character position CHARPOS and byte position BYTEPOS. */
3534
3535 Lisp_Object
3536 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3537 {
3538 Lisp_Object obj;
3539 struct Lisp_Marker *m;
3540
3541 /* No dead buffers here. */
3542 eassert (BUFFER_LIVE_P (buf));
3543
3544 /* Every character is at least one byte. */
3545 eassert (charpos <= bytepos);
3546
3547 obj = allocate_misc (Lisp_Misc_Marker);
3548 m = XMARKER (obj);
3549 m->buffer = buf;
3550 m->charpos = charpos;
3551 m->bytepos = bytepos;
3552 m->insertion_type = 0;
3553 m->need_adjustment = 0;
3554 m->next = BUF_MARKERS (buf);
3555 BUF_MARKERS (buf) = m;
3556 return obj;
3557 }
3558
3559 /* Put MARKER back on the free list after using it temporarily. */
3560
3561 void
3562 free_marker (Lisp_Object marker)
3563 {
3564 unchain_marker (XMARKER (marker));
3565 free_misc (marker);
3566 }
3567
3568 \f
3569 /* Return a newly created vector or string with specified arguments as
3570 elements. If all the arguments are characters that can fit
3571 in a string of events, make a string; otherwise, make a vector.
3572
3573 Any number of arguments, even zero arguments, are allowed. */
3574
3575 Lisp_Object
3576 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3577 {
3578 ptrdiff_t i;
3579
3580 for (i = 0; i < nargs; i++)
3581 /* The things that fit in a string
3582 are characters that are in 0...127,
3583 after discarding the meta bit and all the bits above it. */
3584 if (!INTEGERP (args[i])
3585 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3586 return Fvector (nargs, args);
3587
3588 /* Since the loop exited, we know that all the things in it are
3589 characters, so we can make a string. */
3590 {
3591 Lisp_Object result;
3592
3593 result = Fmake_string (make_number (nargs), make_number (0));
3594 for (i = 0; i < nargs; i++)
3595 {
3596 SSET (result, i, XINT (args[i]));
3597 /* Move the meta bit to the right place for a string char. */
3598 if (XINT (args[i]) & CHAR_META)
3599 SSET (result, i, SREF (result, i) | 0x80);
3600 }
3601
3602 return result;
3603 }
3604 }
3605
3606
3607 \f
3608 /************************************************************************
3609 Memory Full Handling
3610 ************************************************************************/
3611
3612
3613 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3614 there may have been size_t overflow so that malloc was never
3615 called, or perhaps malloc was invoked successfully but the
3616 resulting pointer had problems fitting into a tagged EMACS_INT. In
3617 either case this counts as memory being full even though malloc did
3618 not fail. */
3619
3620 void
3621 memory_full (size_t nbytes)
3622 {
3623 /* Do not go into hysterics merely because a large request failed. */
3624 bool enough_free_memory = 0;
3625 if (SPARE_MEMORY < nbytes)
3626 {
3627 void *p;
3628
3629 MALLOC_BLOCK_INPUT;
3630 p = malloc (SPARE_MEMORY);
3631 if (p)
3632 {
3633 free (p);
3634 enough_free_memory = 1;
3635 }
3636 MALLOC_UNBLOCK_INPUT;
3637 }
3638
3639 if (! enough_free_memory)
3640 {
3641 int i;
3642
3643 Vmemory_full = Qt;
3644
3645 memory_full_cons_threshold = sizeof (struct cons_block);
3646
3647 /* The first time we get here, free the spare memory. */
3648 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3649 if (spare_memory[i])
3650 {
3651 if (i == 0)
3652 free (spare_memory[i]);
3653 else if (i >= 1 && i <= 4)
3654 lisp_align_free (spare_memory[i]);
3655 else
3656 lisp_free (spare_memory[i]);
3657 spare_memory[i] = 0;
3658 }
3659 }
3660
3661 /* This used to call error, but if we've run out of memory, we could
3662 get infinite recursion trying to build the string. */
3663 xsignal (Qnil, Vmemory_signal_data);
3664 }
3665
3666 /* If we released our reserve (due to running out of memory),
3667 and we have a fair amount free once again,
3668 try to set aside another reserve in case we run out once more.
3669
3670 This is called when a relocatable block is freed in ralloc.c,
3671 and also directly from this file, in case we're not using ralloc.c. */
3672
3673 void
3674 refill_memory_reserve (void)
3675 {
3676 #ifndef SYSTEM_MALLOC
3677 if (spare_memory[0] == 0)
3678 spare_memory[0] = malloc (SPARE_MEMORY);
3679 if (spare_memory[1] == 0)
3680 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3681 MEM_TYPE_SPARE);
3682 if (spare_memory[2] == 0)
3683 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3684 MEM_TYPE_SPARE);
3685 if (spare_memory[3] == 0)
3686 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3687 MEM_TYPE_SPARE);
3688 if (spare_memory[4] == 0)
3689 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3690 MEM_TYPE_SPARE);
3691 if (spare_memory[5] == 0)
3692 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3693 MEM_TYPE_SPARE);
3694 if (spare_memory[6] == 0)
3695 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3696 MEM_TYPE_SPARE);
3697 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3698 Vmemory_full = Qnil;
3699 #endif
3700 }
3701 \f
3702 /************************************************************************
3703 C Stack Marking
3704 ************************************************************************/
3705
3706 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3707
3708 /* Conservative C stack marking requires a method to identify possibly
3709 live Lisp objects given a pointer value. We do this by keeping
3710 track of blocks of Lisp data that are allocated in a red-black tree
3711 (see also the comment of mem_node which is the type of nodes in
3712 that tree). Function lisp_malloc adds information for an allocated
3713 block to the red-black tree with calls to mem_insert, and function
3714 lisp_free removes it with mem_delete. Functions live_string_p etc
3715 call mem_find to lookup information about a given pointer in the
3716 tree, and use that to determine if the pointer points to a Lisp
3717 object or not. */
3718
3719 /* Initialize this part of alloc.c. */
3720
3721 static void
3722 mem_init (void)
3723 {
3724 mem_z.left = mem_z.right = MEM_NIL;
3725 mem_z.parent = NULL;
3726 mem_z.color = MEM_BLACK;
3727 mem_z.start = mem_z.end = NULL;
3728 mem_root = MEM_NIL;
3729 }
3730
3731
3732 /* Value is a pointer to the mem_node containing START. Value is
3733 MEM_NIL if there is no node in the tree containing START. */
3734
3735 static struct mem_node *
3736 mem_find (void *start)
3737 {
3738 struct mem_node *p;
3739
3740 if (start < min_heap_address || start > max_heap_address)
3741 return MEM_NIL;
3742
3743 /* Make the search always successful to speed up the loop below. */
3744 mem_z.start = start;
3745 mem_z.end = (char *) start + 1;
3746
3747 p = mem_root;
3748 while (start < p->start || start >= p->end)
3749 p = start < p->start ? p->left : p->right;
3750 return p;
3751 }
3752
3753
3754 /* Insert a new node into the tree for a block of memory with start
3755 address START, end address END, and type TYPE. Value is a
3756 pointer to the node that was inserted. */
3757
3758 static struct mem_node *
3759 mem_insert (void *start, void *end, enum mem_type type)
3760 {
3761 struct mem_node *c, *parent, *x;
3762
3763 if (min_heap_address == NULL || start < min_heap_address)
3764 min_heap_address = start;
3765 if (max_heap_address == NULL || end > max_heap_address)
3766 max_heap_address = end;
3767
3768 /* See where in the tree a node for START belongs. In this
3769 particular application, it shouldn't happen that a node is already
3770 present. For debugging purposes, let's check that. */
3771 c = mem_root;
3772 parent = NULL;
3773
3774 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3775
3776 while (c != MEM_NIL)
3777 {
3778 if (start >= c->start && start < c->end)
3779 emacs_abort ();
3780 parent = c;
3781 c = start < c->start ? c->left : c->right;
3782 }
3783
3784 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3785
3786 while (c != MEM_NIL)
3787 {
3788 parent = c;
3789 c = start < c->start ? c->left : c->right;
3790 }
3791
3792 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3793
3794 /* Create a new node. */
3795 #ifdef GC_MALLOC_CHECK
3796 x = malloc (sizeof *x);
3797 if (x == NULL)
3798 emacs_abort ();
3799 #else
3800 x = xmalloc (sizeof *x);
3801 #endif
3802 x->start = start;
3803 x->end = end;
3804 x->type = type;
3805 x->parent = parent;
3806 x->left = x->right = MEM_NIL;
3807 x->color = MEM_RED;
3808
3809 /* Insert it as child of PARENT or install it as root. */
3810 if (parent)
3811 {
3812 if (start < parent->start)
3813 parent->left = x;
3814 else
3815 parent->right = x;
3816 }
3817 else
3818 mem_root = x;
3819
3820 /* Re-establish red-black tree properties. */
3821 mem_insert_fixup (x);
3822
3823 return x;
3824 }
3825
3826
3827 /* Re-establish the red-black properties of the tree, and thereby
3828 balance the tree, after node X has been inserted; X is always red. */
3829
3830 static void
3831 mem_insert_fixup (struct mem_node *x)
3832 {
3833 while (x != mem_root && x->parent->color == MEM_RED)
3834 {
3835 /* X is red and its parent is red. This is a violation of
3836 red-black tree property #3. */
3837
3838 if (x->parent == x->parent->parent->left)
3839 {
3840 /* We're on the left side of our grandparent, and Y is our
3841 "uncle". */
3842 struct mem_node *y = x->parent->parent->right;
3843
3844 if (y->color == MEM_RED)
3845 {
3846 /* Uncle and parent are red but should be black because
3847 X is red. Change the colors accordingly and proceed
3848 with the grandparent. */
3849 x->parent->color = MEM_BLACK;
3850 y->color = MEM_BLACK;
3851 x->parent->parent->color = MEM_RED;
3852 x = x->parent->parent;
3853 }
3854 else
3855 {
3856 /* Parent and uncle have different colors; parent is
3857 red, uncle is black. */
3858 if (x == x->parent->right)
3859 {
3860 x = x->parent;
3861 mem_rotate_left (x);
3862 }
3863
3864 x->parent->color = MEM_BLACK;
3865 x->parent->parent->color = MEM_RED;
3866 mem_rotate_right (x->parent->parent);
3867 }
3868 }
3869 else
3870 {
3871 /* This is the symmetrical case of above. */
3872 struct mem_node *y = x->parent->parent->left;
3873
3874 if (y->color == MEM_RED)
3875 {
3876 x->parent->color = MEM_BLACK;
3877 y->color = MEM_BLACK;
3878 x->parent->parent->color = MEM_RED;
3879 x = x->parent->parent;
3880 }
3881 else
3882 {
3883 if (x == x->parent->left)
3884 {
3885 x = x->parent;
3886 mem_rotate_right (x);
3887 }
3888
3889 x->parent->color = MEM_BLACK;
3890 x->parent->parent->color = MEM_RED;
3891 mem_rotate_left (x->parent->parent);
3892 }
3893 }
3894 }
3895
3896 /* The root may have been changed to red due to the algorithm. Set
3897 it to black so that property #5 is satisfied. */
3898 mem_root->color = MEM_BLACK;
3899 }
3900
3901
3902 /* (x) (y)
3903 / \ / \
3904 a (y) ===> (x) c
3905 / \ / \
3906 b c a b */
3907
3908 static void
3909 mem_rotate_left (struct mem_node *x)
3910 {
3911 struct mem_node *y;
3912
3913 /* Turn y's left sub-tree into x's right sub-tree. */
3914 y = x->right;
3915 x->right = y->left;
3916 if (y->left != MEM_NIL)
3917 y->left->parent = x;
3918
3919 /* Y's parent was x's parent. */
3920 if (y != MEM_NIL)
3921 y->parent = x->parent;
3922
3923 /* Get the parent to point to y instead of x. */
3924 if (x->parent)
3925 {
3926 if (x == x->parent->left)
3927 x->parent->left = y;
3928 else
3929 x->parent->right = y;
3930 }
3931 else
3932 mem_root = y;
3933
3934 /* Put x on y's left. */
3935 y->left = x;
3936 if (x != MEM_NIL)
3937 x->parent = y;
3938 }
3939
3940
3941 /* (x) (Y)
3942 / \ / \
3943 (y) c ===> a (x)
3944 / \ / \
3945 a b b c */
3946
3947 static void
3948 mem_rotate_right (struct mem_node *x)
3949 {
3950 struct mem_node *y = x->left;
3951
3952 x->left = y->right;
3953 if (y->right != MEM_NIL)
3954 y->right->parent = x;
3955
3956 if (y != MEM_NIL)
3957 y->parent = x->parent;
3958 if (x->parent)
3959 {
3960 if (x == x->parent->right)
3961 x->parent->right = y;
3962 else
3963 x->parent->left = y;
3964 }
3965 else
3966 mem_root = y;
