]> code.delx.au - gnu-emacs/blob - src/alloc.c
(BYTE_CODE_QUIT): Add missing AFTER_POTENTIAL_GC.
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
29
30 /* Note that this declares bzero on OSF/1. How dumb. */
31
32 #include <signal.h>
33
34 /* This file is part of the core Lisp implementation, and thus must
35 deal with the real data structures. If the Lisp implementation is
36 replaced, this file likely will not be used. */
37
38 #undef HIDE_LISP_IMPLEMENTATION
39 #include "lisp.h"
40 #include "process.h"
41 #include "intervals.h"
42 #include "puresize.h"
43 #include "buffer.h"
44 #include "window.h"
45 #include "keyboard.h"
46 #include "frame.h"
47 #include "blockinput.h"
48 #include "charset.h"
49 #include "syssignal.h"
50 #include <setjmp.h>
51
52 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
53 memory. Can do this only if using gmalloc.c. */
54
55 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
56 #undef GC_MALLOC_CHECK
57 #endif
58
59 #ifdef HAVE_UNISTD_H
60 #include <unistd.h>
61 #else
62 extern POINTER_TYPE *sbrk ();
63 #endif
64
65 #ifdef DOUG_LEA_MALLOC
66
67 #include <malloc.h>
68 /* malloc.h #defines this as size_t, at least in glibc2. */
69 #ifndef __malloc_size_t
70 #define __malloc_size_t int
71 #endif
72
73 /* Specify maximum number of areas to mmap. It would be nice to use a
74 value that explicitly means "no limit". */
75
76 #define MMAP_MAX_AREAS 100000000
77
78 #else /* not DOUG_LEA_MALLOC */
79
80 /* The following come from gmalloc.c. */
81
82 #define __malloc_size_t size_t
83 extern __malloc_size_t _bytes_used;
84 extern __malloc_size_t __malloc_extra_blocks;
85
86 #endif /* not DOUG_LEA_MALLOC */
87
88 /* Value of _bytes_used, when spare_memory was freed. */
89
90 static __malloc_size_t bytes_used_when_full;
91
92 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
93 to a struct Lisp_String. */
94
95 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
96 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
97 #define STRING_MARKED_P(S) ((S)->size & ARRAY_MARK_FLAG)
98
99 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
100 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
101 #define VECTOR_MARKED_P(V) ((V)->size & ARRAY_MARK_FLAG)
102
103 /* Value is the number of bytes/chars of S, a pointer to a struct
104 Lisp_String. This must be used instead of STRING_BYTES (S) or
105 S->size during GC, because S->size contains the mark bit for
106 strings. */
107
108 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
109 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
110
111 /* Number of bytes of consing done since the last gc. */
112
113 int consing_since_gc;
114
115 /* Count the amount of consing of various sorts of space. */
116
117 EMACS_INT cons_cells_consed;
118 EMACS_INT floats_consed;
119 EMACS_INT vector_cells_consed;
120 EMACS_INT symbols_consed;
121 EMACS_INT string_chars_consed;
122 EMACS_INT misc_objects_consed;
123 EMACS_INT intervals_consed;
124 EMACS_INT strings_consed;
125
126 /* Number of bytes of consing since GC before another GC should be done. */
127
128 EMACS_INT gc_cons_threshold;
129
130 /* Nonzero during GC. */
131
132 int gc_in_progress;
133
134 /* Nonzero means abort if try to GC.
135 This is for code which is written on the assumption that
136 no GC will happen, so as to verify that assumption. */
137
138 int abort_on_gc;
139
140 /* Nonzero means display messages at beginning and end of GC. */
141
142 int garbage_collection_messages;
143
144 #ifndef VIRT_ADDR_VARIES
145 extern
146 #endif /* VIRT_ADDR_VARIES */
147 int malloc_sbrk_used;
148
149 #ifndef VIRT_ADDR_VARIES
150 extern
151 #endif /* VIRT_ADDR_VARIES */
152 int malloc_sbrk_unused;
153
154 /* Two limits controlling how much undo information to keep. */
155
156 EMACS_INT undo_limit;
157 EMACS_INT undo_strong_limit;
158 EMACS_INT undo_outer_limit;
159
160 /* Number of live and free conses etc. */
161
162 static int total_conses, total_markers, total_symbols, total_vector_size;
163 static int total_free_conses, total_free_markers, total_free_symbols;
164 static int total_free_floats, total_floats;
165
166 /* Points to memory space allocated as "spare", to be freed if we run
167 out of memory. */
168
169 static char *spare_memory;
170
171 /* Amount of spare memory to keep in reserve. */
172
173 #define SPARE_MEMORY (1 << 14)
174
175 /* Number of extra blocks malloc should get when it needs more core. */
176
177 static int malloc_hysteresis;
178
179 /* Non-nil means defun should do purecopy on the function definition. */
180
181 Lisp_Object Vpurify_flag;
182
183 /* Non-nil means we are handling a memory-full error. */
184
185 Lisp_Object Vmemory_full;
186
187 #ifndef HAVE_SHM
188
189 /* Force it into data space! Initialize it to a nonzero value;
190 otherwise some compilers put it into BSS. */
191
192 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
193 #define PUREBEG (char *) pure
194
195 #else /* HAVE_SHM */
196
197 #define pure PURE_SEG_BITS /* Use shared memory segment */
198 #define PUREBEG (char *)PURE_SEG_BITS
199
200 #endif /* HAVE_SHM */
201
202 /* Pointer to the pure area, and its size. */
203
204 static char *purebeg;
205 static size_t pure_size;
206
207 /* Number of bytes of pure storage used before pure storage overflowed.
208 If this is non-zero, this implies that an overflow occurred. */
209
210 static size_t pure_bytes_used_before_overflow;
211
212 /* Value is non-zero if P points into pure space. */
213
214 #define PURE_POINTER_P(P) \
215 (((PNTR_COMPARISON_TYPE) (P) \
216 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
217 && ((PNTR_COMPARISON_TYPE) (P) \
218 >= (PNTR_COMPARISON_TYPE) purebeg))
219
220 /* Index in pure at which next pure object will be allocated.. */
221
222 EMACS_INT pure_bytes_used;
223
224 /* If nonzero, this is a warning delivered by malloc and not yet
225 displayed. */
226
227 char *pending_malloc_warning;
228
229 /* Pre-computed signal argument for use when memory is exhausted. */
230
231 Lisp_Object Vmemory_signal_data;
232
233 /* Maximum amount of C stack to save when a GC happens. */
234
235 #ifndef MAX_SAVE_STACK
236 #define MAX_SAVE_STACK 16000
237 #endif
238
239 /* Buffer in which we save a copy of the C stack at each GC. */
240
241 char *stack_copy;
242 int stack_copy_size;
243
244 /* Non-zero means ignore malloc warnings. Set during initialization.
245 Currently not used. */
246
247 int ignore_warnings;
248
249 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
250
251 /* Hook run after GC has finished. */
252
253 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
254
255 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
256 EMACS_INT gcs_done; /* accumulated GCs */
257
258 static void mark_buffer P_ ((Lisp_Object));
259 extern void mark_kboards P_ ((void));
260 extern void mark_backtrace P_ ((void));
261 static void gc_sweep P_ ((void));
262 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
263 static void mark_face_cache P_ ((struct face_cache *));
264
265 #ifdef HAVE_WINDOW_SYSTEM
266 static void mark_image P_ ((struct image *));
267 static void mark_image_cache P_ ((struct frame *));
268 #endif /* HAVE_WINDOW_SYSTEM */
269
270 static struct Lisp_String *allocate_string P_ ((void));
271 static void compact_small_strings P_ ((void));
272 static void free_large_strings P_ ((void));
273 static void sweep_strings P_ ((void));
274
275 extern int message_enable_multibyte;
276
277 /* When scanning the C stack for live Lisp objects, Emacs keeps track
278 of what memory allocated via lisp_malloc is intended for what
279 purpose. This enumeration specifies the type of memory. */
280
281 enum mem_type
282 {
283 MEM_TYPE_NON_LISP,
284 MEM_TYPE_BUFFER,
285 MEM_TYPE_CONS,
286 MEM_TYPE_STRING,
287 MEM_TYPE_MISC,
288 MEM_TYPE_SYMBOL,
289 MEM_TYPE_FLOAT,
290 /* Keep the following vector-like types together, with
291 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
292 first. Or change the code of live_vector_p, for instance. */
293 MEM_TYPE_VECTOR,
294 MEM_TYPE_PROCESS,
295 MEM_TYPE_HASH_TABLE,
296 MEM_TYPE_FRAME,
297 MEM_TYPE_WINDOW
298 };
299
300 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
301
302 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
303 #include <stdio.h> /* For fprintf. */
304 #endif
305
306 /* A unique object in pure space used to make some Lisp objects
307 on free lists recognizable in O(1). */
308
309 Lisp_Object Vdead;
310
311 #ifdef GC_MALLOC_CHECK
312
313 enum mem_type allocated_mem_type;
314 int dont_register_blocks;
315
316 #endif /* GC_MALLOC_CHECK */
317
318 /* A node in the red-black tree describing allocated memory containing
319 Lisp data. Each such block is recorded with its start and end
320 address when it is allocated, and removed from the tree when it
321 is freed.
322
323 A red-black tree is a balanced binary tree with the following
324 properties:
325
326 1. Every node is either red or black.
327 2. Every leaf is black.
328 3. If a node is red, then both of its children are black.
329 4. Every simple path from a node to a descendant leaf contains
330 the same number of black nodes.
331 5. The root is always black.
332
333 When nodes are inserted into the tree, or deleted from the tree,
334 the tree is "fixed" so that these properties are always true.
335
336 A red-black tree with N internal nodes has height at most 2
337 log(N+1). Searches, insertions and deletions are done in O(log N).
338 Please see a text book about data structures for a detailed
339 description of red-black trees. Any book worth its salt should
340 describe them. */
341
342 struct mem_node
343 {
344 /* Children of this node. These pointers are never NULL. When there
345 is no child, the value is MEM_NIL, which points to a dummy node. */
346 struct mem_node *left, *right;
347
348 /* The parent of this node. In the root node, this is NULL. */
349 struct mem_node *parent;
350
351 /* Start and end of allocated region. */
352 void *start, *end;
353
354 /* Node color. */
355 enum {MEM_BLACK, MEM_RED} color;
356
357 /* Memory type. */
358 enum mem_type type;
359 };
360
361 /* Base address of stack. Set in main. */
362
363 Lisp_Object *stack_base;
364
365 /* Root of the tree describing allocated Lisp memory. */
366
367 static struct mem_node *mem_root;
368
369 /* Lowest and highest known address in the heap. */
370
371 static void *min_heap_address, *max_heap_address;
372
373 /* Sentinel node of the tree. */
374
375 static struct mem_node mem_z;
376 #define MEM_NIL &mem_z
377
378 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
379 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
380 static void lisp_free P_ ((POINTER_TYPE *));
381 static void mark_stack P_ ((void));
382 static int live_vector_p P_ ((struct mem_node *, void *));
383 static int live_buffer_p P_ ((struct mem_node *, void *));
384 static int live_string_p P_ ((struct mem_node *, void *));
385 static int live_cons_p P_ ((struct mem_node *, void *));
386 static int live_symbol_p P_ ((struct mem_node *, void *));
387 static int live_float_p P_ ((struct mem_node *, void *));
388 static int live_misc_p P_ ((struct mem_node *, void *));
389 static void mark_maybe_object P_ ((Lisp_Object));
390 static void mark_memory P_ ((void *, void *));
391 static void mem_init P_ ((void));
392 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
393 static void mem_insert_fixup P_ ((struct mem_node *));
394 static void mem_rotate_left P_ ((struct mem_node *));
395 static void mem_rotate_right P_ ((struct mem_node *));
396 static void mem_delete P_ ((struct mem_node *));
397 static void mem_delete_fixup P_ ((struct mem_node *));
398 static INLINE struct mem_node *mem_find P_ ((void *));
399
400 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
401 static void check_gcpros P_ ((void));
402 #endif
403
404 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
405
406 /* Recording what needs to be marked for gc. */
407
408 struct gcpro *gcprolist;
409
410 /* Addresses of staticpro'd variables. Initialize it to a nonzero
411 value; otherwise some compilers put it into BSS. */
412
413 #define NSTATICS 1280
414 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
415
416 /* Index of next unused slot in staticvec. */
417
418 int staticidx = 0;
419
420 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
421
422
423 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
424 ALIGNMENT must be a power of 2. */
425
426 #define ALIGN(ptr, ALIGNMENT) \
427 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
428 & ~((ALIGNMENT) - 1)))
429
430
431 \f
432 /************************************************************************
433 Malloc
434 ************************************************************************/
435
436 /* Function malloc calls this if it finds we are near exhausting storage. */
437
438 void
439 malloc_warning (str)
440 char *str;
441 {
442 pending_malloc_warning = str;
443 }
444
445
446 /* Display an already-pending malloc warning. */
447
448 void
449 display_malloc_warning ()
450 {
451 call3 (intern ("display-warning"),
452 intern ("alloc"),
453 build_string (pending_malloc_warning),
454 intern ("emergency"));
455 pending_malloc_warning = 0;
456 }
457
458
459 #ifdef DOUG_LEA_MALLOC
460 # define BYTES_USED (mallinfo ().arena)
461 #else
462 # define BYTES_USED _bytes_used
463 #endif
464
465
466 /* Called if malloc returns zero. */
467
468 void
469 memory_full ()
470 {
471 Vmemory_full = Qt;
472
473 #ifndef SYSTEM_MALLOC
474 bytes_used_when_full = BYTES_USED;
475 #endif
476
477 /* The first time we get here, free the spare memory. */
478 if (spare_memory)
479 {
480 free (spare_memory);
481 spare_memory = 0;
482 }
483
484 /* This used to call error, but if we've run out of memory, we could
485 get infinite recursion trying to build the string. */
486 while (1)
487 Fsignal (Qnil, Vmemory_signal_data);
488 }
489
490
491 /* Called if we can't allocate relocatable space for a buffer. */
492
493 void
494 buffer_memory_full ()
495 {
496 /* If buffers use the relocating allocator, no need to free
497 spare_memory, because we may have plenty of malloc space left
498 that we could get, and if we don't, the malloc that fails will
499 itself cause spare_memory to be freed. If buffers don't use the
500 relocating allocator, treat this like any other failing
501 malloc. */
502
503 #ifndef REL_ALLOC
504 memory_full ();
505 #endif
506
507 Vmemory_full = Qt;
508
509 /* This used to call error, but if we've run out of memory, we could
510 get infinite recursion trying to build the string. */
511 while (1)
512 Fsignal (Qnil, Vmemory_signal_data);
513 }
514
515
516 /* Like malloc but check for no memory and block interrupt input.. */
517
518 POINTER_TYPE *
519 xmalloc (size)
520 size_t size;
521 {
522 register POINTER_TYPE *val;
523
524 BLOCK_INPUT;
525 val = (POINTER_TYPE *) malloc (size);
526 UNBLOCK_INPUT;
527
528 if (!val && size)
529 memory_full ();
530 return val;
531 }
532
533
534 /* Like realloc but check for no memory and block interrupt input.. */
535
536 POINTER_TYPE *
537 xrealloc (block, size)
538 POINTER_TYPE *block;
539 size_t size;
540 {
541 register POINTER_TYPE *val;
542
543 BLOCK_INPUT;
544 /* We must call malloc explicitly when BLOCK is 0, since some
545 reallocs don't do this. */
546 if (! block)
547 val = (POINTER_TYPE *) malloc (size);
548 else
549 val = (POINTER_TYPE *) realloc (block, size);
550 UNBLOCK_INPUT;
551
552 if (!val && size) memory_full ();
553 return val;
554 }
555
556
557 /* Like free but block interrupt input. */
558
559 void
560 xfree (block)
561 POINTER_TYPE *block;
562 {
563 BLOCK_INPUT;
564 free (block);
565 UNBLOCK_INPUT;
566 }
567
568
569 /* Like strdup, but uses xmalloc. */
570
571 char *
572 xstrdup (s)
573 const char *s;
574 {
575 size_t len = strlen (s) + 1;
576 char *p = (char *) xmalloc (len);
577 bcopy (s, p, len);
578 return p;
579 }
580
581
582 /* Unwind for SAFE_ALLOCA */
583
584 Lisp_Object
585 safe_alloca_unwind (arg)
586 Lisp_Object arg;
587 {
588 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
589
590 p->dogc = 0;
591 xfree (p->pointer);
592 p->pointer = 0;
593 free_misc (arg);
594 return Qnil;
595 }
596
597
598 /* Like malloc but used for allocating Lisp data. NBYTES is the
599 number of bytes to allocate, TYPE describes the intended use of the
600 allcated memory block (for strings, for conses, ...). */
601
602 static void *lisp_malloc_loser;
603
604 static POINTER_TYPE *
605 lisp_malloc (nbytes, type)
606 size_t nbytes;
607 enum mem_type type;
608 {
609 register void *val;
610
611 BLOCK_INPUT;
612
613 #ifdef GC_MALLOC_CHECK
614 allocated_mem_type = type;
615 #endif
616
617 val = (void *) malloc (nbytes);
618
619 #ifndef USE_LSB_TAG
620 /* If the memory just allocated cannot be addressed thru a Lisp
621 object's pointer, and it needs to be,
622 that's equivalent to running out of memory. */
623 if (val && type != MEM_TYPE_NON_LISP)
624 {
625 Lisp_Object tem;
626 XSETCONS (tem, (char *) val + nbytes - 1);
627 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
628 {
629 lisp_malloc_loser = val;
630 free (val);
631 val = 0;
632 }
633 }
634 #endif
635
636 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
637 if (val && type != MEM_TYPE_NON_LISP)
638 mem_insert (val, (char *) val + nbytes, type);
639 #endif
640
641 UNBLOCK_INPUT;
642 if (!val && nbytes)
643 memory_full ();
644 return val;
645 }
646
647 /* Free BLOCK. This must be called to free memory allocated with a
648 call to lisp_malloc. */
649
650 static void
651 lisp_free (block)
652 POINTER_TYPE *block;
653 {
654 BLOCK_INPUT;
655 free (block);
656 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
657 mem_delete (mem_find (block));
658 #endif
659 UNBLOCK_INPUT;
660 }
661
662 /* Allocation of aligned blocks of memory to store Lisp data. */
663 /* The entry point is lisp_align_malloc which returns blocks of at most */
664 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
665
666
667 /* BLOCK_ALIGN has to be a power of 2. */
668 #define BLOCK_ALIGN (1 << 10)
669
670 /* Padding to leave at the end of a malloc'd block. This is to give
671 malloc a chance to minimize the amount of memory wasted to alignment.
672 It should be tuned to the particular malloc library used.
673 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
674 posix_memalign on the other hand would ideally prefer a value of 4
675 because otherwise, there's 1020 bytes wasted between each ablocks.
676 But testing shows that those 1020 will most of the time be efficiently
677 used by malloc to place other objects, so a value of 0 is still preferable
678 unless you have a lot of cons&floats and virtually nothing else. */
679 #define BLOCK_PADDING 0
680 #define BLOCK_BYTES \
681 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
682
683 /* Internal data structures and constants. */
684
685 #define ABLOCKS_SIZE 16
686
687 /* An aligned block of memory. */
688 struct ablock
689 {
690 union
691 {
692 char payload[BLOCK_BYTES];
693 struct ablock *next_free;
694 } x;
695 /* `abase' is the aligned base of the ablocks. */
696 /* It is overloaded to hold the virtual `busy' field that counts
697 the number of used ablock in the parent ablocks.
698 The first ablock has the `busy' field, the others have the `abase'
699 field. To tell the difference, we assume that pointers will have
700 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
701 is used to tell whether the real base of the parent ablocks is `abase'
702 (if not, the word before the first ablock holds a pointer to the
703 real base). */
704 struct ablocks *abase;
705 /* The padding of all but the last ablock is unused. The padding of
706 the last ablock in an ablocks is not allocated. */
707 #if BLOCK_PADDING
708 char padding[BLOCK_PADDING];
709 #endif
710 };
711
712 /* A bunch of consecutive aligned blocks. */
713 struct ablocks
714 {
715 struct ablock blocks[ABLOCKS_SIZE];
716 };
717
718 /* Size of the block requested from malloc or memalign. */
719 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
720
721 #define ABLOCK_ABASE(block) \
722 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
723 ? (struct ablocks *)(block) \
724 : (block)->abase)
725
726 /* Virtual `busy' field. */
727 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
728
729 /* Pointer to the (not necessarily aligned) malloc block. */
730 #ifdef HAVE_POSIX_MEMALIGN
731 #define ABLOCKS_BASE(abase) (abase)
732 #else
733 #define ABLOCKS_BASE(abase) \
734 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
735 #endif
736
737 /* The list of free ablock. */
738 static struct ablock *free_ablock;
739
740 /* Allocate an aligned block of nbytes.
