]> code.delx.au - gnu-emacs/blob - src/alloc.c
Revision: miles@gnu.org--gnu-2005/emacs--unicode--0--patch-15
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
29
30 /* Note that this declares bzero on OSF/1. How dumb. */
31
32 #include <signal.h>
33
34 #ifdef HAVE_GTK_AND_PTHREAD
35 #include <pthread.h>
36 #endif
37
38 /* This file is part of the core Lisp implementation, and thus must
39 deal with the real data structures. If the Lisp implementation is
40 replaced, this file likely will not be used. */
41
42 #undef HIDE_LISP_IMPLEMENTATION
43 #include "lisp.h"
44 #include "process.h"
45 #include "intervals.h"
46 #include "puresize.h"
47 #include "buffer.h"
48 #include "window.h"
49 #include "keyboard.h"
50 #include "frame.h"
51 #include "blockinput.h"
52 #include "character.h"
53 #include "syssignal.h"
54 #include <setjmp.h>
55
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c. */
58
59 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
60 #undef GC_MALLOC_CHECK
61 #endif
62
63 #ifdef HAVE_UNISTD_H
64 #include <unistd.h>
65 #else
66 extern POINTER_TYPE *sbrk ();
67 #endif
68
69 #ifdef DOUG_LEA_MALLOC
70
71 #include <malloc.h>
72 /* malloc.h #defines this as size_t, at least in glibc2. */
73 #ifndef __malloc_size_t
74 #define __malloc_size_t int
75 #endif
76
77 /* Specify maximum number of areas to mmap. It would be nice to use a
78 value that explicitly means "no limit". */
79
80 #define MMAP_MAX_AREAS 100000000
81
82 #else /* not DOUG_LEA_MALLOC */
83
84 /* The following come from gmalloc.c. */
85
86 #define __malloc_size_t size_t
87 extern __malloc_size_t _bytes_used;
88 extern __malloc_size_t __malloc_extra_blocks;
89
90 #endif /* not DOUG_LEA_MALLOC */
91
92 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
93
94 /* When GTK uses the file chooser dialog, different backends can be loaded
95 dynamically. One such a backend is the Gnome VFS backend that gets loaded
96 if you run Gnome. That backend creates several threads and also allocates
97 memory with malloc.
98
99 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
100 functions below are called from malloc, there is a chance that one
101 of these threads preempts the Emacs main thread and the hook variables
102 end up in an inconsistent state. So we have a mutex to prevent that (note
103 that the backend handles concurrent access to malloc within its own threads
104 but Emacs code running in the main thread is not included in that control).
105
106 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
107 happens in one of the backend threads we will have two threads that tries
108 to run Emacs code at once, and the code is not prepared for that.
109 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
110
111 static pthread_mutex_t alloc_mutex;
112
113 #define BLOCK_INPUT_ALLOC \
114 do \
115 { \
116 pthread_mutex_lock (&alloc_mutex); \
117 if (pthread_self () == main_thread) \
118 BLOCK_INPUT; \
119 } \
120 while (0)
121 #define UNBLOCK_INPUT_ALLOC \
122 do \
123 { \
124 if (pthread_self () == main_thread) \
125 UNBLOCK_INPUT; \
126 pthread_mutex_unlock (&alloc_mutex); \
127 } \
128 while (0)
129
130 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
131
132 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
133 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
134
135 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
136
137 /* Value of _bytes_used, when spare_memory was freed. */
138
139 static __malloc_size_t bytes_used_when_full;
140
141 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
142 to a struct Lisp_String. */
143
144 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
145 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
146 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
147
148 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
149 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
150 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
151
152 /* Value is the number of bytes/chars of S, a pointer to a struct
153 Lisp_String. This must be used instead of STRING_BYTES (S) or
154 S->size during GC, because S->size contains the mark bit for
155 strings. */
156
157 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
158 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
159
160 /* Number of bytes of consing done since the last gc. */
161
162 int consing_since_gc;
163
164 /* Count the amount of consing of various sorts of space. */
165
166 EMACS_INT cons_cells_consed;
167 EMACS_INT floats_consed;
168 EMACS_INT vector_cells_consed;
169 EMACS_INT symbols_consed;
170 EMACS_INT string_chars_consed;
171 EMACS_INT misc_objects_consed;
172 EMACS_INT intervals_consed;
173 EMACS_INT strings_consed;
174
175 /* Number of bytes of consing since GC before another GC should be done. */
176
177 EMACS_INT gc_cons_threshold;
178
179 /* Nonzero during GC. */
180
181 int gc_in_progress;
182
183 /* Nonzero means abort if try to GC.