3967
3968 y->right = x;
3969 if (x != MEM_NIL)
3970 x->parent = y;
3971 }
3972
3973
3974 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3975
3976 static void
3977 mem_delete (struct mem_node *z)
3978 {
3979 struct mem_node *x, *y;
3980
3981 if (!z || z == MEM_NIL)
3982 return;
3983
3984 if (z->left == MEM_NIL || z->right == MEM_NIL)
3985 y = z;
3986 else
3987 {
3988 y = z->right;
3989 while (y->left != MEM_NIL)
3990 y = y->left;
3991 }
3992
3993 if (y->left != MEM_NIL)
3994 x = y->left;
3995 else
3996 x = y->right;
3997
3998 x->parent = y->parent;
3999 if (y->parent)
4000 {
4001 if (y == y->parent->left)
4002 y->parent->left = x;
4003 else
4004 y->parent->right = x;
4005 }
4006 else
4007 mem_root = x;
4008
4009 if (y != z)
4010 {
4011 z->start = y->start;
4012 z->end = y->end;
4013 z->type = y->type;
4014 }
4015
4016 if (y->color == MEM_BLACK)
4017 mem_delete_fixup (x);
4018
4019 #ifdef GC_MALLOC_CHECK
4020 free (y);
4021 #else
4022 xfree (y);
4023 #endif
4024 }
4025
4026
4027 /* Re-establish the red-black properties of the tree, after a
4028 deletion. */
4029
4030 static void
4031 mem_delete_fixup (struct mem_node *x)
4032 {
4033 while (x != mem_root && x->color == MEM_BLACK)
4034 {
4035 if (x == x->parent->left)
4036 {
4037 struct mem_node *w = x->parent->right;
4038
4039 if (w->color == MEM_RED)
4040 {
4041 w->color = MEM_BLACK;
4042 x->parent->color = MEM_RED;
4043 mem_rotate_left (x->parent);
4044 w = x->parent->right;
4045 }
4046
4047 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4048 {
4049 w->color = MEM_RED;
4050 x = x->parent;
4051 }
4052 else
4053 {
4054 if (w->right->color == MEM_BLACK)
4055 {
4056 w->left->color = MEM_BLACK;
4057 w->color = MEM_RED;
4058 mem_rotate_right (w);
4059 w = x->parent->right;
4060 }
4061 w->color = x->parent->color;
4062 x->parent->color = MEM_BLACK;
4063 w->right->color = MEM_BLACK;
4064 mem_rotate_left (x->parent);
4065 x = mem_root;
4066 }
4067 }
4068 else
4069 {
4070 struct mem_node *w = x->parent->left;
4071
4072 if (w->color == MEM_RED)
4073 {
4074 w->color = MEM_BLACK;
4075 x->parent->color = MEM_RED;
4076 mem_rotate_right (x->parent);
4077 w = x->parent->left;
4078 }
4079
4080 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4081 {
4082 w->color = MEM_RED;
4083 x = x->parent;
4084 }
4085 else
4086 {
4087 if (w->left->color == MEM_BLACK)
4088 {
4089 w->right->color = MEM_BLACK;
4090 w->color = MEM_RED;
4091 mem_rotate_left (w);
4092 w = x->parent->left;
4093 }
4094
4095 w->color = x->parent->color;
4096 x->parent->color = MEM_BLACK;
4097 w->left->color = MEM_BLACK;
4098 mem_rotate_right (x->parent);
4099 x = mem_root;
4100 }
4101 }
4102 }
4103
4104 x->color = MEM_BLACK;
4105 }
4106
4107
4108 /* Value is non-zero if P is a pointer to a live Lisp string on
4109 the heap. M is a pointer to the mem_block for P. */
4110
4111 static bool
4112 live_string_p (struct mem_node *m, void *p)
4113 {
4114 if (m->type == MEM_TYPE_STRING)
4115 {
4116 struct string_block *b = m->start;
4117 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4118
4119 /* P must point to the start of a Lisp_String structure, and it
4120 must not be on the free-list. */
4121 return (offset >= 0
4122 && offset % sizeof b->strings[0] == 0
4123 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4124 && ((struct Lisp_String *) p)->data != NULL);
4125 }
4126 else
4127 return 0;
4128 }
4129
4130
4131 /* Value is non-zero if P is a pointer to a live Lisp cons on
4132 the heap. M is a pointer to the mem_block for P. */
4133
4134 static bool
4135 live_cons_p (struct mem_node *m, void *p)
4136 {
4137 if (m->type == MEM_TYPE_CONS)
4138 {
4139 struct cons_block *b = m->start;
4140 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4141
4142 /* P must point to the start of a Lisp_Cons, not be
4143 one of the unused cells in the current cons block,
4144 and not be on the free-list. */
4145 return (offset >= 0
4146 && offset % sizeof b->conses[0] == 0
4147 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4148 && (b != cons_block
4149 || offset / sizeof b->conses[0] < cons_block_index)
4150 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4151 }
4152 else
4153 return 0;
4154 }
4155
4156
4157 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4158 the heap. M is a pointer to the mem_block for P. */
4159
4160 static bool
4161 live_symbol_p (struct mem_node *m, void *p)
4162 {
4163 if (m->type == MEM_TYPE_SYMBOL)
4164 {
4165 struct symbol_block *b = m->start;
4166 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4167
4168 /* P must point to the start of a Lisp_Symbol, not be
4169 one of the unused cells in the current symbol block,
4170 and not be on the free-list. */
4171 return (offset >= 0
4172 && offset % sizeof b->symbols[0] == 0
4173 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4174 && (b != symbol_block
4175 || offset / sizeof b->symbols[0] < symbol_block_index)
4176 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4177 }
4178 else
4179 return 0;
4180 }
4181
4182
4183 /* Value is non-zero if P is a pointer to a live Lisp float on
4184 the heap. M is a pointer to the mem_block for P. */
4185
4186 static bool
4187 live_float_p (struct mem_node *m, void *p)
4188 {
4189 if (m->type == MEM_TYPE_FLOAT)
4190 {
4191 struct float_block *b = m->start;
4192 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4193
4194 /* P must point to the start of a Lisp_Float and not be
4195 one of the unused cells in the current float block. */
4196 return (offset >= 0
4197 && offset % sizeof b->floats[0] == 0
4198 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4199 && (b != float_block
4200 || offset / sizeof b->floats[0] < float_block_index));
4201 }
4202 else
4203 return 0;
4204 }
4205
4206
4207 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4208 the heap. M is a pointer to the mem_block for P. */
4209
4210 static bool
4211 live_misc_p (struct mem_node *m, void *p)
4212 {
4213 if (m->type == MEM_TYPE_MISC)
4214 {
4215 struct marker_block *b = m->start;
4216 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4217
4218 /* P must point to the start of a Lisp_Misc, not be
4219 one of the unused cells in the current misc block,
4220 and not be on the free-list. */
4221 return (offset >= 0
4222 && offset % sizeof b->markers[0] == 0
4223 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4224 && (b != marker_block
4225 || offset / sizeof b->markers[0] < marker_block_index)
4226 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4227 }
4228 else
4229 return 0;
4230 }
4231
4232
4233 /* Value is non-zero if P is a pointer to a live vector-like object.
4234 M is a pointer to the mem_block for P. */
4235
4236 static bool
4237 live_vector_p (struct mem_node *m, void *p)
4238 {
4239 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4240 {
4241 /* This memory node corresponds to a vector block. */
4242 struct vector_block *block = m->start;
4243 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4244
4245 /* P is in the block's allocation range. Scan the block
4246 up to P and see whether P points to the start of some
4247 vector which is not on a free list. FIXME: check whether
4248 some allocation patterns (probably a lot of short vectors)
4249 may cause a substantial overhead of this loop. */
4250 while (VECTOR_IN_BLOCK (vector, block)
4251 && vector <= (struct Lisp_Vector *) p)
4252 {
4253 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4254 return 1;
4255 else
4256 vector = ADVANCE (vector, vector_nbytes (vector));
4257 }
4258 }
4259 else if (m->type == MEM_TYPE_VECTORLIKE
4260 && (char *) p == ((char *) m->start
4261 + offsetof (struct large_vector, v)))
4262 /* This memory node corresponds to a large vector. */
4263 return 1;
4264 return 0;
4265 }
4266
4267
4268 /* Value is non-zero if P is a pointer to a live buffer. M is a
4269 pointer to the mem_block for P. */
4270
4271 static bool
4272 live_buffer_p (struct mem_node *m, void *p)
4273 {
4274 /* P must point to the start of the block, and the buffer
4275 must not have been killed. */
4276 return (m->type == MEM_TYPE_BUFFER
4277 && p == m->start
4278 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4279 }
4280
4281 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4282
4283 #if GC_MARK_STACK
4284
4285 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4286
4287 /* Currently not used, but may be called from gdb. */
4288
4289 void dump_zombies (void) EXTERNALLY_VISIBLE;
4290
4291 /* Array of objects that are kept alive because the C stack contains
4292 a pattern that looks like a reference to them . */
4293
4294 #define MAX_ZOMBIES 10
4295 static Lisp_Object zombies[MAX_ZOMBIES];
4296
4297 /* Number of zombie objects. */
4298
4299 static EMACS_INT nzombies;
4300
4301 /* Number of garbage collections. */
4302
4303 static EMACS_INT ngcs;
4304
4305 /* Average percentage of zombies per collection. */
4306
4307 static double avg_zombies;
4308
4309 /* Max. number of live and zombie objects. */
4310
4311 static EMACS_INT max_live, max_zombies;
4312
4313 /* Average number of live objects per GC. */
4314
4315 static double avg_live;
4316
4317 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4318 doc: /* Show information about live and zombie objects. */)
4319 (void)
4320 {
4321 Lisp_Object args[8], zombie_list = Qnil;
4322 EMACS_INT i;
4323 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4324 zombie_list = Fcons (zombies[i], zombie_list);
4325 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4326 args[1] = make_number (ngcs);
4327 args[2] = make_float (avg_live);
4328 args[3] = make_float (avg_zombies);
4329 args[4] = make_float (avg_zombies / avg_live / 100);
4330 args[5] = make_number (max_live);
4331 args[6] = make_number (max_zombies);
4332 args[7] = zombie_list;
4333 return Fmessage (8, args);
4334 }
4335
4336 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4337
4338
4339 /* Mark OBJ if we can prove it's a Lisp_Object. */
4340
4341 static void
4342 mark_maybe_object (Lisp_Object obj)
4343 {
4344 void *po;
4345 struct mem_node *m;
4346
4347 #if USE_VALGRIND
4348 if (valgrind_p)
4349 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4350 #endif
4351
4352 if (INTEGERP (obj))
4353 return;
4354
4355 po = (void *) XPNTR (obj);
4356 m = mem_find (po);
4357
4358 if (m != MEM_NIL)
4359 {
4360 bool mark_p = 0;
4361
4362 switch (XTYPE (obj))
4363 {
4364 case Lisp_String:
4365 mark_p = (live_string_p (m, po)
4366 && !STRING_MARKED_P ((struct Lisp_String *) po));
4367 break;
4368
4369 case Lisp_Cons:
4370 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4371 break;
4372
4373 case Lisp_Symbol:
4374 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4375 break;
4376
4377 case Lisp_Float:
4378 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4379 break;
4380
4381 case Lisp_Vectorlike:
4382 /* Note: can't check BUFFERP before we know it's a
4383 buffer because checking that dereferences the pointer
4384 PO which might point anywhere. */
4385 if (live_vector_p (m, po))
4386 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4387 else if (live_buffer_p (m, po))
4388 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4389 break;
4390
4391 case Lisp_Misc:
4392 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4393 break;
4394
4395 default:
4396 break;
4397 }
4398
4399 if (mark_p)
4400 {
4401 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4402 if (nzombies < MAX_ZOMBIES)
4403 zombies[nzombies] = obj;
4404 ++nzombies;
4405 #endif
4406 mark_object (obj);
4407 }
4408 }
4409 }
4410
4411
4412 /* If P points to Lisp data, mark that as live if it isn't already
4413 marked. */
4414
4415 static void
4416 mark_maybe_pointer (void *p)
4417 {
4418 struct mem_node *m;
4419
4420 #if USE_VALGRIND
4421 if (valgrind_p)
4422 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4423 #endif
4424
4425 /* Quickly rule out some values which can't point to Lisp data.
