]> code.delx.au - gnu-emacs/blob - src/alloc.c
* lisp.h (bits_word, BITS_WORD_MAX): New type and macro.
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2013 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
29
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
33
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45
46 #include <verify.h>
47
48 #if (defined ENABLE_CHECKING \
49 && defined HAVE_VALGRIND_VALGRIND_H \
50 && !defined USE_VALGRIND)
51 # define USE_VALGRIND 1
52 #endif
53
54 #if USE_VALGRIND
55 #include <valgrind/valgrind.h>
56 #include <valgrind/memcheck.h>
57 static bool valgrind_p;
58 #endif
59
60 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
61 Doable only if GC_MARK_STACK. */
62 #if ! GC_MARK_STACK
63 # undef GC_CHECK_MARKED_OBJECTS
64 #endif
65
66 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
67 memory. Can do this only if using gmalloc.c and if not checking
68 marked objects. */
69
70 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
71 || defined GC_CHECK_MARKED_OBJECTS)
72 #undef GC_MALLOC_CHECK
73 #endif
74
75 #include <unistd.h>
76 #include <fcntl.h>
77
78 #ifdef USE_GTK
79 # include "gtkutil.h"
80 #endif
81 #ifdef WINDOWSNT
82 #include "w32.h"
83 #include "w32heap.h" /* for sbrk */
84 #endif
85
86 #ifdef DOUG_LEA_MALLOC
87
88 #include <malloc.h>
89
90 /* Specify maximum number of areas to mmap. It would be nice to use a
91 value that explicitly means "no limit". */
92
93 #define MMAP_MAX_AREAS 100000000
94
95 #endif /* not DOUG_LEA_MALLOC */
96
97 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
98 to a struct Lisp_String. */
99
100 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
101 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
102 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
103
104 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
105 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
106 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
107
108 /* Default value of gc_cons_threshold (see below). */
109
110 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
111
112 /* Global variables. */
113 struct emacs_globals globals;
114
115 /* Number of bytes of consing done since the last gc. */
116
117 EMACS_INT consing_since_gc;
118
119 /* Similar minimum, computed from Vgc_cons_percentage. */
120
121 EMACS_INT gc_relative_threshold;
122
123 /* Minimum number of bytes of consing since GC before next GC,
124 when memory is full. */
125
126 EMACS_INT memory_full_cons_threshold;
127
128 /* True during GC. */
129
130 bool gc_in_progress;
131
132 /* True means abort if try to GC.
133 This is for code which is written on the assumption that
134 no GC will happen, so as to verify that assumption. */
135
136 bool abort_on_gc;
137
138 /* Number of live and free conses etc. */
139
140 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
141 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
142 static EMACS_INT total_free_floats, total_floats;
143
144 /* Points to memory space allocated as "spare", to be freed if we run
145 out of memory. We keep one large block, four cons-blocks, and
146 two string blocks. */
147
148 static char *spare_memory[7];
149
150 /* Amount of spare memory to keep in large reserve block, or to see
151 whether this much is available when malloc fails on a larger request. */
152
153 #define SPARE_MEMORY (1 << 14)
154
155 /* Initialize it to a nonzero value to force it into data space
156 (rather than bss space). That way unexec will remap it into text
157 space (pure), on some systems. We have not implemented the
158 remapping on more recent systems because this is less important
159 nowadays than in the days of small memories and timesharing. */
160
161 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
162 #define PUREBEG (char *) pure
163
164 /* Pointer to the pure area, and its size. */
165
166 static char *purebeg;
167 static ptrdiff_t pure_size;
168
169 /* Number of bytes of pure storage used before pure storage overflowed.
170 If this is non-zero, this implies that an overflow occurred. */
171
172 static ptrdiff_t pure_bytes_used_before_overflow;
173
174 /* True if P points into pure space. */
175
176 #define PURE_POINTER_P(P) \
177 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
178
179 /* Index in pure at which next pure Lisp object will be allocated.. */
180
181 static ptrdiff_t pure_bytes_used_lisp;
182
183 /* Number of bytes allocated for non-Lisp objects in pure storage. */
184
185 static ptrdiff_t pure_bytes_used_non_lisp;
186
187 /* If nonzero, this is a warning delivered by malloc and not yet
188 displayed. */
189
190 const char *pending_malloc_warning;
191
192 /* Maximum amount of C stack to save when a GC happens. */
193
194 #ifndef MAX_SAVE_STACK
195 #define MAX_SAVE_STACK 16000
196 #endif
197
198 /* Buffer in which we save a copy of the C stack at each GC. */
199
200 #if MAX_SAVE_STACK > 0
201 static char *stack_copy;
202 static ptrdiff_t stack_copy_size;
203 #endif
204
205 static Lisp_Object Qconses;
206 static Lisp_Object Qsymbols;
207 static Lisp_Object Qmiscs;
208 static Lisp_Object Qstrings;
209 static Lisp_Object Qvectors;
210 static Lisp_Object Qfloats;
211 static Lisp_Object Qintervals;
212 static Lisp_Object Qbuffers;
213 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
214 static Lisp_Object Qgc_cons_threshold;
215 Lisp_Object Qautomatic_gc;
216 Lisp_Object Qchar_table_extra_slots;
217
218 /* Hook run after GC has finished. */
219
220 static Lisp_Object Qpost_gc_hook;
221
222 static void mark_terminals (void);
223 static void gc_sweep (void);
224 static Lisp_Object make_pure_vector (ptrdiff_t);
225 static void mark_buffer (struct buffer *);
226
227 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
228 static void refill_memory_reserve (void);
229 #endif
230 static void compact_small_strings (void);
231 static void free_large_strings (void);
232 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
233
234 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
235 what memory allocated via lisp_malloc and lisp_align_malloc is intended
236 for what purpose. This enumeration specifies the type of memory. */
237
238 enum mem_type
239 {
240 MEM_TYPE_NON_LISP,
241 MEM_TYPE_BUFFER,
242 MEM_TYPE_CONS,
243 MEM_TYPE_STRING,
244 MEM_TYPE_MISC,
245 MEM_TYPE_SYMBOL,
246 MEM_TYPE_FLOAT,
247 /* Since all non-bool pseudovectors are small enough to be
248 allocated from vector blocks, this memory type denotes
249 large regular vectors and large bool pseudovectors. */
250 MEM_TYPE_VECTORLIKE,
251 /* Special type to denote vector blocks. */
252 MEM_TYPE_VECTOR_BLOCK,
253 /* Special type to denote reserved memory. */
254 MEM_TYPE_SPARE
255 };
256
257 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
258
259 /* A unique object in pure space used to make some Lisp objects
260 on free lists recognizable in O(1). */
261
262 static Lisp_Object Vdead;
263 #define DEADP(x) EQ (x, Vdead)
264
265 #ifdef GC_MALLOC_CHECK
266
267 enum mem_type allocated_mem_type;
268
269 #endif /* GC_MALLOC_CHECK */
270
271 /* A node in the red-black tree describing allocated memory containing
272 Lisp data. Each such block is recorded with its start and end
273 address when it is allocated, and removed from the tree when it
274 is freed.
275
276 A red-black tree is a balanced binary tree with the following
277 properties:
278
279 1. Every node is either red or black.
280 2. Every leaf is black.
281 3. If a node is red, then both of its children are black.
282 4. Every simple path from a node to a descendant leaf contains
283 the same number of black nodes.
284 5. The root is always black.
285
286 When nodes are inserted into the tree, or deleted from the tree,
287 the tree is "fixed" so that these properties are always true.
288
289 A red-black tree with N internal nodes has height at most 2
290 log(N+1). Searches, insertions and deletions are done in O(log N).
291 Please see a text book about data structures for a detailed
292 description of red-black trees. Any book worth its salt should
293 describe them. */
294
295 struct mem_node
296 {
297 /* Children of this node. These pointers are never NULL. When there
298 is no child, the value is MEM_NIL, which points to a dummy node. */
299 struct mem_node *left, *right;
300
301 /* The parent of this node. In the root node, this is NULL. */
302 struct mem_node *parent;
303
304 /* Start and end of allocated region. */
305 void *start, *end;
306
307 /* Node color. */
308 enum {MEM_BLACK, MEM_RED} color;
309
310 /* Memory type. */
311 enum mem_type type;
312 };
313
314 /* Base address of stack. Set in main. */
315
316 Lisp_Object *stack_base;
317
318 /* Root of the tree describing allocated Lisp memory. */
319
320 static struct mem_node *mem_root;
321
322 /* Lowest and highest known address in the heap. */
323
324 static void *min_heap_address, *max_heap_address;
325
326 /* Sentinel node of the tree. */
327
328 static struct mem_node mem_z;
329 #define MEM_NIL &mem_z
330
331 static struct mem_node *mem_insert (void *, void *, enum mem_type);
332 static void mem_insert_fixup (struct mem_node *);
333 static void mem_rotate_left (struct mem_node *);
334 static void mem_rotate_right (struct mem_node *);
335 static void mem_delete (struct mem_node *);
336 static void mem_delete_fixup (struct mem_node *);
337 static struct mem_node *mem_find (void *);
338
339 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
340
341 #ifndef DEADP
342 # define DEADP(x) 0
343 #endif
344
345 /* Recording what needs to be marked for gc. */
346
347 struct gcpro *gcprolist;
348
349 /* Addresses of staticpro'd variables. Initialize it to a nonzero
350 value; otherwise some compilers put it into BSS. */
351
352 enum { NSTATICS = 2048 };
353 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
354
355 /* Index of next unused slot in staticvec. */
356
357 static int staticidx;
358
359 static void *pure_alloc (size_t, int);
360
361
362 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
363 ALIGNMENT must be a power of 2. */
364
365 #define ALIGN(ptr, ALIGNMENT) \
366 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
367 & ~ ((ALIGNMENT) - 1)))
368
369 static void
370 XFLOAT_INIT (Lisp_Object f, double n)
371 {
372 XFLOAT (f)->u.data = n;
373 }
374
375 \f
376 /************************************************************************
377 Malloc
378 ************************************************************************/
379
380 /* Function malloc calls this if it finds we are near exhausting storage. */
381
382 void
383 malloc_warning (const char *str)
384 {
385 pending_malloc_warning = str;
386 }
387
388
389 /* Display an already-pending malloc warning. */
390
391 void
392 display_malloc_warning (void)
393 {
394 call3 (intern ("display-warning"),
395 intern ("alloc"),
396 build_string (pending_malloc_warning),
397 intern ("emergency"));
398 pending_malloc_warning = 0;
399 }
400 \f
401 /* Called if we can't allocate relocatable space for a buffer. */
402
403 void
404 buffer_memory_full (ptrdiff_t nbytes)
405 {
406 /* If buffers use the relocating allocator, no need to free
407 spare_memory, because we may have plenty of malloc space left
408 that we could get, and if we don't, the malloc that fails will
409 itself cause spare_memory to be freed. If buffers don't use the
410 relocating allocator, treat this like any other failing
411 malloc. */
412
413 #ifndef REL_ALLOC
414 memory_full (nbytes);
415 #else
416 /* This used to call error, but if we've run out of memory, we could
417 get infinite recursion trying to build the string. */
418 xsignal (Qnil, Vmemory_signal_data);
419 #endif
420 }
421
422 /* A common multiple of the positive integers A and B. Ideally this
423 would be the least common multiple, but there's no way to do that
424 as a constant expression in C, so do the best that we can easily do. */
425 #define COMMON_MULTIPLE(a, b) \
426 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
427
428 #ifndef XMALLOC_OVERRUN_CHECK
429 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
430 #else
431
432 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
433 around each block.
434
435 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
436 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
437 block size in little-endian order. The trailer consists of
438 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
439
440 The header is used to detect whether this block has been allocated
441 through these functions, as some low-level libc functions may
442 bypass the malloc hooks. */
443
444 #define XMALLOC_OVERRUN_CHECK_SIZE 16
445 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
446 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
447
448 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
449 hold a size_t value and (2) the header size is a multiple of the
450 alignment that Emacs needs for C types and for USE_LSB_TAG. */
451 #define XMALLOC_BASE_ALIGNMENT \
452 alignof (union { long double d; intmax_t i; void *p; })
453
454 #if USE_LSB_TAG
455 # define XMALLOC_HEADER_ALIGNMENT \
456 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
457 #else
458 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
459 #endif
460 #define XMALLOC_OVERRUN_SIZE_SIZE \
461 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
462 + XMALLOC_HEADER_ALIGNMENT - 1) \
463 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
464 - XMALLOC_OVERRUN_CHECK_SIZE)
465
466 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
467 { '\x9a', '\x9b', '\xae', '\xaf',
468 '\xbf', '\xbe', '\xce', '\xcf',
469 '\xea', '\xeb', '\xec', '\xed',
470 '\xdf', '\xde', '\x9c', '\x9d' };
471
472 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
473 { '\xaa', '\xab', '\xac', '\xad',
474 '\xba', '\xbb', '\xbc', '\xbd',
475 '\xca', '\xcb', '\xcc', '\xcd',
476 '\xda', '\xdb', '\xdc', '\xdd' };
477
478 /* Insert and extract the block size in the header. */
479
480 static void
481 xmalloc_put_size (unsigned char *ptr, size_t size)
482 {
483 int i;
484 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
485 {
486 *--ptr = size & ((1 << CHAR_BIT) - 1);
487 size >>= CHAR_BIT;
488 }
489 }
490
491 static size_t
492 xmalloc_get_size (unsigned char *ptr)
493 {
494 size_t size = 0;
495 int i;
496 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
497 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
498 {
499 size <<= CHAR_BIT;
500 size += *ptr++;
501 }
502 return size;
503 }
504
505
506 /* Like malloc, but wraps allocated block with header and trailer. */
507
508 static void *
509 overrun_check_malloc (size_t size)
510 {
511 register unsigned char *val;
512 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
513 emacs_abort ();
514
515 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
516 if (val)
517 {
518 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
519 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
520 xmalloc_put_size (val, size);
521 memcpy (val + size, xmalloc_overrun_check_trailer,
522 XMALLOC_OVERRUN_CHECK_SIZE);
523 }
524 return val;
525 }
526
527
528 /* Like realloc, but checks old block for overrun, and wraps new block
529 with header and trailer. */
530
531 static void *
532 overrun_check_realloc (void *block, size_t size)
533 {
534 register unsigned char *val = (unsigned char *) block;
535 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
536 emacs_abort ();
537
538 if (val
539 && memcmp (xmalloc_overrun_check_header,
540 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
541 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
542 {
543 size_t osize = xmalloc_get_size (val);
544 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
545 XMALLOC_OVERRUN_CHECK_SIZE))
546 emacs_abort ();
547 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
548 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
549 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
550 }
551
552 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
553
554 if (val)
555 {
556 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
557 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
558 xmalloc_put_size (val, size);
559 memcpy (val + size, xmalloc_overrun_check_trailer,
560 XMALLOC_OVERRUN_CHECK_SIZE);
561 }
562 return val;
563 }
564
565 /* Like free, but checks block for overrun. */
566
567 static void
568 overrun_check_free (void *block)
569 {
570 unsigned char *val = (unsigned char *) block;
571
572 if (val
573 && memcmp (xmalloc_overrun_check_header,
574 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
575 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
576 {
577 size_t osize = xmalloc_get_size (val);
578 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
579 XMALLOC_OVERRUN_CHECK_SIZE))
580 emacs_abort ();
581 #ifdef XMALLOC_CLEAR_FREE_MEMORY
582 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
583 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
584 #else
585 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
586 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
587 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
588 #endif
589 }
590
591 free (val);
592 }
593
594 #undef malloc
595 #undef realloc
596 #undef free
597 #define malloc overrun_check_malloc
598 #define realloc overrun_check_realloc
599 #define free overrun_check_free
600 #endif
601
602 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
603 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
604 If that variable is set, block input while in one of Emacs's memory
605 allocation functions. There should be no need for this debugging
606 option, since signal handlers do not allocate memory, but Emacs
607 formerly allocated memory in signal handlers and this compile-time
608 option remains as a way to help debug the issue should it rear its
609 ugly head again. */
610 #ifdef XMALLOC_BLOCK_INPUT_CHECK
611 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
612 static void
613 malloc_block_input (void)
614 {
615 if (block_input_in_memory_allocators)
616 block_input ();
617 }
618 static void
619 malloc_unblock_input (void)
620 {
621 if (block_input_in_memory_allocators)
622 unblock_input ();
623 }
624 # define MALLOC_BLOCK_INPUT malloc_block_input ()
625 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
626 #else
627 # define MALLOC_BLOCK_INPUT ((void) 0)
628 # define MALLOC_UNBLOCK_INPUT ((void) 0)
629 #endif
630
631 #define MALLOC_PROBE(size) \
632 do { \
633 if (profiler_memory_running) \
634 malloc_probe (size); \
635 } while (0)
636
637
638 /* Like malloc but check for no memory and block interrupt input.. */
639
640 void *
641 xmalloc (size_t size)
642 {
643 void *val;
644
645 MALLOC_BLOCK_INPUT;
646 val = malloc (size);
647 MALLOC_UNBLOCK_INPUT;
648
649 if (!val && size)
650 memory_full (size);
651 MALLOC_PROBE (size);
652 return val;
653 }
654
655 /* Like the above, but zeroes out the memory just allocated. */
656
657 void *
658 xzalloc (size_t size)
659 {
660 void *val;
661
662 MALLOC_BLOCK_INPUT;
663 val = malloc (size);
664 MALLOC_UNBLOCK_INPUT;
665
666 if (!val && size)
667 memory_full (size);
668 memset (val, 0, size);
669 MALLOC_PROBE (size);
670 return val;
671 }
672
673 /* Like realloc but check for no memory and block interrupt input.. */
674
675 void *
676 xrealloc (void *block, size_t size)
677 {
678 void *val;
679
680 MALLOC_BLOCK_INPUT;
681 /* We must call malloc explicitly when BLOCK is 0, since some
682 reallocs don't do this. */
683 if (! block)
684 val = malloc (size);
685 else
686 val = realloc (block, size);
687 MALLOC_UNBLOCK_INPUT;
688
689 if (!val && size)
690 memory_full (size);
691 MALLOC_PROBE (size);
692 return val;
693 }
694
695
696 /* Like free but block interrupt input. */
697
698 void
699 xfree (void *block)
700 {
701 if (!block)
702 return;
703 MALLOC_BLOCK_INPUT;
704 free (block);
705 MALLOC_UNBLOCK_INPUT;
706 /* We don't call refill_memory_reserve here
707 because in practice the call in r_alloc_free seems to suffice. */
708 }
709
710
711 /* Other parts of Emacs pass large int values to allocator functions
712 expecting ptrdiff_t. This is portable in practice, but check it to
713 be safe. */
714 verify (INT_MAX <= PTRDIFF_MAX);
715
716
717 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
718 Signal an error on memory exhaustion, and block interrupt input. */
719
720 void *
721 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
722 {
723 eassert (0 <= nitems && 0 < item_size);
724 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
725 memory_full (SIZE_MAX);
726 return xmalloc (nitems * item_size);
727 }
728
729
730 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
731 Signal an error on memory exhaustion, and block interrupt input. */
732
733 void *
734 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
735 {
736 eassert (0 <= nitems && 0 < item_size);
737 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
738 memory_full (SIZE_MAX);
739 return xrealloc (pa, nitems * item_size);
740 }
741
742
743 /* Grow PA, which points to an array of *NITEMS items, and return the
744 location of the reallocated array, updating *NITEMS to reflect its
745 new size. The new array will contain at least NITEMS_INCR_MIN more
746 items, but will not contain more than NITEMS_MAX items total.
747 ITEM_SIZE is the size of each item, in bytes.
748
749 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
750 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
751 infinity.
752
753 If PA is null, then allocate a new array instead of reallocating
754 the old one.
755
756 Block interrupt input as needed. If memory exhaustion occurs, set
757 *NITEMS to zero if PA is null, and signal an error (i.e., do not
758 return).
759
760 Thus, to grow an array A without saving its old contents, do
761 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
762 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
763 and signals an error, and later this code is reexecuted and
764 attempts to free A. */
765
766 void *
767 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
768 ptrdiff_t nitems_max, ptrdiff_t item_size)
769 {
770 /* The approximate size to use for initial small allocation
771 requests. This is the largest "small" request for the GNU C
772 library malloc. */
773 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
774
775 /* If the array is tiny, grow it to about (but no greater than)
776 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
777 ptrdiff_t n = *nitems;
778 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
779 ptrdiff_t half_again = n >> 1;
780 ptrdiff_t incr_estimate = max (tiny_max, half_again);
781
782 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
783 NITEMS_MAX, and what the C language can represent safely. */
784 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
785 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
786 ? nitems_max : C_language_max);
787 ptrdiff_t nitems_incr_max = n_max - n;
788 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
789
790 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
791 if (! pa)
792 *nitems = 0;
793 if (nitems_incr_max < incr)
794 memory_full (SIZE_MAX);
795 n += incr;
796 pa = xrealloc (pa, n * item_size);
797 *nitems = n;
798 return pa;
799 }
800
801
802 /* Like strdup, but uses xmalloc. */
803
804 char *
805 xstrdup (const char *s)
806 {
807 ptrdiff_t size;
808 eassert (s);
809 size = strlen (s) + 1;
810 return memcpy (xmalloc (size), s, size);
811 }
812
813 /* Like above, but duplicates Lisp string to C string. */
814
815 char *
816 xlispstrdup (Lisp_Object string)
817 {
818 ptrdiff_t size = SBYTES (string) + 1;
819 return memcpy (xmalloc (size), SSDATA (string), size);
820 }
821
822 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
823 argument is a const pointer. */
824
825 void
826 xputenv (char const *string)
827 {
828 if (putenv ((char *) string) != 0)
829 memory_full (0);
830 }
831
832 /* Return a newly allocated memory block of SIZE bytes, remembering
833 to free it when unwinding. */
834 void *
835 record_xmalloc (size_t size)
836 {
837 void *p = xmalloc (size);
838 record_unwind_protect_ptr (xfree, p);
839 return p;
840 }
841
842
843 /* Like malloc but used for allocating Lisp data. NBYTES is the
844 number of bytes to allocate, TYPE describes the intended use of the
845 allocated memory block (for strings, for conses, ...). */
846
847 #if ! USE_LSB_TAG
848 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
849 #endif
850
851 static void *
852 lisp_malloc (size_t nbytes, enum mem_type type)
853 {
854 register void *val;
855
856 MALLOC_BLOCK_INPUT;
857
858 #ifdef GC_MALLOC_CHECK
859 allocated_mem_type = type;
860 #endif
861
862 val = malloc (nbytes);
863
864 #if ! USE_LSB_TAG
865 /* If the memory just allocated cannot be addressed thru a Lisp
866 object's pointer, and it needs to be,
867 that's equivalent to running out of memory. */
868 if (val && type != MEM_TYPE_NON_LISP)
869 {
870 Lisp_Object tem;
871 XSETCONS (tem, (char *) val + nbytes - 1);
872 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
873 {
874 lisp_malloc_loser = val;
875 free (val);
876 val = 0;
877 }
878 }
879 #endif
880
881 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
882 if (val && type != MEM_TYPE_NON_LISP)
883 mem_insert (val, (char *) val + nbytes, type);
884 #endif
885
886 MALLOC_UNBLOCK_INPUT;
887 if (!val && nbytes)
888 memory_full (nbytes);
889 MALLOC_PROBE (nbytes);
890 return val;
891 }
892
893 /* Free BLOCK. This must be called to free memory allocated with a
894 call to lisp_malloc. */
895
896 static void
897 lisp_free (void *block)
898 {
899 MALLOC_BLOCK_INPUT;
900 free (block);
901 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
902 mem_delete (mem_find (block));
903 #endif
904 MALLOC_UNBLOCK_INPUT;
905 }
906
907 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
908
909 /* The entry point is lisp_align_malloc which returns blocks of at most
910 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
911
912 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
913 #define USE_POSIX_MEMALIGN 1
914 #endif
915
916 /* BLOCK_ALIGN has to be a power of 2. */
917 #define BLOCK_ALIGN (1 << 10)
918
919 /* Padding to leave at the end of a malloc'd block. This is to give
920 malloc a chance to minimize the amount of memory wasted to alignment.
921 It should be tuned to the particular malloc library used.
922 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
923 posix_memalign on the other hand would ideally prefer a value of 4
924 because otherwise, there's 1020 bytes wasted between each ablocks.
