]> code.delx.au - gnu-emacs/blob - src/alloc.c
Minor tweak of the last commit.
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2013 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
29
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
33
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
46 #include TERM_HEADER
47 #endif /* HAVE_WINDOW_SYSTEM */
48
49 #include <verify.h>
50
51 #if (defined ENABLE_CHECKING \
52 && defined HAVE_VALGRIND_VALGRIND_H \
53 && !defined USE_VALGRIND)
54 # define USE_VALGRIND 1
55 #endif
56
57 #if USE_VALGRIND
58 #include <valgrind/valgrind.h>
59 #include <valgrind/memcheck.h>
60 static bool valgrind_p;
61 #endif
62
63 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
64 Doable only if GC_MARK_STACK. */
65 #if ! GC_MARK_STACK
66 # undef GC_CHECK_MARKED_OBJECTS
67 #endif
68
69 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
70 memory. Can do this only if using gmalloc.c and if not checking
71 marked objects. */
72
73 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
74 || defined GC_CHECK_MARKED_OBJECTS)
75 #undef GC_MALLOC_CHECK
76 #endif
77
78 #include <unistd.h>
79 #include <fcntl.h>
80
81 #ifdef USE_GTK
82 # include "gtkutil.h"
83 #endif
84 #ifdef WINDOWSNT
85 #include "w32.h"
86 #include "w32heap.h" /* for sbrk */
87 #endif
88
89 #ifdef DOUG_LEA_MALLOC
90
91 #include <malloc.h>
92
93 /* Specify maximum number of areas to mmap. It would be nice to use a
94 value that explicitly means "no limit". */
95
96 #define MMAP_MAX_AREAS 100000000
97
98 #endif /* not DOUG_LEA_MALLOC */
99
100 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
101 to a struct Lisp_String. */
102
103 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
104 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
105 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
106
107 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
108 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
109 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
110
111 /* Default value of gc_cons_threshold (see below). */
112
113 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
114
115 /* Global variables. */
116 struct emacs_globals globals;
117
118 /* Number of bytes of consing done since the last gc. */
119
120 EMACS_INT consing_since_gc;
121
122 /* Similar minimum, computed from Vgc_cons_percentage. */
123
124 EMACS_INT gc_relative_threshold;
125
126 /* Minimum number of bytes of consing since GC before next GC,
127 when memory is full. */
128
129 EMACS_INT memory_full_cons_threshold;
130
131 /* True during GC. */
132
133 bool gc_in_progress;
134
135 /* True means abort if try to GC.
136 This is for code which is written on the assumption that
137 no GC will happen, so as to verify that assumption. */
138
139 bool abort_on_gc;
140
141 /* Number of live and free conses etc. */
142
143 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
144 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
145 static EMACS_INT total_free_floats, total_floats;
146
147 /* Points to memory space allocated as "spare", to be freed if we run
148 out of memory. We keep one large block, four cons-blocks, and
149 two string blocks. */
150
151 static char *spare_memory[7];
152
153 /* Amount of spare memory to keep in large reserve block, or to see
154 whether this much is available when malloc fails on a larger request. */
155
156 #define SPARE_MEMORY (1 << 14)
157
158 /* Initialize it to a nonzero value to force it into data space
159 (rather than bss space). That way unexec will remap it into text
160 space (pure), on some systems. We have not implemented the
161 remapping on more recent systems because this is less important
162 nowadays than in the days of small memories and timesharing. */
163
164 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
165 #define PUREBEG (char *) pure
166
167 /* Pointer to the pure area, and its size. */
168
169 static char *purebeg;
170 static ptrdiff_t pure_size;
171
172 /* Number of bytes of pure storage used before pure storage overflowed.
173 If this is non-zero, this implies that an overflow occurred. */
174
175 static ptrdiff_t pure_bytes_used_before_overflow;
176
177 /* True if P points into pure space. */
178
179 #define PURE_POINTER_P(P) \
180 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
181
182 /* Index in pure at which next pure Lisp object will be allocated.. */
183
184 static ptrdiff_t pure_bytes_used_lisp;
185
186 /* Number of bytes allocated for non-Lisp objects in pure storage. */
187
188 static ptrdiff_t pure_bytes_used_non_lisp;
189
190 /* If nonzero, this is a warning delivered by malloc and not yet
191 displayed. */
192
193 const char *pending_malloc_warning;
194
195 /* Maximum amount of C stack to save when a GC happens. */
196
197 #ifndef MAX_SAVE_STACK
198 #define MAX_SAVE_STACK 16000
199 #endif
200
201 /* Buffer in which we save a copy of the C stack at each GC. */
202
203 #if MAX_SAVE_STACK > 0
204 static char *stack_copy;
205 static ptrdiff_t stack_copy_size;
206 #endif
207
208 static Lisp_Object Qconses;
209 static Lisp_Object Qsymbols;
210 static Lisp_Object Qmiscs;
211 static Lisp_Object Qstrings;
212 static Lisp_Object Qvectors;
213 static Lisp_Object Qfloats;
214 static Lisp_Object Qintervals;
215 static Lisp_Object Qbuffers;
216 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
217 static Lisp_Object Qgc_cons_threshold;
218 Lisp_Object Qautomatic_gc;
219 Lisp_Object Qchar_table_extra_slots;
220
221 /* Hook run after GC has finished. */
222
223 static Lisp_Object Qpost_gc_hook;
224
225 static void mark_terminals (void);
226 static void gc_sweep (void);
227 static Lisp_Object make_pure_vector (ptrdiff_t);
228 static void mark_buffer (struct buffer *);
229
230 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
231 static void refill_memory_reserve (void);
232 #endif
233 static void compact_small_strings (void);
234 static void free_large_strings (void);
235 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
236
237 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
238 what memory allocated via lisp_malloc and lisp_align_malloc is intended
239 for what purpose. This enumeration specifies the type of memory. */
240
241 enum mem_type
242 {
243 MEM_TYPE_NON_LISP,
244 MEM_TYPE_BUFFER,
245 MEM_TYPE_CONS,
246 MEM_TYPE_STRING,
247 MEM_TYPE_MISC,
248 MEM_TYPE_SYMBOL,
249 MEM_TYPE_FLOAT,
250 /* Since all non-bool pseudovectors are small enough to be
251 allocated from vector blocks, this memory type denotes
252 large regular vectors and large bool pseudovectors. */
253 MEM_TYPE_VECTORLIKE,
254 /* Special type to denote vector blocks. */
255 MEM_TYPE_VECTOR_BLOCK,
256 /* Special type to denote reserved memory. */
257 MEM_TYPE_SPARE
258 };
259
260 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
261
262 /* A unique object in pure space used to make some Lisp objects
263 on free lists recognizable in O(1). */
264
265 static Lisp_Object Vdead;
266 #define DEADP(x) EQ (x, Vdead)
267
268 #ifdef GC_MALLOC_CHECK
269
270 enum mem_type allocated_mem_type;
271
272 #endif /* GC_MALLOC_CHECK */
273
274 /* A node in the red-black tree describing allocated memory containing
275 Lisp data. Each such block is recorded with its start and end
276 address when it is allocated, and removed from the tree when it
277 is freed.
278
279 A red-black tree is a balanced binary tree with the following
280 properties:
281
282 1. Every node is either red or black.
283 2. Every leaf is black.
284 3. If a node is red, then both of its children are black.
285 4. Every simple path from a node to a descendant leaf contains
286 the same number of black nodes.
287 5. The root is always black.
288
289 When nodes are inserted into the tree, or deleted from the tree,
290 the tree is "fixed" so that these properties are always true.
291
292 A red-black tree with N internal nodes has height at most 2
293 log(N+1). Searches, insertions and deletions are done in O(log N).
294 Please see a text book about data structures for a detailed
295 description of red-black trees. Any book worth its salt should
296 describe them. */
297
298 struct mem_node
299 {
300 /* Children of this node. These pointers are never NULL. When there
301 is no child, the value is MEM_NIL, which points to a dummy node. */
302 struct mem_node *left, *right;
303
304 /* The parent of this node. In the root node, this is NULL. */
305 struct mem_node *parent;
306
307 /* Start and end of allocated region. */
308 void *start, *end;
309
310 /* Node color. */
311 enum {MEM_BLACK, MEM_RED} color;
312
313 /* Memory type. */
314 enum mem_type type;
315 };
316
317 /* Base address of stack. Set in main. */
318
319 Lisp_Object *stack_base;
320
321 /* Root of the tree describing allocated Lisp memory. */
322
323 static struct mem_node *mem_root;
324
325 /* Lowest and highest known address in the heap. */
326
327 static void *min_heap_address, *max_heap_address;
328
329 /* Sentinel node of the tree. */
330
331 static struct mem_node mem_z;
332 #define MEM_NIL &mem_z
333
334 static struct mem_node *mem_insert (void *, void *, enum mem_type);
335 static void mem_insert_fixup (struct mem_node *);
336 static void mem_rotate_left (struct mem_node *);
337 static void mem_rotate_right (struct mem_node *);
338 static void mem_delete (struct mem_node *);
339 static void mem_delete_fixup (struct mem_node *);
340 static struct mem_node *mem_find (void *);
341
342 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
343
344 #ifndef DEADP
345 # define DEADP(x) 0
346 #endif
347
348 /* Recording what needs to be marked for gc. */
349
350 struct gcpro *gcprolist;
351
352 /* Addresses of staticpro'd variables. Initialize it to a nonzero
353 value; otherwise some compilers put it into BSS. */
354
355 enum { NSTATICS = 2048 };
356 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
357
358 /* Index of next unused slot in staticvec. */
359
360 static int staticidx;
361
362 static void *pure_alloc (size_t, int);
363
364 /* Return X rounded to the next multiple of Y. Arguments should not
365 have side effects, as they are evaluated more than once. Assume X
366 + Y - 1 does not overflow. Tune for Y being a power of 2. */
367
368 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
369 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
370 : ((x) + (y) - 1) & ~ ((y) - 1))
371
372 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
373
374 static void *
375 ALIGN (void *ptr, int alignment)
376 {
377 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
378 }
379
380 static void
381 XFLOAT_INIT (Lisp_Object f, double n)
382 {
383 XFLOAT (f)->u.data = n;
384 }
385
386 \f
387 /************************************************************************
388 Malloc
389 ************************************************************************/
390
391 /* Function malloc calls this if it finds we are near exhausting storage. */
392
393 void
394 malloc_warning (const char *str)
395 {
396 pending_malloc_warning = str;
397 }
398
399
400 /* Display an already-pending malloc warning. */
401
402 void
403 display_malloc_warning (void)
404 {
405 call3 (intern ("display-warning"),
406 intern ("alloc"),
407 build_string (pending_malloc_warning),
408 intern ("emergency"));
409 pending_malloc_warning = 0;
410 }
411 \f
412 /* Called if we can't allocate relocatable space for a buffer. */
413
414 void
415 buffer_memory_full (ptrdiff_t nbytes)
416 {
417 /* If buffers use the relocating allocator, no need to free
418 spare_memory, because we may have plenty of malloc space left
419 that we could get, and if we don't, the malloc that fails will
420 itself cause spare_memory to be freed. If buffers don't use the
421 relocating allocator, treat this like any other failing
422 malloc. */
423
424 #ifndef REL_ALLOC
425 memory_full (nbytes);
426 #else
427 /* This used to call error, but if we've run out of memory, we could
428 get infinite recursion trying to build the string. */
429 xsignal (Qnil, Vmemory_signal_data);
430 #endif
431 }
432
433 /* A common multiple of the positive integers A and B. Ideally this
434 would be the least common multiple, but there's no way to do that
435 as a constant expression in C, so do the best that we can easily do. */
436 #define COMMON_MULTIPLE(a, b) \
437 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
438
439 #ifndef XMALLOC_OVERRUN_CHECK
440 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
441 #else
442
443 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
444 around each block.
445
446 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
447 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
448 block size in little-endian order. The trailer consists of
449 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
450
451 The header is used to detect whether this block has been allocated
452 through these functions, as some low-level libc functions may
453 bypass the malloc hooks. */
454
455 #define XMALLOC_OVERRUN_CHECK_SIZE 16
456 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
457 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
458
459 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
460 hold a size_t value and (2) the header size is a multiple of the
461 alignment that Emacs needs for C types and for USE_LSB_TAG. */
462 #define XMALLOC_BASE_ALIGNMENT \
463 alignof (union { long double d; intmax_t i; void *p; })
464
465 #if USE_LSB_TAG
466 # define XMALLOC_HEADER_ALIGNMENT \
467 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
468 #else
469 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
470 #endif
471 #define XMALLOC_OVERRUN_SIZE_SIZE \
472 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
473 + XMALLOC_HEADER_ALIGNMENT - 1) \
474 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
475 - XMALLOC_OVERRUN_CHECK_SIZE)
476
477 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
478 { '\x9a', '\x9b', '\xae', '\xaf',
479 '\xbf', '\xbe', '\xce', '\xcf',
480 '\xea', '\xeb', '\xec', '\xed',
481 '\xdf', '\xde', '\x9c', '\x9d' };
482
483 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
484 { '\xaa', '\xab', '\xac', '\xad',
485 '\xba', '\xbb', '\xbc', '\xbd',
486 '\xca', '\xcb', '\xcc', '\xcd',
487 '\xda', '\xdb', '\xdc', '\xdd' };
488
489 /* Insert and extract the block size in the header. */
490
491 static void
492 xmalloc_put_size (unsigned char *ptr, size_t size)
493 {
494 int i;
495 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
496 {
497 *--ptr = size & ((1 << CHAR_BIT) - 1);
498 size >>= CHAR_BIT;
499 }
500 }
501
502 static size_t
503 xmalloc_get_size (unsigned char *ptr)
504 {
505 size_t size = 0;
506 int i;
507 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
508 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
509 {
510 size <<= CHAR_BIT;
511 size += *ptr++;
512 }
513 return size;
514 }
515
516
517 /* Like malloc, but wraps allocated block with header and trailer. */
518
519 static void *
520 overrun_check_malloc (size_t size)
521 {
522 register unsigned char *val;
523 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
524 emacs_abort ();
525
526 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
527 if (val)
528 {
529 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
530 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
531 xmalloc_put_size (val, size);
532 memcpy (val + size, xmalloc_overrun_check_trailer,
533 XMALLOC_OVERRUN_CHECK_SIZE);
534 }
535 return val;
536 }
537
538
539 /* Like realloc, but checks old block for overrun, and wraps new block
540 with header and trailer. */
541
542 static void *
543 overrun_check_realloc (void *block, size_t size)
544 {
545 register unsigned char *val = (unsigned char *) block;
546 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
547 emacs_abort ();
548
549 if (val
550 && memcmp (xmalloc_overrun_check_header,
551 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
552 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
553 {
554 size_t osize = xmalloc_get_size (val);
555 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
556 XMALLOC_OVERRUN_CHECK_SIZE))
557 emacs_abort ();
558 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
559 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
560 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
561 }
562
563 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
564
565 if (val)
566 {
567 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
568 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
569 xmalloc_put_size (val, size);
570 memcpy (val + size, xmalloc_overrun_check_trailer,
571 XMALLOC_OVERRUN_CHECK_SIZE);
572 }
573 return val;
574 }
575
576 /* Like free, but checks block for overrun. */
577
578 static void
579 overrun_check_free (void *block)
580 {
581 unsigned char *val = (unsigned char *) block;
582
583 if (val
584 && memcmp (xmalloc_overrun_check_header,
585 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
586 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
587 {
588 size_t osize = xmalloc_get_size (val);
589 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
590 XMALLOC_OVERRUN_CHECK_SIZE))
591 emacs_abort ();
592 #ifdef XMALLOC_CLEAR_FREE_MEMORY
593 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
594 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
595 #else
596 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
597 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
598 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
599 #endif
600 }
601
602 free (val);
603 }
604
605 #undef malloc
606 #undef realloc
607 #undef free
608 #define malloc overrun_check_malloc
609 #define realloc overrun_check_realloc
610 #define free overrun_check_free
611 #endif
612
613 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
614 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
615 If that variable is set, block input while in one of Emacs's memory
616 allocation functions. There should be no need for this debugging
617 option, since signal handlers do not allocate memory, but Emacs
618 formerly allocated memory in signal handlers and this compile-time
619 option remains as a way to help debug the issue should it rear its
620 ugly head again. */
621 #ifdef XMALLOC_BLOCK_INPUT_CHECK
622 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
623 static void
624 malloc_block_input (void)
625 {
626 if (block_input_in_memory_allocators)
627 block_input ();
628 }
629 static void
630 malloc_unblock_input (void)
631 {
632 if (block_input_in_memory_allocators)
633 unblock_input ();
634 }
635 # define MALLOC_BLOCK_INPUT malloc_block_input ()
636 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
637 #else
638 # define MALLOC_BLOCK_INPUT ((void) 0)
639 # define MALLOC_UNBLOCK_INPUT ((void) 0)
640 #endif
641
642 #define MALLOC_PROBE(size) \
643 do { \
644 if (profiler_memory_running) \
645 malloc_probe (size); \
646 } while (0)
647
648
649 /* Like malloc but check for no memory and block interrupt input.. */
650
651 void *
652 xmalloc (size_t size)
653 {
654 void *val;
655
656 MALLOC_BLOCK_INPUT;
657 val = malloc (size);
658 MALLOC_UNBLOCK_INPUT;
659
660 if (!val && size)
661 memory_full (size);
662 MALLOC_PROBE (size);
663 return val;
664 }
665
666 /* Like the above, but zeroes out the memory just allocated. */
667
668 void *
669 xzalloc (size_t size)
670 {
671 void *val;
672
673 MALLOC_BLOCK_INPUT;
674 val = malloc (size);
675 MALLOC_UNBLOCK_INPUT;
676
677 if (!val && size)
678 memory_full (size);
679 memset (val, 0, size);
680 MALLOC_PROBE (size);
681 return val;
682 }
683
684 /* Like realloc but check for no memory and block interrupt input.. */
685
686 void *
687 xrealloc (void *block, size_t size)
688 {
689 void *val;
690
691 MALLOC_BLOCK_INPUT;
692 /* We must call malloc explicitly when BLOCK is 0, since some
693 reallocs don't do this. */
694 if (! block)
695 val = malloc (size);
696 else
697 val = realloc (block, size);
698 MALLOC_UNBLOCK_INPUT;
699
700 if (!val && size)
701 memory_full (size);
702 MALLOC_PROBE (size);
703 return val;
704 }
705
706
707 /* Like free but block interrupt input. */
708
709 void
710 xfree (void *block)
711 {
712 if (!block)
713 return;
714 MALLOC_BLOCK_INPUT;
715 free (block);
716 MALLOC_UNBLOCK_INPUT;
717 /* We don't call refill_memory_reserve here
718 because in practice the call in r_alloc_free seems to suffice. */
719 }
720
721
722 /* Other parts of Emacs pass large int values to allocator functions
723 expecting ptrdiff_t. This is portable in practice, but check it to
724 be safe. */
725 verify (INT_MAX <= PTRDIFF_MAX);
726
727
728 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
729 Signal an error on memory exhaustion, and block interrupt input. */
730
731 void *
732 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
733 {
734 eassert (0 <= nitems && 0 < item_size);
735 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
736 memory_full (SIZE_MAX);
737 return xmalloc (nitems * item_size);
738 }
739
740
741 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
742 Signal an error on memory exhaustion, and block interrupt input. */
743
744 void *
745 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
746 {
747 eassert (0 <= nitems && 0 < item_size);
748 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
749 memory_full (SIZE_MAX);
750 return xrealloc (pa, nitems * item_size);
751 }
752
753
754 /* Grow PA, which points to an array of *NITEMS items, and return the
755 location of the reallocated array, updating *NITEMS to reflect its
756 new size. The new array will contain at least NITEMS_INCR_MIN more
757 items, but will not contain more than NITEMS_MAX items total.
758 ITEM_SIZE is the size of each item, in bytes.
759
760 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
761 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
762 infinity.
763
764 If PA is null, then allocate a new array instead of reallocating
765 the old one.
766
767 Block interrupt input as needed. If memory exhaustion occurs, set
768 *NITEMS to zero if PA is null, and signal an error (i.e., do not
769 return).
770
771 Thus, to grow an array A without saving its old contents, do
772 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
773 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
774 and signals an error, and later this code is reexecuted and
775 attempts to free A. */
776
777 void *
778 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
779 ptrdiff_t nitems_max, ptrdiff_t item_size)
780 {
781 /* The approximate size to use for initial small allocation
782 requests. This is the largest "small" request for the GNU C
783 library malloc. */
784 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
785
786 /* If the array is tiny, grow it to about (but no greater than)
787 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
788 ptrdiff_t n = *nitems;
789 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
790 ptrdiff_t half_again = n >> 1;
791 ptrdiff_t incr_estimate = max (tiny_max, half_again);
792
793 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
794 NITEMS_MAX, and what the C language can represent safely. */
795 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
796 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
797 ? nitems_max : C_language_max);
798 ptrdiff_t nitems_incr_max = n_max - n;
799 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
800
801 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
802 if (! pa)
803 *nitems = 0;
804 if (nitems_incr_max < incr)
805 memory_full (SIZE_MAX);
806 n += incr;
807 pa = xrealloc (pa, n * item_size);
808 *nitems = n;
809 return pa;
810 }
811
812
813 /* Like strdup, but uses xmalloc. */
814
815 char *
816 xstrdup (const char *s)
817 {
818 ptrdiff_t size;
819 eassert (s);
820 size = strlen (s) + 1;
821 return memcpy (xmalloc (size), s, size);
822 }
823
824 /* Like above, but duplicates Lisp string to C string. */
825
826 char *
827 xlispstrdup (Lisp_Object string)
828 {
829 ptrdiff_t size = SBYTES (string) + 1;
830 return memcpy (xmalloc (size), SSDATA (string), size);
831 }
832
833 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
834 argument is a const pointer. */
835
836 void
837 xputenv (char const *string)
838 {
839 if (putenv ((char *) string) != 0)
840 memory_full (0);
841 }
842
843 /* Return a newly allocated memory block of SIZE bytes, remembering
844 to free it when unwinding. */
845 void *
846 record_xmalloc (size_t size)
847 {
848 void *p = xmalloc (size);
849 record_unwind_protect_ptr (xfree, p);
850 return p;
851 }
852
853
854 /* Like malloc but used for allocating Lisp data. NBYTES is the
855 number of bytes to allocate, TYPE describes the intended use of the
856 allocated memory block (for strings, for conses, ...). */
857
858 #if ! USE_LSB_TAG
859 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
860 #endif
861
862 static void *
863 lisp_malloc (size_t nbytes, enum mem_type type)
864 {
865 register void *val;
866
867 MALLOC_BLOCK_INPUT;
868
869 #ifdef GC_MALLOC_CHECK
870 allocated_mem_type = type;
871 #endif
872
873 val = malloc (nbytes);
874
875 #if ! USE_LSB_TAG
876 /* If the memory just allocated cannot be addressed thru a Lisp
877 object's pointer, and it needs to be,
878 that's equivalent to running out of memory. */
879 if (val && type != MEM_TYPE_NON_LISP)
880 {
881 Lisp_Object tem;
882 XSETCONS (tem, (char *) val + nbytes - 1);
883 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
884 {
885 lisp_malloc_loser = val;
886 free (val);
887 val = 0;
888 }
889 }
890 #endif
891
892 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
893 if (val && type != MEM_TYPE_NON_LISP)
894 mem_insert (val, (char *) val + nbytes, type);
895 #endif
896
897 MALLOC_UNBLOCK_INPUT;
898 if (!val && nbytes)
899 memory_full (nbytes);
900 MALLOC_PROBE (nbytes);
901 return val;
902 }
903
904 /* Free BLOCK. This must be called to free memory allocated with a
905 call to lisp_malloc. */
906
907 static void
908 lisp_free (void *block)
909 {
910 MALLOC_BLOCK_INPUT;
911 free (block);
912 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
913 mem_delete (mem_find (block));
914 #endif
915 MALLOC_UNBLOCK_INPUT;
916 }
917
918 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
919
920 /* The entry point is lisp_align_malloc which returns blocks of at most
921 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
922
923 #if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC
924 # define USE_ALIGNED_ALLOC 1
925 /* Defined in gmalloc.c. */
926 void *aligned_alloc (size_t, size_t);
927 #elif defined HAVE_ALIGNED_ALLOC
928 # define USE_ALIGNED_ALLOC 1
929 #elif defined HAVE_POSIX_MEMALIGN
930 # define USE_ALIGNED_ALLOC 1
931 static void *
932 aligned_alloc (size_t alignment, size_t size)
933 {
934 void *p;
935 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
936 }
937 #endif
938
939 /* BLOCK_ALIGN has to be a power of 2. */
940 #define BLOCK_ALIGN (1 << 10)
941
942 /* Padding to leave at the end of a malloc'd block. This is to give
943 malloc a chance to minimize the amount of memory wasted to alignment.