184 This is for code which is written on the assumption that
185 no GC will happen, so as to verify that assumption. */
186
187 int abort_on_gc;
188
189 /* Nonzero means display messages at beginning and end of GC. */
190
191 int garbage_collection_messages;
192
193 #ifndef VIRT_ADDR_VARIES
194 extern
195 #endif /* VIRT_ADDR_VARIES */
196 int malloc_sbrk_used;
197
198 #ifndef VIRT_ADDR_VARIES
199 extern
200 #endif /* VIRT_ADDR_VARIES */
201 int malloc_sbrk_unused;
202
203 /* Number of live and free conses etc. */
204
205 static int total_conses, total_markers, total_symbols, total_vector_size;
206 static int total_free_conses, total_free_markers, total_free_symbols;
207 static int total_free_floats, total_floats;
208
209 /* Points to memory space allocated as "spare", to be freed if we run
210 out of memory. */
211
212 static char *spare_memory;
213
214 /* Amount of spare memory to keep in reserve. */
215
216 #define SPARE_MEMORY (1 << 14)
217
218 /* Number of extra blocks malloc should get when it needs more core. */
219
220 static int malloc_hysteresis;
221
222 /* Non-nil means defun should do purecopy on the function definition. */
223
224 Lisp_Object Vpurify_flag;
225
226 /* Non-nil means we are handling a memory-full error. */
227
228 Lisp_Object Vmemory_full;
229
230 #ifndef HAVE_SHM
231
232 /* Initialize it to a nonzero value to force it into data space
233 (rather than bss space). That way unexec will remap it into text
234 space (pure), on some systems. We have not implemented the
235 remapping on more recent systems because this is less important
236 nowadays than in the days of small memories and timesharing. */
237
238 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
239 #define PUREBEG (char *) pure
240
241 #else /* HAVE_SHM */
242
243 #define pure PURE_SEG_BITS /* Use shared memory segment */
244 #define PUREBEG (char *)PURE_SEG_BITS
245
246 #endif /* HAVE_SHM */
247
248 /* Pointer to the pure area, and its size. */
249
250 static char *purebeg;
251 static size_t pure_size;
252
253 /* Number of bytes of pure storage used before pure storage overflowed.
254 If this is non-zero, this implies that an overflow occurred. */
255
256 static size_t pure_bytes_used_before_overflow;
257
258 /* Value is non-zero if P points into pure space. */
259
260 #define PURE_POINTER_P(P) \
261 (((PNTR_COMPARISON_TYPE) (P) \
262 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
263 && ((PNTR_COMPARISON_TYPE) (P) \
264 >= (PNTR_COMPARISON_TYPE) purebeg))
265
266 /* Index in pure at which next pure object will be allocated.. */
267
268 EMACS_INT pure_bytes_used;
269
270 /* If nonzero, this is a warning delivered by malloc and not yet
271 displayed. */
272
273 char *pending_malloc_warning;
274
275 /* Pre-computed signal argument for use when memory is exhausted. */
276
277 Lisp_Object Vmemory_signal_data;
278
279 /* Maximum amount of C stack to save when a GC happens. */
280
281 #ifndef MAX_SAVE_STACK
282 #define MAX_SAVE_STACK 16000
283 #endif
284
285 /* Buffer in which we save a copy of the C stack at each GC. */
286
287 char *stack_copy;
288 int stack_copy_size;
289
290 /* Non-zero means ignore malloc warnings. Set during initialization.