925 In Emacs, testing shows that those 1020 can most of the time be
926 efficiently used by malloc to place other objects, so a value of 0 can
927 still preferable unless you have a lot of aligned blocks and virtually
928 nothing else. */
929 #define BLOCK_PADDING 0
930 #define BLOCK_BYTES \
931 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
932
933 /* Internal data structures and constants. */
934
935 #define ABLOCKS_SIZE 16
936
937 /* An aligned block of memory. */
938 struct ablock
939 {
940 union
941 {
942 char payload[BLOCK_BYTES];
943 struct ablock *next_free;
944 } x;
945 /* `abase' is the aligned base of the ablocks. */
946 /* It is overloaded to hold the virtual `busy' field that counts
947 the number of used ablock in the parent ablocks.
948 The first ablock has the `busy' field, the others have the `abase'
949 field. To tell the difference, we assume that pointers will have
950 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
951 is used to tell whether the real base of the parent ablocks is `abase'
952 (if not, the word before the first ablock holds a pointer to the
953 real base). */
954 struct ablocks *abase;
955 /* The padding of all but the last ablock is unused. The padding of
956 the last ablock in an ablocks is not allocated. */
957 #if BLOCK_PADDING
958 char padding[BLOCK_PADDING];
959 #endif
960 };
961
962 /* A bunch of consecutive aligned blocks. */
963 struct ablocks
964 {
965 struct ablock blocks[ABLOCKS_SIZE];
966 };
967
968 /* Size of the block requested from malloc or posix_memalign. */
969 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
970
971 #define ABLOCK_ABASE(block) \
972 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
973 ? (struct ablocks *)(block) \
974 : (block)->abase)
975
976 /* Virtual `busy' field. */
977 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
978
979 /* Pointer to the (not necessarily aligned) malloc block. */
980 #ifdef USE_POSIX_MEMALIGN
981 #define ABLOCKS_BASE(abase) (abase)
982 #else
983 #define ABLOCKS_BASE(abase) \
984 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
985 #endif
986
987 /* The list of free ablock. */
988 static struct ablock *free_ablock;
989
990 /* Allocate an aligned block of nbytes.
991 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
992 smaller or equal to BLOCK_BYTES. */
993 static void *
994 lisp_align_malloc (size_t nbytes, enum mem_type type)
995 {
996 void *base, *val;
997 struct ablocks *abase;
998
999 eassert (nbytes <= BLOCK_BYTES);
1000
1001 MALLOC_BLOCK_INPUT;
1002
1003 #ifdef GC_MALLOC_CHECK
1004 allocated_mem_type = type;
1005 #endif
1006
1007 if (!free_ablock)
1008 {
1009 int i;
1010 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1011
1012 #ifdef DOUG_LEA_MALLOC
1013 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1014 because mapped region contents are not preserved in
1015 a dumped Emacs. */
1016 mallopt (M_MMAP_MAX, 0);
1017 #endif
1018
1019 #ifdef USE_POSIX_MEMALIGN
1020 {
1021 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1022 if (err)
1023 base = NULL;
1024 abase = base;
1025 }
1026 #else
1027 base = malloc (ABLOCKS_BYTES);
1028 abase = ALIGN (base, BLOCK_ALIGN);
1029 #endif
1030
1031 if (base == 0)
1032 {
1033 MALLOC_UNBLOCK_INPUT;
1034 memory_full (ABLOCKS_BYTES);
1035 }
1036
1037 aligned = (base == abase);
1038 if (!aligned)
1039 ((void **) abase)[-1] = base;
1040
1041 #ifdef DOUG_LEA_MALLOC
1042 /* Back to a reasonable maximum of mmap'ed areas. */
1043 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1044 #endif
1045
1046 #if ! USE_LSB_TAG
1047 /* If the memory just allocated cannot be addressed thru a Lisp
1048 object's pointer, and it needs to be, that's equivalent to
1049 running out of memory. */
1050 if (type != MEM_TYPE_NON_LISP)
1051 {
1052 Lisp_Object tem;
1053 char *end = (char *) base + ABLOCKS_BYTES - 1;
1054 XSETCONS (tem, end);
1055 if ((char *) XCONS (tem) != end)
1056 {
1057 lisp_malloc_loser = base;
1058 free (base);
1059 MALLOC_UNBLOCK_INPUT;
1060 memory_full (SIZE_MAX);
1061 }
1062 }
1063 #endif
1064
1065 /* Initialize the blocks and put them on the free list.
1066 If `base' was not properly aligned, we can't use the last block. */
1067 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1068 {
1069 abase->blocks[i].abase = abase;
1070 abase->blocks[i].x.next_free = free_ablock;
1071 free_ablock = &abase->blocks[i];
1072 }
1073 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1074
1075 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1076 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1077 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1078 eassert (ABLOCKS_BASE (abase) == base);
1079 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1080 }
1081
1082 abase = ABLOCK_ABASE (free_ablock);
1083 ABLOCKS_BUSY (abase) =
1084 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1085 val = free_ablock;
1086 free_ablock = free_ablock->x.next_free;
1087
1088 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1089 if (type != MEM_TYPE_NON_LISP)
1090 mem_insert (val, (char *) val + nbytes, type);
1091 #endif
1092
1093 MALLOC_UNBLOCK_INPUT;
1094
1095 MALLOC_PROBE (nbytes);
1096
1097 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1098 return val;
1099 }
1100
1101 static void
1102 lisp_align_free (void *block)
1103 {
1104 struct ablock *ablock = block;
1105 struct ablocks *abase = ABLOCK_ABASE (ablock);
1106
1107 MALLOC_BLOCK_INPUT;
1108 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1109 mem_delete (mem_find (block));
1110 #endif
1111 /* Put on free list. */
1112 ablock->x.next_free = free_ablock;
1113 free_ablock = ablock;
1114 /* Update busy count. */
1115 ABLOCKS_BUSY (abase)
1116 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1117
1118 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1119 { /* All the blocks are free. */
1120 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1121 struct ablock **tem = &free_ablock;
1122 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1123
1124 while (*tem)
1125 {
1126 if (*tem >= (struct ablock *) abase && *tem < atop)
1127 {
1128 i++;
1129 *tem = (*tem)->x.next_free;
1130 }
1131 else
1132 tem = &(*tem)->x.next_free;
1133 }
1134 eassert ((aligned & 1) == aligned);
1135 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1136 #ifdef USE_POSIX_MEMALIGN
1137 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1138 #endif
1139 free (ABLOCKS_BASE (abase));
1140 }
1141 MALLOC_UNBLOCK_INPUT;
1142 }
1143
1144 \f
1145 /***********************************************************************
1146 Interval Allocation
1147 ***********************************************************************/
1148
1149 /* Number of intervals allocated in an interval_block structure.
1150 The 1020 is 1024 minus malloc overhead. */
1151
1152 #define INTERVAL_BLOCK_SIZE \
1153 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1154
1155 /* Intervals are allocated in chunks in the form of an interval_block
1156 structure. */
1157
1158 struct interval_block
1159 {
1160 /* Place `intervals' first, to preserve alignment. */
1161 struct interval intervals[INTERVAL_BLOCK_SIZE];
1162 struct interval_block *next;
1163 };
1164
1165 /* Current interval block. Its `next' pointer points to older
1166 blocks. */
1167
1168 static struct interval_block *interval_block;
1169
1170 /* Index in interval_block above of the next unused interval
1171 structure. */
1172
1173 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1174
1175 /* Number of free and live intervals. */
1176
1177 static EMACS_INT total_free_intervals, total_intervals;
1178
1179 /* List of free intervals. */
1180
1181 static INTERVAL interval_free_list;
1182
1183 /* Return a new interval. */
1184
1185 INTERVAL
1186 make_interval (void)
1187 {
1188 INTERVAL val;
1189
1190 MALLOC_BLOCK_INPUT;
1191
1192 if (interval_free_list)
1193 {
1194 val = interval_free_list;
1195 interval_free_list = INTERVAL_PARENT (interval_free_list);
1196 }
1197 else
1198 {
1199 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1200 {
1201 struct interval_block *newi
1202 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1203
1204 newi->next = interval_block;
1205 interval_block = newi;
1206 interval_block_index = 0;
1207 total_free_intervals += INTERVAL_BLOCK_SIZE;
1208 }
1209 val = &interval_block->intervals[interval_block_index++];
1210 }
1211
1212 MALLOC_UNBLOCK_INPUT;
1213
1214 consing_since_gc += sizeof (struct interval);
1215 intervals_consed++;
1216 total_free_intervals--;
1217 RESET_INTERVAL (val);
1218 val->gcmarkbit = 0;
1219 return val;
1220 }
1221
1222
1223 /* Mark Lisp objects in interval I. */
1224
1225 static void
1226 mark_interval (register INTERVAL i, Lisp_Object dummy)
1227 {
1228 /* Intervals should never be shared. So, if extra internal checking is
1229 enabled, GC aborts if it seems to have visited an interval twice. */
1230 eassert (!i->gcmarkbit);
1231 i->gcmarkbit = 1;
1232 mark_object (i->plist);
1233 }
1234
1235 /* Mark the interval tree rooted in I. */
1236
1237 #define MARK_INTERVAL_TREE(i) \
1238 do { \
1239 if (i && !i->gcmarkbit) \
1240 traverse_intervals_noorder (i, mark_interval, Qnil); \
1241 } while (0)
1242
1243 /***********************************************************************
1244 String Allocation
1245 ***********************************************************************/
1246
1247 /* Lisp_Strings are allocated in string_block structures. When a new
1248 string_block is allocated, all the Lisp_Strings it contains are
1249 added to a free-list string_free_list. When a new Lisp_String is
1250 needed, it is taken from that list. During the sweep phase of GC,
1251 string_blocks that are entirely free are freed, except two which
1252 we keep.
1253
1254 String data is allocated from sblock structures. Strings larger
1255 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1256 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1257
1258 Sblocks consist internally of sdata structures, one for each
1259 Lisp_String. The sdata structure points to the Lisp_String it
1260 belongs to. The Lisp_String points back to the `u.data' member of
1261 its sdata structure.
1262
1263 When a Lisp_String is freed during GC, it is put back on
1264 string_free_list, and its `data' member and its sdata's `string'
1265 pointer is set to null. The size of the string is recorded in the
1266 `n.nbytes' member of the sdata. So, sdata structures that are no
1267 longer used, can be easily recognized, and it's easy to compact the
1268 sblocks of small strings which we do in compact_small_strings. */
1269
1270 /* Size in bytes of an sblock structure used for small strings. This
1271 is 8192 minus malloc overhead. */
1272
1273 #define SBLOCK_SIZE 8188
1274
1275 /* Strings larger than this are considered large strings. String data
1276 for large strings is allocated from individual sblocks. */
1277
1278 #define LARGE_STRING_BYTES 1024
1279
1280 /* Struct or union describing string memory sub-allocated from an sblock.
1281 This is where the contents of Lisp strings are stored. */
1282
1283 #ifdef GC_CHECK_STRING_BYTES
1284
1285 typedef struct
1286 {
1287 /* Back-pointer to the string this sdata belongs to. If null, this
1288 structure is free, and the NBYTES member of the union below
1289 contains the string's byte size (the same value that STRING_BYTES
1290 would return if STRING were non-null). If non-null, STRING_BYTES
1291 (STRING) is the size of the data, and DATA contains the string's
1292 contents. */
1293 struct Lisp_String *string;
1294
1295 ptrdiff_t nbytes;
1296 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1297 } sdata;
1298
1299 #define SDATA_NBYTES(S) (S)->nbytes
1300 #define SDATA_DATA(S) (S)->data
1301 #define SDATA_SELECTOR(member) member
1302
1303 #else
1304
1305 typedef union
1306 {
1307 struct Lisp_String *string;
1308
1309 /* When STRING is non-null. */
1310 struct
1311 {
1312 struct Lisp_String *string;
1313 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1314 } u;
1315
1316 /* When STRING is null. */
1317 struct
1318 {
1319 struct Lisp_String *string;
1320 ptrdiff_t nbytes;
1321 } n;
1322 } sdata;
1323
1324 #define SDATA_NBYTES(S) (S)->n.nbytes
1325 #define SDATA_DATA(S) (S)->u.data
1326 #define SDATA_SELECTOR(member) u.member
1327
1328 #endif /* not GC_CHECK_STRING_BYTES */
1329
1330 #define SDATA_DATA_OFFSET offsetof (sdata, SDATA_SELECTOR (data))
1331
1332
1333 /* Structure describing a block of memory which is sub-allocated to
1334 obtain string data memory for strings. Blocks for small strings
1335 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1336 as large as needed. */
1337
1338 struct sblock
1339 {
1340 /* Next in list. */
1341 struct sblock *next;
1342
1343 /* Pointer to the next free sdata block. This points past the end
1344 of the sblock if there isn't any space left in this block. */
1345 sdata *next_free;
1346
1347 /* Start of data. */
1348 sdata first_data;
1349 };
1350
1351 /* Number of Lisp strings in a string_block structure. The 1020 is
1352 1024 minus malloc overhead. */
1353
1354 #define STRING_BLOCK_SIZE \
1355 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1356
1357 /* Structure describing a block from which Lisp_String structures
1358 are allocated. */
1359
1360 struct string_block
1361 {
1362 /* Place `strings' first, to preserve alignment. */
1363 struct Lisp_String strings[STRING_BLOCK_SIZE];
1364 struct string_block *next;
1365 };
1366
1367 /* Head and tail of the list of sblock structures holding Lisp string
1368 data. We always allocate from current_sblock. The NEXT pointers
1369 in the sblock structures go from oldest_sblock to current_sblock. */
1370
1371 static struct sblock *oldest_sblock, *current_sblock;
1372
1373 /* List of sblocks for large strings. */
1374
1375 static struct sblock *large_sblocks;
1376
1377 /* List of string_block structures. */
1378
1379 static struct string_block *string_blocks;
1380
1381 /* Free-list of Lisp_Strings. */
1382
1383 static struct Lisp_String *string_free_list;
1384
1385 /* Number of live and free Lisp_Strings. */
1386
1387 static EMACS_INT total_strings, total_free_strings;
1388
1389 /* Number of bytes used by live strings. */
1390
1391 static EMACS_INT total_string_bytes;
1392
1393 /* Given a pointer to a Lisp_String S which is on the free-list
1394 string_free_list, return a pointer to its successor in the
1395 free-list. */
1396
1397 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1398
1399 /* Return a pointer to the sdata structure belonging to Lisp string S.
1400 S must be live, i.e. S->data must not be null. S->data is actually
1401 a pointer to the `u.data' member of its sdata structure; the
1402 structure starts at a constant offset in front of that. */
1403
1404 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1405
1406
1407 #ifdef GC_CHECK_STRING_OVERRUN
1408
1409 /* We check for overrun in string data blocks by appending a small
1410 "cookie" after each allocated string data block, and check for the
1411 presence of this cookie during GC. */
1412
1413 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1414 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1415 { '\xde', '\xad', '\xbe', '\xef' };
1416
1417 #else
1418 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1419 #endif
1420
1421 /* Value is the size of an sdata structure large enough to hold NBYTES
1422 bytes of string data. The value returned includes a terminating
1423 NUL byte, the size of the sdata structure, and padding. */
1424
1425 #ifdef GC_CHECK_STRING_BYTES
1426
1427 #define SDATA_SIZE(NBYTES) \
1428 ((SDATA_DATA_OFFSET \
1429 + (NBYTES) + 1 \
1430 + sizeof (ptrdiff_t) - 1) \
1431 & ~(sizeof (ptrdiff_t) - 1))
1432
1433 #else /* not GC_CHECK_STRING_BYTES */
1434
1435 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1436 less than the size of that member. The 'max' is not needed when
1437 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1438 alignment code reserves enough space. */
1439
1440 #define SDATA_SIZE(NBYTES) \
1441 ((SDATA_DATA_OFFSET \
1442 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1443 ? NBYTES \
1444 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1445 + 1 \
1446 + sizeof (ptrdiff_t) - 1) \
1447 & ~(sizeof (ptrdiff_t) - 1))
1448
1449 #endif /* not GC_CHECK_STRING_BYTES */
1450
1451 /* Extra bytes to allocate for each string. */
1452
1453 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1454
1455 /* Exact bound on the number of bytes in a string, not counting the
1456 terminating null. A string cannot contain more bytes than
1457 STRING_BYTES_BOUND, nor can it be so long that the size_t
1458 arithmetic in allocate_string_data would overflow while it is
1459 calculating a value to be passed to malloc. */
1460 static ptrdiff_t const STRING_BYTES_MAX =
1461 min (STRING_BYTES_BOUND,
1462 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1463 - GC_STRING_EXTRA
1464 - offsetof (struct sblock, first_data)
1465 - SDATA_DATA_OFFSET)
1466 & ~(sizeof (EMACS_INT) - 1)));
1467
1468 /* Initialize string allocation. Called from init_alloc_once. */
1469
1470 static void
1471 init_strings (void)
1472 {
1473 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1474 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1475 }
1476
1477
1478 #ifdef GC_CHECK_STRING_BYTES
1479
1480 static int check_string_bytes_count;
1481
1482 /* Like STRING_BYTES, but with debugging check. Can be
1483 called during GC, so pay attention to the mark bit. */
1484
1485 ptrdiff_t
1486 string_bytes (struct Lisp_String *s)
1487 {
1488 ptrdiff_t nbytes =
1489 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1490
1491 if (!PURE_POINTER_P (s)
1492 && s->data
1493 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1494 emacs_abort ();
1495 return nbytes;
1496 }
1497
1498 /* Check validity of Lisp strings' string_bytes member in B. */
1499
1500 static void
1501 check_sblock (struct sblock *b)
1502 {
1503 sdata *from, *end, *from_end;
1504
1505 end = b->next_free;
1506
1507 for (from = &b->first_data; from < end; from = from_end)
1508 {
1509 /* Compute the next FROM here because copying below may
1510 overwrite data we need to compute it. */
1511 ptrdiff_t nbytes;
1512
1513 /* Check that the string size recorded in the string is the
1514 same as the one recorded in the sdata structure. */
1515 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1516 : SDATA_NBYTES (from));
1517 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1518 }
1519 }
1520
1521
1522 /* Check validity of Lisp strings' string_bytes member. ALL_P
1523 means check all strings, otherwise check only most
1524 recently allocated strings. Used for hunting a bug. */
1525
1526 static void
1527 check_string_bytes (bool all_p)
1528 {
1529 if (all_p)
1530 {
1531 struct sblock *b;
1532
1533 for (b = large_sblocks; b; b = b->next)
1534 {
1535 struct Lisp_String *s = b->first_data.string;
1536 if (s)
1537 string_bytes (s);
1538 }
1539
1540 for (b = oldest_sblock; b; b = b->next)
1541 check_sblock (b);
1542 }
1543 else if (current_sblock)
1544 check_sblock (current_sblock);
1545 }
1546
1547 #else /* not GC_CHECK_STRING_BYTES */
1548
1549 #define check_string_bytes(all) ((void) 0)
1550
1551 #endif /* GC_CHECK_STRING_BYTES */
1552
1553 #ifdef GC_CHECK_STRING_FREE_LIST
1554
1555 /* Walk through the string free list looking for bogus next pointers.
1556 This may catch buffer overrun from a previous string. */
1557
1558 static void
1559 check_string_free_list (void)
1560 {
1561 struct Lisp_String *s;
1562
1563 /* Pop a Lisp_String off the free-list. */
1564 s = string_free_list;
1565 while (s != NULL)
1566 {
1567 if ((uintptr_t) s < 1024)
1568 emacs_abort ();
1569 s = NEXT_FREE_LISP_STRING (s);
1570 }
1571 }
1572 #else
1573 #define check_string_free_list()
1574 #endif
1575
1576 /* Return a new Lisp_String. */
1577
1578 static struct Lisp_String *
1579 allocate_string (void)
1580 {
1581 struct Lisp_String *s;
1582
1583 MALLOC_BLOCK_INPUT;
1584
1585 /* If the free-list is empty, allocate a new string_block, and
1586 add all the Lisp_Strings in it to the free-list. */
1587 if (string_free_list == NULL)
1588 {
1589 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1590 int i;
1591
1592 b->next = string_blocks;
1593 string_blocks = b;
1594
1595 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1596 {
1597 s = b->strings + i;
1598 /* Every string on a free list should have NULL data pointer. */
1599 s->data = NULL;
1600 NEXT_FREE_LISP_STRING (s) = string_free_list;
1601 string_free_list = s;
1602 }
1603
1604 total_free_strings += STRING_BLOCK_SIZE;
1605 }
1606
1607 check_string_free_list ();
1608
1609 /* Pop a Lisp_String off the free-list. */
1610 s = string_free_list;
1611 string_free_list = NEXT_FREE_LISP_STRING (s);
1612
1613 MALLOC_UNBLOCK_INPUT;
1614
1615 --total_free_strings;
1616 ++total_strings;
1617 ++strings_consed;
1618 consing_since_gc += sizeof *s;
1619
1620 #ifdef GC_CHECK_STRING_BYTES
1621 if (!noninteractive)
1622 {
1623 if (++check_string_bytes_count == 200)
1624 {
1625 check_string_bytes_count = 0;
1626 check_string_bytes (1);
1627 }
1628 else
1629 check_string_bytes (0);
1630 }
1631 #endif /* GC_CHECK_STRING_BYTES */
1632
1633 return s;
1634 }
1635
1636
1637 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1638 plus a NUL byte at the end. Allocate an sdata structure for S, and
1639 set S->data to its `u.data' member. Store a NUL byte at the end of
1640 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1641 S->data if it was initially non-null. */
1642
1643 void
1644 allocate_string_data (struct Lisp_String *s,
1645 EMACS_INT nchars, EMACS_INT nbytes)
1646 {
1647 sdata *data, *old_data;
1648 struct sblock *b;
1649 ptrdiff_t needed, old_nbytes;
1650
1651 if (STRING_BYTES_MAX < nbytes)
1652 string_overflow ();
1653
1654 /* Determine the number of bytes needed to store NBYTES bytes
1655 of string data. */
1656 needed = SDATA_SIZE (nbytes);
1657 if (s->data)
1658 {
1659 old_data = SDATA_OF_STRING (s);
1660 old_nbytes = STRING_BYTES (s);
1661 }
1662 else
1663 old_data = NULL;
1664
1665 MALLOC_BLOCK_INPUT;
1666
1667 if (nbytes > LARGE_STRING_BYTES)
1668 {
1669 size_t size = offsetof (struct sblock, first_data) + needed;
1670
1671 #ifdef DOUG_LEA_MALLOC
1672 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1673 because mapped region contents are not preserved in
1674 a dumped Emacs.