944 It should be tuned to the particular malloc library used.
945 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
946 aligned_alloc on the other hand would ideally prefer a value of 4
947 because otherwise, there's 1020 bytes wasted between each ablocks.
948 In Emacs, testing shows that those 1020 can most of the time be
949 efficiently used by malloc to place other objects, so a value of 0 can
950 still preferable unless you have a lot of aligned blocks and virtually
951 nothing else. */
952 #define BLOCK_PADDING 0
953 #define BLOCK_BYTES \
954 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
955
956 /* Internal data structures and constants. */
957
958 #define ABLOCKS_SIZE 16
959
960 /* An aligned block of memory. */
961 struct ablock
962 {
963 union
964 {
965 char payload[BLOCK_BYTES];
966 struct ablock *next_free;
967 } x;
968 /* `abase' is the aligned base of the ablocks. */
969 /* It is overloaded to hold the virtual `busy' field that counts
970 the number of used ablock in the parent ablocks.
971 The first ablock has the `busy' field, the others have the `abase'
972 field. To tell the difference, we assume that pointers will have
973 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
974 is used to tell whether the real base of the parent ablocks is `abase'
975 (if not, the word before the first ablock holds a pointer to the
976 real base). */
977 struct ablocks *abase;
978 /* The padding of all but the last ablock is unused. The padding of
979 the last ablock in an ablocks is not allocated. */
980 #if BLOCK_PADDING
981 char padding[BLOCK_PADDING];
982 #endif
983 };
984
985 /* A bunch of consecutive aligned blocks. */
986 struct ablocks
987 {
988 struct ablock blocks[ABLOCKS_SIZE];
989 };
990
991 /* Size of the block requested from malloc or aligned_alloc. */
992 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
993
994 #define ABLOCK_ABASE(block) \
995 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
996 ? (struct ablocks *)(block) \
997 : (block)->abase)
998
999 /* Virtual `busy' field. */
1000 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1001
1002 /* Pointer to the (not necessarily aligned) malloc block. */
1003 #ifdef USE_ALIGNED_ALLOC
1004 #define ABLOCKS_BASE(abase) (abase)
1005 #else
1006 #define ABLOCKS_BASE(abase) \
1007 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1008 #endif
1009
1010 /* The list of free ablock. */
1011 static struct ablock *free_ablock;
1012
1013 /* Allocate an aligned block of nbytes.
1014 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1015 smaller or equal to BLOCK_BYTES. */
1016 static void *
1017 lisp_align_malloc (size_t nbytes, enum mem_type type)
1018 {
1019 void *base, *val;
1020 struct ablocks *abase;
1021
1022 eassert (nbytes <= BLOCK_BYTES);
1023
1024 MALLOC_BLOCK_INPUT;
1025
1026 #ifdef GC_MALLOC_CHECK
1027 allocated_mem_type = type;
1028 #endif
1029
1030 if (!free_ablock)
1031 {
1032 int i;
1033 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1034
1035 #ifdef DOUG_LEA_MALLOC
1036 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1037 because mapped region contents are not preserved in
1038 a dumped Emacs. */
1039 mallopt (M_MMAP_MAX, 0);
1040 #endif
1041
1042 #ifdef USE_ALIGNED_ALLOC
1043 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1044 #else
1045 base = malloc (ABLOCKS_BYTES);
1046 abase = ALIGN (base, BLOCK_ALIGN);
1047 #endif
1048
1049 if (base == 0)
1050 {
1051 MALLOC_UNBLOCK_INPUT;
1052 memory_full (ABLOCKS_BYTES);
1053 }
1054
1055 aligned = (base == abase);
1056 if (!aligned)
1057 ((void **) abase)[-1] = base;
1058
1059 #ifdef DOUG_LEA_MALLOC
1060 /* Back to a reasonable maximum of mmap'ed areas. */
1061 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1062 #endif
1063
1064 #if ! USE_LSB_TAG
1065 /* If the memory just allocated cannot be addressed thru a Lisp
1066 object's pointer, and it needs to be, that's equivalent to
1067 running out of memory. */
1068 if (type != MEM_TYPE_NON_LISP)
1069 {
1070 Lisp_Object tem;
1071 char *end = (char *) base + ABLOCKS_BYTES - 1;
1072 XSETCONS (tem, end);
1073 if ((char *) XCONS (tem) != end)
1074 {
1075 lisp_malloc_loser = base;
1076 free (base);
1077 MALLOC_UNBLOCK_INPUT;
1078 memory_full (SIZE_MAX);
1079 }
1080 }
1081 #endif
1082
1083 /* Initialize the blocks and put them on the free list.
1084 If `base' was not properly aligned, we can't use the last block. */
1085 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1086 {
1087 abase->blocks[i].abase = abase;
1088 abase->blocks[i].x.next_free = free_ablock;
1089 free_ablock = &abase->blocks[i];
1090 }
1091 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1092
1093 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1094 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1095 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1096 eassert (ABLOCKS_BASE (abase) == base);
1097 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1098 }
1099
1100 abase = ABLOCK_ABASE (free_ablock);
1101 ABLOCKS_BUSY (abase) =
1102 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1103 val = free_ablock;
1104 free_ablock = free_ablock->x.next_free;
1105
1106 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1107 if (type != MEM_TYPE_NON_LISP)
1108 mem_insert (val, (char *) val + nbytes, type);
1109 #endif
1110
1111 MALLOC_UNBLOCK_INPUT;
1112
1113 MALLOC_PROBE (nbytes);
1114
1115 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1116 return val;
1117 }
1118
1119 static void
1120 lisp_align_free (void *block)
1121 {
1122 struct ablock *ablock = block;
1123 struct ablocks *abase = ABLOCK_ABASE (ablock);
1124
1125 MALLOC_BLOCK_INPUT;
1126 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1127 mem_delete (mem_find (block));
1128 #endif
1129 /* Put on free list. */
1130 ablock->x.next_free = free_ablock;
1131 free_ablock = ablock;
1132 /* Update busy count. */
1133 ABLOCKS_BUSY (abase)
1134 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1135
1136 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1137 { /* All the blocks are free. */
1138 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1139 struct ablock **tem = &free_ablock;
1140 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1141
1142 while (*tem)
1143 {
1144 if (*tem >= (struct ablock *) abase && *tem < atop)
1145 {
1146 i++;
1147 *tem = (*tem)->x.next_free;
1148 }
1149 else
1150 tem = &(*tem)->x.next_free;
1151 }
1152 eassert ((aligned & 1) == aligned);
1153 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1154 #ifdef USE_POSIX_MEMALIGN
1155 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1156 #endif
1157 free (ABLOCKS_BASE (abase));
1158 }
1159 MALLOC_UNBLOCK_INPUT;
1160 }
1161
1162 \f
1163 /***********************************************************************
1164 Interval Allocation
1165 ***********************************************************************/
1166
1167 /* Number of intervals allocated in an interval_block structure.
1168 The 1020 is 1024 minus malloc overhead. */
1169
1170 #define INTERVAL_BLOCK_SIZE \
1171 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1172
1173 /* Intervals are allocated in chunks in the form of an interval_block
1174 structure. */
1175
1176 struct interval_block
1177 {
1178 /* Place `intervals' first, to preserve alignment. */
1179 struct interval intervals[INTERVAL_BLOCK_SIZE];
1180 struct interval_block *next;
1181 };
1182
1183 /* Current interval block. Its `next' pointer points to older
1184 blocks. */
1185
1186 static struct interval_block *interval_block;
1187
1188 /* Index in interval_block above of the next unused interval
1189 structure. */
1190
1191 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1192
1193 /* Number of free and live intervals. */
1194
1195 static EMACS_INT total_free_intervals, total_intervals;
1196
1197 /* List of free intervals. */
1198
1199 static INTERVAL interval_free_list;
1200
1201 /* Return a new interval. */
1202
1203 INTERVAL
1204 make_interval (void)
1205 {
1206 INTERVAL val;
1207
1208 MALLOC_BLOCK_INPUT;
1209
1210 if (interval_free_list)
1211 {
1212 val = interval_free_list;
1213 interval_free_list = INTERVAL_PARENT (interval_free_list);
1214 }
1215 else
1216 {
1217 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1218 {
1219 struct interval_block *newi
1220 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1221
1222 newi->next = interval_block;
1223 interval_block = newi;
1224 interval_block_index = 0;
1225 total_free_intervals += INTERVAL_BLOCK_SIZE;
1226 }
1227 val = &interval_block->intervals[interval_block_index++];
1228 }
1229
1230 MALLOC_UNBLOCK_INPUT;
1231
1232 consing_since_gc += sizeof (struct interval);
1233 intervals_consed++;
1234 total_free_intervals--;
1235 RESET_INTERVAL (val);
1236 val->gcmarkbit = 0;
1237 return val;
1238 }
1239
1240
1241 /* Mark Lisp objects in interval I. */
1242
1243 static void
1244 mark_interval (register INTERVAL i, Lisp_Object dummy)
1245 {
1246 /* Intervals should never be shared. So, if extra internal checking is
1247 enabled, GC aborts if it seems to have visited an interval twice. */
1248 eassert (!i->gcmarkbit);
1249 i->gcmarkbit = 1;
1250 mark_object (i->plist);
1251 }
1252
1253 /* Mark the interval tree rooted in I. */
1254
1255 #define MARK_INTERVAL_TREE(i) \
1256 do { \
1257 if (i && !i->gcmarkbit) \
1258 traverse_intervals_noorder (i, mark_interval, Qnil); \
1259 } while (0)
1260
1261 /***********************************************************************
1262 String Allocation
1263 ***********************************************************************/
1264
1265 /* Lisp_Strings are allocated in string_block structures. When a new
1266 string_block is allocated, all the Lisp_Strings it contains are
1267 added to a free-list string_free_list. When a new Lisp_String is
1268 needed, it is taken from that list. During the sweep phase of GC,
1269 string_blocks that are entirely free are freed, except two which
1270 we keep.
1271
1272 String data is allocated from sblock structures. Strings larger
1273 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1274 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1275
1276 Sblocks consist internally of sdata structures, one for each
1277 Lisp_String. The sdata structure points to the Lisp_String it
1278 belongs to. The Lisp_String points back to the `u.data' member of
1279 its sdata structure.
1280
1281 When a Lisp_String is freed during GC, it is put back on
1282 string_free_list, and its `data' member and its sdata's `string'
1283 pointer is set to null. The size of the string is recorded in the
1284 `n.nbytes' member of the sdata. So, sdata structures that are no
1285 longer used, can be easily recognized, and it's easy to compact the
1286 sblocks of small strings which we do in compact_small_strings. */
1287
1288 /* Size in bytes of an sblock structure used for small strings. This
1289 is 8192 minus malloc overhead. */
1290
1291 #define SBLOCK_SIZE 8188
1292
1293 /* Strings larger than this are considered large strings. String data
1294 for large strings is allocated from individual sblocks. */
1295
1296 #define LARGE_STRING_BYTES 1024
1297
1298 /* The SDATA typedef is a struct or union describing string memory
1299 sub-allocated from an sblock. This is where the contents of Lisp
1300 strings are stored. */
1301
1302 struct sdata
1303 {
1304 /* Back-pointer to the string this sdata belongs to. If null, this
1305 structure is free, and NBYTES (in this structure or in the union below)
1306 contains the string's byte size (the same value that STRING_BYTES
1307 would return if STRING were non-null). If non-null, STRING_BYTES
1308 (STRING) is the size of the data, and DATA contains the string's
1309 contents. */
1310 struct Lisp_String *string;
1311
1312 #ifdef GC_CHECK_STRING_BYTES
1313 ptrdiff_t nbytes;
1314 #endif
1315
1316 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1317 };
1318
1319 #ifdef GC_CHECK_STRING_BYTES
1320
1321 typedef struct sdata sdata;
1322 #define SDATA_NBYTES(S) (S)->nbytes
1323 #define SDATA_DATA(S) (S)->data
1324
1325 #else
1326
1327 typedef union
1328 {
1329 struct Lisp_String *string;
1330
1331 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1332 which has a flexible array member. However, if implemented by
1333 giving this union a member of type 'struct sdata', the union
1334 could not be the last (flexible) member of 'struct sblock',
1335 because C99 prohibits a flexible array member from having a type
1336 that is itself a flexible array. So, comment this member out here,
1337 but remember that the option's there when using this union. */
1338 #if 0
1339 struct sdata u;
1340 #endif
1341
1342 /* When STRING is null. */
1343 struct
1344 {
1345 struct Lisp_String *string;
1346 ptrdiff_t nbytes;
1347 } n;
1348 } sdata;
1349
1350 #define SDATA_NBYTES(S) (S)->n.nbytes
1351 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1352
1353 #endif /* not GC_CHECK_STRING_BYTES */
1354
1355 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1356
1357 /* Structure describing a block of memory which is sub-allocated to
1358 obtain string data memory for strings. Blocks for small strings
1359 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1360 as large as needed. */
1361
1362 struct sblock
1363 {
1364 /* Next in list. */
1365 struct sblock *next;
1366
1367 /* Pointer to the next free sdata block. This points past the end
1368 of the sblock if there isn't any space left in this block. */
1369 sdata *next_free;
1370
1371 /* String data. */
1372 sdata data[FLEXIBLE_ARRAY_MEMBER];
1373 };
1374
1375 /* Number of Lisp strings in a string_block structure. The 1020 is
1376 1024 minus malloc overhead. */
1377
1378 #define STRING_BLOCK_SIZE \
1379 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1380
1381 /* Structure describing a block from which Lisp_String structures
1382 are allocated. */
1383
1384 struct string_block
1385 {
1386 /* Place `strings' first, to preserve alignment. */
1387 struct Lisp_String strings[STRING_BLOCK_SIZE];
1388 struct string_block *next;
1389 };
1390
1391 /* Head and tail of the list of sblock structures holding Lisp string
1392 data. We always allocate from current_sblock. The NEXT pointers
1393 in the sblock structures go from oldest_sblock to current_sblock. */
1394
1395 static struct sblock *oldest_sblock, *current_sblock;
1396
1397 /* List of sblocks for large strings. */
1398
1399 static struct sblock *large_sblocks;
1400
1401 /* List of string_block structures. */
1402
1403 static struct string_block *string_blocks;
1404
1405 /* Free-list of Lisp_Strings. */
1406
1407 static struct Lisp_String *string_free_list;
1408
1409 /* Number of live and free Lisp_Strings. */
1410
1411 static EMACS_INT total_strings, total_free_strings;
1412
1413 /* Number of bytes used by live strings. */
1414
1415 static EMACS_INT total_string_bytes;
1416
1417 /* Given a pointer to a Lisp_String S which is on the free-list
1418 string_free_list, return a pointer to its successor in the
1419 free-list. */
1420
1421 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1422
1423 /* Return a pointer to the sdata structure belonging to Lisp string S.
1424 S must be live, i.e. S->data must not be null. S->data is actually
1425 a pointer to the `u.data' member of its sdata structure; the
1426 structure starts at a constant offset in front of that. */
1427
1428 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1429
1430
1431 #ifdef GC_CHECK_STRING_OVERRUN
1432
1433 /* We check for overrun in string data blocks by appending a small
1434 "cookie" after each allocated string data block, and check for the
1435 presence of this cookie during GC. */
1436
1437 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1438 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1439 { '\xde', '\xad', '\xbe', '\xef' };
1440
1441 #else
1442 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1443 #endif
1444
1445 /* Value is the size of an sdata structure large enough to hold NBYTES
1446 bytes of string data. The value returned includes a terminating
1447 NUL byte, the size of the sdata structure, and padding. */
1448
1449 #ifdef GC_CHECK_STRING_BYTES
1450
1451 #define SDATA_SIZE(NBYTES) \
1452 ((SDATA_DATA_OFFSET \
1453 + (NBYTES) + 1 \
1454 + sizeof (ptrdiff_t) - 1) \
1455 & ~(sizeof (ptrdiff_t) - 1))
1456
1457 #else /* not GC_CHECK_STRING_BYTES */
1458
1459 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1460 less than the size of that member. The 'max' is not needed when
1461 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1462 alignment code reserves enough space. */
1463
1464 #define SDATA_SIZE(NBYTES) \
1465 ((SDATA_DATA_OFFSET \
1466 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1467 ? NBYTES \
1468 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1469 + 1 \
1470 + sizeof (ptrdiff_t) - 1) \
1471 & ~(sizeof (ptrdiff_t) - 1))
1472
1473 #endif /* not GC_CHECK_STRING_BYTES */
1474
1475 /* Extra bytes to allocate for each string. */
1476
1477 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1478
1479 /* Exact bound on the number of bytes in a string, not counting the
1480 terminating null. A string cannot contain more bytes than
1481 STRING_BYTES_BOUND, nor can it be so long that the size_t
1482 arithmetic in allocate_string_data would overflow while it is
1483 calculating a value to be passed to malloc. */
1484 static ptrdiff_t const STRING_BYTES_MAX =
1485 min (STRING_BYTES_BOUND,
1486 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1487 - GC_STRING_EXTRA
1488 - offsetof (struct sblock, data)
1489 - SDATA_DATA_OFFSET)
1490 & ~(sizeof (EMACS_INT) - 1)));
1491
1492 /* Initialize string allocation. Called from init_alloc_once. */
1493
1494 static void
1495 init_strings (void)
1496 {
1497 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1498 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1499 }
1500
1501
1502 #ifdef GC_CHECK_STRING_BYTES
1503
1504 static int check_string_bytes_count;
1505
1506 /* Like STRING_BYTES, but with debugging check. Can be
1507 called during GC, so pay attention to the mark bit. */
1508
1509 ptrdiff_t
1510 string_bytes (struct Lisp_String *s)
1511 {
1512 ptrdiff_t nbytes =
1513 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1514
1515 if (!PURE_POINTER_P (s)
1516 && s->data
1517 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1518 emacs_abort ();
1519 return nbytes;
1520 }
1521
1522 /* Check validity of Lisp strings' string_bytes member in B. */
1523
1524 static void
1525 check_sblock (struct sblock *b)
1526 {
1527 sdata *from, *end, *from_end;
1528
1529 end = b->next_free;
1530
1531 for (from = b->data; from < end; from = from_end)
1532 {
1533 /* Compute the next FROM here because copying below may
1534 overwrite data we need to compute it. */
1535 ptrdiff_t nbytes;
1536
1537 /* Check that the string size recorded in the string is the
1538 same as the one recorded in the sdata structure. */
1539 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1540 : SDATA_NBYTES (from));
1541 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1542 }
1543 }
1544
1545
1546 /* Check validity of Lisp strings' string_bytes member. ALL_P
1547 means check all strings, otherwise check only most
1548 recently allocated strings. Used for hunting a bug. */
1549
1550 static void
1551 check_string_bytes (bool all_p)
1552 {
1553 if (all_p)
1554 {
1555 struct sblock *b;
1556
1557 for (b = large_sblocks; b; b = b->next)
1558 {
1559 struct Lisp_String *s = b->data[0].string;
1560 if (s)
1561 string_bytes (s);
1562 }
1563
1564 for (b = oldest_sblock; b; b = b->next)
1565 check_sblock (b);
1566 }
1567 else if (current_sblock)
1568 check_sblock (current_sblock);
1569 }
1570
1571 #else /* not GC_CHECK_STRING_BYTES */
1572
1573 #define check_string_bytes(all) ((void) 0)
1574
1575 #endif /* GC_CHECK_STRING_BYTES */
1576
1577 #ifdef GC_CHECK_STRING_FREE_LIST
1578
1579 /* Walk through the string free list looking for bogus next pointers.
1580 This may catch buffer overrun from a previous string. */
1581
1582 static void
1583 check_string_free_list (void)
1584 {
1585 struct Lisp_String *s;
1586
1587 /* Pop a Lisp_String off the free-list. */
1588 s = string_free_list;
1589 while (s != NULL)
1590 {
1591 if ((uintptr_t) s < 1024)
1592 emacs_abort ();
1593 s = NEXT_FREE_LISP_STRING (s);
1594 }
1595 }
1596 #else
1597 #define check_string_free_list()
1598 #endif
1599
1600 /* Return a new Lisp_String. */
1601
1602 static struct Lisp_String *
1603 allocate_string (void)
1604 {
1605 struct Lisp_String *s;
1606
1607 MALLOC_BLOCK_INPUT;
1608
1609 /* If the free-list is empty, allocate a new string_block, and
1610 add all the Lisp_Strings in it to the free-list. */
1611 if (string_free_list == NULL)
1612 {
1613 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1614 int i;
1615
1616 b->next = string_blocks;
1617 string_blocks = b;
1618
1619 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1620 {
1621 s = b->strings + i;
1622 /* Every string on a free list should have NULL data pointer. */
1623 s->data = NULL;
1624 NEXT_FREE_LISP_STRING (s) = string_free_list;
1625 string_free_list = s;
1626 }
1627
1628 total_free_strings += STRING_BLOCK_SIZE;
1629 }
1630
1631 check_string_free_list ();
1632
1633 /* Pop a Lisp_String off the free-list. */
1634 s = string_free_list;
1635 string_free_list = NEXT_FREE_LISP_STRING (s);
1636
1637 MALLOC_UNBLOCK_INPUT;
1638
1639 --total_free_strings;
1640 ++total_strings;
1641 ++strings_consed;
1642 consing_since_gc += sizeof *s;
1643
1644 #ifdef GC_CHECK_STRING_BYTES
1645 if (!noninteractive)
1646 {
1647 if (++check_string_bytes_count == 200)
1648 {
1649 check_string_bytes_count = 0;
1650 check_string_bytes (1);
1651 }
1652 else
1653 check_string_bytes (0);
1654 }
1655 #endif /* GC_CHECK_STRING_BYTES */
1656
1657 return s;
1658 }
1659
1660
1661 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1662 plus a NUL byte at the end. Allocate an sdata structure for S, and
1663 set S->data to its `u.data' member. Store a NUL byte at the end of
1664 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1665 S->data if it was initially non-null. */
1666
1667 void
1668 allocate_string_data (struct Lisp_String *s,
1669 EMACS_INT nchars, EMACS_INT nbytes)
1670 {
1671 sdata *data, *old_data;
1672 struct sblock *b;
1673 ptrdiff_t needed, old_nbytes;
1674
1675 if (STRING_BYTES_MAX < nbytes)
1676 string_overflow ();
1677
1678 /* Determine the number of bytes needed to store NBYTES bytes
1679 of string data. */
1680 needed = SDATA_SIZE (nbytes);
1681 if (s->data)
1682 {
1683 old_data = SDATA_OF_STRING (s);
1684 old_nbytes = STRING_BYTES (s);
1685 }
1686 else
1687 old_data = NULL;
1688
1689 MALLOC_BLOCK_INPUT;
1690
1691 if (nbytes > LARGE_STRING_BYTES)
1692 {
1693 size_t size = offsetof (struct sblock, data) + needed;
1694
1695 #ifdef DOUG_LEA_MALLOC
1696 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1697 because mapped region contents are not preserved in
1698 a dumped Emacs.