4426 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4427 Otherwise, assume that Lisp data is aligned on even addresses. */
4428 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4429 return;
4430
4431 m = mem_find (p);
4432 if (m != MEM_NIL)
4433 {
4434 Lisp_Object obj = Qnil;
4435
4436 switch (m->type)
4437 {
4438 case MEM_TYPE_NON_LISP:
4439 case MEM_TYPE_SPARE:
4440 /* Nothing to do; not a pointer to Lisp memory. */
4441 break;
4442
4443 case MEM_TYPE_BUFFER:
4444 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4445 XSETVECTOR (obj, p);
4446 break;
4447
4448 case MEM_TYPE_CONS:
4449 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4450 XSETCONS (obj, p);
4451 break;
4452
4453 case MEM_TYPE_STRING:
4454 if (live_string_p (m, p)
4455 && !STRING_MARKED_P ((struct Lisp_String *) p))
4456 XSETSTRING (obj, p);
4457 break;
4458
4459 case MEM_TYPE_MISC:
4460 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4461 XSETMISC (obj, p);
4462 break;
4463
4464 case MEM_TYPE_SYMBOL:
4465 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4466 XSETSYMBOL (obj, p);
4467 break;
4468
4469 case MEM_TYPE_FLOAT:
4470 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4471 XSETFLOAT (obj, p);
4472 break;
4473
4474 case MEM_TYPE_VECTORLIKE:
4475 case MEM_TYPE_VECTOR_BLOCK:
4476 if (live_vector_p (m, p))
4477 {
4478 Lisp_Object tem;
4479 XSETVECTOR (tem, p);
4480 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4481 obj = tem;
4482 }
4483 break;
4484
4485 default:
4486 emacs_abort ();
4487 }
4488
4489 if (!NILP (obj))
4490 mark_object (obj);
4491 }
4492 }
4493
4494
4495 /* Alignment of pointer values. Use alignof, as it sometimes returns
4496 a smaller alignment than GCC's __alignof__ and mark_memory might
4497 miss objects if __alignof__ were used. */
4498 #define GC_POINTER_ALIGNMENT alignof (void *)
4499
4500 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4501 not suffice, which is the typical case. A host where a Lisp_Object is
4502 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4503 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4504 suffice to widen it to to a Lisp_Object and check it that way. */
4505 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4506 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4507 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4508 nor mark_maybe_object can follow the pointers. This should not occur on
4509 any practical porting target. */
4510 # error "MSB type bits straddle pointer-word boundaries"
4511 # endif
4512 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4513 pointer words that hold pointers ORed with type bits. */
4514 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4515 #else
4516 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4517 words that hold unmodified pointers. */
4518 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4519 #endif
4520
4521 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4522 or END+OFFSET..START. */
4523
4524 static void
4525 mark_memory (void *start, void *end)
4526 #if defined (__clang__) && defined (__has_feature)
4527 #if __has_feature(address_sanitizer)
4528 /* Do not allow -faddress-sanitizer to check this function, since it
4529 crosses the function stack boundary, and thus would yield many
4530 false positives. */
4531 __attribute__((no_address_safety_analysis))
4532 #endif
4533 #endif
4534 {
4535 void **pp;
4536 int i;
4537
4538 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4539 nzombies = 0;
4540 #endif
4541
4542 /* Make START the pointer to the start of the memory region,
4543 if it isn't already. */
4544 if (end < start)
4545 {
4546 void *tem = start;
4547 start = end;
4548 end = tem;
4549 }
4550
4551 /* Mark Lisp data pointed to. This is necessary because, in some
4552 situations, the C compiler optimizes Lisp objects away, so that
4553 only a pointer to them remains. Example:
4554
4555 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4556 ()
4557 {
4558 Lisp_Object obj = build_string ("test");
4559 struct Lisp_String *s = XSTRING (obj);
4560 Fgarbage_collect ();
4561 fprintf (stderr, "test `%s'\n", s->data);
4562 return Qnil;
4563 }
4564
4565 Here, `obj' isn't really used, and the compiler optimizes it
4566 away. The only reference to the life string is through the
4567 pointer `s'. */
4568
4569 for (pp = start; (void *) pp < end; pp++)
4570 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4571 {
4572 void *p = *(void **) ((char *) pp + i);
4573 mark_maybe_pointer (p);
4574 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4575 mark_maybe_object (XIL ((intptr_t) p));
4576 }
4577 }
4578
4579 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4580
4581 static bool setjmp_tested_p;
4582 static int longjmps_done;
4583
4584 #define SETJMP_WILL_LIKELY_WORK "\
4585 \n\
4586 Emacs garbage collector has been changed to use conservative stack\n\
4587 marking. Emacs has determined that the method it uses to do the\n\
4588 marking will likely work on your system, but this isn't sure.\n\
4589 \n\
4590 If you are a system-programmer, or can get the help of a local wizard\n\
4591 who is, please take a look at the function mark_stack in alloc.c, and\n\
4592 verify that the methods used are appropriate for your system.\n\
4593 \n\
4594 Please mail the result to <emacs-devel@gnu.org>.\n\
4595 "
4596
4597 #define SETJMP_WILL_NOT_WORK "\
4598 \n\
4599 Emacs garbage collector has been changed to use conservative stack\n\
4600 marking. Emacs has determined that the default method it uses to do the\n\
4601 marking will not work on your system. We will need a system-dependent\n\
4602 solution for your system.\n\
4603 \n\
4604 Please take a look at the function mark_stack in alloc.c, and\n\
4605 try to find a way to make it work on your system.\n\
4606 \n\
4607 Note that you may get false negatives, depending on the compiler.\n\
4608 In particular, you need to use -O with GCC for this test.\n\
4609 \n\
4610 Please mail the result to <emacs-devel@gnu.org>.\n\
4611 "
4612
4613
4614 /* Perform a quick check if it looks like setjmp saves registers in a
4615 jmp_buf. Print a message to stderr saying so. When this test
4616 succeeds, this is _not_ a proof that setjmp is sufficient for
4617 conservative stack marking. Only the sources or a disassembly
4618 can prove that. */
4619
4620 static void
4621 test_setjmp (void)
4622 {
4623 char buf[10];
4624 register int x;
4625 sys_jmp_buf jbuf;
4626
4627 /* Arrange for X to be put in a register. */
4628 sprintf (buf, "1");
4629 x = strlen (buf);
4630 x = 2 * x - 1;
4631
4632 sys_setjmp (jbuf);
4633 if (longjmps_done == 1)
4634 {
4635 /* Came here after the longjmp at the end of the function.
4636
4637 If x == 1, the longjmp has restored the register to its
4638 value before the setjmp, and we can hope that setjmp
4639 saves all such registers in the jmp_buf, although that
4640 isn't sure.
4641
4642 For other values of X, either something really strange is
4643 taking place, or the setjmp just didn't save the register. */
4644
4645 if (x == 1)
4646 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4647 else
4648 {
4649 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4650 exit (1);
4651 }
4652 }
4653
4654 ++longjmps_done;
4655 x = 2;
4656 if (longjmps_done == 1)
4657 sys_longjmp (jbuf, 1);
4658 }
4659
4660 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4661
4662
4663 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4664
4665 /* Abort if anything GCPRO'd doesn't survive the GC. */
4666
4667 static void
4668 check_gcpros (void)
4669 {
4670 struct gcpro *p;
4671 ptrdiff_t i;
4672
4673 for (p = gcprolist; p; p = p->next)
4674 for (i = 0; i < p->nvars; ++i)
4675 if (!survives_gc_p (p->var[i]))
4676 /* FIXME: It's not necessarily a bug. It might just be that the
4677 GCPRO is unnecessary or should release the object sooner. */
4678 emacs_abort ();
4679 }
4680
4681 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4682
4683 void
4684 dump_zombies (void)
4685 {
4686 int i;
4687
4688 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4689 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4690 {
4691 fprintf (stderr, " %d = ", i);
4692 debug_print (zombies[i]);
4693 }
4694 }
4695
4696 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4697
4698
4699 /* Mark live Lisp objects on the C stack.
4700
4701 There are several system-dependent problems to consider when
4702 porting this to new architectures:
4703
4704 Processor Registers
4705
4706 We have to mark Lisp objects in CPU registers that can hold local
4707 variables or are used to pass parameters.
4708
4709 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4710 something that either saves relevant registers on the stack, or
4711 calls mark_maybe_object passing it each register's contents.
4712
4713 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4714 implementation assumes that calling setjmp saves registers we need
4715 to see in a jmp_buf which itself lies on the stack. This doesn't
4716 have to be true! It must be verified for each system, possibly
4717 by taking a look at the source code of setjmp.
4718
4719 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4720 can use it as a machine independent method to store all registers
4721 to the stack. In this case the macros described in the previous
4722 two paragraphs are not used.
4723
4724 Stack Layout
4725
4726 Architectures differ in the way their processor stack is organized.
4727 For example, the stack might look like this
4728
4729 +----------------+
4730 | Lisp_Object | size = 4
4731 +----------------+
4732 | something else | size = 2
4733 +----------------+
4734 | Lisp_Object | size = 4
4735 +----------------+
4736 | ... |
4737
4738 In such a case, not every Lisp_Object will be aligned equally. To
4739 find all Lisp_Object on the stack it won't be sufficient to walk
4740 the stack in steps of 4 bytes. Instead, two passes will be
4741 necessary, one starting at the start of the stack, and a second
4742 pass starting at the start of the stack + 2. Likewise, if the
4743 minimal alignment of Lisp_Objects on the stack is 1, four passes
4744 would be necessary, each one starting with one byte more offset
4745 from the stack start. */
4746
4747 static void
4748 mark_stack (void)
4749 {
4750 void *end;
4751
4752 #ifdef HAVE___BUILTIN_UNWIND_INIT
4753 /* Force callee-saved registers and register windows onto the stack.
4754 This is the preferred method if available, obviating the need for
4755 machine dependent methods. */
4756 __builtin_unwind_init ();
4757 end = &end;
4758 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4759 #ifndef GC_SAVE_REGISTERS_ON_STACK
4760 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4761 union aligned_jmpbuf {
4762 Lisp_Object o;
4763 sys_jmp_buf j;
4764 } j;
4765 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4766 #endif
4767 /* This trick flushes the register windows so that all the state of
4768 the process is contained in the stack. */
4769 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4770 needed on ia64 too. See mach_dep.c, where it also says inline
4771 assembler doesn't work with relevant proprietary compilers. */
4772 #ifdef __sparc__
4773 #if defined (__sparc64__) && defined (__FreeBSD__)
4774 /* FreeBSD does not have a ta 3 handler. */
4775 asm ("flushw");
4776 #else
4777 asm ("ta 3");
4778 #endif
4779 #endif
4780
4781 /* Save registers that we need to see on the stack. We need to see
4782 registers used to hold register variables and registers used to
4783 pass parameters. */
4784 #ifdef GC_SAVE_REGISTERS_ON_STACK
4785 GC_SAVE_REGISTERS_ON_STACK (end);
4786 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4787
4788 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4789 setjmp will definitely work, test it
4790 and print a message with the result
4791 of the test. */
4792 if (!setjmp_tested_p)
4793 {
4794 setjmp_tested_p = 1;
4795 test_setjmp ();
4796 }
4797 #endif /* GC_SETJMP_WORKS */
4798
4799 sys_setjmp (j.j);
4800 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4801 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4802 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4803
4804 /* This assumes that the stack is a contiguous region in memory. If
4805 that's not the case, something has to be done here to iterate
4806 over the stack segments. */
4807 mark_memory (stack_base, end);
4808
4809 /* Allow for marking a secondary stack, like the register stack on the
4810 ia64. */
4811 #ifdef GC_MARK_SECONDARY_STACK
4812 GC_MARK_SECONDARY_STACK ();
4813 #endif
4814
4815 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4816 check_gcpros ();
4817 #endif
4818 }
4819
4820 #else /* GC_MARK_STACK == 0 */
4821
4822 #define mark_maybe_object(obj) emacs_abort ()
4823
4824 #endif /* GC_MARK_STACK != 0 */
4825
4826
4827 /* Determine whether it is safe to access memory at address P. */
4828 static int
4829 valid_pointer_p (void *p)
4830 {
4831 #ifdef WINDOWSNT
4832 return w32_valid_pointer_p (p, 16);
4833 #else
4834 int fd[2];
4835
4836 /* Obviously, we cannot just access it (we would SEGV trying), so we
4837 trick the o/s to tell us whether p is a valid pointer.