291 Currently not used. */
292
293 int ignore_warnings;
294
295 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
296
297 /* Hook run after GC has finished. */
298
299 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
300
301 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
302 EMACS_INT gcs_done; /* accumulated GCs */
303
304 static void mark_buffer P_ ((Lisp_Object));
305 extern void mark_kboards P_ ((void));
306 extern void mark_backtrace P_ ((void));
307 static void gc_sweep P_ ((void));
308 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
309 static void mark_face_cache P_ ((struct face_cache *));
310
311 #ifdef HAVE_WINDOW_SYSTEM
312 extern void mark_fringe_data P_ ((void));
313 static void mark_image P_ ((struct image *));
314 static void mark_image_cache P_ ((struct frame *));
315 #endif /* HAVE_WINDOW_SYSTEM */
316
317 static struct Lisp_String *allocate_string P_ ((void));
318 static void compact_small_strings P_ ((void));
319 static void free_large_strings P_ ((void));
320 static void sweep_strings P_ ((void));
321
322 extern int message_enable_multibyte;
323
324 /* When scanning the C stack for live Lisp objects, Emacs keeps track
325 of what memory allocated via lisp_malloc is intended for what
326 purpose. This enumeration specifies the type of memory. */
327
328 enum mem_type
329 {
330 MEM_TYPE_NON_LISP,
331 MEM_TYPE_BUFFER,
332 MEM_TYPE_CONS,
333 MEM_TYPE_STRING,
334 MEM_TYPE_MISC,
335 MEM_TYPE_SYMBOL,
336 MEM_TYPE_FLOAT,
337 /* Keep the following vector-like types together, with
338 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
339 first. Or change the code of live_vector_p, for instance. */
340 MEM_TYPE_VECTOR,
341 MEM_TYPE_PROCESS,
342 MEM_TYPE_HASH_TABLE,
343 MEM_TYPE_FRAME,
344 MEM_TYPE_WINDOW
345 };
346
347 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
348
349 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
350 #include <stdio.h> /* For fprintf. */
351 #endif
352
353 /* A unique object in pure space used to make some Lisp objects
354 on free lists recognizable in O(1). */
355
356 Lisp_Object Vdead;
357
358 #ifdef GC_MALLOC_CHECK
359
360 enum mem_type allocated_mem_type;
361 int dont_register_blocks;
362
363 #endif /* GC_MALLOC_CHECK */
364
365 /* A node in the red-black tree describing allocated memory containing
366 Lisp data. Each such block is recorded with its start and end
367 address when it is allocated, and removed from the tree when it
368 is freed.
369
370 A red-black tree is a balanced binary tree with the following
371 properties:
372
373 1. Every node is either red or black.
374 2. Every leaf is black.
375 3. If a node is red, then both of its children are black.
376 4. Every simple path from a node to a descendant leaf contains
377 the same number of black nodes.
378 5. The root is always black.
379
380 When nodes are inserted into the tree, or deleted from the tree,
381 the tree is "fixed" so that these properties are always true.
382
383 A red-black tree with N internal nodes has height at most 2
384 log(N+1). Searches, insertions and deletions are done in O(log N).
385 Please see a text book about data structures for a detailed
386 description of red-black trees. Any book worth its salt should
387 describe them. */
388
389 struct mem_node
390 {
391 /* Children of this node. These pointers are never NULL. When there
392 is no child, the value is MEM_NIL, which points to a dummy node. */
393 struct mem_node *left, *right;
394
395 /* The parent of this node. In the root node, this is NULL. */
396 struct mem_node *parent;
397
398 /* Start and end of allocated region. */
399 void *start, *end;
400
401 /* Node color. */
402 enum {MEM_BLACK, MEM_RED} color;
403
404 /* Memory type. */
405 enum mem_type type;
406 };
407
408 /* Base address of stack. Set in main. */
409
410 Lisp_Object *stack_base;
411
412 /* Root of the tree describing allocated Lisp memory. */
413
414 static struct mem_node *mem_root;
415
416 /* Lowest and highest known address in the heap. */
417
418 static void *min_heap_address, *max_heap_address;
419
420 /* Sentinel node of the tree. */
421
422 static struct mem_node mem_z;
423 #define MEM_NIL &mem_z
424
425 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
426 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
427 static void lisp_free P_ ((POINTER_TYPE *));
428 static void mark_stack P_ ((void));