741 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
742 smaller or equal to BLOCK_BYTES. */
743 static POINTER_TYPE *
744 lisp_align_malloc (nbytes, type)
745 size_t nbytes;
746 enum mem_type type;
747 {
748 void *base, *val;
749 struct ablocks *abase;
750
751 eassert (nbytes <= BLOCK_BYTES);
752
753 BLOCK_INPUT;
754
755 #ifdef GC_MALLOC_CHECK
756 allocated_mem_type = type;
757 #endif
758
759 if (!free_ablock)
760 {
761 int i;
762 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
763
764 #ifdef DOUG_LEA_MALLOC
765 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
766 because mapped region contents are not preserved in
767 a dumped Emacs. */
768 mallopt (M_MMAP_MAX, 0);
769 #endif
770
771 #ifdef HAVE_POSIX_MEMALIGN
772 {
773 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
774 if (err)
775 base = NULL;
776 abase = base;
777 }
778 #else
779 base = malloc (ABLOCKS_BYTES);
780 abase = ALIGN (base, BLOCK_ALIGN);
781 #endif
782
783 if (base == 0)
784 {
785 UNBLOCK_INPUT;
786 memory_full ();
787 }
788
789 aligned = (base == abase);
790 if (!aligned)
791 ((void**)abase)[-1] = base;
792
793 #ifdef DOUG_LEA_MALLOC
794 /* Back to a reasonable maximum of mmap'ed areas. */
795 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
796 #endif
797
798 #ifndef USE_LSB_TAG
799 /* If the memory just allocated cannot be addressed thru a Lisp
800 object's pointer, and it needs to be, that's equivalent to
801 running out of memory. */
802 if (type != MEM_TYPE_NON_LISP)
803 {
804 Lisp_Object tem;
805 char *end = (char *) base + ABLOCKS_BYTES - 1;
806 XSETCONS (tem, end);
807 if ((char *) XCONS (tem) != end)
808 {
809 lisp_malloc_loser = base;
810 free (base);
811 UNBLOCK_INPUT;
812 memory_full ();
813 }
814 }
815 #endif
816
817 /* Initialize the blocks and put them on the free list.
818 Is `base' was not properly aligned, we can't use the last block. */
819 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
820 {
821 abase->blocks[i].abase = abase;
822 abase->blocks[i].x.next_free = free_ablock;
823 free_ablock = &abase->blocks[i];
824 }
825 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
826
827 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
828 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
829 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
830 eassert (ABLOCKS_BASE (abase) == base);
831 eassert (aligned == (long) ABLOCKS_BUSY (abase));
832 }
833
834 abase = ABLOCK_ABASE (free_ablock);
835 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
836 val = free_ablock;
837 free_ablock = free_ablock->x.next_free;
838
839 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
840 if (val && type != MEM_TYPE_NON_LISP)
841 mem_insert (val, (char *) val + nbytes, type);
842 #endif
843
844 UNBLOCK_INPUT;
845 if (!val && nbytes)
846 memory_full ();
847
848 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
849 return val;
850 }
851
852 static void
853 lisp_align_free (block)
854 POINTER_TYPE *block;
855 {
856 struct ablock *ablock = block;
857 struct ablocks *abase = ABLOCK_ABASE (ablock);
858
859 BLOCK_INPUT;
860 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
861 mem_delete (mem_find (block));
862 #endif
863 /* Put on free list. */
864 ablock->x.next_free = free_ablock;
865 free_ablock = ablock;
866 /* Update busy count. */
867 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
868
869 if (2 > (long) ABLOCKS_BUSY (abase))
870 { /* All the blocks are free. */
871 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
872 struct ablock **tem = &free_ablock;
873 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
874
875 while (*tem)
876 {
877 if (*tem >= (struct ablock *) abase && *tem < atop)
878 {
879 i++;
880 *tem = (*tem)->x.next_free;
881 }
882 else
883 tem = &(*tem)->x.next_free;
884 }
885 eassert ((aligned & 1) == aligned);
886 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
887 free (ABLOCKS_BASE (abase));
888 }
889 UNBLOCK_INPUT;
890 }
891
892 /* Return a new buffer structure allocated from the heap with
893 a call to lisp_malloc. */
894
895 struct buffer *
896 allocate_buffer ()
897 {
898 struct buffer *b
899 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
900 MEM_TYPE_BUFFER);
901 return b;
902 }
903
904 \f
905 /* Arranging to disable input signals while we're in malloc.
906
907 This only works with GNU malloc. To help out systems which can't
908 use GNU malloc, all the calls to malloc, realloc, and free
909 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
910 pairs; unfortunately, we have no idea what C library functions
911 might call malloc, so we can't really protect them unless you're
912 using GNU malloc. Fortunately, most of the major operating systems
913 can use GNU malloc. */
914
915 #ifndef SYSTEM_MALLOC
916 #ifndef DOUG_LEA_MALLOC
917 extern void * (*__malloc_hook) P_ ((size_t));
918 extern void * (*__realloc_hook) P_ ((void *, size_t));
919 extern void (*__free_hook) P_ ((void *));
920 /* Else declared in malloc.h, perhaps with an extra arg. */
921 #endif /* DOUG_LEA_MALLOC */
922 static void * (*old_malloc_hook) ();
923 static void * (*old_realloc_hook) ();
924 static void (*old_free_hook) ();
925
926 /* This function is used as the hook for free to call. */
927
928 static void
929 emacs_blocked_free (ptr)
930 void *ptr;
931 {
932 BLOCK_INPUT;
933
934 #ifdef GC_MALLOC_CHECK
935 if (ptr)
936 {
937 struct mem_node *m;
938
939 m = mem_find (ptr);
940 if (m == MEM_NIL || m->start != ptr)
941 {
942 fprintf (stderr,
943 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
944 abort ();
945 }
946 else
947 {
948 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
949 mem_delete (m);
950 }
951 }
952 #endif /* GC_MALLOC_CHECK */
953
954 __free_hook = old_free_hook;
955 free (ptr);
956
957 /* If we released our reserve (due to running out of memory),
958 and we have a fair amount free once again,
959 try to set aside another reserve in case we run out once more. */
960 if (spare_memory == 0
961 /* Verify there is enough space that even with the malloc
962 hysteresis this call won't run out again.
963 The code here is correct as long as SPARE_MEMORY
964 is substantially larger than the block size malloc uses. */
965 && (bytes_used_when_full
966 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
967 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
968
969 __free_hook = emacs_blocked_free;
970 UNBLOCK_INPUT;
971 }
972
973
974 /* If we released our reserve (due to running out of memory),
975 and we have a fair amount free once again,
976 try to set aside another reserve in case we run out once more.
977
978 This is called when a relocatable block is freed in ralloc.c. */
979
980 void
981 refill_memory_reserve ()
982 {
983 if (spare_memory == 0)
984 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
985 }
986
987
988 /* This function is the malloc hook that Emacs uses. */
989
990 static void *
991 emacs_blocked_malloc (size)
992 size_t size;
993 {
994 void *value;
995
996 BLOCK_INPUT;
997 __malloc_hook = old_malloc_hook;
998 #ifdef DOUG_LEA_MALLOC
999 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1000 #else
1001 __malloc_extra_blocks = malloc_hysteresis;
1002 #endif
1003
1004 value = (void *) malloc (size);
1005
1006 #ifdef GC_MALLOC_CHECK
1007 {
1008 struct mem_node *m = mem_find (value);
1009 if (m != MEM_NIL)
1010 {
1011 fprintf (stderr, "Malloc returned %p which is already in use\n",
1012 value);
1013 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1014 m->start, m->end, (char *) m->end - (char *) m->start,
1015 m->type);
1016 abort ();
1017 }
1018
1019 if (!dont_register_blocks)
1020 {
1021 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1022 allocated_mem_type = MEM_TYPE_NON_LISP;
1023 }
1024 }
1025 #endif /* GC_MALLOC_CHECK */
1026
1027 __malloc_hook = emacs_blocked_malloc;
1028 UNBLOCK_INPUT;
1029
1030 /* fprintf (stderr, "%p malloc\n", value); */
1031 return value;
1032 }
1033
1034
1035 /* This function is the realloc hook that Emacs uses. */
1036
1037 static void *
1038 emacs_blocked_realloc (ptr, size)
1039 void *ptr;
1040 size_t size;
1041 {
1042 void *value;
1043
1044 BLOCK_INPUT;
1045 __realloc_hook = old_realloc_hook;
1046
1047 #ifdef GC_MALLOC_CHECK
1048 if (ptr)
1049 {
1050 struct mem_node *m = mem_find (ptr);
1051 if (m == MEM_NIL || m->start != ptr)
1052 {
1053 fprintf (stderr,
1054 "Realloc of %p which wasn't allocated with malloc\n",
1055 ptr);
1056 abort ();
1057 }
1058
1059 mem_delete (m);
1060 }
1061
1062 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1063
1064 /* Prevent malloc from registering blocks. */
1065 dont_register_blocks = 1;
1066 #endif /* GC_MALLOC_CHECK */
1067
1068 value = (void *) realloc (ptr, size);
1069
1070 #ifdef GC_MALLOC_CHECK
1071 dont_register_blocks = 0;
1072
1073 {
1074 struct mem_node *m = mem_find (value);
1075 if (m != MEM_NIL)
1076 {
1077 fprintf (stderr, "Realloc returns memory that is already in use\n");
1078 abort ();
1079 }
1080
1081 /* Can't handle zero size regions in the red-black tree. */
1082 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1083 }
1084
1085 /* fprintf (stderr, "%p <- realloc\n", value); */
1086 #endif /* GC_MALLOC_CHECK */
1087
1088 __realloc_hook = emacs_blocked_realloc;
1089 UNBLOCK_INPUT;
1090
1091 return value;
1092 }
1093
1094
1095 /* Called from main to set up malloc to use our hooks. */
1096
1097 void
1098 uninterrupt_malloc ()
1099 {
1100 if (__free_hook != emacs_blocked_free)
1101 old_free_hook = __free_hook;
1102 __free_hook = emacs_blocked_free;
1103
1104 if (__malloc_hook != emacs_blocked_malloc)
1105 old_malloc_hook = __malloc_hook;
1106 __malloc_hook = emacs_blocked_malloc;
1107
1108 if (__realloc_hook != emacs_blocked_realloc)
1109 old_realloc_hook = __realloc_hook;
1110 __realloc_hook = emacs_blocked_realloc;
1111 }
1112
1113 #endif /* not SYSTEM_MALLOC */
1114
1115
1116 \f
1117 /***********************************************************************
1118 Interval Allocation
1119 ***********************************************************************/
1120
1121 /* Number of intervals allocated in an interval_block structure.
1122 The 1020 is 1024 minus malloc overhead. */
1123
1124 #define INTERVAL_BLOCK_SIZE \
1125 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1126
1127 /* Intervals are allocated in chunks in form of an interval_block
1128 structure. */
1129
1130 struct interval_block
1131 {
1132 /* Place `intervals' first, to preserve alignment. */
1133 struct interval intervals[INTERVAL_BLOCK_SIZE];
1134 struct interval_block *next;
1135 };
1136
1137 /* Current interval block. Its `next' pointer points to older
1138 blocks. */
1139
1140 struct interval_block *interval_block;
1141
1142 /* Index in interval_block above of the next unused interval
1143 structure. */
1144
1145 static int interval_block_index;
1146
1147 /* Number of free and live intervals. */
1148
1149 static int total_free_intervals, total_intervals;
1150
1151 /* List of free intervals. */
1152
1153 INTERVAL interval_free_list;
1154
1155 /* Total number of interval blocks now in use. */
1156
1157 int n_interval_blocks;
1158
1159
1160 /* Initialize interval allocation. */
1161
1162 static void
1163 init_intervals ()
1164 {
1165 interval_block = NULL;
1166 interval_block_index = INTERVAL_BLOCK_SIZE;
1167 interval_free_list = 0;
1168 n_interval_blocks = 0;
1169 }
1170
1171
1172 /* Return a new interval. */
1173
1174 INTERVAL
1175 make_interval ()
1176 {
1177 INTERVAL val;
1178
1179 if (interval_free_list)
1180 {
1181 val = interval_free_list;
1182 interval_free_list = INTERVAL_PARENT (interval_free_list);
1183 }
1184 else
1185 {
1186 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1187 {
1188 register struct interval_block *newi;
1189
1190 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1191 MEM_TYPE_NON_LISP);
1192
1193 newi->next = interval_block;
1194 interval_block = newi;
1195 interval_block_index = 0;
1196 n_interval_blocks++;
1197 }
1198 val = &interval_block->intervals[interval_block_index++];
1199 }
1200 consing_since_gc += sizeof (struct interval);
1201 intervals_consed++;
1202 RESET_INTERVAL (val);
1203 val->gcmarkbit = 0;
1204 return val;
1205 }
1206
1207
1208 /* Mark Lisp objects in interval I. */
1209
1210 static void
1211 mark_interval (i, dummy)
1212 register INTERVAL i;
1213 Lisp_Object dummy;
1214 {
1215 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1216 i->gcmarkbit = 1;
1217 mark_object (i->plist);
1218 }
1219
1220
1221 /* Mark the interval tree rooted in TREE. Don't call this directly;
1222 use the macro MARK_INTERVAL_TREE instead. */
1223
1224 static void
1225 mark_interval_tree (tree)
1226 register INTERVAL tree;
1227 {
1228 /* No need to test if this tree has been marked already; this
1229 function is always called through the MARK_INTERVAL_TREE macro,
1230 which takes care of that. */
1231
1232 traverse_intervals_noorder (tree, mark_interval, Qnil);
1233 }
1234
1235
1236 /* Mark the interval tree rooted in I. */
1237
1238 #define MARK_INTERVAL_TREE(i) \
1239 do { \
1240 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1241 mark_interval_tree (i); \
1242 } while (0)
1243
1244
1245 #define UNMARK_BALANCE_INTERVALS(i) \
1246 do { \
1247 if (! NULL_INTERVAL_P (i)) \
1248 (i) = balance_intervals (i); \
1249 } while (0)
1250
1251 \f
1252 /* Number support. If NO_UNION_TYPE isn't in effect, we
1253 can't create number objects in macros. */
1254 #ifndef make_number
1255 Lisp_Object
1256 make_number (n)
1257 int n;
1258 {
1259 Lisp_Object obj;
1260 obj.s.val = n;
1261 obj.s.type = Lisp_Int;
1262 return obj;
1263 }
1264 #endif
1265 \f
1266 /***********************************************************************
1267 String Allocation
1268 ***********************************************************************/
1269
1270 /* Lisp_Strings are allocated in string_block structures. When a new
1271 string_block is allocated, all the Lisp_Strings it contains are
1272 added to a free-list string_free_list. When a new Lisp_String is
1273 needed, it is taken from that list. During the sweep phase of GC,
1274 string_blocks that are entirely free are freed, except two which
1275 we keep.
1276
1277 String data is allocated from sblock structures. Strings larger
1278 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1279 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1280
1281 Sblocks consist internally of sdata structures, one for each
1282 Lisp_String. The sdata structure points to the Lisp_String it
1283 belongs to. The Lisp_String points back to the `u.data' member of
1284 its sdata structure.
1285
1286 When a Lisp_String is freed during GC, it is put back on
1287 string_free_list, and its `data' member and its sdata's `string'
1288 pointer is set to null. The size of the string is recorded in the
1289 `u.nbytes' member of the sdata. So, sdata structures that are no
1290 longer used, can be easily recognized, and it's easy to compact the
1291 sblocks of small strings which we do in compact_small_strings. */
1292
1293 /* Size in bytes of an sblock structure used for small strings. This
1294 is 8192 minus malloc overhead. */
1295
1296 #define SBLOCK_SIZE 8188
1297
1298 /* Strings larger than this are considered large strings. String data
1299 for large strings is allocated from individual sblocks. */
1300
1301 #define LARGE_STRING_BYTES 1024
1302
1303 /* Structure describing string memory sub-allocated from an sblock.
1304 This is where the contents of Lisp strings are stored. */
1305
1306 struct sdata
1307 {
1308 /* Back-pointer to the string this sdata belongs to. If null, this
1309 structure is free, and the NBYTES member of the union below
1310 contains the string's byte size (the same value that STRING_BYTES
1311 would return if STRING were non-null). If non-null, STRING_BYTES
1312 (STRING) is the size of the data, and DATA contains the string's
1313 contents. */
1314 struct Lisp_String *string;
1315
1316 #ifdef GC_CHECK_STRING_BYTES
1317
1318 EMACS_INT nbytes;
1319 unsigned char data[1];
1320
1321 #define SDATA_NBYTES(S) (S)->nbytes
1322 #define SDATA_DATA(S) (S)->data
1323
1324 #else /* not GC_CHECK_STRING_BYTES */
1325
1326 union
1327 {
1328 /* When STRING in non-null. */
1329 unsigned char data[1];
1330
1331 /* When STRING is null. */
1332 EMACS_INT nbytes;
1333 } u;
1334
1335
1336 #define SDATA_NBYTES(S) (S)->u.nbytes
1337 #define SDATA_DATA(S) (S)->u.data
1338
1339 #endif /* not GC_CHECK_STRING_BYTES */
1340 };
1341
1342
1343 /* Structure describing a block of memory which is sub-allocated to
1344 obtain string data memory for strings. Blocks for small strings
1345 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1346 as large as needed. */
1347
1348 struct sblock
1349 {
1350 /* Next in list. */
1351 struct sblock *next;
1352
1353 /* Pointer to the next free sdata block. This points past the end
1354 of the sblock if there isn't any space left in this block. */
1355 struct sdata *next_free;
1356
1357 /* Start of data. */
1358 struct sdata first_data;
1359 };
1360
1361 /* Number of Lisp strings in a string_block structure. The 1020 is
1362 1024 minus malloc overhead. */
1363
1364 #define STRING_BLOCK_SIZE \
1365 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1366
1367 /* Structure describing a block from which Lisp_String structures
1368 are allocated. */
1369
1370 struct string_block
1371 {
1372 /* Place `strings' first, to preserve alignment. */
1373 struct Lisp_String strings[STRING_BLOCK_SIZE];
1374 struct string_block *next;
1375 };
1376
1377 /* Head and tail of the list of sblock structures holding Lisp string
1378 data. We always allocate from current_sblock. The NEXT pointers
1379 in the sblock structures go from oldest_sblock to current_sblock. */
1380
1381 static struct sblock *oldest_sblock, *current_sblock;
1382
1383 /* List of sblocks for large strings. */
1384
1385 static struct sblock *large_sblocks;
1386
1387 /* List of string_block structures, and how many there are. */
1388
1389 static struct string_block *string_blocks;
1390 static int n_string_blocks;
1391
1392 /* Free-list of Lisp_Strings. */
1393
1394 static struct Lisp_String *string_free_list;
1395
1396 /* Number of live and free Lisp_Strings. */
1397
1398 static int total_strings, total_free_strings;
1399
1400 /* Number of bytes used by live strings. */
1401
1402 static int total_string_size;
1403
1404 /* Given a pointer to a Lisp_String S which is on the free-list
1405 string_free_list, return a pointer to its successor in the
1406 free-list. */
1407
1408 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1409
1410 /* Return a pointer to the sdata structure belonging to Lisp string S.