1675
1676 In case you think of allowing it in a dumped Emacs at the
1677 cost of not being able to re-dump, there's another reason:
1678 mmap'ed data typically have an address towards the top of the
1679 address space, which won't fit into an EMACS_INT (at least on
1680 32-bit systems with the current tagging scheme). --fx */
1681 mallopt (M_MMAP_MAX, 0);
1682 #endif
1683
1684 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1685
1686 #ifdef DOUG_LEA_MALLOC
1687 /* Back to a reasonable maximum of mmap'ed areas. */
1688 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1689 #endif
1690
1691 b->next_free = &b->first_data;
1692 b->first_data.string = NULL;
1693 b->next = large_sblocks;
1694 large_sblocks = b;
1695 }
1696 else if (current_sblock == NULL
1697 || (((char *) current_sblock + SBLOCK_SIZE
1698 - (char *) current_sblock->next_free)
1699 < (needed + GC_STRING_EXTRA)))
1700 {
1701 /* Not enough room in the current sblock. */
1702 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1703 b->next_free = &b->first_data;
1704 b->first_data.string = NULL;
1705 b->next = NULL;
1706
1707 if (current_sblock)
1708 current_sblock->next = b;
1709 else
1710 oldest_sblock = b;
1711 current_sblock = b;
1712 }
1713 else
1714 b = current_sblock;
1715
1716 data = b->next_free;
1717 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1718
1719 MALLOC_UNBLOCK_INPUT;
1720
1721 data->string = s;
1722 s->data = SDATA_DATA (data);
1723 #ifdef GC_CHECK_STRING_BYTES
1724 SDATA_NBYTES (data) = nbytes;
1725 #endif
1726 s->size = nchars;
1727 s->size_byte = nbytes;
1728 s->data[nbytes] = '\0';
1729 #ifdef GC_CHECK_STRING_OVERRUN
1730 memcpy ((char *) data + needed, string_overrun_cookie,
1731 GC_STRING_OVERRUN_COOKIE_SIZE);
1732 #endif
1733
1734 /* Note that Faset may call to this function when S has already data
1735 assigned. In this case, mark data as free by setting it's string
1736 back-pointer to null, and record the size of the data in it. */
1737 if (old_data)
1738 {
1739 SDATA_NBYTES (old_data) = old_nbytes;
1740 old_data->string = NULL;
1741 }
1742
1743 consing_since_gc += needed;
1744 }
1745
1746
1747 /* Sweep and compact strings. */
1748
1749 static void
1750 sweep_strings (void)
1751 {
1752 struct string_block *b, *next;
1753 struct string_block *live_blocks = NULL;
1754
1755 string_free_list = NULL;
1756 total_strings = total_free_strings = 0;
1757 total_string_bytes = 0;
1758
1759 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1760 for (b = string_blocks; b; b = next)
1761 {
1762 int i, nfree = 0;
1763 struct Lisp_String *free_list_before = string_free_list;
1764
1765 next = b->next;
1766
1767 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1768 {
1769 struct Lisp_String *s = b->strings + i;
1770
1771 if (s->data)
1772 {
1773 /* String was not on free-list before. */
1774 if (STRING_MARKED_P (s))
1775 {
1776 /* String is live; unmark it and its intervals. */
1777 UNMARK_STRING (s);
1778
1779 /* Do not use string_(set|get)_intervals here. */
1780 s->intervals = balance_intervals (s->intervals);
1781
1782 ++total_strings;
1783 total_string_bytes += STRING_BYTES (s);
1784 }
1785 else
1786 {
1787 /* String is dead. Put it on the free-list. */
1788 sdata *data = SDATA_OF_STRING (s);
1789
1790 /* Save the size of S in its sdata so that we know
1791 how large that is. Reset the sdata's string
1792 back-pointer so that we know it's free. */
1793 #ifdef GC_CHECK_STRING_BYTES
1794 if (string_bytes (s) != SDATA_NBYTES (data))
1795 emacs_abort ();
1796 #else
1797 data->n.nbytes = STRING_BYTES (s);
1798 #endif
1799 data->string = NULL;
1800
1801 /* Reset the strings's `data' member so that we
1802 know it's free. */
1803 s->data = NULL;
1804
1805 /* Put the string on the free-list. */
1806 NEXT_FREE_LISP_STRING (s) = string_free_list;
1807 string_free_list = s;
1808 ++nfree;
1809 }
1810 }
1811 else
1812 {
1813 /* S was on the free-list before. Put it there again. */
1814 NEXT_FREE_LISP_STRING (s) = string_free_list;
1815 string_free_list = s;
1816 ++nfree;
1817 }
1818 }
1819
1820 /* Free blocks that contain free Lisp_Strings only, except
1821 the first two of them. */
1822 if (nfree == STRING_BLOCK_SIZE
1823 && total_free_strings > STRING_BLOCK_SIZE)
1824 {
1825 lisp_free (b);
1826 string_free_list = free_list_before;
1827 }
1828 else
1829 {
1830 total_free_strings += nfree;
1831 b->next = live_blocks;
1832 live_blocks = b;
1833 }
1834 }
1835
1836 check_string_free_list ();
1837
1838 string_blocks = live_blocks;
1839 free_large_strings ();
1840 compact_small_strings ();
1841
1842 check_string_free_list ();
1843 }
1844
1845
1846 /* Free dead large strings. */
1847
1848 static void
1849 free_large_strings (void)
1850 {
1851 struct sblock *b, *next;
1852 struct sblock *live_blocks = NULL;
1853
1854 for (b = large_sblocks; b; b = next)
1855 {
1856 next = b->next;
1857
1858 if (b->first_data.string == NULL)
1859 lisp_free (b);
1860 else
1861 {
1862 b->next = live_blocks;
1863 live_blocks = b;
1864 }
1865 }
1866
1867 large_sblocks = live_blocks;
1868 }
1869
1870
1871 /* Compact data of small strings. Free sblocks that don't contain
1872 data of live strings after compaction. */
1873
1874 static void
1875 compact_small_strings (void)
1876 {
1877 struct sblock *b, *tb, *next;
1878 sdata *from, *to, *end, *tb_end;
1879 sdata *to_end, *from_end;
1880
1881 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1882 to, and TB_END is the end of TB. */
1883 tb = oldest_sblock;
1884 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1885 to = &tb->first_data;
1886
1887 /* Step through the blocks from the oldest to the youngest. We
1888 expect that old blocks will stabilize over time, so that less
1889 copying will happen this way. */
1890 for (b = oldest_sblock; b; b = b->next)
1891 {
1892 end = b->next_free;
1893 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1894
1895 for (from = &b->first_data; from < end; from = from_end)
1896 {
1897 /* Compute the next FROM here because copying below may
1898 overwrite data we need to compute it. */
1899 ptrdiff_t nbytes;
1900 struct Lisp_String *s = from->string;
1901
1902 #ifdef GC_CHECK_STRING_BYTES
1903 /* Check that the string size recorded in the string is the
1904 same as the one recorded in the sdata structure. */
1905 if (s && string_bytes (s) != SDATA_NBYTES (from))
1906 emacs_abort ();
1907 #endif /* GC_CHECK_STRING_BYTES */
1908
1909 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1910 eassert (nbytes <= LARGE_STRING_BYTES);
1911
1912 nbytes = SDATA_SIZE (nbytes);
1913 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1914
1915 #ifdef GC_CHECK_STRING_OVERRUN
1916 if (memcmp (string_overrun_cookie,
1917 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1918 GC_STRING_OVERRUN_COOKIE_SIZE))
1919 emacs_abort ();
1920 #endif
1921
1922 /* Non-NULL S means it's alive. Copy its data. */
1923 if (s)
1924 {
1925 /* If TB is full, proceed with the next sblock. */
1926 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1927 if (to_end > tb_end)
1928 {
1929 tb->next_free = to;
1930 tb = tb->next;
1931 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1932 to = &tb->first_data;
1933 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1934 }
1935
1936 /* Copy, and update the string's `data' pointer. */
1937 if (from != to)
1938 {
1939 eassert (tb != b || to < from);
1940 memmove (to, from, nbytes + GC_STRING_EXTRA);
1941 to->string->data = SDATA_DATA (to);
1942 }
1943
1944 /* Advance past the sdata we copied to. */
1945 to = to_end;
1946 }
1947 }
1948 }
1949
1950 /* The rest of the sblocks following TB don't contain live data, so
1951 we can free them. */
1952 for (b = tb->next; b; b = next)
1953 {
1954 next = b->next;
1955 lisp_free (b);
1956 }
1957
1958 tb->next_free = to;
1959 tb->next = NULL;
1960 current_sblock = tb;
1961 }
1962
1963 void
1964 string_overflow (void)
1965 {
1966 error ("Maximum string size exceeded");
1967 }
1968
1969 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1970 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1971 LENGTH must be an integer.
1972 INIT must be an integer that represents a character. */)
1973 (Lisp_Object length, Lisp_Object init)
1974 {
1975 register Lisp_Object val;
1976 int c;
1977 EMACS_INT nbytes;
1978
1979 CHECK_NATNUM (length);
1980 CHECK_CHARACTER (init);
1981
1982 c = XFASTINT (init);
1983 if (ASCII_CHAR_P (c))
1984 {
1985 nbytes = XINT (length);
1986 val = make_uninit_string (nbytes);
1987 memset (SDATA (val), c, nbytes);
1988 SDATA (val)[nbytes] = 0;
1989 }
1990 else
1991 {
1992 unsigned char str[MAX_MULTIBYTE_LENGTH];
1993 ptrdiff_t len = CHAR_STRING (c, str);
1994 EMACS_INT string_len = XINT (length);
1995 unsigned char *p, *beg, *end;
1996
1997 if (string_len > STRING_BYTES_MAX / len)
1998 string_overflow ();
1999 nbytes = len * string_len;
2000 val = make_uninit_multibyte_string (string_len, nbytes);
2001 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2002 {
2003 /* First time we just copy `str' to the data of `val'. */
2004 if (p == beg)
2005 memcpy (p, str, len);
2006 else
2007 {
2008 /* Next time we copy largest possible chunk from
2009 initialized to uninitialized part of `val'. */
2010 len = min (p - beg, end - p);
2011 memcpy (p, beg, len);
2012 }
2013 }
2014 *p = 0;
2015 }
2016
2017 return val;
2018 }
2019
2020 verify (sizeof (size_t) * CHAR_BIT == BITS_PER_BITS_WORD);
2021 verify ((BITS_PER_BITS_WORD & (BITS_PER_BITS_WORD - 1)) == 0);
2022
2023 static ptrdiff_t
2024 bool_vector_payload_bytes (ptrdiff_t nr_bits,
2025 ptrdiff_t *exact_needed_bytes_out)
2026 {
2027 ptrdiff_t exact_needed_bytes;
2028 ptrdiff_t needed_bytes;
2029
2030 eassert (nr_bits >= 0);
2031
2032 exact_needed_bytes = ROUNDUP ((size_t) nr_bits, CHAR_BIT) / CHAR_BIT;
2033 needed_bytes = ROUNDUP ((size_t) nr_bits, BITS_PER_BITS_WORD) / CHAR_BIT;
2034
2035 if (needed_bytes == 0)
2036 {
2037 /* Always allocate at least one machine word of payload so that
2038 bool-vector operations in data.c don't need a special case
2039 for empty vectors. */
2040 needed_bytes = sizeof (bits_word);
2041 }
2042
2043 if (exact_needed_bytes_out != NULL)
2044 *exact_needed_bytes_out = exact_needed_bytes;
2045
2046 return needed_bytes;
2047 }
2048
2049 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2050 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2051 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2052 (Lisp_Object length, Lisp_Object init)
2053 {
2054 register Lisp_Object val;
2055 struct Lisp_Bool_Vector *p;
2056 ptrdiff_t exact_payload_bytes;
2057 ptrdiff_t total_payload_bytes;
2058 ptrdiff_t needed_elements;
2059
2060 CHECK_NATNUM (length);
2061 if (PTRDIFF_MAX < XFASTINT (length))
2062 memory_full (SIZE_MAX);
2063
2064 total_payload_bytes = bool_vector_payload_bytes
2065 (XFASTINT (length), &exact_payload_bytes);
2066
2067 eassert (exact_payload_bytes <= total_payload_bytes);
2068 eassert (0 <= exact_payload_bytes);
2069
2070 needed_elements = ROUNDUP ((size_t) ((bool_header_size - header_size)
2071 + total_payload_bytes),
2072 word_size) / word_size;
2073
2074 p = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2075 XSETVECTOR (val, p);
2076 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2077
2078 p->size = XFASTINT (length);
2079 if (exact_payload_bytes)
2080 {
2081 memset (p->data, ! NILP (init) ? -1 : 0, exact_payload_bytes);
2082
2083 /* Clear any extraneous bits in the last byte. */
2084 p->data[exact_payload_bytes - 1]
2085 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2086 }
2087
2088 /* Clear padding at the end. */
2089 memset (p->data + exact_payload_bytes,
2090 0,
2091 total_payload_bytes - exact_payload_bytes);
2092
2093 return val;
2094 }
2095
2096
2097 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2098 of characters from the contents. This string may be unibyte or
2099 multibyte, depending on the contents. */
2100
2101 Lisp_Object
2102 make_string (const char *contents, ptrdiff_t nbytes)
2103 {
2104 register Lisp_Object val;
2105 ptrdiff_t nchars, multibyte_nbytes;
2106
2107 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2108 &nchars, &multibyte_nbytes);
2109 if (nbytes == nchars || nbytes != multibyte_nbytes)
2110 /* CONTENTS contains no multibyte sequences or contains an invalid
2111 multibyte sequence. We must make unibyte string. */
2112 val = make_unibyte_string (contents, nbytes);
2113 else
2114 val = make_multibyte_string (contents, nchars, nbytes);
2115 return val;
2116 }
2117
2118
2119 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2120
2121 Lisp_Object
2122 make_unibyte_string (const char *contents, ptrdiff_t length)
2123 {
2124 register Lisp_Object val;
2125 val = make_uninit_string (length);
2126 memcpy (SDATA (val), contents, length);
2127 return val;
2128 }
2129
2130
2131 /* Make a multibyte string from NCHARS characters occupying NBYTES
2132 bytes at CONTENTS. */
2133
2134 Lisp_Object
2135 make_multibyte_string (const char *contents,
2136 ptrdiff_t nchars, ptrdiff_t nbytes)
2137 {
2138 register Lisp_Object val;
2139 val = make_uninit_multibyte_string (nchars, nbytes);
2140 memcpy (SDATA (val), contents, nbytes);
2141 return val;
2142 }
2143
2144
2145 /* Make a string from NCHARS characters occupying NBYTES bytes at
2146 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2147
2148 Lisp_Object
2149 make_string_from_bytes (const char *contents,
2150 ptrdiff_t nchars, ptrdiff_t nbytes)
2151 {
2152 register Lisp_Object val;
2153 val = make_uninit_multibyte_string (nchars, nbytes);
2154 memcpy (SDATA (val), contents, nbytes);
2155 if (SBYTES (val) == SCHARS (val))
2156 STRING_SET_UNIBYTE (val);
2157 return val;
2158 }
2159
2160
2161 /* Make a string from NCHARS characters occupying NBYTES bytes at
2162 CONTENTS. The argument MULTIBYTE controls whether to label the
2163 string as multibyte. If NCHARS is negative, it counts the number of
2164 characters by itself. */
2165
2166 Lisp_Object
2167 make_specified_string (const char *contents,
2168 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2169 {
2170 Lisp_Object val;
2171
2172 if (nchars < 0)
2173 {
2174 if (multibyte)
2175 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2176 nbytes);
2177 else
2178 nchars = nbytes;
2179 }
2180 val = make_uninit_multibyte_string (nchars, nbytes);
2181 memcpy (SDATA (val), contents, nbytes);
2182 if (!multibyte)
2183 STRING_SET_UNIBYTE (val);
2184 return val;
2185 }
2186
2187
2188 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2189 occupying LENGTH bytes. */
2190
2191 Lisp_Object
2192 make_uninit_string (EMACS_INT length)
2193 {
2194 Lisp_Object val;
2195
2196 if (!length)
2197 return empty_unibyte_string;
2198 val = make_uninit_multibyte_string (length, length);
2199 STRING_SET_UNIBYTE (val);
2200 return val;
2201 }
2202
2203
2204 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2205 which occupy NBYTES bytes. */
2206
2207 Lisp_Object
2208 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2209 {
2210 Lisp_Object string;
2211 struct Lisp_String *s;
2212
2213 if (nchars < 0)
2214 emacs_abort ();
2215 if (!nbytes)
2216 return empty_multibyte_string;
2217
2218 s = allocate_string ();
2219 s->intervals = NULL;
2220 allocate_string_data (s, nchars, nbytes);
2221 XSETSTRING (string, s);
2222 string_chars_consed += nbytes;
2223 return string;
2224 }
2225
2226 /* Print arguments to BUF according to a FORMAT, then return
2227 a Lisp_String initialized with the data from BUF. */
2228
2229 Lisp_Object
2230 make_formatted_string (char *buf, const char *format, ...)
2231 {
2232 va_list ap;
2233 int length;
2234
2235 va_start (ap, format);
2236 length = vsprintf (buf, format, ap);
2237 va_end (ap);
2238 return make_string (buf, length);
2239 }
2240
2241 \f
2242 /***********************************************************************
2243 Float Allocation
2244 ***********************************************************************/
2245
2246 /* We store float cells inside of float_blocks, allocating a new
2247 float_block with malloc whenever necessary. Float cells reclaimed
2248 by GC are put on a free list to be reallocated before allocating
2249 any new float cells from the latest float_block. */
2250
2251 #define FLOAT_BLOCK_SIZE \
2252 (((BLOCK_BYTES - sizeof (struct float_block *) \
2253 /* The compiler might add padding at the end. */ \
2254 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2255 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2256
2257 #define GETMARKBIT(block,n) \
2258 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2259 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2260 & 1)
2261
2262 #define SETMARKBIT(block,n) \
2263 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2264 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2265
2266 #define UNSETMARKBIT(block,n) \
2267 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2268 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2269
2270 #define FLOAT_BLOCK(fptr) \
2271 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2272
2273 #define FLOAT_INDEX(fptr) \
2274 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2275
2276 struct float_block
2277 {
2278 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2279 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2280 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2281 struct float_block *next;
2282 };
2283
2284 #define FLOAT_MARKED_P(fptr) \
2285 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2286
2287 #define FLOAT_MARK(fptr) \
2288 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2289
2290 #define FLOAT_UNMARK(fptr) \
2291 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2292
2293 /* Current float_block. */
2294
2295 static struct float_block *float_block;
2296
2297 /* Index of first unused Lisp_Float in the current float_block. */
2298
2299 static int float_block_index = FLOAT_BLOCK_SIZE;
2300
2301 /* Free-list of Lisp_Floats. */
2302
2303 static struct Lisp_Float *float_free_list;
2304
2305 /* Return a new float object with value FLOAT_VALUE. */
2306
2307 Lisp_Object
2308 make_float (double float_value)
2309 {
2310 register Lisp_Object val;
2311
2312 MALLOC_BLOCK_INPUT;
2313
2314 if (float_free_list)
2315 {
2316 /* We use the data field for chaining the free list
2317 so that we won't use the same field that has the mark bit. */
2318 XSETFLOAT (val, float_free_list);
2319 float_free_list = float_free_list->u.chain;
2320 }
2321 else
2322 {
2323 if (float_block_index == FLOAT_BLOCK_SIZE)
2324 {
2325 struct float_block *new
2326 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2327 new->next = float_block;
2328 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2329 float_block = new;
2330 float_block_index = 0;
2331 total_free_floats += FLOAT_BLOCK_SIZE;
2332 }
2333 XSETFLOAT (val, &float_block->floats[float_block_index]);
2334 float_block_index++;
2335 }
2336
2337 MALLOC_UNBLOCK_INPUT;
2338
2339 XFLOAT_INIT (val, float_value);
2340 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2341 consing_since_gc += sizeof (struct Lisp_Float);
2342 floats_consed++;
2343 total_free_floats--;
2344 return val;
2345 }
2346
2347
2348 \f
2349 /***********************************************************************
2350 Cons Allocation
2351 ***********************************************************************/
2352
2353 /* We store cons cells inside of cons_blocks, allocating a new
2354 cons_block with malloc whenever necessary. Cons cells reclaimed by
2355 GC are put on a free list to be reallocated before allocating
2356 any new cons cells from the latest cons_block. */
2357
2358 #define CONS_BLOCK_SIZE \
2359 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2360 /* The compiler might add padding at the end. */ \
2361 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2362 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2363
2364 #define CONS_BLOCK(fptr) \
2365 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2366
2367 #define CONS_INDEX(fptr) \
2368 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2369
2370 struct cons_block
2371 {
2372 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2373 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2374 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2375 struct cons_block *next;
2376 };
2377
2378 #define CONS_MARKED_P(fptr) \
2379 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2380
2381 #define CONS_MARK(fptr) \
2382 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2383
2384 #define CONS_UNMARK(fptr) \
2385 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2386
2387 /* Current cons_block. */
2388
2389 static struct cons_block *cons_block;
2390
2391 /* Index of first unused Lisp_Cons in the current block. */
2392
2393 static int cons_block_index = CONS_BLOCK_SIZE;
2394
2395 /* Free-list of Lisp_Cons structures. */
2396
2397 static struct Lisp_Cons *cons_free_list;
2398
2399 /* Explicitly free a cons cell by putting it on the free-list. */
2400
2401 void
2402 free_cons (struct Lisp_Cons *ptr)
2403 {
2404 ptr->u.chain = cons_free_list;
2405 #if GC_MARK_STACK
2406 ptr->car = Vdead;
2407 #endif
2408 cons_free_list = ptr;
2409 consing_since_gc -= sizeof *ptr;
2410 total_free_conses++;
2411 }
2412
2413 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2414 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2415 (Lisp_Object car, Lisp_Object cdr)
2416 {
2417 register Lisp_Object val;
2418
2419 MALLOC_BLOCK_INPUT;
2420
2421 if (cons_free_list)
2422 {
2423 /* We use the cdr for chaining the free list
2424 so that we won't use the same field that has the mark bit. */
2425 XSETCONS (val, cons_free_list);
2426 cons_free_list = cons_free_list->u.chain;
2427 }
2428 else
2429 {
2430 if (cons_block_index == CONS_BLOCK_SIZE)
2431 {
2432 struct cons_block *new
2433 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2434 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2435 new->next = cons_block;
2436 cons_block = new;
2437 cons_block_index = 0;
2438 total_free_conses += CONS_BLOCK_SIZE;
2439 }
2440 XSETCONS (val, &cons_block->conses[cons_block_index]);
2441 cons_block_index++;
2442 }
2443
2444 MALLOC_UNBLOCK_INPUT;
2445
2446 XSETCAR (val, car);
2447 XSETCDR (val, cdr);
2448 eassert (!CONS_MARKED_P (XCONS (val)));
2449 consing_since_gc += sizeof (struct Lisp_Cons);
2450 total_free_conses--;
2451 cons_cells_consed++;
2452 return val;
2453 }
2454
2455 #ifdef GC_CHECK_CONS_LIST
2456 /* Get an error now if there's any junk in the cons free list. */
2457 void
2458 check_cons_list (void)
2459 {
2460 struct Lisp_Cons *tail = cons_free_list;
2461
2462 while (tail)
2463 tail = tail->u.chain;
2464 }
2465 #endif
2466
2467 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2468
2469 Lisp_Object
2470 list1 (Lisp_Object arg1)
2471 {
2472 return Fcons (arg1, Qnil);
2473 }
2474
2475 Lisp_Object
2476 list2 (Lisp_Object arg1, Lisp_Object arg2)
2477 {
2478 return Fcons (arg1, Fcons (arg2, Qnil));
2479 }
2480
2481
2482 Lisp_Object
2483 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2484 {
2485 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2486 }
2487
2488
2489 Lisp_Object
2490 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2491 {
2492 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2493 }
2494
2495
2496 Lisp_Object
2497 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2498 {
2499 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2500 Fcons (arg5, Qnil)))));
2501 }
2502
2503 /* Make a list of COUNT Lisp_Objects, where ARG is the
2504 first one. Allocate conses from pure space if TYPE
2505 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2506
2507 Lisp_Object
2508 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2509 {
2510 va_list ap;
2511 ptrdiff_t i;
2512 Lisp_Object val, *objp;
2513
2514 /* Change to SAFE_ALLOCA if you hit this eassert. */
2515 eassert (count <= MAX_ALLOCA / word_size);
2516
2517 objp = alloca (count * word_size);
2518 objp[0] = arg;
2519 va_start (ap, arg);
2520 for (i = 1; i < count; i++)
2521 objp[i] = va_arg (ap, Lisp_Object);
2522 va_end (ap);
2523
2524 for (val = Qnil, i = count - 1; i >= 0; i--)
2525 {
2526 if (type == CONSTYPE_PURE)
2527 val = pure_cons (objp[i], val);
2528 else if (type == CONSTYPE_HEAP)
2529 val = Fcons (objp[i], val);
2530 else
2531 emacs_abort ();
2532 }
2533 return val;
2534 }
2535
2536 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2537 doc: /* Return a newly created list with specified arguments as elements.