1699
1700 In case you think of allowing it in a dumped Emacs at the
1701 cost of not being able to re-dump, there's another reason:
1702 mmap'ed data typically have an address towards the top of the
1703 address space, which won't fit into an EMACS_INT (at least on
1704 32-bit systems with the current tagging scheme). --fx */
1705 mallopt (M_MMAP_MAX, 0);
1706 #endif
1707
1708 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1709
1710 #ifdef DOUG_LEA_MALLOC
1711 /* Back to a reasonable maximum of mmap'ed areas. */
1712 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1713 #endif
1714
1715 b->next_free = b->data;
1716 b->data[0].string = NULL;
1717 b->next = large_sblocks;
1718 large_sblocks = b;
1719 }
1720 else if (current_sblock == NULL
1721 || (((char *) current_sblock + SBLOCK_SIZE
1722 - (char *) current_sblock->next_free)
1723 < (needed + GC_STRING_EXTRA)))
1724 {
1725 /* Not enough room in the current sblock. */
1726 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1727 b->next_free = b->data;
1728 b->data[0].string = NULL;
1729 b->next = NULL;
1730
1731 if (current_sblock)
1732 current_sblock->next = b;
1733 else
1734 oldest_sblock = b;
1735 current_sblock = b;
1736 }
1737 else
1738 b = current_sblock;
1739
1740 data = b->next_free;
1741 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1742
1743 MALLOC_UNBLOCK_INPUT;
1744
1745 data->string = s;
1746 s->data = SDATA_DATA (data);
1747 #ifdef GC_CHECK_STRING_BYTES
1748 SDATA_NBYTES (data) = nbytes;
1749 #endif
1750 s->size = nchars;
1751 s->size_byte = nbytes;
1752 s->data[nbytes] = '\0';
1753 #ifdef GC_CHECK_STRING_OVERRUN
1754 memcpy ((char *) data + needed, string_overrun_cookie,
1755 GC_STRING_OVERRUN_COOKIE_SIZE);
1756 #endif
1757
1758 /* Note that Faset may call to this function when S has already data
1759 assigned. In this case, mark data as free by setting it's string
1760 back-pointer to null, and record the size of the data in it. */
1761 if (old_data)
1762 {
1763 SDATA_NBYTES (old_data) = old_nbytes;
1764 old_data->string = NULL;
1765 }
1766
1767 consing_since_gc += needed;
1768 }
1769
1770
1771 /* Sweep and compact strings. */
1772
1773 static void
1774 sweep_strings (void)
1775 {
1776 struct string_block *b, *next;
1777 struct string_block *live_blocks = NULL;
1778
1779 string_free_list = NULL;
1780 total_strings = total_free_strings = 0;
1781 total_string_bytes = 0;
1782
1783 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1784 for (b = string_blocks; b; b = next)
1785 {
1786 int i, nfree = 0;
1787 struct Lisp_String *free_list_before = string_free_list;
1788
1789 next = b->next;
1790
1791 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1792 {
1793 struct Lisp_String *s = b->strings + i;
1794
1795 if (s->data)
1796 {
1797 /* String was not on free-list before. */
1798 if (STRING_MARKED_P (s))
1799 {
1800 /* String is live; unmark it and its intervals. */
1801 UNMARK_STRING (s);
1802
1803 /* Do not use string_(set|get)_intervals here. */
1804 s->intervals = balance_intervals (s->intervals);
1805
1806 ++total_strings;
1807 total_string_bytes += STRING_BYTES (s);
1808 }
1809 else
1810 {
1811 /* String is dead. Put it on the free-list. */
1812 sdata *data = SDATA_OF_STRING (s);
1813
1814 /* Save the size of S in its sdata so that we know
1815 how large that is. Reset the sdata's string
1816 back-pointer so that we know it's free. */
1817 #ifdef GC_CHECK_STRING_BYTES
1818 if (string_bytes (s) != SDATA_NBYTES (data))
1819 emacs_abort ();
1820 #else
1821 data->n.nbytes = STRING_BYTES (s);
1822 #endif
1823 data->string = NULL;
1824
1825 /* Reset the strings's `data' member so that we
1826 know it's free. */
1827 s->data = NULL;
1828
1829 /* Put the string on the free-list. */
1830 NEXT_FREE_LISP_STRING (s) = string_free_list;
1831 string_free_list = s;
1832 ++nfree;
1833 }
1834 }
1835 else
1836 {
1837 /* S was on the free-list before. Put it there again. */
1838 NEXT_FREE_LISP_STRING (s) = string_free_list;
1839 string_free_list = s;
1840 ++nfree;
1841 }
1842 }
1843
1844 /* Free blocks that contain free Lisp_Strings only, except
1845 the first two of them. */
1846 if (nfree == STRING_BLOCK_SIZE
1847 && total_free_strings > STRING_BLOCK_SIZE)
1848 {
1849 lisp_free (b);
1850 string_free_list = free_list_before;
1851 }
1852 else
1853 {
1854 total_free_strings += nfree;
1855 b->next = live_blocks;
1856 live_blocks = b;
1857 }
1858 }
1859
1860 check_string_free_list ();
1861
1862 string_blocks = live_blocks;
1863 free_large_strings ();
1864 compact_small_strings ();
1865
1866 check_string_free_list ();
1867 }
1868
1869
1870 /* Free dead large strings. */
1871
1872 static void
1873 free_large_strings (void)
1874 {
1875 struct sblock *b, *next;
1876 struct sblock *live_blocks = NULL;
1877
1878 for (b = large_sblocks; b; b = next)
1879 {
1880 next = b->next;
1881
1882 if (b->data[0].string == NULL)
1883 lisp_free (b);
1884 else
1885 {
1886 b->next = live_blocks;
1887 live_blocks = b;
1888 }
1889 }
1890
1891 large_sblocks = live_blocks;
1892 }
1893
1894
1895 /* Compact data of small strings. Free sblocks that don't contain
1896 data of live strings after compaction. */
1897
1898 static void
1899 compact_small_strings (void)
1900 {
1901 struct sblock *b, *tb, *next;
1902 sdata *from, *to, *end, *tb_end;
1903 sdata *to_end, *from_end;
1904
1905 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1906 to, and TB_END is the end of TB. */
1907 tb = oldest_sblock;
1908 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1909 to = tb->data;
1910
1911 /* Step through the blocks from the oldest to the youngest. We
1912 expect that old blocks will stabilize over time, so that less
1913 copying will happen this way. */
1914 for (b = oldest_sblock; b; b = b->next)
1915 {
1916 end = b->next_free;
1917 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1918
1919 for (from = b->data; from < end; from = from_end)
1920 {
1921 /* Compute the next FROM here because copying below may
1922 overwrite data we need to compute it. */
1923 ptrdiff_t nbytes;
1924 struct Lisp_String *s = from->string;
1925
1926 #ifdef GC_CHECK_STRING_BYTES
1927 /* Check that the string size recorded in the string is the
1928 same as the one recorded in the sdata structure. */
1929 if (s && string_bytes (s) != SDATA_NBYTES (from))
1930 emacs_abort ();
1931 #endif /* GC_CHECK_STRING_BYTES */
1932
1933 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1934 eassert (nbytes <= LARGE_STRING_BYTES);
1935
1936 nbytes = SDATA_SIZE (nbytes);
1937 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1938
1939 #ifdef GC_CHECK_STRING_OVERRUN
1940 if (memcmp (string_overrun_cookie,
1941 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1942 GC_STRING_OVERRUN_COOKIE_SIZE))
1943 emacs_abort ();
1944 #endif
1945
1946 /* Non-NULL S means it's alive. Copy its data. */
1947 if (s)
1948 {
1949 /* If TB is full, proceed with the next sblock. */
1950 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1951 if (to_end > tb_end)
1952 {
1953 tb->next_free = to;
1954 tb = tb->next;
1955 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1956 to = tb->data;
1957 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1958 }
1959
1960 /* Copy, and update the string's `data' pointer. */
1961 if (from != to)
1962 {
1963 eassert (tb != b || to < from);
1964 memmove (to, from, nbytes + GC_STRING_EXTRA);
1965 to->string->data = SDATA_DATA (to);
1966 }
1967
1968 /* Advance past the sdata we copied to. */
1969 to = to_end;
1970 }
1971 }
1972 }
1973
1974 /* The rest of the sblocks following TB don't contain live data, so
1975 we can free them. */
1976 for (b = tb->next; b; b = next)
1977 {
1978 next = b->next;
1979 lisp_free (b);
1980 }
1981
1982 tb->next_free = to;
1983 tb->next = NULL;
1984 current_sblock = tb;
1985 }
1986
1987 void
1988 string_overflow (void)
1989 {
1990 error ("Maximum string size exceeded");
1991 }
1992
1993 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1994 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1995 LENGTH must be an integer.
1996 INIT must be an integer that represents a character. */)
1997 (Lisp_Object length, Lisp_Object init)
1998 {
1999 register Lisp_Object val;
2000 int c;
2001 EMACS_INT nbytes;
2002
2003 CHECK_NATNUM (length);
2004 CHECK_CHARACTER (init);
2005
2006 c = XFASTINT (init);
2007 if (ASCII_CHAR_P (c))
2008 {
2009 nbytes = XINT (length);
2010 val = make_uninit_string (nbytes);
2011 memset (SDATA (val), c, nbytes);
2012 SDATA (val)[nbytes] = 0;
2013 }
2014 else
2015 {
2016 unsigned char str[MAX_MULTIBYTE_LENGTH];
2017 ptrdiff_t len = CHAR_STRING (c, str);
2018 EMACS_INT string_len = XINT (length);
2019 unsigned char *p, *beg, *end;
2020
2021 if (string_len > STRING_BYTES_MAX / len)
2022 string_overflow ();
2023 nbytes = len * string_len;
2024 val = make_uninit_multibyte_string (string_len, nbytes);
2025 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2026 {
2027 /* First time we just copy `str' to the data of `val'. */
2028 if (p == beg)
2029 memcpy (p, str, len);
2030 else
2031 {
2032 /* Next time we copy largest possible chunk from
2033 initialized to uninitialized part of `val'. */
2034 len = min (p - beg, end - p);
2035 memcpy (p, beg, len);
2036 }
2037 }
2038 *p = 0;
2039 }
2040
2041 return val;
2042 }
2043
2044 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2045 Return A. */
2046
2047 Lisp_Object
2048 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2049 {
2050 EMACS_INT nbits = bool_vector_size (a);
2051 if (0 < nbits)
2052 {
2053 unsigned char *data = bool_vector_uchar_data (a);
2054 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2055 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2056 int last_mask = ~ (~0 << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2057 memset (data, pattern, nbytes - 1);
2058 data[nbytes - 1] = pattern & last_mask;
2059 }
2060 return a;
2061 }
2062
2063 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2064
2065 Lisp_Object
2066 make_uninit_bool_vector (EMACS_INT nbits)
2067 {
2068 Lisp_Object val;
2069 EMACS_INT words = bool_vector_words (nbits);
2070 EMACS_INT word_bytes = words * sizeof (bits_word);
2071 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2072 + word_size - 1)
2073 / word_size);
2074 struct Lisp_Bool_Vector *p
2075 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2076 XSETVECTOR (val, p);
2077 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2078 p->size = nbits;
2079
2080 /* Clear padding at the end. */
2081 if (words)
2082 p->data[words - 1] = 0;
2083
2084 return val;
2085 }
2086
2087 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2088 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2089 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2090 (Lisp_Object length, Lisp_Object init)
2091 {
2092 Lisp_Object val;
2093
2094 CHECK_NATNUM (length);
2095 val = make_uninit_bool_vector (XFASTINT (length));
2096 return bool_vector_fill (val, init);
2097 }
2098
2099
2100 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2101 of characters from the contents. This string may be unibyte or
2102 multibyte, depending on the contents. */
2103
2104 Lisp_Object
2105 make_string (const char *contents, ptrdiff_t nbytes)
2106 {
2107 register Lisp_Object val;
2108 ptrdiff_t nchars, multibyte_nbytes;
2109
2110 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2111 &nchars, &multibyte_nbytes);
2112 if (nbytes == nchars || nbytes != multibyte_nbytes)
2113 /* CONTENTS contains no multibyte sequences or contains an invalid
2114 multibyte sequence. We must make unibyte string. */
2115 val = make_unibyte_string (contents, nbytes);
2116 else
2117 val = make_multibyte_string (contents, nchars, nbytes);
2118 return val;
2119 }
2120
2121
2122 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2123
2124 Lisp_Object
2125 make_unibyte_string (const char *contents, ptrdiff_t length)
2126 {
2127 register Lisp_Object val;
2128 val = make_uninit_string (length);
2129 memcpy (SDATA (val), contents, length);
2130 return val;
2131 }
2132
2133
2134 /* Make a multibyte string from NCHARS characters occupying NBYTES
2135 bytes at CONTENTS. */
2136
2137 Lisp_Object
2138 make_multibyte_string (const char *contents,
2139 ptrdiff_t nchars, ptrdiff_t nbytes)
2140 {
2141 register Lisp_Object val;
2142 val = make_uninit_multibyte_string (nchars, nbytes);
2143 memcpy (SDATA (val), contents, nbytes);
2144 return val;
2145 }
2146
2147
2148 /* Make a string from NCHARS characters occupying NBYTES bytes at
2149 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2150
2151 Lisp_Object
2152 make_string_from_bytes (const char *contents,
2153 ptrdiff_t nchars, ptrdiff_t nbytes)
2154 {
2155 register Lisp_Object val;
2156 val = make_uninit_multibyte_string (nchars, nbytes);
2157 memcpy (SDATA (val), contents, nbytes);
2158 if (SBYTES (val) == SCHARS (val))
2159 STRING_SET_UNIBYTE (val);
2160 return val;
2161 }
2162
2163
2164 /* Make a string from NCHARS characters occupying NBYTES bytes at
2165 CONTENTS. The argument MULTIBYTE controls whether to label the
2166 string as multibyte. If NCHARS is negative, it counts the number of
2167 characters by itself. */
2168
2169 Lisp_Object
2170 make_specified_string (const char *contents,
2171 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2172 {
2173 Lisp_Object val;
2174
2175 if (nchars < 0)
2176 {
2177 if (multibyte)
2178 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2179 nbytes);
2180 else
2181 nchars = nbytes;
2182 }
2183 val = make_uninit_multibyte_string (nchars, nbytes);
2184 memcpy (SDATA (val), contents, nbytes);
2185 if (!multibyte)
2186 STRING_SET_UNIBYTE (val);
2187 return val;
2188 }
2189
2190
2191 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2192 occupying LENGTH bytes. */
2193
2194 Lisp_Object
2195 make_uninit_string (EMACS_INT length)
2196 {
2197 Lisp_Object val;
2198
2199 if (!length)
2200 return empty_unibyte_string;
2201 val = make_uninit_multibyte_string (length, length);
2202 STRING_SET_UNIBYTE (val);
2203 return val;
2204 }
2205
2206
2207 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2208 which occupy NBYTES bytes. */
2209
2210 Lisp_Object
2211 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2212 {
2213 Lisp_Object string;
2214 struct Lisp_String *s;
2215
2216 if (nchars < 0)
2217 emacs_abort ();
2218 if (!nbytes)
2219 return empty_multibyte_string;
2220
2221 s = allocate_string ();
2222 s->intervals = NULL;
2223 allocate_string_data (s, nchars, nbytes);
2224 XSETSTRING (string, s);
2225 string_chars_consed += nbytes;
2226 return string;
2227 }
2228
2229 /* Print arguments to BUF according to a FORMAT, then return
2230 a Lisp_String initialized with the data from BUF. */
2231
2232 Lisp_Object
2233 make_formatted_string (char *buf, const char *format, ...)
2234 {
2235 va_list ap;
2236 int length;
2237
2238 va_start (ap, format);
2239 length = vsprintf (buf, format, ap);
2240 va_end (ap);
2241 return make_string (buf, length);
2242 }
2243
2244 \f
2245 /***********************************************************************
2246 Float Allocation
2247 ***********************************************************************/
2248
2249 /* We store float cells inside of float_blocks, allocating a new
2250 float_block with malloc whenever necessary. Float cells reclaimed
2251 by GC are put on a free list to be reallocated before allocating
2252 any new float cells from the latest float_block. */
2253
2254 #define FLOAT_BLOCK_SIZE \
2255 (((BLOCK_BYTES - sizeof (struct float_block *) \
2256 /* The compiler might add padding at the end. */ \
2257 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2258 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2259
2260 #define GETMARKBIT(block,n) \
2261 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2262 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2263 & 1)
2264
2265 #define SETMARKBIT(block,n) \
2266 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2267 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2268
2269 #define UNSETMARKBIT(block,n) \
2270 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2271 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2272
2273 #define FLOAT_BLOCK(fptr) \
2274 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2275
2276 #define FLOAT_INDEX(fptr) \
2277 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2278
2279 struct float_block
2280 {
2281 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2282 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2283 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2284 struct float_block *next;
2285 };
2286
2287 #define FLOAT_MARKED_P(fptr) \
2288 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2289
2290 #define FLOAT_MARK(fptr) \
2291 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2292
2293 #define FLOAT_UNMARK(fptr) \
2294 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2295
2296 /* Current float_block. */
2297
2298 static struct float_block *float_block;
2299
2300 /* Index of first unused Lisp_Float in the current float_block. */
2301
2302 static int float_block_index = FLOAT_BLOCK_SIZE;
2303
2304 /* Free-list of Lisp_Floats. */
2305
2306 static struct Lisp_Float *float_free_list;
2307
2308 /* Return a new float object with value FLOAT_VALUE. */
2309
2310 Lisp_Object
2311 make_float (double float_value)
2312 {
2313 register Lisp_Object val;
2314
2315 MALLOC_BLOCK_INPUT;
2316
2317 if (float_free_list)
2318 {
2319 /* We use the data field for chaining the free list
2320 so that we won't use the same field that has the mark bit. */
2321 XSETFLOAT (val, float_free_list);
2322 float_free_list = float_free_list->u.chain;
2323 }
2324 else
2325 {
2326 if (float_block_index == FLOAT_BLOCK_SIZE)
2327 {
2328 struct float_block *new
2329 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2330 new->next = float_block;
2331 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2332 float_block = new;
2333 float_block_index = 0;
2334 total_free_floats += FLOAT_BLOCK_SIZE;
2335 }
2336 XSETFLOAT (val, &float_block->floats[float_block_index]);
2337 float_block_index++;
2338 }
2339
2340 MALLOC_UNBLOCK_INPUT;
2341
2342 XFLOAT_INIT (val, float_value);
2343 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2344 consing_since_gc += sizeof (struct Lisp_Float);
2345 floats_consed++;
2346 total_free_floats--;
2347 return val;
2348 }
2349
2350
2351 \f
2352 /***********************************************************************
2353 Cons Allocation
2354 ***********************************************************************/
2355
2356 /* We store cons cells inside of cons_blocks, allocating a new
2357 cons_block with malloc whenever necessary. Cons cells reclaimed by
2358 GC are put on a free list to be reallocated before allocating
2359 any new cons cells from the latest cons_block. */
2360
2361 #define CONS_BLOCK_SIZE \
2362 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2363 /* The compiler might add padding at the end. */ \
2364 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2365 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2366
2367 #define CONS_BLOCK(fptr) \
2368 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2369
2370 #define CONS_INDEX(fptr) \
2371 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2372
2373 struct cons_block
2374 {
2375 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2376 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2377 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2378 struct cons_block *next;
2379 };
2380
2381 #define CONS_MARKED_P(fptr) \
2382 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2383
2384 #define CONS_MARK(fptr) \
2385 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2386
2387 #define CONS_UNMARK(fptr) \
2388 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2389
2390 /* Current cons_block. */
2391
2392 static struct cons_block *cons_block;
2393
2394 /* Index of first unused Lisp_Cons in the current block. */
2395
2396 static int cons_block_index = CONS_BLOCK_SIZE;
2397
2398 /* Free-list of Lisp_Cons structures. */
2399
2400 static struct Lisp_Cons *cons_free_list;
2401
2402 /* Explicitly free a cons cell by putting it on the free-list. */
2403
2404 void
2405 free_cons (struct Lisp_Cons *ptr)
2406 {
2407 ptr->u.chain = cons_free_list;
2408 #if GC_MARK_STACK
2409 ptr->car = Vdead;
2410 #endif
2411 cons_free_list = ptr;
2412 consing_since_gc -= sizeof *ptr;
2413 total_free_conses++;
2414 }
2415
2416 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2417 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2418 (Lisp_Object car, Lisp_Object cdr)
2419 {
2420 register Lisp_Object val;
2421
2422 MALLOC_BLOCK_INPUT;
2423
2424 if (cons_free_list)
2425 {
2426 /* We use the cdr for chaining the free list
2427 so that we won't use the same field that has the mark bit. */
2428 XSETCONS (val, cons_free_list);
2429 cons_free_list = cons_free_list->u.chain;
2430 }
2431 else
2432 {
2433 if (cons_block_index == CONS_BLOCK_SIZE)
2434 {
2435 struct cons_block *new
2436 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2437 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2438 new->next = cons_block;
2439 cons_block = new;
2440 cons_block_index = 0;
2441 total_free_conses += CONS_BLOCK_SIZE;
2442 }
2443 XSETCONS (val, &cons_block->conses[cons_block_index]);
2444 cons_block_index++;
2445 }
2446
2447 MALLOC_UNBLOCK_INPUT;
2448
2449 XSETCAR (val, car);
2450 XSETCDR (val, cdr);
2451 eassert (!CONS_MARKED_P (XCONS (val)));
2452 consing_since_gc += sizeof (struct Lisp_Cons);
2453 total_free_conses--;
2454 cons_cells_consed++;
2455 return val;
2456 }
2457
2458 #ifdef GC_CHECK_CONS_LIST
2459 /* Get an error now if there's any junk in the cons free list. */
2460 void
2461 check_cons_list (void)
2462 {
2463 struct Lisp_Cons *tail = cons_free_list;
2464
2465 while (tail)
2466 tail = tail->u.chain;
2467 }
2468 #endif
2469
2470 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2471
2472 Lisp_Object
2473 list1 (Lisp_Object arg1)
2474 {
2475 return Fcons (arg1, Qnil);
2476 }
2477
2478 Lisp_Object
2479 list2 (Lisp_Object arg1, Lisp_Object arg2)
2480 {
2481 return Fcons (arg1, Fcons (arg2, Qnil));
2482 }
2483
2484
2485 Lisp_Object
2486 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2487 {
2488 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2489 }
2490
2491
2492 Lisp_Object
2493 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2494 {
2495 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2496 }
2497
2498
2499 Lisp_Object
2500 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2501 {
2502 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2503 Fcons (arg5, Qnil)))));
2504 }
2505
2506 /* Make a list of COUNT Lisp_Objects, where ARG is the
2507 first one. Allocate conses from pure space if TYPE
2508 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2509
2510 Lisp_Object
2511 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2512 {
2513 va_list ap;
2514 ptrdiff_t i;
2515 Lisp_Object val, *objp;
2516
2517 /* Change to SAFE_ALLOCA if you hit this eassert. */
2518 eassert (count <= MAX_ALLOCA / word_size);
2519
2520 objp = alloca (count * word_size);
2521 objp[0] = arg;
2522 va_start (ap, arg);
2523 for (i = 1; i < count; i++)
2524 objp[i] = va_arg (ap, Lisp_Object);
2525 va_end (ap);
2526
2527 for (val = Qnil, i = count - 1; i >= 0; i--)
2528 {
2529 if (type == CONSTYPE_PURE)
2530 val = pure_cons (objp[i], val);
2531 else if (type == CONSTYPE_HEAP)
2532 val = Fcons (objp[i], val);
2533 else
2534 emacs_abort ();
2535 }
2536 return val;
2537 }
2538
2539 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2540 doc: /* Return a newly created list with specified arguments as elements.
2541 Any number of arguments, even zero arguments, are allowed.
2542 usage: (list &rest OBJECTS) */)
2543 (ptrdiff_t nargs, Lisp_Object *args)
2544 {
2545 register Lisp_Object val;
2546 val = Qnil;
2547
2548 while (nargs > 0)
2549 {
2550 nargs--;
2551 val = Fcons (args[nargs], val);
2552 }
2553 return val;
2554 }
2555
2556
2557 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2558 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2559 (register Lisp_Object length, Lisp_Object init)
2560 {
2561 register Lisp_Object val;
2562 register EMACS_INT size;
2563
2564 CHECK_NATNUM (length);
2565 size = XFASTINT (length);
2566
2567 val = Qnil;
2568 while (size > 0)
2569 {
2570 val = Fcons (init, val);
2571 --size;
2572
2573 if (size > 0)
2574 {
2575 val = Fcons (init, val);
2576 --size;
2577
2578 if (size > 0)
2579 {
2580 val = Fcons (init, val);
2581 --size;
2582
2583 if (size > 0)
2584 {
2585 val = Fcons (init, val);
2586 --size;
2587
2588 if (size > 0)
2589 {
2590 val = Fcons (init, val);
2591 --size;
2592 }
2593 }
2594 }
2595 }
2596
2597 QUIT;
2598 }
2599
2600 return val;
2601 }
2602
2603
2604 \f
2605 /***********************************************************************
2606 Vector Allocation
2607 ***********************************************************************/
2608
2609 /* Sometimes a vector's contents are merely a pointer internally used
2610 in vector allocation code. Usually you don't want to touch this. */
2611
2612 static struct Lisp_Vector *
2613 next_vector (struct Lisp_Vector *v)
2614 {
2615 return XUNTAG (v->contents[0], 0);
2616 }
2617
2618 static void
2619 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2620 {
2621 v->contents[0] = make_lisp_ptr (p, 0);
2622 }
2623
2624 /* This value is balanced well enough to avoid too much internal overhead
2625 for the most common cases; it's not required to be a power of two, but
2626 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2627
2628 #define VECTOR_BLOCK_SIZE 4096
2629
2630 enum
2631 {
2632 /* Alignment of struct Lisp_Vector objects. */
2633 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2634 USE_LSB_TAG ? GCALIGNMENT : 1),
2635
2636 /* Vector size requests are a multiple of this. */
2637 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2638 };
2639
2640 /* Verify assumptions described above. */
2641 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2642 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2643
2644 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2645 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2646 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2647 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2648
2649 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2650
2651 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2652
2653 /* Size of the minimal vector allocated from block. */
2654
2655 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2656
2657 /* Size of the largest vector allocated from block. */
2658
2659 #define VBLOCK_BYTES_MAX \
2660 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2661
2662 /* We maintain one free list for each possible block-allocated
2663 vector size, and this is the number of free lists we have. */
2664
2665 #define VECTOR_MAX_FREE_LIST_INDEX \
2666 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2667
2668 /* Common shortcut to advance vector pointer over a block data. */
2669
2670 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2671
2672 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2673
2674 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2675
2676 /* Common shortcut to setup vector on a free list. */
2677
2678 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2679 do { \
2680 (tmp) = ((nbytes - header_size) / word_size); \
2681 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2682 eassert ((nbytes) % roundup_size == 0); \
2683 (tmp) = VINDEX (nbytes); \
2684 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2685 set_next_vector (v, vector_free_lists[tmp]); \
2686 vector_free_lists[tmp] = (v); \
2687 total_free_vector_slots += (nbytes) / word_size; \
2688 } while (0)
2689
2690 /* This internal type is used to maintain the list of large vectors
2691 which are allocated at their own, e.g. outside of vector blocks.