1411 S must be live, i.e. S->data must not be null. S->data is actually
1412 a pointer to the `u.data' member of its sdata structure; the
1413 structure starts at a constant offset in front of that. */
1414
1415 #ifdef GC_CHECK_STRING_BYTES
1416
1417 #define SDATA_OF_STRING(S) \
1418 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1419 - sizeof (EMACS_INT)))
1420
1421 #else /* not GC_CHECK_STRING_BYTES */
1422
1423 #define SDATA_OF_STRING(S) \
1424 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1425
1426 #endif /* not GC_CHECK_STRING_BYTES */
1427
1428 /* Value is the size of an sdata structure large enough to hold NBYTES
1429 bytes of string data. The value returned includes a terminating
1430 NUL byte, the size of the sdata structure, and padding. */
1431
1432 #ifdef GC_CHECK_STRING_BYTES
1433
1434 #define SDATA_SIZE(NBYTES) \
1435 ((sizeof (struct Lisp_String *) \
1436 + (NBYTES) + 1 \
1437 + sizeof (EMACS_INT) \
1438 + sizeof (EMACS_INT) - 1) \
1439 & ~(sizeof (EMACS_INT) - 1))
1440
1441 #else /* not GC_CHECK_STRING_BYTES */
1442
1443 #define SDATA_SIZE(NBYTES) \
1444 ((sizeof (struct Lisp_String *) \
1445 + (NBYTES) + 1 \
1446 + sizeof (EMACS_INT) - 1) \
1447 & ~(sizeof (EMACS_INT) - 1))
1448
1449 #endif /* not GC_CHECK_STRING_BYTES */
1450
1451 /* Initialize string allocation. Called from init_alloc_once. */
1452
1453 void
1454 init_strings ()
1455 {
1456 total_strings = total_free_strings = total_string_size = 0;
1457 oldest_sblock = current_sblock = large_sblocks = NULL;
1458 string_blocks = NULL;
1459 n_string_blocks = 0;
1460 string_free_list = NULL;
1461 }
1462
1463
1464 #ifdef GC_CHECK_STRING_BYTES
1465
1466 static int check_string_bytes_count;
1467
1468 void check_string_bytes P_ ((int));
1469 void check_sblock P_ ((struct sblock *));
1470
1471 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1472
1473
1474 /* Like GC_STRING_BYTES, but with debugging check. */
1475
1476 int
1477 string_bytes (s)
1478 struct Lisp_String *s;
1479 {
1480 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1481 if (!PURE_POINTER_P (s)
1482 && s->data
1483 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1484 abort ();
1485 return nbytes;
1486 }
1487
1488 /* Check validity of Lisp strings' string_bytes member in B. */
1489
1490 void
1491 check_sblock (b)
1492 struct sblock *b;
1493 {
1494 struct sdata *from, *end, *from_end;
1495
1496 end = b->next_free;
1497
1498 for (from = &b->first_data; from < end; from = from_end)
1499 {
1500 /* Compute the next FROM here because copying below may
1501 overwrite data we need to compute it. */
1502 int nbytes;
1503
1504 /* Check that the string size recorded in the string is the
1505 same as the one recorded in the sdata structure. */
1506 if (from->string)
1507 CHECK_STRING_BYTES (from->string);
1508
1509 if (from->string)
1510 nbytes = GC_STRING_BYTES (from->string);
1511 else
1512 nbytes = SDATA_NBYTES (from);
1513
1514 nbytes = SDATA_SIZE (nbytes);
1515 from_end = (struct sdata *) ((char *) from + nbytes);
1516 }
1517 }
1518
1519
1520 /* Check validity of Lisp strings' string_bytes member. ALL_P
1521 non-zero means check all strings, otherwise check only most
1522 recently allocated strings. Used for hunting a bug. */
1523
1524 void
1525 check_string_bytes (all_p)
1526 int all_p;
1527 {
1528 if (all_p)
1529 {
1530 struct sblock *b;
1531
1532 for (b = large_sblocks; b; b = b->next)
1533 {
1534 struct Lisp_String *s = b->first_data.string;
1535 if (s)
1536 CHECK_STRING_BYTES (s);
1537 }
1538
1539 for (b = oldest_sblock; b; b = b->next)
1540 check_sblock (b);
1541 }
1542 else
1543 check_sblock (current_sblock);
1544 }
1545
1546 #endif /* GC_CHECK_STRING_BYTES */
1547
1548
1549 /* Return a new Lisp_String. */
1550
1551 static struct Lisp_String *
1552 allocate_string ()
1553 {
1554 struct Lisp_String *s;
1555
1556 /* If the free-list is empty, allocate a new string_block, and
1557 add all the Lisp_Strings in it to the free-list. */
1558 if (string_free_list == NULL)
1559 {
1560 struct string_block *b;
1561 int i;
1562
1563 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1564 bzero (b, sizeof *b);
1565 b->next = string_blocks;
1566 string_blocks = b;
1567 ++n_string_blocks;
1568
1569 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1570 {
1571 s = b->strings + i;
1572 NEXT_FREE_LISP_STRING (s) = string_free_list;
1573 string_free_list = s;
1574 }
1575
1576 total_free_strings += STRING_BLOCK_SIZE;
1577 }
1578
1579 /* Pop a Lisp_String off the free-list. */
1580 s = string_free_list;
1581 string_free_list = NEXT_FREE_LISP_STRING (s);
1582
1583 /* Probably not strictly necessary, but play it safe. */
1584 bzero (s, sizeof *s);
1585
1586 --total_free_strings;
1587 ++total_strings;
1588 ++strings_consed;
1589 consing_since_gc += sizeof *s;
1590
1591 #ifdef GC_CHECK_STRING_BYTES
1592 if (!noninteractive
1593 #ifdef MAC_OS8
1594 && current_sblock
1595 #endif
1596 )
1597 {
1598 if (++check_string_bytes_count == 200)
1599 {
1600 check_string_bytes_count = 0;
1601 check_string_bytes (1);
1602 }
1603 else
1604 check_string_bytes (0);
1605 }
1606 #endif /* GC_CHECK_STRING_BYTES */
1607
1608 return s;
1609 }
1610
1611
1612 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1613 plus a NUL byte at the end. Allocate an sdata structure for S, and
1614 set S->data to its `u.data' member. Store a NUL byte at the end of
1615 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1616 S->data if it was initially non-null. */
1617
1618 void
1619 allocate_string_data (s, nchars, nbytes)
1620 struct Lisp_String *s;
1621 int nchars, nbytes;
1622 {
1623 struct sdata *data, *old_data;
1624 struct sblock *b;
1625 int needed, old_nbytes;
1626
1627 /* Determine the number of bytes needed to store NBYTES bytes
1628 of string data. */
1629 needed = SDATA_SIZE (nbytes);
1630
1631 if (nbytes > LARGE_STRING_BYTES)
1632 {
1633 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1634
1635 #ifdef DOUG_LEA_MALLOC
1636 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1637 because mapped region contents are not preserved in
1638 a dumped Emacs.
1639
1640 In case you think of allowing it in a dumped Emacs at the
1641 cost of not being able to re-dump, there's another reason:
1642 mmap'ed data typically have an address towards the top of the
1643 address space, which won't fit into an EMACS_INT (at least on
1644 32-bit systems with the current tagging scheme). --fx */
1645 mallopt (M_MMAP_MAX, 0);
1646 #endif
1647
1648 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
1649
1650 #ifdef DOUG_LEA_MALLOC
1651 /* Back to a reasonable maximum of mmap'ed areas. */
1652 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1653 #endif
1654
1655 b->next_free = &b->first_data;
1656 b->first_data.string = NULL;
1657 b->next = large_sblocks;
1658 large_sblocks = b;
1659 }
1660 else if (current_sblock == NULL
1661 || (((char *) current_sblock + SBLOCK_SIZE
1662 - (char *) current_sblock->next_free)
1663 < needed))
1664 {
1665 /* Not enough room in the current sblock. */
1666 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1667 b->next_free = &b->first_data;
1668 b->first_data.string = NULL;
1669 b->next = NULL;
1670
1671 if (current_sblock)
1672 current_sblock->next = b;
1673 else
1674 oldest_sblock = b;
1675 current_sblock = b;
1676 }
1677 else
1678 b = current_sblock;
1679
1680 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1681 old_nbytes = GC_STRING_BYTES (s);
1682
1683 data = b->next_free;
1684 data->string = s;
1685 s->data = SDATA_DATA (data);
1686 #ifdef GC_CHECK_STRING_BYTES
1687 SDATA_NBYTES (data) = nbytes;
1688 #endif
1689 s->size = nchars;
1690 s->size_byte = nbytes;
1691 s->data[nbytes] = '\0';
1692 b->next_free = (struct sdata *) ((char *) data + needed);
1693
1694 /* If S had already data assigned, mark that as free by setting its
1695 string back-pointer to null, and recording the size of the data
1696 in it. */
1697 if (old_data)
1698 {
1699 SDATA_NBYTES (old_data) = old_nbytes;
1700 old_data->string = NULL;
1701 }
1702
1703 consing_since_gc += needed;
1704 }
1705
1706
1707 /* Sweep and compact strings. */
1708
1709 static void
1710 sweep_strings ()
1711 {
1712 struct string_block *b, *next;
1713 struct string_block *live_blocks = NULL;
1714
1715 string_free_list = NULL;
1716 total_strings = total_free_strings = 0;
1717 total_string_size = 0;
1718
1719 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1720 for (b = string_blocks; b; b = next)
1721 {
1722 int i, nfree = 0;
1723 struct Lisp_String *free_list_before = string_free_list;
1724
1725 next = b->next;
1726
1727 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1728 {
1729 struct Lisp_String *s = b->strings + i;
1730
1731 if (s->data)
1732 {
1733 /* String was not on free-list before. */
1734 if (STRING_MARKED_P (s))
1735 {
1736 /* String is live; unmark it and its intervals. */
1737 UNMARK_STRING (s);
1738
1739 if (!NULL_INTERVAL_P (s->intervals))
1740 UNMARK_BALANCE_INTERVALS (s->intervals);
1741
1742 ++total_strings;
1743 total_string_size += STRING_BYTES (s);
1744 }
1745 else
1746 {
1747 /* String is dead. Put it on the free-list. */
1748 struct sdata *data = SDATA_OF_STRING (s);
1749
1750 /* Save the size of S in its sdata so that we know
1751 how large that is. Reset the sdata's string
1752 back-pointer so that we know it's free. */
1753 #ifdef GC_CHECK_STRING_BYTES
1754 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1755 abort ();
1756 #else
1757 data->u.nbytes = GC_STRING_BYTES (s);
1758 #endif
1759 data->string = NULL;
1760
1761 /* Reset the strings's `data' member so that we
1762 know it's free. */
1763 s->data = NULL;
1764
1765 /* Put the string on the free-list. */
1766 NEXT_FREE_LISP_STRING (s) = string_free_list;
1767 string_free_list = s;
1768 ++nfree;
1769 }
1770 }
1771 else
1772 {
1773 /* S was on the free-list before. Put it there again. */
1774 NEXT_FREE_LISP_STRING (s) = string_free_list;
1775 string_free_list = s;
1776 ++nfree;
1777 }
1778 }
1779
1780 /* Free blocks that contain free Lisp_Strings only, except
1781 the first two of them. */
1782 if (nfree == STRING_BLOCK_SIZE
1783 && total_free_strings > STRING_BLOCK_SIZE)
1784 {
1785 lisp_free (b);
1786 --n_string_blocks;
1787 string_free_list = free_list_before;
1788 }
1789 else
1790 {
1791 total_free_strings += nfree;
1792 b->next = live_blocks;
1793 live_blocks = b;
1794 }
1795 }
1796
1797 string_blocks = live_blocks;
1798 free_large_strings ();
1799 compact_small_strings ();
1800 }
1801
1802
1803 /* Free dead large strings. */
1804
1805 static void
1806 free_large_strings ()
1807 {
1808 struct sblock *b, *next;
1809 struct sblock *live_blocks = NULL;
1810
1811 for (b = large_sblocks; b; b = next)
1812 {
1813 next = b->next;
1814
1815 if (b->first_data.string == NULL)
1816 lisp_free (b);
1817 else
1818 {
1819 b->next = live_blocks;
1820 live_blocks = b;
1821 }
1822 }
1823
1824 large_sblocks = live_blocks;
1825 }
1826
1827
1828 /* Compact data of small strings. Free sblocks that don't contain
1829 data of live strings after compaction. */
1830
1831 static void
1832 compact_small_strings ()
1833 {
1834 struct sblock *b, *tb, *next;
1835 struct sdata *from, *to, *end, *tb_end;
1836 struct sdata *to_end, *from_end;
1837
1838 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1839 to, and TB_END is the end of TB. */
1840 tb = oldest_sblock;
1841 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1842 to = &tb->first_data;
1843
1844 /* Step through the blocks from the oldest to the youngest. We
1845 expect that old blocks will stabilize over time, so that less
1846 copying will happen this way. */
1847 for (b = oldest_sblock; b; b = b->next)
1848 {
1849 end = b->next_free;
1850 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1851
1852 for (from = &b->first_data; from < end; from = from_end)
1853 {
1854 /* Compute the next FROM here because copying below may
1855 overwrite data we need to compute it. */
1856 int nbytes;
1857
1858 #ifdef GC_CHECK_STRING_BYTES
1859 /* Check that the string size recorded in the string is the
1860 same as the one recorded in the sdata structure. */
1861 if (from->string
1862 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1863 abort ();
1864 #endif /* GC_CHECK_STRING_BYTES */
1865
1866 if (from->string)
1867 nbytes = GC_STRING_BYTES (from->string);
1868 else
1869 nbytes = SDATA_NBYTES (from);
1870
1871 nbytes = SDATA_SIZE (nbytes);
1872 from_end = (struct sdata *) ((char *) from + nbytes);
1873
1874 /* FROM->string non-null means it's alive. Copy its data. */
1875 if (from->string)
1876 {
1877 /* If TB is full, proceed with the next sblock. */
1878 to_end = (struct sdata *) ((char *) to + nbytes);
1879 if (to_end > tb_end)
1880 {
1881 tb->next_free = to;
1882 tb = tb->next;
1883 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1884 to = &tb->first_data;
1885 to_end = (struct sdata *) ((char *) to + nbytes);
1886 }
1887
1888 /* Copy, and update the string's `data' pointer. */
1889 if (from != to)
1890 {
1891 xassert (tb != b || to <= from);
1892 safe_bcopy ((char *) from, (char *) to, nbytes);
1893 to->string->data = SDATA_DATA (to);
1894 }
1895
1896 /* Advance past the sdata we copied to. */
1897 to = to_end;
1898 }
1899 }
1900 }
1901
1902 /* The rest of the sblocks following TB don't contain live data, so
1903 we can free them. */
1904 for (b = tb->next; b; b = next)
1905 {
1906 next = b->next;
1907 lisp_free (b);
1908 }
1909
1910 tb->next_free = to;
1911 tb->next = NULL;
1912 current_sblock = tb;
1913 }
1914
1915
1916 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1917 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1918 LENGTH must be an integer.
1919 INIT must be an integer that represents a character. */)
1920 (length, init)
1921 Lisp_Object length, init;
1922 {
1923 register Lisp_Object val;
1924 register unsigned char *p, *end;
1925 int c, nbytes;
1926
1927 CHECK_NATNUM (length);
1928 CHECK_NUMBER (init);
1929
1930 c = XINT (init);
1931 if (SINGLE_BYTE_CHAR_P (c))
1932 {
1933 nbytes = XINT (length);
1934 val = make_uninit_string (nbytes);
1935 p = SDATA (val);
1936 end = p + SCHARS (val);
1937 while (p != end)
1938 *p++ = c;
1939 }
1940 else
1941 {
1942 unsigned char str[MAX_MULTIBYTE_LENGTH];
1943 int len = CHAR_STRING (c, str);
1944
1945 nbytes = len * XINT (length);
1946 val = make_uninit_multibyte_string (XINT (length), nbytes);
1947 p = SDATA (val);
1948 end = p + nbytes;
1949 while (p != end)
1950 {
1951 bcopy (str, p, len);
1952 p += len;
1953 }
1954 }
1955
1956 *p = 0;
1957 return val;
1958 }
1959
1960
1961 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1962 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
1963 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1964 (length, init)
1965 Lisp_Object length, init;
1966 {
1967 register Lisp_Object val;
1968 struct Lisp_Bool_Vector *p;
1969 int real_init, i;
1970 int length_in_chars, length_in_elts, bits_per_value;
1971
1972 CHECK_NATNUM (length);
1973
1974 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
1975
1976 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1977 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
1978 / BOOL_VECTOR_BITS_PER_CHAR);
1979
1980 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1981 slot `size' of the struct Lisp_Bool_Vector. */
1982 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1983 p = XBOOL_VECTOR (val);
1984
1985 /* Get rid of any bits that would cause confusion. */
1986 p->vector_size = 0;
1987 XSETBOOL_VECTOR (val, p);
1988 p->size = XFASTINT (length);
1989
1990 real_init = (NILP (init) ? 0 : -1);
1991 for (i = 0; i < length_in_chars ; i++)
1992 p->data[i] = real_init;
1993
1994 /* Clear the extraneous bits in the last byte. */
1995 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
1996 XBOOL_VECTOR (val)->data[length_in_chars - 1]
1997 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
1998
1999 return val;
2000 }
2001
2002
2003 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2004 of characters from the contents. This string may be unibyte or
2005 multibyte, depending on the contents. */
2006
2007 Lisp_Object
2008 make_string (contents, nbytes)
2009 const char *contents;
2010 int nbytes;
2011 {
2012 register Lisp_Object val;
2013 int nchars, multibyte_nbytes;
2014
2015 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2016 if (nbytes == nchars || nbytes != multibyte_nbytes)
2017 /* CONTENTS contains no multibyte sequences or contains an invalid
2018 multibyte sequence. We must make unibyte string. */
2019 val = make_unibyte_string (contents, nbytes);
2020 else
2021 val = make_multibyte_string (contents, nchars, nbytes);
2022 return val;
2023 }
2024
2025
2026 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2027
2028 Lisp_Object
2029 make_unibyte_string (contents, length)
2030 const char *contents;
2031 int length;
2032 {
2033 register Lisp_Object val;
2034 val = make_uninit_string (length);
2035 bcopy (contents, SDATA (val), length);
2036 STRING_SET_UNIBYTE (val);
2037 return val;
2038 }
2039
2040
2041 /* Make a multibyte string from NCHARS characters occupying NBYTES
2042 bytes at CONTENTS. */
2043
2044 Lisp_Object
2045 make_multibyte_string (contents, nchars, nbytes)
2046 const char *contents;
2047 int nchars, nbytes;
2048 {
2049 register Lisp_Object val;
2050 val = make_uninit_multibyte_string (nchars, nbytes);
2051 bcopy (contents, SDATA (val), nbytes);
2052 return val;
2053 }
2054
2055
2056 /* Make a string from NCHARS characters occupying NBYTES bytes at
2057 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2058
2059 Lisp_Object
2060 make_string_from_bytes (contents, nchars, nbytes)
2061 const char *contents;
2062 int nchars, nbytes;
2063 {
2064 register Lisp_Object val;
2065 val = make_uninit_multibyte_string (nchars, nbytes);
2066 bcopy (contents, SDATA (val), nbytes);
2067 if (SBYTES (val) == SCHARS (val))
2068 STRING_SET_UNIBYTE (val);
2069 return val;
2070 }
2071
2072
2073 /* Make a string from NCHARS characters occupying NBYTES bytes at
2074 CONTENTS. The argument MULTIBYTE controls whether to label the
2075 string as multibyte. If NCHARS is negative, it counts the number of
2076 characters by itself. */
2077
2078 Lisp_Object
2079 make_specified_string (contents, nchars, nbytes, multibyte)
2080 const char *contents;
2081 int nchars, nbytes;
2082 int multibyte;
2083 {
2084 register Lisp_Object val;
2085
2086 if (nchars < 0)
2087 {
2088 if (multibyte)
2089 nchars = multibyte_chars_in_text (contents, nbytes);
2090 else
2091 nchars = nbytes;
2092 }
2093 val = make_uninit_multibyte_string (nchars, nbytes);
2094 bcopy (contents, SDATA (val), nbytes);
2095 if (!multibyte)
2096 STRING_SET_UNIBYTE (val);
2097 return val;
2098 }
2099
2100
2101 /* Make a string from the data at STR, treating it as multibyte if the
2102 data warrants. */
2103
2104 Lisp_Object
2105 build_string (str)
2106 const char *str;
2107 {
2108 return make_string (str, strlen (str));
2109 }
2110
2111
2112 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2113 occupying LENGTH bytes. */
2114
2115 Lisp_Object
2116 make_uninit_string (length)
2117 int length;
2118 {
2119 Lisp_Object val;
2120 val = make_uninit_multibyte_string (length, length);
2121 STRING_SET_UNIBYTE (val);
2122 return val;
2123 }
2124
2125
2126 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2127 which occupy NBYTES bytes. */
2128
2129 Lisp_Object
2130 make_uninit_multibyte_string (nchars, nbytes)
2131 int nchars, nbytes;
2132 {
2133 Lisp_Object string;
2134 struct Lisp_String *s;
2135
2136 if (nchars < 0)
2137 abort ();
2138
2139 s = allocate_string ();
2140 allocate_string_data (s, nchars, nbytes);
2141 XSETSTRING (string, s);
2142 string_chars_consed += nbytes;
2143 return string;
2144 }
2145
2146
2147 \f
2148 /***********************************************************************
2149 Float Allocation
2150 ***********************************************************************/
2151
2152 /* We store float cells inside of float_blocks, allocating a new
2153 float_block with malloc whenever necessary. Float cells reclaimed
2154 by GC are put on a free list to be reallocated before allocating
2155 any new float cells from the latest float_block. */
2156
2157 #define FLOAT_BLOCK_SIZE \
2158 (((BLOCK_BYTES - sizeof (struct float_block *) \
2159 /* The compiler might add padding at the end. */ \
2160 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2161 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2162
2163 #define GETMARKBIT(block,n) \
2164 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2165 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2166 & 1)
2167
2168 #define SETMARKBIT(block,n) \
2169 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2170 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2171
2172 #define UNSETMARKBIT(block,n) \
2173 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2174 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2175
2176 #define FLOAT_BLOCK(fptr) \
2177 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2178
2179 #define FLOAT_INDEX(fptr) \
2180 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2181
2182 struct float_block
2183 {
2184 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2185 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2186 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2187 struct float_block *next;
2188 };
2189
2190 #define FLOAT_MARKED_P(fptr) \
2191 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2192