2538 Any number of arguments, even zero arguments, are allowed.
2539 usage: (list &rest OBJECTS) */)
2540 (ptrdiff_t nargs, Lisp_Object *args)
2541 {
2542 register Lisp_Object val;
2543 val = Qnil;
2544
2545 while (nargs > 0)
2546 {
2547 nargs--;
2548 val = Fcons (args[nargs], val);
2549 }
2550 return val;
2551 }
2552
2553
2554 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2555 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2556 (register Lisp_Object length, Lisp_Object init)
2557 {
2558 register Lisp_Object val;
2559 register EMACS_INT size;
2560
2561 CHECK_NATNUM (length);
2562 size = XFASTINT (length);
2563
2564 val = Qnil;
2565 while (size > 0)
2566 {
2567 val = Fcons (init, val);
2568 --size;
2569
2570 if (size > 0)
2571 {
2572 val = Fcons (init, val);
2573 --size;
2574
2575 if (size > 0)
2576 {
2577 val = Fcons (init, val);
2578 --size;
2579
2580 if (size > 0)
2581 {
2582 val = Fcons (init, val);
2583 --size;
2584
2585 if (size > 0)
2586 {
2587 val = Fcons (init, val);
2588 --size;
2589 }
2590 }
2591 }
2592 }
2593
2594 QUIT;
2595 }
2596
2597 return val;
2598 }
2599
2600
2601 \f
2602 /***********************************************************************
2603 Vector Allocation
2604 ***********************************************************************/
2605
2606 /* This value is balanced well enough to avoid too much internal overhead
2607 for the most common cases; it's not required to be a power of two, but
2608 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2609
2610 #define VECTOR_BLOCK_SIZE 4096
2611
2612 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2613 enum
2614 {
2615 roundup_size = COMMON_MULTIPLE (word_size, USE_LSB_TAG ? GCALIGNMENT : 1)
2616 };
2617
2618 /* Verify assumptions described above. */
2619 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2620 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2621
2622 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2623 #define vroundup_ct(x) ROUNDUP ((size_t) (x), roundup_size)
2624 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2625 #define vroundup(x) (assume ((x) >= 0), vroundup_ct (x))
2626
2627 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2628
2629 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2630
2631 /* Size of the minimal vector allocated from block. */
2632
2633 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2634
2635 /* Size of the largest vector allocated from block. */
2636
2637 #define VBLOCK_BYTES_MAX \
2638 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2639
2640 /* We maintain one free list for each possible block-allocated
2641 vector size, and this is the number of free lists we have. */
2642
2643 #define VECTOR_MAX_FREE_LIST_INDEX \
2644 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2645
2646 /* Common shortcut to advance vector pointer over a block data. */
2647
2648 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2649
2650 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2651
2652 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2653
2654 /* Common shortcut to setup vector on a free list. */
2655
2656 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2657 do { \
2658 (tmp) = ((nbytes - header_size) / word_size); \
2659 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2660 eassert ((nbytes) % roundup_size == 0); \
2661 (tmp) = VINDEX (nbytes); \
2662 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2663 v->u.next = vector_free_lists[tmp]; \
2664 vector_free_lists[tmp] = (v); \
2665 total_free_vector_slots += (nbytes) / word_size; \
2666 } while (0)
2667
2668 /* This internal type is used to maintain the list of large vectors
2669 which are allocated at their own, e.g. outside of vector blocks. */
2670
2671 struct large_vector
2672 {
2673 union {
2674 struct large_vector *vector;
2675 #if USE_LSB_TAG
2676 /* We need to maintain ROUNDUP_SIZE alignment for the vector member. */
2677 unsigned char c[vroundup_ct (sizeof (struct large_vector *))];
2678 #endif
2679 } next;
2680 struct Lisp_Vector v;
2681 };
2682
2683 /* This internal type is used to maintain an underlying storage
2684 for small vectors. */
2685
2686 struct vector_block
2687 {
2688 char data[VECTOR_BLOCK_BYTES];
2689 struct vector_block *next;
2690 };
2691
2692 /* Chain of vector blocks. */
2693
2694 static struct vector_block *vector_blocks;
2695
2696 /* Vector free lists, where NTH item points to a chain of free
2697 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2698
2699 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2700
2701 /* Singly-linked list of large vectors. */
2702
2703 static struct large_vector *large_vectors;
2704
2705 /* The only vector with 0 slots, allocated from pure space. */
2706
2707 Lisp_Object zero_vector;
2708
2709 /* Number of live vectors. */
2710
2711 static EMACS_INT total_vectors;
2712
2713 /* Total size of live and free vectors, in Lisp_Object units. */
2714
2715 static EMACS_INT total_vector_slots, total_free_vector_slots;
2716
2717 /* Get a new vector block. */
2718
2719 static struct vector_block *
2720 allocate_vector_block (void)
2721 {
2722 struct vector_block *block = xmalloc (sizeof *block);
2723
2724 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2725 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2726 MEM_TYPE_VECTOR_BLOCK);
2727 #endif
2728
2729 block->next = vector_blocks;
2730 vector_blocks = block;
2731 return block;
2732 }
2733
2734 /* Called once to initialize vector allocation. */
2735
2736 static void
2737 init_vectors (void)
2738 {
2739 zero_vector = make_pure_vector (0);
2740 }
2741
2742 /* Allocate vector from a vector block. */
2743
2744 static struct Lisp_Vector *
2745 allocate_vector_from_block (size_t nbytes)
2746 {
2747 struct Lisp_Vector *vector;
2748 struct vector_block *block;
2749 size_t index, restbytes;
2750
2751 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2752 eassert (nbytes % roundup_size == 0);
2753
2754 /* First, try to allocate from a free list
2755 containing vectors of the requested size. */
2756 index = VINDEX (nbytes);
2757 if (vector_free_lists[index])
2758 {
2759 vector = vector_free_lists[index];
2760 vector_free_lists[index] = vector->u.next;
2761 total_free_vector_slots -= nbytes / word_size;
2762 return vector;
2763 }
2764
2765 /* Next, check free lists containing larger vectors. Since
2766 we will split the result, we should have remaining space
2767 large enough to use for one-slot vector at least. */
2768 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2769 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2770 if (vector_free_lists[index])
2771 {
2772 /* This vector is larger than requested. */
2773 vector = vector_free_lists[index];
2774 vector_free_lists[index] = vector->u.next;
2775 total_free_vector_slots -= nbytes / word_size;
2776
2777 /* Excess bytes are used for the smaller vector,
2778 which should be set on an appropriate free list. */
2779 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2780 eassert (restbytes % roundup_size == 0);
2781 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2782 return vector;
2783 }
2784
2785 /* Finally, need a new vector block. */
2786 block = allocate_vector_block ();
2787
2788 /* New vector will be at the beginning of this block. */
2789 vector = (struct Lisp_Vector *) block->data;
2790
2791 /* If the rest of space from this block is large enough
2792 for one-slot vector at least, set up it on a free list. */
2793 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2794 if (restbytes >= VBLOCK_BYTES_MIN)
2795 {
2796 eassert (restbytes % roundup_size == 0);
2797 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2798 }
2799 return vector;
2800 }
2801
2802 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2803
2804 #define VECTOR_IN_BLOCK(vector, block) \
2805 ((char *) (vector) <= (block)->data \
2806 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2807
2808 /* Return the memory footprint of V in bytes. */
2809
2810 static ptrdiff_t
2811 vector_nbytes (struct Lisp_Vector *v)
2812 {
2813 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2814
2815 if (size & PSEUDOVECTOR_FLAG)
2816 {
2817 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2818 {
2819 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2820 ptrdiff_t payload_bytes =
2821 bool_vector_payload_bytes (bv->size, NULL);
2822
2823 eassert (payload_bytes >= 0);
2824 size = bool_header_size + ROUNDUP (payload_bytes, word_size);
2825 }
2826 else
2827 size = (header_size
2828 + ((size & PSEUDOVECTOR_SIZE_MASK)
2829 + ((size & PSEUDOVECTOR_REST_MASK)
2830 >> PSEUDOVECTOR_SIZE_BITS)) * word_size);
2831 }
2832 else
2833 size = header_size + size * word_size;
2834 return vroundup (size);
2835 }
2836
2837 /* Reclaim space used by unmarked vectors. */
2838
2839 static void
2840 sweep_vectors (void)
2841 {
2842 struct vector_block *block, **bprev = &vector_blocks;
2843 struct large_vector *lv, **lvprev = &large_vectors;
2844 struct Lisp_Vector *vector, *next;
2845
2846 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2847 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2848
2849 /* Looking through vector blocks. */
2850
2851 for (block = vector_blocks; block; block = *bprev)
2852 {
2853 bool free_this_block = 0;
2854 ptrdiff_t nbytes;
2855
2856 for (vector = (struct Lisp_Vector *) block->data;
2857 VECTOR_IN_BLOCK (vector, block); vector = next)
2858 {
2859 if (VECTOR_MARKED_P (vector))
2860 {
2861 VECTOR_UNMARK (vector);
2862 total_vectors++;
2863 nbytes = vector_nbytes (vector);
2864 total_vector_slots += nbytes / word_size;
2865 next = ADVANCE (vector, nbytes);
2866 }
2867 else
2868 {
2869 ptrdiff_t total_bytes;
2870
2871 nbytes = vector_nbytes (vector);
2872 total_bytes = nbytes;
2873 next = ADVANCE (vector, nbytes);
2874
2875 /* While NEXT is not marked, try to coalesce with VECTOR,
2876 thus making VECTOR of the largest possible size. */
2877
2878 while (VECTOR_IN_BLOCK (next, block))
2879 {
2880 if (VECTOR_MARKED_P (next))
2881 break;
2882 nbytes = vector_nbytes (next);
2883 total_bytes += nbytes;
2884 next = ADVANCE (next, nbytes);
2885 }
2886
2887 eassert (total_bytes % roundup_size == 0);
2888
2889 if (vector == (struct Lisp_Vector *) block->data
2890 && !VECTOR_IN_BLOCK (next, block))
2891 /* This block should be freed because all of it's
2892 space was coalesced into the only free vector. */
2893 free_this_block = 1;
2894 else
2895 {
2896 size_t tmp;
2897 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2898 }
2899 }
2900 }
2901
2902 if (free_this_block)
2903 {
2904 *bprev = block->next;
2905 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2906 mem_delete (mem_find (block->data));
2907 #endif
2908 xfree (block);
2909 }
2910 else
2911 bprev = &block->next;
2912 }
2913
2914 /* Sweep large vectors. */
2915
2916 for (lv = large_vectors; lv; lv = *lvprev)
2917 {
2918 vector = &lv->v;
2919 if (VECTOR_MARKED_P (vector))
2920 {
2921 VECTOR_UNMARK (vector);
2922 total_vectors++;
2923 if (vector->header.size & PSEUDOVECTOR_FLAG)
2924 {
2925 /* All non-bool pseudovectors are small enough to be allocated
2926 from vector blocks. This code should be redesigned if some
2927 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2928 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2929 total_vector_slots += vector_nbytes (vector) / word_size;
2930 }
2931 else
2932 total_vector_slots
2933 += header_size / word_size + vector->header.size;
2934 lvprev = &lv->next.vector;
2935 }
2936 else
2937 {
2938 *lvprev = lv->next.vector;
2939 lisp_free (lv);
2940 }
2941 }
2942 }
2943
2944 /* Value is a pointer to a newly allocated Lisp_Vector structure
2945 with room for LEN Lisp_Objects. */
2946
2947 static struct Lisp_Vector *
2948 allocate_vectorlike (ptrdiff_t len)
2949 {
2950 struct Lisp_Vector *p;
2951
2952 MALLOC_BLOCK_INPUT;
2953
2954 if (len == 0)
2955 p = XVECTOR (zero_vector);
2956 else
2957 {
2958 size_t nbytes = header_size + len * word_size;
2959
2960 #ifdef DOUG_LEA_MALLOC
2961 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2962 because mapped region contents are not preserved in
2963 a dumped Emacs. */
2964 mallopt (M_MMAP_MAX, 0);
2965 #endif
2966
2967 if (nbytes <= VBLOCK_BYTES_MAX)
2968 p = allocate_vector_from_block (vroundup (nbytes));
2969 else
2970 {
2971 struct large_vector *lv
2972 = lisp_malloc ((offsetof (struct large_vector, v.u.contents)
2973 + len * word_size),
2974 MEM_TYPE_VECTORLIKE);
2975 lv->next.vector = large_vectors;
2976 large_vectors = lv;
2977 p = &lv->v;
2978 }
2979
2980 #ifdef DOUG_LEA_MALLOC
2981 /* Back to a reasonable maximum of mmap'ed areas. */
2982 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2983 #endif
2984
2985 consing_since_gc += nbytes;
2986 vector_cells_consed += len;
2987 }
2988
2989 MALLOC_UNBLOCK_INPUT;
2990
2991 return p;
2992 }
2993
2994
2995 /* Allocate a vector with LEN slots. */
2996
2997 struct Lisp_Vector *
2998 allocate_vector (EMACS_INT len)
2999 {
3000 struct Lisp_Vector *v;
3001 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3002
3003 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3004 memory_full (SIZE_MAX);
3005 v = allocate_vectorlike (len);
3006 v->header.size = len;
3007 return v;
3008 }
3009
3010
3011 /* Allocate other vector-like structures. */
3012
3013 struct Lisp_Vector *
3014 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
3015 {
3016 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3017 int i;
3018
3019 /* Catch bogus values. */
3020 eassert (tag <= PVEC_FONT);
3021 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3022 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3023
3024 /* Only the first lisplen slots will be traced normally by the GC. */
3025 for (i = 0; i < lisplen; ++i)
3026 v->u.contents[i] = Qnil;
3027
3028 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3029 return v;
3030 }
3031
3032 struct buffer *
3033 allocate_buffer (void)
3034 {
3035 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3036
3037 BUFFER_PVEC_INIT (b);
3038 /* Put B on the chain of all buffers including killed ones. */
3039 b->next = all_buffers;
3040 all_buffers = b;
3041 /* Note that the rest fields of B are not initialized. */
3042 return b;
3043 }
3044
3045 struct Lisp_Hash_Table *
3046 allocate_hash_table (void)
3047 {
3048 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3049 }
3050
3051 struct window *
3052 allocate_window (void)
3053 {
3054 struct window *w;
3055
3056 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3057 /* Users assumes that non-Lisp data is zeroed. */
3058 memset (&w->current_matrix, 0,
3059 sizeof (*w) - offsetof (struct window, current_matrix));
3060 return w;
3061 }
3062
3063 struct terminal *
3064 allocate_terminal (void)
3065 {
3066 struct terminal *t;
3067
3068 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3069 /* Users assumes that non-Lisp data is zeroed. */
3070 memset (&t->next_terminal, 0,
3071 sizeof (*t) - offsetof (struct terminal, next_terminal));
3072 return t;
3073 }
3074
3075 struct frame *
3076 allocate_frame (void)
3077 {
3078 struct frame *f;
3079
3080 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3081 /* Users assumes that non-Lisp data is zeroed. */
3082 memset (&f->face_cache, 0,
3083 sizeof (*f) - offsetof (struct frame, face_cache));
3084 return f;
3085 }
3086
3087 struct Lisp_Process *
3088 allocate_process (void)
3089 {
3090 struct Lisp_Process *p;
3091
3092 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3093 /* Users assumes that non-Lisp data is zeroed. */
3094 memset (&p->pid, 0,
3095 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3096 return p;
3097 }
3098
3099 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3100 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3101 See also the function `vector'. */)
3102 (register Lisp_Object length, Lisp_Object init)
3103 {
3104 Lisp_Object vector;
3105 register ptrdiff_t sizei;
3106 register ptrdiff_t i;
3107 register struct Lisp_Vector *p;
3108
3109 CHECK_NATNUM (length);
3110
3111 p = allocate_vector (XFASTINT (length));
3112 sizei = XFASTINT (length);
3113 for (i = 0; i < sizei; i++)
3114 p->u.contents[i] = init;
3115
3116 XSETVECTOR (vector, p);
3117 return vector;
3118 }
3119
3120
3121 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3122 doc: /* Return a newly created vector with specified arguments as elements.
3123 Any number of arguments, even zero arguments, are allowed.
3124 usage: (vector &rest OBJECTS) */)
3125 (ptrdiff_t nargs, Lisp_Object *args)
3126 {
3127 ptrdiff_t i;
3128 register Lisp_Object val = make_uninit_vector (nargs);
3129 register struct Lisp_Vector *p = XVECTOR (val);
3130
3131 for (i = 0; i < nargs; i++)
3132 p->u.contents[i] = args[i];
3133 return val;
3134 }
3135
3136 void
3137 make_byte_code (struct Lisp_Vector *v)
3138 {
3139 /* Don't allow the global zero_vector to become a byte code object. */
3140 eassert(0 < v->header.size);
3141 if (v->header.size > 1 && STRINGP (v->u.contents[1])
3142 && STRING_MULTIBYTE (v->u.contents[1]))
3143 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3144 earlier because they produced a raw 8-bit string for byte-code
3145 and now such a byte-code string is loaded as multibyte while
3146 raw 8-bit characters converted to multibyte form. Thus, now we
3147 must convert them back to the original unibyte form. */
3148 v->u.contents[1] = Fstring_as_unibyte (v->u.contents[1]);
3149 XSETPVECTYPE (v, PVEC_COMPILED);
3150 }
3151
3152 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3153 doc: /* Create a byte-code object with specified arguments as elements.
3154 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3155 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3156 and (optional) INTERACTIVE-SPEC.
3157 The first four arguments are required; at most six have any
3158 significance.
3159 The ARGLIST can be either like the one of `lambda', in which case the arguments
3160 will be dynamically bound before executing the byte code, or it can be an
3161 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3162 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3163 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3164 argument to catch the left-over arguments. If such an integer is used, the
3165 arguments will not be dynamically bound but will be instead pushed on the
3166 stack before executing the byte-code.
3167 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3168 (ptrdiff_t nargs, Lisp_Object *args)
3169 {
3170 ptrdiff_t i;
3171 register Lisp_Object val = make_uninit_vector (nargs);
3172 register struct Lisp_Vector *p = XVECTOR (val);
3173
3174 /* We used to purecopy everything here, if purify-flag was set. This worked
3175 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3176 dangerous, since make-byte-code is used during execution to build
3177 closures, so any closure built during the preload phase would end up
3178 copied into pure space, including its free variables, which is sometimes
3179 just wasteful and other times plainly wrong (e.g. those free vars may want
3180 to be setcar'd). */
3181
3182 for (i = 0; i < nargs; i++)
3183 p->u.contents[i] = args[i];
3184 make_byte_code (p);
3185 XSETCOMPILED (val, p);
3186 return val;
3187 }
3188
3189
3190 \f
3191 /***********************************************************************
3192 Symbol Allocation
3193 ***********************************************************************/
3194
3195 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3196 of the required alignment if LSB tags are used. */
3197
3198 union aligned_Lisp_Symbol
3199 {
3200 struct Lisp_Symbol s;
3201 #if USE_LSB_TAG
3202 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3203 & -GCALIGNMENT];
3204 #endif
3205 };
3206
3207 /* Each symbol_block is just under 1020 bytes long, since malloc
3208 really allocates in units of powers of two and uses 4 bytes for its
3209 own overhead. */
3210
3211 #define SYMBOL_BLOCK_SIZE \
3212 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3213
3214 struct symbol_block
3215 {
3216 /* Place `symbols' first, to preserve alignment. */
3217 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3218 struct symbol_block *next;
3219 };
3220
3221 /* Current symbol block and index of first unused Lisp_Symbol
3222 structure in it. */
3223
3224 static struct symbol_block *symbol_block;
3225 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3226
3227 /* List of free symbols. */
3228
3229 static struct Lisp_Symbol *symbol_free_list;
3230
3231 static void
3232 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3233 {
3234 XSYMBOL (sym)->name = name;
3235 }
3236
3237 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3238 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3239 Its value is void, and its function definition and property list are nil. */)
3240 (Lisp_Object name)
3241 {
3242 register Lisp_Object val;
3243 register struct Lisp_Symbol *p;
3244
3245 CHECK_STRING (name);
3246
3247 MALLOC_BLOCK_INPUT;
3248
3249 if (symbol_free_list)
3250 {
3251 XSETSYMBOL (val, symbol_free_list);
3252 symbol_free_list = symbol_free_list->next;
3253 }
3254 else
3255 {
3256 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3257 {
3258 struct symbol_block *new
3259 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3260 new->next = symbol_block;
3261 symbol_block = new;
3262 symbol_block_index = 0;
3263 total_free_symbols += SYMBOL_BLOCK_SIZE;
3264 }
3265 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3266 symbol_block_index++;
3267 }
3268
3269 MALLOC_UNBLOCK_INPUT;
3270
3271 p = XSYMBOL (val);
3272 set_symbol_name (val, name);
3273 set_symbol_plist (val, Qnil);
3274 p->redirect = SYMBOL_PLAINVAL;
3275 SET_SYMBOL_VAL (p, Qunbound);
3276 set_symbol_function (val, Qnil);
3277 set_symbol_next (val, NULL);
3278 p->gcmarkbit = 0;
3279 p->interned = SYMBOL_UNINTERNED;
3280 p->constant = 0;
3281 p->declared_special = 0;
3282 consing_since_gc += sizeof (struct Lisp_Symbol);
3283 symbols_consed++;
3284 total_free_symbols--;
3285 return val;
3286 }
3287
3288
3289 \f
3290 /***********************************************************************
3291 Marker (Misc) Allocation
3292 ***********************************************************************/
3293
3294 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3295 the required alignment when LSB tags are used. */
3296
3297 union aligned_Lisp_Misc
3298 {
3299 union Lisp_Misc m;
3300 #if USE_LSB_TAG
3301 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3302 & -GCALIGNMENT];
3303 #endif
3304 };
3305
3306 /* Allocation of markers and other objects that share that structure.
3307 Works like allocation of conses. */
3308
3309 #define MARKER_BLOCK_SIZE \
3310 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3311
3312 struct marker_block
3313 {
3314 /* Place `markers' first, to preserve alignment. */
3315 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3316 struct marker_block *next;
3317 };
3318
3319 static struct marker_block *marker_block;
3320 static int marker_block_index = MARKER_BLOCK_SIZE;
3321
3322 static union Lisp_Misc *marker_free_list;
3323
3324 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3325
3326 static Lisp_Object
3327 allocate_misc (enum Lisp_Misc_Type type)
3328 {
3329 Lisp_Object val;
3330
3331 MALLOC_BLOCK_INPUT;
3332
3333 if (marker_free_list)
3334 {
3335 XSETMISC (val, marker_free_list);
3336 marker_free_list = marker_free_list->u_free.chain;
3337 }
3338 else
3339 {
3340 if (marker_block_index == MARKER_BLOCK_SIZE)
3341 {
3342 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3343 new->next = marker_block;
3344 marker_block = new;
3345 marker_block_index = 0;
3346 total_free_markers += MARKER_BLOCK_SIZE;
3347 }
3348 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3349 marker_block_index++;
3350 }
3351
3352 MALLOC_UNBLOCK_INPUT;
3353
3354 --total_free_markers;
3355 consing_since_gc += sizeof (union Lisp_Misc);
3356 misc_objects_consed++;
3357 XMISCANY (val)->type = type;
3358 XMISCANY (val)->gcmarkbit = 0;
3359 return val;
3360 }
3361
3362 /* Free a Lisp_Misc object. */
3363
3364 void
3365 free_misc (Lisp_Object misc)
3366 {
3367 XMISCANY (misc)->type = Lisp_Misc_Free;
3368 XMISC (misc)->u_free.chain = marker_free_list;
3369 marker_free_list = XMISC (misc);
3370 consing_since_gc -= sizeof (union Lisp_Misc);
3371 total_free_markers++;
3372 }
3373
3374 /* Verify properties of Lisp_Save_Value's representation
3375 that are assumed here and elsewhere. */
3376
3377 verify (SAVE_UNUSED == 0);
3378 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3379 >> SAVE_SLOT_BITS)
3380 == 0);
3381
3382 /* Return Lisp_Save_Value objects for the various combinations
3383 that callers need. */
3384
3385 Lisp_Object
3386 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3387 {
3388 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3389 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3390 p->save_type = SAVE_TYPE_INT_INT_INT;
3391 p->data[0].integer = a;
3392 p->data[1].integer = b;
3393 p->data[2].integer = c;
3394 return val;
3395 }
3396
3397 Lisp_Object
3398 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3399 Lisp_Object d)
3400 {
3401 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3402 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3403 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3404 p->data[0].object = a;
3405 p->data[1].object = b;
3406 p->data[2].object = c;
3407 p->data[3].object = d;
3408 return val;
3409 }
3410
3411 #if defined HAVE_NS || defined HAVE_NTGUI
3412 Lisp_Object
3413 make_save_ptr (void *a)
3414 {
3415 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3416 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3417 p->save_type = SAVE_POINTER;
3418 p->data[0].pointer = a;
3419 return val;
3420 }
3421 #endif
3422
3423 Lisp_Object
3424 make_save_ptr_int (void *a, ptrdiff_t b)
3425 {
3426 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3427 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3428 p->save_type = SAVE_TYPE_PTR_INT;
3429 p->data[0].pointer = a;
3430 p->data[1].integer = b;
3431 return val;
3432 }
3433
3434 #if defined HAVE_MENUS && ! (defined USE_X_TOOLKIT || defined USE_GTK)
3435 Lisp_Object
3436 make_save_ptr_ptr (void *a, void *b)
3437 {
3438 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3439 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3440 p->save_type = SAVE_TYPE_PTR_PTR;
3441 p->data[0].pointer = a;
3442 p->data[1].pointer = b;
3443 return val;
3444 }
3445 #endif
3446
3447 Lisp_Object
3448 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3449 {
3450 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3451 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3452 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3453 p->data[0].funcpointer = a;
3454 p->data[1].pointer = b;
3455 p->data[2].object = c;
3456 return val;
3457 }
3458
3459 /* Return a Lisp_Save_Value object that represents an array A
3460 of N Lisp objects. */
3461
3462 Lisp_Object
3463 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3464 {
3465 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3466 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3467 p->save_type = SAVE_TYPE_MEMORY;
3468 p->data[0].pointer = a;
3469 p->data[1].integer = n;
3470 return val;
3471 }
3472
3473 /* Free a Lisp_Save_Value object. Do not use this function
3474 if SAVE contains pointer other than returned by xmalloc. */
3475
3476 void
3477 free_save_value (Lisp_Object save)
3478 {
3479 xfree (XSAVE_POINTER (save, 0));
3480 free_misc (save);
3481 }
3482
3483 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3484
3485 Lisp_Object
3486 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3487 {
3488 register Lisp_Object overlay;
3489
3490 overlay = allocate_misc (Lisp_Misc_Overlay);
3491 OVERLAY_START (overlay) = start;
3492 OVERLAY_END (overlay) = end;
3493 set_overlay_plist (overlay, plist);
3494 XOVERLAY (overlay)->next = NULL;
3495 return overlay;
3496 }
3497
3498 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3499 doc: /* Return a newly allocated marker which does not point at any place. */)
3500 (void)
3501 {
3502 register Lisp_Object val;
3503 register struct Lisp_Marker *p;
3504
3505 val = allocate_misc (Lisp_Misc_Marker);
3506 p = XMARKER (val);
3507 p->buffer = 0;
3508 p->bytepos = 0;
3509 p->charpos = 0;
3510 p->next = NULL;
3511 p->insertion_type = 0;
3512 p->need_adjustment = 0;
3513 return val;
3514 }
3515
3516 /* Return a newly allocated marker which points into BUF
3517 at character position CHARPOS and byte position BYTEPOS. */
3518
3519 Lisp_Object
3520 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3521 {
3522 Lisp_Object obj;
3523 struct Lisp_Marker *m;
3524
3525 /* No dead buffers here. */
3526 eassert (BUFFER_LIVE_P (buf));
3527
3528 /* Every character is at least one byte. */
3529 eassert (charpos <= bytepos);
3530
3531 obj = allocate_misc (Lisp_Misc_Marker);
3532 m = XMARKER (obj);
3533 m->buffer = buf;
3534 m->charpos = charpos;
3535 m->bytepos = bytepos;
3536 m->insertion_type = 0;
3537 m->need_adjustment = 0;
3538 m->next = BUF_MARKERS (buf);
3539 BUF_MARKERS (buf) = m;
3540 return obj;
3541 }
3542
3543 /* Put MARKER back on the free list after using it temporarily. */
3544
3545 void
3546 free_marker (Lisp_Object marker)
3547 {
3548 unchain_marker (XMARKER (marker));
3549 free_misc (marker);
3550 }
3551
3552 \f
3553 /* Return a newly created vector or string with specified arguments as
3554 elements. If all the arguments are characters that can fit
3555 in a string of events, make a string; otherwise, make a vector.