2692
2693 struct large_vector itself cannot contain a struct Lisp_Vector, as
2694 the latter contains a flexible array member and C99 does not allow
2695 such structs to be nested. Instead, each struct large_vector
2696 object LV is followed by a struct Lisp_Vector, which is at offset
2697 large_vector_offset from LV, and whose address is therefore
2698 large_vector_vec (&LV). */
2699
2700 struct large_vector
2701 {
2702 struct large_vector *next;
2703 };
2704
2705 enum
2706 {
2707 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2708 };
2709
2710 static struct Lisp_Vector *
2711 large_vector_vec (struct large_vector *p)
2712 {
2713 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2714 }
2715
2716 /* This internal type is used to maintain an underlying storage
2717 for small vectors. */
2718
2719 struct vector_block
2720 {
2721 char data[VECTOR_BLOCK_BYTES];
2722 struct vector_block *next;
2723 };
2724
2725 /* Chain of vector blocks. */
2726
2727 static struct vector_block *vector_blocks;
2728
2729 /* Vector free lists, where NTH item points to a chain of free
2730 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2731
2732 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2733
2734 /* Singly-linked list of large vectors. */
2735
2736 static struct large_vector *large_vectors;
2737
2738 /* The only vector with 0 slots, allocated from pure space. */
2739
2740 Lisp_Object zero_vector;
2741
2742 /* Number of live vectors. */
2743
2744 static EMACS_INT total_vectors;
2745
2746 /* Total size of live and free vectors, in Lisp_Object units. */
2747
2748 static EMACS_INT total_vector_slots, total_free_vector_slots;
2749
2750 /* Get a new vector block. */
2751
2752 static struct vector_block *
2753 allocate_vector_block (void)
2754 {
2755 struct vector_block *block = xmalloc (sizeof *block);
2756
2757 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2758 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2759 MEM_TYPE_VECTOR_BLOCK);
2760 #endif
2761
2762 block->next = vector_blocks;
2763 vector_blocks = block;
2764 return block;
2765 }
2766
2767 /* Called once to initialize vector allocation. */
2768
2769 static void
2770 init_vectors (void)
2771 {
2772 zero_vector = make_pure_vector (0);
2773 }
2774
2775 /* Allocate vector from a vector block. */
2776
2777 static struct Lisp_Vector *
2778 allocate_vector_from_block (size_t nbytes)
2779 {
2780 struct Lisp_Vector *vector;
2781 struct vector_block *block;
2782 size_t index, restbytes;
2783
2784 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2785 eassert (nbytes % roundup_size == 0);
2786
2787 /* First, try to allocate from a free list
2788 containing vectors of the requested size. */
2789 index = VINDEX (nbytes);
2790 if (vector_free_lists[index])
2791 {
2792 vector = vector_free_lists[index];
2793 vector_free_lists[index] = next_vector (vector);
2794 total_free_vector_slots -= nbytes / word_size;
2795 return vector;
2796 }
2797
2798 /* Next, check free lists containing larger vectors. Since
2799 we will split the result, we should have remaining space
2800 large enough to use for one-slot vector at least. */
2801 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2802 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2803 if (vector_free_lists[index])
2804 {
2805 /* This vector is larger than requested. */
2806 vector = vector_free_lists[index];
2807 vector_free_lists[index] = next_vector (vector);
2808 total_free_vector_slots -= nbytes / word_size;
2809
2810 /* Excess bytes are used for the smaller vector,
2811 which should be set on an appropriate free list. */
2812 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2813 eassert (restbytes % roundup_size == 0);
2814 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2815 return vector;
2816 }
2817
2818 /* Finally, need a new vector block. */
2819 block = allocate_vector_block ();
2820
2821 /* New vector will be at the beginning of this block. */
2822 vector = (struct Lisp_Vector *) block->data;
2823
2824 /* If the rest of space from this block is large enough
2825 for one-slot vector at least, set up it on a free list. */
2826 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2827 if (restbytes >= VBLOCK_BYTES_MIN)
2828 {
2829 eassert (restbytes % roundup_size == 0);
2830 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2831 }
2832 return vector;
2833 }
2834
2835 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2836
2837 #define VECTOR_IN_BLOCK(vector, block) \
2838 ((char *) (vector) <= (block)->data \
2839 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2840
2841 /* Return the memory footprint of V in bytes. */
2842
2843 static ptrdiff_t
2844 vector_nbytes (struct Lisp_Vector *v)
2845 {
2846 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2847 ptrdiff_t nwords;
2848
2849 if (size & PSEUDOVECTOR_FLAG)
2850 {
2851 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2852 {
2853 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2854 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
2855 * sizeof (bits_word));
2856 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
2857 verify (header_size <= bool_header_size);
2858 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
2859 }
2860 else
2861 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
2862 + ((size & PSEUDOVECTOR_REST_MASK)
2863 >> PSEUDOVECTOR_SIZE_BITS));
2864 }
2865 else
2866 nwords = size;
2867 return vroundup (header_size + word_size * nwords);
2868 }
2869
2870 /* Release extra resources still in use by VECTOR, which may be any
2871 vector-like object. For now, this is used just to free data in
2872 font objects. */
2873
2874 static void
2875 cleanup_vector (struct Lisp_Vector *vector)
2876 {
2877 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
2878 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
2879 == FONT_OBJECT_MAX))
2880 {
2881 struct font *fnt = (struct font *) vector;
2882
2883 if (fnt->driver)
2884 fnt->driver->close (fnt);
2885 }
2886 }
2887
2888 /* Reclaim space used by unmarked vectors. */
2889
2890 static void
2891 sweep_vectors (void)
2892 {
2893 struct vector_block *block, **bprev = &vector_blocks;
2894 struct large_vector *lv, **lvprev = &large_vectors;
2895 struct Lisp_Vector *vector, *next;
2896
2897 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2898 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2899
2900 /* Looking through vector blocks. */
2901
2902 for (block = vector_blocks; block; block = *bprev)
2903 {
2904 bool free_this_block = 0;
2905 ptrdiff_t nbytes;
2906
2907 for (vector = (struct Lisp_Vector *) block->data;
2908 VECTOR_IN_BLOCK (vector, block); vector = next)
2909 {
2910 if (VECTOR_MARKED_P (vector))
2911 {
2912 VECTOR_UNMARK (vector);
2913 total_vectors++;
2914 nbytes = vector_nbytes (vector);
2915 total_vector_slots += nbytes / word_size;
2916 next = ADVANCE (vector, nbytes);
2917 }
2918 else
2919 {
2920 ptrdiff_t total_bytes;
2921
2922 cleanup_vector (vector);
2923 nbytes = vector_nbytes (vector);
2924 total_bytes = nbytes;
2925 next = ADVANCE (vector, nbytes);
2926
2927 /* While NEXT is not marked, try to coalesce with VECTOR,
2928 thus making VECTOR of the largest possible size. */
2929
2930 while (VECTOR_IN_BLOCK (next, block))
2931 {
2932 if (VECTOR_MARKED_P (next))
2933 break;
2934 cleanup_vector (next);
2935 nbytes = vector_nbytes (next);
2936 total_bytes += nbytes;
2937 next = ADVANCE (next, nbytes);
2938 }
2939
2940 eassert (total_bytes % roundup_size == 0);
2941
2942 if (vector == (struct Lisp_Vector *) block->data
2943 && !VECTOR_IN_BLOCK (next, block))
2944 /* This block should be freed because all of it's
2945 space was coalesced into the only free vector. */
2946 free_this_block = 1;
2947 else
2948 {
2949 size_t tmp;
2950 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2951 }
2952 }
2953 }
2954
2955 if (free_this_block)
2956 {
2957 *bprev = block->next;
2958 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2959 mem_delete (mem_find (block->data));
2960 #endif
2961 xfree (block);
2962 }
2963 else
2964 bprev = &block->next;
2965 }
2966
2967 /* Sweep large vectors. */
2968
2969 for (lv = large_vectors; lv; lv = *lvprev)
2970 {
2971 vector = large_vector_vec (lv);
2972 if (VECTOR_MARKED_P (vector))
2973 {
2974 VECTOR_UNMARK (vector);
2975 total_vectors++;
2976 if (vector->header.size & PSEUDOVECTOR_FLAG)
2977 {
2978 /* All non-bool pseudovectors are small enough to be allocated
2979 from vector blocks. This code should be redesigned if some
2980 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2981 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2982 total_vector_slots += vector_nbytes (vector) / word_size;
2983 }
2984 else
2985 total_vector_slots
2986 += header_size / word_size + vector->header.size;
2987 lvprev = &lv->next;
2988 }
2989 else
2990 {
2991 *lvprev = lv->next;
2992 lisp_free (lv);
2993 }
2994 }
2995 }
2996
2997 /* Value is a pointer to a newly allocated Lisp_Vector structure
2998 with room for LEN Lisp_Objects. */
2999
3000 static struct Lisp_Vector *
3001 allocate_vectorlike (ptrdiff_t len)
3002 {
3003 struct Lisp_Vector *p;
3004
3005 MALLOC_BLOCK_INPUT;
3006
3007 if (len == 0)
3008 p = XVECTOR (zero_vector);
3009 else
3010 {
3011 size_t nbytes = header_size + len * word_size;
3012
3013 #ifdef DOUG_LEA_MALLOC
3014 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3015 because mapped region contents are not preserved in
3016 a dumped Emacs. */
3017 mallopt (M_MMAP_MAX, 0);
3018 #endif
3019
3020 if (nbytes <= VBLOCK_BYTES_MAX)
3021 p = allocate_vector_from_block (vroundup (nbytes));
3022 else
3023 {
3024 struct large_vector *lv
3025 = lisp_malloc ((large_vector_offset + header_size
3026 + len * word_size),
3027 MEM_TYPE_VECTORLIKE);
3028 lv->next = large_vectors;
3029 large_vectors = lv;
3030 p = large_vector_vec (lv);
3031 }
3032
3033 #ifdef DOUG_LEA_MALLOC
3034 /* Back to a reasonable maximum of mmap'ed areas. */
3035 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3036 #endif
3037
3038 consing_since_gc += nbytes;
3039 vector_cells_consed += len;
3040 }
3041
3042 MALLOC_UNBLOCK_INPUT;
3043
3044 return p;
3045 }
3046
3047
3048 /* Allocate a vector with LEN slots. */
3049
3050 struct Lisp_Vector *
3051 allocate_vector (EMACS_INT len)
3052 {
3053 struct Lisp_Vector *v;
3054 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3055
3056 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3057 memory_full (SIZE_MAX);
3058 v = allocate_vectorlike (len);
3059 v->header.size = len;
3060 return v;
3061 }
3062
3063
3064 /* Allocate other vector-like structures. */
3065
3066 struct Lisp_Vector *
3067 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
3068 {
3069 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3070 int i;
3071
3072 /* Catch bogus values. */
3073 eassert (tag <= PVEC_FONT);
3074 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3075 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3076
3077 /* Only the first lisplen slots will be traced normally by the GC. */
3078 for (i = 0; i < lisplen; ++i)
3079 v->contents[i] = Qnil;
3080
3081 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3082 return v;
3083 }
3084
3085 struct buffer *
3086 allocate_buffer (void)
3087 {
3088 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3089
3090 BUFFER_PVEC_INIT (b);
3091 /* Put B on the chain of all buffers including killed ones. */
3092 b->next = all_buffers;
3093 all_buffers = b;
3094 /* Note that the rest fields of B are not initialized. */
3095 return b;
3096 }
3097
3098 struct Lisp_Hash_Table *
3099 allocate_hash_table (void)
3100 {
3101 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3102 }
3103
3104 struct window *
3105 allocate_window (void)
3106 {
3107 struct window *w;
3108
3109 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3110 /* Users assumes that non-Lisp data is zeroed. */
3111 memset (&w->current_matrix, 0,
3112 sizeof (*w) - offsetof (struct window, current_matrix));
3113 return w;
3114 }
3115
3116 struct terminal *
3117 allocate_terminal (void)
3118 {
3119 struct terminal *t;
3120
3121 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3122 /* Users assumes that non-Lisp data is zeroed. */
3123 memset (&t->next_terminal, 0,
3124 sizeof (*t) - offsetof (struct terminal, next_terminal));
3125 return t;
3126 }
3127
3128 struct frame *
3129 allocate_frame (void)
3130 {
3131 struct frame *f;
3132
3133 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3134 /* Users assumes that non-Lisp data is zeroed. */
3135 memset (&f->face_cache, 0,
3136 sizeof (*f) - offsetof (struct frame, face_cache));
3137 return f;
3138 }
3139
3140 struct Lisp_Process *
3141 allocate_process (void)
3142 {
3143 struct Lisp_Process *p;
3144
3145 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3146 /* Users assumes that non-Lisp data is zeroed. */
3147 memset (&p->pid, 0,
3148 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3149 return p;
3150 }
3151
3152 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3153 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3154 See also the function `vector'. */)
3155 (register Lisp_Object length, Lisp_Object init)
3156 {
3157 Lisp_Object vector;
3158 register ptrdiff_t sizei;
3159 register ptrdiff_t i;
3160 register struct Lisp_Vector *p;
3161
3162 CHECK_NATNUM (length);
3163
3164 p = allocate_vector (XFASTINT (length));
3165 sizei = XFASTINT (length);
3166 for (i = 0; i < sizei; i++)
3167 p->contents[i] = init;
3168
3169 XSETVECTOR (vector, p);
3170 return vector;
3171 }
3172
3173
3174 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3175 doc: /* Return a newly created vector with specified arguments as elements.
3176 Any number of arguments, even zero arguments, are allowed.
3177 usage: (vector &rest OBJECTS) */)
3178 (ptrdiff_t nargs, Lisp_Object *args)
3179 {
3180 ptrdiff_t i;
3181 register Lisp_Object val = make_uninit_vector (nargs);
3182 register struct Lisp_Vector *p = XVECTOR (val);
3183
3184 for (i = 0; i < nargs; i++)
3185 p->contents[i] = args[i];
3186 return val;
3187 }
3188
3189 void
3190 make_byte_code (struct Lisp_Vector *v)
3191 {
3192 /* Don't allow the global zero_vector to become a byte code object. */
3193 eassert(0 < v->header.size);
3194 if (v->header.size > 1 && STRINGP (v->contents[1])
3195 && STRING_MULTIBYTE (v->contents[1]))
3196 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3197 earlier because they produced a raw 8-bit string for byte-code
3198 and now such a byte-code string is loaded as multibyte while
3199 raw 8-bit characters converted to multibyte form. Thus, now we
3200 must convert them back to the original unibyte form. */
3201 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3202 XSETPVECTYPE (v, PVEC_COMPILED);
3203 }
3204
3205 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3206 doc: /* Create a byte-code object with specified arguments as elements.
3207 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3208 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3209 and (optional) INTERACTIVE-SPEC.
3210 The first four arguments are required; at most six have any
3211 significance.
3212 The ARGLIST can be either like the one of `lambda', in which case the arguments
3213 will be dynamically bound before executing the byte code, or it can be an
3214 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3215 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3216 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3217 argument to catch the left-over arguments. If such an integer is used, the
3218 arguments will not be dynamically bound but will be instead pushed on the
3219 stack before executing the byte-code.
3220 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3221 (ptrdiff_t nargs, Lisp_Object *args)
3222 {
3223 ptrdiff_t i;
3224 register Lisp_Object val = make_uninit_vector (nargs);
3225 register struct Lisp_Vector *p = XVECTOR (val);
3226
3227 /* We used to purecopy everything here, if purify-flag was set. This worked
3228 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3229 dangerous, since make-byte-code is used during execution to build
3230 closures, so any closure built during the preload phase would end up
3231 copied into pure space, including its free variables, which is sometimes
3232 just wasteful and other times plainly wrong (e.g. those free vars may want
3233 to be setcar'd). */
3234
3235 for (i = 0; i < nargs; i++)
3236 p->contents[i] = args[i];
3237 make_byte_code (p);
3238 XSETCOMPILED (val, p);
3239 return val;
3240 }
3241
3242
3243 \f
3244 /***********************************************************************
3245 Symbol Allocation
3246 ***********************************************************************/
3247
3248 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3249 of the required alignment if LSB tags are used. */
3250
3251 union aligned_Lisp_Symbol
3252 {
3253 struct Lisp_Symbol s;
3254 #if USE_LSB_TAG
3255 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3256 & -GCALIGNMENT];
3257 #endif
3258 };
3259
3260 /* Each symbol_block is just under 1020 bytes long, since malloc
3261 really allocates in units of powers of two and uses 4 bytes for its
3262 own overhead. */
3263
3264 #define SYMBOL_BLOCK_SIZE \
3265 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3266
3267 struct symbol_block
3268 {
3269 /* Place `symbols' first, to preserve alignment. */
3270 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3271 struct symbol_block *next;
3272 };
3273
3274 /* Current symbol block and index of first unused Lisp_Symbol
3275 structure in it. */
3276
3277 static struct symbol_block *symbol_block;
3278 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3279
3280 /* List of free symbols. */
3281
3282 static struct Lisp_Symbol *symbol_free_list;
3283
3284 static void
3285 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3286 {
3287 XSYMBOL (sym)->name = name;
3288 }
3289
3290 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3291 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3292 Its value is void, and its function definition and property list are nil. */)
3293 (Lisp_Object name)
3294 {
3295 register Lisp_Object val;
3296 register struct Lisp_Symbol *p;
3297
3298 CHECK_STRING (name);
3299
3300 MALLOC_BLOCK_INPUT;
3301
3302 if (symbol_free_list)
3303 {
3304 XSETSYMBOL (val, symbol_free_list);
3305 symbol_free_list = symbol_free_list->next;
3306 }
3307 else
3308 {
3309 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3310 {
3311 struct symbol_block *new
3312 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3313 new->next = symbol_block;
3314 symbol_block = new;
3315 symbol_block_index = 0;
3316 total_free_symbols += SYMBOL_BLOCK_SIZE;
3317 }
3318 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3319 symbol_block_index++;
3320 }
3321
3322 MALLOC_UNBLOCK_INPUT;
3323
3324 p = XSYMBOL (val);
3325 set_symbol_name (val, name);
3326 set_symbol_plist (val, Qnil);
3327 p->redirect = SYMBOL_PLAINVAL;
3328 SET_SYMBOL_VAL (p, Qunbound);
3329 set_symbol_function (val, Qnil);
3330 set_symbol_next (val, NULL);
3331 p->gcmarkbit = 0;
3332 p->interned = SYMBOL_UNINTERNED;
3333 p->constant = 0;
3334 p->declared_special = 0;
3335 consing_since_gc += sizeof (struct Lisp_Symbol);
3336 symbols_consed++;
3337 total_free_symbols--;
3338 return val;
3339 }
3340
3341
3342 \f
3343 /***********************************************************************
3344 Marker (Misc) Allocation
3345 ***********************************************************************/
3346
3347 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3348 the required alignment when LSB tags are used. */
3349
3350 union aligned_Lisp_Misc
3351 {
3352 union Lisp_Misc m;
3353 #if USE_LSB_TAG
3354 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3355 & -GCALIGNMENT];
3356 #endif
3357 };
3358
3359 /* Allocation of markers and other objects that share that structure.
3360 Works like allocation of conses. */
3361
3362 #define MARKER_BLOCK_SIZE \
3363 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3364
3365 struct marker_block
3366 {
3367 /* Place `markers' first, to preserve alignment. */
3368 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3369 struct marker_block *next;
3370 };
3371
3372 static struct marker_block *marker_block;
3373 static int marker_block_index = MARKER_BLOCK_SIZE;
3374
3375 static union Lisp_Misc *marker_free_list;
3376
3377 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3378
3379 static Lisp_Object
3380 allocate_misc (enum Lisp_Misc_Type type)
3381 {
3382 Lisp_Object val;
3383
3384 MALLOC_BLOCK_INPUT;
3385
3386 if (marker_free_list)
3387 {
3388 XSETMISC (val, marker_free_list);
3389 marker_free_list = marker_free_list->u_free.chain;
3390 }
3391 else
3392 {
3393 if (marker_block_index == MARKER_BLOCK_SIZE)
3394 {
3395 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3396 new->next = marker_block;
3397 marker_block = new;
3398 marker_block_index = 0;
3399 total_free_markers += MARKER_BLOCK_SIZE;
3400 }
3401 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3402 marker_block_index++;
3403 }
3404
3405 MALLOC_UNBLOCK_INPUT;
3406
3407 --total_free_markers;
3408 consing_since_gc += sizeof (union Lisp_Misc);
3409 misc_objects_consed++;
3410 XMISCANY (val)->type = type;
3411 XMISCANY (val)->gcmarkbit = 0;
3412 return val;
3413 }
3414
3415 /* Free a Lisp_Misc object. */
3416
3417 void
3418 free_misc (Lisp_Object misc)
3419 {
3420 XMISCANY (misc)->type = Lisp_Misc_Free;
3421 XMISC (misc)->u_free.chain = marker_free_list;
3422 marker_free_list = XMISC (misc);
3423 consing_since_gc -= sizeof (union Lisp_Misc);
3424 total_free_markers++;
3425 }
3426
3427 /* Verify properties of Lisp_Save_Value's representation
3428 that are assumed here and elsewhere. */
3429
3430 verify (SAVE_UNUSED == 0);
3431 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3432 >> SAVE_SLOT_BITS)
3433 == 0);
3434
3435 /* Return Lisp_Save_Value objects for the various combinations
3436 that callers need. */
3437
3438 Lisp_Object
3439 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3440 {
3441 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3442 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3443 p->save_type = SAVE_TYPE_INT_INT_INT;
3444 p->data[0].integer = a;
3445 p->data[1].integer = b;
3446 p->data[2].integer = c;
3447 return val;
3448 }
3449
3450 Lisp_Object
3451 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3452 Lisp_Object d)
3453 {
3454 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3455 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3456 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3457 p->data[0].object = a;
3458 p->data[1].object = b;
3459 p->data[2].object = c;
3460 p->data[3].object = d;
3461 return val;
3462 }
3463
3464 Lisp_Object
3465 make_save_ptr (void *a)
3466 {
3467 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3468 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3469 p->save_type = SAVE_POINTER;
3470 p->data[0].pointer = a;
3471 return val;
3472 }
3473
3474 Lisp_Object
3475 make_save_ptr_int (void *a, ptrdiff_t b)
3476 {
3477 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3478 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3479 p->save_type = SAVE_TYPE_PTR_INT;
3480 p->data[0].pointer = a;
3481 p->data[1].integer = b;
3482 return val;
3483 }
3484
3485 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3486 Lisp_Object
3487 make_save_ptr_ptr (void *a, void *b)
3488 {
3489 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3490 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3491 p->save_type = SAVE_TYPE_PTR_PTR;
3492 p->data[0].pointer = a;
3493 p->data[1].pointer = b;
3494 return val;
3495 }
3496 #endif
3497
3498 Lisp_Object
3499 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3500 {
3501 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3502 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3503 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3504 p->data[0].funcpointer = a;
3505 p->data[1].pointer = b;
3506 p->data[2].object = c;
3507 return val;
3508 }
3509
3510 /* Return a Lisp_Save_Value object that represents an array A
3511 of N Lisp objects. */
3512
3513 Lisp_Object
3514 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3515 {
3516 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3517 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3518 p->save_type = SAVE_TYPE_MEMORY;
3519 p->data[0].pointer = a;
3520 p->data[1].integer = n;
3521 return val;
3522 }
3523
3524 /* Free a Lisp_Save_Value object. Do not use this function
3525 if SAVE contains pointer other than returned by xmalloc. */
3526
3527 void
3528 free_save_value (Lisp_Object save)
3529 {
3530 xfree (XSAVE_POINTER (save, 0));
3531 free_misc (save);
3532 }
3533
3534 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3535
3536 Lisp_Object
3537 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3538 {
3539 register Lisp_Object overlay;
3540
3541 overlay = allocate_misc (Lisp_Misc_Overlay);
3542 OVERLAY_START (overlay) = start;
3543 OVERLAY_END (overlay) = end;
3544 set_overlay_plist (overlay, plist);
3545 XOVERLAY (overlay)->next = NULL;
3546 return overlay;
3547 }
3548
3549 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3550 doc: /* Return a newly allocated marker which does not point at any place. */)
3551 (void)
3552 {
3553 register Lisp_Object val;
3554 register struct Lisp_Marker *p;
3555
3556 val = allocate_misc (Lisp_Misc_Marker);
3557 p = XMARKER (val);
3558 p->buffer = 0;
3559 p->bytepos = 0;
3560 p->charpos = 0;
3561 p->next = NULL;
3562 p->insertion_type = 0;
3563 p->need_adjustment = 0;
3564 return val;
3565 }
3566
3567 /* Return a newly allocated marker which points into BUF
3568 at character position CHARPOS and byte position BYTEPOS. */
3569
3570 Lisp_Object
3571 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3572 {
3573 Lisp_Object obj;
3574 struct Lisp_Marker *m;
3575
3576 /* No dead buffers here. */
3577 eassert (BUFFER_LIVE_P (buf));
3578
3579 /* Every character is at least one byte. */
3580 eassert (charpos <= bytepos);
3581
3582 obj = allocate_misc (Lisp_Misc_Marker);
3583 m = XMARKER (obj);
3584 m->buffer = buf;
3585 m->charpos = charpos;
3586 m->bytepos = bytepos;
3587 m->insertion_type = 0;
3588 m->need_adjustment = 0;
3589 m->next = BUF_MARKERS (buf);
3590 BUF_MARKERS (buf) = m;
3591 return obj;
3592 }
3593
3594 /* Put MARKER back on the free list after using it temporarily. */
3595
3596 void
3597 free_marker (Lisp_Object marker)
3598 {
3599 unchain_marker (XMARKER (marker));
3600 free_misc (marker);
3601 }
3602
3603 \f
3604 /* Return a newly created vector or string with specified arguments as
3605 elements. If all the arguments are characters that can fit
3606 in a string of events, make a string; otherwise, make a vector.
