]> code.delx.au - gnu-emacs/blob - src/lisp.h
Merge from emacs-24; up to 2014-06-26T21:51:25Z!rgm@gnu.org.
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2014 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 #define ID_val (some integer preprocessor expression)
40 #if ENUMABLE (ID_val)
41 DEFINE_GDB_SYMBOL_ENUM (ID)
42 #else
43 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
44 # define ID ID_val
45 DEFINE_GDB_SYMBOL_END (ID)
46 #endif
47
48 This hack is for the benefit of compilers that do not make macro
49 definitions visible to the debugger. It's used for symbols that
50 .gdbinit needs, symbols whose values may not fit in 'int' (where an
51 enum would suffice).
52
53 Some GCC versions before GCC 4.2 omit enums in debugging output;
54 see GCC bug 23336. So don't use enums with older GCC. */
55
56 #if !defined __GNUC__ || 4 < __GNUC__ + (2 <= __GNUC_MINOR__)
57 # define ENUMABLE(val) (INT_MIN <= (val) && (val) <= INT_MAX)
58 #else
59 # define ENUMABLE(val) 0
60 #endif
61
62 #define DEFINE_GDB_SYMBOL_ENUM(id) enum { id = id##_val };
63 #if defined MAIN_PROGRAM
64 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) type const id EXTERNALLY_VISIBLE
65 # define DEFINE_GDB_SYMBOL_END(id) = id;
66 #else
67 # define DEFINE_GDB_SYMBOL_BEGIN(type, id)
68 # define DEFINE_GDB_SYMBOL_END(val)
69 #endif
70
71 /* The ubiquitous max and min macros. */
72 #undef min
73 #undef max
74 #define max(a, b) ((a) > (b) ? (a) : (b))
75 #define min(a, b) ((a) < (b) ? (a) : (b))
76
77 /* Number of elements in an array. */
78 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
79
80 /* Number of bits in a Lisp_Object tag. */
81 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
82 #define GCTYPEBITS 3
83 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
84
85 /* The number of bits needed in an EMACS_INT over and above the number
86 of bits in a pointer. This is 0 on systems where:
87 1. We can specify multiple-of-8 alignment on static variables.
88 2. We know malloc returns a multiple of 8. */
89 #if (defined alignas \
90 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
91 || defined DARWIN_OS || defined __sun || defined __MINGW32__))
92 # define NONPOINTER_BITS 0
93 #else
94 # define NONPOINTER_BITS GCTYPEBITS
95 #endif
96
97 /* EMACS_INT - signed integer wide enough to hold an Emacs value
98 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
99 pI - printf length modifier for EMACS_INT
100 EMACS_UINT - unsigned variant of EMACS_INT */
101 #ifndef EMACS_INT_MAX
102 # if INTPTR_MAX <= 0
103 # error "INTPTR_MAX misconfigured"
104 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
105 typedef int EMACS_INT;
106 typedef unsigned int EMACS_UINT;
107 # define EMACS_INT_MAX INT_MAX
108 # define pI ""
109 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
110 typedef long int EMACS_INT;
111 typedef unsigned long EMACS_UINT;
112 # define EMACS_INT_MAX LONG_MAX
113 # define pI "l"
114 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
115 In theory this is not safe, but in practice it seems to be OK. */
116 # elif INTPTR_MAX <= LLONG_MAX
117 typedef long long int EMACS_INT;
118 typedef unsigned long long int EMACS_UINT;
119 # define EMACS_INT_MAX LLONG_MAX
120 # define pI "ll"
121 # else
122 # error "INTPTR_MAX too large"
123 # endif
124 #endif
125
126 /* Number of bits to put in each character in the internal representation
127 of bool vectors. This should not vary across implementations. */
128 enum { BOOL_VECTOR_BITS_PER_CHAR =
129 #define BOOL_VECTOR_BITS_PER_CHAR 8
130 BOOL_VECTOR_BITS_PER_CHAR
131 };
132
133 /* An unsigned integer type representing a fixed-length bit sequence,
134 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
135 for speed, but it is unsigned char on weird platforms. */
136 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
137 typedef size_t bits_word;
138 # define BITS_WORD_MAX SIZE_MAX
139 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
140 #else
141 typedef unsigned char bits_word;
142 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
143 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
144 #endif
145 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
146
147 /* Number of bits in some machine integer types. */
148 enum
149 {
150 BITS_PER_CHAR = CHAR_BIT,
151 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
152 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
153 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
154 };
155
156 /* printmax_t and uprintmax_t are types for printing large integers.
157 These are the widest integers that are supported for printing.
158 pMd etc. are conversions for printing them.
159 On C99 hosts, there's no problem, as even the widest integers work.
160 Fall back on EMACS_INT on pre-C99 hosts. */
161 #ifdef PRIdMAX
162 typedef intmax_t printmax_t;
163 typedef uintmax_t uprintmax_t;
164 # define pMd PRIdMAX
165 # define pMu PRIuMAX
166 #else
167 typedef EMACS_INT printmax_t;
168 typedef EMACS_UINT uprintmax_t;
169 # define pMd pI"d"
170 # define pMu pI"u"
171 #endif
172
173 /* Use pD to format ptrdiff_t values, which suffice for indexes into
174 buffers and strings. Emacs never allocates objects larger than
175 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
176 In C99, pD can always be "t"; configure it here for the sake of
177 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
178 #if PTRDIFF_MAX == INT_MAX
179 # define pD ""
180 #elif PTRDIFF_MAX == LONG_MAX
181 # define pD "l"
182 #elif PTRDIFF_MAX == LLONG_MAX
183 # define pD "ll"
184 #else
185 # define pD "t"
186 #endif
187
188 /* Extra internal type checking? */
189
190 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
191 'assume (COND)'. COND should be free of side effects, as it may or
192 may not be evaluated.
193
194 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
195 defined and suppress_checking is false, and does nothing otherwise.
196 Emacs dies if COND is checked and is false. The suppress_checking
197 variable is initialized to 0 in alloc.c. Set it to 1 using a
198 debugger to temporarily disable aborting on detected internal
199 inconsistencies or error conditions.
200
201 In some cases, a good compiler may be able to optimize away the
202 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
203 uses eassert to test STRINGP (x), but a particular use of XSTRING
204 is invoked only after testing that STRINGP (x) is true, making the
205 test redundant.
206
207 eassume is like eassert except that it also causes the compiler to
208 assume that COND is true afterwards, regardless of whether runtime
209 checking is enabled. This can improve performance in some cases,
210 though it can degrade performance in others. It's often suboptimal
211 for COND to call external functions or access volatile storage. */
212
213 #ifndef ENABLE_CHECKING
214 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
215 # define eassume(cond) assume (cond)
216 #else /* ENABLE_CHECKING */
217
218 extern _Noreturn void die (const char *, const char *, int);
219
220 extern bool suppress_checking EXTERNALLY_VISIBLE;
221
222 # define eassert(cond) \
223 (suppress_checking || (cond) \
224 ? (void) 0 \
225 : die (# cond, __FILE__, __LINE__))
226 # define eassume(cond) \
227 (suppress_checking \
228 ? assume (cond) \
229 : (cond) \
230 ? (void) 0 \
231 : die (# cond, __FILE__, __LINE__))
232 #endif /* ENABLE_CHECKING */
233
234 \f
235 /* Use the configure flag --enable-check-lisp-object-type to make
236 Lisp_Object use a struct type instead of the default int. The flag
237 causes CHECK_LISP_OBJECT_TYPE to be defined. */
238
239 /***** Select the tagging scheme. *****/
240 /* The following option controls the tagging scheme:
241 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
242 always 0, and we can thus use them to hold tag bits, without
243 restricting our addressing space.
244
245 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
246 restricting our possible address range.
247
248 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
249 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
250 on the few static Lisp_Objects used: all the defsubr as well
251 as the two special buffers buffer_defaults and buffer_local_symbols. */
252
253 enum Lisp_Bits
254 {
255 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
256 integer constant, for MSVC. */
257 #define GCALIGNMENT 8
258
259 /* Number of bits in a Lisp_Object value, not counting the tag. */
260 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
261
262 /* Number of bits in a Lisp fixnum tag. */
263 INTTYPEBITS = GCTYPEBITS - 1,
264
265 /* Number of bits in a Lisp fixnum value, not counting the tag. */
266 FIXNUM_BITS = VALBITS + 1
267 };
268
269 #if GCALIGNMENT != 1 << GCTYPEBITS
270 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
271 #endif
272
273 /* The maximum value that can be stored in a EMACS_INT, assuming all
274 bits other than the type bits contribute to a nonnegative signed value.
275 This can be used in #if, e.g., '#if VAL_MAX < UINTPTR_MAX' below. */
276 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
277
278 /* Whether the least-significant bits of an EMACS_INT contain the tag.
279 On hosts where pointers-as-ints do not exceed VAL_MAX, USE_LSB_TAG is:
280 a. unnecessary, because the top bits of an EMACS_INT are unused, and
281 b. slower, because it typically requires extra masking.
282 So, USE_LSB_TAG is true only on hosts where it might be useful. */
283 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
284 #define USE_LSB_TAG (EMACS_INT_MAX >> GCTYPEBITS < INTPTR_MAX)
285 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
286
287 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
288 # error "USE_LSB_TAG not supported on this platform; please report this." \
289 "Try 'configure --with-wide-int' to work around the problem."
290 error !;
291 #endif
292
293 #ifndef alignas
294 # define alignas(alignment) /* empty */
295 # if USE_LSB_TAG
296 # error "USE_LSB_TAG requires alignas"
297 # endif
298 #endif
299
300
301 /* Some operations are so commonly executed that they are implemented
302 as macros, not functions, because otherwise runtime performance would
303 suffer too much when compiling with GCC without optimization.
304 There's no need to inline everything, just the operations that
305 would otherwise cause a serious performance problem.
306
307 For each such operation OP, define a macro lisp_h_OP that contains
308 the operation's implementation. That way, OP can be implemented
309 via a macro definition like this:
310
311 #define OP(x) lisp_h_OP (x)
312
313 and/or via a function definition like this:
314
315 LISP_MACRO_DEFUN (OP, Lisp_Object, (Lisp_Object x), (x))
316
317 which macro-expands to this:
318
319 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
320
321 without worrying about the implementations diverging, since
322 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
323 are intended to be private to this include file, and should not be
324 used elsewhere.
325
326 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
327 functions, once most developers have access to GCC 4.8 or later and
328 can use "gcc -Og" to debug. Maybe in the year 2016. See
329 Bug#11935.
330
331 Commentary for these macros can be found near their corresponding
332 functions, below. */
333
334 #if CHECK_LISP_OBJECT_TYPE
335 # define lisp_h_XLI(o) ((o).i)
336 # define lisp_h_XIL(i) ((Lisp_Object) { i })
337 #else
338 # define lisp_h_XLI(o) (o)
339 # define lisp_h_XIL(i) (i)
340 #endif
341 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
342 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
343 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
344 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
345 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
346 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
347 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
348 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
349 #define lisp_h_INTEGERP(x) ((XTYPE (x) & ~Lisp_Int1) == 0)
350 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
351 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
352 #define lisp_h_NILP(x) EQ (x, Qnil)
353 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
354 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
355 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
356 #define lisp_h_SYMBOL_VAL(sym) \
357 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
358 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
359 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
360 #define lisp_h_XCAR(c) XCONS (c)->car
361 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
362 #define lisp_h_XCONS(a) \
363 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
364 #define lisp_h_XHASH(a) XUINT (a)
365 #define lisp_h_XPNTR(a) ((void *) (intptr_t) (XLI (a) & VALMASK))
366 #define lisp_h_XSYMBOL(a) \
367 (eassert (SYMBOLP (a)), (struct Lisp_Symbol *) XUNTAG (a, Lisp_Symbol))
368 #ifndef GC_CHECK_CONS_LIST
369 # define lisp_h_check_cons_list() ((void) 0)
370 #endif
371 #if USE_LSB_TAG
372 # define lisp_h_make_number(n) \
373 XIL ((EMACS_INT) ((EMACS_UINT) (n) << INTTYPEBITS))
374 # define lisp_h_XFASTINT(a) XINT (a)
375 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
376 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
377 # define lisp_h_XUNTAG(a, type) ((void *) (XLI (a) - (type)))
378 #endif
379
380 /* When compiling via gcc -O0, define the key operations as macros, as
381 Emacs is too slow otherwise. To disable this optimization, compile
382 with -DINLINING=false. */
383 #if (defined __NO_INLINE__ \
384 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
385 && ! (defined INLINING && ! INLINING))
386 # define XLI(o) lisp_h_XLI (o)
387 # define XIL(i) lisp_h_XIL (i)
388 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
389 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
390 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
391 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
392 # define CONSP(x) lisp_h_CONSP (x)
393 # define EQ(x, y) lisp_h_EQ (x, y)
394 # define FLOATP(x) lisp_h_FLOATP (x)
395 # define INTEGERP(x) lisp_h_INTEGERP (x)
396 # define MARKERP(x) lisp_h_MARKERP (x)
397 # define MISCP(x) lisp_h_MISCP (x)
398 # define NILP(x) lisp_h_NILP (x)
399 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
400 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
401 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
402 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
403 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
404 # define XCAR(c) lisp_h_XCAR (c)
405 # define XCDR(c) lisp_h_XCDR (c)
406 # define XCONS(a) lisp_h_XCONS (a)
407 # define XHASH(a) lisp_h_XHASH (a)
408 # define XPNTR(a) lisp_h_XPNTR (a)
409 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
410 # ifndef GC_CHECK_CONS_LIST
411 # define check_cons_list() lisp_h_check_cons_list ()
412 # endif
413 # if USE_LSB_TAG
414 # define make_number(n) lisp_h_make_number (n)
415 # define XFASTINT(a) lisp_h_XFASTINT (a)
416 # define XINT(a) lisp_h_XINT (a)
417 # define XTYPE(a) lisp_h_XTYPE (a)
418 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
419 # endif
420 #endif
421
422 /* Define NAME as a lisp.h inline function that returns TYPE and has
423 arguments declared as ARGDECLS and passed as ARGS. ARGDECLS and
424 ARGS should be parenthesized. Implement the function by calling
425 lisp_h_NAME ARGS. */
426 #define LISP_MACRO_DEFUN(name, type, argdecls, args) \
427 INLINE type (name) argdecls { return lisp_h_##name args; }
428
429 /* like LISP_MACRO_DEFUN, except NAME returns void. */
430 #define LISP_MACRO_DEFUN_VOID(name, argdecls, args) \
431 INLINE void (name) argdecls { lisp_h_##name args; }
432
433
434 /* Define the fundamental Lisp data structures. */
435
436 /* This is the set of Lisp data types. If you want to define a new
437 data type, read the comments after Lisp_Fwd_Type definition
438 below. */
439
440 /* Lisp integers use 2 tags, to give them one extra bit, thus
441 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
442 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
443 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
444
445 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
446 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
447 vociferously about them. */
448 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
449 || (defined __SUNPRO_C && __STDC__))
450 #define ENUM_BF(TYPE) unsigned int
451 #else
452 #define ENUM_BF(TYPE) enum TYPE
453 #endif
454
455
456 enum Lisp_Type
457 {
458 /* Integer. XINT (obj) is the integer value. */
459 Lisp_Int0 = 0,
460 Lisp_Int1 = USE_LSB_TAG ? 1 << INTTYPEBITS : 1,
461
462 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
463 Lisp_Symbol = 2,
464
465 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
466 whose first member indicates the subtype. */
467 Lisp_Misc = 3,
468
469 /* String. XSTRING (object) points to a struct Lisp_String.
470 The length of the string, and its contents, are stored therein. */
471 Lisp_String = USE_LSB_TAG ? 1 : 1 << INTTYPEBITS,
472
473 /* Vector of Lisp objects, or something resembling it.
474 XVECTOR (object) points to a struct Lisp_Vector, which contains
475 the size and contents. The size field also contains the type
476 information, if it's not a real vector object. */
477 Lisp_Vectorlike = 5,
478
479 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
480 Lisp_Cons = 6,
481
482 Lisp_Float = 7
483 };
484
485 /* This is the set of data types that share a common structure.
486 The first member of the structure is a type code from this set.
487 The enum values are arbitrary, but we'll use large numbers to make it
488 more likely that we'll spot the error if a random word in memory is
489 mistakenly interpreted as a Lisp_Misc. */
490 enum Lisp_Misc_Type
491 {
492 Lisp_Misc_Free = 0x5eab,
493 Lisp_Misc_Marker,
494 Lisp_Misc_Overlay,
495 Lisp_Misc_Save_Value,
496 /* Currently floats are not a misc type,
497 but let's define this in case we want to change that. */
498 Lisp_Misc_Float,
499 /* This is not a type code. It is for range checking. */
500 Lisp_Misc_Limit
501 };
502
503 /* These are the types of forwarding objects used in the value slot
504 of symbols for special built-in variables whose value is stored in
505 C variables. */
506 enum Lisp_Fwd_Type
507 {
508 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
509 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
510 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
511 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
512 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
513 };
514
515 /* If you want to define a new Lisp data type, here are some
516 instructions. See the thread at
517 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
518 for more info.
519
520 First, there are already a couple of Lisp types that can be used if
521 your new type does not need to be exposed to Lisp programs nor
522 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
523 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
524 is suitable for temporarily stashing away pointers and integers in
525 a Lisp object. The latter is useful for vector-like Lisp objects
526 that need to be used as part of other objects, but which are never
527 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
528 an example).
529
530 These two types don't look pretty when printed, so they are
531 unsuitable for Lisp objects that can be exposed to users.
532
533 To define a new data type, add one more Lisp_Misc subtype or one
534 more pseudovector subtype. Pseudovectors are more suitable for
535 objects with several slots that need to support fast random access,
536 while Lisp_Misc types are for everything else. A pseudovector object
537 provides one or more slots for Lisp objects, followed by struct
538 members that are accessible only from C. A Lisp_Misc object is a
539 wrapper for a C struct that can contain anything you like.
540
541 Explicit freeing is discouraged for Lisp objects in general. But if
542 you really need to exploit this, use Lisp_Misc (check free_misc in
543 alloc.c to see why). There is no way to free a vectorlike object.
544
545 To add a new pseudovector type, extend the pvec_type enumeration;
546 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
547
548 For a Lisp_Misc, you will also need to add your entry to union
549 Lisp_Misc (but make sure the first word has the same structure as
550 the others, starting with a 16-bit member of the Lisp_Misc_Type
551 enumeration and a 1-bit GC markbit) and make sure the overall size
552 of the union is not increased by your addition.