429 static int live_vector_p P_ ((struct mem_node *, void *));
430 static int live_buffer_p P_ ((struct mem_node *, void *));
431 static int live_string_p P_ ((struct mem_node *, void *));
432 static int live_cons_p P_ ((struct mem_node *, void *));
433 static int live_symbol_p P_ ((struct mem_node *, void *));
434 static int live_float_p P_ ((struct mem_node *, void *));
435 static int live_misc_p P_ ((struct mem_node *, void *));
436 static void mark_maybe_object P_ ((Lisp_Object));
437 static void mark_memory P_ ((void *, void *));
438 static void mem_init P_ ((void));
439 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
440 static void mem_insert_fixup P_ ((struct mem_node *));
441 static void mem_rotate_left P_ ((struct mem_node *));
442 static void mem_rotate_right P_ ((struct mem_node *));
443 static void mem_delete P_ ((struct mem_node *));
444 static void mem_delete_fixup P_ ((struct mem_node *));
445 static INLINE struct mem_node *mem_find P_ ((void *));
446
447 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
448 static void check_gcpros P_ ((void));
449 #endif
450
451 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
452
453 /* Recording what needs to be marked for gc. */
454
455 struct gcpro *gcprolist;
456
457 /* Addresses of staticpro'd variables. Initialize it to a nonzero
458 value; otherwise some compilers put it into BSS. */
459
460 #define NSTATICS 1280
461 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
462
463 /* Index of next unused slot in staticvec. */
464
465 int staticidx = 0;
466
467 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
468
469
470 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
471 ALIGNMENT must be a power of 2. */
472
473 #define ALIGN(ptr, ALIGNMENT) \
474 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
475 & ~((ALIGNMENT) - 1)))
476
477
478 \f
479 /************************************************************************
480 Malloc
481 ************************************************************************/
482
483 /* Function malloc calls this if it finds we are near exhausting storage. */
484
485 void
486 malloc_warning (str)
487 char *str;
488 {
489 pending_malloc_warning = str;
490 }
491
492
493 /* Display an already-pending malloc warning. */
494
495 void
496 display_malloc_warning ()
497 {
498 call3 (intern ("display-warning"),
499 intern ("alloc"),
500 build_string (pending_malloc_warning),
501 intern ("emergency"));
502 pending_malloc_warning = 0;
503 }
504
505
506 #ifdef DOUG_LEA_MALLOC
507 # define BYTES_USED (mallinfo ().arena)
508 #else
509 # define BYTES_USED _bytes_used
510 #endif
511
512
513 /* Called if malloc returns zero. */
514
515 void
516 memory_full ()
517 {
518 Vmemory_full = Qt;
519
520 #ifndef SYSTEM_MALLOC
521 bytes_used_when_full = BYTES_USED;
522 #endif
523
524 /* The first time we get here, free the spare memory. */
525 if (spare_memory)
526 {
527 free (spare_memory);
528 spare_memory = 0;
529 }
530
531 /* This used to call error, but if we've run out of memory, we could
532 get infinite recursion trying to build the string. */
533 while (1)
534 Fsignal (Qnil, Vmemory_signal_data);
535 }
536
537
538 /* Called if we can't allocate relocatable space for a buffer. */
539
540 void
541 buffer_memory_full ()
542 {
543 /* If buffers use the relocating allocator, no need to free
544 spare_memory, because we may have plenty of malloc space left
545 that we could get, and if we don't, the malloc that fails will
546 itself cause spare_memory to be freed. If buffers don't use the
547 relocating allocator, treat this like any other failing
548 malloc. */
549
550 #ifndef REL_ALLOC
551 memory_full ();
552 #endif
553
554 Vmemory_full = Qt;
555
556 /* This used to call error, but if we've run out of memory, we could
557 get infinite recursion trying to build the string. */
558 while (1)
559 Fsignal (Qnil, Vmemory_signal_data);
560 }
561
562
563 #ifdef XMALLOC_OVERRUN_CHECK
564
565 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
566 and a 16 byte trailer around each block.
567
568 The header consists of 12 fixed bytes + a 4 byte integer contaning the
569 original block size, while the trailer consists of 16 fixed bytes.
570
571 The header is used to detect whether this block has been allocated
572 through these functions -- as it seems that some low-level libc
573 functions may bypass the malloc hooks.