3607
3608 Any number of arguments, even zero arguments, are allowed. */
3609
3610 Lisp_Object
3611 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3612 {
3613 ptrdiff_t i;
3614
3615 for (i = 0; i < nargs; i++)
3616 /* The things that fit in a string
3617 are characters that are in 0...127,
3618 after discarding the meta bit and all the bits above it. */
3619 if (!INTEGERP (args[i])
3620 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3621 return Fvector (nargs, args);
3622
3623 /* Since the loop exited, we know that all the things in it are
3624 characters, so we can make a string. */
3625 {
3626 Lisp_Object result;
3627
3628 result = Fmake_string (make_number (nargs), make_number (0));
3629 for (i = 0; i < nargs; i++)
3630 {
3631 SSET (result, i, XINT (args[i]));
3632 /* Move the meta bit to the right place for a string char. */
3633 if (XINT (args[i]) & CHAR_META)
3634 SSET (result, i, SREF (result, i) | 0x80);
3635 }
3636
3637 return result;
3638 }
3639 }
3640
3641
3642 \f
3643 /************************************************************************
3644 Memory Full Handling
3645 ************************************************************************/
3646
3647
3648 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3649 there may have been size_t overflow so that malloc was never
3650 called, or perhaps malloc was invoked successfully but the
3651 resulting pointer had problems fitting into a tagged EMACS_INT. In
3652 either case this counts as memory being full even though malloc did
3653 not fail. */
3654
3655 void
3656 memory_full (size_t nbytes)
3657 {
3658 /* Do not go into hysterics merely because a large request failed. */
3659 bool enough_free_memory = 0;
3660 if (SPARE_MEMORY < nbytes)
3661 {
3662 void *p;
3663
3664 MALLOC_BLOCK_INPUT;
3665 p = malloc (SPARE_MEMORY);
3666 if (p)
3667 {
3668 free (p);
3669 enough_free_memory = 1;
3670 }
3671 MALLOC_UNBLOCK_INPUT;
3672 }
3673
3674 if (! enough_free_memory)
3675 {
3676 int i;
3677
3678 Vmemory_full = Qt;
3679
3680 memory_full_cons_threshold = sizeof (struct cons_block);
3681
3682 /* The first time we get here, free the spare memory. */
3683 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3684 if (spare_memory[i])
3685 {
3686 if (i == 0)
3687 free (spare_memory[i]);
3688 else if (i >= 1 && i <= 4)
3689 lisp_align_free (spare_memory[i]);
3690 else
3691 lisp_free (spare_memory[i]);
3692 spare_memory[i] = 0;
3693 }
3694 }
3695
3696 /* This used to call error, but if we've run out of memory, we could
3697 get infinite recursion trying to build the string. */
3698 xsignal (Qnil, Vmemory_signal_data);
3699 }
3700
3701 /* If we released our reserve (due to running out of memory),
3702 and we have a fair amount free once again,
3703 try to set aside another reserve in case we run out once more.
3704
3705 This is called when a relocatable block is freed in ralloc.c,
3706 and also directly from this file, in case we're not using ralloc.c. */
3707
3708 void
3709 refill_memory_reserve (void)
3710 {
3711 #ifndef SYSTEM_MALLOC
3712 if (spare_memory[0] == 0)
3713 spare_memory[0] = malloc (SPARE_MEMORY);
3714 if (spare_memory[1] == 0)
3715 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3716 MEM_TYPE_SPARE);
3717 if (spare_memory[2] == 0)
3718 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3719 MEM_TYPE_SPARE);
3720 if (spare_memory[3] == 0)
3721 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3722 MEM_TYPE_SPARE);
3723 if (spare_memory[4] == 0)
3724 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3725 MEM_TYPE_SPARE);
3726 if (spare_memory[5] == 0)
3727 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3728 MEM_TYPE_SPARE);
3729 if (spare_memory[6] == 0)
3730 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3731 MEM_TYPE_SPARE);
3732 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3733 Vmemory_full = Qnil;
3734 #endif
3735 }
3736 \f
3737 /************************************************************************
3738 C Stack Marking
3739 ************************************************************************/
3740
3741 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3742
3743 /* Conservative C stack marking requires a method to identify possibly
3744 live Lisp objects given a pointer value. We do this by keeping
3745 track of blocks of Lisp data that are allocated in a red-black tree
3746 (see also the comment of mem_node which is the type of nodes in
3747 that tree). Function lisp_malloc adds information for an allocated
3748 block to the red-black tree with calls to mem_insert, and function
3749 lisp_free removes it with mem_delete. Functions live_string_p etc
3750 call mem_find to lookup information about a given pointer in the
3751 tree, and use that to determine if the pointer points to a Lisp
3752 object or not. */
3753
3754 /* Initialize this part of alloc.c. */
3755
3756 static void
3757 mem_init (void)
3758 {
3759 mem_z.left = mem_z.right = MEM_NIL;
3760 mem_z.parent = NULL;
3761 mem_z.color = MEM_BLACK;
3762 mem_z.start = mem_z.end = NULL;
3763 mem_root = MEM_NIL;
3764 }
3765
3766
3767 /* Value is a pointer to the mem_node containing START. Value is
3768 MEM_NIL if there is no node in the tree containing START. */
3769
3770 static struct mem_node *
3771 mem_find (void *start)
3772 {
3773 struct mem_node *p;
3774
3775 if (start < min_heap_address || start > max_heap_address)
3776 return MEM_NIL;
3777
3778 /* Make the search always successful to speed up the loop below. */
3779 mem_z.start = start;
3780 mem_z.end = (char *) start + 1;
3781
3782 p = mem_root;
3783 while (start < p->start || start >= p->end)
3784 p = start < p->start ? p->left : p->right;
3785 return p;
3786 }
3787
3788
3789 /* Insert a new node into the tree for a block of memory with start
3790 address START, end address END, and type TYPE. Value is a
3791 pointer to the node that was inserted. */
3792
3793 static struct mem_node *
3794 mem_insert (void *start, void *end, enum mem_type type)
3795 {
3796 struct mem_node *c, *parent, *x;
3797
3798 if (min_heap_address == NULL || start < min_heap_address)
3799 min_heap_address = start;
3800 if (max_heap_address == NULL || end > max_heap_address)
3801 max_heap_address = end;
3802
3803 /* See where in the tree a node for START belongs. In this
3804 particular application, it shouldn't happen that a node is already
3805 present. For debugging purposes, let's check that. */
3806 c = mem_root;
3807 parent = NULL;
3808
3809 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3810
3811 while (c != MEM_NIL)
3812 {
3813 if (start >= c->start && start < c->end)
3814 emacs_abort ();
3815 parent = c;
3816 c = start < c->start ? c->left : c->right;
3817 }
3818
3819 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3820
3821 while (c != MEM_NIL)
3822 {
3823 parent = c;
3824 c = start < c->start ? c->left : c->right;
3825 }
3826
3827 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3828
3829 /* Create a new node. */
3830 #ifdef GC_MALLOC_CHECK
3831 x = malloc (sizeof *x);
3832 if (x == NULL)
3833 emacs_abort ();
3834 #else
3835 x = xmalloc (sizeof *x);
3836 #endif
3837 x->start = start;
3838 x->end = end;
3839 x->type = type;
3840 x->parent = parent;
3841 x->left = x->right = MEM_NIL;
3842 x->color = MEM_RED;
3843
3844 /* Insert it as child of PARENT or install it as root. */
3845 if (parent)
3846 {
3847 if (start < parent->start)
3848 parent->left = x;
3849 else
3850 parent->right = x;
3851 }
3852 else
3853 mem_root = x;
3854
3855 /* Re-establish red-black tree properties. */
3856 mem_insert_fixup (x);
3857
3858 return x;
3859 }
3860
3861
3862 /* Re-establish the red-black properties of the tree, and thereby
3863 balance the tree, after node X has been inserted; X is always red. */
3864
3865 static void
3866 mem_insert_fixup (struct mem_node *x)
3867 {
3868 while (x != mem_root && x->parent->color == MEM_RED)
3869 {
3870 /* X is red and its parent is red. This is a violation of
3871 red-black tree property #3. */
3872
3873 if (x->parent == x->parent->parent->left)
3874 {
3875 /* We're on the left side of our grandparent, and Y is our
3876 "uncle". */
3877 struct mem_node *y = x->parent->parent->right;
3878
3879 if (y->color == MEM_RED)
3880 {
3881 /* Uncle and parent are red but should be black because
3882 X is red. Change the colors accordingly and proceed
3883 with the grandparent. */
3884 x->parent->color = MEM_BLACK;
3885 y->color = MEM_BLACK;
3886 x->parent->parent->color = MEM_RED;
3887 x = x->parent->parent;
3888 }
3889 else
3890 {
3891 /* Parent and uncle have different colors; parent is
3892 red, uncle is black. */
3893 if (x == x->parent->right)
3894 {
3895 x = x->parent;
3896 mem_rotate_left (x);
3897 }
3898
3899 x->parent->color = MEM_BLACK;
3900 x->parent->parent->color = MEM_RED;
3901 mem_rotate_right (x->parent->parent);
3902 }
3903 }
3904 else
3905 {
3906 /* This is the symmetrical case of above. */
3907 struct mem_node *y = x->parent->parent->left;
3908
3909 if (y->color == MEM_RED)
3910 {
3911 x->parent->color = MEM_BLACK;
3912 y->color = MEM_BLACK;
3913 x->parent->parent->color = MEM_RED;
3914 x = x->parent->parent;
3915 }
3916 else
3917 {
3918 if (x == x->parent->left)
3919 {
3920 x = x->parent;
3921 mem_rotate_right (x);
3922 }
3923
3924 x->parent->color = MEM_BLACK;
3925 x->parent->parent->color = MEM_RED;
3926 mem_rotate_left (x->parent->parent);
3927 }
3928 }
3929 }
3930
3931 /* The root may have been changed to red due to the algorithm. Set
3932 it to black so that property #5 is satisfied. */
3933 mem_root->color = MEM_BLACK;
3934 }
3935
3936
3937 /* (x) (y)
3938 / \ / \
3939 a (y) ===> (x) c
3940 / \ / \
3941 b c a b */
3942
3943 static void
3944 mem_rotate_left (struct mem_node *x)
3945 {
3946 struct mem_node *y;
3947
3948 /* Turn y's left sub-tree into x's right sub-tree. */
3949 y = x->right;
3950 x->right = y->left;
3951 if (y->left != MEM_NIL)
3952 y->left->parent = x;
3953
3954 /* Y's parent was x's parent. */
3955 if (y != MEM_NIL)
3956 y->parent = x->parent;
3957
3958 /* Get the parent to point to y instead of x. */
3959 if (x->parent)
3960 {
3961 if (x == x->parent->left)
3962 x->parent->left = y;
3963 else
3964 x->parent->right = y;
3965 }
3966 else
3967 mem_root = y;
3968
3969 /* Put x on y's left. */
3970 y->left = x;
3971 if (x != MEM_NIL)
3972 x->parent = y;
3973 }
3974
3975
3976 /* (x) (Y)
3977 / \ / \
3978 (y) c ===> a (x)
3979 / \ / \
3980 a b b c */
3981
3982 static void
3983 mem_rotate_right (struct mem_node *x)
3984 {
3985 struct mem_node *y = x->left;
3986
3987 x->left = y->right;
3988 if (y->right != MEM_NIL)
3989 y->right->parent = x;
3990
3991 if (y != MEM_NIL)
3992 y->parent = x->parent;
3993 if (x->parent)
3994 {
3995 if (x == x->parent->right)
3996 x->parent->right = y;
3997 else
3998 x->parent->left = y;
3999 }
4000 else
4001 mem_root = y;
4002
4003 y->right = x;
4004 if (x != MEM_NIL)
4005 x->parent = y;
4006 }
4007
4008
4009 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4010
4011 static void
4012 mem_delete (struct mem_node *z)
4013 {
4014 struct mem_node *x, *y;
4015
4016 if (!z || z == MEM_NIL)
4017 return;
4018
4019 if (z->left == MEM_NIL || z->right == MEM_NIL)
4020 y = z;
4021 else
4022 {
4023 y = z->right;
4024 while (y->left != MEM_NIL)
4025 y = y->left;
4026 }
4027
4028 if (y->left != MEM_NIL)
4029 x = y->left;
4030 else
4031 x = y->right;
4032
4033 x->parent = y->parent;
4034 if (y->parent)
4035 {
4036 if (y == y->parent->left)
4037 y->parent->left = x;
4038 else
4039 y->parent->right = x;
4040 }
4041 else
4042 mem_root = x;
4043
4044 if (y != z)
4045 {
4046 z->start = y->start;
4047 z->end = y->end;
4048 z->type = y->type;
4049 }
4050
4051 if (y->color == MEM_BLACK)
4052 mem_delete_fixup (x);
4053
4054 #ifdef GC_MALLOC_CHECK
4055 free (y);
4056 #else
4057 xfree (y);
4058 #endif
4059 }
4060
4061
4062 /* Re-establish the red-black properties of the tree, after a
4063 deletion. */
4064
4065 static void
4066 mem_delete_fixup (struct mem_node *x)
4067 {
4068 while (x != mem_root && x->color == MEM_BLACK)
4069 {
4070 if (x == x->parent->left)
4071 {
4072 struct mem_node *w = x->parent->right;
4073
4074 if (w->color == MEM_RED)
4075 {
4076 w->color = MEM_BLACK;
4077 x->parent->color = MEM_RED;
4078 mem_rotate_left (x->parent);
4079 w = x->parent->right;
4080 }
4081
4082 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4083 {
4084 w->color = MEM_RED;
4085 x = x->parent;
4086 }
4087 else
4088 {
4089 if (w->right->color == MEM_BLACK)
4090 {
4091 w->left->color = MEM_BLACK;
4092 w->color = MEM_RED;
4093 mem_rotate_right (w);
4094 w = x->parent->right;
4095 }
4096 w->color = x->parent->color;
4097 x->parent->color = MEM_BLACK;
4098 w->right->color = MEM_BLACK;
4099 mem_rotate_left (x->parent);
4100 x = mem_root;
4101 }
4102 }
4103 else
4104 {
4105 struct mem_node *w = x->parent->left;
4106
4107 if (w->color == MEM_RED)
4108 {
4109 w->color = MEM_BLACK;
4110 x->parent->color = MEM_RED;
4111 mem_rotate_right (x->parent);
4112 w = x->parent->left;
4113 }
4114
4115 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4116 {
4117 w->color = MEM_RED;
4118 x = x->parent;
4119 }
4120 else
4121 {
4122 if (w->left->color == MEM_BLACK)
4123 {
4124 w->right->color = MEM_BLACK;
4125 w->color = MEM_RED;
4126 mem_rotate_left (w);
4127 w = x->parent->left;
4128 }
4129
4130 w->color = x->parent->color;
4131 x->parent->color = MEM_BLACK;
4132 w->left->color = MEM_BLACK;
4133 mem_rotate_right (x->parent);
4134 x = mem_root;
4135 }
4136 }
4137 }
4138
4139 x->color = MEM_BLACK;
4140 }
4141
4142
4143 /* Value is non-zero if P is a pointer to a live Lisp string on
4144 the heap. M is a pointer to the mem_block for P. */
4145
4146 static bool
4147 live_string_p (struct mem_node *m, void *p)
4148 {
4149 if (m->type == MEM_TYPE_STRING)
4150 {
4151 struct string_block *b = m->start;
4152 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4153
4154 /* P must point to the start of a Lisp_String structure, and it
4155 must not be on the free-list. */
4156 return (offset >= 0
4157 && offset % sizeof b->strings[0] == 0
4158 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4159 && ((struct Lisp_String *) p)->data != NULL);
4160 }
4161 else
4162 return 0;
4163 }
4164
4165
4166 /* Value is non-zero if P is a pointer to a live Lisp cons on
4167 the heap. M is a pointer to the mem_block for P. */
4168
4169 static bool
4170 live_cons_p (struct mem_node *m, void *p)
4171 {
4172 if (m->type == MEM_TYPE_CONS)
4173 {
4174 struct cons_block *b = m->start;
4175 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4176
4177 /* P must point to the start of a Lisp_Cons, not be
4178 one of the unused cells in the current cons block,
4179 and not be on the free-list. */
4180 return (offset >= 0
4181 && offset % sizeof b->conses[0] == 0
4182 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4183 && (b != cons_block
4184 || offset / sizeof b->conses[0] < cons_block_index)
4185 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4186 }
4187 else
4188 return 0;
4189 }
4190
4191
4192 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4193 the heap. M is a pointer to the mem_block for P. */
4194
4195 static bool
4196 live_symbol_p (struct mem_node *m, void *p)
4197 {
4198 if (m->type == MEM_TYPE_SYMBOL)
4199 {
4200 struct symbol_block *b = m->start;
4201 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4202
4203 /* P must point to the start of a Lisp_Symbol, not be
4204 one of the unused cells in the current symbol block,
4205 and not be on the free-list. */
4206 return (offset >= 0
4207 && offset % sizeof b->symbols[0] == 0
4208 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4209 && (b != symbol_block
4210 || offset / sizeof b->symbols[0] < symbol_block_index)
4211 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4212 }
4213 else
4214 return 0;
4215 }
4216
4217
4218 /* Value is non-zero if P is a pointer to a live Lisp float on
4219 the heap. M is a pointer to the mem_block for P. */
4220
4221 static bool
4222 live_float_p (struct mem_node *m, void *p)
4223 {
4224 if (m->type == MEM_TYPE_FLOAT)
4225 {
4226 struct float_block *b = m->start;
4227 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4228
4229 /* P must point to the start of a Lisp_Float and not be
4230 one of the unused cells in the current float block. */
4231 return (offset >= 0
4232 && offset % sizeof b->floats[0] == 0
4233 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4234 && (b != float_block
4235 || offset / sizeof b->floats[0] < float_block_index));
4236 }
4237 else
4238 return 0;
4239 }
4240
4241
4242 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4243 the heap. M is a pointer to the mem_block for P. */
4244
4245 static bool
4246 live_misc_p (struct mem_node *m, void *p)
4247 {
4248 if (m->type == MEM_TYPE_MISC)
4249 {
4250 struct marker_block *b = m->start;
4251 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4252
4253 /* P must point to the start of a Lisp_Misc, not be
4254 one of the unused cells in the current misc block,
4255 and not be on the free-list. */
4256 return (offset >= 0
4257 && offset % sizeof b->markers[0] == 0
4258 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4259 && (b != marker_block
4260 || offset / sizeof b->markers[0] < marker_block_index)
4261 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4262 }
4263 else
4264 return 0;
4265 }
4266
4267
4268 /* Value is non-zero if P is a pointer to a live vector-like object.
4269 M is a pointer to the mem_block for P. */
4270
4271 static bool
4272 live_vector_p (struct mem_node *m, void *p)
4273 {
4274 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4275 {
4276 /* This memory node corresponds to a vector block. */
4277 struct vector_block *block = m->start;
4278 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4279
4280 /* P is in the block's allocation range. Scan the block
4281 up to P and see whether P points to the start of some
4282 vector which is not on a free list. FIXME: check whether
4283 some allocation patterns (probably a lot of short vectors)
4284 may cause a substantial overhead of this loop. */
4285 while (VECTOR_IN_BLOCK (vector, block)
4286 && vector <= (struct Lisp_Vector *) p)
4287 {
4288 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4289 return 1;
4290 else
4291 vector = ADVANCE (vector, vector_nbytes (vector));
4292 }
4293 }
4294 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4295 /* This memory node corresponds to a large vector. */
4296 return 1;
4297 return 0;
4298 }
4299
4300
4301 /* Value is non-zero if P is a pointer to a live buffer. M is a
4302 pointer to the mem_block for P. */
4303
4304 static bool
4305 live_buffer_p (struct mem_node *m, void *p)
4306 {
4307 /* P must point to the start of the block, and the buffer
4308 must not have been killed. */
4309 return (m->type == MEM_TYPE_BUFFER
4310 && p == m->start
4311 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4312 }
4313
4314 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4315
4316 #if GC_MARK_STACK
4317
4318 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4319
4320 /* Currently not used, but may be called from gdb. */
4321
4322 void dump_zombies (void) EXTERNALLY_VISIBLE;
4323
4324 /* Array of objects that are kept alive because the C stack contains
4325 a pattern that looks like a reference to them. */
4326
4327 #define MAX_ZOMBIES 10
4328 static Lisp_Object zombies[MAX_ZOMBIES];
4329
4330 /* Number of zombie objects. */
4331
4332 static EMACS_INT nzombies;
4333
4334 /* Number of garbage collections. */
4335
4336 static EMACS_INT ngcs;
4337
4338 /* Average percentage of zombies per collection. */
4339
4340 static double avg_zombies;
4341
4342 /* Max. number of live and zombie objects. */
4343
4344 static EMACS_INT max_live, max_zombies;
4345
4346 /* Average number of live objects per GC. */
4347
4348 static double avg_live;
4349
4350 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4351 doc: /* Show information about live and zombie objects. */)
4352 (void)
4353 {
4354 Lisp_Object args[8], zombie_list = Qnil;
4355 EMACS_INT i;
4356 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4357 zombie_list = Fcons (zombies[i], zombie_list);
4358 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4359 args[1] = make_number (ngcs);
4360 args[2] = make_float (avg_live);
4361 args[3] = make_float (avg_zombies);
4362 args[4] = make_float (avg_zombies / avg_live / 100);
4363 args[5] = make_number (max_live);
4364 args[6] = make_number (max_zombies);
4365 args[7] = zombie_list;
4366 return Fmessage (8, args);
4367 }
4368
4369 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4370
4371
4372 /* Mark OBJ if we can prove it's a Lisp_Object. */
4373
4374 static void
4375 mark_maybe_object (Lisp_Object obj)
4376 {
4377 void *po;
4378 struct mem_node *m;
4379
4380 #if USE_VALGRIND
4381 if (valgrind_p)
4382 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4383 #endif
4384
4385 if (INTEGERP (obj))
4386 return;
4387
4388 po = (void *) XPNTR (obj);
4389 m = mem_find (po);
4390
4391 if (m != MEM_NIL)
4392 {
4393 bool mark_p = 0;
4394
4395 switch (XTYPE (obj))
4396 {
4397 case Lisp_String:
4398 mark_p = (live_string_p (m, po)
4399 && !STRING_MARKED_P ((struct Lisp_String *) po));
4400 break;
4401
4402 case Lisp_Cons:
4403 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4404 break;
4405
4406 case Lisp_Symbol:
4407 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4408 break;
4409
4410 case Lisp_Float:
4411 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4412 break;
4413
4414 case Lisp_Vectorlike:
4415 /* Note: can't check BUFFERP before we know it's a
4416 buffer because checking that dereferences the pointer
4417 PO which might point anywhere. */
4418 if (live_vector_p (m, po))
4419 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4420 else if (live_buffer_p (m, po))
4421 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4422 break;
4423
4424 case Lisp_Misc:
4425 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4426 break;
4427
4428 default:
4429 break;
4430 }
4431
4432 if (mark_p)
4433 {
4434 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4435 if (nzombies < MAX_ZOMBIES)
4436 zombies[nzombies] = obj;
4437 ++nzombies;
4438 #endif
4439 mark_object (obj);
4440 }
4441 }
4442 }
4443
4444
4445 /* If P points to Lisp data, mark that as live if it isn't already
4446 marked. */
4447
4448 static void
4449 mark_maybe_pointer (void *p)
4450 {
4451 struct mem_node *m;
4452
4453 #if USE_VALGRIND
4454 if (valgrind_p)
4455 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4456 #endif
4457
4458 /* Quickly rule out some values which can't point to Lisp data.