3556
3557 Any number of arguments, even zero arguments, are allowed. */
3558
3559 Lisp_Object
3560 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3561 {
3562 ptrdiff_t i;
3563
3564 for (i = 0; i < nargs; i++)
3565 /* The things that fit in a string
3566 are characters that are in 0...127,
3567 after discarding the meta bit and all the bits above it. */
3568 if (!INTEGERP (args[i])
3569 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3570 return Fvector (nargs, args);
3571
3572 /* Since the loop exited, we know that all the things in it are
3573 characters, so we can make a string. */
3574 {
3575 Lisp_Object result;
3576
3577 result = Fmake_string (make_number (nargs), make_number (0));
3578 for (i = 0; i < nargs; i++)
3579 {
3580 SSET (result, i, XINT (args[i]));
3581 /* Move the meta bit to the right place for a string char. */
3582 if (XINT (args[i]) & CHAR_META)
3583 SSET (result, i, SREF (result, i) | 0x80);
3584 }
3585
3586 return result;
3587 }
3588 }
3589
3590
3591 \f
3592 /************************************************************************
3593 Memory Full Handling
3594 ************************************************************************/
3595
3596
3597 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3598 there may have been size_t overflow so that malloc was never
3599 called, or perhaps malloc was invoked successfully but the
3600 resulting pointer had problems fitting into a tagged EMACS_INT. In
3601 either case this counts as memory being full even though malloc did
3602 not fail. */
3603
3604 void
3605 memory_full (size_t nbytes)
3606 {
3607 /* Do not go into hysterics merely because a large request failed. */
3608 bool enough_free_memory = 0;
3609 if (SPARE_MEMORY < nbytes)
3610 {
3611 void *p;
3612
3613 MALLOC_BLOCK_INPUT;
3614 p = malloc (SPARE_MEMORY);
3615 if (p)
3616 {
3617 free (p);
3618 enough_free_memory = 1;
3619 }
3620 MALLOC_UNBLOCK_INPUT;
3621 }
3622
3623 if (! enough_free_memory)
3624 {
3625 int i;
3626
3627 Vmemory_full = Qt;
3628
3629 memory_full_cons_threshold = sizeof (struct cons_block);
3630
3631 /* The first time we get here, free the spare memory. */
3632 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3633 if (spare_memory[i])
3634 {
3635 if (i == 0)
3636 free (spare_memory[i]);
3637 else if (i >= 1 && i <= 4)
3638 lisp_align_free (spare_memory[i]);
3639 else
3640 lisp_free (spare_memory[i]);
3641 spare_memory[i] = 0;
3642 }
3643 }
3644
3645 /* This used to call error, but if we've run out of memory, we could
3646 get infinite recursion trying to build the string. */
3647 xsignal (Qnil, Vmemory_signal_data);
3648 }
3649
3650 /* If we released our reserve (due to running out of memory),
3651 and we have a fair amount free once again,
3652 try to set aside another reserve in case we run out once more.
3653
3654 This is called when a relocatable block is freed in ralloc.c,
3655 and also directly from this file, in case we're not using ralloc.c. */
3656
3657 void
3658 refill_memory_reserve (void)
3659 {
3660 #ifndef SYSTEM_MALLOC
3661 if (spare_memory[0] == 0)
3662 spare_memory[0] = malloc (SPARE_MEMORY);
3663 if (spare_memory[1] == 0)
3664 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3665 MEM_TYPE_SPARE);
3666 if (spare_memory[2] == 0)
3667 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3668 MEM_TYPE_SPARE);
3669 if (spare_memory[3] == 0)
3670 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3671 MEM_TYPE_SPARE);
3672 if (spare_memory[4] == 0)
3673 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3674 MEM_TYPE_SPARE);
3675 if (spare_memory[5] == 0)
3676 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3677 MEM_TYPE_SPARE);
3678 if (spare_memory[6] == 0)
3679 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3680 MEM_TYPE_SPARE);
3681 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3682 Vmemory_full = Qnil;
3683 #endif
3684 }
3685 \f
3686 /************************************************************************
3687 C Stack Marking
3688 ************************************************************************/
3689
3690 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3691
3692 /* Conservative C stack marking requires a method to identify possibly
3693 live Lisp objects given a pointer value. We do this by keeping
3694 track of blocks of Lisp data that are allocated in a red-black tree
3695 (see also the comment of mem_node which is the type of nodes in
3696 that tree). Function lisp_malloc adds information for an allocated
3697 block to the red-black tree with calls to mem_insert, and function
3698 lisp_free removes it with mem_delete. Functions live_string_p etc
3699 call mem_find to lookup information about a given pointer in the
3700 tree, and use that to determine if the pointer points to a Lisp
3701 object or not. */
3702
3703 /* Initialize this part of alloc.c. */
3704
3705 static void
3706 mem_init (void)
3707 {
3708 mem_z.left = mem_z.right = MEM_NIL;
3709 mem_z.parent = NULL;
3710 mem_z.color = MEM_BLACK;
3711 mem_z.start = mem_z.end = NULL;
3712 mem_root = MEM_NIL;
3713 }
3714
3715
3716 /* Value is a pointer to the mem_node containing START. Value is
3717 MEM_NIL if there is no node in the tree containing START. */
3718
3719 static struct mem_node *
3720 mem_find (void *start)
3721 {
3722 struct mem_node *p;
3723
3724 if (start < min_heap_address || start > max_heap_address)
3725 return MEM_NIL;
3726
3727 /* Make the search always successful to speed up the loop below. */
3728 mem_z.start = start;
3729 mem_z.end = (char *) start + 1;
3730
3731 p = mem_root;
3732 while (start < p->start || start >= p->end)
3733 p = start < p->start ? p->left : p->right;
3734 return p;
3735 }
3736
3737
3738 /* Insert a new node into the tree for a block of memory with start
3739 address START, end address END, and type TYPE. Value is a
3740 pointer to the node that was inserted. */
3741
3742 static struct mem_node *
3743 mem_insert (void *start, void *end, enum mem_type type)
3744 {
3745 struct mem_node *c, *parent, *x;
3746
3747 if (min_heap_address == NULL || start < min_heap_address)
3748 min_heap_address = start;
3749 if (max_heap_address == NULL || end > max_heap_address)
3750 max_heap_address = end;
3751
3752 /* See where in the tree a node for START belongs. In this
3753 particular application, it shouldn't happen that a node is already
3754 present. For debugging purposes, let's check that. */
3755 c = mem_root;
3756 parent = NULL;
3757
3758 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3759
3760 while (c != MEM_NIL)
3761 {
3762 if (start >= c->start && start < c->end)
3763 emacs_abort ();
3764 parent = c;
3765 c = start < c->start ? c->left : c->right;
3766 }
3767
3768 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3769
3770 while (c != MEM_NIL)
3771 {
3772 parent = c;
3773 c = start < c->start ? c->left : c->right;
3774 }
3775
3776 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3777
3778 /* Create a new node. */
3779 #ifdef GC_MALLOC_CHECK
3780 x = malloc (sizeof *x);
3781 if (x == NULL)
3782 emacs_abort ();
3783 #else
3784 x = xmalloc (sizeof *x);
3785 #endif
3786 x->start = start;
3787 x->end = end;
3788 x->type = type;
3789 x->parent = parent;
3790 x->left = x->right = MEM_NIL;
3791 x->color = MEM_RED;
3792
3793 /* Insert it as child of PARENT or install it as root. */
3794 if (parent)
3795 {
3796 if (start < parent->start)
3797 parent->left = x;
3798 else
3799 parent->right = x;
3800 }
3801 else
3802 mem_root = x;
3803
3804 /* Re-establish red-black tree properties. */
3805 mem_insert_fixup (x);
3806
3807 return x;
3808 }
3809
3810
3811 /* Re-establish the red-black properties of the tree, and thereby
3812 balance the tree, after node X has been inserted; X is always red. */
3813
3814 static void
3815 mem_insert_fixup (struct mem_node *x)
3816 {
3817 while (x != mem_root && x->parent->color == MEM_RED)
3818 {
3819 /* X is red and its parent is red. This is a violation of
3820 red-black tree property #3. */
3821
3822 if (x->parent == x->parent->parent->left)
3823 {
3824 /* We're on the left side of our grandparent, and Y is our
3825 "uncle". */
3826 struct mem_node *y = x->parent->parent->right;
3827
3828 if (y->color == MEM_RED)
3829 {
3830 /* Uncle and parent are red but should be black because
3831 X is red. Change the colors accordingly and proceed
3832 with the grandparent. */
3833 x->parent->color = MEM_BLACK;
3834 y->color = MEM_BLACK;
3835 x->parent->parent->color = MEM_RED;
3836 x = x->parent->parent;
3837 }
3838 else
3839 {
3840 /* Parent and uncle have different colors; parent is
3841 red, uncle is black. */
3842 if (x == x->parent->right)
3843 {
3844 x = x->parent;
3845 mem_rotate_left (x);
3846 }
3847
3848 x->parent->color = MEM_BLACK;
3849 x->parent->parent->color = MEM_RED;
3850 mem_rotate_right (x->parent->parent);
3851 }
3852 }
3853 else
3854 {
3855 /* This is the symmetrical case of above. */
3856 struct mem_node *y = x->parent->parent->left;
3857
3858 if (y->color == MEM_RED)
3859 {
3860 x->parent->color = MEM_BLACK;
3861 y->color = MEM_BLACK;
3862 x->parent->parent->color = MEM_RED;
3863 x = x->parent->parent;
3864 }
3865 else
3866 {
3867 if (x == x->parent->left)
3868 {
3869 x = x->parent;
3870 mem_rotate_right (x);
3871 }
3872
3873 x->parent->color = MEM_BLACK;
3874 x->parent->parent->color = MEM_RED;
3875 mem_rotate_left (x->parent->parent);
3876 }
3877 }
3878 }
3879
3880 /* The root may have been changed to red due to the algorithm. Set
3881 it to black so that property #5 is satisfied. */
3882 mem_root->color = MEM_BLACK;
3883 }
3884
3885
3886 /* (x) (y)
3887 / \ / \
3888 a (y) ===> (x) c
3889 / \ / \
3890 b c a b */
3891
3892 static void
3893 mem_rotate_left (struct mem_node *x)
3894 {
3895 struct mem_node *y;
3896
3897 /* Turn y's left sub-tree into x's right sub-tree. */
3898 y = x->right;
3899 x->right = y->left;
3900 if (y->left != MEM_NIL)
3901 y->left->parent = x;
3902
3903 /* Y's parent was x's parent. */
3904 if (y != MEM_NIL)
3905 y->parent = x->parent;
3906
3907 /* Get the parent to point to y instead of x. */
3908 if (x->parent)
3909 {
3910 if (x == x->parent->left)
3911 x->parent->left = y;
3912 else
3913 x->parent->right = y;
3914 }
3915 else
3916 mem_root = y;
3917
3918 /* Put x on y's left. */
3919 y->left = x;
3920 if (x != MEM_NIL)
3921 x->parent = y;
3922 }
3923
3924
3925 /* (x) (Y)
3926 / \ / \
3927 (y) c ===> a (x)
3928 / \ / \
3929 a b b c */
3930
3931 static void
3932 mem_rotate_right (struct mem_node *x)
3933 {
3934 struct mem_node *y = x->left;
3935
3936 x->left = y->right;
3937 if (y->right != MEM_NIL)
3938 y->right->parent = x;
3939
3940 if (y != MEM_NIL)
3941 y->parent = x->parent;
3942 if (x->parent)
3943 {
3944 if (x == x->parent->right)
3945 x->parent->right = y;
3946 else
3947 x->parent->left = y;
3948 }
3949 else
3950 mem_root = y;
3951
3952 y->right = x;
3953 if (x != MEM_NIL)
3954 x->parent = y;
3955 }
3956
3957
3958 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3959
3960 static void
3961 mem_delete (struct mem_node *z)
3962 {
3963 struct mem_node *x, *y;
3964
3965 if (!z || z == MEM_NIL)
3966 return;
3967
3968 if (z->left == MEM_NIL || z->right == MEM_NIL)
3969 y = z;
3970 else
3971 {
3972 y = z->right;
3973 while (y->left != MEM_NIL)
3974 y = y->left;
3975 }
3976
3977 if (y->left != MEM_NIL)
3978 x = y->left;
3979 else
3980 x = y->right;
3981
3982 x->parent = y->parent;
3983 if (y->parent)
3984 {
3985 if (y == y->parent->left)
3986 y->parent->left = x;
3987 else
3988 y->parent->right = x;
3989 }
3990 else
3991 mem_root = x;
3992
3993 if (y != z)
3994 {
3995 z->start = y->start;
3996 z->end = y->end;
3997 z->type = y->type;
3998 }
3999
4000 if (y->color == MEM_BLACK)
4001 mem_delete_fixup (x);
4002
4003 #ifdef GC_MALLOC_CHECK
4004 free (y);
4005 #else
4006 xfree (y);
4007 #endif
4008 }
4009
4010
4011 /* Re-establish the red-black properties of the tree, after a
4012 deletion. */
4013
4014 static void
4015 mem_delete_fixup (struct mem_node *x)
4016 {
4017 while (x != mem_root && x->color == MEM_BLACK)
4018 {
4019 if (x == x->parent->left)
4020 {
4021 struct mem_node *w = x->parent->right;
4022
4023 if (w->color == MEM_RED)
4024 {
4025 w->color = MEM_BLACK;
4026 x->parent->color = MEM_RED;
4027 mem_rotate_left (x->parent);
4028 w = x->parent->right;
4029 }
4030
4031 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4032 {
4033 w->color = MEM_RED;
4034 x = x->parent;
4035 }
4036 else
4037 {
4038 if (w->right->color == MEM_BLACK)
4039 {
4040 w->left->color = MEM_BLACK;
4041 w->color = MEM_RED;
4042 mem_rotate_right (w);
4043 w = x->parent->right;
4044 }
4045 w->color = x->parent->color;
4046 x->parent->color = MEM_BLACK;
4047 w->right->color = MEM_BLACK;
4048 mem_rotate_left (x->parent);
4049 x = mem_root;
4050 }
4051 }
4052 else
4053 {
4054 struct mem_node *w = x->parent->left;
4055
4056 if (w->color == MEM_RED)
4057 {
4058 w->color = MEM_BLACK;
4059 x->parent->color = MEM_RED;
4060 mem_rotate_right (x->parent);
4061 w = x->parent->left;
4062 }
4063
4064 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4065 {
4066 w->color = MEM_RED;
4067 x = x->parent;
4068 }
4069 else
4070 {
4071 if (w->left->color == MEM_BLACK)
4072 {
4073 w->right->color = MEM_BLACK;
4074 w->color = MEM_RED;
4075 mem_rotate_left (w);
4076 w = x->parent->left;
4077 }
4078
4079 w->color = x->parent->color;
4080 x->parent->color = MEM_BLACK;
4081 w->left->color = MEM_BLACK;
4082 mem_rotate_right (x->parent);
4083 x = mem_root;
4084 }
4085 }
4086 }
4087
4088 x->color = MEM_BLACK;
4089 }
4090
4091
4092 /* Value is non-zero if P is a pointer to a live Lisp string on
4093 the heap. M is a pointer to the mem_block for P. */
4094
4095 static bool
4096 live_string_p (struct mem_node *m, void *p)
4097 {
4098 if (m->type == MEM_TYPE_STRING)
4099 {
4100 struct string_block *b = m->start;
4101 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4102
4103 /* P must point to the start of a Lisp_String structure, and it
4104 must not be on the free-list. */
4105 return (offset >= 0
4106 && offset % sizeof b->strings[0] == 0
4107 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4108 && ((struct Lisp_String *) p)->data != NULL);
4109 }
4110 else
4111 return 0;
4112 }
4113
4114
4115 /* Value is non-zero if P is a pointer to a live Lisp cons on
4116 the heap. M is a pointer to the mem_block for P. */
4117
4118 static bool
4119 live_cons_p (struct mem_node *m, void *p)
4120 {
4121 if (m->type == MEM_TYPE_CONS)
4122 {
4123 struct cons_block *b = m->start;
4124 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4125
4126 /* P must point to the start of a Lisp_Cons, not be
4127 one of the unused cells in the current cons block,
4128 and not be on the free-list. */
4129 return (offset >= 0
4130 && offset % sizeof b->conses[0] == 0
4131 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4132 && (b != cons_block
4133 || offset / sizeof b->conses[0] < cons_block_index)
4134 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4135 }
4136 else
4137 return 0;
4138 }
4139
4140
4141 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4142 the heap. M is a pointer to the mem_block for P. */
4143
4144 static bool
4145 live_symbol_p (struct mem_node *m, void *p)
4146 {
4147 if (m->type == MEM_TYPE_SYMBOL)
4148 {
4149 struct symbol_block *b = m->start;
4150 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4151
4152 /* P must point to the start of a Lisp_Symbol, not be
4153 one of the unused cells in the current symbol block,
4154 and not be on the free-list. */
4155 return (offset >= 0
4156 && offset % sizeof b->symbols[0] == 0
4157 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4158 && (b != symbol_block
4159 || offset / sizeof b->symbols[0] < symbol_block_index)
4160 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4161 }
4162 else
4163 return 0;
4164 }
4165
4166
4167 /* Value is non-zero if P is a pointer to a live Lisp float on
4168 the heap. M is a pointer to the mem_block for P. */
4169
4170 static bool
4171 live_float_p (struct mem_node *m, void *p)
4172 {
4173 if (m->type == MEM_TYPE_FLOAT)
4174 {
4175 struct float_block *b = m->start;
4176 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4177
4178 /* P must point to the start of a Lisp_Float and not be
4179 one of the unused cells in the current float block. */
4180 return (offset >= 0
4181 && offset % sizeof b->floats[0] == 0
4182 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4183 && (b != float_block
4184 || offset / sizeof b->floats[0] < float_block_index));
4185 }
4186 else
4187 return 0;
4188 }
4189
4190
4191 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4192 the heap. M is a pointer to the mem_block for P. */
4193
4194 static bool
4195 live_misc_p (struct mem_node *m, void *p)
4196 {
4197 if (m->type == MEM_TYPE_MISC)
4198 {
4199 struct marker_block *b = m->start;
4200 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4201
4202 /* P must point to the start of a Lisp_Misc, not be
4203 one of the unused cells in the current misc block,
4204 and not be on the free-list. */
4205 return (offset >= 0
4206 && offset % sizeof b->markers[0] == 0
4207 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4208 && (b != marker_block
4209 || offset / sizeof b->markers[0] < marker_block_index)
4210 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4211 }
4212 else
4213 return 0;
4214 }
4215
4216
4217 /* Value is non-zero if P is a pointer to a live vector-like object.
4218 M is a pointer to the mem_block for P. */
4219
4220 static bool
4221 live_vector_p (struct mem_node *m, void *p)
4222 {
4223 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4224 {
4225 /* This memory node corresponds to a vector block. */
4226 struct vector_block *block = m->start;
4227 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4228
4229 /* P is in the block's allocation range. Scan the block
4230 up to P and see whether P points to the start of some
4231 vector which is not on a free list. FIXME: check whether
4232 some allocation patterns (probably a lot of short vectors)
4233 may cause a substantial overhead of this loop. */
4234 while (VECTOR_IN_BLOCK (vector, block)
4235 && vector <= (struct Lisp_Vector *) p)
4236 {
4237 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4238 return 1;
4239 else
4240 vector = ADVANCE (vector, vector_nbytes (vector));
4241 }
4242 }
4243 else if (m->type == MEM_TYPE_VECTORLIKE
4244 && (char *) p == ((char *) m->start
4245 + offsetof (struct large_vector, v)))
4246 /* This memory node corresponds to a large vector. */
4247 return 1;
4248 return 0;
4249 }
4250
4251
4252 /* Value is non-zero if P is a pointer to a live buffer. M is a
4253 pointer to the mem_block for P. */
4254
4255 static bool
4256 live_buffer_p (struct mem_node *m, void *p)
4257 {
4258 /* P must point to the start of the block, and the buffer
4259 must not have been killed. */
4260 return (m->type == MEM_TYPE_BUFFER
4261 && p == m->start
4262 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4263 }
4264
4265 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4266
4267 #if GC_MARK_STACK
4268
4269 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4270
4271 /* Currently not used, but may be called from gdb. */
4272
4273 void dump_zombies (void) EXTERNALLY_VISIBLE;
4274
4275 /* Array of objects that are kept alive because the C stack contains
4276 a pattern that looks like a reference to them . */
4277
4278 #define MAX_ZOMBIES 10
4279 static Lisp_Object zombies[MAX_ZOMBIES];
4280
4281 /* Number of zombie objects. */
4282
4283 static EMACS_INT nzombies;
4284
4285 /* Number of garbage collections. */
4286
4287 static EMACS_INT ngcs;
4288
4289 /* Average percentage of zombies per collection. */
4290
4291 static double avg_zombies;
4292
4293 /* Max. number of live and zombie objects. */
4294
4295 static EMACS_INT max_live, max_zombies;
4296
4297 /* Average number of live objects per GC. */
4298
4299 static double avg_live;
4300
4301 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4302 doc: /* Show information about live and zombie objects. */)
4303 (void)
4304 {
4305 Lisp_Object args[8], zombie_list = Qnil;
4306 EMACS_INT i;
4307 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4308 zombie_list = Fcons (zombies[i], zombie_list);
4309 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4310 args[1] = make_number (ngcs);
4311 args[2] = make_float (avg_live);
4312 args[3] = make_float (avg_zombies);
4313 args[4] = make_float (avg_zombies / avg_live / 100);
4314 args[5] = make_number (max_live);
4315 args[6] = make_number (max_zombies);
4316 args[7] = zombie_list;
4317 return Fmessage (8, args);
4318 }
4319
4320 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4321
4322
4323 /* Mark OBJ if we can prove it's a Lisp_Object. */
4324
4325 static void
4326 mark_maybe_object (Lisp_Object obj)
4327 {
4328 void *po;
4329 struct mem_node *m;
4330
4331 #if USE_VALGRIND
4332 if (valgrind_p)
4333 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4334 #endif
4335
4336 if (INTEGERP (obj))
4337 return;
4338
4339 po = (void *) XPNTR (obj);
4340 m = mem_find (po);
4341
4342 if (m != MEM_NIL)
4343 {
4344 bool mark_p = 0;
4345
4346 switch (XTYPE (obj))
4347 {
4348 case Lisp_String:
4349 mark_p = (live_string_p (m, po)
4350 && !STRING_MARKED_P ((struct Lisp_String *) po));
4351 break;
4352
4353 case Lisp_Cons:
4354 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4355 break;
4356
4357 case Lisp_Symbol:
4358 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4359 break;
4360
4361 case Lisp_Float:
4362 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4363 break;
4364
4365 case Lisp_Vectorlike:
4366 /* Note: can't check BUFFERP before we know it's a
4367 buffer because checking that dereferences the pointer
4368 PO which might point anywhere. */
4369 if (live_vector_p (m, po))
4370 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4371 else if (live_buffer_p (m, po))
4372 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4373 break;
4374
4375 case Lisp_Misc:
4376 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4377 break;
4378
4379 default:
4380 break;
4381 }
4382
4383 if (mark_p)
4384 {
4385 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4386 if (nzombies < MAX_ZOMBIES)
4387 zombies[nzombies] = obj;
4388 ++nzombies;
4389 #endif
4390 mark_object (obj);
4391 }
4392 }
4393 }
4394
4395
4396 /* If P points to Lisp data, mark that as live if it isn't already
4397 marked. */
4398
4399 static void
4400 mark_maybe_pointer (void *p)
4401 {
4402 struct mem_node *m;
4403
4404 #if USE_VALGRIND
4405 if (valgrind_p)
4406 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4407 #endif
4408
4409 /* Quickly rule out some values which can't point to Lisp data.