4838 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4839 not validate p in that case. */
4840
4841 if (emacs_pipe (fd) == 0)
4842 {
4843 bool valid = emacs_write (fd[1], p, 16) == 16;
4844 emacs_close (fd[1]);
4845 emacs_close (fd[0]);
4846 return valid;
4847 }
4848
4849 return -1;
4850 #endif
4851 }
4852
4853 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4854 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4855 cannot validate OBJ. This function can be quite slow, so its primary
4856 use is the manual debugging. The only exception is print_object, where
4857 we use it to check whether the memory referenced by the pointer of
4858 Lisp_Save_Value object contains valid objects. */
4859
4860 int
4861 valid_lisp_object_p (Lisp_Object obj)
4862 {
4863 void *p;
4864 #if GC_MARK_STACK
4865 struct mem_node *m;
4866 #endif
4867
4868 if (INTEGERP (obj))
4869 return 1;
4870
4871 p = (void *) XPNTR (obj);
4872 if (PURE_POINTER_P (p))
4873 return 1;
4874
4875 if (p == &buffer_defaults || p == &buffer_local_symbols)
4876 return 2;
4877
4878 #if !GC_MARK_STACK
4879 return valid_pointer_p (p);
4880 #else
4881
4882 m = mem_find (p);
4883
4884 if (m == MEM_NIL)
4885 {
4886 int valid = valid_pointer_p (p);
4887 if (valid <= 0)
4888 return valid;
4889
4890 if (SUBRP (obj))
4891 return 1;
4892
4893 return 0;
4894 }
4895
4896 switch (m->type)
4897 {
4898 case MEM_TYPE_NON_LISP:
4899 case MEM_TYPE_SPARE:
4900 return 0;
4901
4902 case MEM_TYPE_BUFFER:
4903 return live_buffer_p (m, p) ? 1 : 2;
4904
4905 case MEM_TYPE_CONS:
4906 return live_cons_p (m, p);
4907
4908 case MEM_TYPE_STRING:
4909 return live_string_p (m, p);
4910
4911 case MEM_TYPE_MISC:
4912 return live_misc_p (m, p);
4913
4914 case MEM_TYPE_SYMBOL:
4915 return live_symbol_p (m, p);
4916
4917 case MEM_TYPE_FLOAT:
4918 return live_float_p (m, p);
4919
4920 case MEM_TYPE_VECTORLIKE:
4921 case MEM_TYPE_VECTOR_BLOCK:
4922 return live_vector_p (m, p);
4923
4924 default:
4925 break;
4926 }
4927
4928 return 0;
4929 #endif
4930 }
4931
4932
4933
4934 \f
4935 /***********************************************************************
4936 Pure Storage Management
4937 ***********************************************************************/
4938
4939 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4940 pointer to it. TYPE is the Lisp type for which the memory is
4941 allocated. TYPE < 0 means it's not used for a Lisp object. */
4942
4943 static void *
4944 pure_alloc (size_t size, int type)
4945 {
4946 void *result;
4947 #if USE_LSB_TAG
4948 size_t alignment = GCALIGNMENT;
4949 #else
4950 size_t alignment = alignof (EMACS_INT);
4951
4952 /* Give Lisp_Floats an extra alignment. */
4953 if (type == Lisp_Float)
4954 alignment = alignof (struct Lisp_Float);
4955 #endif
4956
4957 again:
4958 if (type >= 0)
4959 {
4960 /* Allocate space for a Lisp object from the beginning of the free
4961 space with taking account of alignment. */
4962 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4963 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4964 }
4965 else
4966 {
4967 /* Allocate space for a non-Lisp object from the end of the free
4968 space. */
4969 pure_bytes_used_non_lisp += size;
4970 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4971 }
4972 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4973
4974 if (pure_bytes_used <= pure_size)
4975 return result;
4976
4977 /* Don't allocate a large amount here,
4978 because it might get mmap'd and then its address
4979 might not be usable. */
4980 purebeg = xmalloc (10000);
4981 pure_size = 10000;
4982 pure_bytes_used_before_overflow += pure_bytes_used - size;
4983 pure_bytes_used = 0;
4984 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4985 goto again;
4986 }
4987
4988
4989 /* Print a warning if PURESIZE is too small. */
4990
4991 void
4992 check_pure_size (void)
4993 {
4994 if (pure_bytes_used_before_overflow)
4995 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4996 " bytes needed)"),
4997 pure_bytes_used + pure_bytes_used_before_overflow);
4998 }
4999
5000
5001 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5002 the non-Lisp data pool of the pure storage, and return its start
5003 address. Return NULL if not found. */
5004
5005 static char *
5006 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5007 {
5008 int i;
5009 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5010 const unsigned char *p;
5011 char *non_lisp_beg;
5012
5013 if (pure_bytes_used_non_lisp <= nbytes)
5014 return NULL;
5015
5016 /* Set up the Boyer-Moore table. */
5017 skip = nbytes + 1;
5018 for (i = 0; i < 256; i++)
5019 bm_skip[i] = skip;
5020
5021 p = (const unsigned char *) data;
5022 while (--skip > 0)
5023 bm_skip[*p++] = skip;
5024
5025 last_char_skip = bm_skip['\0'];
5026
5027 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5028 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5029
5030 /* See the comments in the function `boyer_moore' (search.c) for the
5031 use of `infinity'. */
5032 infinity = pure_bytes_used_non_lisp + 1;
5033 bm_skip['\0'] = infinity;
5034
5035 p = (const unsigned char *) non_lisp_beg + nbytes;
5036 start = 0;
5037 do
5038 {
5039 /* Check the last character (== '\0'). */
5040 do
5041 {
5042 start += bm_skip[*(p + start)];
5043 }
5044 while (start <= start_max);
5045
5046 if (start < infinity)
5047 /* Couldn't find the last character. */
5048 return NULL;
5049
5050 /* No less than `infinity' means we could find the last
5051 character at `p[start - infinity]'. */
5052 start -= infinity;
5053
5054 /* Check the remaining characters. */
5055 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5056 /* Found. */
5057 return non_lisp_beg + start;
5058
5059 start += last_char_skip;
5060 }
5061 while (start <= start_max);
5062
5063 return NULL;
5064 }
5065
5066
5067 /* Return a string allocated in pure space. DATA is a buffer holding
5068 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5069 means make the result string multibyte.
5070
5071 Must get an error if pure storage is full, since if it cannot hold
5072 a large string it may be able to hold conses that point to that
5073 string; then the string is not protected from gc. */
5074
5075 Lisp_Object
5076 make_pure_string (const char *data,
5077 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5078 {
5079 Lisp_Object string;
5080 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5081 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5082 if (s->data == NULL)
5083 {
5084 s->data = pure_alloc (nbytes + 1, -1);
5085 memcpy (s->data, data, nbytes);
5086 s->data[nbytes] = '\0';
5087 }
5088 s->size = nchars;
5089 s->size_byte = multibyte ? nbytes : -1;
5090 s->intervals = NULL;
5091 XSETSTRING (string, s);
5092 return string;
5093 }
5094
5095 /* Return a string allocated in pure space. Do not
5096 allocate the string data, just point to DATA. */
5097
5098 Lisp_Object
5099 make_pure_c_string (const char *data, ptrdiff_t nchars)
5100 {
5101 Lisp_Object string;
5102 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5103 s->size = nchars;
5104 s->size_byte = -1;
5105 s->data = (unsigned char *) data;
5106 s->intervals = NULL;
5107 XSETSTRING (string, s);
5108 return string;
5109 }
5110
5111 /* Return a cons allocated from pure space. Give it pure copies
5112 of CAR as car and CDR as cdr. */
5113
5114 Lisp_Object
5115 pure_cons (Lisp_Object car, Lisp_Object cdr)
5116 {
5117 Lisp_Object new;
5118 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5119 XSETCONS (new, p);
5120 XSETCAR (new, Fpurecopy (car));
5121 XSETCDR (new, Fpurecopy (cdr));
5122 return new;
5123 }
5124
5125
5126 /* Value is a float object with value NUM allocated from pure space. */
5127
5128 static Lisp_Object
5129 make_pure_float (double num)
5130 {
5131 Lisp_Object new;
5132 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5133 XSETFLOAT (new, p);
5134 XFLOAT_INIT (new, num);
5135 return new;
5136 }
5137
5138
5139 /* Return a vector with room for LEN Lisp_Objects allocated from
5140 pure space. */
5141
5142 static Lisp_Object
5143 make_pure_vector (ptrdiff_t len)
5144 {
5145 Lisp_Object new;
5146 size_t size = header_size + len * word_size;
5147 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5148 XSETVECTOR (new, p);
5149 XVECTOR (new)->header.size = len;
5150 return new;
5151 }
5152
5153
5154 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5155 doc: /* Make a copy of object OBJ in pure storage.