553
554 For a new pseudovector, it's highly desirable to limit the size
555 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
556 Otherwise you will need to change sweep_vectors (also in alloc.c).
557
558 Then you will need to add switch branches in print.c (in
559 print_object, to print your object, and possibly also in
560 print_preprocess) and to alloc.c, to mark your object (in
561 mark_object) and to free it (in gc_sweep). The latter is also the
562 right place to call any code specific to your data type that needs
563 to run when the object is recycled -- e.g., free any additional
564 resources allocated for it that are not Lisp objects. You can even
565 make a pointer to the function that frees the resources a slot in
566 your object -- this way, the same object could be used to represent
567 several disparate C structures. */
568
569 #ifdef CHECK_LISP_OBJECT_TYPE
570
571 typedef struct { EMACS_INT i; } Lisp_Object;
572
573 #define LISP_INITIALLY_ZERO {0}
574
575 #undef CHECK_LISP_OBJECT_TYPE
576 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
577 #else /* CHECK_LISP_OBJECT_TYPE */
578
579 /* If a struct type is not wanted, define Lisp_Object as just a number. */
580
581 typedef EMACS_INT Lisp_Object;
582 #define LISP_INITIALLY_ZERO 0
583 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
584 #endif /* CHECK_LISP_OBJECT_TYPE */
585
586 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
587 At the machine level, these operations are no-ops. */
588 LISP_MACRO_DEFUN (XLI, EMACS_INT, (Lisp_Object o), (o))
589 LISP_MACRO_DEFUN (XIL, Lisp_Object, (EMACS_INT i), (i))
590
591 /* In the size word of a vector, this bit means the vector has been marked. */
592
593 #define ARRAY_MARK_FLAG_val PTRDIFF_MIN
594 #if ENUMABLE (ARRAY_MARK_FLAG_val)
595 DEFINE_GDB_SYMBOL_ENUM (ARRAY_MARK_FLAG)
596 #else
597 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
598 # define ARRAY_MARK_FLAG ARRAY_MARK_FLAG_val
599 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
600 #endif
601
602 /* In the size word of a struct Lisp_Vector, this bit means it's really
603 some other vector-like object. */
604 #define PSEUDOVECTOR_FLAG_val (PTRDIFF_MAX - PTRDIFF_MAX / 2)
605 #if ENUMABLE (PSEUDOVECTOR_FLAG_val)
606 DEFINE_GDB_SYMBOL_ENUM (PSEUDOVECTOR_FLAG)
607 #else
608 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
609 # define PSEUDOVECTOR_FLAG PSEUDOVECTOR_FLAG_val
610 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
611 #endif
612
613 /* In a pseudovector, the size field actually contains a word with one
614 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
615 with PVEC_TYPE_MASK to indicate the actual type. */
616 enum pvec_type
617 {
618 PVEC_NORMAL_VECTOR,
619 PVEC_FREE,
620 PVEC_PROCESS,
621 PVEC_FRAME,
622 PVEC_WINDOW,
623 PVEC_BOOL_VECTOR,
624 PVEC_BUFFER,
625 PVEC_HASH_TABLE,
626 PVEC_TERMINAL,
627 PVEC_WINDOW_CONFIGURATION,
628 PVEC_SUBR,
629 PVEC_OTHER,
630 /* These should be last, check internal_equal to see why. */
631 PVEC_COMPILED,
632 PVEC_CHAR_TABLE,
633 PVEC_SUB_CHAR_TABLE,
634 PVEC_FONT /* Should be last because it's used for range checking. */
635 };
636
637 enum More_Lisp_Bits
638 {
639 /* For convenience, we also store the number of elements in these bits.
640 Note that this size is not necessarily the memory-footprint size, but
641 only the number of Lisp_Object fields (that need to be traced by GC).
642 The distinction is used, e.g., by Lisp_Process, which places extra
643 non-Lisp_Object fields at the end of the structure. */
644 PSEUDOVECTOR_SIZE_BITS = 12,
645 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
646
647 /* To calculate the memory footprint of the pseudovector, it's useful
648 to store the size of non-Lisp area in word_size units here. */
649 PSEUDOVECTOR_REST_BITS = 12,
650 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
651 << PSEUDOVECTOR_SIZE_BITS),
652
653 /* Used to extract pseudovector subtype information. */
654 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
655 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
656 };
657 \f
658 /* These functions extract various sorts of values from a Lisp_Object.
659 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
660 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
661 that cons. */
662
663 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
664 #define VALMASK_val (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
665 #if ENUMABLE (VALMASK_val)
666 DEFINE_GDB_SYMBOL_ENUM (VALMASK)
667 #else
668 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
669 # define VALMASK VALMASK_val
670 DEFINE_GDB_SYMBOL_END (VALMASK)
671 #endif
672
673 /* Largest and smallest representable fixnum values. These are the C
674 values. They are macros for use in static initializers. */
675 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
676 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
677
678 /* Extract the pointer hidden within A. */
679 LISP_MACRO_DEFUN (XPNTR, void *, (Lisp_Object a), (a))
680
681 #if USE_LSB_TAG
682
683 LISP_MACRO_DEFUN (make_number, Lisp_Object, (EMACS_INT n), (n))
684 LISP_MACRO_DEFUN (XINT, EMACS_INT, (Lisp_Object a), (a))
685 LISP_MACRO_DEFUN (XFASTINT, EMACS_INT, (Lisp_Object a), (a))
686 LISP_MACRO_DEFUN (XTYPE, enum Lisp_Type, (Lisp_Object a), (a))
687 LISP_MACRO_DEFUN (XUNTAG, void *, (Lisp_Object a, int type), (a, type))
688
689 #else /* ! USE_LSB_TAG */
690
691 /* Although compiled only if ! USE_LSB_TAG, the following functions
692 also work when USE_LSB_TAG; this is to aid future maintenance when
693 the lisp_h_* macros are eventually removed. */
694
695 /* Make a Lisp integer representing the value of the low order
696 bits of N. */
697 INLINE Lisp_Object
698 make_number (EMACS_INT n)
699 {
700 if (USE_LSB_TAG)
701 {
702 EMACS_UINT u = n;
703 n = u << INTTYPEBITS;
704 }
705 else
706 n &= INTMASK;
707 return XIL (n);
708 }
709
710 /* Extract A's value as a signed integer. */
711 INLINE EMACS_INT
712 XINT (Lisp_Object a)
713 {
714 EMACS_INT i = XLI (a);
715 if (! USE_LSB_TAG)
716 {
717 EMACS_UINT u = i;
718 i = u << INTTYPEBITS;
719 }
720 return i >> INTTYPEBITS;
721 }
722
723 /* Like XINT (A), but may be faster. A must be nonnegative.
724 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
725 integers have zero-bits in their tags. */
726 INLINE EMACS_INT
727 XFASTINT (Lisp_Object a)
728 {
729 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a);
730 eassert (0 <= n);
731 return n;
732 }
733
734 /* Extract A's type. */
735 INLINE enum Lisp_Type
736 XTYPE (Lisp_Object a)
737 {
738 EMACS_UINT i = XLI (a);
739 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
740 }
741
742 /* Extract A's pointer value, assuming A's type is TYPE. */
743 INLINE void *
744 XUNTAG (Lisp_Object a, int type)
745 {
746 if (USE_LSB_TAG)
747 {
748 intptr_t i = XLI (a) - type;
749 return (void *) i;
750 }
751 return XPNTR (a);
752 }
753
754 #endif /* ! USE_LSB_TAG */
755
756 /* Extract A's value as an unsigned integer. */
757 INLINE EMACS_UINT
758 XUINT (Lisp_Object a)
759 {
760 EMACS_UINT i = XLI (a);
761 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
762 }
763
764 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
765 right now, but XUINT should only be applied to objects we know are
766 integers. */
767 LISP_MACRO_DEFUN (XHASH, EMACS_INT, (Lisp_Object a), (a))
768
769 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
770 INLINE Lisp_Object
771 make_natnum (EMACS_INT n)
772 {
773 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
774 return USE_LSB_TAG ? make_number (n) : XIL (n);
775 }
776
777 /* Return true if X and Y are the same object. */
778 LISP_MACRO_DEFUN (EQ, bool, (Lisp_Object x, Lisp_Object y), (x, y))
779
780 /* Value is true if I doesn't fit into a Lisp fixnum. It is
781 written this way so that it also works if I is of unsigned
782 type or if I is a NaN. */
783
784 #define FIXNUM_OVERFLOW_P(i) \
785 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
786
787 INLINE ptrdiff_t
788 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
789 {
790 return num < lower ? lower : num <= upper ? num : upper;
791 }
792 \f
793 /* Forward declarations. */
794
795 /* Defined in this file. */
796 union Lisp_Fwd;
797 INLINE bool BOOL_VECTOR_P (Lisp_Object);
798 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
799 INLINE bool BUFFERP (Lisp_Object);
800 INLINE bool CHAR_TABLE_P (Lisp_Object);
801 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
802 INLINE bool (CONSP) (Lisp_Object);
803 INLINE bool (FLOATP) (Lisp_Object);
804 INLINE bool functionp (Lisp_Object);
805 INLINE bool (INTEGERP) (Lisp_Object);
806 INLINE bool (MARKERP) (Lisp_Object);
807 INLINE bool (MISCP) (Lisp_Object);
808 INLINE bool (NILP) (Lisp_Object);
809 INLINE bool OVERLAYP (Lisp_Object);
810 INLINE bool PROCESSP (Lisp_Object);
811 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
812 INLINE bool SAVE_VALUEP (Lisp_Object);
813 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
814 Lisp_Object);
815 INLINE bool STRINGP (Lisp_Object);
816 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
817 INLINE bool SUBRP (Lisp_Object);
818 INLINE bool (SYMBOLP) (Lisp_Object);
819 INLINE bool (VECTORLIKEP) (Lisp_Object);
820 INLINE bool WINDOWP (Lisp_Object);
821 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
822
823 /* Defined in chartab.c. */
824 extern Lisp_Object char_table_ref (Lisp_Object, int);
825 extern void char_table_set (Lisp_Object, int, Lisp_Object);
826
827 /* Defined in data.c. */
828 extern Lisp_Object Qarrayp, Qbufferp, Qbuffer_or_string_p, Qchar_table_p;
829 extern Lisp_Object Qconsp, Qfloatp, Qintegerp, Qlambda, Qlistp, Qmarkerp, Qnil;
830 extern Lisp_Object Qnumberp, Qstringp, Qsymbolp, Qt, Qvectorp;
831 extern Lisp_Object Qbool_vector_p;
832 extern Lisp_Object Qvector_or_char_table_p, Qwholenump;
833 extern Lisp_Object Qwindow;
834 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
835 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
836
837 /* Defined in emacs.c. */
838 extern bool might_dump;
839 /* True means Emacs has already been initialized.
840 Used during startup to detect startup of dumped Emacs. */
841 extern bool initialized;
842
843 /* Defined in eval.c. */
844 extern Lisp_Object Qautoload;
845
846 /* Defined in floatfns.c. */
847 extern double extract_float (Lisp_Object);
848
849 /* Defined in process.c. */
850 extern Lisp_Object Qprocessp;
851
852 /* Defined in window.c. */
853 extern Lisp_Object Qwindowp;
854
855 /* Defined in xdisp.c. */
856 extern Lisp_Object Qimage;
857 \f
858
859 /* Extract a value or address from a Lisp_Object. */
860
861 LISP_MACRO_DEFUN (XCONS, struct Lisp_Cons *, (Lisp_Object a), (a))
862
863 INLINE struct Lisp_Vector *
864 XVECTOR (Lisp_Object a)
865 {
866 eassert (VECTORLIKEP (a));
867 return XUNTAG (a, Lisp_Vectorlike);
868 }
869
870 INLINE struct Lisp_String *
871 XSTRING (Lisp_Object a)
872 {
873 eassert (STRINGP (a));
874 return XUNTAG (a, Lisp_String);
875 }
876
877 LISP_MACRO_DEFUN (XSYMBOL, struct Lisp_Symbol *, (Lisp_Object a), (a))
878
879 INLINE struct Lisp_Float *
880 XFLOAT (Lisp_Object a)
881 {
882 eassert (FLOATP (a));
883 return XUNTAG (a, Lisp_Float);
884 }
885
886 /* Pseudovector types. */
887
888 INLINE struct Lisp_Process *
889 XPROCESS (Lisp_Object a)
890 {
891 eassert (PROCESSP (a));
892 return XUNTAG (a, Lisp_Vectorlike);
893 }
894
895 INLINE struct window *
896 XWINDOW (Lisp_Object a)
897 {
898 eassert (WINDOWP (a));
899 return XUNTAG (a, Lisp_Vectorlike);
900 }
901
902 INLINE struct terminal *
903 XTERMINAL (Lisp_Object a)
904 {
905 return XUNTAG (a, Lisp_Vectorlike);
906 }
907
908 INLINE struct Lisp_Subr *
909 XSUBR (Lisp_Object a)
910 {
911 eassert (SUBRP (a));
912 return XUNTAG (a, Lisp_Vectorlike);
913 }
914
915 INLINE struct buffer *
916 XBUFFER (Lisp_Object a)
917 {
918 eassert (BUFFERP (a));
919 return XUNTAG (a, Lisp_Vectorlike);
920 }
921
922 INLINE struct Lisp_Char_Table *
923 XCHAR_TABLE (Lisp_Object a)
924 {
925 eassert (CHAR_TABLE_P (a));
926 return XUNTAG (a, Lisp_Vectorlike);
927 }
928
929 INLINE struct Lisp_Sub_Char_Table *
930 XSUB_CHAR_TABLE (Lisp_Object a)
931 {
932 eassert (SUB_CHAR_TABLE_P (a));
933 return XUNTAG (a, Lisp_Vectorlike);
934 }
935
936 INLINE struct Lisp_Bool_Vector *
937 XBOOL_VECTOR (Lisp_Object a)
938 {
939 eassert (BOOL_VECTOR_P (a));
940 return XUNTAG (a, Lisp_Vectorlike);
941 }
942
943 /* Construct a Lisp_Object from a value or address. */
944
945 INLINE Lisp_Object
946 make_lisp_ptr (void *ptr, enum Lisp_Type type)
947 {
948 EMACS_UINT utype = type;
949 EMACS_UINT typebits = USE_LSB_TAG ? type : utype << VALBITS;
950 Lisp_Object a = XIL (typebits | (uintptr_t) ptr);
951 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
952 return a;
953 }
954
955 INLINE Lisp_Object
956 make_lisp_proc (struct Lisp_Process *p)
957 {
958 return make_lisp_ptr (p, Lisp_Vectorlike);
959 }
960
961 #define XSETINT(a, b) ((a) = make_number (b))
962 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
963 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
964 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
965 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
966 #define XSETSYMBOL(a, b) ((a) = make_lisp_ptr (b, Lisp_Symbol))
967 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
968 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
969
970 /* Pseudovector types. */
971
972 #define XSETPVECTYPE(v, code) \
973 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
974 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
975 ((v)->header.size = (PSEUDOVECTOR_FLAG \
976 | ((code) << PSEUDOVECTOR_AREA_BITS) \
977 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
978 | (lispsize)))
979
980 /* The cast to struct vectorlike_header * avoids aliasing issues. */
981 #define XSETPSEUDOVECTOR(a, b, code) \
982 XSETTYPED_PSEUDOVECTOR (a, b, \
983 (((struct vectorlike_header *) \
984 XUNTAG (a, Lisp_Vectorlike)) \
985 ->size), \
986 code)
987 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
988 (XSETVECTOR (a, b), \
989 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
990 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
991
992 #define XSETWINDOW_CONFIGURATION(a, b) \
993 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
994 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
995 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
996 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
997 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
998 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
999 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
1000 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1001 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1002 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1003
1004 /* Type checking. */
1005
1006 LISP_MACRO_DEFUN_VOID (CHECK_TYPE,
1007 (int ok, Lisp_Object predicate, Lisp_Object x),
1008 (ok, predicate, x))
1009
1010 /* Deprecated and will be removed soon. */
1011
1012 #define INTERNAL_FIELD(field) field ## _
1013
1014 /* See the macros in intervals.h. */
1015
1016 typedef struct interval *INTERVAL;
1017
1018 struct Lisp_Cons
1019 {
1020 /* Car of this cons cell. */
1021 Lisp_Object car;
1022
1023 union
1024 {
1025 /* Cdr of this cons cell. */
1026 Lisp_Object cdr;
1027
1028 /* Used to chain conses on a free list. */
1029 struct Lisp_Cons *chain;
1030 } u;
1031 };
1032
1033 /* Take the car or cdr of something known to be a cons cell. */
1034 /* The _addr functions shouldn't be used outside of the minimal set
1035 of code that has to know what a cons cell looks like. Other code not
1036 part of the basic lisp implementation should assume that the car and cdr
1037 fields are not accessible. (What if we want to switch to
1038 a copying collector someday? Cached cons cell field addresses may be
1039 invalidated at arbitrary points.) */
1040 INLINE Lisp_Object *
1041 xcar_addr (Lisp_Object c)
1042 {
1043 return &XCONS (c)->car;
1044 }
1045 INLINE Lisp_Object *
1046 xcdr_addr (Lisp_Object c)
1047 {
1048 return &XCONS (c)->u.cdr;
1049 }
1050
1051 /* Use these from normal code. */
1052 LISP_MACRO_DEFUN (XCAR, Lisp_Object, (Lisp_Object c), (c))
1053 LISP_MACRO_DEFUN (XCDR, Lisp_Object, (Lisp_Object c), (c))
1054
1055 /* Use these to set the fields of a cons cell.
1056
1057 Note that both arguments may refer to the same object, so 'n'
1058 should not be read after 'c' is first modified. */
1059 INLINE void
1060 XSETCAR (Lisp_Object c, Lisp_Object n)
1061 {
1062 *xcar_addr (c) = n;
1063 }
1064 INLINE void
1065 XSETCDR (Lisp_Object c, Lisp_Object n)
1066 {
1067 *xcdr_addr (c) = n;
1068 }
1069
1070 /* Take the car or cdr of something whose type is not known. */
1071 INLINE Lisp_Object
1072 CAR (Lisp_Object c)
1073 {
1074 return (CONSP (c) ? XCAR (c)
1075 : NILP (c) ? Qnil
1076 : wrong_type_argument (Qlistp, c));
1077 }
1078 INLINE Lisp_Object
1079 CDR (Lisp_Object c)
1080 {
1081 return (CONSP (c) ? XCDR (c)
1082 : NILP (c) ? Qnil
1083 : wrong_type_argument (Qlistp, c));
1084 }
1085
1086 /* Take the car or cdr of something whose type is not known. */
1087 INLINE Lisp_Object
1088 CAR_SAFE (Lisp_Object c)
1089 {
1090 return CONSP (c) ? XCAR (c) : Qnil;
1091 }
1092 INLINE Lisp_Object
1093 CDR_SAFE (Lisp_Object c)
1094 {
1095 return CONSP (c) ? XCDR (c) : Qnil;
1096 }
1097
1098 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1099
1100 struct Lisp_String
1101 {
1102 ptrdiff_t size;
1103 ptrdiff_t size_byte;
1104 INTERVAL intervals; /* Text properties in this string. */
1105 unsigned char *data;
1106 };
1107
1108 /* True if STR is a multibyte string. */
1109 INLINE bool
1110 STRING_MULTIBYTE (Lisp_Object str)
1111 {
1112 return 0 <= XSTRING (str)->size_byte;
1113 }
1114
1115 /* An upper bound on the number of bytes in a Lisp string, not
1116 counting the terminating null. This a tight enough bound to
1117 prevent integer overflow errors that would otherwise occur during
1118 string size calculations. A string cannot contain more bytes than
1119 a fixnum can represent, nor can it be so long that C pointer
1120 arithmetic stops working on the string plus its terminating null.