2193 #define FLOAT_MARK(fptr) \
2194 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2195
2196 #define FLOAT_UNMARK(fptr) \
2197 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2198
2199 /* Current float_block. */
2200
2201 struct float_block *float_block;
2202
2203 /* Index of first unused Lisp_Float in the current float_block. */
2204
2205 int float_block_index;
2206
2207 /* Total number of float blocks now in use. */
2208
2209 int n_float_blocks;
2210
2211 /* Free-list of Lisp_Floats. */
2212
2213 struct Lisp_Float *float_free_list;
2214
2215
2216 /* Initialize float allocation. */
2217
2218 void
2219 init_float ()
2220 {
2221 float_block = NULL;
2222 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2223 float_free_list = 0;
2224 n_float_blocks = 0;
2225 }
2226
2227
2228 /* Explicitly free a float cell by putting it on the free-list. */
2229
2230 void
2231 free_float (ptr)
2232 struct Lisp_Float *ptr;
2233 {
2234 *(struct Lisp_Float **)&ptr->data = float_free_list;
2235 float_free_list = ptr;
2236 }
2237
2238
2239 /* Return a new float object with value FLOAT_VALUE. */
2240
2241 Lisp_Object
2242 make_float (float_value)
2243 double float_value;
2244 {
2245 register Lisp_Object val;
2246
2247 if (float_free_list)
2248 {
2249 /* We use the data field for chaining the free list
2250 so that we won't use the same field that has the mark bit. */
2251 XSETFLOAT (val, float_free_list);
2252 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2253 }
2254 else
2255 {
2256 if (float_block_index == FLOAT_BLOCK_SIZE)
2257 {
2258 register struct float_block *new;
2259
2260 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2261 MEM_TYPE_FLOAT);
2262 new->next = float_block;
2263 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2264 float_block = new;
2265 float_block_index = 0;
2266 n_float_blocks++;
2267 }
2268 XSETFLOAT (val, &float_block->floats[float_block_index]);
2269 float_block_index++;
2270 }
2271
2272 XFLOAT_DATA (val) = float_value;
2273 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2274 consing_since_gc += sizeof (struct Lisp_Float);
2275 floats_consed++;
2276 return val;
2277 }
2278
2279
2280 \f
2281 /***********************************************************************
2282 Cons Allocation
2283 ***********************************************************************/
2284
2285 /* We store cons cells inside of cons_blocks, allocating a new
2286 cons_block with malloc whenever necessary. Cons cells reclaimed by
2287 GC are put on a free list to be reallocated before allocating
2288 any new cons cells from the latest cons_block. */
2289
2290 #define CONS_BLOCK_SIZE \
2291 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2292 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2293
2294 #define CONS_BLOCK(fptr) \
2295 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2296
2297 #define CONS_INDEX(fptr) \
2298 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2299
2300 struct cons_block
2301 {
2302 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2303 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2304 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2305 struct cons_block *next;
2306 };
2307
2308 #define CONS_MARKED_P(fptr) \
2309 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2310
2311 #define CONS_MARK(fptr) \
2312 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2313
2314 #define CONS_UNMARK(fptr) \
2315 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2316
2317 /* Current cons_block. */
2318
2319 struct cons_block *cons_block;
2320
2321 /* Index of first unused Lisp_Cons in the current block. */
2322
2323 int cons_block_index;
2324
2325 /* Free-list of Lisp_Cons structures. */
2326
2327 struct Lisp_Cons *cons_free_list;
2328
2329 /* Total number of cons blocks now in use. */
2330
2331 int n_cons_blocks;
2332
2333
2334 /* Initialize cons allocation. */
2335
2336 void
2337 init_cons ()
2338 {
2339 cons_block = NULL;
2340 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2341 cons_free_list = 0;
2342 n_cons_blocks = 0;
2343 }
2344
2345
2346 /* Explicitly free a cons cell by putting it on the free-list. */
2347
2348 void
2349 free_cons (ptr)
2350 struct Lisp_Cons *ptr;
2351 {
2352 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2353 #if GC_MARK_STACK
2354 ptr->car = Vdead;
2355 #endif
2356 cons_free_list = ptr;
2357 }
2358
2359 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2360 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2361 (car, cdr)
2362 Lisp_Object car, cdr;
2363 {
2364 register Lisp_Object val;
2365
2366 if (cons_free_list)
2367 {
2368 /* We use the cdr for chaining the free list
2369 so that we won't use the same field that has the mark bit. */
2370 XSETCONS (val, cons_free_list);
2371 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2372 }
2373 else
2374 {
2375 if (cons_block_index == CONS_BLOCK_SIZE)
2376 {
2377 register struct cons_block *new;
2378 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2379 MEM_TYPE_CONS);
2380 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2381 new->next = cons_block;
2382 cons_block = new;
2383 cons_block_index = 0;
2384 n_cons_blocks++;
2385 }
2386 XSETCONS (val, &cons_block->conses[cons_block_index]);
2387 cons_block_index++;
2388 }
2389
2390 XSETCAR (val, car);
2391 XSETCDR (val, cdr);
2392 eassert (!CONS_MARKED_P (XCONS (val)));
2393 consing_since_gc += sizeof (struct Lisp_Cons);
2394 cons_cells_consed++;
2395 return val;
2396 }
2397
2398 /* Get an error now if there's any junk in the cons free list. */
2399 void
2400 check_cons_list ()
2401 {
2402 struct Lisp_Cons *tail = cons_free_list;
2403
2404 #if 0
2405 while (tail)
2406 tail = *(struct Lisp_Cons **)&tail->cdr;
2407 #endif
2408 }
2409
2410 /* Make a list of 2, 3, 4 or 5 specified objects. */
2411
2412 Lisp_Object
2413 list2 (arg1, arg2)
2414 Lisp_Object arg1, arg2;
2415 {
2416 return Fcons (arg1, Fcons (arg2, Qnil));
2417 }
2418
2419
2420 Lisp_Object
2421 list3 (arg1, arg2, arg3)
2422 Lisp_Object arg1, arg2, arg3;
2423 {
2424 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2425 }
2426
2427
2428 Lisp_Object
2429 list4 (arg1, arg2, arg3, arg4)
2430 Lisp_Object arg1, arg2, arg3, arg4;
2431 {
2432 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2433 }
2434
2435
2436 Lisp_Object
2437 list5 (arg1, arg2, arg3, arg4, arg5)
2438 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2439 {
2440 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2441 Fcons (arg5, Qnil)))));
2442 }
2443
2444
2445 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2446 doc: /* Return a newly created list with specified arguments as elements.
2447 Any number of arguments, even zero arguments, are allowed.
2448 usage: (list &rest OBJECTS) */)
2449 (nargs, args)
2450 int nargs;
2451 register Lisp_Object *args;
2452 {
2453 register Lisp_Object val;
2454 val = Qnil;
2455
2456 while (nargs > 0)
2457 {
2458 nargs--;
2459 val = Fcons (args[nargs], val);
2460 }
2461 return val;
2462 }
2463
2464
2465 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2466 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2467 (length, init)
2468 register Lisp_Object length, init;
2469 {
2470 register Lisp_Object val;
2471 register int size;
2472
2473 CHECK_NATNUM (length);
2474 size = XFASTINT (length);
2475
2476 val = Qnil;
2477 while (size > 0)
2478 {
2479 val = Fcons (init, val);
2480 --size;
2481
2482 if (size > 0)
2483 {
2484 val = Fcons (init, val);
2485 --size;
2486
2487 if (size > 0)
2488 {
2489 val = Fcons (init, val);
2490 --size;
2491
2492 if (size > 0)
2493 {
2494 val = Fcons (init, val);
2495 --size;
2496
2497 if (size > 0)
2498 {
2499 val = Fcons (init, val);
2500 --size;
2501 }
2502 }
2503 }
2504 }
2505
2506 QUIT;
2507 }
2508
2509 return val;
2510 }
2511
2512
2513 \f
2514 /***********************************************************************
2515 Vector Allocation
2516 ***********************************************************************/
2517
2518 /* Singly-linked list of all vectors. */
2519
2520 struct Lisp_Vector *all_vectors;
2521
2522 /* Total number of vector-like objects now in use. */
2523
2524 int n_vectors;
2525
2526
2527 /* Value is a pointer to a newly allocated Lisp_Vector structure
2528 with room for LEN Lisp_Objects. */
2529
2530 static struct Lisp_Vector *
2531 allocate_vectorlike (len, type)
2532 EMACS_INT len;
2533 enum mem_type type;
2534 {
2535 struct Lisp_Vector *p;
2536 size_t nbytes;
2537
2538 #ifdef DOUG_LEA_MALLOC
2539 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2540 because mapped region contents are not preserved in
2541 a dumped Emacs. */
2542 BLOCK_INPUT;
2543 mallopt (M_MMAP_MAX, 0);
2544 UNBLOCK_INPUT;
2545 #endif
2546
2547 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2548 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2549
2550 #ifdef DOUG_LEA_MALLOC
2551 /* Back to a reasonable maximum of mmap'ed areas. */
2552 BLOCK_INPUT;
2553 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2554 UNBLOCK_INPUT;
2555 #endif
2556
2557 consing_since_gc += nbytes;
2558 vector_cells_consed += len;
2559
2560 p->next = all_vectors;
2561 all_vectors = p;
2562 ++n_vectors;
2563 return p;
2564 }
2565
2566
2567 /* Allocate a vector with NSLOTS slots. */
2568
2569 struct Lisp_Vector *
2570 allocate_vector (nslots)
2571 EMACS_INT nslots;
2572 {
2573 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2574 v->size = nslots;
2575 return v;
2576 }
2577
2578
2579 /* Allocate other vector-like structures. */
2580
2581 struct Lisp_Hash_Table *
2582 allocate_hash_table ()
2583 {
2584 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2585 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2586 EMACS_INT i;
2587
2588 v->size = len;
2589 for (i = 0; i < len; ++i)
2590 v->contents[i] = Qnil;
2591
2592 return (struct Lisp_Hash_Table *) v;
2593 }
2594
2595
2596 struct window *
2597 allocate_window ()
2598 {
2599 EMACS_INT len = VECSIZE (struct window);
2600 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2601 EMACS_INT i;
2602
2603 for (i = 0; i < len; ++i)
2604 v->contents[i] = Qnil;
2605 v->size = len;
2606
2607 return (struct window *) v;
2608 }
2609
2610
2611 struct frame *
2612 allocate_frame ()
2613 {
2614 EMACS_INT len = VECSIZE (struct frame);
2615 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2616 EMACS_INT i;
2617
2618 for (i = 0; i < len; ++i)
2619 v->contents[i] = make_number (0);
2620 v->size = len;
2621 return (struct frame *) v;
2622 }
2623
2624
2625 struct Lisp_Process *
2626 allocate_process ()
2627 {
2628 EMACS_INT len = VECSIZE (struct Lisp_Process);
2629 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2630 EMACS_INT i;
2631
2632 for (i = 0; i < len; ++i)
2633 v->contents[i] = Qnil;
2634 v->size = len;
2635
2636 return (struct Lisp_Process *) v;
2637 }
2638
2639
2640 struct Lisp_Vector *
2641 allocate_other_vector (len)
2642 EMACS_INT len;
2643 {
2644 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2645 EMACS_INT i;
2646
2647 for (i = 0; i < len; ++i)
2648 v->contents[i] = Qnil;
2649 v->size = len;
2650
2651 return v;
2652 }
2653
2654
2655 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2656 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2657 See also the function `vector'. */)
2658 (length, init)
2659 register Lisp_Object length, init;
2660 {
2661 Lisp_Object vector;
2662 register EMACS_INT sizei;
2663 register int index;
2664 register struct Lisp_Vector *p;
2665
2666 CHECK_NATNUM (length);
2667 sizei = XFASTINT (length);
2668
2669 p = allocate_vector (sizei);
2670 for (index = 0; index < sizei; index++)
2671 p->contents[index] = init;
2672
2673 XSETVECTOR (vector, p);
2674 return vector;
2675 }
2676
2677
2678 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
2679 doc: /* Return a newly created char-table, with purpose PURPOSE.
2680 Each element is initialized to INIT, which defaults to nil.
2681 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
2682 The property's value should be an integer between 0 and 10. */)
2683 (purpose, init)
2684 register Lisp_Object purpose, init;
2685 {
2686 Lisp_Object vector;
2687 Lisp_Object n;
2688 CHECK_SYMBOL (purpose);
2689 n = Fget (purpose, Qchar_table_extra_slots);
2690 CHECK_NUMBER (n);
2691 if (XINT (n) < 0 || XINT (n) > 10)
2692 args_out_of_range (n, Qnil);
2693 /* Add 2 to the size for the defalt and parent slots. */
2694 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2695 init);
2696 XCHAR_TABLE (vector)->top = Qt;
2697 XCHAR_TABLE (vector)->parent = Qnil;
2698 XCHAR_TABLE (vector)->purpose = purpose;
2699 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2700 return vector;
2701 }
2702
2703
2704 /* Return a newly created sub char table with default value DEFALT.
2705 Since a sub char table does not appear as a top level Emacs Lisp
2706 object, we don't need a Lisp interface to make it. */
2707
2708 Lisp_Object
2709 make_sub_char_table (defalt)
2710 Lisp_Object defalt;
2711 {
2712 Lisp_Object vector
2713 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2714 XCHAR_TABLE (vector)->top = Qnil;
2715 XCHAR_TABLE (vector)->defalt = defalt;
2716 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2717 return vector;
2718 }
2719
2720
2721 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2722 doc: /* Return a newly created vector with specified arguments as elements.
2723 Any number of arguments, even zero arguments, are allowed.
2724 usage: (vector &rest OBJECTS) */)
2725 (nargs, args)
2726 register int nargs;
2727 Lisp_Object *args;
2728 {
2729 register Lisp_Object len, val;
2730 register int index;
2731 register struct Lisp_Vector *p;
2732
2733 XSETFASTINT (len, nargs);
2734 val = Fmake_vector (len, Qnil);
2735 p = XVECTOR (val);
2736 for (index = 0; index < nargs; index++)
2737 p->contents[index] = args[index];
2738 return val;
2739 }
2740
2741
2742 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2743 doc: /* Create a byte-code object with specified arguments as elements.
2744 The arguments should be the arglist, bytecode-string, constant vector,
2745 stack size, (optional) doc string, and (optional) interactive spec.
2746 The first four arguments are required; at most six have any
2747 significance.
2748 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2749 (nargs, args)
2750 register int nargs;
2751 Lisp_Object *args;
2752 {
2753 register Lisp_Object len, val;
2754 register int index;
2755 register struct Lisp_Vector *p;
2756
2757 XSETFASTINT (len, nargs);
2758 if (!NILP (Vpurify_flag))
2759 val = make_pure_vector ((EMACS_INT) nargs);
2760 else
2761 val = Fmake_vector (len, Qnil);
2762
2763 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2764 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2765 earlier because they produced a raw 8-bit string for byte-code
2766 and now such a byte-code string is loaded as multibyte while
2767 raw 8-bit characters converted to multibyte form. Thus, now we
2768 must convert them back to the original unibyte form. */
2769 args[1] = Fstring_as_unibyte (args[1]);
2770
2771 p = XVECTOR (val);
2772 for (index = 0; index < nargs; index++)
2773 {
2774 if (!NILP (Vpurify_flag))
2775 args[index] = Fpurecopy (args[index]);
2776 p->contents[index] = args[index];
2777 }
2778 XSETCOMPILED (val, p);
2779 return val;
2780 }
2781
2782
2783 \f
2784 /***********************************************************************
2785 Symbol Allocation
2786 ***********************************************************************/
2787
2788 /* Each symbol_block is just under 1020 bytes long, since malloc
2789 really allocates in units of powers of two and uses 4 bytes for its
2790 own overhead. */
2791
2792 #define SYMBOL_BLOCK_SIZE \
2793 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2794
2795 struct symbol_block
2796 {
2797 /* Place `symbols' first, to preserve alignment. */
2798 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2799 struct symbol_block *next;
2800 };
2801
2802 /* Current symbol block and index of first unused Lisp_Symbol
2803 structure in it. */
2804
2805 struct symbol_block *symbol_block;
2806 int symbol_block_index;
2807
2808 /* List of free symbols. */
2809
2810 struct Lisp_Symbol *symbol_free_list;
2811
2812 /* Total number of symbol blocks now in use. */
2813
2814 int n_symbol_blocks;
2815
2816
2817 /* Initialize symbol allocation. */
2818
2819 void
2820 init_symbol ()
2821 {
2822 symbol_block = NULL;
2823 symbol_block_index = SYMBOL_BLOCK_SIZE;
2824 symbol_free_list = 0;
2825 n_symbol_blocks = 0;
2826 }
2827
2828
2829 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
2830 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
2831 Its value and function definition are void, and its property list is nil. */)
2832 (name)
2833 Lisp_Object name;
2834 {
2835 register Lisp_Object val;
2836 register struct Lisp_Symbol *p;
2837
2838 CHECK_STRING (name);
2839
2840 if (symbol_free_list)
2841 {
2842 XSETSYMBOL (val, symbol_free_list);
2843 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
2844 }
2845 else
2846 {
2847 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2848 {
2849 struct symbol_block *new;
2850 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2851 MEM_TYPE_SYMBOL);
2852 new->next = symbol_block;
2853 symbol_block = new;
2854 symbol_block_index = 0;
2855 n_symbol_blocks++;
2856 }
2857 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
2858 symbol_block_index++;
2859 }
2860
2861 p = XSYMBOL (val);
2862 p->xname = name;
2863 p->plist = Qnil;
2864 p->value = Qunbound;
2865 p->function = Qunbound;
2866 p->next = NULL;
2867 p->gcmarkbit = 0;
2868 p->interned = SYMBOL_UNINTERNED;
2869 p->constant = 0;
2870 p->indirect_variable = 0;
2871 consing_since_gc += sizeof (struct Lisp_Symbol);
2872 symbols_consed++;
2873 return val;
2874 }
2875
2876
2877 \f
2878 /***********************************************************************
2879 Marker (Misc) Allocation
2880 ***********************************************************************/
2881
2882 /* Allocation of markers and other objects that share that structure.
2883 Works like allocation of conses. */
2884
2885 #define MARKER_BLOCK_SIZE \
2886 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2887
2888 struct marker_block
2889 {
2890 /* Place `markers' first, to preserve alignment. */
2891 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
2892 struct marker_block *next;
2893 };
2894
2895 struct marker_block *marker_block;
2896 int marker_block_index;
2897
2898 union Lisp_Misc *marker_free_list;
2899
2900 /* Total number of marker blocks now in use. */
2901
2902 int n_marker_blocks;
2903
2904 void
2905 init_marker ()
2906 {
2907 marker_block = NULL;
2908 marker_block_index = MARKER_BLOCK_SIZE;
2909 marker_free_list = 0;
2910 n_marker_blocks = 0;
2911 }
2912
2913 /* Return a newly allocated Lisp_Misc object, with no substructure. */
2914
2915 Lisp_Object
2916 allocate_misc ()
2917 {
2918 Lisp_Object val;
2919
2920 if (marker_free_list)
2921 {
2922 XSETMISC (val, marker_free_list);
2923 marker_free_list = marker_free_list->u_free.chain;
2924 }
2925 else
2926 {
2927 if (marker_block_index == MARKER_BLOCK_SIZE)
2928 {
2929 struct marker_block *new;
2930 new = (struct marker_block *) lisp_malloc (sizeof *new,
2931 MEM_TYPE_MISC);
2932 new->next = marker_block;
2933 marker_block = new;
2934 marker_block_index = 0;
2935 n_marker_blocks++;
2936 total_free_markers += MARKER_BLOCK_SIZE;
2937 }
2938 XSETMISC (val, &marker_block->markers[marker_block_index]);
2939 marker_block_index++;
2940 }
2941
2942 --total_free_markers;
2943 consing_since_gc += sizeof (union Lisp_Misc);
2944 misc_objects_consed++;
2945 XMARKER (val)->gcmarkbit = 0;
2946 return val;
2947 }
2948
2949 /* Free a Lisp_Misc object */
2950
2951 void
2952 free_misc (misc)
2953 Lisp_Object misc;
2954 {
2955 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
2956 XMISC (misc)->u_free.chain = marker_free_list;
2957 marker_free_list = XMISC (misc);
2958
2959 total_free_markers++;
2960 }
2961
2962 /* Return a Lisp_Misc_Save_Value object containing POINTER and
2963 INTEGER. This is used to package C values to call record_unwind_protect.
2964 The unwind function can get the C values back using XSAVE_VALUE. */
2965
2966 Lisp_Object
2967 make_save_value (pointer, integer)
2968 void *pointer;
2969 int integer;
2970 {
2971 register Lisp_Object val;
2972 register struct Lisp_Save_Value *p;
2973
2974 val = allocate_misc ();
2975 XMISCTYPE (val) = Lisp_Misc_Save_Value;
2976 p = XSAVE_VALUE (val);
2977 p->pointer = pointer;
2978 p->integer = integer;
2979 p->dogc = 0;
2980 return val;
2981 }
2982
2983 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
2984 doc: /* Return a newly allocated marker which does not point at any place. */)
2985 ()
2986 {
2987 register Lisp_Object val;
2988 register struct Lisp_Marker *p;
2989
2990 val = allocate_misc ();
2991 XMISCTYPE (val) = Lisp_Misc_Marker;
2992 p = XMARKER (val);
2993 p->buffer = 0;
2994 p->bytepos = 0;
2995 p->charpos = 0;
2996 p->next = NULL;
2997 p->insertion_type = 0;
2998 return val;
2999 }
3000
3001 /* Put MARKER back on the free list after using it temporarily. */
3002
3003 void
3004 free_marker (marker)
3005 Lisp_Object marker;
3006 {
3007 unchain_marker (XMARKER (marker));
3008 free_misc (marker);
3009 }
3010
3011 \f
3012 /* Return a newly created vector or string with specified arguments as
3013 elements. If all the arguments are characters that can fit
3014 in a string of events, make a string; otherwise, make a vector.