5156 Recursively copies contents of vectors and cons cells.
5157 Does not copy symbols. Copies strings without text properties. */)
5158 (register Lisp_Object obj)
5159 {
5160 if (NILP (Vpurify_flag))
5161 return obj;
5162
5163 if (PURE_POINTER_P (XPNTR (obj)))
5164 return obj;
5165
5166 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5167 {
5168 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5169 if (!NILP (tmp))
5170 return tmp;
5171 }
5172
5173 if (CONSP (obj))
5174 obj = pure_cons (XCAR (obj), XCDR (obj));
5175 else if (FLOATP (obj))
5176 obj = make_pure_float (XFLOAT_DATA (obj));
5177 else if (STRINGP (obj))
5178 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5179 SBYTES (obj),
5180 STRING_MULTIBYTE (obj));
5181 else if (COMPILEDP (obj) || VECTORP (obj))
5182 {
5183 register struct Lisp_Vector *vec;
5184 register ptrdiff_t i;
5185 ptrdiff_t size;
5186
5187 size = ASIZE (obj);
5188 if (size & PSEUDOVECTOR_FLAG)
5189 size &= PSEUDOVECTOR_SIZE_MASK;
5190 vec = XVECTOR (make_pure_vector (size));
5191 for (i = 0; i < size; i++)
5192 vec->u.contents[i] = Fpurecopy (AREF (obj, i));
5193 if (COMPILEDP (obj))
5194 {
5195 XSETPVECTYPE (vec, PVEC_COMPILED);
5196 XSETCOMPILED (obj, vec);
5197 }
5198 else
5199 XSETVECTOR (obj, vec);
5200 }
5201 else if (MARKERP (obj))
5202 error ("Attempt to copy a marker to pure storage");
5203 else
5204 /* Not purified, don't hash-cons. */
5205 return obj;
5206
5207 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5208 Fputhash (obj, obj, Vpurify_flag);
5209
5210 return obj;
5211 }
5212
5213
5214 \f
5215 /***********************************************************************
5216 Protection from GC
5217 ***********************************************************************/
5218
5219 /* Put an entry in staticvec, pointing at the variable with address
5220 VARADDRESS. */
5221
5222 void
5223 staticpro (Lisp_Object *varaddress)
5224 {
5225 if (staticidx >= NSTATICS)
5226 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5227 staticvec[staticidx++] = varaddress;
5228 }
5229
5230 \f
5231 /***********************************************************************
5232 Protection from GC
5233 ***********************************************************************/
5234
5235 /* Temporarily prevent garbage collection. */
5236
5237 ptrdiff_t
5238 inhibit_garbage_collection (void)
5239 {
5240 ptrdiff_t count = SPECPDL_INDEX ();
5241
5242 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5243 return count;
5244 }
5245
5246 /* Used to avoid possible overflows when
5247 converting from C to Lisp integers. */
5248
5249 static Lisp_Object
5250 bounded_number (EMACS_INT number)
5251 {
5252 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5253 }
5254
5255 /* Calculate total bytes of live objects. */
5256
5257 static size_t
5258 total_bytes_of_live_objects (void)
5259 {
5260 size_t tot = 0;
5261 tot += total_conses * sizeof (struct Lisp_Cons);
5262 tot += total_symbols * sizeof (struct Lisp_Symbol);
5263 tot += total_markers * sizeof (union Lisp_Misc);
5264 tot += total_string_bytes;
5265 tot += total_vector_slots * word_size;
5266 tot += total_floats * sizeof (struct Lisp_Float);
5267 tot += total_intervals * sizeof (struct interval);
5268 tot += total_strings * sizeof (struct Lisp_String);
5269 return tot;
5270 }
5271
5272 #ifdef HAVE_WINDOW_SYSTEM
5273
5274 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5275 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5276
5277 static Lisp_Object
5278 compact_font_cache_entry (Lisp_Object entry)
5279 {
5280 Lisp_Object tail, *prev = &entry;
5281
5282 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5283 {
5284 bool drop = 0;
5285 Lisp_Object obj = XCAR (tail);
5286
5287 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5288 if (CONSP (obj) && FONT_SPEC_P (XCAR (obj))
5289 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj)))
5290 && VECTORP (XCDR (obj)))
5291 {
5292 ptrdiff_t i, size = ASIZE (XCDR (obj)) & ~ARRAY_MARK_FLAG;
5293
5294 /* If font-spec is not marked, most likely all font-entities
5295 are not marked too. But we must be sure that nothing is
5296 marked within OBJ before we really drop it. */
5297 for (i = 0; i < size; i++)
5298 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj), i))))
5299 break;
5300
5301 if (i == size)
5302 drop = 1;
5303 }
5304 if (drop)
5305 *prev = XCDR (tail);
5306 else
5307 prev = xcdr_addr (tail);
5308 }
5309 return entry;
5310 }
5311
5312 /* Compact font caches on all terminals and mark
5313 everything which is still here after compaction. */
5314
5315 static void
5316 compact_font_caches (void)
5317 {
5318 struct terminal *t;
5319
5320 for (t = terminal_list; t; t = t->next_terminal)
5321 {
5322 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5323
5324 if (CONSP (cache))
5325 {
5326 Lisp_Object entry;
5327
5328 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5329 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5330 }
5331 mark_object (cache);
5332 }
5333 }
5334
5335 #else /* not HAVE_WINDOW_SYSTEM */
5336
5337 #define compact_font_caches() (void)(0)
5338
5339 #endif /* HAVE_WINDOW_SYSTEM */
5340
5341 /* Remove (MARKER . DATA) entries with unmarked MARKER
5342 from buffer undo LIST and return changed list. */
5343
5344 static Lisp_Object
5345 compact_undo_list (Lisp_Object list)
5346 {
5347 Lisp_Object tail, *prev = &list;
5348
5349 for (tail = list; CONSP (tail); tail = XCDR (tail))
5350 {
5351 if (CONSP (XCAR (tail))
5352 && MARKERP (XCAR (XCAR (tail)))
5353 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5354 *prev = XCDR (tail);
5355 else
5356 prev = xcdr_addr (tail);
5357 }
5358 return list;
5359 }
5360
5361 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5362 doc: /* Reclaim storage for Lisp objects no longer needed.
5363 Garbage collection happens automatically if you cons more than
5364 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5365 `garbage-collect' normally returns a list with info on amount of space in use,
5366 where each entry has the form (NAME SIZE USED FREE), where:
5367 - NAME is a symbol describing the kind of objects this entry represents,
5368 - SIZE is the number of bytes used by each one,
5369 - USED is the number of those objects that were found live in the heap,
5370 - FREE is the number of those objects that are not live but that Emacs
5371 keeps around for future allocations (maybe because it does not know how
5372 to return them to the OS).
5373 However, if there was overflow in pure space, `garbage-collect'
5374 returns nil, because real GC can't be done.
5375 See Info node `(elisp)Garbage Collection'. */)
5376 (void)
5377 {
5378 struct buffer *nextb;
5379 char stack_top_variable;
5380 ptrdiff_t i;
5381 bool message_p;
5382 ptrdiff_t count = SPECPDL_INDEX ();
5383 struct timespec start;
5384 Lisp_Object retval = Qnil;
5385 size_t tot_before = 0;
5386
5387 if (abort_on_gc)
5388 emacs_abort ();
5389
5390 /* Can't GC if pure storage overflowed because we can't determine
5391 if something is a pure object or not. */
5392 if (pure_bytes_used_before_overflow)
5393 return Qnil;
5394
5395 /* Record this function, so it appears on the profiler's backtraces. */
5396 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5397
5398 check_cons_list ();
5399
5400 /* Don't keep undo information around forever.
5401 Do this early on, so it is no problem if the user quits. */
5402 FOR_EACH_BUFFER (nextb)
5403 compact_buffer (nextb);
5404
5405 if (profiler_memory_running)
5406 tot_before = total_bytes_of_live_objects ();
5407
5408 start = current_timespec ();
5409
5410 /* In case user calls debug_print during GC,
5411 don't let that cause a recursive GC. */
5412 consing_since_gc = 0;
5413
5414 /* Save what's currently displayed in the echo area. */
5415 message_p = push_message ();
5416 record_unwind_protect_void (pop_message_unwind);
5417
5418 /* Save a copy of the contents of the stack, for debugging. */
5419 #if MAX_SAVE_STACK > 0
5420 if (NILP (Vpurify_flag))
5421 {
5422 char *stack;
5423 ptrdiff_t stack_size;
5424 if (&stack_top_variable < stack_bottom)
5425 {
5426 stack = &stack_top_variable;
5427 stack_size = stack_bottom - &stack_top_variable;
5428 }
5429 else
5430 {
5431 stack = stack_bottom;
5432 stack_size = &stack_top_variable - stack_bottom;
5433 }
5434 if (stack_size <= MAX_SAVE_STACK)
5435 {
5436 if (stack_copy_size < stack_size)
5437 {
5438 stack_copy = xrealloc (stack_copy, stack_size);
5439 stack_copy_size = stack_size;
5440 }
5441 memcpy (stack_copy, stack, stack_size);
5442 }
5443 }
5444 #endif /* MAX_SAVE_STACK > 0 */
5445
5446 if (garbage_collection_messages)
5447 message1_nolog ("Garbage collecting...");
5448
5449 block_input ();
5450
5451 shrink_regexp_cache ();
5452
5453 gc_in_progress = 1;
5454
5455 /* Mark all the special slots that serve as the roots of accessibility. */
5456
5457 mark_buffer (&buffer_defaults);
5458 mark_buffer (&buffer_local_symbols);
5459
5460 for (i = 0; i < staticidx; i++)
5461 mark_object (*staticvec[i]);
5462
5463 mark_specpdl ();
5464 mark_terminals ();
5465 mark_kboards ();
5466
5467 #ifdef USE_GTK
5468 xg_mark_data ();
5469 #endif
5470
5471 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5472 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5473 mark_stack ();
5474 #else
5475 {
5476 register struct gcpro *tail;
5477 for (tail = gcprolist; tail; tail = tail->next)
5478 for (i = 0; i < tail->nvars; i++)
5479 mark_object (tail->var[i]);
5480 }
5481 mark_byte_stack ();
5482 #endif
5483 {
5484 struct handler *handler;
5485 for (handler = handlerlist; handler; handler = handler->next)
5486 {
5487 mark_object (handler->tag_or_ch);
5488 mark_object (handler->val);
5489 }
5490 }
5491 #ifdef HAVE_WINDOW_SYSTEM
5492 mark_fringe_data ();
5493 #endif
5494
5495 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5496 mark_stack ();
5497 #endif
5498
5499 /* Everything is now marked, except for the data in font caches
5500 and undo lists. They're compacted by removing an items which
5501 aren't reachable otherwise. */
5502
5503 compact_font_caches ();
5504
5505 FOR_EACH_BUFFER (nextb)
5506 {
5507 if (!EQ (BVAR (nextb, undo_list), Qt))
5508 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5509 /* Now that we have stripped the elements that need not be
5510 in the undo_list any more, we can finally mark the list. */
5511 mark_object (BVAR (nextb, undo_list));
5512 }
5513
5514 gc_sweep ();
5515
5516 /* Clear the mark bits that we set in certain root slots. */
5517
5518 unmark_byte_stack ();
5519 VECTOR_UNMARK (&buffer_defaults);
5520 VECTOR_UNMARK (&buffer_local_symbols);
5521
5522 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5523 dump_zombies ();
5524 #endif
5525
5526 check_cons_list ();
5527
5528 gc_in_progress = 0;
5529
5530 unblock_input ();
5531
5532 consing_since_gc = 0;
5533 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5534 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5535
5536 gc_relative_threshold = 0;
5537 if (FLOATP (Vgc_cons_percentage))
5538 { /* Set gc_cons_combined_threshold. */
5539 double tot = total_bytes_of_live_objects ();
5540
5541 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5542 if (0 < tot)
5543 {
5544 if (tot < TYPE_MAXIMUM (EMACS_INT))
5545 gc_relative_threshold = tot;
5546 else
5547 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5548 }
5549 }
5550
5551 if (garbage_collection_messages)
5552 {
5553 if (message_p || minibuf_level > 0)
5554 restore_message ();
5555 else
5556 message1_nolog ("Garbage collecting...done");
5557 }
5558
5559 unbind_to (count, Qnil);
5560 {
5561 Lisp_Object total[11];
5562 int total_size = 10;
5563
5564 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5565 bounded_number (total_conses),
5566 bounded_number (total_free_conses));
5567
5568 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5569 bounded_number (total_symbols),
5570 bounded_number (total_free_symbols));
5571
5572 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5573 bounded_number (total_markers),
5574 bounded_number (total_free_markers));
5575
5576 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5577 bounded_number (total_strings),
5578 bounded_number (total_free_strings));
5579
5580 total[4] = list3 (Qstring_bytes, make_number (1),
5581 bounded_number (total_string_bytes));
5582
5583 total[5] = list3 (Qvectors,
5584 make_number (header_size + sizeof (Lisp_Object)),
5585 bounded_number (total_vectors));
5586
5587 total[6] = list4 (Qvector_slots, make_number (word_size),
5588 bounded_number (total_vector_slots),
5589 bounded_number (total_free_vector_slots));
5590
5591 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5592 bounded_number (total_floats),
5593 bounded_number (total_free_floats));
5594
5595 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5596 bounded_number (total_intervals),
5597 bounded_number (total_free_intervals));
5598
5599 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5600 bounded_number (total_buffers));
5601
5602 #ifdef DOUG_LEA_MALLOC
5603 total_size++;
5604 total[10] = list4 (Qheap, make_number (1024),
5605 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5606 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5607 #endif
5608 retval = Flist (total_size, total);
5609 }
5610
5611 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5612 {
5613 /* Compute average percentage of zombies. */
5614 double nlive
5615 = (total_conses + total_symbols + total_markers + total_strings
5616 + total_vectors + total_floats + total_intervals + total_buffers);
5617
5618 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5619 max_live = max (nlive, max_live);
5620 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5621 max_zombies = max (nzombies, max_zombies);
5622 ++ngcs;
5623 }
5624 #endif
5625
5626 if (!NILP (Vpost_gc_hook))
5627 {
5628 ptrdiff_t gc_count = inhibit_garbage_collection ();
5629 safe_run_hooks (Qpost_gc_hook);
5630 unbind_to (gc_count, Qnil);
5631 }
5632
5633 /* Accumulate statistics. */
5634 if (FLOATP (Vgc_elapsed))
5635 {
5636 struct timespec since_start = timespec_sub (current_timespec (), start);
5637 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5638 + timespectod (since_start));
5639 }
5640
5641 gcs_done++;
5642
5643 /* Collect profiling data. */
5644 if (profiler_memory_running)
5645 {
5646 size_t swept = 0;
5647 size_t tot_after = total_bytes_of_live_objects ();
5648 if (tot_before > tot_after)
5649 swept = tot_before - tot_after;
5650 malloc_probe (swept);
5651 }
5652
5653 return retval;
5654 }
5655
5656
5657 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5658 only interesting objects referenced from glyphs are strings. */
5659
5660 static void
5661 mark_glyph_matrix (struct glyph_matrix *matrix)
5662 {
5663 struct glyph_row *row = matrix->rows;
5664 struct glyph_row *end = row + matrix->nrows;
5665
5666 for (; row < end; ++row)
5667 if (row->enabled_p)
5668 {
5669 int area;
5670 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5671 {
5672 struct glyph *glyph = row->glyphs[area];
5673 struct glyph *end_glyph = glyph + row->used[area];
5674
5675 for (; glyph < end_glyph; ++glyph)
5676 if (STRINGP (glyph->object)
5677 && !STRING_MARKED_P (XSTRING (glyph->object)))
5678 mark_object (glyph->object);
5679 }
5680 }
5681 }
5682
5683 /* Mark reference to a Lisp_Object.