1121 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1122 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1123 would expose alloc.c internal details that we'd rather keep
1124 private.
1125
1126 This is a macro for use in static initializers. The cast to
1127 ptrdiff_t ensures that the macro is signed. */
1128 #define STRING_BYTES_BOUND \
1129 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1130
1131 /* Mark STR as a unibyte string. */
1132 #define STRING_SET_UNIBYTE(STR) \
1133 do { \
1134 if (EQ (STR, empty_multibyte_string)) \
1135 (STR) = empty_unibyte_string; \
1136 else \
1137 XSTRING (STR)->size_byte = -1; \
1138 } while (false)
1139
1140 /* Mark STR as a multibyte string. Assure that STR contains only
1141 ASCII characters in advance. */
1142 #define STRING_SET_MULTIBYTE(STR) \
1143 do { \
1144 if (EQ (STR, empty_unibyte_string)) \
1145 (STR) = empty_multibyte_string; \
1146 else \
1147 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1148 } while (false)
1149
1150 /* Convenience functions for dealing with Lisp strings. */
1151
1152 INLINE unsigned char *
1153 SDATA (Lisp_Object string)
1154 {
1155 return XSTRING (string)->data;
1156 }
1157 INLINE char *
1158 SSDATA (Lisp_Object string)
1159 {
1160 /* Avoid "differ in sign" warnings. */
1161 return (char *) SDATA (string);
1162 }
1163 INLINE unsigned char
1164 SREF (Lisp_Object string, ptrdiff_t index)
1165 {
1166 return SDATA (string)[index];
1167 }
1168 INLINE void
1169 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1170 {
1171 SDATA (string)[index] = new;
1172 }
1173 INLINE ptrdiff_t
1174 SCHARS (Lisp_Object string)
1175 {
1176 return XSTRING (string)->size;
1177 }
1178
1179 #ifdef GC_CHECK_STRING_BYTES
1180 extern ptrdiff_t string_bytes (struct Lisp_String *);
1181 #endif
1182 INLINE ptrdiff_t
1183 STRING_BYTES (struct Lisp_String *s)
1184 {
1185 #ifdef GC_CHECK_STRING_BYTES
1186 return string_bytes (s);
1187 #else
1188 return s->size_byte < 0 ? s->size : s->size_byte;
1189 #endif
1190 }
1191
1192 INLINE ptrdiff_t
1193 SBYTES (Lisp_Object string)
1194 {
1195 return STRING_BYTES (XSTRING (string));
1196 }
1197 INLINE void
1198 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1199 {
1200 XSTRING (string)->size = newsize;
1201 }
1202
1203 /* Header of vector-like objects. This documents the layout constraints on
1204 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1205 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1206 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1207 because when two such pointers potentially alias, a compiler won't
1208 incorrectly reorder loads and stores to their size fields. See
1209 Bug#8546. */
1210 struct vectorlike_header
1211 {
1212 /* The only field contains various pieces of information:
1213 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1214 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1215 vector (0) or a pseudovector (1).
1216 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1217 of slots) of the vector.
1218 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1219 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1220 - b) number of Lisp_Objects slots at the beginning of the object
1221 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1222 traced by the GC;
1223 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1224 measured in word_size units. Rest fields may also include
1225 Lisp_Objects, but these objects usually needs some special treatment
1226 during GC.
1227 There are some exceptions. For PVEC_FREE, b) is always zero. For
1228 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1229 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1230 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1231 ptrdiff_t size;
1232 };
1233
1234 /* A regular vector is just a header plus an array of Lisp_Objects. */
1235
1236 struct Lisp_Vector
1237 {
1238 struct vectorlike_header header;
1239 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1240 };
1241
1242 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1243 enum
1244 {
1245 ALIGNOF_STRUCT_LISP_VECTOR
1246 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1247 };
1248
1249 /* A boolvector is a kind of vectorlike, with contents like a string. */
1250
1251 struct Lisp_Bool_Vector
1252 {
1253 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1254 just the subtype information. */
1255 struct vectorlike_header header;
1256 /* This is the size in bits. */
1257 EMACS_INT size;
1258 /* The actual bits, packed into bytes.
1259 Zeros fill out the last word if needed.
1260 The bits are in little-endian order in the bytes, and
1261 the bytes are in little-endian order in the words. */
1262 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1263 };
1264
1265 INLINE EMACS_INT
1266 bool_vector_size (Lisp_Object a)
1267 {
1268 EMACS_INT size = XBOOL_VECTOR (a)->size;
1269 eassume (0 <= size);
1270 return size;
1271 }
1272
1273 INLINE bits_word *
1274 bool_vector_data (Lisp_Object a)
1275 {
1276 return XBOOL_VECTOR (a)->data;
1277 }
1278
1279 INLINE unsigned char *
1280 bool_vector_uchar_data (Lisp_Object a)
1281 {
1282 return (unsigned char *) bool_vector_data (a);
1283 }
1284
1285 /* The number of data words and bytes in a bool vector with SIZE bits. */
1286
1287 INLINE EMACS_INT
1288 bool_vector_words (EMACS_INT size)
1289 {
1290 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1291 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1292 }
1293
1294 INLINE EMACS_INT
1295 bool_vector_bytes (EMACS_INT size)
1296 {
1297 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1298 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1299 }
1300
1301 /* True if A's Ith bit is set. */
1302
1303 INLINE bool
1304 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1305 {
1306 eassume (0 <= i && i < bool_vector_size (a));
1307 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1308 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1309 }
1310
1311 INLINE Lisp_Object
1312 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1313 {
1314 return bool_vector_bitref (a, i) ? Qt : Qnil;
1315 }
1316
1317 /* Set A's Ith bit to B. */
1318
1319 INLINE void
1320 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1321 {
1322 unsigned char *addr;
1323
1324 eassume (0 <= i && i < bool_vector_size (a));
1325 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1326
1327 if (b)
1328 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1329 else
1330 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1331 }
1332
1333 /* Some handy constants for calculating sizes
1334 and offsets, mostly of vectorlike objects. */
1335
1336 enum
1337 {
1338 header_size = offsetof (struct Lisp_Vector, contents),
1339 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1340 word_size = sizeof (Lisp_Object)
1341 };
1342
1343 /* Conveniences for dealing with Lisp arrays. */
1344
1345 INLINE Lisp_Object
1346 AREF (Lisp_Object array, ptrdiff_t idx)
1347 {
1348 return XVECTOR (array)->contents[idx];
1349 }
1350
1351 INLINE Lisp_Object *
1352 aref_addr (Lisp_Object array, ptrdiff_t idx)
1353 {
1354 return & XVECTOR (array)->contents[idx];
1355 }
1356
1357 INLINE ptrdiff_t
1358 ASIZE (Lisp_Object array)
1359 {
1360 return XVECTOR (array)->header.size;
1361 }
1362
1363 INLINE void
1364 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1365 {
1366 eassert (0 <= idx && idx < ASIZE (array));
1367 XVECTOR (array)->contents[idx] = val;
1368 }
1369
1370 INLINE void
1371 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1372 {
1373 /* Like ASET, but also can be used in the garbage collector:
1374 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1375 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1376 XVECTOR (array)->contents[idx] = val;
1377 }
1378
1379 /* If a struct is made to look like a vector, this macro returns the length
1380 of the shortest vector that would hold that struct. */
1381
1382 #define VECSIZE(type) \
1383 ((sizeof (type) - header_size + word_size - 1) / word_size)
1384
1385 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1386 at the end and we need to compute the number of Lisp_Object fields (the
1387 ones that the GC needs to trace). */
1388
1389 #define PSEUDOVECSIZE(type, nonlispfield) \
1390 ((offsetof (type, nonlispfield) - header_size) / word_size)
1391
1392 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1393 should be integer expressions. This is not the same as
1394 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1395 returns true. For efficiency, prefer plain unsigned comparison if A
1396 and B's sizes both fit (after integer promotion). */
1397 #define UNSIGNED_CMP(a, op, b) \
1398 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1399 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1400 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1401
1402 /* True iff C is an ASCII character. */
1403 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1404
1405 /* A char-table is a kind of vectorlike, with contents are like a
1406 vector but with a few other slots. For some purposes, it makes
1407 sense to handle a char-table with type struct Lisp_Vector. An
1408 element of a char table can be any Lisp objects, but if it is a sub
1409 char-table, we treat it a table that contains information of a
1410 specific range of characters. A sub char-table is like a vector but
1411 with two integer fields between the header and Lisp data, which means
1412 that it has to be marked with some precautions (see mark_char_table
1413 in alloc.c). A sub char-table appears only in an element of a char-table,
1414 and there's no way to access it directly from Emacs Lisp program. */
1415
1416 enum CHARTAB_SIZE_BITS
1417 {
1418 CHARTAB_SIZE_BITS_0 = 6,
1419 CHARTAB_SIZE_BITS_1 = 4,
1420 CHARTAB_SIZE_BITS_2 = 5,
1421 CHARTAB_SIZE_BITS_3 = 7
1422 };
1423
1424 extern const int chartab_size[4];
1425
1426 struct Lisp_Char_Table
1427 {
1428 /* HEADER.SIZE is the vector's size field, which also holds the
1429 pseudovector type information. It holds the size, too.
1430 The size counts the defalt, parent, purpose, ascii,
1431 contents, and extras slots. */
1432 struct vectorlike_header header;
1433
1434 /* This holds a default value,
1435 which is used whenever the value for a specific character is nil. */
1436 Lisp_Object defalt;
1437
1438 /* This points to another char table, which we inherit from when the
1439 value for a specific character is nil. The `defalt' slot takes
1440 precedence over this. */
1441 Lisp_Object parent;
1442
1443 /* This is a symbol which says what kind of use this char-table is
1444 meant for. */
1445 Lisp_Object purpose;
1446
1447 /* The bottom sub char-table for characters of the range 0..127. It
1448 is nil if none of ASCII character has a specific value. */
1449 Lisp_Object ascii;
1450
1451 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1452
1453 /* These hold additional data. It is a vector. */
1454 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1455 };
1456
1457 struct Lisp_Sub_Char_Table
1458 {
1459 /* HEADER.SIZE is the vector's size field, which also holds the
1460 pseudovector type information. It holds the size, too. */
1461 struct vectorlike_header header;
1462
1463 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1464 char-table of depth 1 contains 16 elements, and each element
1465 covers 4096 (128*32) characters. A sub char-table of depth 2
1466 contains 32 elements, and each element covers 128 characters. A
1467 sub char-table of depth 3 contains 128 elements, and each element
1468 is for one character. */
1469 int depth;
1470
1471 /* Minimum character covered by the sub char-table. */
1472 int min_char;
1473
1474 /* Use set_sub_char_table_contents to set this. */
1475 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1476 };
1477
1478 INLINE Lisp_Object
1479 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1480 {
1481 struct Lisp_Char_Table *tbl = NULL;
1482 Lisp_Object val;
1483 do
1484 {
1485 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1486 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1487 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1488 if (NILP (val))
1489 val = tbl->defalt;
1490 }
1491 while (NILP (val) && ! NILP (tbl->parent));
1492
1493 return val;
1494 }
1495
1496 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1497 characters. Do not check validity of CT. */
1498 INLINE Lisp_Object
1499 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1500 {
1501 return (ASCII_CHAR_P (idx)
1502 ? CHAR_TABLE_REF_ASCII (ct, idx)
1503 : char_table_ref (ct, idx));
1504 }
1505
1506 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1507 8-bit European characters. Do not check validity of CT. */
1508 INLINE void
1509 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1510 {
1511 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1512 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1513 else
1514 char_table_set (ct, idx, val);
1515 }
1516
1517 /* This structure describes a built-in function.
1518 It is generated by the DEFUN macro only.
1519 defsubr makes it into a Lisp object. */
1520
1521 struct Lisp_Subr
1522 {
1523 struct vectorlike_header header;
1524 union {
1525 Lisp_Object (*a0) (void);
1526 Lisp_Object (*a1) (Lisp_Object);
1527 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1528 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1529 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1530 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1531 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1532 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1533 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1534 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1535 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1536 } function;
1537 short min_args, max_args;
1538 const char *symbol_name;
1539 const char *intspec;
1540 const char *doc;
1541 };
1542
1543 enum char_table_specials
1544 {
1545 /* This is the number of slots that every char table must have. This
1546 counts the ordinary slots and the top, defalt, parent, and purpose
1547 slots. */
1548 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1549
1550 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1551 when the latter is treated as an ordinary Lisp_Vector. */
1552 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1553 };
1554
1555 /* Return the number of "extra" slots in the char table CT. */
1556
1557 INLINE int
1558 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1559 {
1560 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1561 - CHAR_TABLE_STANDARD_SLOTS);
1562 }
1563
1564 /* Make sure that sub char-table contents slot
1565 is aligned on a multiple of Lisp_Objects. */
1566 verify ((offsetof (struct Lisp_Sub_Char_Table, contents)
1567 - offsetof (struct Lisp_Sub_Char_Table, depth)) % word_size == 0);
1568
1569 /***********************************************************************
1570 Symbols
1571 ***********************************************************************/
1572
1573 /* Interned state of a symbol. */
1574
1575 enum symbol_interned
1576 {
1577 SYMBOL_UNINTERNED = 0,
1578 SYMBOL_INTERNED = 1,
1579 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
1580 };
1581
1582 enum symbol_redirect
1583 {
1584 SYMBOL_PLAINVAL = 4,
1585 SYMBOL_VARALIAS = 1,
1586 SYMBOL_LOCALIZED = 2,
1587 SYMBOL_FORWARDED = 3
1588 };
1589
1590 struct Lisp_Symbol
1591 {
1592 bool_bf gcmarkbit : 1;
1593
1594 /* Indicates where the value can be found:
1595 0 : it's a plain var, the value is in the `value' field.
1596 1 : it's a varalias, the value is really in the `alias' symbol.
1597 2 : it's a localized var, the value is in the `blv' object.
1598 3 : it's a forwarding variable, the value is in `forward'. */
1599 ENUM_BF (symbol_redirect) redirect : 3;
1600
1601 /* Non-zero means symbol is constant, i.e. changing its value
1602 should signal an error. If the value is 3, then the var
1603 can be changed, but only by `defconst'. */
1604 unsigned constant : 2;
1605
1606 /* Interned state of the symbol. This is an enumerator from
1607 enum symbol_interned. */
1608 unsigned interned : 2;
1609
1610 /* True means that this variable has been explicitly declared
1611 special (with `defvar' etc), and shouldn't be lexically bound. */
1612 bool_bf declared_special : 1;
1613
1614 /* True if pointed to from purespace and hence can't be GC'd. */
1615 bool_bf pinned : 1;
1616
1617 /* The symbol's name, as a Lisp string. */
1618 Lisp_Object name;
1619
1620 /* Value of the symbol or Qunbound if unbound. Which alternative of the
1621 union is used depends on the `redirect' field above. */
1622 union {
1623 Lisp_Object value;
1624 struct Lisp_Symbol *alias;
1625 struct Lisp_Buffer_Local_Value *blv;
1626 union Lisp_Fwd *fwd;
1627 } val;
1628
1629 /* Function value of the symbol or Qnil if not fboundp. */
1630 Lisp_Object function;
1631
1632 /* The symbol's property list. */
1633 Lisp_Object plist;
1634
1635 /* Next symbol in obarray bucket, if the symbol is interned. */
1636 struct Lisp_Symbol *next;
1637 };
1638
1639 /* Value is name of symbol. */
1640
1641 LISP_MACRO_DEFUN (SYMBOL_VAL, Lisp_Object, (struct Lisp_Symbol *sym), (sym))
1642
1643 INLINE struct Lisp_Symbol *
1644 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1645 {
1646 eassert (sym->redirect == SYMBOL_VARALIAS);
1647 return sym->val.alias;
1648 }
1649 INLINE struct Lisp_Buffer_Local_Value *
1650 SYMBOL_BLV (struct Lisp_Symbol *sym)
1651 {
1652 eassert (sym->redirect == SYMBOL_LOCALIZED);
1653 return sym->val.blv;
1654 }
1655 INLINE union Lisp_Fwd *
1656 SYMBOL_FWD (struct Lisp_Symbol *sym)
1657 {
1658 eassert (sym->redirect == SYMBOL_FORWARDED);
1659 return sym->val.fwd;
1660 }
1661
1662 LISP_MACRO_DEFUN_VOID (SET_SYMBOL_VAL,
1663 (struct Lisp_Symbol *sym, Lisp_Object v), (sym, v))
1664
1665 INLINE void
1666 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1667 {
1668 eassert (sym->redirect == SYMBOL_VARALIAS);
1669 sym->val.alias = v;
1670 }
1671 INLINE void
1672 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1673 {
1674 eassert (sym->redirect == SYMBOL_LOCALIZED);
1675 sym->val.blv = v;
1676 }
1677 INLINE void
1678 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1679 {
1680 eassert (sym->redirect == SYMBOL_FORWARDED);
1681 sym->val.fwd = v;
1682 }
1683
1684 INLINE Lisp_Object
1685 SYMBOL_NAME (Lisp_Object sym)
1686 {
1687 return XSYMBOL (sym)->name;
1688 }
1689
1690 /* Value is true if SYM is an interned symbol. */
1691
1692 INLINE bool
1693 SYMBOL_INTERNED_P (Lisp_Object sym)
1694 {
1695 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1696 }
1697
1698 /* Value is true if SYM is interned in initial_obarray. */
1699
1700 INLINE bool
1701 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1702 {
1703 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1704 }
1705
1706 /* Value is non-zero if symbol is considered a constant, i.e. its
1707 value cannot be changed (there is an exception for keyword symbols,
1708 whose value can be set to the keyword symbol itself). */
1709
1710 LISP_MACRO_DEFUN (SYMBOL_CONSTANT_P, int, (Lisp_Object sym), (sym))
1711
1712 #define DEFSYM(sym, name) \
1713 do { (sym) = intern_c_string ((name)); staticpro (&(sym)); } while (false)
1714
1715 \f
1716 /***********************************************************************
1717 Hash Tables
1718 ***********************************************************************/
1719
1720 /* The structure of a Lisp hash table. */
1721
1722 struct hash_table_test
1723 {
1724 /* Name of the function used to compare keys. */
1725 Lisp_Object name;
1726
1727 /* User-supplied hash function, or nil. */
1728 Lisp_Object user_hash_function;
1729
1730 /* User-supplied key comparison function, or nil. */
1731 Lisp_Object user_cmp_function;
1732
1733 /* C function to compare two keys. */
1734 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1735
1736 /* C function to compute hash code. */
1737 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1738 };
1739
1740 struct Lisp_Hash_Table
1741 {
1742 /* This is for Lisp; the hash table code does not refer to it. */
1743 struct vectorlike_header header;
1744
1745 /* Nil if table is non-weak. Otherwise a symbol describing the
1746 weakness of the table. */
1747 Lisp_Object weak;
1748
1749 /* When the table is resized, and this is an integer, compute the
1750 new size by adding this to the old size. If a float, compute the
1751 new size by multiplying the old size with this factor. */
1752 Lisp_Object rehash_size;
1753
1754 /* Resize hash table when number of entries/ table size is >= this
1755 ratio, a float. */
1756 Lisp_Object rehash_threshold;
1757
1758 /* Vector of hash codes. If hash[I] is nil, this means that the
1759 I-th entry is unused. */
1760 Lisp_Object hash;
1761
1762 /* Vector used to chain entries. If entry I is free, next[I] is the
1763 entry number of the next free item. If entry I is non-free,
1764 next[I] is the index of the next entry in the collision chain. */
1765 Lisp_Object next;
1766
1767 /* Index of first free entry in free list. */
1768 Lisp_Object next_free;
1769
1770 /* Bucket vector. A non-nil entry is the index of the first item in
1771 a collision chain. This vector's size can be larger than the
1772 hash table size to reduce collisions. */
1773 Lisp_Object index;
1774
1775 /* Only the fields above are traced normally by the GC. The ones below
1776 `count' are special and are either ignored by the GC or traced in
1777 a special way (e.g. because of weakness). */
1778
1779 /* Number of key/value entries in the table. */
1780 ptrdiff_t count;
1781
1782 /* Vector of keys and values. The key of item I is found at index
1783 2 * I, the value is found at index 2 * I + 1.