3015
3016 Any number of arguments, even zero arguments, are allowed. */
3017
3018 Lisp_Object
3019 make_event_array (nargs, args)
3020 register int nargs;
3021 Lisp_Object *args;
3022 {
3023 int i;
3024
3025 for (i = 0; i < nargs; i++)
3026 /* The things that fit in a string
3027 are characters that are in 0...127,
3028 after discarding the meta bit and all the bits above it. */
3029 if (!INTEGERP (args[i])
3030 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3031 return Fvector (nargs, args);
3032
3033 /* Since the loop exited, we know that all the things in it are
3034 characters, so we can make a string. */
3035 {
3036 Lisp_Object result;
3037
3038 result = Fmake_string (make_number (nargs), make_number (0));
3039 for (i = 0; i < nargs; i++)
3040 {
3041 SSET (result, i, XINT (args[i]));
3042 /* Move the meta bit to the right place for a string char. */
3043 if (XINT (args[i]) & CHAR_META)
3044 SSET (result, i, SREF (result, i) | 0x80);
3045 }
3046
3047 return result;
3048 }
3049 }
3050
3051
3052 \f
3053 /************************************************************************
3054 C Stack Marking
3055 ************************************************************************/
3056
3057 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3058
3059 /* Conservative C stack marking requires a method to identify possibly
3060 live Lisp objects given a pointer value. We do this by keeping
3061 track of blocks of Lisp data that are allocated in a red-black tree
3062 (see also the comment of mem_node which is the type of nodes in
3063 that tree). Function lisp_malloc adds information for an allocated
3064 block to the red-black tree with calls to mem_insert, and function
3065 lisp_free removes it with mem_delete. Functions live_string_p etc
3066 call mem_find to lookup information about a given pointer in the
3067 tree, and use that to determine if the pointer points to a Lisp
3068 object or not. */
3069
3070 /* Initialize this part of alloc.c. */
3071
3072 static void
3073 mem_init ()
3074 {
3075 mem_z.left = mem_z.right = MEM_NIL;
3076 mem_z.parent = NULL;
3077 mem_z.color = MEM_BLACK;
3078 mem_z.start = mem_z.end = NULL;
3079 mem_root = MEM_NIL;
3080 }
3081
3082
3083 /* Value is a pointer to the mem_node containing START. Value is
3084 MEM_NIL if there is no node in the tree containing START. */
3085
3086 static INLINE struct mem_node *
3087 mem_find (start)
3088 void *start;
3089 {
3090 struct mem_node *p;
3091
3092 if (start < min_heap_address || start > max_heap_address)
3093 return MEM_NIL;
3094
3095 /* Make the search always successful to speed up the loop below. */
3096 mem_z.start = start;
3097 mem_z.end = (char *) start + 1;
3098
3099 p = mem_root;
3100 while (start < p->start || start >= p->end)
3101 p = start < p->start ? p->left : p->right;
3102 return p;
3103 }
3104
3105
3106 /* Insert a new node into the tree for a block of memory with start
3107 address START, end address END, and type TYPE. Value is a
3108 pointer to the node that was inserted. */
3109
3110 static struct mem_node *
3111 mem_insert (start, end, type)
3112 void *start, *end;
3113 enum mem_type type;
3114 {
3115 struct mem_node *c, *parent, *x;
3116
3117 if (start < min_heap_address)
3118 min_heap_address = start;
3119 if (end > max_heap_address)
3120 max_heap_address = end;
3121
3122 /* See where in the tree a node for START belongs. In this
3123 particular application, it shouldn't happen that a node is already
3124 present. For debugging purposes, let's check that. */
3125 c = mem_root;
3126 parent = NULL;
3127
3128 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3129
3130 while (c != MEM_NIL)
3131 {
3132 if (start >= c->start && start < c->end)
3133 abort ();
3134 parent = c;
3135 c = start < c->start ? c->left : c->right;
3136 }
3137
3138 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3139
3140 while (c != MEM_NIL)
3141 {
3142 parent = c;
3143 c = start < c->start ? c->left : c->right;
3144 }
3145
3146 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3147
3148 /* Create a new node. */
3149 #ifdef GC_MALLOC_CHECK
3150 x = (struct mem_node *) _malloc_internal (sizeof *x);
3151 if (x == NULL)
3152 abort ();
3153 #else
3154 x = (struct mem_node *) xmalloc (sizeof *x);
3155 #endif
3156 x->start = start;
3157 x->end = end;
3158 x->type = type;
3159 x->parent = parent;
3160 x->left = x->right = MEM_NIL;
3161 x->color = MEM_RED;
3162
3163 /* Insert it as child of PARENT or install it as root. */
3164 if (parent)
3165 {
3166 if (start < parent->start)
3167 parent->left = x;
3168 else
3169 parent->right = x;
3170 }
3171 else
3172 mem_root = x;
3173
3174 /* Re-establish red-black tree properties. */
3175 mem_insert_fixup (x);
3176
3177 return x;
3178 }
3179
3180
3181 /* Re-establish the red-black properties of the tree, and thereby
3182 balance the tree, after node X has been inserted; X is always red. */
3183
3184 static void
3185 mem_insert_fixup (x)
3186 struct mem_node *x;
3187 {
3188 while (x != mem_root && x->parent->color == MEM_RED)
3189 {
3190 /* X is red and its parent is red. This is a violation of
3191 red-black tree property #3. */
3192
3193 if (x->parent == x->parent->parent->left)
3194 {
3195 /* We're on the left side of our grandparent, and Y is our
3196 "uncle". */
3197 struct mem_node *y = x->parent->parent->right;
3198
3199 if (y->color == MEM_RED)
3200 {
3201 /* Uncle and parent are red but should be black because
3202 X is red. Change the colors accordingly and proceed
3203 with the grandparent. */
3204 x->parent->color = MEM_BLACK;
3205 y->color = MEM_BLACK;
3206 x->parent->parent->color = MEM_RED;
3207 x = x->parent->parent;
3208 }
3209 else
3210 {
3211 /* Parent and uncle have different colors; parent is
3212 red, uncle is black. */
3213 if (x == x->parent->right)
3214 {
3215 x = x->parent;
3216 mem_rotate_left (x);
3217 }
3218
3219 x->parent->color = MEM_BLACK;
3220 x->parent->parent->color = MEM_RED;
3221 mem_rotate_right (x->parent->parent);
3222 }
3223 }
3224 else
3225 {
3226 /* This is the symmetrical case of above. */
3227 struct mem_node *y = x->parent->parent->left;
3228
3229 if (y->color == MEM_RED)
3230 {
3231 x->parent->color = MEM_BLACK;
3232 y->color = MEM_BLACK;
3233 x->parent->parent->color = MEM_RED;
3234 x = x->parent->parent;
3235 }
3236 else
3237 {
3238 if (x == x->parent->left)
3239 {
3240 x = x->parent;
3241 mem_rotate_right (x);
3242 }
3243
3244 x->parent->color = MEM_BLACK;
3245 x->parent->parent->color = MEM_RED;
3246 mem_rotate_left (x->parent->parent);
3247 }
3248 }
3249 }
3250
3251 /* The root may have been changed to red due to the algorithm. Set
3252 it to black so that property #5 is satisfied. */
3253 mem_root->color = MEM_BLACK;
3254 }
3255
3256
3257 /* (x) (y)
3258 / \ / \
3259 a (y) ===> (x) c
3260 / \ / \
3261 b c a b */
3262
3263 static void
3264 mem_rotate_left (x)
3265 struct mem_node *x;
3266 {
3267 struct mem_node *y;
3268
3269 /* Turn y's left sub-tree into x's right sub-tree. */
3270 y = x->right;
3271 x->right = y->left;
3272 if (y->left != MEM_NIL)
3273 y->left->parent = x;
3274
3275 /* Y's parent was x's parent. */
3276 if (y != MEM_NIL)
3277 y->parent = x->parent;
3278
3279 /* Get the parent to point to y instead of x. */
3280 if (x->parent)
3281 {
3282 if (x == x->parent->left)
3283 x->parent->left = y;
3284 else
3285 x->parent->right = y;
3286 }
3287 else
3288 mem_root = y;
3289
3290 /* Put x on y's left. */
3291 y->left = x;
3292 if (x != MEM_NIL)
3293 x->parent = y;
3294 }
3295
3296
3297 /* (x) (Y)
3298 / \ / \
3299 (y) c ===> a (x)
3300 / \ / \
3301 a b b c */
3302
3303 static void
3304 mem_rotate_right (x)
3305 struct mem_node *x;
3306 {
3307 struct mem_node *y = x->left;
3308
3309 x->left = y->right;
3310 if (y->right != MEM_NIL)
3311 y->right->parent = x;
3312
3313 if (y != MEM_NIL)
3314 y->parent = x->parent;
3315 if (x->parent)
3316 {
3317 if (x == x->parent->right)
3318 x->parent->right = y;
3319 else
3320 x->parent->left = y;
3321 }
3322 else
3323 mem_root = y;
3324
3325 y->right = x;
3326 if (x != MEM_NIL)
3327 x->parent = y;
3328 }
3329
3330
3331 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3332
3333 static void
3334 mem_delete (z)
3335 struct mem_node *z;
3336 {
3337 struct mem_node *x, *y;
3338
3339 if (!z || z == MEM_NIL)
3340 return;
3341
3342 if (z->left == MEM_NIL || z->right == MEM_NIL)
3343 y = z;
3344 else
3345 {
3346 y = z->right;
3347 while (y->left != MEM_NIL)
3348 y = y->left;
3349 }
3350
3351 if (y->left != MEM_NIL)
3352 x = y->left;
3353 else
3354 x = y->right;
3355
3356 x->parent = y->parent;
3357 if (y->parent)
3358 {
3359 if (y == y->parent->left)
3360 y->parent->left = x;
3361 else
3362 y->parent->right = x;
3363 }
3364 else
3365 mem_root = x;
3366
3367 if (y != z)
3368 {
3369 z->start = y->start;
3370 z->end = y->end;
3371 z->type = y->type;
3372 }
3373
3374 if (y->color == MEM_BLACK)
3375 mem_delete_fixup (x);
3376
3377 #ifdef GC_MALLOC_CHECK
3378 _free_internal (y);
3379 #else
3380 xfree (y);
3381 #endif
3382 }
3383
3384
3385 /* Re-establish the red-black properties of the tree, after a
3386 deletion. */
3387
3388 static void
3389 mem_delete_fixup (x)
3390 struct mem_node *x;
3391 {
3392 while (x != mem_root && x->color == MEM_BLACK)
3393 {
3394 if (x == x->parent->left)
3395 {
3396 struct mem_node *w = x->parent->right;
3397
3398 if (w->color == MEM_RED)
3399 {
3400 w->color = MEM_BLACK;
3401 x->parent->color = MEM_RED;
3402 mem_rotate_left (x->parent);
3403 w = x->parent->right;
3404 }
3405
3406 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3407 {
3408 w->color = MEM_RED;
3409 x = x->parent;
3410 }
3411 else
3412 {
3413 if (w->right->color == MEM_BLACK)
3414 {
3415 w->left->color = MEM_BLACK;
3416 w->color = MEM_RED;
3417 mem_rotate_right (w);
3418 w = x->parent->right;
3419 }
3420 w->color = x->parent->color;
3421 x->parent->color = MEM_BLACK;
3422 w->right->color = MEM_BLACK;
3423 mem_rotate_left (x->parent);
3424 x = mem_root;
3425 }
3426 }
3427 else
3428 {
3429 struct mem_node *w = x->parent->left;
3430
3431 if (w->color == MEM_RED)
3432 {
3433 w->color = MEM_BLACK;
3434 x->parent->color = MEM_RED;
3435 mem_rotate_right (x->parent);
3436 w = x->parent->left;
3437 }
3438
3439 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3440 {
3441 w->color = MEM_RED;
3442 x = x->parent;
3443 }
3444 else
3445 {
3446 if (w->left->color == MEM_BLACK)
3447 {
3448 w->right->color = MEM_BLACK;
3449 w->color = MEM_RED;
3450 mem_rotate_left (w);
3451 w = x->parent->left;
3452 }
3453
3454 w->color = x->parent->color;
3455 x->parent->color = MEM_BLACK;
3456 w->left->color = MEM_BLACK;
3457 mem_rotate_right (x->parent);
3458 x = mem_root;
3459 }
3460 }
3461 }
3462
3463 x->color = MEM_BLACK;
3464 }
3465
3466
3467 /* Value is non-zero if P is a pointer to a live Lisp string on
3468 the heap. M is a pointer to the mem_block for P. */
3469
3470 static INLINE int
3471 live_string_p (m, p)
3472 struct mem_node *m;
3473 void *p;
3474 {
3475 if (m->type == MEM_TYPE_STRING)
3476 {
3477 struct string_block *b = (struct string_block *) m->start;
3478 int offset = (char *) p - (char *) &b->strings[0];
3479
3480 /* P must point to the start of a Lisp_String structure, and it
3481 must not be on the free-list. */
3482 return (offset >= 0
3483 && offset % sizeof b->strings[0] == 0
3484 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3485 && ((struct Lisp_String *) p)->data != NULL);
3486 }
3487 else
3488 return 0;
3489 }
3490
3491
3492 /* Value is non-zero if P is a pointer to a live Lisp cons on
3493 the heap. M is a pointer to the mem_block for P. */
3494
3495 static INLINE int
3496 live_cons_p (m, p)
3497 struct mem_node *m;
3498 void *p;
3499 {
3500 if (m->type == MEM_TYPE_CONS)
3501 {
3502 struct cons_block *b = (struct cons_block *) m->start;
3503 int offset = (char *) p - (char *) &b->conses[0];
3504
3505 /* P must point to the start of a Lisp_Cons, not be
3506 one of the unused cells in the current cons block,
3507 and not be on the free-list. */
3508 return (offset >= 0
3509 && offset % sizeof b->conses[0] == 0
3510 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3511 && (b != cons_block
3512 || offset / sizeof b->conses[0] < cons_block_index)
3513 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3514 }
3515 else
3516 return 0;
3517 }
3518
3519
3520 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3521 the heap. M is a pointer to the mem_block for P. */
3522
3523 static INLINE int
3524 live_symbol_p (m, p)
3525 struct mem_node *m;
3526 void *p;
3527 {
3528 if (m->type == MEM_TYPE_SYMBOL)
3529 {
3530 struct symbol_block *b = (struct symbol_block *) m->start;
3531 int offset = (char *) p - (char *) &b->symbols[0];
3532
3533 /* P must point to the start of a Lisp_Symbol, not be
3534 one of the unused cells in the current symbol block,
3535 and not be on the free-list. */
3536 return (offset >= 0
3537 && offset % sizeof b->symbols[0] == 0
3538 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3539 && (b != symbol_block
3540 || offset / sizeof b->symbols[0] < symbol_block_index)
3541 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3542 }
3543 else
3544 return 0;
3545 }
3546
3547
3548 /* Value is non-zero if P is a pointer to a live Lisp float on
3549 the heap. M is a pointer to the mem_block for P. */
3550
3551 static INLINE int
3552 live_float_p (m, p)
3553 struct mem_node *m;
3554 void *p;
3555 {
3556 if (m->type == MEM_TYPE_FLOAT)
3557 {
3558 struct float_block *b = (struct float_block *) m->start;
3559 int offset = (char *) p - (char *) &b->floats[0];
3560
3561 /* P must point to the start of a Lisp_Float and not be
3562 one of the unused cells in the current float block. */
3563 return (offset >= 0
3564 && offset % sizeof b->floats[0] == 0
3565 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3566 && (b != float_block
3567 || offset / sizeof b->floats[0] < float_block_index));
3568 }
3569 else
3570 return 0;
3571 }
3572
3573
3574 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3575 the heap. M is a pointer to the mem_block for P. */
3576
3577 static INLINE int
3578 live_misc_p (m, p)
3579 struct mem_node *m;
3580 void *p;
3581 {
3582 if (m->type == MEM_TYPE_MISC)
3583 {
3584 struct marker_block *b = (struct marker_block *) m->start;
3585 int offset = (char *) p - (char *) &b->markers[0];
3586
3587 /* P must point to the start of a Lisp_Misc, not be
3588 one of the unused cells in the current misc block,
3589 and not be on the free-list. */
3590 return (offset >= 0
3591 && offset % sizeof b->markers[0] == 0
3592 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3593 && (b != marker_block
3594 || offset / sizeof b->markers[0] < marker_block_index)
3595 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3596 }
3597 else
3598 return 0;
3599 }
3600
3601
3602 /* Value is non-zero if P is a pointer to a live vector-like object.