5684 If the object referred to has not been seen yet, recursively mark
5685 all the references contained in it. */
5686
5687 #define LAST_MARKED_SIZE 500
5688 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5689 static int last_marked_index;
5690
5691 /* For debugging--call abort when we cdr down this many
5692 links of a list, in mark_object. In debugging,
5693 the call to abort will hit a breakpoint.
5694 Normally this is zero and the check never goes off. */
5695 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5696
5697 static void
5698 mark_vectorlike (struct Lisp_Vector *ptr)
5699 {
5700 ptrdiff_t size = ptr->header.size;
5701 ptrdiff_t i;
5702
5703 eassert (!VECTOR_MARKED_P (ptr));
5704 VECTOR_MARK (ptr); /* Else mark it. */
5705 if (size & PSEUDOVECTOR_FLAG)
5706 size &= PSEUDOVECTOR_SIZE_MASK;
5707
5708 /* Note that this size is not the memory-footprint size, but only
5709 the number of Lisp_Object fields that we should trace.
5710 The distinction is used e.g. by Lisp_Process which places extra
5711 non-Lisp_Object fields at the end of the structure... */
5712 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5713 mark_object (ptr->u.contents[i]);
5714 }
5715
5716 /* Like mark_vectorlike but optimized for char-tables (and
5717 sub-char-tables) assuming that the contents are mostly integers or
5718 symbols. */
5719
5720 static void
5721 mark_char_table (struct Lisp_Vector *ptr)
5722 {
5723 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5724 int i;
5725
5726 eassert (!VECTOR_MARKED_P (ptr));
5727 VECTOR_MARK (ptr);
5728 for (i = 0; i < size; i++)
5729 {
5730 Lisp_Object val = ptr->u.contents[i];
5731
5732 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5733 continue;
5734 if (SUB_CHAR_TABLE_P (val))
5735 {
5736 if (! VECTOR_MARKED_P (XVECTOR (val)))
5737 mark_char_table (XVECTOR (val));
5738 }
5739 else
5740 mark_object (val);
5741 }
5742 }
5743
5744 /* Mark the chain of overlays starting at PTR. */
5745
5746 static void
5747 mark_overlay (struct Lisp_Overlay *ptr)
5748 {
5749 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5750 {
5751 ptr->gcmarkbit = 1;
5752 mark_object (ptr->start);
5753 mark_object (ptr->end);
5754 mark_object (ptr->plist);
5755 }
5756 }
5757
5758 /* Mark Lisp_Objects and special pointers in BUFFER. */
5759
5760 static void
5761 mark_buffer (struct buffer *buffer)
5762 {
5763 /* This is handled much like other pseudovectors... */
5764 mark_vectorlike ((struct Lisp_Vector *) buffer);
5765
5766 /* ...but there are some buffer-specific things. */
5767
5768 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5769
5770 /* For now, we just don't mark the undo_list. It's done later in
5771 a special way just before the sweep phase, and after stripping
5772 some of its elements that are not needed any more. */
5773
5774 mark_overlay (buffer->overlays_before);
5775 mark_overlay (buffer->overlays_after);
5776
5777 /* If this is an indirect buffer, mark its base buffer. */
5778 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5779 mark_buffer (buffer->base_buffer);
5780 }
5781
5782 /* Mark Lisp faces in the face cache C. */
5783
5784 static void
5785 mark_face_cache (struct face_cache *c)
5786 {
5787 if (c)
5788 {
5789 int i, j;
5790 for (i = 0; i < c->used; ++i)
5791 {
5792 struct face *face = FACE_FROM_ID (c->f, i);
5793
5794 if (face)
5795 {
5796 if (face->font && !VECTOR_MARKED_P (face->font))
5797 mark_vectorlike ((struct Lisp_Vector *) face->font);
5798
5799 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5800 mark_object (face->lface[j]);
5801 }
5802 }
5803 }
5804 }
5805
5806 /* Remove killed buffers or items whose car is a killed buffer from
5807 LIST, and mark other items. Return changed LIST, which is marked. */
5808
5809 static Lisp_Object
5810 mark_discard_killed_buffers (Lisp_Object list)
5811 {
5812 Lisp_Object tail, *prev = &list;
5813
5814 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5815 tail = XCDR (tail))
5816 {
5817 Lisp_Object tem = XCAR (tail);
5818 if (CONSP (tem))
5819 tem = XCAR (tem);
5820 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5821 *prev = XCDR (tail);
5822 else
5823 {
5824 CONS_MARK (XCONS (tail));
5825 mark_object (XCAR (tail));
5826 prev = xcdr_addr (tail);
5827 }
5828 }
5829 mark_object (tail);
5830 return list;
5831 }
5832
5833 /* Determine type of generic Lisp_Object and mark it accordingly. */
5834
5835 void
5836 mark_object (Lisp_Object arg)
5837 {
5838 register Lisp_Object obj = arg;
5839 #ifdef GC_CHECK_MARKED_OBJECTS
5840 void *po;
5841 struct mem_node *m;
5842 #endif
5843 ptrdiff_t cdr_count = 0;
5844
5845 loop:
5846
5847 if (PURE_POINTER_P (XPNTR (obj)))
5848 return;
5849
5850 last_marked[last_marked_index++] = obj;
5851 if (last_marked_index == LAST_MARKED_SIZE)
5852 last_marked_index = 0;
5853
5854 /* Perform some sanity checks on the objects marked here. Abort if
5855 we encounter an object we know is bogus. This increases GC time
5856 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5857 #ifdef GC_CHECK_MARKED_OBJECTS
5858
5859 po = (void *) XPNTR (obj);
5860
5861 /* Check that the object pointed to by PO is known to be a Lisp
5862 structure allocated from the heap. */
5863 #define CHECK_ALLOCATED() \
5864 do { \
5865 m = mem_find (po); \
5866 if (m == MEM_NIL) \
5867 emacs_abort (); \
5868 } while (0)
5869
5870 /* Check that the object pointed to by PO is live, using predicate
5871 function LIVEP. */
5872 #define CHECK_LIVE(LIVEP) \
5873 do { \
5874 if (!LIVEP (m, po)) \
5875 emacs_abort (); \
5876 } while (0)
5877
5878 /* Check both of the above conditions. */
5879 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5880 do { \
5881 CHECK_ALLOCATED (); \
5882 CHECK_LIVE (LIVEP); \
5883 } while (0) \
5884
5885 #else /* not GC_CHECK_MARKED_OBJECTS */
5886
5887 #define CHECK_LIVE(LIVEP) (void) 0
5888 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5889
5890 #endif /* not GC_CHECK_MARKED_OBJECTS */
5891
5892 switch (XTYPE (obj))
5893 {
5894 case Lisp_String:
5895 {
5896 register struct Lisp_String *ptr = XSTRING (obj);
5897 if (STRING_MARKED_P (ptr))
5898 break;
5899 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5900 MARK_STRING (ptr);
5901 MARK_INTERVAL_TREE (ptr->intervals);
5902 #ifdef GC_CHECK_STRING_BYTES
5903 /* Check that the string size recorded in the string is the
5904 same as the one recorded in the sdata structure. */
5905 string_bytes (ptr);
5906 #endif /* GC_CHECK_STRING_BYTES */
5907 }
5908 break;
5909
5910 case Lisp_Vectorlike:
5911 {
5912 register struct Lisp_Vector *ptr = XVECTOR (obj);
5913 register ptrdiff_t pvectype;
5914
5915 if (VECTOR_MARKED_P (ptr))
5916 break;
5917
5918 #ifdef GC_CHECK_MARKED_OBJECTS
5919 m = mem_find (po);
5920 if (m == MEM_NIL && !SUBRP (obj))
5921 emacs_abort ();
5922 #endif /* GC_CHECK_MARKED_OBJECTS */
5923
5924 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5925 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5926 >> PSEUDOVECTOR_AREA_BITS);
5927 else
5928 pvectype = PVEC_NORMAL_VECTOR;
5929
5930 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5931 CHECK_LIVE (live_vector_p);
5932
5933 switch (pvectype)
5934 {
5935 case PVEC_BUFFER:
5936 #ifdef GC_CHECK_MARKED_OBJECTS
5937 {
5938 struct buffer *b;
5939 FOR_EACH_BUFFER (b)
5940 if (b == po)
5941 break;
5942 if (b == NULL)
5943 emacs_abort ();
5944 }
5945 #endif /* GC_CHECK_MARKED_OBJECTS */
5946 mark_buffer ((struct buffer *) ptr);
5947 break;
5948
5949 case PVEC_COMPILED:
5950 { /* We could treat this just like a vector, but it is better
5951 to save the COMPILED_CONSTANTS element for last and avoid
5952 recursion there. */
5953 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5954 int i;
5955
5956 VECTOR_MARK (ptr);
5957 for (i = 0; i < size; i++)
5958 if (i != COMPILED_CONSTANTS)
5959 mark_object (ptr->u.contents[i]);
5960 if (size > COMPILED_CONSTANTS)
5961 {
5962 obj = ptr->u.contents[COMPILED_CONSTANTS];
5963 goto loop;
5964 }
5965 }
5966 break;
5967
5968 case PVEC_FRAME:
5969 {
5970 struct frame *f = (struct frame *) ptr;
5971
5972 mark_vectorlike (ptr);
5973 mark_face_cache (f->face_cache);
5974 #ifdef HAVE_WINDOW_SYSTEM
5975 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
5976 {
5977 struct font *font = FRAME_FONT (f);
5978
5979 if (font && !VECTOR_MARKED_P (font))
5980 mark_vectorlike ((struct Lisp_Vector *) font);
5981 }
5982 #endif
5983 }
5984 break;
5985
5986 case PVEC_WINDOW:
5987 {
5988 struct window *w = (struct window *) ptr;
5989
5990 mark_vectorlike (ptr);
5991
5992 /* Mark glyph matrices, if any. Marking window
5993 matrices is sufficient because frame matrices
5994 use the same glyph memory. */
5995 if (w->current_matrix)
5996 {
5997 mark_glyph_matrix (w->current_matrix);
5998 mark_glyph_matrix (w->desired_matrix);
5999 }
6000
6001 /* Filter out killed buffers from both buffer lists
6002 in attempt to help GC to reclaim killed buffers faster.
6003 We can do it elsewhere for live windows, but this is the
6004 best place to do it for dead windows. */
6005 wset_prev_buffers
6006 (w, mark_discard_killed_buffers (w->prev_buffers));
6007 wset_next_buffers
6008 (w, mark_discard_killed_buffers (w->next_buffers));
6009 }
6010 break;
6011
6012 case PVEC_HASH_TABLE:
6013 {
6014 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6015
6016 mark_vectorlike (ptr);
6017 mark_object (h->test.name);
6018 mark_object (h->test.user_hash_function);
6019 mark_object (h->test.user_cmp_function);
6020 /* If hash table is not weak, mark all keys and values.
6021 For weak tables, mark only the vector. */
6022 if (NILP (h->weak))
6023 mark_object (h->key_and_value);
6024 else
6025 VECTOR_MARK (XVECTOR (h->key_and_value));
6026 }
6027 break;
6028
6029 case PVEC_CHAR_TABLE:
6030 mark_char_table (ptr);
6031 break;
6032
6033 case PVEC_BOOL_VECTOR:
6034 /* No Lisp_Objects to mark in a bool vector. */
6035 VECTOR_MARK (ptr);
6036 break;
6037
6038 case PVEC_SUBR:
6039 break;
6040
6041 case PVEC_FREE:
6042 emacs_abort ();
6043
6044 default:
6045 mark_vectorlike (ptr);
6046 }
6047 }
6048 break;
6049
6050 case Lisp_Symbol:
6051 {
6052 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6053 struct Lisp_Symbol *ptrx;
6054
6055 if (ptr->gcmarkbit)
6056 break;
6057 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6058 ptr->gcmarkbit = 1;
6059 mark_object (ptr->function);
6060 mark_object (ptr->plist);
6061 switch (ptr->redirect)
6062 {
6063 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6064 case SYMBOL_VARALIAS:
6065 {
6066 Lisp_Object tem;
6067 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6068 mark_object (tem);
6069 break;
6070 }
6071 case SYMBOL_LOCALIZED:
6072 {
6073 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6074 Lisp_Object where = blv->where;
6075 /* If the value is set up for a killed buffer or deleted
6076 frame, restore it's global binding. If the value is
6077 forwarded to a C variable, either it's not a Lisp_Object
6078 var, or it's staticpro'd already. */
6079 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6080 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6081 swap_in_global_binding (ptr);
6082 mark_object (blv->where);
6083 mark_object (blv->valcell);
6084 mark_object (blv->defcell);
6085 break;
6086 }
6087 case SYMBOL_FORWARDED:
6088 /* If the value is forwarded to a buffer or keyboard field,
6089 these are marked when we see the corresponding object.