4459 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4460 Otherwise, assume that Lisp data is aligned on even addresses. */
4461 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4462 return;
4463
4464 m = mem_find (p);
4465 if (m != MEM_NIL)
4466 {
4467 Lisp_Object obj = Qnil;
4468
4469 switch (m->type)
4470 {
4471 case MEM_TYPE_NON_LISP:
4472 case MEM_TYPE_SPARE:
4473 /* Nothing to do; not a pointer to Lisp memory. */
4474 break;
4475
4476 case MEM_TYPE_BUFFER:
4477 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4478 XSETVECTOR (obj, p);
4479 break;
4480
4481 case MEM_TYPE_CONS:
4482 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4483 XSETCONS (obj, p);
4484 break;
4485
4486 case MEM_TYPE_STRING:
4487 if (live_string_p (m, p)
4488 && !STRING_MARKED_P ((struct Lisp_String *) p))
4489 XSETSTRING (obj, p);
4490 break;
4491
4492 case MEM_TYPE_MISC:
4493 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4494 XSETMISC (obj, p);
4495 break;
4496
4497 case MEM_TYPE_SYMBOL:
4498 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4499 XSETSYMBOL (obj, p);
4500 break;
4501
4502 case MEM_TYPE_FLOAT:
4503 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4504 XSETFLOAT (obj, p);
4505 break;
4506
4507 case MEM_TYPE_VECTORLIKE:
4508 case MEM_TYPE_VECTOR_BLOCK:
4509 if (live_vector_p (m, p))
4510 {
4511 Lisp_Object tem;
4512 XSETVECTOR (tem, p);
4513 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4514 obj = tem;
4515 }
4516 break;
4517
4518 default:
4519 emacs_abort ();
4520 }
4521
4522 if (!NILP (obj))
4523 mark_object (obj);
4524 }
4525 }
4526
4527
4528 /* Alignment of pointer values. Use alignof, as it sometimes returns
4529 a smaller alignment than GCC's __alignof__ and mark_memory might
4530 miss objects if __alignof__ were used. */
4531 #define GC_POINTER_ALIGNMENT alignof (void *)
4532
4533 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4534 not suffice, which is the typical case. A host where a Lisp_Object is
4535 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4536 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4537 suffice to widen it to to a Lisp_Object and check it that way. */
4538 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4539 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4540 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4541 nor mark_maybe_object can follow the pointers. This should not occur on
4542 any practical porting target. */
4543 # error "MSB type bits straddle pointer-word boundaries"
4544 # endif
4545 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4546 pointer words that hold pointers ORed with type bits. */
4547 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4548 #else
4549 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4550 words that hold unmodified pointers. */
4551 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4552 #endif
4553
4554 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4555 or END+OFFSET..START. */
4556
4557 static void
4558 mark_memory (void *start, void *end)
4559 #if defined (__clang__) && defined (__has_feature)
4560 #if __has_feature(address_sanitizer)
4561 /* Do not allow -faddress-sanitizer to check this function, since it
4562 crosses the function stack boundary, and thus would yield many
4563 false positives. */
4564 __attribute__((no_address_safety_analysis))
4565 #endif
4566 #endif
4567 {
4568 void **pp;
4569 int i;
4570
4571 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4572 nzombies = 0;
4573 #endif
4574
4575 /* Make START the pointer to the start of the memory region,
4576 if it isn't already. */
4577 if (end < start)
4578 {
4579 void *tem = start;
4580 start = end;
4581 end = tem;
4582 }
4583
4584 /* Mark Lisp data pointed to. This is necessary because, in some
4585 situations, the C compiler optimizes Lisp objects away, so that
4586 only a pointer to them remains. Example:
4587
4588 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4589 ()
4590 {
4591 Lisp_Object obj = build_string ("test");
4592 struct Lisp_String *s = XSTRING (obj);
4593 Fgarbage_collect ();
4594 fprintf (stderr, "test `%s'\n", s->data);
4595 return Qnil;
4596 }
4597
4598 Here, `obj' isn't really used, and the compiler optimizes it
4599 away. The only reference to the life string is through the
4600 pointer `s'. */
4601
4602 for (pp = start; (void *) pp < end; pp++)
4603 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4604 {
4605 void *p = *(void **) ((char *) pp + i);
4606 mark_maybe_pointer (p);
4607 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4608 mark_maybe_object (XIL ((intptr_t) p));
4609 }
4610 }
4611
4612 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4613
4614 static bool setjmp_tested_p;
4615 static int longjmps_done;
4616
4617 #define SETJMP_WILL_LIKELY_WORK "\
4618 \n\
4619 Emacs garbage collector has been changed to use conservative stack\n\
4620 marking. Emacs has determined that the method it uses to do the\n\
4621 marking will likely work on your system, but this isn't sure.\n\
4622 \n\
4623 If you are a system-programmer, or can get the help of a local wizard\n\
4624 who is, please take a look at the function mark_stack in alloc.c, and\n\
4625 verify that the methods used are appropriate for your system.\n\
4626 \n\
4627 Please mail the result to <emacs-devel@gnu.org>.\n\
4628 "
4629
4630 #define SETJMP_WILL_NOT_WORK "\
4631 \n\
4632 Emacs garbage collector has been changed to use conservative stack\n\
4633 marking. Emacs has determined that the default method it uses to do the\n\
4634 marking will not work on your system. We will need a system-dependent\n\
4635 solution for your system.\n\
4636 \n\
4637 Please take a look at the function mark_stack in alloc.c, and\n\
4638 try to find a way to make it work on your system.\n\
4639 \n\
4640 Note that you may get false negatives, depending on the compiler.\n\
4641 In particular, you need to use -O with GCC for this test.\n\
4642 \n\
4643 Please mail the result to <emacs-devel@gnu.org>.\n\
4644 "
4645
4646
4647 /* Perform a quick check if it looks like setjmp saves registers in a
4648 jmp_buf. Print a message to stderr saying so. When this test
4649 succeeds, this is _not_ a proof that setjmp is sufficient for
4650 conservative stack marking. Only the sources or a disassembly
4651 can prove that. */
4652
4653 static void
4654 test_setjmp (void)
4655 {
4656 char buf[10];
4657 register int x;
4658 sys_jmp_buf jbuf;
4659
4660 /* Arrange for X to be put in a register. */
4661 sprintf (buf, "1");
4662 x = strlen (buf);
4663 x = 2 * x - 1;
4664
4665 sys_setjmp (jbuf);
4666 if (longjmps_done == 1)
4667 {
4668 /* Came here after the longjmp at the end of the function.
4669
4670 If x == 1, the longjmp has restored the register to its
4671 value before the setjmp, and we can hope that setjmp
4672 saves all such registers in the jmp_buf, although that
4673 isn't sure.
4674
4675 For other values of X, either something really strange is
4676 taking place, or the setjmp just didn't save the register. */
4677
4678 if (x == 1)
4679 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4680 else
4681 {
4682 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4683 exit (1);
4684 }
4685 }
4686
4687 ++longjmps_done;
4688 x = 2;
4689 if (longjmps_done == 1)
4690 sys_longjmp (jbuf, 1);
4691 }
4692
4693 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4694
4695
4696 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4697
4698 /* Abort if anything GCPRO'd doesn't survive the GC. */
4699
4700 static void
4701 check_gcpros (void)
4702 {
4703 struct gcpro *p;
4704 ptrdiff_t i;
4705
4706 for (p = gcprolist; p; p = p->next)
4707 for (i = 0; i < p->nvars; ++i)
4708 if (!survives_gc_p (p->var[i]))
4709 /* FIXME: It's not necessarily a bug. It might just be that the
4710 GCPRO is unnecessary or should release the object sooner. */
4711 emacs_abort ();
4712 }
4713
4714 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4715
4716 void
4717 dump_zombies (void)
4718 {
4719 int i;
4720
4721 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4722 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4723 {
4724 fprintf (stderr, " %d = ", i);
4725 debug_print (zombies[i]);
4726 }
4727 }
4728
4729 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4730
4731
4732 /* Mark live Lisp objects on the C stack.
4733
4734 There are several system-dependent problems to consider when
4735 porting this to new architectures:
4736
4737 Processor Registers
4738
4739 We have to mark Lisp objects in CPU registers that can hold local
4740 variables or are used to pass parameters.
4741
4742 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4743 something that either saves relevant registers on the stack, or
4744 calls mark_maybe_object passing it each register's contents.
4745
4746 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4747 implementation assumes that calling setjmp saves registers we need
4748 to see in a jmp_buf which itself lies on the stack. This doesn't
4749 have to be true! It must be verified for each system, possibly
4750 by taking a look at the source code of setjmp.
4751
4752 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4753 can use it as a machine independent method to store all registers
4754 to the stack. In this case the macros described in the previous
4755 two paragraphs are not used.
4756
4757 Stack Layout
4758
4759 Architectures differ in the way their processor stack is organized.
4760 For example, the stack might look like this
4761
4762 +----------------+
4763 | Lisp_Object | size = 4
4764 +----------------+
4765 | something else | size = 2
4766 +----------------+
4767 | Lisp_Object | size = 4
4768 +----------------+
4769 | ... |
4770
4771 In such a case, not every Lisp_Object will be aligned equally. To
4772 find all Lisp_Object on the stack it won't be sufficient to walk
4773 the stack in steps of 4 bytes. Instead, two passes will be
4774 necessary, one starting at the start of the stack, and a second
4775 pass starting at the start of the stack + 2. Likewise, if the
4776 minimal alignment of Lisp_Objects on the stack is 1, four passes
4777 would be necessary, each one starting with one byte more offset
4778 from the stack start. */
4779
4780 static void
4781 mark_stack (void)
4782 {
4783 void *end;
4784
4785 #ifdef HAVE___BUILTIN_UNWIND_INIT
4786 /* Force callee-saved registers and register windows onto the stack.
4787 This is the preferred method if available, obviating the need for
4788 machine dependent methods. */
4789 __builtin_unwind_init ();
4790 end = &end;
4791 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4792 #ifndef GC_SAVE_REGISTERS_ON_STACK
4793 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4794 union aligned_jmpbuf {
4795 Lisp_Object o;
4796 sys_jmp_buf j;
4797 } j;
4798 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4799 #endif
4800 /* This trick flushes the register windows so that all the state of
4801 the process is contained in the stack. */
4802 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4803 needed on ia64 too. See mach_dep.c, where it also says inline
4804 assembler doesn't work with relevant proprietary compilers. */
4805 #ifdef __sparc__
4806 #if defined (__sparc64__) && defined (__FreeBSD__)
4807 /* FreeBSD does not have a ta 3 handler. */
4808 asm ("flushw");
4809 #else
4810 asm ("ta 3");
4811 #endif
4812 #endif
4813
4814 /* Save registers that we need to see on the stack. We need to see
4815 registers used to hold register variables and registers used to
4816 pass parameters. */
4817 #ifdef GC_SAVE_REGISTERS_ON_STACK
4818 GC_SAVE_REGISTERS_ON_STACK (end);
4819 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4820
4821 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4822 setjmp will definitely work, test it
4823 and print a message with the result
4824 of the test. */
4825 if (!setjmp_tested_p)
4826 {
4827 setjmp_tested_p = 1;
4828 test_setjmp ();
4829 }
4830 #endif /* GC_SETJMP_WORKS */
4831
4832 sys_setjmp (j.j);
4833 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4834 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4835 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4836
4837 /* This assumes that the stack is a contiguous region in memory. If
4838 that's not the case, something has to be done here to iterate
4839 over the stack segments. */
4840 mark_memory (stack_base, end);
4841
4842 /* Allow for marking a secondary stack, like the register stack on the
4843 ia64. */
4844 #ifdef GC_MARK_SECONDARY_STACK
4845 GC_MARK_SECONDARY_STACK ();
4846 #endif
4847
4848 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4849 check_gcpros ();
4850 #endif
4851 }
4852
4853 #else /* GC_MARK_STACK == 0 */
4854
4855 #define mark_maybe_object(obj) emacs_abort ()
4856
4857 #endif /* GC_MARK_STACK != 0 */
4858
4859
4860 /* Determine whether it is safe to access memory at address P. */
4861 static int
4862 valid_pointer_p (void *p)
4863 {
4864 #ifdef WINDOWSNT
4865 return w32_valid_pointer_p (p, 16);
4866 #else
4867 int fd[2];
4868
4869 /* Obviously, we cannot just access it (we would SEGV trying), so we
4870 trick the o/s to tell us whether p is a valid pointer.
4871 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4872 not validate p in that case. */
4873
4874 if (emacs_pipe (fd) == 0)
4875 {
4876 bool valid = emacs_write (fd[1], p, 16) == 16;
4877 emacs_close (fd[1]);
4878 emacs_close (fd[0]);
4879 return valid;
4880 }
4881
4882 return -1;
4883 #endif
4884 }
4885
4886 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4887 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4888 cannot validate OBJ. This function can be quite slow, so its primary
4889 use is the manual debugging. The only exception is print_object, where
4890 we use it to check whether the memory referenced by the pointer of
4891 Lisp_Save_Value object contains valid objects. */
4892
4893 int
4894 valid_lisp_object_p (Lisp_Object obj)
4895 {
4896 void *p;
4897 #if GC_MARK_STACK
4898 struct mem_node *m;
4899 #endif
4900
4901 if (INTEGERP (obj))
4902 return 1;
4903
4904 p = (void *) XPNTR (obj);
4905 if (PURE_POINTER_P (p))
4906 return 1;
4907
4908 if (p == &buffer_defaults || p == &buffer_local_symbols)
4909 return 2;
4910
4911 #if !GC_MARK_STACK
4912 return valid_pointer_p (p);
4913 #else
4914
4915 m = mem_find (p);
4916
4917 if (m == MEM_NIL)
4918 {
4919 int valid = valid_pointer_p (p);
4920 if (valid <= 0)
4921 return valid;
4922
4923 if (SUBRP (obj))
4924 return 1;
4925
4926 return 0;
4927 }
4928
4929 switch (m->type)
4930 {
4931 case MEM_TYPE_NON_LISP:
4932 case MEM_TYPE_SPARE:
4933 return 0;
4934
4935 case MEM_TYPE_BUFFER:
4936 return live_buffer_p (m, p) ? 1 : 2;
4937
4938 case MEM_TYPE_CONS:
4939 return live_cons_p (m, p);
4940
4941 case MEM_TYPE_STRING:
4942 return live_string_p (m, p);
4943
4944 case MEM_TYPE_MISC:
4945 return live_misc_p (m, p);
4946
4947 case MEM_TYPE_SYMBOL:
4948 return live_symbol_p (m, p);
4949
4950 case MEM_TYPE_FLOAT:
4951 return live_float_p (m, p);
4952
4953 case MEM_TYPE_VECTORLIKE:
4954 case MEM_TYPE_VECTOR_BLOCK:
4955 return live_vector_p (m, p);
4956
4957 default:
4958 break;
4959 }
4960
4961 return 0;
4962 #endif
4963 }
4964
4965
4966
4967 \f
4968 /***********************************************************************
4969 Pure Storage Management
4970 ***********************************************************************/
4971
4972 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4973 pointer to it. TYPE is the Lisp type for which the memory is
4974 allocated. TYPE < 0 means it's not used for a Lisp object. */
4975
4976 static void *
4977 pure_alloc (size_t size, int type)
4978 {
4979 void *result;
4980 #if USE_LSB_TAG
4981 size_t alignment = GCALIGNMENT;
4982 #else
4983 size_t alignment = alignof (EMACS_INT);
4984
4985 /* Give Lisp_Floats an extra alignment. */
4986 if (type == Lisp_Float)
4987 alignment = alignof (struct Lisp_Float);
4988 #endif
4989
4990 again:
4991 if (type >= 0)
4992 {
4993 /* Allocate space for a Lisp object from the beginning of the free
4994 space with taking account of alignment. */
4995 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4996 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4997 }
4998 else
4999 {
5000 /* Allocate space for a non-Lisp object from the end of the free
5001 space. */
5002 pure_bytes_used_non_lisp += size;
5003 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5004 }
5005 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5006
5007 if (pure_bytes_used <= pure_size)
5008 return result;
5009
5010 /* Don't allocate a large amount here,
5011 because it might get mmap'd and then its address
5012 might not be usable. */
5013 purebeg = xmalloc (10000);
5014 pure_size = 10000;
5015 pure_bytes_used_before_overflow += pure_bytes_used - size;
5016 pure_bytes_used = 0;
5017 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5018 goto again;
5019 }
5020
5021
5022 /* Print a warning if PURESIZE is too small. */
5023
5024 void
5025 check_pure_size (void)
5026 {
5027 if (pure_bytes_used_before_overflow)
5028 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5029 " bytes needed)"),
5030 pure_bytes_used + pure_bytes_used_before_overflow);
5031 }
5032
5033
5034 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5035 the non-Lisp data pool of the pure storage, and return its start
5036 address. Return NULL if not found. */
5037
5038 static char *
5039 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5040 {
5041 int i;
5042 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5043 const unsigned char *p;
5044 char *non_lisp_beg;
5045
5046 if (pure_bytes_used_non_lisp <= nbytes)
5047 return NULL;
5048
5049 /* Set up the Boyer-Moore table. */
5050 skip = nbytes + 1;
5051 for (i = 0; i < 256; i++)
5052 bm_skip[i] = skip;
5053
5054 p = (const unsigned char *) data;
5055 while (--skip > 0)
5056 bm_skip[*p++] = skip;
5057
5058 last_char_skip = bm_skip['\0'];
5059
5060 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5061 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5062
5063 /* See the comments in the function `boyer_moore' (search.c) for the
5064 use of `infinity'. */
5065 infinity = pure_bytes_used_non_lisp + 1;
5066 bm_skip['\0'] = infinity;
5067
5068 p = (const unsigned char *) non_lisp_beg + nbytes;
5069 start = 0;
5070 do
5071 {
5072 /* Check the last character (== '\0'). */
5073 do
5074 {
5075 start += bm_skip[*(p + start)];
5076 }
5077 while (start <= start_max);
5078
5079 if (start < infinity)
5080 /* Couldn't find the last character. */
5081 return NULL;
5082
5083 /* No less than `infinity' means we could find the last
5084 character at `p[start - infinity]'. */
5085 start -= infinity;
5086
5087 /* Check the remaining characters. */
5088 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5089 /* Found. */
5090 return non_lisp_beg + start;
5091
5092 start += last_char_skip;
5093 }
5094 while (start <= start_max);
5095
5096 return NULL;
5097 }
5098
5099
5100 /* Return a string allocated in pure space. DATA is a buffer holding
5101 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5102 means make the result string multibyte.
5103
5104 Must get an error if pure storage is full, since if it cannot hold
5105 a large string it may be able to hold conses that point to that
5106 string; then the string is not protected from gc. */
5107
5108 Lisp_Object
5109 make_pure_string (const char *data,
5110 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5111 {
5112 Lisp_Object string;
5113 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5114 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5115 if (s->data == NULL)
5116 {
5117 s->data = pure_alloc (nbytes + 1, -1);
5118 memcpy (s->data, data, nbytes);
5119 s->data[nbytes] = '\0';
5120 }
5121 s->size = nchars;
5122 s->size_byte = multibyte ? nbytes : -1;
5123 s->intervals = NULL;
5124 XSETSTRING (string, s);
5125 return string;
5126 }
5127
5128 /* Return a string allocated in pure space. Do not
5129 allocate the string data, just point to DATA. */
5130
5131 Lisp_Object
5132 make_pure_c_string (const char *data, ptrdiff_t nchars)
5133 {
5134 Lisp_Object string;
5135 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5136 s->size = nchars;
5137 s->size_byte = -1;
5138 s->data = (unsigned char *) data;
5139 s->intervals = NULL;
5140 XSETSTRING (string, s);
5141 return string;
5142 }
5143
5144 /* Return a cons allocated from pure space. Give it pure copies
5145 of CAR as car and CDR as cdr. */
5146
5147 Lisp_Object
5148 pure_cons (Lisp_Object car, Lisp_Object cdr)
5149 {
5150 Lisp_Object new;
5151 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5152 XSETCONS (new, p);
5153 XSETCAR (new, Fpurecopy (car));
5154 XSETCDR (new, Fpurecopy (cdr));
5155 return new;
5156 }
5157
5158
5159 /* Value is a float object with value NUM allocated from pure space. */
5160
5161 static Lisp_Object
5162 make_pure_float (double num)
5163 {
5164 Lisp_Object new;
5165 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5166 XSETFLOAT (new, p);
5167 XFLOAT_INIT (new, num);
5168 return new;
5169 }
5170
5171
5172 /* Return a vector with room for LEN Lisp_Objects allocated from
5173 pure space. */
5174
5175 static Lisp_Object
5176 make_pure_vector (ptrdiff_t len)
5177 {
5178 Lisp_Object new;
5179 size_t size = header_size + len * word_size;
5180 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5181 XSETVECTOR (new, p);
5182 XVECTOR (new)->header.size = len;
5183 return new;
5184 }
5185
5186
5187 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5188 doc: /* Make a copy of object OBJ in pure storage.