4410 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4411 Otherwise, assume that Lisp data is aligned on even addresses. */
4412 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4413 return;
4414
4415 m = mem_find (p);
4416 if (m != MEM_NIL)
4417 {
4418 Lisp_Object obj = Qnil;
4419
4420 switch (m->type)
4421 {
4422 case MEM_TYPE_NON_LISP:
4423 case MEM_TYPE_SPARE:
4424 /* Nothing to do; not a pointer to Lisp memory. */
4425 break;
4426
4427 case MEM_TYPE_BUFFER:
4428 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4429 XSETVECTOR (obj, p);
4430 break;
4431
4432 case MEM_TYPE_CONS:
4433 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4434 XSETCONS (obj, p);
4435 break;
4436
4437 case MEM_TYPE_STRING:
4438 if (live_string_p (m, p)
4439 && !STRING_MARKED_P ((struct Lisp_String *) p))
4440 XSETSTRING (obj, p);
4441 break;
4442
4443 case MEM_TYPE_MISC:
4444 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4445 XSETMISC (obj, p);
4446 break;
4447
4448 case MEM_TYPE_SYMBOL:
4449 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4450 XSETSYMBOL (obj, p);
4451 break;
4452
4453 case MEM_TYPE_FLOAT:
4454 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4455 XSETFLOAT (obj, p);
4456 break;
4457
4458 case MEM_TYPE_VECTORLIKE:
4459 case MEM_TYPE_VECTOR_BLOCK:
4460 if (live_vector_p (m, p))
4461 {
4462 Lisp_Object tem;
4463 XSETVECTOR (tem, p);
4464 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4465 obj = tem;
4466 }
4467 break;
4468
4469 default:
4470 emacs_abort ();
4471 }
4472
4473 if (!NILP (obj))
4474 mark_object (obj);
4475 }
4476 }
4477
4478
4479 /* Alignment of pointer values. Use alignof, as it sometimes returns
4480 a smaller alignment than GCC's __alignof__ and mark_memory might
4481 miss objects if __alignof__ were used. */
4482 #define GC_POINTER_ALIGNMENT alignof (void *)
4483
4484 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4485 not suffice, which is the typical case. A host where a Lisp_Object is
4486 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4487 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4488 suffice to widen it to to a Lisp_Object and check it that way. */
4489 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4490 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4491 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4492 nor mark_maybe_object can follow the pointers. This should not occur on
4493 any practical porting target. */
4494 # error "MSB type bits straddle pointer-word boundaries"
4495 # endif
4496 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4497 pointer words that hold pointers ORed with type bits. */
4498 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4499 #else
4500 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4501 words that hold unmodified pointers. */
4502 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4503 #endif
4504
4505 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4506 or END+OFFSET..START. */
4507
4508 static void
4509 mark_memory (void *start, void *end)
4510 #if defined (__clang__) && defined (__has_feature)
4511 #if __has_feature(address_sanitizer)
4512 /* Do not allow -faddress-sanitizer to check this function, since it
4513 crosses the function stack boundary, and thus would yield many
4514 false positives. */
4515 __attribute__((no_address_safety_analysis))
4516 #endif
4517 #endif
4518 {
4519 void **pp;
4520 int i;
4521
4522 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4523 nzombies = 0;
4524 #endif
4525
4526 /* Make START the pointer to the start of the memory region,
4527 if it isn't already. */
4528 if (end < start)
4529 {
4530 void *tem = start;
4531 start = end;
4532 end = tem;
4533 }
4534
4535 /* Mark Lisp data pointed to. This is necessary because, in some
4536 situations, the C compiler optimizes Lisp objects away, so that
4537 only a pointer to them remains. Example:
4538
4539 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4540 ()
4541 {
4542 Lisp_Object obj = build_string ("test");
4543 struct Lisp_String *s = XSTRING (obj);
4544 Fgarbage_collect ();
4545 fprintf (stderr, "test `%s'\n", s->data);
4546 return Qnil;
4547 }
4548
4549 Here, `obj' isn't really used, and the compiler optimizes it
4550 away. The only reference to the life string is through the
4551 pointer `s'. */
4552
4553 for (pp = start; (void *) pp < end; pp++)
4554 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4555 {
4556 void *p = *(void **) ((char *) pp + i);
4557 mark_maybe_pointer (p);
4558 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4559 mark_maybe_object (XIL ((intptr_t) p));
4560 }
4561 }
4562
4563 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4564
4565 static bool setjmp_tested_p;
4566 static int longjmps_done;
4567
4568 #define SETJMP_WILL_LIKELY_WORK "\
4569 \n\
4570 Emacs garbage collector has been changed to use conservative stack\n\
4571 marking. Emacs has determined that the method it uses to do the\n\
4572 marking will likely work on your system, but this isn't sure.\n\
4573 \n\
4574 If you are a system-programmer, or can get the help of a local wizard\n\
4575 who is, please take a look at the function mark_stack in alloc.c, and\n\
4576 verify that the methods used are appropriate for your system.\n\
4577 \n\
4578 Please mail the result to <emacs-devel@gnu.org>.\n\
4579 "
4580
4581 #define SETJMP_WILL_NOT_WORK "\
4582 \n\
4583 Emacs garbage collector has been changed to use conservative stack\n\
4584 marking. Emacs has determined that the default method it uses to do the\n\
4585 marking will not work on your system. We will need a system-dependent\n\
4586 solution for your system.\n\
4587 \n\
4588 Please take a look at the function mark_stack in alloc.c, and\n\
4589 try to find a way to make it work on your system.\n\
4590 \n\
4591 Note that you may get false negatives, depending on the compiler.\n\
4592 In particular, you need to use -O with GCC for this test.\n\
4593 \n\
4594 Please mail the result to <emacs-devel@gnu.org>.\n\
4595 "
4596
4597
4598 /* Perform a quick check if it looks like setjmp saves registers in a
4599 jmp_buf. Print a message to stderr saying so. When this test
4600 succeeds, this is _not_ a proof that setjmp is sufficient for
4601 conservative stack marking. Only the sources or a disassembly
4602 can prove that. */
4603
4604 static void
4605 test_setjmp (void)
4606 {
4607 char buf[10];
4608 register int x;
4609 sys_jmp_buf jbuf;
4610
4611 /* Arrange for X to be put in a register. */
4612 sprintf (buf, "1");
4613 x = strlen (buf);
4614 x = 2 * x - 1;
4615
4616 sys_setjmp (jbuf);
4617 if (longjmps_done == 1)
4618 {
4619 /* Came here after the longjmp at the end of the function.
4620
4621 If x == 1, the longjmp has restored the register to its
4622 value before the setjmp, and we can hope that setjmp
4623 saves all such registers in the jmp_buf, although that
4624 isn't sure.
4625
4626 For other values of X, either something really strange is
4627 taking place, or the setjmp just didn't save the register. */
4628
4629 if (x == 1)
4630 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4631 else
4632 {
4633 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4634 exit (1);
4635 }
4636 }
4637
4638 ++longjmps_done;
4639 x = 2;
4640 if (longjmps_done == 1)
4641 sys_longjmp (jbuf, 1);
4642 }
4643
4644 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4645
4646
4647 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4648
4649 /* Abort if anything GCPRO'd doesn't survive the GC. */
4650
4651 static void
4652 check_gcpros (void)
4653 {
4654 struct gcpro *p;
4655 ptrdiff_t i;
4656
4657 for (p = gcprolist; p; p = p->next)
4658 for (i = 0; i < p->nvars; ++i)
4659 if (!survives_gc_p (p->var[i]))
4660 /* FIXME: It's not necessarily a bug. It might just be that the
4661 GCPRO is unnecessary or should release the object sooner. */
4662 emacs_abort ();
4663 }
4664
4665 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4666
4667 void
4668 dump_zombies (void)
4669 {
4670 int i;
4671
4672 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4673 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4674 {
4675 fprintf (stderr, " %d = ", i);
4676 debug_print (zombies[i]);
4677 }
4678 }
4679
4680 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4681
4682
4683 /* Mark live Lisp objects on the C stack.
4684
4685 There are several system-dependent problems to consider when
4686 porting this to new architectures:
4687
4688 Processor Registers
4689
4690 We have to mark Lisp objects in CPU registers that can hold local
4691 variables or are used to pass parameters.
4692
4693 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4694 something that either saves relevant registers on the stack, or
4695 calls mark_maybe_object passing it each register's contents.
4696
4697 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4698 implementation assumes that calling setjmp saves registers we need
4699 to see in a jmp_buf which itself lies on the stack. This doesn't
4700 have to be true! It must be verified for each system, possibly
4701 by taking a look at the source code of setjmp.
4702
4703 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4704 can use it as a machine independent method to store all registers
4705 to the stack. In this case the macros described in the previous
4706 two paragraphs are not used.
4707
4708 Stack Layout
4709
4710 Architectures differ in the way their processor stack is organized.
4711 For example, the stack might look like this
4712
4713 +----------------+
4714 | Lisp_Object | size = 4
4715 +----------------+
4716 | something else | size = 2
4717 +----------------+
4718 | Lisp_Object | size = 4
4719 +----------------+
4720 | ... |
4721
4722 In such a case, not every Lisp_Object will be aligned equally. To
4723 find all Lisp_Object on the stack it won't be sufficient to walk
4724 the stack in steps of 4 bytes. Instead, two passes will be
4725 necessary, one starting at the start of the stack, and a second
4726 pass starting at the start of the stack + 2. Likewise, if the
4727 minimal alignment of Lisp_Objects on the stack is 1, four passes
4728 would be necessary, each one starting with one byte more offset
4729 from the stack start. */
4730
4731 static void
4732 mark_stack (void)
4733 {
4734 void *end;
4735
4736 #ifdef HAVE___BUILTIN_UNWIND_INIT
4737 /* Force callee-saved registers and register windows onto the stack.
4738 This is the preferred method if available, obviating the need for
4739 machine dependent methods. */
4740 __builtin_unwind_init ();
4741 end = &end;
4742 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4743 #ifndef GC_SAVE_REGISTERS_ON_STACK
4744 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4745 union aligned_jmpbuf {
4746 Lisp_Object o;
4747 sys_jmp_buf j;
4748 } j;
4749 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4750 #endif
4751 /* This trick flushes the register windows so that all the state of
4752 the process is contained in the stack. */
4753 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4754 needed on ia64 too. See mach_dep.c, where it also says inline
4755 assembler doesn't work with relevant proprietary compilers. */
4756 #ifdef __sparc__
4757 #if defined (__sparc64__) && defined (__FreeBSD__)
4758 /* FreeBSD does not have a ta 3 handler. */
4759 asm ("flushw");
4760 #else
4761 asm ("ta 3");
4762 #endif
4763 #endif
4764
4765 /* Save registers that we need to see on the stack. We need to see
4766 registers used to hold register variables and registers used to
4767 pass parameters. */
4768 #ifdef GC_SAVE_REGISTERS_ON_STACK
4769 GC_SAVE_REGISTERS_ON_STACK (end);
4770 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4771
4772 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4773 setjmp will definitely work, test it
4774 and print a message with the result
4775 of the test. */
4776 if (!setjmp_tested_p)
4777 {
4778 setjmp_tested_p = 1;
4779 test_setjmp ();
4780 }
4781 #endif /* GC_SETJMP_WORKS */
4782
4783 sys_setjmp (j.j);
4784 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4785 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4786 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4787
4788 /* This assumes that the stack is a contiguous region in memory. If
4789 that's not the case, something has to be done here to iterate
4790 over the stack segments. */
4791 mark_memory (stack_base, end);
4792
4793 /* Allow for marking a secondary stack, like the register stack on the
4794 ia64. */
4795 #ifdef GC_MARK_SECONDARY_STACK
4796 GC_MARK_SECONDARY_STACK ();
4797 #endif
4798
4799 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4800 check_gcpros ();
4801 #endif
4802 }
4803
4804 #else /* GC_MARK_STACK == 0 */
4805
4806 #define mark_maybe_object(obj) emacs_abort ()
4807
4808 #endif /* GC_MARK_STACK != 0 */
4809
4810
4811 /* Determine whether it is safe to access memory at address P. */
4812 static int
4813 valid_pointer_p (void *p)
4814 {
4815 #ifdef WINDOWSNT
4816 return w32_valid_pointer_p (p, 16);
4817 #else
4818 int fd[2];
4819
4820 /* Obviously, we cannot just access it (we would SEGV trying), so we
4821 trick the o/s to tell us whether p is a valid pointer.
4822 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4823 not validate p in that case. */
4824
4825 if (emacs_pipe (fd) == 0)
4826 {
4827 bool valid = emacs_write (fd[1], p, 16) == 16;
4828 emacs_close (fd[1]);
4829 emacs_close (fd[0]);
4830 return valid;
4831 }
4832
4833 return -1;
4834 #endif
4835 }
4836
4837 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4838 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4839 cannot validate OBJ. This function can be quite slow, so its primary
4840 use is the manual debugging. The only exception is print_object, where
4841 we use it to check whether the memory referenced by the pointer of
4842 Lisp_Save_Value object contains valid objects. */
4843
4844 int
4845 valid_lisp_object_p (Lisp_Object obj)
4846 {
4847 void *p;
4848 #if GC_MARK_STACK
4849 struct mem_node *m;
4850 #endif
4851
4852 if (INTEGERP (obj))
4853 return 1;
4854
4855 p = (void *) XPNTR (obj);
4856 if (PURE_POINTER_P (p))
4857 return 1;
4858
4859 if (p == &buffer_defaults || p == &buffer_local_symbols)
4860 return 2;
4861
4862 #if !GC_MARK_STACK
4863 return valid_pointer_p (p);
4864 #else
4865
4866 m = mem_find (p);
4867
4868 if (m == MEM_NIL)
4869 {
4870 int valid = valid_pointer_p (p);
4871 if (valid <= 0)
4872 return valid;
4873
4874 if (SUBRP (obj))
4875 return 1;
4876
4877 return 0;
4878 }
4879
4880 switch (m->type)
4881 {
4882 case MEM_TYPE_NON_LISP:
4883 case MEM_TYPE_SPARE:
4884 return 0;
4885
4886 case MEM_TYPE_BUFFER:
4887 return live_buffer_p (m, p) ? 1 : 2;
4888
4889 case MEM_TYPE_CONS:
4890 return live_cons_p (m, p);
4891
4892 case MEM_TYPE_STRING:
4893 return live_string_p (m, p);
4894
4895 case MEM_TYPE_MISC:
4896 return live_misc_p (m, p);
4897
4898 case MEM_TYPE_SYMBOL:
4899 return live_symbol_p (m, p);
4900
4901 case MEM_TYPE_FLOAT:
4902 return live_float_p (m, p);
4903
4904 case MEM_TYPE_VECTORLIKE:
4905 case MEM_TYPE_VECTOR_BLOCK:
4906 return live_vector_p (m, p);
4907
4908 default:
4909 break;
4910 }
4911
4912 return 0;
4913 #endif
4914 }
4915
4916
4917
4918 \f
4919 /***********************************************************************
4920 Pure Storage Management
4921 ***********************************************************************/
4922
4923 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4924 pointer to it. TYPE is the Lisp type for which the memory is
4925 allocated. TYPE < 0 means it's not used for a Lisp object. */
4926
4927 static void *
4928 pure_alloc (size_t size, int type)
4929 {
4930 void *result;
4931 #if USE_LSB_TAG
4932 size_t alignment = GCALIGNMENT;
4933 #else
4934 size_t alignment = alignof (EMACS_INT);
4935
4936 /* Give Lisp_Floats an extra alignment. */
4937 if (type == Lisp_Float)
4938 alignment = alignof (struct Lisp_Float);
4939 #endif
4940
4941 again:
4942 if (type >= 0)
4943 {
4944 /* Allocate space for a Lisp object from the beginning of the free
4945 space with taking account of alignment. */
4946 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4947 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4948 }
4949 else
4950 {
4951 /* Allocate space for a non-Lisp object from the end of the free
4952 space. */
4953 pure_bytes_used_non_lisp += size;
4954 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4955 }
4956 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4957
4958 if (pure_bytes_used <= pure_size)
4959 return result;
4960
4961 /* Don't allocate a large amount here,
4962 because it might get mmap'd and then its address
4963 might not be usable. */
4964 purebeg = xmalloc (10000);
4965 pure_size = 10000;
4966 pure_bytes_used_before_overflow += pure_bytes_used - size;
4967 pure_bytes_used = 0;
4968 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4969 goto again;
4970 }
4971
4972
4973 /* Print a warning if PURESIZE is too small. */
4974
4975 void
4976 check_pure_size (void)
4977 {
4978 if (pure_bytes_used_before_overflow)
4979 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4980 " bytes needed)"),
4981 pure_bytes_used + pure_bytes_used_before_overflow);
4982 }
4983
4984
4985 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4986 the non-Lisp data pool of the pure storage, and return its start
4987 address. Return NULL if not found. */
4988
4989 static char *
4990 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
4991 {
4992 int i;
4993 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4994 const unsigned char *p;
4995 char *non_lisp_beg;
4996
4997 if (pure_bytes_used_non_lisp <= nbytes)
4998 return NULL;
4999
5000 /* Set up the Boyer-Moore table. */
5001 skip = nbytes + 1;
5002 for (i = 0; i < 256; i++)
5003 bm_skip[i] = skip;
5004
5005 p = (const unsigned char *) data;
5006 while (--skip > 0)
5007 bm_skip[*p++] = skip;
5008
5009 last_char_skip = bm_skip['\0'];
5010
5011 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5012 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5013
5014 /* See the comments in the function `boyer_moore' (search.c) for the
5015 use of `infinity'. */
5016 infinity = pure_bytes_used_non_lisp + 1;
5017 bm_skip['\0'] = infinity;
5018
5019 p = (const unsigned char *) non_lisp_beg + nbytes;
5020 start = 0;
5021 do
5022 {
5023 /* Check the last character (== '\0'). */
5024 do
5025 {
5026 start += bm_skip[*(p + start)];
5027 }
5028 while (start <= start_max);
5029
5030 if (start < infinity)
5031 /* Couldn't find the last character. */
5032 return NULL;
5033
5034 /* No less than `infinity' means we could find the last
5035 character at `p[start - infinity]'. */
5036 start -= infinity;
5037
5038 /* Check the remaining characters. */
5039 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5040 /* Found. */
5041 return non_lisp_beg + start;
5042
5043 start += last_char_skip;
5044 }
5045 while (start <= start_max);
5046
5047 return NULL;
5048 }
5049
5050
5051 /* Return a string allocated in pure space. DATA is a buffer holding
5052 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5053 means make the result string multibyte.
5054
5055 Must get an error if pure storage is full, since if it cannot hold
5056 a large string it may be able to hold conses that point to that
5057 string; then the string is not protected from gc. */
5058
5059 Lisp_Object
5060 make_pure_string (const char *data,
5061 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5062 {
5063 Lisp_Object string;
5064 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5065 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5066 if (s->data == NULL)
5067 {
5068 s->data = pure_alloc (nbytes + 1, -1);
5069 memcpy (s->data, data, nbytes);
5070 s->data[nbytes] = '\0';
5071 }
5072 s->size = nchars;
5073 s->size_byte = multibyte ? nbytes : -1;
5074 s->intervals = NULL;
5075 XSETSTRING (string, s);
5076 return string;
5077 }
5078
5079 /* Return a string allocated in pure space. Do not
5080 allocate the string data, just point to DATA. */
5081
5082 Lisp_Object
5083 make_pure_c_string (const char *data, ptrdiff_t nchars)
5084 {
5085 Lisp_Object string;
5086 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5087 s->size = nchars;
5088 s->size_byte = -1;
5089 s->data = (unsigned char *) data;
5090 s->intervals = NULL;
5091 XSETSTRING (string, s);
5092 return string;
5093 }
5094
5095 /* Return a cons allocated from pure space. Give it pure copies
5096 of CAR as car and CDR as cdr. */
5097
5098 Lisp_Object
5099 pure_cons (Lisp_Object car, Lisp_Object cdr)
5100 {
5101 Lisp_Object new;
5102 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5103 XSETCONS (new, p);
5104 XSETCAR (new, Fpurecopy (car));
5105 XSETCDR (new, Fpurecopy (cdr));
5106 return new;
5107 }
5108
5109
5110 /* Value is a float object with value NUM allocated from pure space. */
5111
5112 static Lisp_Object
5113 make_pure_float (double num)
5114 {
5115 Lisp_Object new;
5116 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5117 XSETFLOAT (new, p);
5118 XFLOAT_INIT (new, num);
5119 return new;
5120 }
5121
5122
5123 /* Return a vector with room for LEN Lisp_Objects allocated from
5124 pure space. */
5125
5126 static Lisp_Object
5127 make_pure_vector (ptrdiff_t len)
5128 {
5129 Lisp_Object new;
5130 size_t size = header_size + len * word_size;
5131 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5132 XSETVECTOR (new, p);
5133 XVECTOR (new)->header.size = len;
5134 return new;
5135 }
5136
5137
5138 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5139 doc: /* Make a copy of object OBJ in pure storage.