3603 M is a pointer to the mem_block for P. */
3604
3605 static INLINE int
3606 live_vector_p (m, p)
3607 struct mem_node *m;
3608 void *p;
3609 {
3610 return (p == m->start
3611 && m->type >= MEM_TYPE_VECTOR
3612 && m->type <= MEM_TYPE_WINDOW);
3613 }
3614
3615
3616 /* Value is non-zero if P is a pointer to a live buffer. M is a
3617 pointer to the mem_block for P. */
3618
3619 static INLINE int
3620 live_buffer_p (m, p)
3621 struct mem_node *m;
3622 void *p;
3623 {
3624 /* P must point to the start of the block, and the buffer
3625 must not have been killed. */
3626 return (m->type == MEM_TYPE_BUFFER
3627 && p == m->start
3628 && !NILP (((struct buffer *) p)->name));
3629 }
3630
3631 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3632
3633 #if GC_MARK_STACK
3634
3635 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3636
3637 /* Array of objects that are kept alive because the C stack contains
3638 a pattern that looks like a reference to them . */
3639
3640 #define MAX_ZOMBIES 10
3641 static Lisp_Object zombies[MAX_ZOMBIES];
3642
3643 /* Number of zombie objects. */
3644
3645 static int nzombies;
3646
3647 /* Number of garbage collections. */
3648
3649 static int ngcs;
3650
3651 /* Average percentage of zombies per collection. */
3652
3653 static double avg_zombies;
3654
3655 /* Max. number of live and zombie objects. */
3656
3657 static int max_live, max_zombies;
3658
3659 /* Average number of live objects per GC. */
3660
3661 static double avg_live;
3662
3663 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3664 doc: /* Show information about live and zombie objects. */)
3665 ()
3666 {
3667 Lisp_Object args[8], zombie_list = Qnil;
3668 int i;
3669 for (i = 0; i < nzombies; i++)
3670 zombie_list = Fcons (zombies[i], zombie_list);
3671 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3672 args[1] = make_number (ngcs);
3673 args[2] = make_float (avg_live);
3674 args[3] = make_float (avg_zombies);
3675 args[4] = make_float (avg_zombies / avg_live / 100);
3676 args[5] = make_number (max_live);
3677 args[6] = make_number (max_zombies);
3678 args[7] = zombie_list;
3679 return Fmessage (8, args);
3680 }
3681
3682 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3683
3684
3685 /* Mark OBJ if we can prove it's a Lisp_Object. */
3686
3687 static INLINE void
3688 mark_maybe_object (obj)
3689 Lisp_Object obj;
3690 {
3691 void *po = (void *) XPNTR (obj);
3692 struct mem_node *m = mem_find (po);
3693
3694 if (m != MEM_NIL)
3695 {
3696 int mark_p = 0;
3697
3698 switch (XGCTYPE (obj))
3699 {
3700 case Lisp_String:
3701 mark_p = (live_string_p (m, po)
3702 && !STRING_MARKED_P ((struct Lisp_String *) po));
3703 break;
3704
3705 case Lisp_Cons:
3706 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3707 break;
3708
3709 case Lisp_Symbol:
3710 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3711 break;
3712
3713 case Lisp_Float:
3714 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3715 break;
3716
3717 case Lisp_Vectorlike:
3718 /* Note: can't check GC_BUFFERP before we know it's a
3719 buffer because checking that dereferences the pointer
3720 PO which might point anywhere. */
3721 if (live_vector_p (m, po))
3722 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3723 else if (live_buffer_p (m, po))
3724 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3725 break;
3726
3727 case Lisp_Misc:
3728 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
3729 break;
3730
3731 case Lisp_Int:
3732 case Lisp_Type_Limit:
3733 break;
3734 }
3735
3736 if (mark_p)
3737 {
3738 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3739 if (nzombies < MAX_ZOMBIES)
3740 zombies[nzombies] = obj;
3741 ++nzombies;
3742 #endif
3743 mark_object (obj);
3744 }
3745 }
3746 }
3747
3748
3749 /* If P points to Lisp data, mark that as live if it isn't already
3750 marked. */
3751
3752 static INLINE void
3753 mark_maybe_pointer (p)
3754 void *p;
3755 {
3756 struct mem_node *m;
3757
3758 /* Quickly rule out some values which can't point to Lisp data. We
3759 assume that Lisp data is aligned on even addresses. */
3760 if ((EMACS_INT) p & 1)
3761 return;
3762
3763 m = mem_find (p);
3764 if (m != MEM_NIL)
3765 {
3766 Lisp_Object obj = Qnil;
3767
3768 switch (m->type)
3769 {
3770 case MEM_TYPE_NON_LISP:
3771 /* Nothing to do; not a pointer to Lisp memory. */
3772 break;
3773
3774 case MEM_TYPE_BUFFER:
3775 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
3776 XSETVECTOR (obj, p);
3777 break;
3778
3779 case MEM_TYPE_CONS:
3780 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
3781 XSETCONS (obj, p);
3782 break;
3783
3784 case MEM_TYPE_STRING:
3785 if (live_string_p (m, p)
3786 && !STRING_MARKED_P ((struct Lisp_String *) p))
3787 XSETSTRING (obj, p);
3788 break;
3789
3790 case MEM_TYPE_MISC:
3791 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
3792 XSETMISC (obj, p);
3793 break;
3794
3795 case MEM_TYPE_SYMBOL:
3796 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
3797 XSETSYMBOL (obj, p);
3798 break;
3799
3800 case MEM_TYPE_FLOAT:
3801 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
3802 XSETFLOAT (obj, p);
3803 break;
3804
3805 case MEM_TYPE_VECTOR:
3806 case MEM_TYPE_PROCESS:
3807 case MEM_TYPE_HASH_TABLE:
3808 case MEM_TYPE_FRAME:
3809 case MEM_TYPE_WINDOW:
3810 if (live_vector_p (m, p))
3811 {
3812 Lisp_Object tem;
3813 XSETVECTOR (tem, p);
3814 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
3815 obj = tem;
3816 }
3817 break;
3818
3819 default:
3820 abort ();
3821 }
3822
3823 if (!GC_NILP (obj))
3824 mark_object (obj);
3825 }
3826 }
3827
3828
3829 /* Mark Lisp objects referenced from the address range START..END. */
3830
3831 static void
3832 mark_memory (start, end)
3833 void *start, *end;
3834 {
3835 Lisp_Object *p;
3836 void **pp;
3837
3838 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3839 nzombies = 0;
3840 #endif
3841
3842 /* Make START the pointer to the start of the memory region,
3843 if it isn't already. */
3844 if (end < start)
3845 {
3846 void *tem = start;
3847 start = end;
3848 end = tem;
3849 }
3850
3851 /* Mark Lisp_Objects. */
3852 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
3853 mark_maybe_object (*p);
3854
3855 /* Mark Lisp data pointed to. This is necessary because, in some
3856 situations, the C compiler optimizes Lisp objects away, so that
3857 only a pointer to them remains. Example:
3858
3859 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
3860 ()
3861 {
3862 Lisp_Object obj = build_string ("test");
3863 struct Lisp_String *s = XSTRING (obj);
3864 Fgarbage_collect ();
3865 fprintf (stderr, "test `%s'\n", s->data);
3866 return Qnil;
3867 }
3868
3869 Here, `obj' isn't really used, and the compiler optimizes it
3870 away. The only reference to the life string is through the
3871 pointer `s'. */
3872
3873 for (pp = (void **) start; (void *) pp < end; ++pp)
3874 mark_maybe_pointer (*pp);
3875 }
3876
3877 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
3878 the GCC system configuration. In gcc 3.2, the only systems for
3879 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
3880 by others?) and ns32k-pc532-min. */
3881
3882 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3883
3884 static int setjmp_tested_p, longjmps_done;
3885
3886 #define SETJMP_WILL_LIKELY_WORK "\
3887 \n\
3888 Emacs garbage collector has been changed to use conservative stack\n\
3889 marking. Emacs has determined that the method it uses to do the\n\
3890 marking will likely work on your system, but this isn't sure.\n\
3891 \n\
3892 If you are a system-programmer, or can get the help of a local wizard\n\
3893 who is, please take a look at the function mark_stack in alloc.c, and\n\
3894 verify that the methods used are appropriate for your system.\n\
3895 \n\
3896 Please mail the result to <emacs-devel@gnu.org>.\n\
3897 "
3898
3899 #define SETJMP_WILL_NOT_WORK "\
3900 \n\
3901 Emacs garbage collector has been changed to use conservative stack\n\
3902 marking. Emacs has determined that the default method it uses to do the\n\
3903 marking will not work on your system. We will need a system-dependent\n\
3904 solution for your system.\n\
3905 \n\
3906 Please take a look at the function mark_stack in alloc.c, and\n\
3907 try to find a way to make it work on your system.\n\
3908 \n\
3909 Note that you may get false negatives, depending on the compiler.\n\
3910 In particular, you need to use -O with GCC for this test.\n\
3911 \n\
3912 Please mail the result to <emacs-devel@gnu.org>.\n\
3913 "
3914
3915
3916 /* Perform a quick check if it looks like setjmp saves registers in a
3917 jmp_buf. Print a message to stderr saying so. When this test
3918 succeeds, this is _not_ a proof that setjmp is sufficient for
3919 conservative stack marking. Only the sources or a disassembly
3920 can prove that. */
3921
3922 static void
3923 test_setjmp ()
3924 {
3925 char buf[10];
3926 register int x;
3927 jmp_buf jbuf;
3928 int result = 0;
3929
3930 /* Arrange for X to be put in a register. */
3931 sprintf (buf, "1");
3932 x = strlen (buf);
3933 x = 2 * x - 1;
3934
3935 setjmp (jbuf);
3936 if (longjmps_done == 1)
3937 {
3938 /* Came here after the longjmp at the end of the function.
3939
3940 If x == 1, the longjmp has restored the register to its
3941 value before the setjmp, and we can hope that setjmp
3942 saves all such registers in the jmp_buf, although that
3943 isn't sure.
3944
3945 For other values of X, either something really strange is
3946 taking place, or the setjmp just didn't save the register. */
3947
3948 if (x == 1)
3949 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3950 else
3951 {
3952 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3953 exit (1);
3954 }
3955 }
3956
3957 ++longjmps_done;
3958 x = 2;
3959 if (longjmps_done == 1)
3960 longjmp (jbuf, 1);
3961 }
3962
3963 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3964
3965
3966 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3967
3968 /* Abort if anything GCPRO'd doesn't survive the GC. */
3969
3970 static void
3971 check_gcpros ()
3972 {
3973 struct gcpro *p;
3974 int i;
3975
3976 for (p = gcprolist; p; p = p->next)
3977 for (i = 0; i < p->nvars; ++i)
3978 if (!survives_gc_p (p->var[i]))
3979 /* FIXME: It's not necessarily a bug. It might just be that the
3980 GCPRO is unnecessary or should release the object sooner. */
3981 abort ();
3982 }
3983
3984 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3985
3986 static void
3987 dump_zombies ()
3988 {
3989 int i;
3990
3991 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3992 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3993 {
3994 fprintf (stderr, " %d = ", i);
3995 debug_print (zombies[i]);
3996 }
3997 }
3998
3999 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4000
4001
4002 /* Mark live Lisp objects on the C stack.
4003
4004 There are several system-dependent problems to consider when
4005 porting this to new architectures:
4006
4007 Processor Registers
4008
4009 We have to mark Lisp objects in CPU registers that can hold local
4010 variables or are used to pass parameters.
4011
4012 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4013 something that either saves relevant registers on the stack, or
4014 calls mark_maybe_object passing it each register's contents.
4015
4016 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4017 implementation assumes that calling setjmp saves registers we need
4018 to see in a jmp_buf which itself lies on the stack. This doesn't
4019 have to be true! It must be verified for each system, possibly
4020 by taking a look at the source code of setjmp.
4021
4022 Stack Layout
4023
4024 Architectures differ in the way their processor stack is organized.
4025 For example, the stack might look like this
4026
4027 +----------------+
4028 | Lisp_Object | size = 4
4029 +----------------+
4030 | something else | size = 2
4031 +----------------+
4032 | Lisp_Object | size = 4
4033 +----------------+
4034 | ... |
4035
4036 In such a case, not every Lisp_Object will be aligned equally. To
4037 find all Lisp_Object on the stack it won't be sufficient to walk
4038 the stack in steps of 4 bytes. Instead, two passes will be
4039 necessary, one starting at the start of the stack, and a second
4040 pass starting at the start of the stack + 2. Likewise, if the
4041 minimal alignment of Lisp_Objects on the stack is 1, four passes
4042 would be necessary, each one starting with one byte more offset
4043 from the stack start.
4044
4045 The current code assumes by default that Lisp_Objects are aligned
4046 equally on the stack. */
4047
4048 static void
4049 mark_stack ()
4050 {
4051 int i;
4052 jmp_buf j;
4053 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4054 void *end;
4055
4056 /* This trick flushes the register windows so that all the state of
4057 the process is contained in the stack. */
4058 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4059 needed on ia64 too. See mach_dep.c, where it also says inline
4060 assembler doesn't work with relevant proprietary compilers. */
4061 #ifdef sparc
4062 asm ("ta 3");
4063 #endif
4064
4065 /* Save registers that we need to see on the stack. We need to see
4066 registers used to hold register variables and registers used to
4067 pass parameters. */
4068 #ifdef GC_SAVE_REGISTERS_ON_STACK
4069 GC_SAVE_REGISTERS_ON_STACK (end);
4070 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4071
4072 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4073 setjmp will definitely work, test it
4074 and print a message with the result
4075 of the test. */
4076 if (!setjmp_tested_p)
4077 {
4078 setjmp_tested_p = 1;
4079 test_setjmp ();
4080 }
4081 #endif /* GC_SETJMP_WORKS */
4082
4083 setjmp (j);
4084 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4085 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4086
4087 /* This assumes that the stack is a contiguous region in memory. If
4088 that's not the case, something has to be done here to iterate
4089 over the stack segments. */
4090 #ifndef GC_LISP_OBJECT_ALIGNMENT
4091 #ifdef __GNUC__
4092 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4093 #else
4094 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4095 #endif
4096 #endif
4097 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4098 mark_memory ((char *) stack_base + i, end);
4099
4100 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4101 check_gcpros ();
4102 #endif
4103 }
4104
4105
4106 #endif /* GC_MARK_STACK != 0 */
4107
4108
4109 \f
4110 /***********************************************************************
4111 Pure Storage Management
4112 ***********************************************************************/
4113
4114 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4115 pointer to it. TYPE is the Lisp type for which the memory is
4116 allocated. TYPE < 0 means it's not used for a Lisp object.
4117
4118 If store_pure_type_info is set and TYPE is >= 0, the type of
4119 the allocated object is recorded in pure_types. */
4120
4121 static POINTER_TYPE *
4122 pure_alloc (size, type)
4123 size_t size;
4124 int type;
4125 {
4126 POINTER_TYPE *result;
4127 #ifdef USE_LSB_TAG
4128 size_t alignment = (1 << GCTYPEBITS);
4129 #else
4130 size_t alignment = sizeof (EMACS_INT);
4131
4132 /* Give Lisp_Floats an extra alignment. */
4133 if (type == Lisp_Float)
4134 {
4135 #if defined __GNUC__ && __GNUC__ >= 2
4136 alignment = __alignof (struct Lisp_Float);
4137 #else
4138 alignment = sizeof (struct Lisp_Float);
4139 #endif
4140 }
4141 #endif
4142
4143 again:
4144 result = ALIGN (purebeg + pure_bytes_used, alignment);
4145 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4146
4147 if (pure_bytes_used <= pure_size)
4148 return result;
4149
4150 /* Don't allocate a large amount here,
4151 because it might get mmap'd and then its address
4152 might not be usable. */
4153 purebeg = (char *) xmalloc (10000);
4154 pure_size = 10000;
4155 pure_bytes_used_before_overflow += pure_bytes_used - size;
4156 pure_bytes_used = 0;
4157 goto again;
4158 }
4159
4160
4161 /* Print a warning if PURESIZE is too small. */
4162
4163 void
4164 check_pure_size ()
4165 {
4166 if (pure_bytes_used_before_overflow)
4167 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4168 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4169 }
4170
4171
4172 /* Return a string allocated in pure space. DATA is a buffer holding
4173 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4174 non-zero means make the result string multibyte.
4175
4176 Must get an error if pure storage is full, since if it cannot hold
4177 a large string it may be able to hold conses that point to that
4178 string; then the string is not protected from gc. */
4179
4180 Lisp_Object
4181 make_pure_string (data, nchars, nbytes, multibyte)
4182 char *data;
4183 int nchars, nbytes;
4184 int multibyte;
4185 {
4186 Lisp_Object string;
4187 struct Lisp_String *s;
4188
4189 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4190 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4191 s->size = nchars;
4192 s->size_byte = multibyte ? nbytes : -1;
4193 bcopy (data, s->data, nbytes);
4194 s->data[nbytes] = '\0';
4195 s->intervals = NULL_INTERVAL;
4196 XSETSTRING (string, s);
4197 return string;
4198 }
4199
4200
4201 /* Return a cons allocated from pure space. Give it pure copies
4202 of CAR as car and CDR as cdr. */
4203
4204 Lisp_Object
4205 pure_cons (car, cdr)
4206 Lisp_Object car, cdr;
4207 {
4208 register Lisp_Object new;
4209 struct Lisp_Cons *p;
4210
4211 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4212 XSETCONS (new, p);
4213 XSETCAR (new, Fpurecopy (car));
4214 XSETCDR (new, Fpurecopy (cdr));
4215 return new;
4216 }
4217
4218
4219 /* Value is a float object with value NUM allocated from pure space. */
4220
4221 Lisp_Object
4222 make_pure_float (num)
4223 double num;
4224 {
4225 register Lisp_Object new;
4226 struct Lisp_Float *p;
4227
4228 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4229 XSETFLOAT (new, p);
4230 XFLOAT_DATA (new) = num;
4231 return new;
4232 }
4233
4234
4235 /* Return a vector with room for LEN Lisp_Objects allocated from
4236 pure space. */
4237
4238 Lisp_Object
4239 make_pure_vector (len)
4240 EMACS_INT len;
4241 {
4242 Lisp_Object new;
4243 struct Lisp_Vector *p;
4244 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4245
4246 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4247 XSETVECTOR (new, p);
4248 XVECTOR (new)->size = len;
4249 return new;
4250 }
4251
4252
4253 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4254 doc: /* Make a copy of OBJECT in pure storage.
4255 Recursively copies contents of vectors and cons cells.
4256 Does not copy symbols. Copies strings without text properties. */)
4257 (obj)
4258 register Lisp_Object obj;
4259 {
4260 if (NILP (Vpurify_flag))
4261 return obj;
4262
4263 if (PURE_POINTER_P (XPNTR (obj)))
4264 return obj;
4265
4266 if (CONSP (obj))
4267 return pure_cons (XCAR (obj), XCDR (obj));
4268 else if (FLOATP (obj))
4269 return make_pure_float (XFLOAT_DATA (obj));
4270 else if (STRINGP (obj))
4271 return make_pure_string (SDATA (obj), SCHARS (obj),
4272 SBYTES (obj),
4273 STRING_MULTIBYTE (obj));
4274 else if (COMPILEDP (obj) || VECTORP (obj))
4275 {
4276 register struct Lisp_Vector *vec;
4277 register int i;
4278 EMACS_INT size;
4279
4280 size = XVECTOR (obj)->size;
4281 if (size & PSEUDOVECTOR_FLAG)
4282 size &= PSEUDOVECTOR_SIZE_MASK;
4283 vec = XVECTOR (make_pure_vector (size));
4284 for (i = 0; i < size; i++)
4285 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4286 if (COMPILEDP (obj))
4287 XSETCOMPILED (obj, vec);
4288 else
4289 XSETVECTOR (obj, vec);
4290 return obj;
4291 }
4292 else if (MARKERP (obj))
4293 error ("Attempt to copy a marker to pure storage");
4294
4295 return obj;
4296 }
4297
4298
4299 \f
4300 /***********************************************************************
4301 Protection from GC
4302 ***********************************************************************/
4303
4304 /* Put an entry in staticvec, pointing at the variable with address
4305 VARADDRESS. */
4306
4307 void
4308 staticpro (varaddress)
4309 Lisp_Object *varaddress;
4310 {
4311 staticvec[staticidx++] = varaddress;
4312 if (staticidx >= NSTATICS)
4313 abort ();
4314 }
4315
4316 struct catchtag
4317 {
4318 Lisp_Object tag;
4319 Lisp_Object val;
4320 struct catchtag *next;
4321 };
4322
4323 \f
4324 /***********************************************************************
4325 Protection from GC
4326 ***********************************************************************/
4327
4328 /* Temporarily prevent garbage collection. */
4329
4330 int
4331 inhibit_garbage_collection ()
4332 {
4333 int count = SPECPDL_INDEX ();
4334 int nbits = min (VALBITS, BITS_PER_INT);
4335
4336 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4337 return count;
4338 }
4339
4340
4341 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4342 doc: /* Reclaim storage for Lisp objects no longer needed.
4343 Garbage collection happens automatically if you cons more than
4344 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4345 `garbage-collect' normally returns a list with info on amount of space in use:
4346 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4347 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4348 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4349 (USED-STRINGS . FREE-STRINGS))
4350 However, if there was overflow in pure space, `garbage-collect'
4351 returns nil, because real GC can't be done. */)
4352 ()
4353 {
4354 register struct specbinding *bind;
4355 struct catchtag *catch;
4356 struct handler *handler;
4357 char stack_top_variable;
4358 register int i;
4359 int message_p;
4360 Lisp_Object total[8];
4361 int count = SPECPDL_INDEX ();
4362 EMACS_TIME t1, t2, t3;
4363
4364 if (abort_on_gc)
4365 abort ();
4366
4367 EMACS_GET_TIME (t1);
4368
4369 /* Can't GC if pure storage overflowed because we can't determine
4370 if something is a pure object or not. */
4371 if (pure_bytes_used_before_overflow)
4372 return Qnil;
4373
4374 /* In case user calls debug_print during GC,
4375 don't let that cause a recursive GC. */
4376 consing_since_gc = 0;
4377
4378 /* Save what's currently displayed in the echo area. */
4379 message_p = push_message ();
4380 record_unwind_protect (pop_message_unwind, Qnil);
4381
4382 /* Save a copy of the contents of the stack, for debugging. */
4383 #if MAX_SAVE_STACK > 0
4384 if (NILP (Vpurify_flag))
4385 {
4386 i = &stack_top_variable - stack_bottom;
4387 if (i < 0) i = -i;
4388 if (i < MAX_SAVE_STACK)
4389 {
4390 if (stack_copy == 0)
4391 stack_copy = (char *) xmalloc (stack_copy_size = i);
4392 else if (stack_copy_size < i)
4393 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4394 if (stack_copy)
4395 {
4396 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4397 bcopy (stack_bottom, stack_copy, i);
4398 else
4399 bcopy (&stack_top_variable, stack_copy, i);
4400 }
4401 }
4402 }
4403 #endif /* MAX_SAVE_STACK > 0 */
4404
4405 if (garbage_collection_messages)
4406 message1_nolog ("Garbage collecting...");
4407
4408 BLOCK_INPUT;
4409
4410 shrink_regexp_cache ();
4411
4412 /* Don't keep undo information around forever. */
4413 {
4414 register struct buffer *nextb = all_buffers;
4415
4416 while (nextb)
4417 {
4418 /* If a buffer's undo list is Qt, that means that undo is
4419 turned off in that buffer. Calling truncate_undo_list on
4420 Qt tends to return NULL, which effectively turns undo back on.
4421 So don't call truncate_undo_list if undo_list is Qt. */
4422 if (! EQ (nextb->undo_list, Qt))
4423 nextb->undo_list
4424 = truncate_undo_list (nextb->undo_list, undo_limit,
4425 undo_strong_limit, undo_outer_limit);
4426
4427 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4428 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4429 {
4430 /* If a buffer's gap size is more than 10% of the buffer
4431 size, or larger than 2000 bytes, then shrink it
4432 accordingly. Keep a minimum size of 20 bytes. */
4433 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4434
4435 if (nextb->text->gap_size > size)
4436 {
4437 struct buffer *save_current = current_buffer;
4438 current_buffer = nextb;
4439 make_gap (-(nextb->text->gap_size - size));
4440 current_buffer = save_current;
4441 }
4442 }
4443
4444 nextb = nextb->next;
4445 }
4446 }
4447
4448 gc_in_progress = 1;
4449
4450 /* clear_marks (); */
4451
4452 /* Mark all the special slots that serve as the roots of accessibility. */
4453
4454 for (i = 0; i < staticidx; i++)
4455 mark_object (*staticvec[i]);
4456
4457 for (bind = specpdl; bind != specpdl_ptr; bind++)
4458 {
4459 mark_object (bind->symbol);
4460 mark_object (bind->old_value);
4461 }
4462 mark_kboards ();
4463
4464 #ifdef USE_GTK
4465 {
4466 extern void xg_mark_data ();
4467 xg_mark_data ();
4468 }
4469 #endif
4470
4471 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4472 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4473 mark_stack ();
4474 #else
4475 {
4476 register struct gcpro *tail;
4477 for (tail = gcprolist; tail; tail = tail->next)
4478 for (i = 0; i < tail->nvars; i++)
4479 mark_object (tail->var[i]);
4480 }
4481 #endif
4482
4483 mark_byte_stack ();
4484 for (catch = catchlist; catch; catch = catch->next)
4485 {
4486 mark_object (catch->tag);
4487 mark_object (catch->val);
4488 }
4489 for (handler = handlerlist; handler; handler = handler->next)
4490 {
4491 mark_object (handler->handler);
4492 mark_object (handler->var);
4493 }
4494 mark_backtrace ();
4495
4496 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4497 mark_stack ();
4498 #endif
4499
4500 /* Everything is now marked, except for the things that require special
4501 finalization, i.e. the undo_list.