574 */
575
576
577 #define XMALLOC_OVERRUN_CHECK_SIZE 16
578
579 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
580 { 0x9a, 0x9b, 0xae, 0xaf,
581 0xbf, 0xbe, 0xce, 0xcf,
582 0xea, 0xeb, 0xec, 0xed };
583
584 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
585 { 0xaa, 0xab, 0xac, 0xad,
586 0xba, 0xbb, 0xbc, 0xbd,
587 0xca, 0xcb, 0xcc, 0xcd,
588 0xda, 0xdb, 0xdc, 0xdd };
589
590 /* Macros to insert and extract the block size in the header. */
591
592 #define XMALLOC_PUT_SIZE(ptr, size) \
593 (ptr[-1] = (size & 0xff), \
594 ptr[-2] = ((size >> 8) & 0xff), \
595 ptr[-3] = ((size >> 16) & 0xff), \
596 ptr[-4] = ((size >> 24) & 0xff))
597
598 #define XMALLOC_GET_SIZE(ptr) \
599 (size_t)((unsigned)(ptr[-1]) | \
600 ((unsigned)(ptr[-2]) << 8) | \
601 ((unsigned)(ptr[-3]) << 16) | \
602 ((unsigned)(ptr[-4]) << 24))
603
604
605 /* The call depth in overrun_check functions. For example, this might happen:
606 xmalloc()
607 overrun_check_malloc()
608 -> malloc -> (via hook)_-> emacs_blocked_malloc
609 -> overrun_check_malloc
610 call malloc (hooks are NULL, so real malloc is called).
611 malloc returns 10000.
612 add overhead, return 10016.
613 <- (back in overrun_check_malloc)
614 add overhead again, return 10032
615 xmalloc returns 10032.
616
617 (time passes).
618
619 xfree(10032)
620 overrun_check_free(10032)
621 decrease overhed
622 free(10016) <- crash, because 10000 is the original pointer. */
623
624 static int check_depth;
625
626 /* Like malloc, but wraps allocated block with header and trailer. */
627
628 POINTER_TYPE *
629 overrun_check_malloc (size)
630 size_t size;
631 {
632 register unsigned char *val;
633 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
634
635 val = (unsigned char *) malloc (size + overhead);
636 if (val && check_depth == 1)
637 {
638 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
639 val += XMALLOC_OVERRUN_CHECK_SIZE;
640 XMALLOC_PUT_SIZE(val, size);
641 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
642 }
643 --check_depth;
644 return (POINTER_TYPE *)val;
645 }
646
647
648 /* Like realloc, but checks old block for overrun, and wraps new block
649 with header and trailer. */
650
651 POINTER_TYPE *
652 overrun_check_realloc (block, size)
653 POINTER_TYPE *block;
654 size_t size;
655 {
656 register unsigned char *val = (unsigned char *)block;
657 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
658
659 if (val
660 && check_depth == 1
661 && bcmp (xmalloc_overrun_check_header,
662 val - XMALLOC_OVERRUN_CHECK_SIZE,
663 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
664 {
665 size_t osize = XMALLOC_GET_SIZE (val);
666 if (bcmp (xmalloc_overrun_check_trailer,
667 val + osize,
668 XMALLOC_OVERRUN_CHECK_SIZE))
669 abort ();
670 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
671 val -= XMALLOC_OVERRUN_CHECK_SIZE;
672 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
673 }
674
675 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
676
677 if (val && check_depth == 1)
678 {
679 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
680 val += XMALLOC_OVERRUN_CHECK_SIZE;
681 XMALLOC_PUT_SIZE(val, size);
682 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
683 }
684 --check_depth;
685 return (POINTER_TYPE *)val;
686 }
687
688 /* Like free, but checks block for overrun. */
689
690 void
691 overrun_check_free (block)
692 POINTER_TYPE *block;
693 {
694 unsigned char *val = (unsigned char *)block;
695
696 ++check_depth;
697 if (val
698 && check_depth == 1
699 && bcmp (xmalloc_overrun_check_header,
700 val - XMALLOC_OVERRUN_CHECK_SIZE,
701 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
702 {
703 size_t osize = XMALLOC_GET_SIZE (val);
704 if (bcmp (xmalloc_overrun_check_trailer,
705 val + osize,
706 XMALLOC_OVERRUN_CHECK_SIZE))
707 abort ();
708 #ifdef XMALLOC_CLEAR_FREE_MEMORY
709 val -= XMALLOC_OVERRUN_CHECK_SIZE;
710 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
711 #else
712 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