1784 This is gc_marked specially if the table is weak. */
1785 Lisp_Object key_and_value;
1786
1787 /* The comparison and hash functions. */
1788 struct hash_table_test test;
1789
1790 /* Next weak hash table if this is a weak hash table. The head
1791 of the list is in weak_hash_tables. */
1792 struct Lisp_Hash_Table *next_weak;
1793 };
1794
1795
1796 INLINE struct Lisp_Hash_Table *
1797 XHASH_TABLE (Lisp_Object a)
1798 {
1799 return XUNTAG (a, Lisp_Vectorlike);
1800 }
1801
1802 #define XSET_HASH_TABLE(VAR, PTR) \
1803 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1804
1805 INLINE bool
1806 HASH_TABLE_P (Lisp_Object a)
1807 {
1808 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1809 }
1810
1811 /* Value is the key part of entry IDX in hash table H. */
1812 INLINE Lisp_Object
1813 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1814 {
1815 return AREF (h->key_and_value, 2 * idx);
1816 }
1817
1818 /* Value is the value part of entry IDX in hash table H. */
1819 INLINE Lisp_Object
1820 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1821 {
1822 return AREF (h->key_and_value, 2 * idx + 1);
1823 }
1824
1825 /* Value is the index of the next entry following the one at IDX
1826 in hash table H. */
1827 INLINE Lisp_Object
1828 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1829 {
1830 return AREF (h->next, idx);
1831 }
1832
1833 /* Value is the hash code computed for entry IDX in hash table H. */
1834 INLINE Lisp_Object
1835 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1836 {
1837 return AREF (h->hash, idx);
1838 }
1839
1840 /* Value is the index of the element in hash table H that is the
1841 start of the collision list at index IDX in the index vector of H. */
1842 INLINE Lisp_Object
1843 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1844 {
1845 return AREF (h->index, idx);
1846 }
1847
1848 /* Value is the size of hash table H. */
1849 INLINE ptrdiff_t
1850 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1851 {
1852 return ASIZE (h->next);
1853 }
1854
1855 /* Default size for hash tables if not specified. */
1856
1857 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1858
1859 /* Default threshold specifying when to resize a hash table. The
1860 value gives the ratio of current entries in the hash table and the
1861 size of the hash table. */
1862
1863 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
1864
1865 /* Default factor by which to increase the size of a hash table. */
1866
1867 static double const DEFAULT_REHASH_SIZE = 1.5;
1868
1869 /* Combine two integers X and Y for hashing. The result might not fit
1870 into a Lisp integer. */
1871
1872 INLINE EMACS_UINT
1873 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
1874 {
1875 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
1876 }
1877
1878 /* Hash X, returning a value that fits into a fixnum. */
1879
1880 INLINE EMACS_UINT
1881 SXHASH_REDUCE (EMACS_UINT x)
1882 {
1883 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
1884 }
1885
1886 /* These structures are used for various misc types. */
1887
1888 struct Lisp_Misc_Any /* Supertype of all Misc types. */
1889 {
1890 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
1891 bool_bf gcmarkbit : 1;
1892 unsigned spacer : 15;
1893 };
1894
1895 struct Lisp_Marker
1896 {
1897 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
1898 bool_bf gcmarkbit : 1;
1899 unsigned spacer : 13;
1900 /* This flag is temporarily used in the functions
1901 decode/encode_coding_object to record that the marker position
1902 must be adjusted after the conversion. */
1903 bool_bf need_adjustment : 1;
1904 /* True means normal insertion at the marker's position
1905 leaves the marker after the inserted text. */
1906 bool_bf insertion_type : 1;
1907 /* This is the buffer that the marker points into, or 0 if it points nowhere.
1908 Note: a chain of markers can contain markers pointing into different
1909 buffers (the chain is per buffer_text rather than per buffer, so it's
1910 shared between indirect buffers). */
1911 /* This is used for (other than NULL-checking):
1912 - Fmarker_buffer
1913 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
1914 - unchain_marker: to find the list from which to unchain.
1915 - Fkill_buffer: to only unchain the markers of current indirect buffer.
1916 */
1917 struct buffer *buffer;
1918
1919 /* The remaining fields are meaningless in a marker that
1920 does not point anywhere. */
1921
1922 /* For markers that point somewhere,
1923 this is used to chain of all the markers in a given buffer. */
1924 /* We could remove it and use an array in buffer_text instead.
1925 That would also allow to preserve it ordered. */
1926 struct Lisp_Marker *next;
1927 /* This is the char position where the marker points. */
1928 ptrdiff_t charpos;
1929 /* This is the byte position.
1930 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
1931 used to implement the functionality of markers, but rather to (ab)use
1932 markers as a cache for char<->byte mappings). */
1933 ptrdiff_t bytepos;
1934 };
1935
1936 /* START and END are markers in the overlay's buffer, and
1937 PLIST is the overlay's property list. */
1938 struct Lisp_Overlay
1939 /* An overlay's real data content is:
1940 - plist
1941 - buffer (really there are two buffer pointers, one per marker,
1942 and both points to the same buffer)
1943 - insertion type of both ends (per-marker fields)
1944 - start & start byte (of start marker)
1945 - end & end byte (of end marker)
1946 - next (singly linked list of overlays)
1947 - next fields of start and end markers (singly linked list of markers).
1948 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
1949 */
1950 {
1951 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
1952 bool_bf gcmarkbit : 1;
1953 unsigned spacer : 15;
1954 struct Lisp_Overlay *next;
1955 Lisp_Object start;
1956 Lisp_Object end;
1957 Lisp_Object plist;
1958 };
1959
1960 /* Types of data which may be saved in a Lisp_Save_Value. */
1961
1962 enum
1963 {
1964 SAVE_UNUSED,
1965 SAVE_INTEGER,
1966 SAVE_FUNCPOINTER,
1967 SAVE_POINTER,
1968 SAVE_OBJECT
1969 };
1970
1971 /* Number of bits needed to store one of the above values. */
1972 enum { SAVE_SLOT_BITS = 3 };
1973
1974 /* Number of slots in a save value where save_type is nonzero. */
1975 enum { SAVE_VALUE_SLOTS = 4 };
1976
1977 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
1978
1979 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
1980
1981 enum Lisp_Save_Type
1982 {
1983 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
1984 SAVE_TYPE_INT_INT_INT
1985 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
1986 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
1987 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
1988 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
1989 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
1990 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
1991 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
1992 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
1993 SAVE_TYPE_FUNCPTR_PTR_OBJ
1994 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
1995
1996 /* This has an extra bit indicating it's raw memory. */
1997 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
1998 };
1999
2000 /* Special object used to hold a different values for later use.
2001
2002 This is mostly used to package C integers and pointers to call
2003 record_unwind_protect when two or more values need to be saved.
2004 For example:
2005
2006 ...
2007 struct my_data *md = get_my_data ();
2008 ptrdiff_t mi = get_my_integer ();
2009 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2010 ...
2011
2012 Lisp_Object my_unwind (Lisp_Object arg)
2013 {
2014 struct my_data *md = XSAVE_POINTER (arg, 0);
2015 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2016 ...
2017 }
2018
2019 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2020 saved objects and raise eassert if type of the saved object doesn't match
2021 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2022 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2023 slot 0 is a pointer. */
2024
2025 typedef void (*voidfuncptr) (void);
2026
2027 struct Lisp_Save_Value
2028 {
2029 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2030 bool_bf gcmarkbit : 1;
2031 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2032
2033 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2034 V's data entries are determined by V->save_type. E.g., if
2035 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2036 V->data[1] is an integer, and V's other data entries are unused.
2037
2038 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2039 a memory area containing V->data[1].integer potential Lisp_Objects. */
2040 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2041 union {
2042 void *pointer;
2043 voidfuncptr funcpointer;
2044 ptrdiff_t integer;
2045 Lisp_Object object;
2046 } data[SAVE_VALUE_SLOTS];
2047 };
2048
2049 /* Return the type of V's Nth saved value. */
2050 INLINE int
2051 save_type (struct Lisp_Save_Value *v, int n)
2052 {
2053 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2054 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2055 }
2056
2057 /* Get and set the Nth saved pointer. */
2058
2059 INLINE void *
2060 XSAVE_POINTER (Lisp_Object obj, int n)
2061 {
2062 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2063 return XSAVE_VALUE (obj)->data[n].pointer;
2064 }
2065 INLINE void
2066 set_save_pointer (Lisp_Object obj, int n, void *val)
2067 {
2068 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2069 XSAVE_VALUE (obj)->data[n].pointer = val;
2070 }
2071 INLINE voidfuncptr
2072 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2073 {
2074 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2075 return XSAVE_VALUE (obj)->data[n].funcpointer;
2076 }
2077
2078 /* Likewise for the saved integer. */
2079
2080 INLINE ptrdiff_t
2081 XSAVE_INTEGER (Lisp_Object obj, int n)
2082 {
2083 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2084 return XSAVE_VALUE (obj)->data[n].integer;
2085 }
2086 INLINE void
2087 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2088 {
2089 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2090 XSAVE_VALUE (obj)->data[n].integer = val;
2091 }
2092
2093 /* Extract Nth saved object. */
2094
2095 INLINE Lisp_Object
2096 XSAVE_OBJECT (Lisp_Object obj, int n)
2097 {
2098 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2099 return XSAVE_VALUE (obj)->data[n].object;
2100 }
2101
2102 /* A miscellaneous object, when it's on the free list. */
2103 struct Lisp_Free
2104 {
2105 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2106 bool_bf gcmarkbit : 1;
2107 unsigned spacer : 15;
2108 union Lisp_Misc *chain;
2109 };
2110
2111 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2112 It uses one of these struct subtypes to get the type field. */
2113
2114 union Lisp_Misc
2115 {
2116 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2117 struct Lisp_Free u_free;
2118 struct Lisp_Marker u_marker;
2119 struct Lisp_Overlay u_overlay;
2120 struct Lisp_Save_Value u_save_value;
2121 };
2122
2123 INLINE union Lisp_Misc *
2124 XMISC (Lisp_Object a)
2125 {
2126 return XUNTAG (a, Lisp_Misc);
2127 }
2128
2129 INLINE struct Lisp_Misc_Any *
2130 XMISCANY (Lisp_Object a)
2131 {
2132 eassert (MISCP (a));
2133 return & XMISC (a)->u_any;
2134 }
2135
2136 INLINE enum Lisp_Misc_Type
2137 XMISCTYPE (Lisp_Object a)
2138 {
2139 return XMISCANY (a)->type;
2140 }
2141
2142 INLINE struct Lisp_Marker *
2143 XMARKER (Lisp_Object a)
2144 {
2145 eassert (MARKERP (a));
2146 return & XMISC (a)->u_marker;
2147 }
2148
2149 INLINE struct Lisp_Overlay *
2150 XOVERLAY (Lisp_Object a)
2151 {
2152 eassert (OVERLAYP (a));
2153 return & XMISC (a)->u_overlay;
2154 }
2155
2156 INLINE struct Lisp_Save_Value *
2157 XSAVE_VALUE (Lisp_Object a)
2158 {
2159 eassert (SAVE_VALUEP (a));
2160 return & XMISC (a)->u_save_value;
2161 }
2162 \f
2163 /* Forwarding pointer to an int variable.
2164 This is allowed only in the value cell of a symbol,
2165 and it means that the symbol's value really lives in the
2166 specified int variable. */
2167 struct Lisp_Intfwd
2168 {
2169 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2170 EMACS_INT *intvar;
2171 };
2172
2173 /* Boolean forwarding pointer to an int variable.
2174 This is like Lisp_Intfwd except that the ostensible
2175 "value" of the symbol is t if the bool variable is true,
2176 nil if it is false. */
2177 struct Lisp_Boolfwd
2178 {
2179 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2180 bool *boolvar;
2181 };
2182
2183 /* Forwarding pointer to a Lisp_Object variable.
2184 This is allowed only in the value cell of a symbol,
2185 and it means that the symbol's value really lives in the
2186 specified variable. */
2187 struct Lisp_Objfwd
2188 {
2189 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2190 Lisp_Object *objvar;
2191 };
2192
2193 /* Like Lisp_Objfwd except that value lives in a slot in the
2194 current buffer. Value is byte index of slot within buffer. */
2195 struct Lisp_Buffer_Objfwd
2196 {
2197 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2198 int offset;
2199 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2200 Lisp_Object predicate;
2201 };
2202
2203 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2204 the symbol has buffer-local or frame-local bindings. (Exception:
2205 some buffer-local variables are built-in, with their values stored
2206 in the buffer structure itself. They are handled differently,
2207 using struct Lisp_Buffer_Objfwd.)
2208
2209 The `realvalue' slot holds the variable's current value, or a
2210 forwarding pointer to where that value is kept. This value is the
2211 one that corresponds to the loaded binding. To read or set the
2212 variable, you must first make sure the right binding is loaded;
2213 then you can access the value in (or through) `realvalue'.
2214
2215 `buffer' and `frame' are the buffer and frame for which the loaded
2216 binding was found. If those have changed, to make sure the right
2217 binding is loaded it is necessary to find which binding goes with
2218 the current buffer and selected frame, then load it. To load it,
2219 first unload the previous binding, then copy the value of the new
2220 binding into `realvalue' (or through it). Also update
2221 LOADED-BINDING to point to the newly loaded binding.
2222
2223 `local_if_set' indicates that merely setting the variable creates a
2224 local binding for the current buffer. Otherwise the latter, setting
2225 the variable does not do that; only make-local-variable does that. */
2226
2227 struct Lisp_Buffer_Local_Value
2228 {
2229 /* True means that merely setting the variable creates a local
2230 binding for the current buffer. */
2231 bool_bf local_if_set : 1;
2232 /* True means this variable can have frame-local bindings, otherwise, it is
2233 can have buffer-local bindings. The two cannot be combined. */
2234 bool_bf frame_local : 1;
2235 /* True means that the binding now loaded was found.
2236 Presumably equivalent to (defcell!=valcell). */
2237 bool_bf found : 1;
2238 /* If non-NULL, a forwarding to the C var where it should also be set. */
2239 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2240 /* The buffer or frame for which the loaded binding was found. */
2241 Lisp_Object where;
2242 /* A cons cell that holds the default value. It has the form
2243 (SYMBOL . DEFAULT-VALUE). */
2244 Lisp_Object defcell;
2245 /* The cons cell from `where's parameter alist.
2246 It always has the form (SYMBOL . VALUE)
2247 Note that if `forward' is non-nil, VALUE may be out of date.
2248 Also if the currently loaded binding is the default binding, then
2249 this is `eq'ual to defcell. */
2250 Lisp_Object valcell;
2251 };
2252
2253 /* Like Lisp_Objfwd except that value lives in a slot in the
2254 current kboard. */
2255 struct Lisp_Kboard_Objfwd
2256 {
2257 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2258 int offset;
2259 };
2260
2261 union Lisp_Fwd
2262 {
2263 struct Lisp_Intfwd u_intfwd;
2264 struct Lisp_Boolfwd u_boolfwd;
2265 struct Lisp_Objfwd u_objfwd;
2266 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2267 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2268 };
2269
2270 INLINE enum Lisp_Fwd_Type
2271 XFWDTYPE (union Lisp_Fwd *a)
2272 {
2273 return a->u_intfwd.type;
2274 }
2275
2276 INLINE struct Lisp_Buffer_Objfwd *
2277 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2278 {
2279 eassert (BUFFER_OBJFWDP (a));
2280 return &a->u_buffer_objfwd;
2281 }
2282 \f
2283 /* Lisp floating point type. */
2284 struct Lisp_Float
2285 {
2286 union
2287 {
2288 double data;
2289 struct Lisp_Float *chain;
2290 } u;
2291 };
2292
2293 INLINE double
2294 XFLOAT_DATA (Lisp_Object f)
2295 {
2296 return XFLOAT (f)->u.data;
2297 }
2298
2299 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2300 representations, have infinities and NaNs, and do not trap on
2301 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2302 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2303 wanted here, but is not quite right because Emacs does not require
2304 all the features of C11 Annex F (and does not require C11 at all,
2305 for that matter). */
2306 enum
2307 {
2308 IEEE_FLOATING_POINT
2309 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2310 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2311 };
2312
2313 /* A character, declared with the following typedef, is a member
2314 of some character set associated with the current buffer. */
2315 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2316 #define _UCHAR_T
2317 typedef unsigned char UCHAR;
2318 #endif
2319
2320 /* Meanings of slots in a Lisp_Compiled: */
2321
2322 enum Lisp_Compiled
2323 {
2324 COMPILED_ARGLIST = 0,
2325 COMPILED_BYTECODE = 1,
2326 COMPILED_CONSTANTS = 2,
2327 COMPILED_STACK_DEPTH = 3,
2328 COMPILED_DOC_STRING = 4,
2329 COMPILED_INTERACTIVE = 5
2330 };
2331
2332 /* Flag bits in a character. These also get used in termhooks.h.