5140 Recursively copies contents of vectors and cons cells.
5141 Does not copy symbols. Copies strings without text properties. */)
5142 (register Lisp_Object obj)
5143 {
5144 if (NILP (Vpurify_flag))
5145 return obj;
5146
5147 if (PURE_POINTER_P (XPNTR (obj)))
5148 return obj;
5149
5150 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5151 {
5152 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5153 if (!NILP (tmp))
5154 return tmp;
5155 }
5156
5157 if (CONSP (obj))
5158 obj = pure_cons (XCAR (obj), XCDR (obj));
5159 else if (FLOATP (obj))
5160 obj = make_pure_float (XFLOAT_DATA (obj));
5161 else if (STRINGP (obj))
5162 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5163 SBYTES (obj),
5164 STRING_MULTIBYTE (obj));
5165 else if (COMPILEDP (obj) || VECTORP (obj))
5166 {
5167 register struct Lisp_Vector *vec;
5168 register ptrdiff_t i;
5169 ptrdiff_t size;
5170
5171 size = ASIZE (obj);
5172 if (size & PSEUDOVECTOR_FLAG)
5173 size &= PSEUDOVECTOR_SIZE_MASK;
5174 vec = XVECTOR (make_pure_vector (size));
5175 for (i = 0; i < size; i++)
5176 vec->u.contents[i] = Fpurecopy (AREF (obj, i));
5177 if (COMPILEDP (obj))
5178 {
5179 XSETPVECTYPE (vec, PVEC_COMPILED);
5180 XSETCOMPILED (obj, vec);
5181 }
5182 else
5183 XSETVECTOR (obj, vec);
5184 }
5185 else if (MARKERP (obj))
5186 error ("Attempt to copy a marker to pure storage");
5187 else
5188 /* Not purified, don't hash-cons. */
5189 return obj;
5190
5191 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5192 Fputhash (obj, obj, Vpurify_flag);
5193
5194 return obj;
5195 }
5196
5197
5198 \f
5199 /***********************************************************************
5200 Protection from GC
5201 ***********************************************************************/
5202
5203 /* Put an entry in staticvec, pointing at the variable with address
5204 VARADDRESS. */
5205
5206 void
5207 staticpro (Lisp_Object *varaddress)
5208 {
5209 if (staticidx >= NSTATICS)
5210 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5211 staticvec[staticidx++] = varaddress;
5212 }
5213
5214 \f
5215 /***********************************************************************
5216 Protection from GC
5217 ***********************************************************************/
5218
5219 /* Temporarily prevent garbage collection. */
5220
5221 ptrdiff_t
5222 inhibit_garbage_collection (void)
5223 {
5224 ptrdiff_t count = SPECPDL_INDEX ();
5225
5226 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5227 return count;
5228 }
5229
5230 /* Used to avoid possible overflows when
5231 converting from C to Lisp integers. */
5232
5233 static Lisp_Object
5234 bounded_number (EMACS_INT number)
5235 {
5236 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5237 }
5238
5239 /* Calculate total bytes of live objects. */
5240
5241 static size_t
5242 total_bytes_of_live_objects (void)
5243 {
5244 size_t tot = 0;
5245 tot += total_conses * sizeof (struct Lisp_Cons);
5246 tot += total_symbols * sizeof (struct Lisp_Symbol);
5247 tot += total_markers * sizeof (union Lisp_Misc);
5248 tot += total_string_bytes;
5249 tot += total_vector_slots * word_size;
5250 tot += total_floats * sizeof (struct Lisp_Float);
5251 tot += total_intervals * sizeof (struct interval);
5252 tot += total_strings * sizeof (struct Lisp_String);
5253 return tot;
5254 }
5255
5256 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5257 doc: /* Reclaim storage for Lisp objects no longer needed.
5258 Garbage collection happens automatically if you cons more than
5259 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5260 `garbage-collect' normally returns a list with info on amount of space in use,
5261 where each entry has the form (NAME SIZE USED FREE), where:
5262 - NAME is a symbol describing the kind of objects this entry represents,
5263 - SIZE is the number of bytes used by each one,
5264 - USED is the number of those objects that were found live in the heap,
5265 - FREE is the number of those objects that are not live but that Emacs
5266 keeps around for future allocations (maybe because it does not know how
5267 to return them to the OS).
5268 However, if there was overflow in pure space, `garbage-collect'
5269 returns nil, because real GC can't be done.
5270 See Info node `(elisp)Garbage Collection'. */)
5271 (void)
5272 {
5273 struct buffer *nextb;
5274 char stack_top_variable;
5275 ptrdiff_t i;
5276 bool message_p;
5277 ptrdiff_t count = SPECPDL_INDEX ();
5278 struct timespec start;
5279 Lisp_Object retval = Qnil;
5280 size_t tot_before = 0;
5281
5282 if (abort_on_gc)
5283 emacs_abort ();
5284
5285 /* Can't GC if pure storage overflowed because we can't determine
5286 if something is a pure object or not. */
5287 if (pure_bytes_used_before_overflow)
5288 return Qnil;
5289
5290 /* Record this function, so it appears on the profiler's backtraces. */
5291 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5292
5293 check_cons_list ();
5294
5295 /* Don't keep undo information around forever.
5296 Do this early on, so it is no problem if the user quits. */
5297 FOR_EACH_BUFFER (nextb)
5298 compact_buffer (nextb);
5299
5300 if (profiler_memory_running)
5301 tot_before = total_bytes_of_live_objects ();
5302
5303 start = current_timespec ();
5304
5305 /* In case user calls debug_print during GC,
5306 don't let that cause a recursive GC. */
5307 consing_since_gc = 0;
5308
5309 /* Save what's currently displayed in the echo area. */
5310 message_p = push_message ();
5311 record_unwind_protect_void (pop_message_unwind);
5312
5313 /* Save a copy of the contents of the stack, for debugging. */
5314 #if MAX_SAVE_STACK > 0
5315 if (NILP (Vpurify_flag))
5316 {
5317 char *stack;
5318 ptrdiff_t stack_size;
5319 if (&stack_top_variable < stack_bottom)
5320 {
5321 stack = &stack_top_variable;
5322 stack_size = stack_bottom - &stack_top_variable;
5323 }
5324 else
5325 {
5326 stack = stack_bottom;
5327 stack_size = &stack_top_variable - stack_bottom;
5328 }
5329 if (stack_size <= MAX_SAVE_STACK)
5330 {
5331 if (stack_copy_size < stack_size)
5332 {
5333 stack_copy = xrealloc (stack_copy, stack_size);
5334 stack_copy_size = stack_size;
5335 }
5336 memcpy (stack_copy, stack, stack_size);
5337 }
5338 }
5339 #endif /* MAX_SAVE_STACK > 0 */
5340
5341 if (garbage_collection_messages)
5342 message1_nolog ("Garbage collecting...");
5343
5344 block_input ();
5345
5346 shrink_regexp_cache ();
5347
5348 gc_in_progress = 1;
5349
5350 /* Mark all the special slots that serve as the roots of accessibility. */
5351
5352 mark_buffer (&buffer_defaults);
5353 mark_buffer (&buffer_local_symbols);
5354
5355 for (i = 0; i < staticidx; i++)
5356 mark_object (*staticvec[i]);
5357
5358 mark_specpdl ();
5359 mark_terminals ();
5360 mark_kboards ();
5361
5362 #ifdef USE_GTK
5363 xg_mark_data ();
5364 #endif
5365
5366 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5367 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5368 mark_stack ();
5369 #else
5370 {
5371 register struct gcpro *tail;
5372 for (tail = gcprolist; tail; tail = tail->next)
5373 for (i = 0; i < tail->nvars; i++)
5374 mark_object (tail->var[i]);
5375 }
5376 mark_byte_stack ();
5377 #endif
5378 {
5379 struct handler *handler;
5380 for (handler = handlerlist; handler; handler = handler->next)
5381 {
5382 mark_object (handler->tag_or_ch);
5383 mark_object (handler->val);
5384 }
5385 }
5386 #ifdef HAVE_WINDOW_SYSTEM
5387 mark_fringe_data ();
5388 #endif
5389
5390 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5391 mark_stack ();
5392 #endif
5393
5394 /* Everything is now marked, except for the things that require special
5395 finalization, i.e. the undo_list.
5396 Look thru every buffer's undo list
5397 for elements that update markers that were not marked,
5398 and delete them. */
5399 FOR_EACH_BUFFER (nextb)
5400 {
5401 /* If a buffer's undo list is Qt, that means that undo is
5402 turned off in that buffer. Calling truncate_undo_list on
5403 Qt tends to return NULL, which effectively turns undo back on.
5404 So don't call truncate_undo_list if undo_list is Qt. */
5405 if (! EQ (nextb->INTERNAL_FIELD (undo_list), Qt))
5406 {
5407 Lisp_Object tail, prev;
5408 tail = nextb->INTERNAL_FIELD (undo_list);
5409 prev = Qnil;
5410 while (CONSP (tail))
5411 {
5412 if (CONSP (XCAR (tail))
5413 && MARKERP (XCAR (XCAR (tail)))
5414 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5415 {
5416 if (NILP (prev))
5417 nextb->INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5418 else
5419 {
5420 tail = XCDR (tail);
5421 XSETCDR (prev, tail);
5422 }
5423 }
5424 else
5425 {
5426 prev = tail;
5427 tail = XCDR (tail);
5428 }
5429 }
5430 }
5431 /* Now that we have stripped the elements that need not be in the
5432 undo_list any more, we can finally mark the list. */
5433 mark_object (nextb->INTERNAL_FIELD (undo_list));
5434 }
5435
5436 gc_sweep ();
5437
5438 /* Clear the mark bits that we set in certain root slots. */
5439
5440 unmark_byte_stack ();
5441 VECTOR_UNMARK (&buffer_defaults);
5442 VECTOR_UNMARK (&buffer_local_symbols);
5443
5444 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5445 dump_zombies ();
5446 #endif
5447
5448 check_cons_list ();
5449
5450 gc_in_progress = 0;
5451
5452 unblock_input ();
5453
5454 consing_since_gc = 0;
5455 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5456 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5457
5458 gc_relative_threshold = 0;
5459 if (FLOATP (Vgc_cons_percentage))
5460 { /* Set gc_cons_combined_threshold. */
5461 double tot = total_bytes_of_live_objects ();
5462
5463 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5464 if (0 < tot)
5465 {
5466 if (tot < TYPE_MAXIMUM (EMACS_INT))
5467 gc_relative_threshold = tot;
5468 else
5469 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5470 }
5471 }
5472
5473 if (garbage_collection_messages)
5474 {
5475 if (message_p || minibuf_level > 0)
5476 restore_message ();
5477 else
5478 message1_nolog ("Garbage collecting...done");
5479 }
5480
5481 unbind_to (count, Qnil);
5482 {
5483 Lisp_Object total[11];
5484 int total_size = 10;
5485
5486 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5487 bounded_number (total_conses),
5488 bounded_number (total_free_conses));
5489
5490 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5491 bounded_number (total_symbols),
5492 bounded_number (total_free_symbols));
5493
5494 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5495 bounded_number (total_markers),
5496 bounded_number (total_free_markers));
5497
5498 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5499 bounded_number (total_strings),
5500 bounded_number (total_free_strings));
5501
5502 total[4] = list3 (Qstring_bytes, make_number (1),
5503 bounded_number (total_string_bytes));
5504
5505 total[5] = list3 (Qvectors,
5506 make_number (header_size + sizeof (Lisp_Object)),
5507 bounded_number (total_vectors));
5508
5509 total[6] = list4 (Qvector_slots, make_number (word_size),
5510 bounded_number (total_vector_slots),
5511 bounded_number (total_free_vector_slots));
5512
5513 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5514 bounded_number (total_floats),
5515 bounded_number (total_free_floats));
5516
5517 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5518 bounded_number (total_intervals),
5519 bounded_number (total_free_intervals));
5520
5521 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5522 bounded_number (total_buffers));
5523
5524 #ifdef DOUG_LEA_MALLOC
5525 total_size++;
5526 total[10] = list4 (Qheap, make_number (1024),
5527 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5528 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5529 #endif
5530 retval = Flist (total_size, total);
5531 }
5532
5533 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5534 {
5535 /* Compute average percentage of zombies. */
5536 double nlive
5537 = (total_conses + total_symbols + total_markers + total_strings
5538 + total_vectors + total_floats + total_intervals + total_buffers);
5539
5540 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5541 max_live = max (nlive, max_live);
5542 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5543 max_zombies = max (nzombies, max_zombies);
5544 ++ngcs;
5545 }
5546 #endif
5547
5548 if (!NILP (Vpost_gc_hook))
5549 {
5550 ptrdiff_t gc_count = inhibit_garbage_collection ();
5551 safe_run_hooks (Qpost_gc_hook);
5552 unbind_to (gc_count, Qnil);
5553 }
5554
5555 /* Accumulate statistics. */
5556 if (FLOATP (Vgc_elapsed))
5557 {
5558 struct timespec since_start = timespec_sub (current_timespec (), start);
5559 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5560 + timespectod (since_start));
5561 }
5562
5563 gcs_done++;
5564
5565 /* Collect profiling data. */
5566 if (profiler_memory_running)
5567 {
5568 size_t swept = 0;
5569 size_t tot_after = total_bytes_of_live_objects ();
5570 if (tot_before > tot_after)
5571 swept = tot_before - tot_after;
5572 malloc_probe (swept);
5573 }
5574
5575 return retval;
5576 }
5577
5578
5579 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5580 only interesting objects referenced from glyphs are strings. */
5581
5582 static void
5583 mark_glyph_matrix (struct glyph_matrix *matrix)
5584 {
5585 struct glyph_row *row = matrix->rows;
5586 struct glyph_row *end = row + matrix->nrows;
5587
5588 for (; row < end; ++row)
5589 if (row->enabled_p)
5590 {
5591 int area;
5592 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5593 {
5594 struct glyph *glyph = row->glyphs[area];
5595 struct glyph *end_glyph = glyph + row->used[area];
5596
5597 for (; glyph < end_glyph; ++glyph)
5598 if (STRINGP (glyph->object)
5599 && !STRING_MARKED_P (XSTRING (glyph->object)))
5600 mark_object (glyph->object);
5601 }
5602 }
5603 }
5604
5605
5606 /* Mark Lisp faces in the face cache C. */
5607
5608 static void
5609 mark_face_cache (struct face_cache *c)
5610 {
5611 if (c)
5612 {
5613 int i, j;
5614 for (i = 0; i < c->used; ++i)
5615 {
5616 struct face *face = FACE_FROM_ID (c->f, i);
5617
5618 if (face)
5619 {
5620 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5621 mark_object (face->lface[j]);
5622 }
5623 }
5624 }
5625 }
5626
5627
5628 \f
5629 /* Mark reference to a Lisp_Object.
5630 If the object referred to has not been seen yet, recursively mark
5631 all the references contained in it. */
5632
5633 #define LAST_MARKED_SIZE 500
5634 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5635 static int last_marked_index;
5636
5637 /* For debugging--call abort when we cdr down this many
5638 links of a list, in mark_object. In debugging,
5639 the call to abort will hit a breakpoint.
5640 Normally this is zero and the check never goes off. */
5641 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5642
5643 static void
5644 mark_vectorlike (struct Lisp_Vector *ptr)
5645 {
5646 ptrdiff_t size = ptr->header.size;
5647 ptrdiff_t i;
5648
5649 eassert (!VECTOR_MARKED_P (ptr));
5650 VECTOR_MARK (ptr); /* Else mark it. */
5651 if (size & PSEUDOVECTOR_FLAG)
5652 size &= PSEUDOVECTOR_SIZE_MASK;
5653
5654 /* Note that this size is not the memory-footprint size, but only
5655 the number of Lisp_Object fields that we should trace.
5656 The distinction is used e.g. by Lisp_Process which places extra
5657 non-Lisp_Object fields at the end of the structure... */
5658 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5659 mark_object (ptr->u.contents[i]);
5660 }
5661
5662 /* Like mark_vectorlike but optimized for char-tables (and
5663 sub-char-tables) assuming that the contents are mostly integers or
5664 symbols. */
5665
5666 static void
5667 mark_char_table (struct Lisp_Vector *ptr)
5668 {
5669 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5670 int i;
5671
5672 eassert (!VECTOR_MARKED_P (ptr));
5673 VECTOR_MARK (ptr);
5674 for (i = 0; i < size; i++)
5675 {
5676 Lisp_Object val = ptr->u.contents[i];
5677
5678 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5679 continue;
5680 if (SUB_CHAR_TABLE_P (val))
5681 {
5682 if (! VECTOR_MARKED_P (XVECTOR (val)))
5683 mark_char_table (XVECTOR (val));
5684 }
5685 else
5686 mark_object (val);
5687 }
5688 }
5689
5690 /* Mark the chain of overlays starting at PTR. */
5691
5692 static void
5693 mark_overlay (struct Lisp_Overlay *ptr)
5694 {
5695 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5696 {
5697 ptr->gcmarkbit = 1;
5698 mark_object (ptr->start);
5699 mark_object (ptr->end);
5700 mark_object (ptr->plist);
5701 }
5702 }
5703
5704 /* Mark Lisp_Objects and special pointers in BUFFER. */
5705
5706 static void
5707 mark_buffer (struct buffer *buffer)
5708 {
5709 /* This is handled much like other pseudovectors... */
5710 mark_vectorlike ((struct Lisp_Vector *) buffer);
5711
5712 /* ...but there are some buffer-specific things. */
5713
5714 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5715
5716 /* For now, we just don't mark the undo_list. It's done later in
5717 a special way just before the sweep phase, and after stripping
5718 some of its elements that are not needed any more. */
5719
5720 mark_overlay (buffer->overlays_before);
5721 mark_overlay (buffer->overlays_after);
5722
5723 /* If this is an indirect buffer, mark its base buffer. */
5724 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5725 mark_buffer (buffer->base_buffer);
5726 }
5727
5728 /* Remove killed buffers or items whose car is a killed buffer from
5729 LIST, and mark other items. Return changed LIST, which is marked. */
5730
5731 static Lisp_Object
5732 mark_discard_killed_buffers (Lisp_Object list)
5733 {
5734 Lisp_Object tail, *prev = &list;
5735
5736 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5737 tail = XCDR (tail))
5738 {
5739 Lisp_Object tem = XCAR (tail);
5740 if (CONSP (tem))
5741 tem = XCAR (tem);
5742 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5743 *prev = XCDR (tail);
5744 else
5745 {
5746 CONS_MARK (XCONS (tail));
5747 mark_object (XCAR (tail));
5748 prev = xcdr_addr (tail);
5749 }
5750 }
5751 mark_object (tail);
5752 return list;
5753 }
5754
5755 /* Determine type of generic Lisp_Object and mark it accordingly. */
5756
5757 void
5758 mark_object (Lisp_Object arg)
5759 {
5760 register Lisp_Object obj = arg;
5761 #ifdef GC_CHECK_MARKED_OBJECTS
5762 void *po;
5763 struct mem_node *m;
5764 #endif
5765 ptrdiff_t cdr_count = 0;
5766
5767 loop:
5768
5769 if (PURE_POINTER_P (XPNTR (obj)))
5770 return;
5771
5772 last_marked[last_marked_index++] = obj;
5773 if (last_marked_index == LAST_MARKED_SIZE)
5774 last_marked_index = 0;
5775
5776 /* Perform some sanity checks on the objects marked here. Abort if
5777 we encounter an object we know is bogus. This increases GC time
5778 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5779 #ifdef GC_CHECK_MARKED_OBJECTS
5780
5781 po = (void *) XPNTR (obj);
5782
5783 /* Check that the object pointed to by PO is known to be a Lisp
5784 structure allocated from the heap. */
5785 #define CHECK_ALLOCATED() \
5786 do { \
5787 m = mem_find (po); \
5788 if (m == MEM_NIL) \
5789 emacs_abort (); \
5790 } while (0)
5791
5792 /* Check that the object pointed to by PO is live, using predicate
5793 function LIVEP. */
5794 #define CHECK_LIVE(LIVEP) \
5795 do { \
5796 if (!LIVEP (m, po)) \
5797 emacs_abort (); \
5798 } while (0)
5799
5800 /* Check both of the above conditions. */
5801 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5802 do { \
5803 CHECK_ALLOCATED (); \
5804 CHECK_LIVE (LIVEP); \
5805 } while (0) \
5806
5807 #else /* not GC_CHECK_MARKED_OBJECTS */
5808
5809 #define CHECK_LIVE(LIVEP) (void) 0
5810 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5811
5812 #endif /* not GC_CHECK_MARKED_OBJECTS */
5813
5814 switch (XTYPE (obj))
5815 {
5816 case Lisp_String:
5817 {
5818 register struct Lisp_String *ptr = XSTRING (obj);
5819 if (STRING_MARKED_P (ptr))
5820 break;
5821 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5822 MARK_STRING (ptr);
5823 MARK_INTERVAL_TREE (ptr->intervals);
5824 #ifdef GC_CHECK_STRING_BYTES
5825 /* Check that the string size recorded in the string is the
5826 same as the one recorded in the sdata structure. */
5827 string_bytes (ptr);
5828 #endif /* GC_CHECK_STRING_BYTES */
5829 }
5830 break;
5831
5832 case Lisp_Vectorlike:
5833 {
5834 register struct Lisp_Vector *ptr = XVECTOR (obj);
5835 register ptrdiff_t pvectype;
5836
5837 if (VECTOR_MARKED_P (ptr))
5838 break;
5839
5840 #ifdef GC_CHECK_MARKED_OBJECTS
5841 m = mem_find (po);
5842 if (m == MEM_NIL && !SUBRP (obj))
5843 emacs_abort ();
5844 #endif /* GC_CHECK_MARKED_OBJECTS */
5845
5846 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5847 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5848 >> PSEUDOVECTOR_AREA_BITS);
5849 else
5850 pvectype = PVEC_NORMAL_VECTOR;
5851
5852 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5853 CHECK_LIVE (live_vector_p);
5854
5855 switch (pvectype)
5856 {
5857 case PVEC_BUFFER:
5858 #ifdef GC_CHECK_MARKED_OBJECTS
5859 {
5860 struct buffer *b;
5861 FOR_EACH_BUFFER (b)
5862 if (b == po)
5863 break;
5864 if (b == NULL)
5865 emacs_abort ();
5866 }
5867 #endif /* GC_CHECK_MARKED_OBJECTS */
5868 mark_buffer ((struct buffer *) ptr);
5869 break;
5870
5871 case PVEC_COMPILED:
5872 { /* We could treat this just like a vector, but it is better
5873 to save the COMPILED_CONSTANTS element for last and avoid
5874 recursion there. */
5875 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5876 int i;
5877
5878 VECTOR_MARK (ptr);
5879 for (i = 0; i < size; i++)
5880 if (i != COMPILED_CONSTANTS)
5881 mark_object (ptr->u.contents[i]);
5882 if (size > COMPILED_CONSTANTS)
5883 {
5884 obj = ptr->u.contents[COMPILED_CONSTANTS];
5885 goto loop;
5886 }
5887 }
5888 break;
5889
5890 case PVEC_FRAME:
5891 mark_vectorlike (ptr);
5892 mark_face_cache (((struct frame *) ptr)->face_cache);
5893 break;
5894
5895 case PVEC_WINDOW:
5896 {
5897 struct window *w = (struct window *) ptr;
5898
5899 mark_vectorlike (ptr);
5900
5901 /* Mark glyph matrices, if any. Marking window
5902 matrices is sufficient because frame matrices
5903 use the same glyph memory. */
5904 if (w->current_matrix)
5905 {
5906 mark_glyph_matrix (w->current_matrix);
5907 mark_glyph_matrix (w->desired_matrix);
5908 }
5909
5910 /* Filter out killed buffers from both buffer lists
5911 in attempt to help GC to reclaim killed buffers faster.
5912 We can do it elsewhere for live windows, but this is the
5913 best place to do it for dead windows. */
5914 wset_prev_buffers
5915 (w, mark_discard_killed_buffers (w->prev_buffers));
5916 wset_next_buffers
5917 (w, mark_discard_killed_buffers (w->next_buffers));
5918 }
5919 break;
5920
5921 case PVEC_HASH_TABLE:
5922 {
5923 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
5924
5925 mark_vectorlike (ptr);
5926 mark_object (h->test.name);
5927 mark_object (h->test.user_hash_function);
5928 mark_object (h->test.user_cmp_function);
5929 /* If hash table is not weak, mark all keys and values.
5930 For weak tables, mark only the vector. */
5931 if (NILP (h->weak))
5932 mark_object (h->key_and_value);
5933 else
5934 VECTOR_MARK (XVECTOR (h->key_and_value));
5935 }
5936 break;
5937
5938 case PVEC_CHAR_TABLE:
5939 mark_char_table (ptr);
5940 break;
5941
5942 case PVEC_BOOL_VECTOR:
5943 /* No Lisp_Objects to mark in a bool vector. */
5944 VECTOR_MARK (ptr);
5945 break;
5946
5947 case PVEC_SUBR:
5948 break;
5949
5950 case PVEC_FREE:
5951 emacs_abort ();
5952
5953 default:
5954 mark_vectorlike (ptr);
5955 }
5956 }
5957 break;
5958
5959 case Lisp_Symbol:
5960 {
5961 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5962 struct Lisp_Symbol *ptrx;
5963
5964 if (ptr->gcmarkbit)
5965 break;
5966 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5967 ptr->gcmarkbit = 1;
5968 mark_object (ptr->function);
5969 mark_object (ptr->plist);
5970 switch (ptr->redirect)
5971 {
5972 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5973 case SYMBOL_VARALIAS:
5974 {
5975 Lisp_Object tem;
5976 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5977 mark_object (tem);
5978 break;
5979 }
5980 case SYMBOL_LOCALIZED:
5981 {
5982 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5983 Lisp_Object where = blv->where;
5984 /* If the value is set up for a killed buffer or deleted
5985 frame, restore it's global binding. If the value is
5986 forwarded to a C variable, either it's not a Lisp_Object
5987 var, or it's staticpro'd already. */
5988 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
5989 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
5990 swap_in_global_binding (ptr);
5991 mark_object (blv->where);
5992 mark_object (blv->valcell);
5993 mark_object (blv->defcell);
5994 break;
5995 }
5996 case SYMBOL_FORWARDED:
5997 /* If the value is forwarded to a buffer or keyboard field,
5998 these are marked when we see the corresponding object.