713 val -= XMALLOC_OVERRUN_CHECK_SIZE;
714 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
715 #endif
716 }
717
718 free (val);
719 --check_depth;
720 }
721
722 #undef malloc
723 #undef realloc
724 #undef free
725 #define malloc overrun_check_malloc
726 #define realloc overrun_check_realloc
727 #define free overrun_check_free
728 #endif
729
730
731 /* Like malloc but check for no memory and block interrupt input.. */
732
733 POINTER_TYPE *
734 xmalloc (size)
735 size_t size;
736 {
737 register POINTER_TYPE *val;
738
739 BLOCK_INPUT;
740 val = (POINTER_TYPE *) malloc (size);
741 UNBLOCK_INPUT;
742
743 if (!val && size)
744 memory_full ();
745 return val;
746 }
747
748
749 /* Like realloc but check for no memory and block interrupt input.. */
750
751 POINTER_TYPE *
752 xrealloc (block, size)
753 POINTER_TYPE *block;
754 size_t size;
755 {
756 register POINTER_TYPE *val;
757
758 BLOCK_INPUT;
759 /* We must call malloc explicitly when BLOCK is 0, since some
760 reallocs don't do this. */
761 if (! block)
762 val = (POINTER_TYPE *) malloc (size);
763 else
764 val = (POINTER_TYPE *) realloc (block, size);
765 UNBLOCK_INPUT;
766
767 if (!val && size) memory_full ();
768 return val;
769 }
770
771
772 /* Like free but block interrupt input. */
773
774 void
775 xfree (block)
776 POINTER_TYPE *block;
777 {
778 BLOCK_INPUT;
779 free (block);
780 UNBLOCK_INPUT;
781 }
782
783
784 /* Like strdup, but uses xmalloc. */
785
786 char *
787 xstrdup (s)
788 const char *s;
789 {
790 size_t len = strlen (s) + 1;
791 char *p = (char *) xmalloc (len);
792 bcopy (s, p, len);
793 return p;
794 }
795
796
797 /* Unwind for SAFE_ALLOCA */
798
799 Lisp_Object
800 safe_alloca_unwind (arg)
801 Lisp_Object arg;
802 {
803 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
804
805 p->dogc = 0;
806 xfree (p->pointer);
807 p->pointer = 0;
808 free_misc (arg);
809 return Qnil;
810 }
811
812
813 /* Like malloc but used for allocating Lisp data. NBYTES is the
814 number of bytes to allocate, TYPE describes the intended use of the
815 allcated memory block (for strings, for conses, ...). */
816
817 #ifndef USE_LSB_TAG
818 static void *lisp_malloc_loser;
819 #endif
820
821 static POINTER_TYPE *
822 lisp_malloc (nbytes, type)
823 size_t nbytes;
824 enum mem_type type;
825 {
826 register void *val;
827
828 BLOCK_INPUT;
829
830 #ifdef GC_MALLOC_CHECK
831 allocated_mem_type = type;
832 #endif
833
834 val = (void *) malloc (nbytes);
835
836 #ifndef USE_LSB_TAG
837 /* If the memory just allocated cannot be addressed thru a Lisp
838 object's pointer, and it needs to be,
839 that's equivalent to running out of memory. */
840 if (val && type != MEM_TYPE_NON_LISP)
841 {
842 Lisp_Object tem;
843 XSETCONS (tem, (char *) val + nbytes - 1);
844 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
845 {
846 lisp_malloc_loser = val;
847 free (val);
848 val = 0;
849 }
850 }
851 #endif
852
853 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
854 if (val && type != MEM_TYPE_NON_LISP)
855 mem_insert (val, (char *) val + nbytes, type);
856 #endif
857
858 UNBLOCK_INPUT;
859 if (!val && nbytes)
860 memory_full ();
861 return val;
862 }
863
864 /* Free BLOCK. This must be called to free memory allocated with a
865 call to lisp_malloc. */
866
867 static void
868 lisp_free (block)
869 POINTER_TYPE *block;
870 {
871 BLOCK_INPUT;
872 free (block);
873 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
874 mem_delete (mem_find (block));
875 #endif
876 UNBLOCK_INPUT;
877 }
878
879 /* Allocation of aligned blocks of memory to store Lisp data. */
880 /* The entry point is lisp_align_malloc which returns blocks of at most */
881 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
882
883
884 /* BLOCK_ALIGN has to be a power of 2. */
885 #define BLOCK_ALIGN (1 << 10)
886
887 /* Padding to leave at the end of a malloc'd block. This is to give
888 malloc a chance to minimize the amount of memory wasted to alignment.