6090 And if it's forwarded to a C variable, either it's not
6091 a Lisp_Object var, or it's staticpro'd already. */
6092 break;
6093 default: emacs_abort ();
6094 }
6095 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6096 MARK_STRING (XSTRING (ptr->name));
6097 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6098
6099 ptr = ptr->next;
6100 if (ptr)
6101 {
6102 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6103 XSETSYMBOL (obj, ptrx);
6104 goto loop;
6105 }
6106 }
6107 break;
6108
6109 case Lisp_Misc:
6110 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6111
6112 if (XMISCANY (obj)->gcmarkbit)
6113 break;
6114
6115 switch (XMISCTYPE (obj))
6116 {
6117 case Lisp_Misc_Marker:
6118 /* DO NOT mark thru the marker's chain.
6119 The buffer's markers chain does not preserve markers from gc;
6120 instead, markers are removed from the chain when freed by gc. */
6121 XMISCANY (obj)->gcmarkbit = 1;
6122 break;
6123
6124 case Lisp_Misc_Save_Value:
6125 XMISCANY (obj)->gcmarkbit = 1;
6126 {
6127 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6128 /* If `save_type' is zero, `data[0].pointer' is the address
6129 of a memory area containing `data[1].integer' potential
6130 Lisp_Objects. */
6131 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6132 {
6133 Lisp_Object *p = ptr->data[0].pointer;
6134 ptrdiff_t nelt;
6135 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6136 mark_maybe_object (*p);
6137 }
6138 else
6139 {
6140 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6141 int i;
6142 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6143 if (save_type (ptr, i) == SAVE_OBJECT)
6144 mark_object (ptr->data[i].object);
6145 }
6146 }
6147 break;
6148
6149 case Lisp_Misc_Overlay:
6150 mark_overlay (XOVERLAY (obj));
6151 break;
6152
6153 default:
6154 emacs_abort ();
6155 }
6156 break;
6157
6158 case Lisp_Cons:
6159 {
6160 register struct Lisp_Cons *ptr = XCONS (obj);
6161 if (CONS_MARKED_P (ptr))
6162 break;
6163 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6164 CONS_MARK (ptr);
6165 /* If the cdr is nil, avoid recursion for the car. */
6166 if (EQ (ptr->u.cdr, Qnil))
6167 {
6168 obj = ptr->car;
6169 cdr_count = 0;
6170 goto loop;
6171 }
6172 mark_object (ptr->car);
6173 obj = ptr->u.cdr;
6174 cdr_count++;
6175 if (cdr_count == mark_object_loop_halt)
6176 emacs_abort ();
6177 goto loop;
6178 }
6179
6180 case Lisp_Float:
6181 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6182 FLOAT_MARK (XFLOAT (obj));
6183 break;
6184
6185 case_Lisp_Int:
6186 break;
6187
6188 default:
6189 emacs_abort ();
6190 }
6191
6192 #undef CHECK_LIVE
6193 #undef CHECK_ALLOCATED
6194 #undef CHECK_ALLOCATED_AND_LIVE
6195 }
6196 /* Mark the Lisp pointers in the terminal objects.
6197 Called by Fgarbage_collect. */
6198
6199 static void
6200 mark_terminals (void)
6201 {
6202 struct terminal *t;
6203 for (t = terminal_list; t; t = t->next_terminal)
6204 {
6205 eassert (t->name != NULL);
6206 #ifdef HAVE_WINDOW_SYSTEM
6207 /* If a terminal object is reachable from a stacpro'ed object,
6208 it might have been marked already. Make sure the image cache
6209 gets marked. */
6210 mark_image_cache (t->image_cache);
6211 #endif /* HAVE_WINDOW_SYSTEM */
6212 if (!VECTOR_MARKED_P (t))
6213 mark_vectorlike ((struct Lisp_Vector *)t);
6214 }
6215 }
6216
6217
6218
6219 /* Value is non-zero if OBJ will survive the current GC because it's
6220 either marked or does not need to be marked to survive. */
6221
6222 bool
6223 survives_gc_p (Lisp_Object obj)
6224 {
6225 bool survives_p;
6226
6227 switch (XTYPE (obj))
6228 {
6229 case_Lisp_Int:
6230 survives_p = 1;
6231 break;
6232
6233 case Lisp_Symbol:
6234 survives_p = XSYMBOL (obj)->gcmarkbit;
6235 break;
6236
6237 case Lisp_Misc:
6238 survives_p = XMISCANY (obj)->gcmarkbit;
6239 break;
6240
6241 case Lisp_String:
6242 survives_p = STRING_MARKED_P (XSTRING (obj));
6243 break;
6244
6245 case Lisp_Vectorlike:
6246 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6247 break;
6248
6249 case Lisp_Cons:
6250 survives_p = CONS_MARKED_P (XCONS (obj));
6251 break;
6252
6253 case Lisp_Float:
6254 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6255 break;
6256
6257 default:
6258 emacs_abort ();
6259 }
6260
6261 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6262 }
6263
6264
6265 \f
6266 /* Sweep: find all structures not marked, and free them. */
6267
6268 static void
6269 gc_sweep (void)
6270 {
6271 /* Remove or mark entries in weak hash tables.
6272 This must be done before any object is unmarked. */
6273 sweep_weak_hash_tables ();
6274
6275 sweep_strings ();
6276 check_string_bytes (!noninteractive);
6277
6278 /* Put all unmarked conses on free list */
6279 {
6280 register struct cons_block *cblk;
6281 struct cons_block **cprev = &cons_block;
6282 register int lim = cons_block_index;
6283 EMACS_INT num_free = 0, num_used = 0;
6284
6285 cons_free_list = 0;
6286
6287 for (cblk = cons_block; cblk; cblk = *cprev)
6288 {
6289 register int i = 0;
6290 int this_free = 0;
6291 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6292
6293 /* Scan the mark bits an int at a time. */
6294 for (i = 0; i < ilim; i++)
6295 {
6296 if (cblk->gcmarkbits[i] == -1)
6297 {
6298 /* Fast path - all cons cells for this int are marked. */
6299 cblk->gcmarkbits[i] = 0;
6300 num_used += BITS_PER_INT;
6301 }
6302 else
6303 {
6304 /* Some cons cells for this int are not marked.
6305 Find which ones, and free them. */
6306 int start, pos, stop;
6307
6308 start = i * BITS_PER_INT;
6309 stop = lim - start;
6310 if (stop > BITS_PER_INT)
6311 stop = BITS_PER_INT;
6312 stop += start;
6313
6314 for (pos = start; pos < stop; pos++)
6315 {
6316 if (!CONS_MARKED_P (&cblk->conses[pos]))
6317 {
6318 this_free++;
6319 cblk->conses[pos].u.chain = cons_free_list;
6320 cons_free_list = &cblk->conses[pos];
6321 #if GC_MARK_STACK
6322 cons_free_list->car = Vdead;
6323 #endif
6324 }
6325 else
6326 {
6327 num_used++;
6328 CONS_UNMARK (&cblk->conses[pos]);
6329 }
6330 }
6331 }
6332 }
6333
6334 lim = CONS_BLOCK_SIZE;
6335 /* If this block contains only free conses and we have already
6336 seen more than two blocks worth of free conses then deallocate
6337 this block. */
6338 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6339 {
6340 *cprev = cblk->next;
6341 /* Unhook from the free list. */
6342 cons_free_list = cblk->conses[0].u.chain;
6343 lisp_align_free (cblk);
6344 }
6345 else
6346 {
6347 num_free += this_free;
6348 cprev = &cblk->next;
6349 }
6350 }
6351 total_conses = num_used;
6352 total_free_conses = num_free;
6353 }
6354
6355 /* Put all unmarked floats on free list */
6356 {
6357 register struct float_block *fblk;
6358 struct float_block **fprev = &float_block;
6359 register int lim = float_block_index;
6360 EMACS_INT num_free = 0, num_used = 0;
6361
6362 float_free_list = 0;
6363
6364 for (fblk = float_block; fblk; fblk = *fprev)
6365 {
6366 register int i;
6367 int this_free = 0;
6368 for (i = 0; i < lim; i++)
6369 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6370 {
6371 this_free++;
6372 fblk->floats[i].u.chain = float_free_list;
6373 float_free_list = &fblk->floats[i];
6374 }
6375 else
6376 {
6377 num_used++;
6378 FLOAT_UNMARK (&fblk->floats[i]);
6379 }
6380 lim = FLOAT_BLOCK_SIZE;
6381 /* If this block contains only free floats and we have already
6382 seen more than two blocks worth of free floats then deallocate
6383 this block. */
6384 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6385 {
6386 *fprev = fblk->next;
6387 /* Unhook from the free list. */
6388 float_free_list = fblk->floats[0].u.chain;
6389 lisp_align_free (fblk);
6390 }
6391 else
6392 {
6393 num_free += this_free;
6394 fprev = &fblk->next;
6395 }
6396 }
6397 total_floats = num_used;
6398 total_free_floats = num_free;
6399 }
6400
6401 /* Put all unmarked intervals on free list */
6402 {
6403 register struct interval_block *iblk;
6404 struct interval_block **iprev = &interval_block;
6405 register int lim = interval_block_index;
6406 EMACS_INT num_free = 0, num_used = 0;
6407
6408 interval_free_list = 0;
6409
6410 for (iblk = interval_block; iblk; iblk = *iprev)
6411 {
6412 register int i;
6413 int this_free = 0;
6414
6415 for (i = 0; i < lim; i++)
6416 {
6417 if (!iblk->intervals[i].gcmarkbit)
6418 {
6419 set_interval_parent (&iblk->intervals[i], interval_free_list);
6420 interval_free_list = &iblk->intervals[i];
6421 this_free++;
6422 }
6423 else
6424 {
6425 num_used++;
6426 iblk->intervals[i].gcmarkbit = 0;
6427 }
6428 }
6429 lim = INTERVAL_BLOCK_SIZE;
6430 /* If this block contains only free intervals and we have already
6431 seen more than two blocks worth of free intervals then
6432 deallocate this block. */
6433 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6434 {
6435 *iprev = iblk->next;
6436 /* Unhook from the free list. */
6437 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6438 lisp_free (iblk);
6439 }
6440 else
6441 {
6442 num_free += this_free;
6443 iprev = &iblk->next;
6444 }
6445 }
6446 total_intervals = num_used;
6447 total_free_intervals = num_free;
6448 }
6449
6450 /* Put all unmarked symbols on free list */
6451 {
6452 register struct symbol_block *sblk;
6453 struct symbol_block **sprev = &symbol_block;
6454 register int lim = symbol_block_index;
6455 EMACS_INT num_free = 0, num_used = 0;
6456
6457 symbol_free_list = NULL;
6458
6459 for (sblk = symbol_block; sblk; sblk = *sprev)
6460 {
6461 int this_free = 0;
6462 union aligned_Lisp_Symbol *sym = sblk->symbols;
6463 union aligned_Lisp_Symbol *end = sym + lim;
6464
6465 for (; sym < end; ++sym)
6466 {
6467 /* Check if the symbol was created during loadup. In such a case
6468 it might be pointed to by pure bytecode which we don't trace,
6469 so we conservatively assume that it is live. */
6470 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6471
6472 if (!sym->s.gcmarkbit && !pure_p)
6473 {
6474 if (sym->s.redirect == SYMBOL_LOCALIZED)
6475 xfree (SYMBOL_BLV (&sym->s));
6476 sym->s.next = symbol_free_list;
6477 symbol_free_list = &sym->s;
6478 #if GC_MARK_STACK
6479 symbol_free_list->function = Vdead;
6480 #endif
6481 ++this_free;
6482 }
6483 else
6484 {
6485 ++num_used;
6486 if (!pure_p)
6487 UNMARK_STRING (XSTRING (sym->s.name));
6488 sym->s.gcmarkbit = 0;
6489 }
6490 }
6491
6492 lim = SYMBOL_BLOCK_SIZE;
6493 /* If this block contains only free symbols and we have already
6494 seen more than two blocks worth of free symbols then deallocate
6495 this block. */
6496 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6497 {
6498 *sprev = sblk->next;
6499 /* Unhook from the free list. */
6500 symbol_free_list = sblk->symbols[0].s.next;
6501 lisp_free (sblk);
6502 }
6503 else
6504 {
6505 num_free += this_free;
6506 sprev = &sblk->next;
6507 }
6508 }
6509 total_symbols = num_used;
6510 total_free_symbols = num_free;
6511 }
6512
6513 /* Put all unmarked misc's on free list.