2333 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2334 (MUlti-Lingual Emacs) might need 22 bits for the character value
2335 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2336 enum char_bits
2337 {
2338 CHAR_ALT = 0x0400000,
2339 CHAR_SUPER = 0x0800000,
2340 CHAR_HYPER = 0x1000000,
2341 CHAR_SHIFT = 0x2000000,
2342 CHAR_CTL = 0x4000000,
2343 CHAR_META = 0x8000000,
2344
2345 CHAR_MODIFIER_MASK =
2346 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2347
2348 /* Actually, the current Emacs uses 22 bits for the character value
2349 itself. */
2350 CHARACTERBITS = 22
2351 };
2352 \f
2353 /* Data type checking. */
2354
2355 LISP_MACRO_DEFUN (NILP, bool, (Lisp_Object x), (x))
2356
2357 INLINE bool
2358 NUMBERP (Lisp_Object x)
2359 {
2360 return INTEGERP (x) || FLOATP (x);
2361 }
2362 INLINE bool
2363 NATNUMP (Lisp_Object x)
2364 {
2365 return INTEGERP (x) && 0 <= XINT (x);
2366 }
2367
2368 INLINE bool
2369 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2370 {
2371 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2372 }
2373
2374 #define TYPE_RANGED_INTEGERP(type, x) \
2375 (INTEGERP (x) \
2376 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2377 && XINT (x) <= TYPE_MAXIMUM (type))
2378
2379 LISP_MACRO_DEFUN (CONSP, bool, (Lisp_Object x), (x))
2380 LISP_MACRO_DEFUN (FLOATP, bool, (Lisp_Object x), (x))
2381 LISP_MACRO_DEFUN (MISCP, bool, (Lisp_Object x), (x))
2382 LISP_MACRO_DEFUN (SYMBOLP, bool, (Lisp_Object x), (x))
2383 LISP_MACRO_DEFUN (INTEGERP, bool, (Lisp_Object x), (x))
2384 LISP_MACRO_DEFUN (VECTORLIKEP, bool, (Lisp_Object x), (x))
2385 LISP_MACRO_DEFUN (MARKERP, bool, (Lisp_Object x), (x))
2386
2387 INLINE bool
2388 STRINGP (Lisp_Object x)
2389 {
2390 return XTYPE (x) == Lisp_String;
2391 }
2392 INLINE bool
2393 VECTORP (Lisp_Object x)
2394 {
2395 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2396 }
2397 INLINE bool
2398 OVERLAYP (Lisp_Object x)
2399 {
2400 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2401 }
2402 INLINE bool
2403 SAVE_VALUEP (Lisp_Object x)
2404 {
2405 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2406 }
2407
2408 INLINE bool
2409 AUTOLOADP (Lisp_Object x)
2410 {
2411 return CONSP (x) && EQ (Qautoload, XCAR (x));
2412 }
2413
2414 INLINE bool
2415 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2416 {
2417 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2418 }
2419
2420 INLINE bool
2421 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2422 {
2423 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2424 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2425 }
2426
2427 /* True if A is a pseudovector whose code is CODE. */
2428 INLINE bool
2429 PSEUDOVECTORP (Lisp_Object a, int code)
2430 {
2431 if (! VECTORLIKEP (a))
2432 return false;
2433 else
2434 {
2435 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2436 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2437 return PSEUDOVECTOR_TYPEP (h, code);
2438 }
2439 }
2440
2441
2442 /* Test for specific pseudovector types. */
2443
2444 INLINE bool
2445 WINDOW_CONFIGURATIONP (Lisp_Object a)
2446 {
2447 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2448 }
2449
2450 INLINE bool
2451 PROCESSP (Lisp_Object a)
2452 {
2453 return PSEUDOVECTORP (a, PVEC_PROCESS);
2454 }
2455
2456 INLINE bool
2457 WINDOWP (Lisp_Object a)
2458 {
2459 return PSEUDOVECTORP (a, PVEC_WINDOW);
2460 }
2461
2462 INLINE bool
2463 TERMINALP (Lisp_Object a)
2464 {
2465 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2466 }
2467
2468 INLINE bool
2469 SUBRP (Lisp_Object a)
2470 {
2471 return PSEUDOVECTORP (a, PVEC_SUBR);
2472 }
2473
2474 INLINE bool
2475 COMPILEDP (Lisp_Object a)
2476 {
2477 return PSEUDOVECTORP (a, PVEC_COMPILED);
2478 }
2479
2480 INLINE bool
2481 BUFFERP (Lisp_Object a)
2482 {
2483 return PSEUDOVECTORP (a, PVEC_BUFFER);
2484 }
2485
2486 INLINE bool
2487 CHAR_TABLE_P (Lisp_Object a)
2488 {
2489 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2490 }
2491
2492 INLINE bool
2493 SUB_CHAR_TABLE_P (Lisp_Object a)
2494 {
2495 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2496 }
2497
2498 INLINE bool
2499 BOOL_VECTOR_P (Lisp_Object a)
2500 {
2501 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2502 }
2503
2504 INLINE bool
2505 FRAMEP (Lisp_Object a)
2506 {
2507 return PSEUDOVECTORP (a, PVEC_FRAME);
2508 }
2509
2510 /* Test for image (image . spec) */
2511 INLINE bool
2512 IMAGEP (Lisp_Object x)
2513 {
2514 return CONSP (x) && EQ (XCAR (x), Qimage);
2515 }
2516
2517 /* Array types. */
2518 INLINE bool
2519 ARRAYP (Lisp_Object x)
2520 {
2521 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2522 }
2523 \f
2524 INLINE void
2525 CHECK_LIST (Lisp_Object x)
2526 {
2527 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2528 }
2529
2530 LISP_MACRO_DEFUN_VOID (CHECK_LIST_CONS, (Lisp_Object x, Lisp_Object y), (x, y))
2531 LISP_MACRO_DEFUN_VOID (CHECK_SYMBOL, (Lisp_Object x), (x))
2532 LISP_MACRO_DEFUN_VOID (CHECK_NUMBER, (Lisp_Object x), (x))
2533
2534 INLINE void
2535 CHECK_STRING (Lisp_Object x)
2536 {
2537 CHECK_TYPE (STRINGP (x), Qstringp, x);
2538 }
2539 INLINE void
2540 CHECK_STRING_CAR (Lisp_Object x)
2541 {
2542 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2543 }
2544 INLINE void
2545 CHECK_CONS (Lisp_Object x)
2546 {
2547 CHECK_TYPE (CONSP (x), Qconsp, x);
2548 }
2549 INLINE void
2550 CHECK_VECTOR (Lisp_Object x)
2551 {
2552 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2553 }
2554 INLINE void
2555 CHECK_BOOL_VECTOR (Lisp_Object x)
2556 {
2557 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2558 }
2559 /* This is a bit special because we always need size afterwards. */
2560 INLINE ptrdiff_t
2561 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2562 {
2563 if (VECTORP (x))
2564 return ASIZE (x);
2565 if (STRINGP (x))
2566 return SCHARS (x);
2567 wrong_type_argument (Qarrayp, x);
2568 }
2569 INLINE void
2570 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2571 {
2572 CHECK_TYPE (ARRAYP (x), predicate, x);
2573 }
2574 INLINE void
2575 CHECK_BUFFER (Lisp_Object x)
2576 {
2577 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2578 }
2579 INLINE void
2580 CHECK_WINDOW (Lisp_Object x)
2581 {
2582 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2583 }
2584 #ifdef subprocesses
2585 INLINE void
2586 CHECK_PROCESS (Lisp_Object x)
2587 {
2588 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2589 }
2590 #endif
2591 INLINE void
2592 CHECK_NATNUM (Lisp_Object x)
2593 {
2594 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2595 }
2596
2597 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2598 do { \
2599 CHECK_NUMBER (x); \
2600 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2601 args_out_of_range_3 \
2602 (x, \
2603 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2604 ? MOST_NEGATIVE_FIXNUM \
2605 : (lo)), \
2606 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2607 } while (false)
2608 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2609 do { \
2610 if (TYPE_SIGNED (type)) \
2611 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2612 else \
2613 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2614 } while (false)
2615
2616 #define CHECK_NUMBER_COERCE_MARKER(x) \
2617 do { \
2618 if (MARKERP ((x))) \
2619 XSETFASTINT (x, marker_position (x)); \
2620 else \
2621 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2622 } while (false)
2623
2624 INLINE double
2625 XFLOATINT (Lisp_Object n)
2626 {
2627 return extract_float (n);
2628 }
2629
2630 INLINE void
2631 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2632 {
2633 CHECK_TYPE (FLOATP (x) || INTEGERP (x), Qnumberp, x);
2634 }
2635
2636 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2637 do { \
2638 if (MARKERP (x)) \
2639 XSETFASTINT (x, marker_position (x)); \
2640 else \
2641 CHECK_TYPE (INTEGERP (x) || FLOATP (x), Qnumber_or_marker_p, x); \
2642 } while (false)
2643
2644 /* Since we can't assign directly to the CAR or CDR fields of a cons
2645 cell, use these when checking that those fields contain numbers. */
2646 INLINE void
2647 CHECK_NUMBER_CAR (Lisp_Object x)
2648 {
2649 Lisp_Object tmp = XCAR (x);
2650 CHECK_NUMBER (tmp);
2651 XSETCAR (x, tmp);
2652 }
2653
2654 INLINE void
2655 CHECK_NUMBER_CDR (Lisp_Object x)
2656 {
2657 Lisp_Object tmp = XCDR (x);
2658 CHECK_NUMBER (tmp);
2659 XSETCDR (x, tmp);
2660 }
2661 \f
2662 /* Define a built-in function for calling from Lisp.
2663 `lname' should be the name to give the function in Lisp,
2664 as a null-terminated C string.
2665 `fnname' should be the name of the function in C.
2666 By convention, it starts with F.
2667 `sname' should be the name for the C constant structure
2668 that records information on this function for internal use.
2669 By convention, it should be the same as `fnname' but with S instead of F.
2670 It's too bad that C macros can't compute this from `fnname'.
2671 `minargs' should be a number, the minimum number of arguments allowed.
2672 `maxargs' should be a number, the maximum number of arguments allowed,
2673 or else MANY or UNEVALLED.
2674 MANY means pass a vector of evaluated arguments,
2675 in the form of an integer number-of-arguments
2676 followed by the address of a vector of Lisp_Objects
2677 which contains the argument values.
2678 UNEVALLED means pass the list of unevaluated arguments
2679 `intspec' says how interactive arguments are to be fetched.
2680 If the string starts with a `(', `intspec' is evaluated and the resulting
2681 list is the list of arguments.
2682 If it's a string that doesn't start with `(', the value should follow
2683 the one of the doc string for `interactive'.
2684 A null string means call interactively with no arguments.
2685 `doc' is documentation for the user. */
2686
2687 /* This version of DEFUN declares a function prototype with the right
2688 arguments, so we can catch errors with maxargs at compile-time. */
2689 #ifdef _MSC_VER
2690 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2691 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2692 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2693 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2694 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2695 { (Lisp_Object (__cdecl *)(void))fnname }, \
2696 minargs, maxargs, lname, intspec, 0}; \
2697 Lisp_Object fnname
2698 #else /* not _MSC_VER */
2699 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2700 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2701 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2702 { .a ## maxargs = fnname }, \
2703 minargs, maxargs, lname, intspec, 0}; \
2704 Lisp_Object fnname
2705 #endif
2706
2707 /* Note that the weird token-substitution semantics of ANSI C makes
2708 this work for MANY and UNEVALLED. */
2709 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
2710 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
2711 #define DEFUN_ARGS_0 (void)
2712 #define DEFUN_ARGS_1 (Lisp_Object)
2713 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
2714 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
2715 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
2716 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2717 Lisp_Object)
2718 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2719 Lisp_Object, Lisp_Object)
2720 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2721 Lisp_Object, Lisp_Object, Lisp_Object)
2722 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2723 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
2724
2725 /* True if OBJ is a Lisp function. */
2726 INLINE bool
2727 FUNCTIONP (Lisp_Object obj)
2728 {
2729 return functionp (obj);
2730 }
2731
2732 /* defsubr (Sname);
2733 is how we define the symbol for function `name' at start-up time. */
2734 extern void defsubr (struct Lisp_Subr *);
2735
2736 enum maxargs
2737 {
2738 MANY = -2,
2739 UNEVALLED = -1
2740 };
2741
2742 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2743 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2744 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2745 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2746 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2747
2748 /* Macros we use to define forwarded Lisp variables.
2749 These are used in the syms_of_FILENAME functions.
2750
2751 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2752 lisp variable is actually a field in `struct emacs_globals'. The
2753 field's name begins with "f_", which is a convention enforced by
2754 these macros. Each such global has a corresponding #define in
2755 globals.h; the plain name should be used in the code.
2756
2757 E.g., the global "cons_cells_consed" is declared as "int
2758 f_cons_cells_consed" in globals.h, but there is a define:
2759
2760 #define cons_cells_consed globals.f_cons_cells_consed
2761
2762 All C code uses the `cons_cells_consed' name. This is all done
2763 this way to support indirection for multi-threaded Emacs. */
2764
2765 #define DEFVAR_LISP(lname, vname, doc) \
2766 do { \
2767 static struct Lisp_Objfwd o_fwd; \
2768 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
2769 } while (false)
2770 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
2771 do { \
2772 static struct Lisp_Objfwd o_fwd; \
2773 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
2774 } while (false)
2775 #define DEFVAR_BOOL(lname, vname, doc) \
2776 do { \
2777 static struct Lisp_Boolfwd b_fwd; \
2778 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
2779 } while (false)
2780 #define DEFVAR_INT(lname, vname, doc) \
2781 do { \
2782 static struct Lisp_Intfwd i_fwd; \
2783 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
2784 } while (false)
2785
2786 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
2787 do { \
2788 static struct Lisp_Objfwd o_fwd; \
2789 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
2790 } while (false)
2791
2792 #define DEFVAR_KBOARD(lname, vname, doc) \
2793 do { \
2794 static struct Lisp_Kboard_Objfwd ko_fwd; \
2795 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
2796 } while (false)
2797 \f
2798 /* Save and restore the instruction and environment pointers,
2799 without affecting the signal mask. */
2800
2801 #ifdef HAVE__SETJMP
2802 typedef jmp_buf sys_jmp_buf;
2803 # define sys_setjmp(j) _setjmp (j)
2804 # define sys_longjmp(j, v) _longjmp (j, v)
2805 #elif defined HAVE_SIGSETJMP
2806 typedef sigjmp_buf sys_jmp_buf;
2807 # define sys_setjmp(j) sigsetjmp (j, 0)
2808 # define sys_longjmp(j, v) siglongjmp (j, v)
2809 #else
2810 /* A platform that uses neither _longjmp nor siglongjmp; assume
2811 longjmp does not affect the sigmask. */
2812 typedef jmp_buf sys_jmp_buf;
2813 # define sys_setjmp(j) setjmp (j)
2814 # define sys_longjmp(j, v) longjmp (j, v)
2815 #endif
2816
2817 \f
2818 /* Elisp uses several stacks:
2819 - the C stack.
2820 - the bytecode stack: used internally by the bytecode interpreter.
2821 Allocated from the C stack.
2822 - The specpdl stack: keeps track of active unwind-protect and
2823 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
2824 managed stack.
2825 - The handler stack: keeps track of active catch tags and condition-case
2826 handlers. Allocated in a manually managed stack implemented by a
2827 doubly-linked list allocated via xmalloc and never freed. */
2828
2829 /* Structure for recording Lisp call stack for backtrace purposes. */
2830
2831 /* The special binding stack holds the outer values of variables while
2832 they are bound by a function application or a let form, stores the
2833 code to be executed for unwind-protect forms.
2834
2835 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
2836 used all over the place, needs to be fast, and needs to know the size of
2837 union specbinding. But only eval.c should access it. */
2838
2839 enum specbind_tag {
2840 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
2841 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
2842 SPECPDL_UNWIND_INT, /* Likewise, on int. */
2843 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
2844 SPECPDL_BACKTRACE, /* An element of the backtrace. */
2845 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
2846 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
2847 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
2848 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
2849 };
2850
2851 union specbinding
2852 {
2853 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2854 struct {
2855 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2856 void (*func) (Lisp_Object);
2857 Lisp_Object arg;
2858 } unwind;
2859 struct {
2860 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2861 void (*func) (void *);
2862 void *arg;
2863 } unwind_ptr;
2864 struct {
2865 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2866 void (*func) (int);
2867 int arg;
2868 } unwind_int;
2869 struct {
2870 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2871 void (*func) (void);
2872 } unwind_void;
2873 struct {
2874 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2875 /* `where' is not used in the case of SPECPDL_LET. */
2876 Lisp_Object symbol, old_value, where;
2877 } let;
2878 struct {
2879 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2880 bool_bf debug_on_exit : 1;
2881 Lisp_Object function;
2882 Lisp_Object *args;
2883 ptrdiff_t nargs;
2884 } bt;
2885 };
2886
2887 extern union specbinding *specpdl;
2888 extern union specbinding *specpdl_ptr;
2889 extern ptrdiff_t specpdl_size;
2890
2891 INLINE ptrdiff_t
2892 SPECPDL_INDEX (void)
2893 {
2894 return specpdl_ptr - specpdl;
2895 }
2896
2897 /* This structure helps implement the `catch/throw' and `condition-case/signal'
2898 control structures. A struct handler contains all the information needed to
2899 restore the state of the interpreter after a non-local jump.
2900
2901 handler structures are chained together in a doubly linked list; the `next'
2902 member points to the next outer catchtag and the `nextfree' member points in
2903 the other direction to the next inner element (which is typically the next
2904 free element since we mostly use it on the deepest handler).
2905
2906 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
2907 member is TAG, and then unbinds to it. The `val' member is used to
2908 hold VAL while the stack is unwound; `val' is returned as the value
2909 of the catch form.
2910
2911 All the other members are concerned with restoring the interpreter
2912 state.
2913
2914 Members are volatile if their values need to survive _longjmp when
2915 a 'struct handler' is a local variable. */
2916
2917 enum handlertype { CATCHER, CONDITION_CASE };
2918
2919 struct handler
2920 {
2921 enum handlertype type;
2922 Lisp_Object tag_or_ch;
2923 Lisp_Object val;
2924 struct handler *next;
2925 struct handler *nextfree;
2926
2927 /* The bytecode interpreter can have several handlers active at the same
2928 time, so when we longjmp to one of them, it needs to know which handler
2929 this was and what was the corresponding internal state. This is stored
2930 here, and when we longjmp we make sure that handlerlist points to the
2931 proper handler. */
2932 Lisp_Object *bytecode_top;
2933 int bytecode_dest;
2934
2935 /* Most global vars are reset to their value via the specpdl mechanism,
2936 but a few others are handled by storing their value here. */
2937 #if true /* GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS, but defined later. */
2938 struct gcpro *gcpro;
2939 #endif
2940 sys_jmp_buf jmp;
2941 EMACS_INT lisp_eval_depth;
2942 ptrdiff_t pdlcount;
2943 int poll_suppress_count;
2944 int interrupt_input_blocked;
2945 struct byte_stack *byte_stack;
2946 };
2947
2948 /* Fill in the components of c, and put it on the list. */
2949 #define PUSH_HANDLER(c, tag_ch_val, handlertype) \
2950 if (handlerlist->nextfree) \
2951 (c) = handlerlist->nextfree; \
2952 else \
2953 { \
2954 (c) = xmalloc (sizeof (struct handler)); \
2955 (c)->nextfree = NULL; \
2956 handlerlist->nextfree = (c); \
2957 } \
2958 (c)->type = (handlertype); \
2959 (c)->tag_or_ch = (tag_ch_val); \
2960 (c)->val = Qnil; \
2961 (c)->next = handlerlist; \
2962 (c)->lisp_eval_depth = lisp_eval_depth; \
2963 (c)->pdlcount = SPECPDL_INDEX (); \
2964 (c)->poll_suppress_count = poll_suppress_count; \
2965 (c)->interrupt_input_blocked = interrupt_input_blocked;\
2966 (c)->gcpro = gcprolist; \
2967 (c)->byte_stack = byte_stack_list; \
2968 handlerlist = (c);
2969
2970
2971 extern Lisp_Object memory_signal_data;
2972
2973 /* An address near the bottom of the stack.