4502 Look thru every buffer's undo list
4503 for elements that update markers that were not marked,
4504 and delete them. */
4505 {
4506 register struct buffer *nextb = all_buffers;
4507
4508 while (nextb)
4509 {
4510 /* If a buffer's undo list is Qt, that means that undo is
4511 turned off in that buffer. Calling truncate_undo_list on
4512 Qt tends to return NULL, which effectively turns undo back on.
4513 So don't call truncate_undo_list if undo_list is Qt. */
4514 if (! EQ (nextb->undo_list, Qt))
4515 {
4516 Lisp_Object tail, prev;
4517 tail = nextb->undo_list;
4518 prev = Qnil;
4519 while (CONSP (tail))
4520 {
4521 if (GC_CONSP (XCAR (tail))
4522 && GC_MARKERP (XCAR (XCAR (tail)))
4523 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4524 {
4525 if (NILP (prev))
4526 nextb->undo_list = tail = XCDR (tail);
4527 else
4528 {
4529 tail = XCDR (tail);
4530 XSETCDR (prev, tail);
4531 }
4532 }
4533 else
4534 {
4535 prev = tail;
4536 tail = XCDR (tail);
4537 }
4538 }
4539 }
4540 /* Now that we have stripped the elements that need not be in the
4541 undo_list any more, we can finally mark the list. */
4542 mark_object (nextb->undo_list);
4543
4544 nextb = nextb->next;
4545 }
4546 }
4547
4548 gc_sweep ();
4549
4550 /* Clear the mark bits that we set in certain root slots. */
4551
4552 unmark_byte_stack ();
4553 VECTOR_UNMARK (&buffer_defaults);
4554 VECTOR_UNMARK (&buffer_local_symbols);
4555
4556 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4557 dump_zombies ();
4558 #endif
4559
4560 UNBLOCK_INPUT;
4561
4562 /* clear_marks (); */
4563 gc_in_progress = 0;
4564
4565 consing_since_gc = 0;
4566 if (gc_cons_threshold < 10000)
4567 gc_cons_threshold = 10000;
4568
4569 if (garbage_collection_messages)
4570 {
4571 if (message_p || minibuf_level > 0)
4572 restore_message ();
4573 else
4574 message1_nolog ("Garbage collecting...done");
4575 }
4576
4577 unbind_to (count, Qnil);
4578
4579 total[0] = Fcons (make_number (total_conses),
4580 make_number (total_free_conses));
4581 total[1] = Fcons (make_number (total_symbols),
4582 make_number (total_free_symbols));
4583 total[2] = Fcons (make_number (total_markers),
4584 make_number (total_free_markers));
4585 total[3] = make_number (total_string_size);
4586 total[4] = make_number (total_vector_size);
4587 total[5] = Fcons (make_number (total_floats),
4588 make_number (total_free_floats));
4589 total[6] = Fcons (make_number (total_intervals),
4590 make_number (total_free_intervals));
4591 total[7] = Fcons (make_number (total_strings),
4592 make_number (total_free_strings));
4593
4594 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4595 {
4596 /* Compute average percentage of zombies. */
4597 double nlive = 0;
4598
4599 for (i = 0; i < 7; ++i)
4600 if (CONSP (total[i]))
4601 nlive += XFASTINT (XCAR (total[i]));
4602
4603 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4604 max_live = max (nlive, max_live);
4605 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4606 max_zombies = max (nzombies, max_zombies);
4607 ++ngcs;
4608 }
4609 #endif
4610
4611 if (!NILP (Vpost_gc_hook))
4612 {
4613 int count = inhibit_garbage_collection ();
4614 safe_run_hooks (Qpost_gc_hook);
4615 unbind_to (count, Qnil);
4616 }
4617
4618 /* Accumulate statistics. */
4619 EMACS_GET_TIME (t2);
4620 EMACS_SUB_TIME (t3, t2, t1);
4621 if (FLOATP (Vgc_elapsed))
4622 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4623 EMACS_SECS (t3) +
4624 EMACS_USECS (t3) * 1.0e-6);
4625 gcs_done++;
4626
4627 return Flist (sizeof total / sizeof *total, total);
4628 }
4629
4630
4631 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4632 only interesting objects referenced from glyphs are strings. */
4633
4634 static void
4635 mark_glyph_matrix (matrix)
4636 struct glyph_matrix *matrix;
4637 {
4638 struct glyph_row *row = matrix->rows;
4639 struct glyph_row *end = row + matrix->nrows;
4640
4641 for (; row < end; ++row)
4642 if (row->enabled_p)
4643 {
4644 int area;
4645 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4646 {
4647 struct glyph *glyph = row->glyphs[area];
4648 struct glyph *end_glyph = glyph + row->used[area];
4649
4650 for (; glyph < end_glyph; ++glyph)
4651 if (GC_STRINGP (glyph->object)
4652 && !STRING_MARKED_P (XSTRING (glyph->object)))
4653 mark_object (glyph->object);
4654 }
4655 }
4656 }
4657
4658
4659 /* Mark Lisp faces in the face cache C. */
4660
4661 static void
4662 mark_face_cache (c)
4663 struct face_cache *c;
4664 {
4665 if (c)
4666 {
4667 int i, j;
4668 for (i = 0; i < c->used; ++i)
4669 {
4670 struct face *face = FACE_FROM_ID (c->f, i);
4671
4672 if (face)
4673 {
4674 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4675 mark_object (face->lface[j]);
4676 }
4677 }
4678 }
4679 }
4680
4681
4682 #ifdef HAVE_WINDOW_SYSTEM
4683
4684 /* Mark Lisp objects in image IMG. */
4685
4686 static void
4687 mark_image (img)
4688 struct image *img;
4689 {
4690 mark_object (img->spec);
4691
4692 if (!NILP (img->data.lisp_val))
4693 mark_object (img->data.lisp_val);
4694 }
4695
4696
4697 /* Mark Lisp objects in image cache of frame F. It's done this way so
4698 that we don't have to include xterm.h here. */
4699
4700 static void
4701 mark_image_cache (f)
4702 struct frame *f;
4703 {
4704 forall_images_in_image_cache (f, mark_image);
4705 }
4706
4707 #endif /* HAVE_X_WINDOWS */
4708
4709
4710 \f
4711 /* Mark reference to a Lisp_Object.
4712 If the object referred to has not been seen yet, recursively mark
4713 all the references contained in it. */
4714
4715 #define LAST_MARKED_SIZE 500
4716 Lisp_Object last_marked[LAST_MARKED_SIZE];
4717 int last_marked_index;
4718
4719 /* For debugging--call abort when we cdr down this many
4720 links of a list, in mark_object. In debugging,
4721 the call to abort will hit a breakpoint.
4722 Normally this is zero and the check never goes off. */
4723 int mark_object_loop_halt;
4724
4725 void
4726 mark_object (arg)
4727 Lisp_Object arg;
4728 {
4729 register Lisp_Object obj = arg;
4730 #ifdef GC_CHECK_MARKED_OBJECTS
4731 void *po;
4732 struct mem_node *m;
4733 #endif
4734 int cdr_count = 0;
4735
4736 loop:
4737
4738 if (PURE_POINTER_P (XPNTR (obj)))
4739 return;
4740
4741 last_marked[last_marked_index++] = obj;
4742 if (last_marked_index == LAST_MARKED_SIZE)
4743 last_marked_index = 0;
4744
4745 /* Perform some sanity checks on the objects marked here. Abort if
4746 we encounter an object we know is bogus. This increases GC time
4747 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4748 #ifdef GC_CHECK_MARKED_OBJECTS
4749
4750 po = (void *) XPNTR (obj);
4751
4752 /* Check that the object pointed to by PO is known to be a Lisp
4753 structure allocated from the heap. */
4754 #define CHECK_ALLOCATED() \
4755 do { \
4756 m = mem_find (po); \
4757 if (m == MEM_NIL) \
4758 abort (); \
4759 } while (0)
4760
4761 /* Check that the object pointed to by PO is live, using predicate
4762 function LIVEP. */
4763 #define CHECK_LIVE(LIVEP) \
4764 do { \
4765 if (!LIVEP (m, po)) \
4766 abort (); \
4767 } while (0)
4768
4769 /* Check both of the above conditions. */
4770 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4771 do { \
4772 CHECK_ALLOCATED (); \
4773 CHECK_LIVE (LIVEP); \
4774 } while (0) \
4775
4776 #else /* not GC_CHECK_MARKED_OBJECTS */
4777
4778 #define CHECK_ALLOCATED() (void) 0
4779 #define CHECK_LIVE(LIVEP) (void) 0
4780 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
4781
4782 #endif /* not GC_CHECK_MARKED_OBJECTS */
4783
4784 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
4785 {
4786 case Lisp_String:
4787 {
4788 register struct Lisp_String *ptr = XSTRING (obj);
4789 CHECK_ALLOCATED_AND_LIVE (live_string_p);
4790 MARK_INTERVAL_TREE (ptr->intervals);
4791 MARK_STRING (ptr);
4792 #ifdef GC_CHECK_STRING_BYTES
4793 /* Check that the string size recorded in the string is the
4794 same as the one recorded in the sdata structure. */
4795 CHECK_STRING_BYTES (ptr);
4796 #endif /* GC_CHECK_STRING_BYTES */
4797 }
4798 break;
4799
4800 case Lisp_Vectorlike:
4801 #ifdef GC_CHECK_MARKED_OBJECTS
4802 m = mem_find (po);
4803 if (m == MEM_NIL && !GC_SUBRP (obj)
4804 && po != &buffer_defaults
4805 && po != &buffer_local_symbols)
4806 abort ();
4807 #endif /* GC_CHECK_MARKED_OBJECTS */
4808
4809 if (GC_BUFFERP (obj))
4810 {
4811 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4812 {
4813 #ifdef GC_CHECK_MARKED_OBJECTS
4814 if (po != &buffer_defaults && po != &buffer_local_symbols)
4815 {
4816 struct buffer *b;
4817 for (b = all_buffers; b && b != po; b = b->next)
4818 ;
4819 if (b == NULL)
4820 abort ();
4821 }
4822 #endif /* GC_CHECK_MARKED_OBJECTS */
4823 mark_buffer (obj);
4824 }
4825 }
4826 else if (GC_SUBRP (obj))
4827 break;
4828 else if (GC_COMPILEDP (obj))
4829 /* We could treat this just like a vector, but it is better to
4830 save the COMPILED_CONSTANTS element for last and avoid
4831 recursion there. */
4832 {
4833 register struct Lisp_Vector *ptr = XVECTOR (obj);
4834 register EMACS_INT size = ptr->size;
4835 register int i;
4836
4837 if (VECTOR_MARKED_P (ptr))
4838 break; /* Already marked */
4839
4840 CHECK_LIVE (live_vector_p);
4841 VECTOR_MARK (ptr); /* Else mark it */
4842 size &= PSEUDOVECTOR_SIZE_MASK;
4843 for (i = 0; i < size; i++) /* and then mark its elements */
4844 {
4845 if (i != COMPILED_CONSTANTS)
4846 mark_object (ptr->contents[i]);
4847 }
4848 obj = ptr->contents[COMPILED_CONSTANTS];
4849 goto loop;
4850 }
4851 else if (GC_FRAMEP (obj))
4852 {
4853 register struct frame *ptr = XFRAME (obj);
4854
4855 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4856 VECTOR_MARK (ptr); /* Else mark it */
4857
4858 CHECK_LIVE (live_vector_p);
4859 mark_object (ptr->name);
4860 mark_object (ptr->icon_name);
4861 mark_object (ptr->title);
4862 mark_object (ptr->focus_frame);
4863 mark_object (ptr->selected_window);
4864 mark_object (ptr->minibuffer_window);
4865 mark_object (ptr->param_alist);
4866 mark_object (ptr->scroll_bars);
4867 mark_object (ptr->condemned_scroll_bars);
4868 mark_object (ptr->menu_bar_items);
4869 mark_object (ptr->face_alist);
4870 mark_object (ptr->menu_bar_vector);
4871 mark_object (ptr->buffer_predicate);
4872 mark_object (ptr->buffer_list);
4873 mark_object (ptr->menu_bar_window);
4874 mark_object (ptr->tool_bar_window);
4875 mark_face_cache (ptr->face_cache);
4876 #ifdef HAVE_WINDOW_SYSTEM
4877 mark_image_cache (ptr);
4878 mark_object (ptr->tool_bar_items);
4879 mark_object (ptr->desired_tool_bar_string);
4880 mark_object (ptr->current_tool_bar_string);
4881 #endif /* HAVE_WINDOW_SYSTEM */
4882 }
4883 else if (GC_BOOL_VECTOR_P (obj))
4884 {
4885 register struct Lisp_Vector *ptr = XVECTOR (obj);
4886
4887 if (VECTOR_MARKED_P (ptr))
4888 break; /* Already marked */
4889 CHECK_LIVE (live_vector_p);
4890 VECTOR_MARK (ptr); /* Else mark it */
4891 }
4892 else if (GC_WINDOWP (obj))
4893 {
4894 register struct Lisp_Vector *ptr = XVECTOR (obj);
4895 struct window *w = XWINDOW (obj);
4896 register int i;
4897
4898 /* Stop if already marked. */
4899 if (VECTOR_MARKED_P (ptr))
4900 break;
4901
4902 /* Mark it. */
4903 CHECK_LIVE (live_vector_p);
4904 VECTOR_MARK (ptr);
4905
4906 /* There is no Lisp data above The member CURRENT_MATRIX in
4907 struct WINDOW. Stop marking when that slot is reached. */
4908 for (i = 0;
4909 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
4910 i++)
4911 mark_object (ptr->contents[i]);
4912
4913 /* Mark glyphs for leaf windows. Marking window matrices is
4914 sufficient because frame matrices use the same glyph
4915 memory. */
4916 if (NILP (w->hchild)
4917 && NILP (w->vchild)
4918 && w->current_matrix)
4919 {
4920 mark_glyph_matrix (w->current_matrix);
4921 mark_glyph_matrix (w->desired_matrix);
4922 }
4923 }
4924 else if (GC_HASH_TABLE_P (obj))
4925 {
4926 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
4927
4928 /* Stop if already marked. */
4929 if (VECTOR_MARKED_P (h))
4930 break;
4931
4932 /* Mark it. */
4933 CHECK_LIVE (live_vector_p);
4934 VECTOR_MARK (h);
4935
4936 /* Mark contents. */
4937 /* Do not mark next_free or next_weak.
4938 Being in the next_weak chain
4939 should not keep the hash table alive.
4940 No need to mark `count' since it is an integer. */
4941 mark_object (h->test);
4942 mark_object (h->weak);
4943 mark_object (h->rehash_size);
4944 mark_object (h->rehash_threshold);
4945 mark_object (h->hash);
4946 mark_object (h->next);
4947 mark_object (h->index);
4948 mark_object (h->user_hash_function);
4949 mark_object (h->user_cmp_function);
4950
4951 /* If hash table is not weak, mark all keys and values.
4952 For weak tables, mark only the vector. */
4953 if (GC_NILP (h->weak))
4954 mark_object (h->key_and_value);
4955 else
4956 VECTOR_MARK (XVECTOR (h->key_and_value));
4957 }
4958 else
4959 {
4960 register struct Lisp_Vector *ptr = XVECTOR (obj);
4961 register EMACS_INT size = ptr->size;
4962 register int i;
4963
4964 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4965 CHECK_LIVE (live_vector_p);
4966 VECTOR_MARK (ptr); /* Else mark it */
4967 if (size & PSEUDOVECTOR_FLAG)
4968 size &= PSEUDOVECTOR_SIZE_MASK;
4969
4970 for (i = 0; i < size; i++) /* and then mark its elements */
4971 mark_object (ptr->contents[i]);
4972 }
4973 break;
4974
4975 case Lisp_Symbol:
4976 {
4977 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
4978 struct Lisp_Symbol *ptrx;
4979
4980 if (ptr->gcmarkbit) break;
4981 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
4982 ptr->gcmarkbit = 1;
4983 mark_object (ptr->value);
4984 mark_object (ptr->function);
4985 mark_object (ptr->plist);
4986
4987 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
4988 MARK_STRING (XSTRING (ptr->xname));
4989 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
4990
4991 /* Note that we do not mark the obarray of the symbol.
4992 It is safe not to do so because nothing accesses that
4993 slot except to check whether it is nil. */
4994 ptr = ptr->next;
4995 if (ptr)
4996 {
4997 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
4998 XSETSYMBOL (obj, ptrx);
4999 goto loop;
5000 }
5001 }
5002 break;
5003
5004 case Lisp_Misc:
5005 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5006 if (XMARKER (obj)->gcmarkbit)
5007 break;
5008 XMARKER (obj)->gcmarkbit = 1;
5009
5010 switch (XMISCTYPE (obj))
5011 {
5012 case Lisp_Misc_Buffer_Local_Value:
5013 case Lisp_Misc_Some_Buffer_Local_Value:
5014 {
5015 register struct Lisp_Buffer_Local_Value *ptr
5016 = XBUFFER_LOCAL_VALUE (obj);
5017 /* If the cdr is nil, avoid recursion for the car. */
5018 if (EQ (ptr->cdr, Qnil))
5019 {
5020 obj = ptr->realvalue;
5021 goto loop;
5022 }
5023 mark_object (ptr->realvalue);
5024 mark_object (ptr->buffer);
5025 mark_object (ptr->frame);
5026 obj = ptr->cdr;
5027 goto loop;
5028 }
5029
5030 case Lisp_Misc_Marker:
5031 /* DO NOT mark thru the marker's chain.