5189 Recursively copies contents of vectors and cons cells.
5190 Does not copy symbols. Copies strings without text properties. */)
5191 (register Lisp_Object obj)
5192 {
5193 if (NILP (Vpurify_flag))
5194 return obj;
5195
5196 if (PURE_POINTER_P (XPNTR (obj)))
5197 return obj;
5198
5199 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5200 {
5201 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5202 if (!NILP (tmp))
5203 return tmp;
5204 }
5205
5206 if (CONSP (obj))
5207 obj = pure_cons (XCAR (obj), XCDR (obj));
5208 else if (FLOATP (obj))
5209 obj = make_pure_float (XFLOAT_DATA (obj));
5210 else if (STRINGP (obj))
5211 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5212 SBYTES (obj),
5213 STRING_MULTIBYTE (obj));
5214 else if (COMPILEDP (obj) || VECTORP (obj))
5215 {
5216 register struct Lisp_Vector *vec;
5217 register ptrdiff_t i;
5218 ptrdiff_t size;
5219
5220 size = ASIZE (obj);
5221 if (size & PSEUDOVECTOR_FLAG)
5222 size &= PSEUDOVECTOR_SIZE_MASK;
5223 vec = XVECTOR (make_pure_vector (size));
5224 for (i = 0; i < size; i++)
5225 vec->contents[i] = Fpurecopy (AREF (obj, i));
5226 if (COMPILEDP (obj))
5227 {
5228 XSETPVECTYPE (vec, PVEC_COMPILED);
5229 XSETCOMPILED (obj, vec);
5230 }
5231 else
5232 XSETVECTOR (obj, vec);
5233 }
5234 else if (MARKERP (obj))
5235 error ("Attempt to copy a marker to pure storage");
5236 else
5237 /* Not purified, don't hash-cons. */
5238 return obj;
5239
5240 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5241 Fputhash (obj, obj, Vpurify_flag);
5242
5243 return obj;
5244 }
5245
5246
5247 \f
5248 /***********************************************************************
5249 Protection from GC
5250 ***********************************************************************/
5251
5252 /* Put an entry in staticvec, pointing at the variable with address
5253 VARADDRESS. */
5254
5255 void
5256 staticpro (Lisp_Object *varaddress)
5257 {
5258 if (staticidx >= NSTATICS)
5259 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5260 staticvec[staticidx++] = varaddress;
5261 }
5262
5263 \f
5264 /***********************************************************************
5265 Protection from GC
5266 ***********************************************************************/
5267
5268 /* Temporarily prevent garbage collection. */
5269
5270 ptrdiff_t
5271 inhibit_garbage_collection (void)
5272 {
5273 ptrdiff_t count = SPECPDL_INDEX ();
5274
5275 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5276 return count;
5277 }
5278
5279 /* Used to avoid possible overflows when
5280 converting from C to Lisp integers. */
5281
5282 static Lisp_Object
5283 bounded_number (EMACS_INT number)
5284 {
5285 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5286 }
5287
5288 /* Calculate total bytes of live objects. */
5289
5290 static size_t
5291 total_bytes_of_live_objects (void)
5292 {
5293 size_t tot = 0;
5294 tot += total_conses * sizeof (struct Lisp_Cons);
5295 tot += total_symbols * sizeof (struct Lisp_Symbol);
5296 tot += total_markers * sizeof (union Lisp_Misc);
5297 tot += total_string_bytes;
5298 tot += total_vector_slots * word_size;
5299 tot += total_floats * sizeof (struct Lisp_Float);
5300 tot += total_intervals * sizeof (struct interval);
5301 tot += total_strings * sizeof (struct Lisp_String);
5302 return tot;
5303 }
5304
5305 #ifdef HAVE_WINDOW_SYSTEM
5306
5307 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5308 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5309
5310 static Lisp_Object
5311 compact_font_cache_entry (Lisp_Object entry)
5312 {
5313 Lisp_Object tail, *prev = &entry;
5314
5315 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5316 {
5317 bool drop = 0;
5318 Lisp_Object obj = XCAR (tail);
5319
5320 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5321 if (CONSP (obj) && FONT_SPEC_P (XCAR (obj))
5322 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj)))
5323 && VECTORP (XCDR (obj)))
5324 {
5325 ptrdiff_t i, size = ASIZE (XCDR (obj)) & ~ARRAY_MARK_FLAG;
5326
5327 /* If font-spec is not marked, most likely all font-entities
5328 are not marked too. But we must be sure that nothing is
5329 marked within OBJ before we really drop it. */
5330 for (i = 0; i < size; i++)
5331 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj), i))))
5332 break;
5333
5334 if (i == size)
5335 drop = 1;
5336 }
5337 if (drop)
5338 *prev = XCDR (tail);
5339 else
5340 prev = xcdr_addr (tail);
5341 }
5342 return entry;
5343 }
5344
5345 /* Compact font caches on all terminals and mark
5346 everything which is still here after compaction. */
5347
5348 static void
5349 compact_font_caches (void)
5350 {
5351 struct terminal *t;
5352
5353 for (t = terminal_list; t; t = t->next_terminal)
5354 {
5355 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5356
5357 if (CONSP (cache))
5358 {
5359 Lisp_Object entry;
5360
5361 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5362 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5363 }
5364 mark_object (cache);
5365 }
5366 }
5367
5368 #else /* not HAVE_WINDOW_SYSTEM */
5369
5370 #define compact_font_caches() (void)(0)
5371
5372 #endif /* HAVE_WINDOW_SYSTEM */
5373
5374 /* Remove (MARKER . DATA) entries with unmarked MARKER
5375 from buffer undo LIST and return changed list. */
5376
5377 static Lisp_Object
5378 compact_undo_list (Lisp_Object list)
5379 {
5380 Lisp_Object tail, *prev = &list;
5381
5382 for (tail = list; CONSP (tail); tail = XCDR (tail))
5383 {
5384 if (CONSP (XCAR (tail))
5385 && MARKERP (XCAR (XCAR (tail)))
5386 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5387 *prev = XCDR (tail);
5388 else
5389 prev = xcdr_addr (tail);
5390 }
5391 return list;
5392 }
5393
5394 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5395 doc: /* Reclaim storage for Lisp objects no longer needed.
5396 Garbage collection happens automatically if you cons more than
5397 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5398 `garbage-collect' normally returns a list with info on amount of space in use,
5399 where each entry has the form (NAME SIZE USED FREE), where:
5400 - NAME is a symbol describing the kind of objects this entry represents,
5401 - SIZE is the number of bytes used by each one,
5402 - USED is the number of those objects that were found live in the heap,
5403 - FREE is the number of those objects that are not live but that Emacs
5404 keeps around for future allocations (maybe because it does not know how
5405 to return them to the OS).
5406 However, if there was overflow in pure space, `garbage-collect'
5407 returns nil, because real GC can't be done.
5408 See Info node `(elisp)Garbage Collection'. */)
5409 (void)
5410 {
5411 struct buffer *nextb;
5412 char stack_top_variable;
5413 ptrdiff_t i;
5414 bool message_p;
5415 ptrdiff_t count = SPECPDL_INDEX ();
5416 struct timespec start;
5417 Lisp_Object retval = Qnil;
5418 size_t tot_before = 0;
5419
5420 if (abort_on_gc)
5421 emacs_abort ();
5422
5423 /* Can't GC if pure storage overflowed because we can't determine
5424 if something is a pure object or not. */
5425 if (pure_bytes_used_before_overflow)
5426 return Qnil;
5427
5428 /* Record this function, so it appears on the profiler's backtraces. */
5429 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5430
5431 check_cons_list ();
5432
5433 /* Don't keep undo information around forever.
5434 Do this early on, so it is no problem if the user quits. */
5435 FOR_EACH_BUFFER (nextb)
5436 compact_buffer (nextb);
5437
5438 if (profiler_memory_running)
5439 tot_before = total_bytes_of_live_objects ();
5440
5441 start = current_timespec ();
5442
5443 /* In case user calls debug_print during GC,
5444 don't let that cause a recursive GC. */
5445 consing_since_gc = 0;
5446
5447 /* Save what's currently displayed in the echo area. */
5448 message_p = push_message ();
5449 record_unwind_protect_void (pop_message_unwind);
5450
5451 /* Save a copy of the contents of the stack, for debugging. */
5452 #if MAX_SAVE_STACK > 0
5453 if (NILP (Vpurify_flag))
5454 {
5455 char *stack;
5456 ptrdiff_t stack_size;
5457 if (&stack_top_variable < stack_bottom)
5458 {
5459 stack = &stack_top_variable;
5460 stack_size = stack_bottom - &stack_top_variable;
5461 }
5462 else
5463 {
5464 stack = stack_bottom;
5465 stack_size = &stack_top_variable - stack_bottom;
5466 }
5467 if (stack_size <= MAX_SAVE_STACK)
5468 {
5469 if (stack_copy_size < stack_size)
5470 {
5471 stack_copy = xrealloc (stack_copy, stack_size);
5472 stack_copy_size = stack_size;
5473 }
5474 memcpy (stack_copy, stack, stack_size);
5475 }
5476 }
5477 #endif /* MAX_SAVE_STACK > 0 */
5478
5479 if (garbage_collection_messages)
5480 message1_nolog ("Garbage collecting...");
5481
5482 block_input ();
5483
5484 shrink_regexp_cache ();
5485
5486 gc_in_progress = 1;
5487
5488 /* Mark all the special slots that serve as the roots of accessibility. */
5489
5490 mark_buffer (&buffer_defaults);
5491 mark_buffer (&buffer_local_symbols);
5492
5493 for (i = 0; i < staticidx; i++)
5494 mark_object (*staticvec[i]);
5495
5496 mark_specpdl ();
5497 mark_terminals ();
5498 mark_kboards ();
5499
5500 #ifdef USE_GTK
5501 xg_mark_data ();
5502 #endif
5503
5504 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5505 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5506 mark_stack ();
5507 #else
5508 {
5509 register struct gcpro *tail;
5510 for (tail = gcprolist; tail; tail = tail->next)
5511 for (i = 0; i < tail->nvars; i++)
5512 mark_object (tail->var[i]);
5513 }
5514 mark_byte_stack ();
5515 #endif
5516 {
5517 struct handler *handler;
5518 for (handler = handlerlist; handler; handler = handler->next)
5519 {
5520 mark_object (handler->tag_or_ch);
5521 mark_object (handler->val);
5522 }
5523 }
5524 #ifdef HAVE_WINDOW_SYSTEM
5525 mark_fringe_data ();
5526 #endif
5527
5528 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5529 mark_stack ();
5530 #endif
5531
5532 /* Everything is now marked, except for the data in font caches
5533 and undo lists. They're compacted by removing an items which
5534 aren't reachable otherwise. */
5535
5536 compact_font_caches ();
5537
5538 FOR_EACH_BUFFER (nextb)
5539 {
5540 if (!EQ (BVAR (nextb, undo_list), Qt))
5541 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5542 /* Now that we have stripped the elements that need not be
5543 in the undo_list any more, we can finally mark the list. */
5544 mark_object (BVAR (nextb, undo_list));
5545 }
5546
5547 gc_sweep ();
5548
5549 /* Clear the mark bits that we set in certain root slots. */
5550
5551 unmark_byte_stack ();
5552 VECTOR_UNMARK (&buffer_defaults);
5553 VECTOR_UNMARK (&buffer_local_symbols);
5554
5555 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5556 dump_zombies ();
5557 #endif
5558
5559 check_cons_list ();
5560
5561 gc_in_progress = 0;
5562
5563 unblock_input ();
5564
5565 consing_since_gc = 0;
5566 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5567 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5568
5569 gc_relative_threshold = 0;
5570 if (FLOATP (Vgc_cons_percentage))
5571 { /* Set gc_cons_combined_threshold. */
5572 double tot = total_bytes_of_live_objects ();
5573
5574 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5575 if (0 < tot)
5576 {
5577 if (tot < TYPE_MAXIMUM (EMACS_INT))
5578 gc_relative_threshold = tot;
5579 else
5580 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5581 }
5582 }
5583
5584 if (garbage_collection_messages)
5585 {
5586 if (message_p || minibuf_level > 0)
5587 restore_message ();
5588 else
5589 message1_nolog ("Garbage collecting...done");
5590 }
5591
5592 unbind_to (count, Qnil);
5593 {
5594 Lisp_Object total[11];
5595 int total_size = 10;
5596
5597 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5598 bounded_number (total_conses),
5599 bounded_number (total_free_conses));
5600
5601 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5602 bounded_number (total_symbols),
5603 bounded_number (total_free_symbols));
5604
5605 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5606 bounded_number (total_markers),
5607 bounded_number (total_free_markers));
5608
5609 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5610 bounded_number (total_strings),
5611 bounded_number (total_free_strings));
5612
5613 total[4] = list3 (Qstring_bytes, make_number (1),
5614 bounded_number (total_string_bytes));
5615
5616 total[5] = list3 (Qvectors,
5617 make_number (header_size + sizeof (Lisp_Object)),
5618 bounded_number (total_vectors));
5619
5620 total[6] = list4 (Qvector_slots, make_number (word_size),
5621 bounded_number (total_vector_slots),
5622 bounded_number (total_free_vector_slots));
5623
5624 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5625 bounded_number (total_floats),
5626 bounded_number (total_free_floats));
5627
5628 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5629 bounded_number (total_intervals),
5630 bounded_number (total_free_intervals));
5631
5632 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5633 bounded_number (total_buffers));
5634
5635 #ifdef DOUG_LEA_MALLOC
5636 total_size++;
5637 total[10] = list4 (Qheap, make_number (1024),
5638 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5639 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5640 #endif
5641 retval = Flist (total_size, total);
5642 }
5643
5644 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5645 {
5646 /* Compute average percentage of zombies. */
5647 double nlive
5648 = (total_conses + total_symbols + total_markers + total_strings
5649 + total_vectors + total_floats + total_intervals + total_buffers);
5650
5651 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5652 max_live = max (nlive, max_live);
5653 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5654 max_zombies = max (nzombies, max_zombies);
5655 ++ngcs;
5656 }
5657 #endif
5658
5659 if (!NILP (Vpost_gc_hook))
5660 {
5661 ptrdiff_t gc_count = inhibit_garbage_collection ();
5662 safe_run_hooks (Qpost_gc_hook);
5663 unbind_to (gc_count, Qnil);
5664 }
5665
5666 /* Accumulate statistics. */
5667 if (FLOATP (Vgc_elapsed))
5668 {
5669 struct timespec since_start = timespec_sub (current_timespec (), start);
5670 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5671 + timespectod (since_start));
5672 }
5673
5674 gcs_done++;
5675
5676 /* Collect profiling data. */
5677 if (profiler_memory_running)
5678 {
5679 size_t swept = 0;
5680 size_t tot_after = total_bytes_of_live_objects ();
5681 if (tot_before > tot_after)
5682 swept = tot_before - tot_after;
5683 malloc_probe (swept);
5684 }
5685
5686 return retval;
5687 }
5688
5689
5690 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5691 only interesting objects referenced from glyphs are strings. */
5692
5693 static void
5694 mark_glyph_matrix (struct glyph_matrix *matrix)
5695 {
5696 struct glyph_row *row = matrix->rows;
5697 struct glyph_row *end = row + matrix->nrows;
5698
5699 for (; row < end; ++row)
5700 if (row->enabled_p)
5701 {
5702 int area;
5703 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5704 {
5705 struct glyph *glyph = row->glyphs[area];
5706 struct glyph *end_glyph = glyph + row->used[area];
5707
5708 for (; glyph < end_glyph; ++glyph)
5709 if (STRINGP (glyph->object)
5710 && !STRING_MARKED_P (XSTRING (glyph->object)))
5711 mark_object (glyph->object);
5712 }
5713 }
5714 }
5715
5716 /* Mark reference to a Lisp_Object.
5717 If the object referred to has not been seen yet, recursively mark
5718 all the references contained in it. */
5719
5720 #define LAST_MARKED_SIZE 500
5721 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5722 static int last_marked_index;
5723
5724 /* For debugging--call abort when we cdr down this many
5725 links of a list, in mark_object. In debugging,
5726 the call to abort will hit a breakpoint.
5727 Normally this is zero and the check never goes off. */
5728 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5729
5730 static void
5731 mark_vectorlike (struct Lisp_Vector *ptr)
5732 {
5733 ptrdiff_t size = ptr->header.size;
5734 ptrdiff_t i;
5735
5736 eassert (!VECTOR_MARKED_P (ptr));
5737 VECTOR_MARK (ptr); /* Else mark it. */
5738 if (size & PSEUDOVECTOR_FLAG)
5739 size &= PSEUDOVECTOR_SIZE_MASK;
5740
5741 /* Note that this size is not the memory-footprint size, but only
5742 the number of Lisp_Object fields that we should trace.
5743 The distinction is used e.g. by Lisp_Process which places extra
5744 non-Lisp_Object fields at the end of the structure... */
5745 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5746 mark_object (ptr->contents[i]);
5747 }
5748
5749 /* Like mark_vectorlike but optimized for char-tables (and
5750 sub-char-tables) assuming that the contents are mostly integers or
5751 symbols. */
5752
5753 static void
5754 mark_char_table (struct Lisp_Vector *ptr)
5755 {
5756 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5757 int i;
5758
5759 eassert (!VECTOR_MARKED_P (ptr));
5760 VECTOR_MARK (ptr);
5761 for (i = 0; i < size; i++)
5762 {
5763 Lisp_Object val = ptr->contents[i];
5764
5765 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5766 continue;
5767 if (SUB_CHAR_TABLE_P (val))
5768 {
5769 if (! VECTOR_MARKED_P (XVECTOR (val)))
5770 mark_char_table (XVECTOR (val));
5771 }
5772 else
5773 mark_object (val);
5774 }
5775 }
5776
5777 /* Mark the chain of overlays starting at PTR. */
5778
5779 static void
5780 mark_overlay (struct Lisp_Overlay *ptr)
5781 {
5782 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5783 {
5784 ptr->gcmarkbit = 1;
5785 mark_object (ptr->start);
5786 mark_object (ptr->end);
5787 mark_object (ptr->plist);
5788 }
5789 }
5790
5791 /* Mark Lisp_Objects and special pointers in BUFFER. */
5792
5793 static void
5794 mark_buffer (struct buffer *buffer)
5795 {
5796 /* This is handled much like other pseudovectors... */
5797 mark_vectorlike ((struct Lisp_Vector *) buffer);
5798
5799 /* ...but there are some buffer-specific things. */
5800
5801 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5802
5803 /* For now, we just don't mark the undo_list. It's done later in
5804 a special way just before the sweep phase, and after stripping
5805 some of its elements that are not needed any more. */
5806
5807 mark_overlay (buffer->overlays_before);
5808 mark_overlay (buffer->overlays_after);
5809
5810 /* If this is an indirect buffer, mark its base buffer. */
5811 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5812 mark_buffer (buffer->base_buffer);
5813 }
5814
5815 /* Mark Lisp faces in the face cache C. */
5816
5817 static void
5818 mark_face_cache (struct face_cache *c)
5819 {
5820 if (c)
5821 {
5822 int i, j;
5823 for (i = 0; i < c->used; ++i)
5824 {
5825 struct face *face = FACE_FROM_ID (c->f, i);
5826
5827 if (face)
5828 {
5829 if (face->font && !VECTOR_MARKED_P (face->font))
5830 mark_vectorlike ((struct Lisp_Vector *) face->font);
5831
5832 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5833 mark_object (face->lface[j]);
5834 }
5835 }
5836 }
5837 }
5838
5839 /* Remove killed buffers or items whose car is a killed buffer from
5840 LIST, and mark other items. Return changed LIST, which is marked. */
5841
5842 static Lisp_Object
5843 mark_discard_killed_buffers (Lisp_Object list)
5844 {
5845 Lisp_Object tail, *prev = &list;
5846
5847 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5848 tail = XCDR (tail))
5849 {
5850 Lisp_Object tem = XCAR (tail);
5851 if (CONSP (tem))
5852 tem = XCAR (tem);
5853 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5854 *prev = XCDR (tail);
5855 else
5856 {
5857 CONS_MARK (XCONS (tail));
5858 mark_object (XCAR (tail));
5859 prev = xcdr_addr (tail);
5860 }
5861 }
5862 mark_object (tail);
5863 return list;
5864 }
5865
5866 /* Determine type of generic Lisp_Object and mark it accordingly. */
5867
5868 void
5869 mark_object (Lisp_Object arg)
5870 {
5871 register Lisp_Object obj = arg;
5872 #ifdef GC_CHECK_MARKED_OBJECTS
5873 void *po;
5874 struct mem_node *m;
5875 #endif
5876 ptrdiff_t cdr_count = 0;
5877
5878 loop:
5879
5880 if (PURE_POINTER_P (XPNTR (obj)))
5881 return;
5882
5883 last_marked[last_marked_index++] = obj;
5884 if (last_marked_index == LAST_MARKED_SIZE)
5885 last_marked_index = 0;
5886
5887 /* Perform some sanity checks on the objects marked here. Abort if
5888 we encounter an object we know is bogus. This increases GC time
5889 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5890 #ifdef GC_CHECK_MARKED_OBJECTS
5891
5892 po = (void *) XPNTR (obj);
5893
5894 /* Check that the object pointed to by PO is known to be a Lisp
5895 structure allocated from the heap. */
5896 #define CHECK_ALLOCATED() \
5897 do { \
5898 m = mem_find (po); \
5899 if (m == MEM_NIL) \
5900 emacs_abort (); \
5901 } while (0)
5902
5903 /* Check that the object pointed to by PO is live, using predicate
5904 function LIVEP. */
5905 #define CHECK_LIVE(LIVEP) \
5906 do { \
5907 if (!LIVEP (m, po)) \
5908 emacs_abort (); \
5909 } while (0)
5910
5911 /* Check both of the above conditions. */
5912 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5913 do { \
5914 CHECK_ALLOCATED (); \
5915 CHECK_LIVE (LIVEP); \
5916 } while (0) \
5917
5918 #else /* not GC_CHECK_MARKED_OBJECTS */
5919
5920 #define CHECK_LIVE(LIVEP) (void) 0
5921 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5922
5923 #endif /* not GC_CHECK_MARKED_OBJECTS */
5924
5925 switch (XTYPE (obj))
5926 {
5927 case Lisp_String:
5928 {
5929 register struct Lisp_String *ptr = XSTRING (obj);
5930 if (STRING_MARKED_P (ptr))
5931 break;
5932 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5933 MARK_STRING (ptr);
5934 MARK_INTERVAL_TREE (ptr->intervals);
5935 #ifdef GC_CHECK_STRING_BYTES
5936 /* Check that the string size recorded in the string is the
5937 same as the one recorded in the sdata structure. */
5938 string_bytes (ptr);
5939 #endif /* GC_CHECK_STRING_BYTES */
5940 }
5941 break;
5942
5943 case Lisp_Vectorlike:
5944 {
5945 register struct Lisp_Vector *ptr = XVECTOR (obj);
5946 register ptrdiff_t pvectype;
5947
5948 if (VECTOR_MARKED_P (ptr))
5949 break;
5950
5951 #ifdef GC_CHECK_MARKED_OBJECTS
5952 m = mem_find (po);
5953 if (m == MEM_NIL && !SUBRP (obj))
5954 emacs_abort ();
5955 #endif /* GC_CHECK_MARKED_OBJECTS */
5956
5957 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5958 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5959 >> PSEUDOVECTOR_AREA_BITS);
5960 else
5961 pvectype = PVEC_NORMAL_VECTOR;
5962
5963 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5964 CHECK_LIVE (live_vector_p);
5965
5966 switch (pvectype)
5967 {
5968 case PVEC_BUFFER:
5969 #ifdef GC_CHECK_MARKED_OBJECTS
5970 {
5971 struct buffer *b;
5972 FOR_EACH_BUFFER (b)
5973 if (b == po)
5974 break;
5975 if (b == NULL)
5976 emacs_abort ();
5977 }
5978 #endif /* GC_CHECK_MARKED_OBJECTS */
5979 mark_buffer ((struct buffer *) ptr);
5980 break;
5981
5982 case PVEC_COMPILED:
5983 { /* We could treat this just like a vector, but it is better
5984 to save the COMPILED_CONSTANTS element for last and avoid
5985 recursion there. */
5986 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5987 int i;
5988
5989 VECTOR_MARK (ptr);
5990 for (i = 0; i < size; i++)
5991 if (i != COMPILED_CONSTANTS)
5992 mark_object (ptr->contents[i]);
5993 if (size > COMPILED_CONSTANTS)
5994 {
5995 obj = ptr->contents[COMPILED_CONSTANTS];
5996 goto loop;
5997 }
5998 }
5999 break;
6000
6001 case PVEC_FRAME:
6002 {
6003 struct frame *f = (struct frame *) ptr;
6004
6005 mark_vectorlike (ptr);
6006 mark_face_cache (f->face_cache);
6007 #ifdef HAVE_WINDOW_SYSTEM
6008 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6009 {
6010 struct font *font = FRAME_FONT (f);
6011
6012 if (font && !VECTOR_MARKED_P (font))
6013 mark_vectorlike ((struct Lisp_Vector *) font);
6014 }
6015 #endif
6016 }
6017 break;
6018
6019 case PVEC_WINDOW:
6020 {
6021 struct window *w = (struct window *) ptr;
6022
6023 mark_vectorlike (ptr);
6024
6025 /* Mark glyph matrices, if any. Marking window
6026 matrices is sufficient because frame matrices
6027 use the same glyph memory. */
6028 if (w->current_matrix)
6029 {
6030 mark_glyph_matrix (w->current_matrix);
6031 mark_glyph_matrix (w->desired_matrix);
6032 }
6033
6034 /* Filter out killed buffers from both buffer lists
6035 in attempt to help GC to reclaim killed buffers faster.
6036 We can do it elsewhere for live windows, but this is the
6037 best place to do it for dead windows. */
6038 wset_prev_buffers
6039 (w, mark_discard_killed_buffers (w->prev_buffers));
6040 wset_next_buffers
6041 (w, mark_discard_killed_buffers (w->next_buffers));
6042 }
6043 break;
6044
6045 case PVEC_HASH_TABLE:
6046 {
6047 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6048
6049 mark_vectorlike (ptr);
6050 mark_object (h->test.name);
6051 mark_object (h->test.user_hash_function);
6052 mark_object (h->test.user_cmp_function);
6053 /* If hash table is not weak, mark all keys and values.
6054 For weak tables, mark only the vector. */
6055 if (NILP (h->weak))
6056 mark_object (h->key_and_value);
6057 else
6058 VECTOR_MARK (XVECTOR (h->key_and_value));
6059 }
6060 break;
6061
6062 case PVEC_CHAR_TABLE:
6063 mark_char_table (ptr);
6064 break;
6065
6066 case PVEC_BOOL_VECTOR:
6067 /* No Lisp_Objects to mark in a bool vector. */
6068 VECTOR_MARK (ptr);
6069 break;
6070
6071 case PVEC_SUBR:
6072 break;
6073
6074 case PVEC_FREE:
6075 emacs_abort ();
6076
6077 default:
6078 mark_vectorlike (ptr);
6079 }
6080 }
6081 break;
6082
6083 case Lisp_Symbol:
6084 {
6085 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6086 struct Lisp_Symbol *ptrx;
6087
6088 if (ptr->gcmarkbit)
6089 break;
6090 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6091 ptr->gcmarkbit = 1;
6092 mark_object (ptr->function);
6093 mark_object (ptr->plist);
6094 switch (ptr->redirect)
6095 {
6096 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6097 case SYMBOL_VARALIAS:
6098 {
6099 Lisp_Object tem;
6100 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6101 mark_object (tem);
6102 break;
6103 }
6104 case SYMBOL_LOCALIZED:
6105 {
6106 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6107 Lisp_Object where = blv->where;
6108 /* If the value is set up for a killed buffer or deleted
6109 frame, restore it's global binding. If the value is
6110 forwarded to a C variable, either it's not a Lisp_Object
6111 var, or it's staticpro'd already. */
6112 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6113 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6114 swap_in_global_binding (ptr);
6115 mark_object (blv->where);
6116 mark_object (blv->valcell);
6117 mark_object (blv->defcell);
6118 break;
6119 }
6120 case SYMBOL_FORWARDED:
6121 /* If the value is forwarded to a buffer or keyboard field,
6122 these are marked when we see the corresponding object.