5999 And if it's forwarded to a C variable, either it's not
6000 a Lisp_Object var, or it's staticpro'd already. */
6001 break;
6002 default: emacs_abort ();
6003 }
6004 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6005 MARK_STRING (XSTRING (ptr->name));
6006 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6007
6008 ptr = ptr->next;
6009 if (ptr)
6010 {
6011 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6012 XSETSYMBOL (obj, ptrx);
6013 goto loop;
6014 }
6015 }
6016 break;
6017
6018 case Lisp_Misc:
6019 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6020
6021 if (XMISCANY (obj)->gcmarkbit)
6022 break;
6023
6024 switch (XMISCTYPE (obj))
6025 {
6026 case Lisp_Misc_Marker:
6027 /* DO NOT mark thru the marker's chain.
6028 The buffer's markers chain does not preserve markers from gc;
6029 instead, markers are removed from the chain when freed by gc. */
6030 XMISCANY (obj)->gcmarkbit = 1;
6031 break;
6032
6033 case Lisp_Misc_Save_Value:
6034 XMISCANY (obj)->gcmarkbit = 1;
6035 {
6036 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6037 /* If `save_type' is zero, `data[0].pointer' is the address
6038 of a memory area containing `data[1].integer' potential
6039 Lisp_Objects. */
6040 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6041 {
6042 Lisp_Object *p = ptr->data[0].pointer;
6043 ptrdiff_t nelt;
6044 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6045 mark_maybe_object (*p);
6046 }
6047 else
6048 {
6049 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6050 int i;
6051 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6052 if (save_type (ptr, i) == SAVE_OBJECT)
6053 mark_object (ptr->data[i].object);
6054 }
6055 }
6056 break;
6057
6058 case Lisp_Misc_Overlay:
6059 mark_overlay (XOVERLAY (obj));
6060 break;
6061
6062 default:
6063 emacs_abort ();
6064 }
6065 break;
6066
6067 case Lisp_Cons:
6068 {
6069 register struct Lisp_Cons *ptr = XCONS (obj);
6070 if (CONS_MARKED_P (ptr))
6071 break;
6072 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6073 CONS_MARK (ptr);
6074 /* If the cdr is nil, avoid recursion for the car. */
6075 if (EQ (ptr->u.cdr, Qnil))
6076 {
6077 obj = ptr->car;
6078 cdr_count = 0;
6079 goto loop;
6080 }
6081 mark_object (ptr->car);
6082 obj = ptr->u.cdr;
6083 cdr_count++;
6084 if (cdr_count == mark_object_loop_halt)
6085 emacs_abort ();
6086 goto loop;
6087 }
6088
6089 case Lisp_Float:
6090 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6091 FLOAT_MARK (XFLOAT (obj));
6092 break;
6093
6094 case_Lisp_Int:
6095 break;
6096
6097 default:
6098 emacs_abort ();
6099 }
6100
6101 #undef CHECK_LIVE
6102 #undef CHECK_ALLOCATED
6103 #undef CHECK_ALLOCATED_AND_LIVE
6104 }
6105 /* Mark the Lisp pointers in the terminal objects.
6106 Called by Fgarbage_collect. */
6107
6108 static void
6109 mark_terminals (void)
6110 {
6111 struct terminal *t;
6112 for (t = terminal_list; t; t = t->next_terminal)
6113 {
6114 eassert (t->name != NULL);
6115 #ifdef HAVE_WINDOW_SYSTEM
6116 /* If a terminal object is reachable from a stacpro'ed object,
6117 it might have been marked already. Make sure the image cache
6118 gets marked. */
6119 mark_image_cache (t->image_cache);
6120 #endif /* HAVE_WINDOW_SYSTEM */
6121 if (!VECTOR_MARKED_P (t))
6122 mark_vectorlike ((struct Lisp_Vector *)t);
6123 }
6124 }
6125
6126
6127
6128 /* Value is non-zero if OBJ will survive the current GC because it's
6129 either marked or does not need to be marked to survive. */
6130
6131 bool
6132 survives_gc_p (Lisp_Object obj)
6133 {
6134 bool survives_p;
6135
6136 switch (XTYPE (obj))
6137 {
6138 case_Lisp_Int:
6139 survives_p = 1;
6140 break;
6141
6142 case Lisp_Symbol:
6143 survives_p = XSYMBOL (obj)->gcmarkbit;
6144 break;
6145
6146 case Lisp_Misc:
6147 survives_p = XMISCANY (obj)->gcmarkbit;
6148 break;
6149
6150 case Lisp_String:
6151 survives_p = STRING_MARKED_P (XSTRING (obj));
6152 break;
6153
6154 case Lisp_Vectorlike:
6155 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6156 break;
6157
6158 case Lisp_Cons:
6159 survives_p = CONS_MARKED_P (XCONS (obj));
6160 break;
6161
6162 case Lisp_Float:
6163 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6164 break;
6165
6166 default:
6167 emacs_abort ();
6168 }
6169
6170 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6171 }
6172
6173
6174 \f
6175 /* Sweep: find all structures not marked, and free them. */
6176
6177 static void
6178 gc_sweep (void)
6179 {
6180 /* Remove or mark entries in weak hash tables.
6181 This must be done before any object is unmarked. */
6182 sweep_weak_hash_tables ();
6183
6184 sweep_strings ();
6185 check_string_bytes (!noninteractive);
6186
6187 /* Put all unmarked conses on free list */
6188 {
6189 register struct cons_block *cblk;
6190 struct cons_block **cprev = &cons_block;
6191 register int lim = cons_block_index;
6192 EMACS_INT num_free = 0, num_used = 0;
6193
6194 cons_free_list = 0;
6195
6196 for (cblk = cons_block; cblk; cblk = *cprev)
6197 {
6198 register int i = 0;
6199 int this_free = 0;
6200 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6201
6202 /* Scan the mark bits an int at a time. */
6203 for (i = 0; i < ilim; i++)
6204 {
6205 if (cblk->gcmarkbits[i] == -1)
6206 {
6207 /* Fast path - all cons cells for this int are marked. */
6208 cblk->gcmarkbits[i] = 0;
6209 num_used += BITS_PER_INT;
6210 }
6211 else
6212 {
6213 /* Some cons cells for this int are not marked.
6214 Find which ones, and free them. */
6215 int start, pos, stop;
6216
6217 start = i * BITS_PER_INT;
6218 stop = lim - start;
6219 if (stop > BITS_PER_INT)
6220 stop = BITS_PER_INT;
6221 stop += start;
6222
6223 for (pos = start; pos < stop; pos++)
6224 {
6225 if (!CONS_MARKED_P (&cblk->conses[pos]))
6226 {
6227 this_free++;
6228 cblk->conses[pos].u.chain = cons_free_list;
6229 cons_free_list = &cblk->conses[pos];
6230 #if GC_MARK_STACK
6231 cons_free_list->car = Vdead;
6232 #endif
6233 }
6234 else
6235 {
6236 num_used++;
6237 CONS_UNMARK (&cblk->conses[pos]);
6238 }
6239 }
6240 }
6241 }
6242
6243 lim = CONS_BLOCK_SIZE;
6244 /* If this block contains only free conses and we have already
6245 seen more than two blocks worth of free conses then deallocate
6246 this block. */
6247 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6248 {
6249 *cprev = cblk->next;
6250 /* Unhook from the free list. */
6251 cons_free_list = cblk->conses[0].u.chain;
6252 lisp_align_free (cblk);
6253 }
6254 else
6255 {
6256 num_free += this_free;
6257 cprev = &cblk->next;
6258 }
6259 }
6260 total_conses = num_used;
6261 total_free_conses = num_free;
6262 }
6263
6264 /* Put all unmarked floats on free list */
6265 {
6266 register struct float_block *fblk;
6267 struct float_block **fprev = &float_block;
6268 register int lim = float_block_index;
6269 EMACS_INT num_free = 0, num_used = 0;
6270
6271 float_free_list = 0;
6272
6273 for (fblk = float_block; fblk; fblk = *fprev)
6274 {
6275 register int i;
6276 int this_free = 0;
6277 for (i = 0; i < lim; i++)
6278 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6279 {
6280 this_free++;
6281 fblk->floats[i].u.chain = float_free_list;
6282 float_free_list = &fblk->floats[i];
6283 }
6284 else
6285 {
6286 num_used++;
6287 FLOAT_UNMARK (&fblk->floats[i]);
6288 }
6289 lim = FLOAT_BLOCK_SIZE;
6290 /* If this block contains only free floats and we have already
6291 seen more than two blocks worth of free floats then deallocate
6292 this block. */
6293 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6294 {
6295 *fprev = fblk->next;
6296 /* Unhook from the free list. */
6297 float_free_list = fblk->floats[0].u.chain;
6298 lisp_align_free (fblk);
6299 }
6300 else
6301 {
6302 num_free += this_free;
6303 fprev = &fblk->next;
6304 }
6305 }
6306 total_floats = num_used;
6307 total_free_floats = num_free;
6308 }
6309
6310 /* Put all unmarked intervals on free list */
6311 {
6312 register struct interval_block *iblk;
6313 struct interval_block **iprev = &interval_block;
6314 register int lim = interval_block_index;
6315 EMACS_INT num_free = 0, num_used = 0;
6316
6317 interval_free_list = 0;
6318
6319 for (iblk = interval_block; iblk; iblk = *iprev)
6320 {
6321 register int i;
6322 int this_free = 0;
6323
6324 for (i = 0; i < lim; i++)
6325 {
6326 if (!iblk->intervals[i].gcmarkbit)
6327 {
6328 set_interval_parent (&iblk->intervals[i], interval_free_list);
6329 interval_free_list = &iblk->intervals[i];
6330 this_free++;
6331 }
6332 else
6333 {
6334 num_used++;
6335 iblk->intervals[i].gcmarkbit = 0;
6336 }
6337 }
6338 lim = INTERVAL_BLOCK_SIZE;
6339 /* If this block contains only free intervals and we have already
6340 seen more than two blocks worth of free intervals then
6341 deallocate this block. */
6342 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6343 {
6344 *iprev = iblk->next;
6345 /* Unhook from the free list. */
6346 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6347 lisp_free (iblk);
6348 }
6349 else
6350 {
6351 num_free += this_free;
6352 iprev = &iblk->next;
6353 }
6354 }
6355 total_intervals = num_used;
6356 total_free_intervals = num_free;
6357 }
6358
6359 /* Put all unmarked symbols on free list */
6360 {
6361 register struct symbol_block *sblk;
6362 struct symbol_block **sprev = &symbol_block;
6363 register int lim = symbol_block_index;
6364 EMACS_INT num_free = 0, num_used = 0;
6365
6366 symbol_free_list = NULL;
6367
6368 for (sblk = symbol_block; sblk; sblk = *sprev)
6369 {
6370 int this_free = 0;
6371 union aligned_Lisp_Symbol *sym = sblk->symbols;
6372 union aligned_Lisp_Symbol *end = sym + lim;
6373
6374 for (; sym < end; ++sym)
6375 {
6376 /* Check if the symbol was created during loadup. In such a case
6377 it might be pointed to by pure bytecode which we don't trace,
6378 so we conservatively assume that it is live. */
6379 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6380
6381 if (!sym->s.gcmarkbit && !pure_p)
6382 {
6383 if (sym->s.redirect == SYMBOL_LOCALIZED)
6384 xfree (SYMBOL_BLV (&sym->s));
6385 sym->s.next = symbol_free_list;
6386 symbol_free_list = &sym->s;
6387 #if GC_MARK_STACK
6388 symbol_free_list->function = Vdead;
6389 #endif
6390 ++this_free;
6391 }
6392 else
6393 {
6394 ++num_used;
6395 if (!pure_p)
6396 UNMARK_STRING (XSTRING (sym->s.name));
6397 sym->s.gcmarkbit = 0;
6398 }
6399 }
6400
6401 lim = SYMBOL_BLOCK_SIZE;
6402 /* If this block contains only free symbols and we have already
6403 seen more than two blocks worth of free symbols then deallocate
6404 this block. */
6405 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6406 {
6407 *sprev = sblk->next;
6408 /* Unhook from the free list. */
6409 symbol_free_list = sblk->symbols[0].s.next;
6410 lisp_free (sblk);
6411 }
6412 else
6413 {
6414 num_free += this_free;
6415 sprev = &sblk->next;
6416 }
6417 }
6418 total_symbols = num_used;
6419 total_free_symbols = num_free;
6420 }
6421
6422 /* Put all unmarked misc's on free list.
6423 For a marker, first unchain it from the buffer it points into. */
6424 {
6425 register struct marker_block *mblk;
6426 struct marker_block **mprev = &marker_block;
6427 register int lim = marker_block_index;
6428 EMACS_INT num_free = 0, num_used = 0;
6429
6430 marker_free_list = 0;
6431
6432 for (mblk = marker_block; mblk; mblk = *mprev)
6433 {
6434 register int i;
6435 int this_free = 0;
6436
6437 for (i = 0; i < lim; i++)
6438 {
6439 if (!mblk->markers[i].m.u_any.gcmarkbit)
6440 {
6441 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6442 unchain_marker (&mblk->markers[i].m.u_marker);
6443 /* Set the type of the freed object to Lisp_Misc_Free.
6444 We could leave the type alone, since nobody checks it,
6445 but this might catch bugs faster. */
6446 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6447 mblk->markers[i].m.u_free.chain = marker_free_list;
6448 marker_free_list = &mblk->markers[i].m;
6449 this_free++;
6450 }
6451 else
6452 {
6453 num_used++;
6454 mblk->markers[i].m.u_any.gcmarkbit = 0;
6455 }
6456 }
6457 lim = MARKER_BLOCK_SIZE;
6458 /* If this block contains only free markers and we have already
6459 seen more than two blocks worth of free markers then deallocate
6460 this block. */
6461 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6462 {
6463 *mprev = mblk->next;
6464 /* Unhook from the free list. */
6465 marker_free_list = mblk->markers[0].m.u_free.chain;
6466 lisp_free (mblk);
6467 }
6468 else
6469 {
6470 num_free += this_free;
6471 mprev = &mblk->next;
6472 }
6473 }
6474
6475 total_markers = num_used;
6476 total_free_markers = num_free;
6477 }
6478
6479 /* Free all unmarked buffers */
6480 {
6481 register struct buffer *buffer, **bprev = &all_buffers;
6482
6483 total_buffers = 0;
6484 for (buffer = all_buffers; buffer; buffer = *bprev)
6485 if (!VECTOR_MARKED_P (buffer))
6486 {
6487 *bprev = buffer->next;
6488 lisp_free (buffer);
6489 }
6490 else
6491 {
6492 VECTOR_UNMARK (buffer);
6493 /* Do not use buffer_(set|get)_intervals here. */
6494 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6495 total_buffers++;
6496 bprev = &buffer->next;
6497 }
6498 }
6499
6500 sweep_vectors ();
6501 check_string_bytes (!noninteractive);
6502 }
6503
6504
6505
6506 \f
6507 /* Debugging aids. */
6508
6509 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6510 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6511 This may be helpful in debugging Emacs's memory usage.
6512 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6513 (void)
6514 {
6515 Lisp_Object end;
6516
6517 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6518
6519 return end;
6520 }
6521
6522 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6523 doc: /* Return a list of counters that measure how much consing there has been.
6524 Each of these counters increments for a certain kind of object.
6525 The counters wrap around from the largest positive integer to zero.
6526 Garbage collection does not decrease them.
6527 The elements of the value are as follows:
6528 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6529 All are in units of 1 = one object consed
6530 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6531 objects consed.
6532 MISCS include overlays, markers, and some internal types.
6533 Frames, windows, buffers, and subprocesses count as vectors
6534 (but the contents of a buffer's text do not count here). */)
6535 (void)
6536 {
6537 return listn (CONSTYPE_HEAP, 8,
6538 bounded_number (cons_cells_consed),
6539 bounded_number (floats_consed),
6540 bounded_number (vector_cells_consed),
6541 bounded_number (symbols_consed),
6542 bounded_number (string_chars_consed),
6543 bounded_number (misc_objects_consed),
6544 bounded_number (intervals_consed),
6545 bounded_number (strings_consed));
6546 }
6547
6548 /* Find at most FIND_MAX symbols which have OBJ as their value or
6549 function. This is used in gdbinit's `xwhichsymbols' command. */
6550
6551 Lisp_Object
6552 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6553 {
6554 struct symbol_block *sblk;
6555 ptrdiff_t gc_count = inhibit_garbage_collection ();
6556 Lisp_Object found = Qnil;
6557
6558 if (! DEADP (obj))
6559 {
6560 for (sblk = symbol_block; sblk; sblk = sblk->next)
6561 {
6562 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6563 int bn;
6564
6565 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6566 {
6567 struct Lisp_Symbol *sym = &aligned_sym->s;
6568 Lisp_Object val;
6569 Lisp_Object tem;
6570
6571 if (sblk == symbol_block && bn >= symbol_block_index)
6572 break;
6573
6574 XSETSYMBOL (tem, sym);
6575 val = find_symbol_value (tem);
6576 if (EQ (val, obj)
6577 || EQ (sym->function, obj)
6578 || (!NILP (sym->function)
6579 && COMPILEDP (sym->function)
6580 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6581 || (!NILP (val)
6582 && COMPILEDP (val)
6583 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6584 {
6585 found = Fcons (tem, found);
6586 if (--find_max == 0)
6587 goto out;
6588 }
6589 }
6590 }
6591 }
6592
6593 out:
6594 unbind_to (gc_count, Qnil);
6595 return found;
6596 }
6597
6598 #ifdef ENABLE_CHECKING
6599
6600 bool suppress_checking;
6601
6602 void
6603 die (const char *msg, const char *file, int line)
6604 {
6605 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6606 file, line, msg);
6607 terminate_due_to_signal (SIGABRT, INT_MAX);
6608 }
6609 #endif
6610 \f
6611 /* Initialization. */
6612
6613 void
6614 init_alloc_once (void)
6615 {
6616 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6617 purebeg = PUREBEG;
6618 pure_size = PURESIZE;
6619
6620 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6621 mem_init ();
6622 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6623 #endif
6624
6625 #ifdef DOUG_LEA_MALLOC
6626 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6627 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6628 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6629 #endif
6630 init_strings ();
6631 init_vectors ();
6632
6633 refill_memory_reserve ();
6634 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6635 }
6636
6637 void
6638 init_alloc (void)
6639 {
6640 gcprolist = 0;
6641 byte_stack_list = 0;
6642 #if GC_MARK_STACK
6643 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6644 setjmp_tested_p = longjmps_done = 0;
6645 #endif
6646 #endif
6647 Vgc_elapsed = make_float (0.0);
6648 gcs_done = 0;
6649
6650 #if USE_VALGRIND
6651 valgrind_p = RUNNING_ON_VALGRIND != 0;
6652 #endif
6653 }
6654
6655 void
6656 syms_of_alloc (void)
6657 {
6658 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6659 doc: /* Number of bytes of consing between garbage collections.
6660 Garbage collection can happen automatically once this many bytes have been
6661 allocated since the last garbage collection. All data types count.
6662
6663 Garbage collection happens automatically only when `eval' is called.
6664
6665 By binding this temporarily to a large number, you can effectively
6666 prevent garbage collection during a part of the program.
6667 See also `gc-cons-percentage'. */);
6668
6669 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6670 doc: /* Portion of the heap used for allocation.
6671 Garbage collection can happen automatically once this portion of the heap
6672 has been allocated since the last garbage collection.
6673 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6674 Vgc_cons_percentage = make_float (0.1);
6675
6676 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6677 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6678
6679 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6680 doc: /* Number of cons cells that have been consed so far. */);
6681
6682 DEFVAR_INT ("floats-consed", floats_consed,
6683 doc: /* Number of floats that have been consed so far. */);
6684
6685 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6686 doc: /* Number of vector cells that have been consed so far. */);
6687
6688 DEFVAR_INT ("symbols-consed", symbols_consed,
6689 doc: /* Number of symbols that have been consed so far. */);
6690
6691 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6692 doc: /* Number of string characters that have been consed so far. */);
6693
6694 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6695 doc: /* Number of miscellaneous objects that have been consed so far.
6696 These include markers and overlays, plus certain objects not visible
6697 to users. */);
6698
6699 DEFVAR_INT ("intervals-consed", intervals_consed,
6700 doc: /* Number of intervals that have been consed so far. */);
6701
6702 DEFVAR_INT ("strings-consed", strings_consed,
6703 doc: /* Number of strings that have been consed so far. */);
6704
6705 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6706 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6707 This means that certain objects should be allocated in shared (pure) space.
6708 It can also be set to a hash-table, in which case this table is used to
6709 do hash-consing of the objects allocated to pure space. */);
6710
6711 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6712 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6713 garbage_collection_messages = 0;
6714
6715 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6716 doc: /* Hook run after garbage collection has finished. */);
6717 Vpost_gc_hook = Qnil;
6718 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6719
6720 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6721 doc: /* Precomputed `signal' argument for memory-full error. */);
6722 /* We build this in advance because if we wait until we need it, we might
6723 not be able to allocate the memory to hold it. */
6724 Vmemory_signal_data
6725 = listn (CONSTYPE_PURE, 2, Qerror,
6726 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6727
6728 DEFVAR_LISP ("memory-full", Vmemory_full,
6729 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6730 Vmemory_full = Qnil;
6731
6732 DEFSYM (Qconses, "conses");
6733 DEFSYM (Qsymbols, "symbols");
6734 DEFSYM (Qmiscs, "miscs");
6735 DEFSYM (Qstrings, "strings");
6736 DEFSYM (Qvectors, "vectors");
6737 DEFSYM (Qfloats, "floats");
6738 DEFSYM (Qintervals, "intervals");
6739 DEFSYM (Qbuffers, "buffers");
6740 DEFSYM (Qstring_bytes, "string-bytes");
6741 DEFSYM (Qvector_slots, "vector-slots");
6742 DEFSYM (Qheap, "heap");
6743 DEFSYM (Qautomatic_gc, "Automatic GC");
6744
6745 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6746 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6747
6748 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6749 doc: /* Accumulated time elapsed in garbage collections.
6750 The time is in seconds as a floating point value. */);
6751 DEFVAR_INT ("gcs-done", gcs_done,
6752 doc: /* Accumulated number of garbage collections done. */);
6753
6754 defsubr (&Scons);
6755 defsubr (&Slist);
6756 defsubr (&Svector);
6757 defsubr (&Smake_byte_code);
6758 defsubr (&Smake_list);
6759 defsubr (&Smake_vector);
6760 defsubr (&Smake_string);
6761 defsubr (&Smake_bool_vector);
6762 defsubr (&Smake_symbol);
6763 defsubr (&Smake_marker);
6764 defsubr (&Spurecopy);
6765 defsubr (&Sgarbage_collect);
6766 defsubr (&Smemory_limit);
6767 defsubr (&Smemory_use_counts);
6768
6769 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6770 defsubr (&Sgc_status);
6771 #endif
6772 }
6773
6774 /* When compiled with GCC, GDB might say "No enum type named
6775 pvec_type" if we don't have at least one symbol with that type, and
6776 then xbacktrace could fail. Similarly for the other enums and
6777 their values. Some non-GCC compilers don't like these constructs. */
6778 #ifdef __GNUC__
6779 union
6780 {
6781 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6782 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6783 enum char_bits char_bits;
6784 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6785 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6786 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6787 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6788 enum Lisp_Bits Lisp_Bits;
6789 enum Lisp_Compiled Lisp_Compiled;
6790 enum maxargs maxargs;
6791 enum MAX_ALLOCA MAX_ALLOCA;
6792 enum More_Lisp_Bits More_Lisp_Bits;
6793 enum pvec_type pvec_type;
6794 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6795 #endif /* __GNUC__ */