2974 Tells GC how to save a copy of the stack. */
2975 extern char *stack_bottom;
2976
2977 /* Check quit-flag and quit if it is non-nil.
2978 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
2979 So the program needs to do QUIT at times when it is safe to quit.
2980 Every loop that might run for a long time or might not exit
2981 ought to do QUIT at least once, at a safe place.
2982 Unless that is impossible, of course.
2983 But it is very desirable to avoid creating loops where QUIT is impossible.
2984
2985 Exception: if you set immediate_quit to true,
2986 then the handler that responds to the C-g does the quit itself.
2987 This is a good thing to do around a loop that has no side effects
2988 and (in particular) cannot call arbitrary Lisp code.
2989
2990 If quit-flag is set to `kill-emacs' the SIGINT handler has received
2991 a request to exit Emacs when it is safe to do. */
2992
2993 extern void process_pending_signals (void);
2994 extern bool volatile pending_signals;
2995
2996 extern void process_quit_flag (void);
2997 #define QUIT \
2998 do { \
2999 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
3000 process_quit_flag (); \
3001 else if (pending_signals) \
3002 process_pending_signals (); \
3003 } while (false)
3004
3005
3006 /* True if ought to quit now. */
3007
3008 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3009 \f
3010 extern Lisp_Object Vascii_downcase_table;
3011 extern Lisp_Object Vascii_canon_table;
3012 \f
3013 /* Structure for recording stack slots that need marking. */
3014
3015 /* This is a chain of structures, each of which points at a Lisp_Object
3016 variable whose value should be marked in garbage collection.
3017 Normally every link of the chain is an automatic variable of a function,
3018 and its `val' points to some argument or local variable of the function.
3019 On exit to the function, the chain is set back to the value it had on entry.
3020 This way, no link remains in the chain when the stack frame containing the
3021 link disappears.
3022
3023 Every function that can call Feval must protect in this fashion all
3024 Lisp_Object variables whose contents will be used again. */
3025
3026 extern struct gcpro *gcprolist;
3027
3028 struct gcpro
3029 {
3030 struct gcpro *next;
3031
3032 /* Address of first protected variable. */
3033 volatile Lisp_Object *var;
3034
3035 /* Number of consecutive protected variables. */
3036 ptrdiff_t nvars;
3037
3038 #ifdef DEBUG_GCPRO
3039 int level;
3040 #endif
3041 };
3042
3043 /* Values of GC_MARK_STACK during compilation:
3044
3045 0 Use GCPRO as before
3046 1 Do the real thing, make GCPROs and UNGCPRO no-ops.
3047 2 Mark the stack, and check that everything GCPRO'd is
3048 marked.
3049 3 Mark using GCPRO's, mark stack last, and count how many
3050 dead objects are kept alive.
3051
3052 Formerly, method 0 was used. Currently, method 1 is used unless
3053 otherwise specified by hand when building, e.g.,
3054 "make CPPFLAGS='-DGC_MARK_STACK=GC_USE_GCPROS_AS_BEFORE'".
3055 Methods 2 and 3 are present mainly to debug the transition from 0 to 1. */
3056
3057 #define GC_USE_GCPROS_AS_BEFORE 0
3058 #define GC_MAKE_GCPROS_NOOPS 1
3059 #define GC_MARK_STACK_CHECK_GCPROS 2
3060 #define GC_USE_GCPROS_CHECK_ZOMBIES 3
3061
3062 #ifndef GC_MARK_STACK
3063 #define GC_MARK_STACK GC_MAKE_GCPROS_NOOPS
3064 #endif
3065
3066 /* Whether we do the stack marking manually. */
3067 #define BYTE_MARK_STACK !(GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
3068 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
3069
3070
3071 #if GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS
3072
3073 /* Do something silly with gcproN vars just so gcc shuts up. */
3074 /* You get warnings from MIPSPro... */
3075
3076 #define GCPRO1(varname) ((void) gcpro1)
3077 #define GCPRO2(varname1, varname2) ((void) gcpro2, (void) gcpro1)
3078 #define GCPRO3(varname1, varname2, varname3) \
3079 ((void) gcpro3, (void) gcpro2, (void) gcpro1)
3080 #define GCPRO4(varname1, varname2, varname3, varname4) \
3081 ((void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3082 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3083 ((void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3084 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3085 ((void) gcpro6, (void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, \
3086 (void) gcpro1)
3087 #define GCPRO7(a, b, c, d, e, f, g) (GCPRO6 (a, b, c, d, e, f), (void) gcpro7)
3088 #define UNGCPRO ((void) 0)
3089
3090 #else /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3091
3092 #ifndef DEBUG_GCPRO
3093
3094 #define GCPRO1(varname) \
3095 {gcpro1.next = gcprolist; gcpro1.var = &varname; gcpro1.nvars = 1; \
3096 gcprolist = &gcpro1; }
3097
3098 #define GCPRO2(varname1, varname2) \
3099 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3100 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3101 gcprolist = &gcpro2; }
3102
3103 #define GCPRO3(varname1, varname2, varname3) \
3104 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3105 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3106 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3107 gcprolist = &gcpro3; }
3108
3109 #define GCPRO4(varname1, varname2, varname3, varname4) \
3110 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3111 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3112 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3113 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3114 gcprolist = &gcpro4; }
3115
3116 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3117 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3118 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3119 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3120 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3121 gcpro5.next = &gcpro4; gcpro5.var = &varname5; gcpro5.nvars = 1; \
3122 gcprolist = &gcpro5; }
3123
3124 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3125 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3126 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3127 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3128 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3129 gcpro5.next = &gcpro4; gcpro5.var = &varname5; gcpro5.nvars = 1; \
3130 gcpro6.next = &gcpro5; gcpro6.var = &varname6; gcpro6.nvars = 1; \
3131 gcprolist = &gcpro6; }
3132
3133 #define GCPRO7(a, b, c, d, e, f, g) \
3134 {gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3135 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3136 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3137 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3138 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3139 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3140 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3141 gcprolist = &gcpro7; }
3142
3143 #define UNGCPRO (gcprolist = gcpro1.next)
3144
3145 #else
3146
3147 extern int gcpro_level;
3148
3149 #define GCPRO1(varname) \
3150 {gcpro1.next = gcprolist; gcpro1.var = &varname; gcpro1.nvars = 1; \
3151 gcpro1.level = gcpro_level++; \
3152 gcprolist = &gcpro1; }
3153
3154 #define GCPRO2(varname1, varname2) \
3155 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3156 gcpro1.level = gcpro_level; \
3157 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3158 gcpro2.level = gcpro_level++; \
3159 gcprolist = &gcpro2; }
3160
3161 #define GCPRO3(varname1, varname2, varname3) \
3162 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3163 gcpro1.level = gcpro_level; \
3164 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3165 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3166 gcpro3.level = gcpro_level++; \
3167 gcprolist = &gcpro3; }
3168
3169 #define GCPRO4(varname1, varname2, varname3, varname4) \
3170 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3171 gcpro1.level = gcpro_level; \
3172 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3173 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3174 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3175 gcpro4.level = gcpro_level++; \
3176 gcprolist = &gcpro4; }
3177
3178 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3179 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3180 gcpro1.level = gcpro_level; \
3181 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3182 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3183 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3184 gcpro5.next = &gcpro4; gcpro5.var = &varname5; gcpro5.nvars = 1; \
3185 gcpro5.level = gcpro_level++; \
3186 gcprolist = &gcpro5; }
3187
3188 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3189 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3190 gcpro1.level = gcpro_level; \
3191 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3192 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3193 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3194 gcpro5.next = &gcpro4; gcpro5.var = &varname5; gcpro5.nvars = 1; \
3195 gcpro6.next = &gcpro5; gcpro6.var = &varname6; gcpro6.nvars = 1; \
3196 gcpro6.level = gcpro_level++; \
3197 gcprolist = &gcpro6; }
3198
3199 #define GCPRO7(a, b, c, d, e, f, g) \
3200 {gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3201 gcpro1.level = gcpro_level; \
3202 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3203 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3204 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3205 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3206 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3207 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3208 gcpro7.level = gcpro_level++; \
3209 gcprolist = &gcpro7; }
3210
3211 #define UNGCPRO \
3212 (--gcpro_level != gcpro1.level \
3213 ? emacs_abort () \
3214 : (void) (gcprolist = gcpro1.next))
3215
3216 #endif /* DEBUG_GCPRO */
3217 #endif /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3218
3219
3220 /* Evaluate expr, UNGCPRO, and then return the value of expr. */
3221 #define RETURN_UNGCPRO(expr) \
3222 do \
3223 { \
3224 Lisp_Object ret_ungc_val; \
3225 ret_ungc_val = (expr); \
3226 UNGCPRO; \
3227 return ret_ungc_val; \
3228 } \
3229 while (false)
3230
3231 /* Call staticpro (&var) to protect static variable `var'. */
3232
3233 void staticpro (Lisp_Object *);
3234 \f
3235 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
3236 meaning as in the DEFUN macro, and is used to construct a prototype. */
3237 /* We can use the same trick as in the DEFUN macro to generate the
3238 appropriate prototype. */
3239 #define EXFUN(fnname, maxargs) \
3240 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
3241
3242 #include "globals.h"
3243
3244 /* Forward declarations for prototypes. */
3245 struct window;
3246 struct frame;
3247
3248 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3249
3250 INLINE void
3251 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3252 {
3253 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3254 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3255 }
3256
3257 /* Functions to modify hash tables. */
3258
3259 INLINE void
3260 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3261 {
3262 gc_aset (h->key_and_value, 2 * idx, val);
3263 }
3264
3265 INLINE void
3266 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3267 {
3268 gc_aset (h->key_and_value, 2 * idx + 1, val);
3269 }
3270
3271 /* Use these functions to set Lisp_Object
3272 or pointer slots of struct Lisp_Symbol. */
3273
3274 INLINE void
3275 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3276 {
3277 XSYMBOL (sym)->function = function;
3278 }
3279
3280 INLINE void
3281 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3282 {
3283 XSYMBOL (sym)->plist = plist;
3284 }
3285
3286 INLINE void
3287 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3288 {
3289 XSYMBOL (sym)->next = next;
3290 }
3291
3292 /* Buffer-local (also frame-local) variable access functions. */
3293
3294 INLINE int
3295 blv_found (struct Lisp_Buffer_Local_Value *blv)
3296 {
3297 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3298 return blv->found;
3299 }
3300
3301 /* Set overlay's property list. */
3302
3303 INLINE void
3304 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3305 {
3306 XOVERLAY (overlay)->plist = plist;
3307 }
3308
3309 /* Get text properties of S. */
3310
3311 INLINE INTERVAL
3312 string_intervals (Lisp_Object s)
3313 {
3314 return XSTRING (s)->intervals;
3315 }
3316
3317 /* Set text properties of S to I. */
3318
3319 INLINE void
3320 set_string_intervals (Lisp_Object s, INTERVAL i)
3321 {
3322 XSTRING (s)->intervals = i;
3323 }
3324
3325 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3326 of setting slots directly. */
3327
3328 INLINE void
3329 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3330 {
3331 XCHAR_TABLE (table)->defalt = val;
3332 }
3333 INLINE void
3334 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3335 {
3336 XCHAR_TABLE (table)->purpose = val;
3337 }
3338
3339 /* Set different slots in (sub)character tables. */
3340
3341 INLINE void
3342 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3343 {
3344 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3345 XCHAR_TABLE (table)->extras[idx] = val;
3346 }
3347
3348 INLINE void
3349 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3350 {
3351 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3352 XCHAR_TABLE (table)->contents[idx] = val;
3353 }
3354
3355 INLINE void
3356 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3357 {
3358 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3359 }
3360
3361 /* Defined in data.c. */
3362 extern Lisp_Object Qquote, Qunbound;
3363 extern Lisp_Object Qerror_conditions, Qerror_message, Qtop_level;
3364 extern Lisp_Object Qerror, Qquit, Qargs_out_of_range;
3365 extern Lisp_Object Qvoid_variable, Qvoid_function;
3366 extern Lisp_Object Qinvalid_read_syntax;
3367 extern Lisp_Object Qinvalid_function, Qwrong_number_of_arguments, Qno_catch;
3368 extern Lisp_Object Quser_error, Qend_of_file, Qarith_error, Qmark_inactive;
3369 extern Lisp_Object Qbeginning_of_buffer, Qend_of_buffer, Qbuffer_read_only;
3370 extern Lisp_Object Qtext_read_only;
3371 extern Lisp_Object Qinteractive_form;
3372 extern Lisp_Object Qcircular_list;
3373 extern Lisp_Object Qsequencep;
3374 extern Lisp_Object Qchar_or_string_p, Qinteger_or_marker_p;
3375 extern Lisp_Object Qfboundp;
3376
3377 extern Lisp_Object Qcdr;
3378
3379 extern Lisp_Object Qrange_error, Qoverflow_error;
3380
3381 extern Lisp_Object Qnumber_or_marker_p;
3382
3383 extern Lisp_Object Qbuffer, Qinteger, Qsymbol;
3384
3385 /* Defined in data.c. */
3386 extern Lisp_Object indirect_function (Lisp_Object);
3387 extern Lisp_Object find_symbol_value (Lisp_Object);
3388 enum Arith_Comparison {
3389 ARITH_EQUAL,
3390 ARITH_NOTEQUAL,
3391 ARITH_LESS,
3392 ARITH_GRTR,
3393 ARITH_LESS_OR_EQUAL,
3394 ARITH_GRTR_OR_EQUAL
3395 };
3396 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3397 enum Arith_Comparison comparison);
3398
3399 /* Convert the integer I to an Emacs representation, either the integer
3400 itself, or a cons of two or three integers, or if all else fails a float.