6123 And if it's forwarded to a C variable, either it's not
6124 a Lisp_Object var, or it's staticpro'd already. */
6125 break;
6126 default: emacs_abort ();
6127 }
6128 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6129 MARK_STRING (XSTRING (ptr->name));
6130 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6131
6132 ptr = ptr->next;
6133 if (ptr)
6134 {
6135 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6136 XSETSYMBOL (obj, ptrx);
6137 goto loop;
6138 }
6139 }
6140 break;
6141
6142 case Lisp_Misc:
6143 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6144
6145 if (XMISCANY (obj)->gcmarkbit)
6146 break;
6147
6148 switch (XMISCTYPE (obj))
6149 {
6150 case Lisp_Misc_Marker:
6151 /* DO NOT mark thru the marker's chain.
6152 The buffer's markers chain does not preserve markers from gc;
6153 instead, markers are removed from the chain when freed by gc. */
6154 XMISCANY (obj)->gcmarkbit = 1;
6155 break;
6156
6157 case Lisp_Misc_Save_Value:
6158 XMISCANY (obj)->gcmarkbit = 1;
6159 {
6160 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6161 /* If `save_type' is zero, `data[0].pointer' is the address
6162 of a memory area containing `data[1].integer' potential
6163 Lisp_Objects. */
6164 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6165 {
6166 Lisp_Object *p = ptr->data[0].pointer;
6167 ptrdiff_t nelt;
6168 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6169 mark_maybe_object (*p);
6170 }
6171 else
6172 {
6173 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6174 int i;
6175 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6176 if (save_type (ptr, i) == SAVE_OBJECT)
6177 mark_object (ptr->data[i].object);
6178 }
6179 }
6180 break;
6181
6182 case Lisp_Misc_Overlay:
6183 mark_overlay (XOVERLAY (obj));
6184 break;
6185
6186 default:
6187 emacs_abort ();
6188 }
6189 break;
6190
6191 case Lisp_Cons:
6192 {
6193 register struct Lisp_Cons *ptr = XCONS (obj);
6194 if (CONS_MARKED_P (ptr))
6195 break;
6196 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6197 CONS_MARK (ptr);
6198 /* If the cdr is nil, avoid recursion for the car. */
6199 if (EQ (ptr->u.cdr, Qnil))
6200 {
6201 obj = ptr->car;
6202 cdr_count = 0;
6203 goto loop;
6204 }
6205 mark_object (ptr->car);
6206 obj = ptr->u.cdr;
6207 cdr_count++;
6208 if (cdr_count == mark_object_loop_halt)
6209 emacs_abort ();
6210 goto loop;
6211 }
6212
6213 case Lisp_Float:
6214 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6215 FLOAT_MARK (XFLOAT (obj));
6216 break;
6217
6218 case_Lisp_Int:
6219 break;
6220
6221 default:
6222 emacs_abort ();
6223 }
6224
6225 #undef CHECK_LIVE
6226 #undef CHECK_ALLOCATED
6227 #undef CHECK_ALLOCATED_AND_LIVE
6228 }
6229 /* Mark the Lisp pointers in the terminal objects.
6230 Called by Fgarbage_collect. */
6231
6232 static void
6233 mark_terminals (void)
6234 {
6235 struct terminal *t;
6236 for (t = terminal_list; t; t = t->next_terminal)
6237 {
6238 eassert (t->name != NULL);
6239 #ifdef HAVE_WINDOW_SYSTEM
6240 /* If a terminal object is reachable from a stacpro'ed object,
6241 it might have been marked already. Make sure the image cache
6242 gets marked. */
6243 mark_image_cache (t->image_cache);
6244 #endif /* HAVE_WINDOW_SYSTEM */
6245 if (!VECTOR_MARKED_P (t))
6246 mark_vectorlike ((struct Lisp_Vector *)t);
6247 }
6248 }
6249
6250
6251
6252 /* Value is non-zero if OBJ will survive the current GC because it's
6253 either marked or does not need to be marked to survive. */
6254
6255 bool
6256 survives_gc_p (Lisp_Object obj)
6257 {
6258 bool survives_p;
6259
6260 switch (XTYPE (obj))
6261 {
6262 case_Lisp_Int:
6263 survives_p = 1;
6264 break;
6265
6266 case Lisp_Symbol:
6267 survives_p = XSYMBOL (obj)->gcmarkbit;
6268 break;
6269
6270 case Lisp_Misc:
6271 survives_p = XMISCANY (obj)->gcmarkbit;
6272 break;
6273
6274 case Lisp_String:
6275 survives_p = STRING_MARKED_P (XSTRING (obj));
6276 break;
6277
6278 case Lisp_Vectorlike:
6279 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6280 break;
6281
6282 case Lisp_Cons:
6283 survives_p = CONS_MARKED_P (XCONS (obj));
6284 break;
6285
6286 case Lisp_Float:
6287 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6288 break;
6289
6290 default:
6291 emacs_abort ();
6292 }
6293
6294 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6295 }
6296
6297
6298 \f
6299 /* Sweep: find all structures not marked, and free them. */
6300
6301 static void
6302 gc_sweep (void)
6303 {
6304 /* Remove or mark entries in weak hash tables.
6305 This must be done before any object is unmarked. */
6306 sweep_weak_hash_tables ();
6307
6308 sweep_strings ();
6309 check_string_bytes (!noninteractive);
6310
6311 /* Put all unmarked conses on free list. */
6312 {
6313 register struct cons_block *cblk;
6314 struct cons_block **cprev = &cons_block;
6315 register int lim = cons_block_index;
6316 EMACS_INT num_free = 0, num_used = 0;
6317
6318 cons_free_list = 0;
6319
6320 for (cblk = cons_block; cblk; cblk = *cprev)
6321 {
6322 register int i = 0;
6323 int this_free = 0;
6324 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6325
6326 /* Scan the mark bits an int at a time. */
6327 for (i = 0; i < ilim; i++)
6328 {
6329 if (cblk->gcmarkbits[i] == -1)
6330 {
6331 /* Fast path - all cons cells for this int are marked. */
6332 cblk->gcmarkbits[i] = 0;
6333 num_used += BITS_PER_INT;
6334 }
6335 else
6336 {
6337 /* Some cons cells for this int are not marked.
6338 Find which ones, and free them. */
6339 int start, pos, stop;
6340
6341 start = i * BITS_PER_INT;
6342 stop = lim - start;
6343 if (stop > BITS_PER_INT)
6344 stop = BITS_PER_INT;
6345 stop += start;
6346
6347 for (pos = start; pos < stop; pos++)
6348 {
6349 if (!CONS_MARKED_P (&cblk->conses[pos]))
6350 {
6351 this_free++;
6352 cblk->conses[pos].u.chain = cons_free_list;
6353 cons_free_list = &cblk->conses[pos];
6354 #if GC_MARK_STACK
6355 cons_free_list->car = Vdead;
6356 #endif
6357 }
6358 else
6359 {
6360 num_used++;
6361 CONS_UNMARK (&cblk->conses[pos]);
6362 }
6363 }
6364 }
6365 }
6366
6367 lim = CONS_BLOCK_SIZE;
6368 /* If this block contains only free conses and we have already
6369 seen more than two blocks worth of free conses then deallocate
6370 this block. */
6371 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6372 {
6373 *cprev = cblk->next;
6374 /* Unhook from the free list. */
6375 cons_free_list = cblk->conses[0].u.chain;
6376 lisp_align_free (cblk);
6377 }
6378 else
6379 {
6380 num_free += this_free;
6381 cprev = &cblk->next;
6382 }
6383 }
6384 total_conses = num_used;
6385 total_free_conses = num_free;
6386 }
6387
6388 /* Put all unmarked floats on free list. */
6389 {
6390 register struct float_block *fblk;
6391 struct float_block **fprev = &float_block;
6392 register int lim = float_block_index;
6393 EMACS_INT num_free = 0, num_used = 0;
6394
6395 float_free_list = 0;
6396
6397 for (fblk = float_block; fblk; fblk = *fprev)
6398 {
6399 register int i;
6400 int this_free = 0;
6401 for (i = 0; i < lim; i++)
6402 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6403 {
6404 this_free++;
6405 fblk->floats[i].u.chain = float_free_list;
6406 float_free_list = &fblk->floats[i];
6407 }
6408 else
6409 {
6410 num_used++;
6411 FLOAT_UNMARK (&fblk->floats[i]);
6412 }
6413 lim = FLOAT_BLOCK_SIZE;
6414 /* If this block contains only free floats and we have already
6415 seen more than two blocks worth of free floats then deallocate
6416 this block. */
6417 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6418 {
6419 *fprev = fblk->next;
6420 /* Unhook from the free list. */
6421 float_free_list = fblk->floats[0].u.chain;
6422 lisp_align_free (fblk);
6423 }
6424 else
6425 {
6426 num_free += this_free;
6427 fprev = &fblk->next;
6428 }
6429 }
6430 total_floats = num_used;
6431 total_free_floats = num_free;
6432 }
6433
6434 /* Put all unmarked intervals on free list. */
6435 {
6436 register struct interval_block *iblk;
6437 struct interval_block **iprev = &interval_block;
6438 register int lim = interval_block_index;
6439 EMACS_INT num_free = 0, num_used = 0;
6440
6441 interval_free_list = 0;
6442
6443 for (iblk = interval_block; iblk; iblk = *iprev)
6444 {
6445 register int i;
6446 int this_free = 0;
6447
6448 for (i = 0; i < lim; i++)
6449 {
6450 if (!iblk->intervals[i].gcmarkbit)
6451 {
6452 set_interval_parent (&iblk->intervals[i], interval_free_list);
6453 interval_free_list = &iblk->intervals[i];
6454 this_free++;
6455 }
6456 else
6457 {
6458 num_used++;
6459 iblk->intervals[i].gcmarkbit = 0;
6460 }
6461 }
6462 lim = INTERVAL_BLOCK_SIZE;
6463 /* If this block contains only free intervals and we have already
6464 seen more than two blocks worth of free intervals then
6465 deallocate this block. */
6466 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6467 {
6468 *iprev = iblk->next;
6469 /* Unhook from the free list. */
6470 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6471 lisp_free (iblk);
6472 }
6473 else
6474 {
6475 num_free += this_free;
6476 iprev = &iblk->next;
6477 }
6478 }
6479 total_intervals = num_used;
6480 total_free_intervals = num_free;
6481 }
6482
6483 /* Put all unmarked symbols on free list. */
6484 {
6485 register struct symbol_block *sblk;
6486 struct symbol_block **sprev = &symbol_block;
6487 register int lim = symbol_block_index;
6488 EMACS_INT num_free = 0, num_used = 0;
6489
6490 symbol_free_list = NULL;
6491
6492 for (sblk = symbol_block; sblk; sblk = *sprev)
6493 {
6494 int this_free = 0;
6495 union aligned_Lisp_Symbol *sym = sblk->symbols;
6496 union aligned_Lisp_Symbol *end = sym + lim;
6497
6498 for (; sym < end; ++sym)
6499 {
6500 /* Check if the symbol was created during loadup. In such a case
6501 it might be pointed to by pure bytecode which we don't trace,
6502 so we conservatively assume that it is live. */
6503 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6504
6505 if (!sym->s.gcmarkbit && !pure_p)
6506 {
6507 if (sym->s.redirect == SYMBOL_LOCALIZED)
6508 xfree (SYMBOL_BLV (&sym->s));
6509 sym->s.next = symbol_free_list;
6510 symbol_free_list = &sym->s;
6511 #if GC_MARK_STACK
6512 symbol_free_list->function = Vdead;
6513 #endif
6514 ++this_free;
6515 }
6516 else
6517 {
6518 ++num_used;
6519 if (!pure_p)
6520 eassert (!STRING_MARKED_P (XSTRING (sym->s.name)));
6521 sym->s.gcmarkbit = 0;
6522 }
6523 }
6524
6525 lim = SYMBOL_BLOCK_SIZE;
6526 /* If this block contains only free symbols and we have already
6527 seen more than two blocks worth of free symbols then deallocate
6528 this block. */
6529 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6530 {
6531 *sprev = sblk->next;
6532 /* Unhook from the free list. */
6533 symbol_free_list = sblk->symbols[0].s.next;
6534 lisp_free (sblk);
6535 }
6536 else
6537 {
6538 num_free += this_free;
6539 sprev = &sblk->next;
6540 }
6541 }
6542 total_symbols = num_used;
6543 total_free_symbols = num_free;
6544 }
6545
6546 /* Put all unmarked misc's on free list.
6547 For a marker, first unchain it from the buffer it points into. */
6548 {
6549 register struct marker_block *mblk;
6550 struct marker_block **mprev = &marker_block;
6551 register int lim = marker_block_index;
6552 EMACS_INT num_free = 0, num_used = 0;
6553
6554 marker_free_list = 0;
6555
6556 for (mblk = marker_block; mblk; mblk = *mprev)
6557 {
6558 register int i;
6559 int this_free = 0;
6560
6561 for (i = 0; i < lim; i++)
6562 {
6563 if (!mblk->markers[i].m.u_any.gcmarkbit)
6564 {
6565 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6566 unchain_marker (&mblk->markers[i].m.u_marker);
6567 /* Set the type of the freed object to Lisp_Misc_Free.
6568 We could leave the type alone, since nobody checks it,
6569 but this might catch bugs faster. */
6570 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6571 mblk->markers[i].m.u_free.chain = marker_free_list;
6572 marker_free_list = &mblk->markers[i].m;
6573 this_free++;
6574 }
6575 else
6576 {
6577 num_used++;
6578 mblk->markers[i].m.u_any.gcmarkbit = 0;
6579 }
6580 }
6581 lim = MARKER_BLOCK_SIZE;
6582 /* If this block contains only free markers and we have already
6583 seen more than two blocks worth of free markers then deallocate
6584 this block. */
6585 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6586 {
6587 *mprev = mblk->next;
6588 /* Unhook from the free list. */
6589 marker_free_list = mblk->markers[0].m.u_free.chain;
6590 lisp_free (mblk);
6591 }
6592 else
6593 {
6594 num_free += this_free;
6595 mprev = &mblk->next;
6596 }
6597 }
6598
6599 total_markers = num_used;
6600 total_free_markers = num_free;
6601 }
6602
6603 /* Free all unmarked buffers */
6604 {
6605 register struct buffer *buffer, **bprev = &all_buffers;
6606
6607 total_buffers = 0;
6608 for (buffer = all_buffers; buffer; buffer = *bprev)
6609 if (!VECTOR_MARKED_P (buffer))
6610 {
6611 *bprev = buffer->next;
6612 lisp_free (buffer);
6613 }
6614 else
6615 {
6616 VECTOR_UNMARK (buffer);
6617 /* Do not use buffer_(set|get)_intervals here. */
6618 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6619 total_buffers++;
6620 bprev = &buffer->next;
6621 }
6622 }
6623
6624 sweep_vectors ();
6625 check_string_bytes (!noninteractive);
6626 }
6627
6628
6629
6630 \f
6631 /* Debugging aids. */
6632
6633 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6634 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6635 This may be helpful in debugging Emacs's memory usage.
6636 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6637 (void)
6638 {
6639 Lisp_Object end;
6640
6641 #ifdef HAVE_NS
6642 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6643 XSETINT (end, 0);
6644 #else
6645 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6646 #endif
6647
6648 return end;
6649 }
6650
6651 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6652 doc: /* Return a list of counters that measure how much consing there has been.
6653 Each of these counters increments for a certain kind of object.
6654 The counters wrap around from the largest positive integer to zero.
6655 Garbage collection does not decrease them.
6656 The elements of the value are as follows:
6657 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6658 All are in units of 1 = one object consed
6659 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6660 objects consed.
6661 MISCS include overlays, markers, and some internal types.
6662 Frames, windows, buffers, and subprocesses count as vectors
6663 (but the contents of a buffer's text do not count here). */)
6664 (void)
6665 {
6666 return listn (CONSTYPE_HEAP, 8,
6667 bounded_number (cons_cells_consed),
6668 bounded_number (floats_consed),
6669 bounded_number (vector_cells_consed),
6670 bounded_number (symbols_consed),
6671 bounded_number (string_chars_consed),
6672 bounded_number (misc_objects_consed),
6673 bounded_number (intervals_consed),
6674 bounded_number (strings_consed));
6675 }
6676
6677 /* Find at most FIND_MAX symbols which have OBJ as their value or
6678 function. This is used in gdbinit's `xwhichsymbols' command. */
6679
6680 Lisp_Object
6681 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6682 {
6683 struct symbol_block *sblk;
6684 ptrdiff_t gc_count = inhibit_garbage_collection ();
6685 Lisp_Object found = Qnil;
6686
6687 if (! DEADP (obj))
6688 {
6689 for (sblk = symbol_block; sblk; sblk = sblk->next)
6690 {
6691 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6692 int bn;
6693
6694 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6695 {
6696 struct Lisp_Symbol *sym = &aligned_sym->s;
6697 Lisp_Object val;
6698 Lisp_Object tem;
6699
6700 if (sblk == symbol_block && bn >= symbol_block_index)
6701 break;
6702
6703 XSETSYMBOL (tem, sym);
6704 val = find_symbol_value (tem);
6705 if (EQ (val, obj)
6706 || EQ (sym->function, obj)
6707 || (!NILP (sym->function)
6708 && COMPILEDP (sym->function)
6709 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6710 || (!NILP (val)
6711 && COMPILEDP (val)
6712 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6713 {
6714 found = Fcons (tem, found);
6715 if (--find_max == 0)
6716 goto out;
6717 }
6718 }
6719 }
6720 }
6721
6722 out:
6723 unbind_to (gc_count, Qnil);
6724 return found;
6725 }
6726
6727 #ifdef ENABLE_CHECKING
6728
6729 bool suppress_checking;
6730
6731 void
6732 die (const char *msg, const char *file, int line)
6733 {
6734 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6735 file, line, msg);
6736 terminate_due_to_signal (SIGABRT, INT_MAX);
6737 }
6738 #endif
6739 \f
6740 /* Initialization. */
6741
6742 void
6743 init_alloc_once (void)
6744 {
6745 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6746 purebeg = PUREBEG;
6747 pure_size = PURESIZE;
6748
6749 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6750 mem_init ();
6751 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6752 #endif
6753
6754 #ifdef DOUG_LEA_MALLOC
6755 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6756 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6757 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6758 #endif
6759 init_strings ();
6760 init_vectors ();
6761
6762 refill_memory_reserve ();
6763 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6764 }
6765
6766 void
6767 init_alloc (void)
6768 {
6769 gcprolist = 0;
6770 byte_stack_list = 0;
6771 #if GC_MARK_STACK
6772 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6773 setjmp_tested_p = longjmps_done = 0;
6774 #endif
6775 #endif
6776 Vgc_elapsed = make_float (0.0);
6777 gcs_done = 0;
6778
6779 #if USE_VALGRIND
6780 valgrind_p = RUNNING_ON_VALGRIND != 0;
6781 #endif
6782 }
6783
6784 void
6785 syms_of_alloc (void)
6786 {
6787 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6788 doc: /* Number of bytes of consing between garbage collections.
6789 Garbage collection can happen automatically once this many bytes have been
6790 allocated since the last garbage collection. All data types count.
6791
6792 Garbage collection happens automatically only when `eval' is called.
6793
6794 By binding this temporarily to a large number, you can effectively
6795 prevent garbage collection during a part of the program.
6796 See also `gc-cons-percentage'. */);
6797
6798 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6799 doc: /* Portion of the heap used for allocation.
6800 Garbage collection can happen automatically once this portion of the heap
6801 has been allocated since the last garbage collection.
6802 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6803 Vgc_cons_percentage = make_float (0.1);
6804
6805 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6806 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6807
6808 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6809 doc: /* Number of cons cells that have been consed so far. */);
6810
6811 DEFVAR_INT ("floats-consed", floats_consed,
6812 doc: /* Number of floats that have been consed so far. */);
6813
6814 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6815 doc: /* Number of vector cells that have been consed so far. */);
6816
6817 DEFVAR_INT ("symbols-consed", symbols_consed,
6818 doc: /* Number of symbols that have been consed so far. */);
6819
6820 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6821 doc: /* Number of string characters that have been consed so far. */);
6822
6823 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6824 doc: /* Number of miscellaneous objects that have been consed so far.
6825 These include markers and overlays, plus certain objects not visible
6826 to users. */);
6827
6828 DEFVAR_INT ("intervals-consed", intervals_consed,
6829 doc: /* Number of intervals that have been consed so far. */);
6830
6831 DEFVAR_INT ("strings-consed", strings_consed,
6832 doc: /* Number of strings that have been consed so far. */);
6833
6834 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6835 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6836 This means that certain objects should be allocated in shared (pure) space.
6837 It can also be set to a hash-table, in which case this table is used to
6838 do hash-consing of the objects allocated to pure space. */);
6839
6840 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6841 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6842 garbage_collection_messages = 0;
6843
6844 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6845 doc: /* Hook run after garbage collection has finished. */);
6846 Vpost_gc_hook = Qnil;
6847 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6848
6849 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6850 doc: /* Precomputed `signal' argument for memory-full error. */);
6851 /* We build this in advance because if we wait until we need it, we might
6852 not be able to allocate the memory to hold it. */
6853 Vmemory_signal_data
6854 = listn (CONSTYPE_PURE, 2, Qerror,
6855 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6856
6857 DEFVAR_LISP ("memory-full", Vmemory_full,
6858 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6859 Vmemory_full = Qnil;
6860
6861 DEFSYM (Qconses, "conses");
6862 DEFSYM (Qsymbols, "symbols");
6863 DEFSYM (Qmiscs, "miscs");
6864 DEFSYM (Qstrings, "strings");
6865 DEFSYM (Qvectors, "vectors");
6866 DEFSYM (Qfloats, "floats");
6867 DEFSYM (Qintervals, "intervals");
6868 DEFSYM (Qbuffers, "buffers");
6869 DEFSYM (Qstring_bytes, "string-bytes");
6870 DEFSYM (Qvector_slots, "vector-slots");
6871 DEFSYM (Qheap, "heap");
6872 DEFSYM (Qautomatic_gc, "Automatic GC");
6873
6874 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6875 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6876
6877 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6878 doc: /* Accumulated time elapsed in garbage collections.
6879 The time is in seconds as a floating point value. */);
6880 DEFVAR_INT ("gcs-done", gcs_done,
6881 doc: /* Accumulated number of garbage collections done. */);
6882
6883 defsubr (&Scons);
6884 defsubr (&Slist);
6885 defsubr (&Svector);
6886 defsubr (&Smake_byte_code);
6887 defsubr (&Smake_list);
6888 defsubr (&Smake_vector);
6889 defsubr (&Smake_string);
6890 defsubr (&Smake_bool_vector);
6891 defsubr (&Smake_symbol);
6892 defsubr (&Smake_marker);
6893 defsubr (&Spurecopy);
6894 defsubr (&Sgarbage_collect);
6895 defsubr (&Smemory_limit);
6896 defsubr (&Smemory_use_counts);
6897
6898 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6899 defsubr (&Sgc_status);
6900 #endif
6901 }
6902
6903 /* When compiled with GCC, GDB might say "No enum type named
6904 pvec_type" if we don't have at least one symbol with that type, and
6905 then xbacktrace could fail. Similarly for the other enums and
6906 their values. Some non-GCC compilers don't like these constructs. */
6907 #ifdef __GNUC__
6908 union
6909 {
6910 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6911 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6912 enum char_bits char_bits;
6913 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6914 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6915 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6916 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6917 enum Lisp_Bits Lisp_Bits;
6918 enum Lisp_Compiled Lisp_Compiled;
6919 enum maxargs maxargs;
6920 enum MAX_ALLOCA MAX_ALLOCA;
6921 enum More_Lisp_Bits More_Lisp_Bits;
6922 enum pvec_type pvec_type;
6923 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6924 #endif /* __GNUC__ */