6514 For a marker, first unchain it from the buffer it points into. */
6515 {
6516 register struct marker_block *mblk;
6517 struct marker_block **mprev = &marker_block;
6518 register int lim = marker_block_index;
6519 EMACS_INT num_free = 0, num_used = 0;
6520
6521 marker_free_list = 0;
6522
6523 for (mblk = marker_block; mblk; mblk = *mprev)
6524 {
6525 register int i;
6526 int this_free = 0;
6527
6528 for (i = 0; i < lim; i++)
6529 {
6530 if (!mblk->markers[i].m.u_any.gcmarkbit)
6531 {
6532 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6533 unchain_marker (&mblk->markers[i].m.u_marker);
6534 /* Set the type of the freed object to Lisp_Misc_Free.
6535 We could leave the type alone, since nobody checks it,
6536 but this might catch bugs faster. */
6537 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6538 mblk->markers[i].m.u_free.chain = marker_free_list;
6539 marker_free_list = &mblk->markers[i].m;
6540 this_free++;
6541 }
6542 else
6543 {
6544 num_used++;
6545 mblk->markers[i].m.u_any.gcmarkbit = 0;
6546 }
6547 }
6548 lim = MARKER_BLOCK_SIZE;
6549 /* If this block contains only free markers and we have already
6550 seen more than two blocks worth of free markers then deallocate
6551 this block. */
6552 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6553 {
6554 *mprev = mblk->next;
6555 /* Unhook from the free list. */
6556 marker_free_list = mblk->markers[0].m.u_free.chain;
6557 lisp_free (mblk);
6558 }
6559 else
6560 {
6561 num_free += this_free;
6562 mprev = &mblk->next;
6563 }
6564 }
6565
6566 total_markers = num_used;
6567 total_free_markers = num_free;
6568 }
6569
6570 /* Free all unmarked buffers */
6571 {
6572 register struct buffer *buffer, **bprev = &all_buffers;
6573
6574 total_buffers = 0;
6575 for (buffer = all_buffers; buffer; buffer = *bprev)
6576 if (!VECTOR_MARKED_P (buffer))
6577 {
6578 *bprev = buffer->next;
6579 lisp_free (buffer);
6580 }
6581 else
6582 {
6583 VECTOR_UNMARK (buffer);
6584 /* Do not use buffer_(set|get)_intervals here. */
6585 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6586 total_buffers++;
6587 bprev = &buffer->next;
6588 }
6589 }
6590
6591 sweep_vectors ();
6592 check_string_bytes (!noninteractive);
6593 }
6594
6595
6596
6597 \f
6598 /* Debugging aids. */
6599
6600 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6601 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6602 This may be helpful in debugging Emacs's memory usage.
6603 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6604 (void)
6605 {
6606 Lisp_Object end;
6607
6608 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6609
6610 return end;
6611 }
6612
6613 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6614 doc: /* Return a list of counters that measure how much consing there has been.
6615 Each of these counters increments for a certain kind of object.
6616 The counters wrap around from the largest positive integer to zero.
6617 Garbage collection does not decrease them.
6618 The elements of the value are as follows:
6619 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6620 All are in units of 1 = one object consed
6621 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6622 objects consed.
6623 MISCS include overlays, markers, and some internal types.
6624 Frames, windows, buffers, and subprocesses count as vectors
6625 (but the contents of a buffer's text do not count here). */)
6626 (void)
6627 {
6628 return listn (CONSTYPE_HEAP, 8,
6629 bounded_number (cons_cells_consed),
6630 bounded_number (floats_consed),
6631 bounded_number (vector_cells_consed),
6632 bounded_number (symbols_consed),
6633 bounded_number (string_chars_consed),
6634 bounded_number (misc_objects_consed),
6635 bounded_number (intervals_consed),
6636 bounded_number (strings_consed));
6637 }
6638
6639 /* Find at most FIND_MAX symbols which have OBJ as their value or
6640 function. This is used in gdbinit's `xwhichsymbols' command. */
6641
6642 Lisp_Object
6643 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6644 {
6645 struct symbol_block *sblk;
6646 ptrdiff_t gc_count = inhibit_garbage_collection ();
6647 Lisp_Object found = Qnil;
6648
6649 if (! DEADP (obj))
6650 {
6651 for (sblk = symbol_block; sblk; sblk = sblk->next)
6652 {
6653 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6654 int bn;
6655
6656 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6657 {
6658 struct Lisp_Symbol *sym = &aligned_sym->s;
6659 Lisp_Object val;
6660 Lisp_Object tem;
6661
6662 if (sblk == symbol_block && bn >= symbol_block_index)
6663 break;
6664
6665 XSETSYMBOL (tem, sym);
6666 val = find_symbol_value (tem);
6667 if (EQ (val, obj)
6668 || EQ (sym->function, obj)
6669 || (!NILP (sym->function)
6670 && COMPILEDP (sym->function)
6671 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6672 || (!NILP (val)
6673 && COMPILEDP (val)
6674 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6675 {
6676 found = Fcons (tem, found);
6677 if (--find_max == 0)
6678 goto out;
6679 }
6680 }
6681 }
6682 }
6683
6684 out:
6685 unbind_to (gc_count, Qnil);
6686 return found;
6687 }
6688
6689 #ifdef ENABLE_CHECKING
6690
6691 bool suppress_checking;
6692
6693 void
6694 die (const char *msg, const char *file, int line)
6695 {
6696 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6697 file, line, msg);
6698 terminate_due_to_signal (SIGABRT, INT_MAX);
6699 }
6700 #endif
6701 \f
6702 /* Initialization. */
6703
6704 void
6705 init_alloc_once (void)
6706 {
6707 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6708 purebeg = PUREBEG;
6709 pure_size = PURESIZE;
6710
6711 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6712 mem_init ();
6713 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6714 #endif
6715
6716 #ifdef DOUG_LEA_MALLOC
6717 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6718 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6719 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6720 #endif
6721 init_strings ();
6722 init_vectors ();
6723
6724 refill_memory_reserve ();
6725 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6726 }
6727
6728 void
6729 init_alloc (void)
6730 {
6731 gcprolist = 0;
6732 byte_stack_list = 0;
6733 #if GC_MARK_STACK
6734 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6735 setjmp_tested_p = longjmps_done = 0;
6736 #endif
6737 #endif
6738 Vgc_elapsed = make_float (0.0);
6739 gcs_done = 0;
6740
6741 #if USE_VALGRIND
6742 valgrind_p = RUNNING_ON_VALGRIND != 0;
6743 #endif
6744 }
6745
6746 void
6747 syms_of_alloc (void)
6748 {
6749 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6750 doc: /* Number of bytes of consing between garbage collections.
6751 Garbage collection can happen automatically once this many bytes have been
6752 allocated since the last garbage collection. All data types count.
6753
6754 Garbage collection happens automatically only when `eval' is called.
6755
6756 By binding this temporarily to a large number, you can effectively
6757 prevent garbage collection during a part of the program.
6758 See also `gc-cons-percentage'. */);
6759
6760 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6761 doc: /* Portion of the heap used for allocation.
6762 Garbage collection can happen automatically once this portion of the heap
6763 has been allocated since the last garbage collection.
6764 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6765 Vgc_cons_percentage = make_float (0.1);
6766
6767 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6768 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6769
6770 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6771 doc: /* Number of cons cells that have been consed so far. */);
6772
6773 DEFVAR_INT ("floats-consed", floats_consed,
6774 doc: /* Number of floats that have been consed so far. */);
6775
6776 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6777 doc: /* Number of vector cells that have been consed so far. */);
6778
6779 DEFVAR_INT ("symbols-consed", symbols_consed,
6780 doc: /* Number of symbols that have been consed so far. */);
6781
6782 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6783 doc: /* Number of string characters that have been consed so far. */);
6784
6785 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6786 doc: /* Number of miscellaneous objects that have been consed so far.
6787 These include markers and overlays, plus certain objects not visible
6788 to users. */);
6789
6790 DEFVAR_INT ("intervals-consed", intervals_consed,
6791 doc: /* Number of intervals that have been consed so far. */);
6792
6793 DEFVAR_INT ("strings-consed", strings_consed,
6794 doc: /* Number of strings that have been consed so far. */);
6795
6796 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6797 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6798 This means that certain objects should be allocated in shared (pure) space.
6799 It can also be set to a hash-table, in which case this table is used to
6800 do hash-consing of the objects allocated to pure space. */);
6801
6802 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6803 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6804 garbage_collection_messages = 0;
6805
6806 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6807 doc: /* Hook run after garbage collection has finished. */);
6808 Vpost_gc_hook = Qnil;
6809 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6810
6811 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6812 doc: /* Precomputed `signal' argument for memory-full error. */);
6813 /* We build this in advance because if we wait until we need it, we might
6814 not be able to allocate the memory to hold it. */
6815 Vmemory_signal_data
6816 = listn (CONSTYPE_PURE, 2, Qerror,
6817 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6818
6819 DEFVAR_LISP ("memory-full", Vmemory_full,
6820 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6821 Vmemory_full = Qnil;
6822
6823 DEFSYM (Qconses, "conses");
6824 DEFSYM (Qsymbols, "symbols");
6825 DEFSYM (Qmiscs, "miscs");
6826 DEFSYM (Qstrings, "strings");
6827 DEFSYM (Qvectors, "vectors");
6828 DEFSYM (Qfloats, "floats");
6829 DEFSYM (Qintervals, "intervals");
6830 DEFSYM (Qbuffers, "buffers");
6831 DEFSYM (Qstring_bytes, "string-bytes");
6832 DEFSYM (Qvector_slots, "vector-slots");
6833 DEFSYM (Qheap, "heap");
6834 DEFSYM (Qautomatic_gc, "Automatic GC");
6835
6836 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6837 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6838
6839 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6840 doc: /* Accumulated time elapsed in garbage collections.
6841 The time is in seconds as a floating point value. */);
6842 DEFVAR_INT ("gcs-done", gcs_done,
6843 doc: /* Accumulated number of garbage collections done. */);
6844
6845 defsubr (&Scons);
6846 defsubr (&Slist);
6847 defsubr (&Svector);
6848 defsubr (&Smake_byte_code);
6849 defsubr (&Smake_list);
6850 defsubr (&Smake_vector);
6851 defsubr (&Smake_string);
6852 defsubr (&Smake_bool_vector);
6853 defsubr (&Smake_symbol);
6854 defsubr (&Smake_marker);
6855 defsubr (&Spurecopy);
6856 defsubr (&Sgarbage_collect);
6857 defsubr (&Smemory_limit);
6858 defsubr (&Smemory_use_counts);
6859
6860 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6861 defsubr (&Sgc_status);
6862 #endif
6863 }
6864
6865 /* When compiled with GCC, GDB might say "No enum type named
6866 pvec_type" if we don't have at least one symbol with that type, and
6867 then xbacktrace could fail. Similarly for the other enums and
6868 their values. Some non-GCC compilers don't like these constructs. */
6869 #ifdef __GNUC__
6870 union
6871 {
6872 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6873 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6874 enum char_bits char_bits;
6875 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6876 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6877 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6878 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6879 enum Lisp_Bits Lisp_Bits;
6880 enum Lisp_Compiled Lisp_Compiled;
6881 enum maxargs maxargs;
6882 enum MAX_ALLOCA MAX_ALLOCA;
6883 enum More_Lisp_Bits More_Lisp_Bits;
6884 enum pvec_type pvec_type;
6885 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6886 #endif /* __GNUC__ */