3401 I should not have side effects. */
3402 #define INTEGER_TO_CONS(i) \
3403 (! FIXNUM_OVERFLOW_P (i) \
3404 ? make_number (i) \
3405 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16) \
3406 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16)) \
3407 && FIXNUM_OVERFLOW_P ((i) >> 16)) \
3408 ? Fcons (make_number ((i) >> 16), make_number ((i) & 0xffff)) \
3409 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16 >> 24) \
3410 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16 >> 24)) \
3411 && FIXNUM_OVERFLOW_P ((i) >> 16 >> 24)) \
3412 ? Fcons (make_number ((i) >> 16 >> 24), \
3413 Fcons (make_number ((i) >> 16 & 0xffffff), \
3414 make_number ((i) & 0xffff))) \
3415 : make_float (i))
3416
3417 /* Convert the Emacs representation CONS back to an integer of type
3418 TYPE, storing the result the variable VAR. Signal an error if CONS
3419 is not a valid representation or is out of range for TYPE. */
3420 #define CONS_TO_INTEGER(cons, type, var) \
3421 (TYPE_SIGNED (type) \
3422 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3423 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3424 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3425 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3426
3427 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3428 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3429 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3430 Lisp_Object);
3431 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3432 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3433 extern void syms_of_data (void);
3434 extern void swap_in_global_binding (struct Lisp_Symbol *);
3435
3436 /* Defined in cmds.c */
3437 extern void syms_of_cmds (void);
3438 extern void keys_of_cmds (void);
3439
3440 /* Defined in coding.c. */
3441 extern Lisp_Object Qcharset;
3442 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3443 ptrdiff_t, bool, bool, Lisp_Object);
3444 extern void init_coding (void);
3445 extern void init_coding_once (void);
3446 extern void syms_of_coding (void);
3447
3448 /* Defined in character.c. */
3449 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3450 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3451 extern void syms_of_character (void);
3452
3453 /* Defined in charset.c. */
3454 extern void init_charset (void);
3455 extern void init_charset_once (void);
3456 extern void syms_of_charset (void);
3457 /* Structure forward declarations. */
3458 struct charset;
3459
3460 /* Defined in syntax.c. */
3461 extern void init_syntax_once (void);
3462 extern void syms_of_syntax (void);
3463
3464 /* Defined in fns.c. */
3465 extern Lisp_Object QCrehash_size, QCrehash_threshold;
3466 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3467 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3468 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3469 extern void sweep_weak_hash_tables (void);
3470 extern Lisp_Object Qcursor_in_echo_area;
3471 extern Lisp_Object Qstring_lessp;
3472 extern Lisp_Object QCsize, QCtest, QCweakness, Qequal, Qeq;
3473 EMACS_UINT hash_string (char const *, ptrdiff_t);
3474 EMACS_UINT sxhash (Lisp_Object, int);
3475 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3476 Lisp_Object, Lisp_Object);
3477 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3478 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3479 EMACS_UINT);
3480 extern struct hash_table_test hashtest_eql, hashtest_equal;
3481 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3482 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3483 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3484 ptrdiff_t, ptrdiff_t);
3485 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3486 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3487 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3488 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3489 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3490 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3491 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3492 extern void clear_string_char_byte_cache (void);
3493 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3494 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3495 extern Lisp_Object string_to_multibyte (Lisp_Object);
3496 extern Lisp_Object string_make_unibyte (Lisp_Object);
3497 extern void syms_of_fns (void);
3498
3499 /* Defined in floatfns.c. */
3500 extern void syms_of_floatfns (void);
3501 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3502
3503 /* Defined in fringe.c. */
3504 extern void syms_of_fringe (void);
3505 extern void init_fringe (void);
3506 #ifdef HAVE_WINDOW_SYSTEM
3507 extern void mark_fringe_data (void);
3508 extern void init_fringe_once (void);
3509 #endif /* HAVE_WINDOW_SYSTEM */
3510
3511 /* Defined in image.c. */
3512 extern Lisp_Object QCascent, QCmargin, QCrelief;
3513 extern Lisp_Object QCconversion;
3514 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3515 extern void reset_image_types (void);
3516 extern void syms_of_image (void);
3517
3518 /* Defined in insdel.c. */
3519 extern Lisp_Object Qinhibit_modification_hooks;
3520 extern Lisp_Object Qregion_extract_function;
3521 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3522 extern _Noreturn void buffer_overflow (void);
3523 extern void make_gap (ptrdiff_t);
3524 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3525 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3526 ptrdiff_t, bool, bool);
3527 extern int count_combining_before (const unsigned char *,
3528 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3529 extern int count_combining_after (const unsigned char *,
3530 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3531 extern void insert (const char *, ptrdiff_t);
3532 extern void insert_and_inherit (const char *, ptrdiff_t);
3533 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3534 bool, bool, bool);
3535 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3536 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3537 ptrdiff_t, ptrdiff_t, bool);
3538 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3539 extern void insert_char (int);
3540 extern void insert_string (const char *);
3541 extern void insert_before_markers (const char *, ptrdiff_t);
3542 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3543 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3544 ptrdiff_t, ptrdiff_t,
3545 ptrdiff_t, bool);
3546 extern void del_range (ptrdiff_t, ptrdiff_t);
3547 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3548 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3549 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3550 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3551 ptrdiff_t, ptrdiff_t, bool);
3552 extern void modify_text (ptrdiff_t, ptrdiff_t);
3553 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3554 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3555 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3556 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3557 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3558 ptrdiff_t, ptrdiff_t);
3559 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3560 ptrdiff_t, ptrdiff_t);
3561 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3562 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3563 const char *, ptrdiff_t, ptrdiff_t, bool);
3564 extern void syms_of_insdel (void);
3565
3566 /* Defined in dispnew.c. */
3567 #if (defined PROFILING \
3568 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3569 _Noreturn void __executable_start (void);
3570 #endif
3571 extern Lisp_Object Vwindow_system;
3572 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3573
3574 /* Defined in xdisp.c. */
3575 extern Lisp_Object Qinhibit_point_motion_hooks;
3576 extern Lisp_Object Qinhibit_redisplay;
3577 extern Lisp_Object Qmenu_bar_update_hook;
3578 extern Lisp_Object Qwindow_scroll_functions;
3579 extern Lisp_Object Qoverriding_local_map, Qoverriding_terminal_local_map;
3580 extern Lisp_Object Qtext, Qboth, Qboth_horiz, Qtext_image_horiz;
3581 extern Lisp_Object Qspace, Qcenter, QCalign_to;
3582 extern Lisp_Object Qbar, Qhbar, Qhollow;
3583 extern Lisp_Object Qleft_margin, Qright_margin;
3584 extern Lisp_Object QCdata, QCfile;
3585 extern Lisp_Object QCmap;
3586 extern Lisp_Object Qrisky_local_variable;
3587 extern bool noninteractive_need_newline;
3588 extern Lisp_Object echo_area_buffer[2];
3589 extern void add_to_log (const char *, Lisp_Object, Lisp_Object);
3590 extern void check_message_stack (void);
3591 extern void setup_echo_area_for_printing (int);
3592 extern bool push_message (void);
3593 extern void pop_message_unwind (void);
3594 extern Lisp_Object restore_message_unwind (Lisp_Object);
3595 extern void restore_message (void);
3596 extern Lisp_Object current_message (void);
3597 extern void clear_message (bool, bool);
3598 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3599 extern void message1 (const char *);
3600 extern void message1_nolog (const char *);
3601 extern void message3 (Lisp_Object);
3602 extern void message3_nolog (Lisp_Object);
3603 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3604 extern void message_with_string (const char *, Lisp_Object, int);
3605 extern void message_log_maybe_newline (void);
3606 extern void update_echo_area (void);
3607 extern void truncate_echo_area (ptrdiff_t);
3608 extern void redisplay (void);
3609
3610 void set_frame_cursor_types (struct frame *, Lisp_Object);
3611 extern void syms_of_xdisp (void);
3612 extern void init_xdisp (void);
3613 extern Lisp_Object safe_eval (Lisp_Object);
3614 extern int pos_visible_p (struct window *, ptrdiff_t, int *,
3615 int *, int *, int *, int *, int *);
3616
3617 /* Defined in xsettings.c. */
3618 extern void syms_of_xsettings (void);
3619
3620 /* Defined in vm-limit.c. */
3621 extern void memory_warnings (void *, void (*warnfun) (const char *));
3622
3623 /* Defined in alloc.c. */
3624 extern void check_pure_size (void);
3625 extern void free_misc (Lisp_Object);
3626 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3627 extern void malloc_warning (const char *);
3628 extern _Noreturn void memory_full (size_t);
3629 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3630 extern bool survives_gc_p (Lisp_Object);
3631 extern void mark_object (Lisp_Object);
3632 #if defined REL_ALLOC && !defined SYSTEM_MALLOC
3633 extern void refill_memory_reserve (void);
3634 #endif
3635 extern const char *pending_malloc_warning;
3636 extern Lisp_Object zero_vector;
3637 extern Lisp_Object *stack_base;
3638 extern EMACS_INT consing_since_gc;
3639 extern EMACS_INT gc_relative_threshold;
3640 extern EMACS_INT memory_full_cons_threshold;
3641 extern Lisp_Object list1 (Lisp_Object);
3642 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3643 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3644 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3645 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3646 Lisp_Object);
3647 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3648 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3649
3650 /* Build a frequently used 2/3/4-integer lists. */
3651
3652 INLINE Lisp_Object
3653 list2i (EMACS_INT x, EMACS_INT y)
3654 {
3655 return list2 (make_number (x), make_number (y));
3656 }
3657
3658 INLINE Lisp_Object
3659 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3660 {
3661 return list3 (make_number (x), make_number (y), make_number (w));
3662 }
3663
3664 INLINE Lisp_Object
3665 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3666 {
3667 return list4 (make_number (x), make_number (y),
3668 make_number (w), make_number (h));
3669 }
3670
3671 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3672 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3673 extern _Noreturn void string_overflow (void);
3674 extern Lisp_Object make_string (const char *, ptrdiff_t);
3675 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3676 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3677 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3678
3679 /* Make unibyte string from C string when the length isn't known. */
3680
3681 INLINE Lisp_Object
3682 build_unibyte_string (const char *str)
3683 {
3684 return make_unibyte_string (str, strlen (str));
3685 }
3686
3687 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3688 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3689 extern Lisp_Object make_uninit_string (EMACS_INT);
3690 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3691 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3692 extern Lisp_Object make_specified_string (const char *,
3693 ptrdiff_t, ptrdiff_t, bool);
3694 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3695 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3696
3697 /* Make a string allocated in pure space, use STR as string data. */
3698
3699 INLINE Lisp_Object
3700 build_pure_c_string (const char *str)
3701 {
3702 return make_pure_c_string (str, strlen (str));
3703 }
3704
3705 /* Make a string from the data at STR, treating it as multibyte if the
3706 data warrants. */
3707
3708 INLINE Lisp_Object
3709 build_string (const char *str)
3710 {
3711 return make_string (str, strlen (str));
3712 }
3713
3714 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3715 extern void make_byte_code (struct Lisp_Vector *);
3716 extern Lisp_Object Qautomatic_gc;
3717 extern Lisp_Object Qchar_table_extra_slots;
3718 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3719
3720 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3721 be sure that GC cannot happen until the vector is completely
3722 initialized. E.g. the following code is likely to crash:
3723
3724 v = make_uninit_vector (3);
3725 ASET (v, 0, obj0);
3726 ASET (v, 1, Ffunction_can_gc ());
3727 ASET (v, 2, obj1); */
3728
3729 INLINE Lisp_Object
3730 make_uninit_vector (ptrdiff_t size)
3731 {
3732 Lisp_Object v;
3733 struct Lisp_Vector *p;
3734
3735 p = allocate_vector (size);
3736 XSETVECTOR (v, p);
3737 return v;
3738 }
3739
3740 /* Like above, but special for sub char-tables. */
3741
3742 INLINE Lisp_Object
3743 make_uninit_sub_char_table (int depth, int min_char)
3744 {
3745 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3746 Lisp_Object v = make_uninit_vector (slots);
3747
3748 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3749 XSUB_CHAR_TABLE (v)->depth = depth;
3750 XSUB_CHAR_TABLE (v)->min_char = min_char;
3751 return v;
3752 }
3753
3754 extern struct Lisp_Vector *allocate_pseudovector (int, int, enum pvec_type);
3755 #define ALLOCATE_PSEUDOVECTOR(typ,field,tag) \
3756 ((typ*) \
3757 allocate_pseudovector \
3758 (VECSIZE (typ), PSEUDOVECSIZE (typ, field), tag))
3759 extern struct Lisp_Hash_Table *allocate_hash_table (void);
3760 extern struct window *allocate_window (void);
3761 extern struct frame *allocate_frame (void);
3762 extern struct Lisp_Process *allocate_process (void);
3763 extern struct terminal *allocate_terminal (void);
3764 extern bool gc_in_progress;
3765 extern bool abort_on_gc;
3766 extern Lisp_Object make_float (double);
3767 extern void display_malloc_warning (void);
3768 extern ptrdiff_t inhibit_garbage_collection (void);
3769 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3770 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3771 Lisp_Object, Lisp_Object);
3772 extern Lisp_Object make_save_ptr (void *);
3773 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3774 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3775 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3776 Lisp_Object);
3777 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3778 extern void free_save_value (Lisp_Object);
3779 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3780 extern void free_marker (Lisp_Object);
3781 extern void free_cons (struct Lisp_Cons *);
3782 extern void init_alloc_once (void);
3783 extern void init_alloc (void);
3784 extern void syms_of_alloc (void);
3785 extern struct buffer * allocate_buffer (void);
3786 extern int valid_lisp_object_p (Lisp_Object);
3787 extern int relocatable_string_data_p (const char *);
3788 #ifdef GC_CHECK_CONS_LIST
3789 extern void check_cons_list (void);
3790 #else
3791 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3792 #endif
3793
3794 #ifdef REL_ALLOC
3795 /* Defined in ralloc.c. */
3796 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3797 extern void r_alloc_free (void **);
3798 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3799 extern void r_alloc_reset_variable (void **, void **);
3800 extern void r_alloc_inhibit_buffer_relocation (int);
3801 #endif
3802
3803 /* Defined in chartab.c. */
3804 extern Lisp_Object copy_char_table (Lisp_Object);
3805 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3806 int *, int *);
3807 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3808 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3809 Lisp_Object),
3810 Lisp_Object, Lisp_Object, Lisp_Object);
3811 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3812 Lisp_Object, Lisp_Object,
3813 Lisp_Object, struct charset *,
3814 unsigned, unsigned);
3815 extern Lisp_Object uniprop_table (Lisp_Object);
3816 extern void syms_of_chartab (void);
3817
3818 /* Defined in print.c. */
3819 extern Lisp_Object Vprin1_to_string_buffer;
3820 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3821 extern Lisp_Object Qstandard_output;
3822 extern Lisp_Object Qexternal_debugging_output;
3823 extern void temp_output_buffer_setup (const char *);
3824 extern int print_level;
3825 extern Lisp_Object Qprint_escape_newlines;
3826 extern void write_string (const char *, int);
3827 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3828 Lisp_Object);
3829 extern Lisp_Object internal_with_output_to_temp_buffer
3830 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3831 #define FLOAT_TO_STRING_BUFSIZE 350
3832 extern int float_to_string (char *, double);
3833 extern void init_print_once (void);
3834 extern void syms_of_print (void);
3835
3836 /* Defined in doprnt.c. */
3837 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3838 va_list);
3839 extern ptrdiff_t esprintf (char *, char const *, ...)
3840 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3841 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3842 char const *, ...)
3843 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3844 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3845 char const *, va_list)
3846 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3847
3848 /* Defined in lread.c. */
3849 extern Lisp_Object Qvariable_documentation, Qstandard_input;
3850 extern Lisp_Object Qbackquote, Qcomma, Qcomma_at, Qcomma_dot, Qfunction;
3851 extern Lisp_Object Qlexical_binding;
3852 extern Lisp_Object check_obarray (Lisp_Object);
3853 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3854 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3855 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3856 INLINE void
3857 LOADHIST_ATTACH (Lisp_Object x)
3858 {
3859 if (initialized)
3860 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3861 }
3862 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3863 Lisp_Object *, Lisp_Object, bool);
3864 extern Lisp_Object string_to_number (char const *, int, bool);
3865 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3866 Lisp_Object);
3867 extern void dir_warning (const char *, Lisp_Object);
3868 extern void init_obarray (void);
3869 extern void init_lread (void);
3870 extern void syms_of_lread (void);
3871
3872 INLINE Lisp_Object
3873 intern (const char *str)
3874 {
3875 return intern_1 (str, strlen (str));
3876 }
3877
3878 INLINE Lisp_Object
3879 intern_c_string (const char *str)
3880 {
3881 return intern_c_string_1 (str, strlen (str));
3882 }
3883
3884 /* Defined in eval.c. */
3885 extern Lisp_Object Qexit, Qinteractive, Qcommandp, Qmacro;
3886 extern Lisp_Object Qinhibit_quit, Qinternal_interpreter_environment, Qclosure;
3887 extern Lisp_Object Qand_rest;
3888 extern Lisp_Object Vautoload_queue;
3889 extern Lisp_Object Vsignaling_function;
3890 extern Lisp_Object inhibit_lisp_code;
3891 extern struct handler *handlerlist;
3892
3893 /* To run a normal hook, use the appropriate function from the list below.
3894 The calling convention:
3895
3896 if (!NILP (Vrun_hooks))
3897 call1 (Vrun_hooks, Qmy_funny_hook);
3898
3899 should no longer be used. */
3900 extern Lisp_Object Vrun_hooks;
3901 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3902 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3903 Lisp_Object (*funcall)
3904 (ptrdiff_t nargs, Lisp_Object *args));
3905 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3906 extern _Noreturn void xsignal0 (Lisp_Object);
3907 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3908 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3909 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3910 Lisp_Object);
3911 extern _Noreturn void signal_error (const char *, Lisp_Object);
3912 extern Lisp_Object eval_sub (Lisp_Object form);
3913 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3914 extern Lisp_Object call0 (Lisp_Object);
3915 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3916 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3917 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3918 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3919 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3920 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3921 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3922 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3923 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3924 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3925 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3926 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3927 extern Lisp_Object internal_condition_case_n
3928 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3929 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3930 extern void specbind (Lisp_Object, Lisp_Object);
3931 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3932 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3933 extern void record_unwind_protect_int (void (*) (int), int);
3934 extern void record_unwind_protect_void (void (*) (void));
3935 extern void record_unwind_protect_nothing (void);
3936 extern void clear_unwind_protect (ptrdiff_t);
3937 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3938 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3939 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3940 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3941 extern _Noreturn void verror (const char *, va_list)
3942 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3943 extern void un_autoload (Lisp_Object);
3944 extern Lisp_Object call_debugger (Lisp_Object arg);
3945 extern void init_eval_once (void);
3946 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3947 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