5032 The buffer's markers chain does not preserve markers from gc;
5033 instead, markers are removed from the chain when freed by gc. */
5034 break;
5035
5036 case Lisp_Misc_Intfwd:
5037 case Lisp_Misc_Boolfwd:
5038 case Lisp_Misc_Objfwd:
5039 case Lisp_Misc_Buffer_Objfwd:
5040 case Lisp_Misc_Kboard_Objfwd:
5041 /* Don't bother with Lisp_Buffer_Objfwd,
5042 since all markable slots in current buffer marked anyway. */
5043 /* Don't need to do Lisp_Objfwd, since the places they point
5044 are protected with staticpro. */
5045 break;
5046
5047 case Lisp_Misc_Save_Value:
5048 #if GC_MARK_STACK
5049 {
5050 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5051 /* If DOGC is set, POINTER is the address of a memory
5052 area containing INTEGER potential Lisp_Objects. */
5053 if (ptr->dogc)
5054 {
5055 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5056 int nelt;
5057 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5058 mark_maybe_object (*p);
5059 }
5060 }
5061 #endif
5062 break;
5063
5064 case Lisp_Misc_Overlay:
5065 {
5066 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5067 mark_object (ptr->start);
5068 mark_object (ptr->end);
5069 mark_object (ptr->plist);
5070 if (ptr->next)
5071 {
5072 XSETMISC (obj, ptr->next);
5073 goto loop;
5074 }
5075 }
5076 break;
5077
5078 default:
5079 abort ();
5080 }
5081 break;
5082
5083 case Lisp_Cons:
5084 {
5085 register struct Lisp_Cons *ptr = XCONS (obj);
5086 if (CONS_MARKED_P (ptr)) break;
5087 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5088 CONS_MARK (ptr);
5089 /* If the cdr is nil, avoid recursion for the car. */
5090 if (EQ (ptr->cdr, Qnil))
5091 {
5092 obj = ptr->car;
5093 cdr_count = 0;
5094 goto loop;
5095 }
5096 mark_object (ptr->car);
5097 obj = ptr->cdr;
5098 cdr_count++;
5099 if (cdr_count == mark_object_loop_halt)
5100 abort ();
5101 goto loop;
5102 }
5103
5104 case Lisp_Float:
5105 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5106 FLOAT_MARK (XFLOAT (obj));
5107 break;
5108
5109 case Lisp_Int:
5110 break;
5111
5112 default:
5113 abort ();
5114 }
5115
5116 #undef CHECK_LIVE
5117 #undef CHECK_ALLOCATED
5118 #undef CHECK_ALLOCATED_AND_LIVE
5119 }
5120
5121 /* Mark the pointers in a buffer structure. */
5122
5123 static void
5124 mark_buffer (buf)
5125 Lisp_Object buf;
5126 {
5127 register struct buffer *buffer = XBUFFER (buf);
5128 register Lisp_Object *ptr, tmp;
5129 Lisp_Object base_buffer;
5130
5131 VECTOR_MARK (buffer);
5132
5133 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5134
5135 /* For now, we just don't mark the undo_list. It's done later in
5136 a special way just before the sweep phase, and after stripping
5137 some of its elements that are not needed any more. */
5138
5139 if (buffer->overlays_before)
5140 {
5141 XSETMISC (tmp, buffer->overlays_before);
5142 mark_object (tmp);
5143 }
5144 if (buffer->overlays_after)
5145 {
5146 XSETMISC (tmp, buffer->overlays_after);
5147 mark_object (tmp);
5148 }
5149
5150 for (ptr = &buffer->name;
5151 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5152 ptr++)
5153 mark_object (*ptr);
5154
5155 /* If this is an indirect buffer, mark its base buffer. */
5156 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5157 {
5158 XSETBUFFER (base_buffer, buffer->base_buffer);
5159 mark_buffer (base_buffer);
5160 }
5161 }
5162
5163
5164 /* Value is non-zero if OBJ will survive the current GC because it's
5165 either marked or does not need to be marked to survive. */
5166
5167 int
5168 survives_gc_p (obj)
5169 Lisp_Object obj;
5170 {
5171 int survives_p;
5172
5173 switch (XGCTYPE (obj))
5174 {
5175 case Lisp_Int:
5176 survives_p = 1;
5177 break;
5178
5179 case Lisp_Symbol:
5180 survives_p = XSYMBOL (obj)->gcmarkbit;
5181 break;
5182
5183 case Lisp_Misc:
5184 survives_p = XMARKER (obj)->gcmarkbit;
5185 break;
5186
5187 case Lisp_String:
5188 survives_p = STRING_MARKED_P (XSTRING (obj));
5189 break;
5190
5191 case Lisp_Vectorlike:
5192 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5193 break;
5194
5195 case Lisp_Cons:
5196 survives_p = CONS_MARKED_P (XCONS (obj));
5197 break;
5198
5199 case Lisp_Float:
5200 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5201 break;
5202
5203 default:
5204 abort ();
5205 }
5206
5207 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5208 }
5209
5210
5211 \f
5212 /* Sweep: find all structures not marked, and free them. */
5213
5214 static void
5215 gc_sweep ()
5216 {
5217 /* Remove or mark entries in weak hash tables.
5218 This must be done before any object is unmarked. */
5219 sweep_weak_hash_tables ();
5220
5221 sweep_strings ();
5222 #ifdef GC_CHECK_STRING_BYTES
5223 if (!noninteractive)
5224 check_string_bytes (1);
5225 #endif
5226
5227 /* Put all unmarked conses on free list */
5228 {
5229 register struct cons_block *cblk;
5230 struct cons_block **cprev = &cons_block;
5231 register int lim = cons_block_index;
5232 register int num_free = 0, num_used = 0;
5233
5234 cons_free_list = 0;
5235
5236 for (cblk = cons_block; cblk; cblk = *cprev)
5237 {
5238 register int i;
5239 int this_free = 0;
5240 for (i = 0; i < lim; i++)
5241 if (!CONS_MARKED_P (&cblk->conses[i]))
5242 {
5243 this_free++;
5244 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5245 cons_free_list = &cblk->conses[i];
5246 #if GC_MARK_STACK
5247 cons_free_list->car = Vdead;
5248 #endif
5249 }
5250 else
5251 {
5252 num_used++;
5253 CONS_UNMARK (&cblk->conses[i]);
5254 }
5255 lim = CONS_BLOCK_SIZE;
5256 /* If this block contains only free conses and we have already
5257 seen more than two blocks worth of free conses then deallocate
5258 this block. */
5259 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5260 {
5261 *cprev = cblk->next;
5262 /* Unhook from the free list. */
5263 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5264 lisp_align_free (cblk);
5265 n_cons_blocks--;
5266 }
5267 else
5268 {
5269 num_free += this_free;
5270 cprev = &cblk->next;
5271 }
5272 }
5273 total_conses = num_used;
5274 total_free_conses = num_free;
5275 }
5276
5277 /* Put all unmarked floats on free list */
5278 {
5279 register struct float_block *fblk;
5280 struct float_block **fprev = &float_block;
5281 register int lim = float_block_index;
5282 register int num_free = 0, num_used = 0;
5283
5284 float_free_list = 0;
5285
5286 for (fblk = float_block; fblk; fblk = *fprev)
5287 {
5288 register int i;
5289 int this_free = 0;
5290 for (i = 0; i < lim; i++)
5291 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5292 {
5293 this_free++;
5294 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5295 float_free_list = &fblk->floats[i];
5296 }
5297 else
5298 {
5299 num_used++;
5300 FLOAT_UNMARK (&fblk->floats[i]);
5301 }
5302 lim = FLOAT_BLOCK_SIZE;
5303 /* If this block contains only free floats and we have already
5304 seen more than two blocks worth of free floats then deallocate
5305 this block. */
5306 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5307 {
5308 *fprev = fblk->next;
5309 /* Unhook from the free list. */
5310 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5311 lisp_align_free (fblk);
5312 n_float_blocks--;
5313 }
5314 else
5315 {
5316 num_free += this_free;
5317 fprev = &fblk->next;
5318 }
5319 }
5320 total_floats = num_used;
5321 total_free_floats = num_free;
5322 }
5323
5324 /* Put all unmarked intervals on free list */
5325 {
5326 register struct interval_block *iblk;
5327 struct interval_block **iprev = &interval_block;
5328 register int lim = interval_block_index;
5329 register int num_free = 0, num_used = 0;
5330
5331 interval_free_list = 0;
5332
5333 for (iblk = interval_block; iblk; iblk = *iprev)
5334 {
5335 register int i;
5336 int this_free = 0;
5337
5338 for (i = 0; i < lim; i++)
5339 {
5340 if (!iblk->intervals[i].gcmarkbit)
5341 {
5342 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5343 interval_free_list = &iblk->intervals[i];
5344 this_free++;
5345 }
5346 else
5347 {
5348 num_used++;
5349 iblk->intervals[i].gcmarkbit = 0;
5350 }
5351 }
5352 lim = INTERVAL_BLOCK_SIZE;
5353 /* If this block contains only free intervals and we have already
5354 seen more than two blocks worth of free intervals then
5355 deallocate this block. */
5356 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5357 {
5358 *iprev = iblk->next;
5359 /* Unhook from the free list. */
5360 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5361 lisp_free (iblk);
5362 n_interval_blocks--;
5363 }
5364 else
5365 {
5366 num_free += this_free;
5367 iprev = &iblk->next;
5368 }
5369 }
5370 total_intervals = num_used;
5371 total_free_intervals = num_free;
5372 }
5373
5374 /* Put all unmarked symbols on free list */
5375 {
5376 register struct symbol_block *sblk;
5377 struct symbol_block **sprev = &symbol_block;
5378 register int lim = symbol_block_index;
5379 register int num_free = 0, num_used = 0;
5380
5381 symbol_free_list = NULL;
5382
5383 for (sblk = symbol_block; sblk; sblk = *sprev)
5384 {
5385 int this_free = 0;
5386 struct Lisp_Symbol *sym = sblk->symbols;
5387 struct Lisp_Symbol *end = sym + lim;
5388
5389 for (; sym < end; ++sym)
5390 {
5391 /* Check if the symbol was created during loadup. In such a case
5392 it might be pointed to by pure bytecode which we don't trace,
5393 so we conservatively assume that it is live. */
5394 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5395
5396 if (!sym->gcmarkbit && !pure_p)
5397 {
5398 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5399 symbol_free_list = sym;
5400 #if GC_MARK_STACK
5401 symbol_free_list->function = Vdead;
5402 #endif
5403 ++this_free;
5404 }
5405 else
5406 {
5407 ++num_used;
5408 if (!pure_p)
5409 UNMARK_STRING (XSTRING (sym->xname));
5410 sym->gcmarkbit = 0;
5411 }
5412 }
5413
5414 lim = SYMBOL_BLOCK_SIZE;
5415 /* If this block contains only free symbols and we have already
5416 seen more than two blocks worth of free symbols then deallocate
5417 this block. */
5418 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5419 {
5420 *sprev = sblk->next;
5421 /* Unhook from the free list. */
5422 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5423 lisp_free (sblk);
5424 n_symbol_blocks--;
5425 }
5426 else
5427 {
5428 num_free += this_free;
5429 sprev = &sblk->next;
5430 }
5431 }
5432 total_symbols = num_used;
5433 total_free_symbols = num_free;
5434 }
5435
5436 /* Put all unmarked misc's on free list.
5437 For a marker, first unchain it from the buffer it points into. */
5438 {
5439 register struct marker_block *mblk;
5440 struct marker_block **mprev = &marker_block;
5441 register int lim = marker_block_index;
5442 register int num_free = 0, num_used = 0;
5443
5444 marker_free_list = 0;
5445
5446 for (mblk = marker_block; mblk; mblk = *mprev)
5447 {
5448 register int i;
5449 int this_free = 0;
5450
5451 for (i = 0; i < lim; i++)
5452 {
5453 if (!mblk->markers[i].u_marker.gcmarkbit)
5454 {
5455 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5456 unchain_marker (&mblk->markers[i].u_marker);
5457 /* Set the type of the freed object to Lisp_Misc_Free.
5458 We could leave the type alone, since nobody checks it,
5459 but this might catch bugs faster. */
5460 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5461 mblk->markers[i].u_free.chain = marker_free_list;
5462 marker_free_list = &mblk->markers[i];
5463 this_free++;
5464 }
5465 else
5466 {
5467 num_used++;
5468 mblk->markers[i].u_marker.gcmarkbit = 0;
5469 }
5470 }
5471 lim = MARKER_BLOCK_SIZE;
5472 /* If this block contains only free markers and we have already
5473 seen more than two blocks worth of free markers then deallocate
5474 this block. */
5475 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5476 {
5477 *mprev = mblk->next;
5478 /* Unhook from the free list. */
5479 marker_free_list = mblk->markers[0].u_free.chain;
5480 lisp_free (mblk);
5481 n_marker_blocks--;
5482 }
5483 else
5484 {
5485 num_free += this_free;
5486 mprev = &mblk->next;
5487 }
5488 }
5489
5490 total_markers = num_used;
5491 total_free_markers = num_free;
5492 }
5493
5494 /* Free all unmarked buffers */
5495 {
5496 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5497
5498 while (buffer)
5499 if (!VECTOR_MARKED_P (buffer))
5500 {
5501 if (prev)
5502 prev->next = buffer->next;
5503 else
5504 all_buffers = buffer->next;
5505 next = buffer->next;
5506 lisp_free (buffer);
5507 buffer = next;
5508 }
5509 else
5510 {
5511 VECTOR_UNMARK (buffer);
5512 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5513 prev = buffer, buffer = buffer->next;
5514 }
5515 }
5516
5517 /* Free all unmarked vectors */
5518 {
5519 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5520 total_vector_size = 0;
5521
5522 while (vector)
5523 if (!VECTOR_MARKED_P (vector))
5524 {
5525 if (prev)
5526 prev->next = vector->next;
5527 else
5528 all_vectors = vector->next;
5529 next = vector->next;
5530 lisp_free (vector);
5531 n_vectors--;
5532 vector = next;
5533
5534 }
5535 else
5536 {
5537 VECTOR_UNMARK (vector);
5538 if (vector->size & PSEUDOVECTOR_FLAG)
5539 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5540 else
5541 total_vector_size += vector->size;
5542 prev = vector, vector = vector->next;
5543 }
5544 }
5545
5546 #ifdef GC_CHECK_STRING_BYTES
5547 if (!noninteractive)
5548 check_string_bytes (1);
5549 #endif
5550 }
5551
5552
5553
5554 \f
5555 /* Debugging aids. */
5556
5557 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5558 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5559 This may be helpful in debugging Emacs's memory usage.
5560 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5561 ()
5562 {
5563 Lisp_Object end;
5564
5565 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5566
5567 return end;
5568 }
5569
5570 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5571 doc: /* Return a list of counters that measure how much consing there has been.
5572 Each of these counters increments for a certain kind of object.
5573 The counters wrap around from the largest positive integer to zero.
5574 Garbage collection does not decrease them.
5575 The elements of the value are as follows:
5576 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5577 All are in units of 1 = one object consed
5578 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5579 objects consed.
5580 MISCS include overlays, markers, and some internal types.
5581 Frames, windows, buffers, and subprocesses count as vectors
5582 (but the contents of a buffer's text do not count here). */)
5583 ()
5584 {
5585 Lisp_Object consed[8];
5586
5587 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5588 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5589 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5590 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5591 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5592 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5593 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5594 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5595
5596 return Flist (8, consed);
5597 }
5598
5599 int suppress_checking;
5600 void
5601 die (msg, file, line)
5602 const char *msg;
5603 const char *file;
5604 int line;
5605 {
5606 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5607 file, line, msg);
5608 abort ();
5609 }
5610 \f
5611 /* Initialization */
5612
5613 void
5614 init_alloc_once ()
5615 {
5616 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5617 purebeg = PUREBEG;
5618 pure_size = PURESIZE;
5619 pure_bytes_used = 0;
5620 pure_bytes_used_before_overflow = 0;
5621
5622 /* Initialize the list of free aligned blocks. */
5623 free_ablock = NULL;
5624
5625 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5626 mem_init ();
5627 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5628 #endif
5629
5630 all_vectors = 0;
5631 ignore_warnings = 1;
5632 #ifdef DOUG_LEA_MALLOC
5633 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5634 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5635 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5636 #endif
5637 init_strings ();
5638 init_cons ();
5639 init_symbol ();
5640 init_marker ();
5641 init_float ();
5642 init_intervals ();
5643
5644 #ifdef REL_ALLOC
5645 malloc_hysteresis = 32;
5646 #else
5647 malloc_hysteresis = 0;
5648 #endif
5649
5650 spare_memory = (char *) malloc (SPARE_MEMORY);
5651
5652 ignore_warnings = 0;
5653 gcprolist = 0;
5654 byte_stack_list = 0;
5655 staticidx = 0;
5656 consing_since_gc = 0;
5657 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5658 #ifdef VIRT_ADDR_VARIES
5659 malloc_sbrk_unused = 1<<22; /* A large number */
5660 malloc_sbrk_used = 100000; /* as reasonable as any number */
5661 #endif /* VIRT_ADDR_VARIES */
5662 }
5663
5664 void
5665 init_alloc ()
5666 {
5667 gcprolist = 0;
5668 byte_stack_list = 0;
5669 #if GC_MARK_STACK
5670 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5671 setjmp_tested_p = longjmps_done = 0;
5672 #endif
5673 #endif
5674 Vgc_elapsed = make_float (0.0);
5675 gcs_done = 0;
5676 }
5677
5678 void
5679 syms_of_alloc ()
5680 {
5681 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5682 doc: /* *Number of bytes of consing between garbage collections.
5683 Garbage collection can happen automatically once this many bytes have been
5684 allocated since the last garbage collection. All data types count.
5685
5686 Garbage collection happens automatically only when `eval' is called.
5687
5688 By binding this temporarily to a large number, you can effectively
5689 prevent garbage collection during a part of the program. */);
5690
5691 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
5692 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
5693
5694 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
5695 doc: /* Number of cons cells that have been consed so far. */);
5696
5697 DEFVAR_INT ("floats-consed", &floats_consed,
5698 doc: /* Number of floats that have been consed so far. */);
5699
5700 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
5701 doc: /* Number of vector cells that have been consed so far. */);
5702
5703 DEFVAR_INT ("symbols-consed", &symbols_consed,
5704 doc: /* Number of symbols that have been consed so far. */);
5705
5706 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
5707 doc: /* Number of string characters that have been consed so far. */);
5708
5709 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
5710 doc: /* Number of miscellaneous objects that have been consed so far. */);
5711
5712 DEFVAR_INT ("intervals-consed", &intervals_consed,
5713 doc: /* Number of intervals that have been consed so far. */);
5714
5715 DEFVAR_INT ("strings-consed", &strings_consed,
5716 doc: /* Number of strings that have been consed so far. */);
5717
5718 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
5719 doc: /* Non-nil means loading Lisp code in order to dump an executable.
5720 This means that certain objects should be allocated in shared (pure) space. */);
5721
5722 DEFVAR_INT ("undo-limit", &undo_limit,
5723 doc: /* Keep no more undo information once it exceeds this size.
5724 This limit is applied when garbage collection happens.
5725 The size is counted as the number of bytes occupied,
5726 which includes both saved text and other data. */);
5727 undo_limit = 20000;
5728
5729 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
5730 doc: /* Don't keep more than this much size of undo information.
5731 A previous command which pushes the undo list past this size
5732 is entirely forgotten when GC happens.
5733 The size is counted as the number of bytes occupied,
5734 which includes both saved text and other data. */);
5735 undo_strong_limit = 30000;
5736
5737 DEFVAR_INT ("undo-outer-limit", &undo_outer_limit,
5738 doc: /* Don't keep more than this much size of undo information.
5739 If the current command has produced more than this much undo information,
5740 GC discards it. This is a last-ditch limit to prevent memory overflow.
5741 The size is counted as the number of bytes occupied,
5742 which includes both saved text and other data. */);
5743 undo_outer_limit = 300000;
5744
5745 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
5746 doc: /* Non-nil means display messages at start and end of garbage collection. */);
5747 garbage_collection_messages = 0;
5748
5749 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
5750 doc: /* Hook run after garbage collection has finished. */);
5751 Vpost_gc_hook = Qnil;
5752 Qpost_gc_hook = intern ("post-gc-hook");
5753 staticpro (&Qpost_gc_hook);
5754
5755 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
5756 doc: /* Precomputed `signal' argument for memory-full error. */);
5757 /* We build this in advance because if we wait until we need it, we might
5758 not be able to allocate the memory to hold it. */
5759 Vmemory_signal_data
5760 = list2 (Qerror,
5761 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5762
5763 DEFVAR_LISP ("memory-full", &Vmemory_full,
5764 doc: /* Non-nil means we are handling a memory-full error. */);
5765 Vmemory_full = Qnil;
5766
5767 staticpro (&Qgc_cons_threshold);
5768 Qgc_cons_threshold = intern ("gc-cons-threshold");
5769
5770 staticpro (&Qchar_table_extra_slots);
5771 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5772
5773 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
5774 doc: /* Accumulated time elapsed in garbage collections.
5775 The time is in seconds as a floating point value. */);
5776 DEFVAR_INT ("gcs-done", &gcs_done,
5777 doc: /* Accumulated number of garbage collections done. */);
5778
5779 defsubr (&Scons);
5780 defsubr (&Slist);
5781 defsubr (&Svector);
5782 defsubr (&Smake_byte_code);
5783 defsubr (&Smake_list);
5784 defsubr (&Smake_vector);
5785 defsubr (&Smake_char_table);
5786 defsubr (&Smake_string);
5787 defsubr (&Smake_bool_vector);
5788 defsubr (&Smake_symbol);
5789 defsubr (&Smake_marker);
5790 defsubr (&Spurecopy);
5791 defsubr (&Sgarbage_collect);
5792 defsubr (&Smemory_limit);
5793 defsubr (&Smemory_use_counts);
5794
5795 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5796 defsubr (&Sgc_status);
5797 #endif
5798 }
5799
5800 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
5801 (do not change this comment) */