3948 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3949 extern void init_eval (void);
3950 extern void syms_of_eval (void);
3951 extern void unwind_body (Lisp_Object);
3952 extern void record_in_backtrace (Lisp_Object function,
3953 Lisp_Object *args, ptrdiff_t nargs);
3954 extern void mark_specpdl (void);
3955 extern void get_backtrace (Lisp_Object array);
3956 Lisp_Object backtrace_top_function (void);
3957 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
3958 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
3959
3960
3961 /* Defined in editfns.c. */
3962 extern Lisp_Object Qfield;
3963 extern void insert1 (Lisp_Object);
3964 extern Lisp_Object format2 (const char *, Lisp_Object, Lisp_Object);
3965 extern Lisp_Object save_excursion_save (void);
3966 extern Lisp_Object save_restriction_save (void);
3967 extern void save_excursion_restore (Lisp_Object);
3968 extern void save_restriction_restore (Lisp_Object);
3969 extern _Noreturn void time_overflow (void);
3970 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
3971 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3972 ptrdiff_t, bool);
3973 extern void init_editfns (void);
3974 extern void syms_of_editfns (void);
3975 extern void set_time_zone_rule (const char *);
3976
3977 /* Defined in buffer.c. */
3978 extern bool mouse_face_overlay_overlaps (Lisp_Object);
3979 extern _Noreturn void nsberror (Lisp_Object);
3980 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
3981 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
3982 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
3983 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
3984 Lisp_Object, Lisp_Object, Lisp_Object);
3985 extern bool overlay_touches_p (ptrdiff_t);
3986 extern Lisp_Object other_buffer_safely (Lisp_Object);
3987 extern Lisp_Object get_truename_buffer (Lisp_Object);
3988 extern void init_buffer_once (void);
3989 extern void init_buffer (int);
3990 extern void syms_of_buffer (void);
3991 extern void keys_of_buffer (void);
3992
3993 /* Defined in marker.c. */
3994
3995 extern ptrdiff_t marker_position (Lisp_Object);
3996 extern ptrdiff_t marker_byte_position (Lisp_Object);
3997 extern void clear_charpos_cache (struct buffer *);
3998 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
3999 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
4000 extern void unchain_marker (struct Lisp_Marker *marker);
4001 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
4002 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
4003 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
4004 ptrdiff_t, ptrdiff_t);
4005 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
4006 extern void syms_of_marker (void);
4007
4008 /* Defined in fileio.c. */
4009
4010 extern Lisp_Object Qfile_error;
4011 extern Lisp_Object Qfile_notify_error;
4012 extern Lisp_Object Qfile_exists_p;
4013 extern Lisp_Object Qfile_directory_p;
4014 extern Lisp_Object Qinsert_file_contents;
4015 extern Lisp_Object Qfile_name_history;
4016 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
4017 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
4018 Lisp_Object, Lisp_Object, Lisp_Object,
4019 Lisp_Object, int);
4020 extern void close_file_unwind (int);
4021 extern void fclose_unwind (void *);
4022 extern void restore_point_unwind (Lisp_Object);
4023 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
4024 extern _Noreturn void report_file_error (const char *, Lisp_Object);
4025 extern bool internal_delete_file (Lisp_Object);
4026 extern Lisp_Object emacs_readlinkat (int, const char *);
4027 extern bool file_directory_p (const char *);
4028 extern bool file_accessible_directory_p (const char *);
4029 extern void init_fileio (void);
4030 extern void syms_of_fileio (void);
4031 extern Lisp_Object make_temp_name (Lisp_Object, bool);
4032 extern Lisp_Object Qdelete_file;
4033
4034 /* Defined in search.c. */
4035 extern void shrink_regexp_cache (void);
4036 extern void restore_search_regs (void);
4037 extern void record_unwind_save_match_data (void);
4038 struct re_registers;
4039 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4040 struct re_registers *,
4041 Lisp_Object, bool, bool);
4042 extern ptrdiff_t fast_string_match (Lisp_Object, Lisp_Object);
4043 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4044 ptrdiff_t);
4045 extern ptrdiff_t fast_string_match_ignore_case (Lisp_Object, Lisp_Object);
4046 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4047 ptrdiff_t, ptrdiff_t, Lisp_Object);
4048 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4049 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4050 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4051 ptrdiff_t, bool);
4052 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4053 ptrdiff_t, ptrdiff_t *);
4054 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4055 ptrdiff_t, ptrdiff_t *);
4056 extern void syms_of_search (void);
4057 extern void clear_regexp_cache (void);
4058
4059 /* Defined in minibuf.c. */
4060
4061 extern Lisp_Object Qcompletion_ignore_case;
4062 extern Lisp_Object Vminibuffer_list;
4063 extern Lisp_Object last_minibuf_string;
4064 extern Lisp_Object get_minibuffer (EMACS_INT);
4065 extern void init_minibuf_once (void);
4066 extern void syms_of_minibuf (void);
4067
4068 /* Defined in callint.c. */
4069
4070 extern Lisp_Object Qminus, Qplus;
4071 extern Lisp_Object Qprogn;
4072 extern Lisp_Object Qwhen;
4073 extern Lisp_Object Qmouse_leave_buffer_hook;
4074 extern void syms_of_callint (void);
4075
4076 /* Defined in casefiddle.c. */
4077
4078 extern Lisp_Object Qidentity;
4079 extern void syms_of_casefiddle (void);
4080 extern void keys_of_casefiddle (void);
4081
4082 /* Defined in casetab.c. */
4083
4084 extern void init_casetab_once (void);
4085 extern void syms_of_casetab (void);
4086
4087 /* Defined in keyboard.c. */
4088
4089 extern Lisp_Object echo_message_buffer;
4090 extern struct kboard *echo_kboard;
4091 extern void cancel_echoing (void);
4092 extern Lisp_Object Qdisabled, QCfilter;
4093 extern Lisp_Object Qup, Qdown;
4094 extern Lisp_Object last_undo_boundary;
4095 extern bool input_pending;
4096 extern Lisp_Object menu_bar_items (Lisp_Object);
4097 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4098 extern void discard_mouse_events (void);
4099 #ifdef USABLE_SIGIO
4100 void handle_input_available_signal (int);
4101 #endif
4102 extern Lisp_Object pending_funcalls;
4103 extern bool detect_input_pending (void);
4104 extern bool detect_input_pending_ignore_squeezables (void);
4105 extern bool detect_input_pending_run_timers (bool);
4106 extern void safe_run_hooks (Lisp_Object);
4107 extern void cmd_error_internal (Lisp_Object, const char *);
4108 extern Lisp_Object command_loop_1 (void);
4109 extern Lisp_Object read_menu_command (void);
4110 extern Lisp_Object recursive_edit_1 (void);
4111 extern void record_auto_save (void);
4112 extern void force_auto_save_soon (void);
4113 extern void init_keyboard (void);
4114 extern void syms_of_keyboard (void);
4115 extern void keys_of_keyboard (void);
4116
4117 /* Defined in indent.c. */
4118 extern ptrdiff_t current_column (void);
4119 extern void invalidate_current_column (void);
4120 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4121 extern void syms_of_indent (void);
4122
4123 /* Defined in frame.c. */
4124 extern Lisp_Object Qonly, Qnone;
4125 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4126 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4127 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4128 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4129 extern void frames_discard_buffer (Lisp_Object);
4130 extern void syms_of_frame (void);
4131
4132 /* Defined in emacs.c. */
4133 extern char **initial_argv;
4134 extern int initial_argc;
4135 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4136 extern bool display_arg;
4137 #endif
4138 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4139 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4140 extern Lisp_Object Qfile_name_handler_alist;
4141 extern _Noreturn void terminate_due_to_signal (int, int);
4142 extern Lisp_Object Qkill_emacs;
4143 #ifdef WINDOWSNT
4144 extern Lisp_Object Vlibrary_cache;
4145 #endif
4146 #if HAVE_SETLOCALE
4147 void fixup_locale (void);
4148 void synchronize_system_messages_locale (void);
4149 void synchronize_system_time_locale (void);
4150 #else
4151 INLINE void fixup_locale (void) {}
4152 INLINE void synchronize_system_messages_locale (void) {}
4153 INLINE void synchronize_system_time_locale (void) {}
4154 #endif
4155 extern void shut_down_emacs (int, Lisp_Object);
4156
4157 /* True means don't do interactive redisplay and don't change tty modes. */
4158 extern bool noninteractive;
4159
4160 /* True means remove site-lisp directories from load-path. */
4161 extern bool no_site_lisp;
4162
4163 /* Pipe used to send exit notification to the daemon parent at
4164 startup. */
4165 extern int daemon_pipe[2];
4166 #define IS_DAEMON (daemon_pipe[1] != 0)
4167
4168 /* True if handling a fatal error already. */
4169 extern bool fatal_error_in_progress;
4170
4171 /* True means don't do use window-system-specific display code. */
4172 extern bool inhibit_window_system;
4173 /* True means that a filter or a sentinel is running. */
4174 extern bool running_asynch_code;
4175
4176 /* Defined in process.c. */
4177 extern Lisp_Object QCtype, Qlocal;
4178 extern void kill_buffer_processes (Lisp_Object);
4179 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4180 struct Lisp_Process *, int);
4181 /* Max value for the first argument of wait_reading_process_output. */
4182 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4183 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4184 The bug merely causes a bogus warning, but the warning is annoying. */
4185 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4186 #else
4187 # define WAIT_READING_MAX INTMAX_MAX
4188 #endif
4189 #ifdef HAVE_TIMERFD
4190 extern void add_timer_wait_descriptor (int);
4191 #endif
4192 extern void add_keyboard_wait_descriptor (int);
4193 extern void delete_keyboard_wait_descriptor (int);
4194 #ifdef HAVE_GPM
4195 extern void add_gpm_wait_descriptor (int);
4196 extern void delete_gpm_wait_descriptor (int);
4197 #endif
4198 extern void init_process_emacs (void);
4199 extern void syms_of_process (void);
4200 extern void setup_process_coding_systems (Lisp_Object);
4201
4202 /* Defined in callproc.c. */
4203 #ifndef DOS_NT
4204 _Noreturn
4205 #endif
4206 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4207 extern void init_callproc_1 (void);
4208 extern void init_callproc (void);
4209 extern void set_initial_environment (void);
4210 extern void syms_of_callproc (void);
4211
4212 /* Defined in doc.c. */
4213 extern Lisp_Object Qfunction_documentation;
4214 extern Lisp_Object read_doc_string (Lisp_Object);
4215 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4216 extern void syms_of_doc (void);
4217 extern int read_bytecode_char (bool);
4218
4219 /* Defined in bytecode.c. */
4220 extern void syms_of_bytecode (void);
4221 extern struct byte_stack *byte_stack_list;
4222 #if BYTE_MARK_STACK
4223 extern void mark_byte_stack (void);
4224 #endif
4225 extern void unmark_byte_stack (void);
4226 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4227 Lisp_Object, ptrdiff_t, Lisp_Object *);
4228
4229 /* Defined in macros.c. */
4230 extern void init_macros (void);
4231 extern void syms_of_macros (void);
4232
4233 /* Defined in undo.c. */
4234 extern Lisp_Object Qapply;
4235 extern Lisp_Object Qinhibit_read_only;
4236 extern void truncate_undo_list (struct buffer *);
4237 extern void record_insert (ptrdiff_t, ptrdiff_t);
4238 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4239 extern void record_first_change (void);
4240 extern void record_change (ptrdiff_t, ptrdiff_t);
4241 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4242 Lisp_Object, Lisp_Object,
4243 Lisp_Object);
4244 extern void syms_of_undo (void);
4245 /* Defined in textprop.c. */
4246 extern Lisp_Object Qmouse_face;
4247 extern Lisp_Object Qinsert_in_front_hooks, Qinsert_behind_hooks;
4248 extern Lisp_Object Qminibuffer_prompt;
4249
4250 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4251
4252 /* Defined in menu.c. */
4253 extern void syms_of_menu (void);
4254
4255 /* Defined in xmenu.c. */
4256 extern void syms_of_xmenu (void);
4257
4258 /* Defined in termchar.h. */
4259 struct tty_display_info;
4260
4261 /* Defined in termhooks.h. */
4262 struct terminal;
4263
4264 /* Defined in sysdep.c. */
4265 #ifndef HAVE_GET_CURRENT_DIR_NAME
4266 extern char *get_current_dir_name (void);
4267 #endif
4268 extern void stuff_char (char c);
4269 extern void init_foreground_group (void);
4270 extern void sys_subshell (void);
4271 extern void sys_suspend (void);
4272 extern void discard_tty_input (void);
4273 extern void init_sys_modes (struct tty_display_info *);
4274 extern void reset_sys_modes (struct tty_display_info *);
4275 extern void init_all_sys_modes (void);
4276 extern void reset_all_sys_modes (void);
4277 extern void child_setup_tty (int);
4278 extern void setup_pty (int);
4279 extern int set_window_size (int, int, int);
4280 extern EMACS_INT get_random (void);
4281 extern void seed_random (void *, ptrdiff_t);
4282 extern void init_random (void);
4283 extern void emacs_backtrace (int);
4284 extern _Noreturn void emacs_abort (void) NO_INLINE;
4285 extern int emacs_open (const char *, int, int);
4286 extern int emacs_pipe (int[2]);
4287 extern int emacs_close (int);
4288 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4289 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4290 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4291 extern void emacs_perror (char const *);
4292
4293 extern void unlock_all_files (void);
4294 extern void lock_file (Lisp_Object);
4295 extern void unlock_file (Lisp_Object);
4296 extern void unlock_buffer (struct buffer *);
4297 extern void syms_of_filelock (void);
4298
4299 /* Defined in sound.c. */
4300 extern void syms_of_sound (void);
4301
4302 /* Defined in category.c. */
4303 extern void init_category_once (void);
4304 extern Lisp_Object char_category_set (int);
4305 extern void syms_of_category (void);
4306
4307 /* Defined in ccl.c. */
4308 extern void syms_of_ccl (void);
4309
4310 /* Defined in dired.c. */
4311 extern void syms_of_dired (void);
4312 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4313 Lisp_Object, Lisp_Object,
4314 bool, Lisp_Object);
4315
4316 /* Defined in term.c. */
4317 extern int *char_ins_del_vector;
4318 extern void syms_of_term (void);
4319 extern _Noreturn void fatal (const char *msgid, ...)
4320 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4321
4322 /* Defined in terminal.c. */
4323 extern void syms_of_terminal (void);
4324
4325 /* Defined in font.c. */
4326 extern void syms_of_font (void);
4327 extern void init_font (void);
4328
4329 #ifdef HAVE_WINDOW_SYSTEM
4330 /* Defined in fontset.c. */
4331 extern void syms_of_fontset (void);
4332
4333 /* Defined in xfns.c, w32fns.c, or macfns.c. */
4334 extern Lisp_Object Qfont_param;
4335 #endif
4336
4337 /* Defined in gfilenotify.c */
4338 #ifdef HAVE_GFILENOTIFY
4339 extern void globals_of_gfilenotify (void);
4340 extern void syms_of_gfilenotify (void);
4341 #endif
4342
4343 /* Defined in inotify.c */
4344 #ifdef HAVE_INOTIFY
4345 extern void syms_of_inotify (void);
4346 #endif
4347
4348 #ifdef HAVE_W32NOTIFY
4349 /* Defined on w32notify.c. */
4350 extern void syms_of_w32notify (void);
4351 #endif
4352
4353 /* Defined in xfaces.c. */
4354 extern Lisp_Object Qdefault, Qfringe;
4355 extern Lisp_Object Qscroll_bar, Qcursor;
4356 extern Lisp_Object Qmode_line_inactive;
4357 extern Lisp_Object Qface;
4358 extern Lisp_Object Qnormal;
4359 extern Lisp_Object QCfamily, QCweight, QCslant;
4360 extern Lisp_Object QCheight, QCname, QCwidth, QCforeground, QCbackground;
4361 extern Lisp_Object Qextra_light, Qlight, Qsemi_light, Qsemi_bold;
4362 extern Lisp_Object Qbold, Qextra_bold, Qultra_bold;
4363 extern Lisp_Object Qoblique, Qitalic;
4364 extern Lisp_Object Vface_alternative_font_family_alist;
4365 extern Lisp_Object Vface_alternative_font_registry_alist;
4366 extern void syms_of_xfaces (void);
4367
4368 #ifdef HAVE_X_WINDOWS
4369 /* Defined in xfns.c. */
4370 extern void syms_of_xfns (void);
4371
4372 /* Defined in xsmfns.c. */
4373 extern void syms_of_xsmfns (void);
4374
4375 /* Defined in xselect.c. */
4376 extern void syms_of_xselect (void);
4377
4378 /* Defined in xterm.c. */
4379 extern void syms_of_xterm (void);
4380 #endif /* HAVE_X_WINDOWS */
4381
4382 #ifdef HAVE_WINDOW_SYSTEM
4383 /* Defined in xterm.c, nsterm.m, w32term.c. */
4384 extern char *x_get_keysym_name (int);
4385 #endif /* HAVE_WINDOW_SYSTEM */
4386
4387 #ifdef HAVE_LIBXML2
4388 /* Defined in xml.c. */
4389 extern void syms_of_xml (void);
4390 extern void xml_cleanup_parser (void);
4391 #endif
4392
4393 #ifdef HAVE_ZLIB
4394 /* Defined in decompress.c. */
4395 extern void syms_of_decompress (void);
4396 #endif
4397
4398 #ifdef HAVE_DBUS
4399 /* Defined in dbusbind.c. */
4400 void syms_of_dbusbind (void);
4401 #endif
4402
4403
4404 /* Defined in profiler.c. */
4405 extern bool profiler_memory_running;
4406 extern void malloc_probe (size_t);
4407 extern void syms_of_profiler (void);
4408
4409
4410 #ifdef DOS_NT
4411 /* Defined in msdos.c, w32.c. */
4412 extern char *emacs_root_dir (void);
4413 #endif /* DOS_NT */
4414
4415 /* True means ^G can quit instantly. */
4416 extern bool immediate_quit;
4417
4418 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4419 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4420 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4421 extern void xfree (void *);
4422 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4423 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4424 ATTRIBUTE_ALLOC_SIZE ((2,3));
4425 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4426
4427 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4428 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4429 extern void dupstring (char **, char const *);
4430 extern void xputenv (const char *);
4431
4432 extern char *egetenv (const char *);
4433
4434 /* Copy Lisp string to temporary (allocated on stack) C string. */
4435
4436 #define xlispstrdupa(string) \
4437 memcpy (alloca (SBYTES (string) + 1), \
4438 SSDATA (string), SBYTES (string) + 1)
4439
4440 /* Set up the name of the machine we're running on. */
4441 extern void init_system_name (void);
4442
4443 /* Return the absolute value of X. X should be a signed integer
4444 expression without side effects, and X's absolute value should not
4445 exceed the maximum for its promoted type. This is called 'eabs'
4446 because 'abs' is reserved by the C standard. */
4447 #define eabs(x) ((x) < 0 ? -(x) : (x))
4448
4449 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4450 fixnum. */
4451
4452 #define make_fixnum_or_float(val) \
4453 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4454
4455 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4456 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4457
4458 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4459
4460 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4461
4462 #define USE_SAFE_ALLOCA \
4463 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4464
4465 /* SAFE_ALLOCA allocates a simple buffer. */
4466
4467 #define SAFE_ALLOCA(size) ((size) < MAX_ALLOCA \
4468 ? alloca (size) \
4469 : (sa_must_free = true, record_xmalloc (size)))
4470
4471 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4472 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4473 positive. The code is tuned for MULTIPLIER being a constant. */
4474
4475 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4476 do { \
4477 if ((nitems) <= MAX_ALLOCA / sizeof *(buf) / (multiplier)) \
4478 (buf) = alloca (sizeof *(buf) * (multiplier) * (nitems)); \
4479 else \
4480 { \
4481 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4482 sa_must_free = true; \
4483 record_unwind_protect_ptr (xfree, buf); \
4484 } \
4485 } while (false)
4486
4487 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4488
4489 #define SAFE_FREE() \
4490 do { \
4491 if (sa_must_free) { \
4492 sa_must_free = false; \
4493 unbind_to (sa_count, Qnil); \
4494 } \
4495 } while (false)
4496
4497
4498 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4499
4500 #define SAFE_ALLOCA_LISP(buf, nelt) \
4501 do { \
4502 if ((nelt) < MAX_ALLOCA / word_size) \
4503 (buf) = alloca ((nelt) * word_size); \
4504 else if ((nelt) < min (PTRDIFF_MAX, SIZE_MAX) / word_size) \
4505 { \
4506 Lisp_Object arg_; \
4507 (buf) = xmalloc ((nelt) * word_size); \
4508 arg_ = make_save_memory (buf, nelt); \
4509 sa_must_free = true; \
4510 record_unwind_protect (free_save_value, arg_); \
4511 } \
4512 else \
4513 memory_full (SIZE_MAX); \
4514 } while (false)
4515
4516 /* Loop over all tails of a list, checking for cycles.
4517 FIXME: Make tortoise and n internal declarations.
4518 FIXME: Unroll the loop body so we don't need `n'. */
4519 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4520 for ((tortoise) = (hare) = (list), (n) = true; \
4521 CONSP (hare); \
4522 (hare = XCDR (hare), (n) = !(n), \
4523 ((n) \
4524 ? (EQ (hare, tortoise) \
4525 ? xsignal1 (Qcircular_list, list) \
4526 : (void) 0) \
4527 /* Move tortoise before the next iteration, in case */ \
4528 /* the next iteration does an Fsetcdr. */ \
4529 : (void) ((tortoise) = XCDR (tortoise)))))
4530
4531 /* Do a `for' loop over alist values. */
4532
4533 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4534 for ((list_var) = (head_var); \
4535 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4536 (list_var) = XCDR (list_var))
4537
4538 /* Check whether it's time for GC, and run it if so. */
4539
4540 INLINE void
4541 maybe_gc (void)
4542 {
4543 if ((consing_since_gc > gc_cons_threshold
4544 && consing_since_gc > gc_relative_threshold)
4545 || (!NILP (Vmemory_full)
4546 && consing_since_gc > memory_full_cons_threshold))
4547 Fgarbage_collect ();
4548 }
4549
4550 INLINE bool
4551 functionp (Lisp_Object object)
4552 {
4553 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4554 {
4555 object = Findirect_function (object, Qt);
4556
4557 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4558 {
4559 /* Autoloaded symbols are functions, except if they load
4560 macros or keymaps. */
4561 int i;
4562 for (i = 0; i < 4 && CONSP (object); i++)
4563 object = XCDR (object);
4564
4565 return ! (CONSP (object) && !NILP (XCAR (object)));
4566 }
4567 }
4568
4569 if (SUBRP (object))
4570 return XSUBR (object)->max_args != UNEVALLED;
4571 else if (COMPILEDP (object))
4572 return true;
4573 else if (CONSP (object))
4574 {
4575 Lisp_Object car = XCAR (object);
4576 return EQ (car, Qlambda) || EQ (car, Qclosure);
4577 }
4578 else
4579 return false;
4580 }
4581
4582 INLINE_HEADER_END
4583
4584 #endif /* EMACS_LISP_H */