889 It should be tuned to the particular malloc library used.
890 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
891 posix_memalign on the other hand would ideally prefer a value of 4
892 because otherwise, there's 1020 bytes wasted between each ablocks.
893 But testing shows that those 1020 will most of the time be efficiently
894 used by malloc to place other objects, so a value of 0 is still preferable
895 unless you have a lot of cons&floats and virtually nothing else. */
896 #define BLOCK_PADDING 0
897 #define BLOCK_BYTES \
898 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
899
900 /* Internal data structures and constants. */
901
902 #define ABLOCKS_SIZE 16
903
904 /* An aligned block of memory. */
905 struct ablock
906 {
907 union
908 {
909 char payload[BLOCK_BYTES];
910 struct ablock *next_free;
911 } x;
912 /* `abase' is the aligned base of the ablocks. */
913 /* It is overloaded to hold the virtual `busy' field that counts
914 the number of used ablock in the parent ablocks.
915 The first ablock has the `busy' field, the others have the `abase'
916 field. To tell the difference, we assume that pointers will have
917 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
918 is used to tell whether the real base of the parent ablocks is `abase'
919 (if not, the word before the first ablock holds a pointer to the
920 real base). */
921 struct ablocks *abase;
922 /* The padding of all but the last ablock is unused. The padding of
923 the last ablock in an ablocks is not allocated. */
924 #if BLOCK_PADDING
925 char padding[BLOCK_PADDING];
926 #endif
927 };
928
929 /* A bunch of consecutive aligned blocks. */
930 struct ablocks
931 {
932 struct ablock blocks[ABLOCKS_SIZE];
933 };
934
935 /* Size of the block requested from malloc or memalign. */
936 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
937
938 #define ABLOCK_ABASE(block) \
939 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
940 ? (struct ablocks *)(block) \
941 : (block)->abase)
942
943 /* Virtual `busy' field. */
944 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
945
946 /* Pointer to the (not necessarily aligned) malloc block. */
947 #ifdef HAVE_POSIX_MEMALIGN
948 #define ABLOCKS_BASE(abase) (abase)
949 #else
950 #define ABLOCKS_BASE(abase) \
951 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
952 #endif
953
954 /* The list of free ablock. */
955 static struct ablock *free_ablock;
956
957 /* Allocate an aligned block of nbytes.
958 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
959 smaller or equal to BLOCK_BYTES. */
960 static POINTER_TYPE *
961 lisp_align_malloc (nbytes, type)
962 size_t nbytes;
963 enum mem_type type;
964 {
965 void *base, *val;
966 struct ablocks *abase;
967
968 eassert (nbytes <= BLOCK_BYTES);
969
970 BLOCK_INPUT;
971
972 #ifdef GC_MALLOC_CHECK
973 allocated_mem_type = type;
974 #endif
975
976 if (!free_ablock)
977 {
978 int i;
979 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
980
981 #ifdef DOUG_LEA_MALLOC
982 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
983 because mapped region contents are not preserved in
984 a dumped Emacs. */
985 mallopt (M_MMAP_MAX, 0);
986 #endif
987
988 #ifdef HAVE_POSIX_MEMALIGN
989 {
990 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
991 if (err)
992 base = NULL;
993 abase = base;
994 }
995 #else
996 base = malloc (ABLOCKS_BYTES);
997 abase = ALIGN (base, BLOCK_ALIGN);
998 #endif
999
1000 if (base == 0)
1001 {
1002 UNBLOCK_INPUT;
1003 memory_full ();
1004 }
1005
1006 aligned = (base == abase);
1007 if (!aligned)
1008 ((void**)abase)[-1] = base;
1009
1010 #ifdef DOUG_LEA_MALLOC
1011 /* Back to a reasonable maximum of mmap'ed areas. */
1012 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1013 #endif
1014
1015 #ifndef USE_LSB_TAG
1016 /* If the memory just allocated cannot be addressed thru a Lisp
1017 object's pointer, and it needs to be, that's equivalent to
1018 running out of memory. */
1019 if (type != MEM_TYPE_NON_LISP)
1020 {
1021 Lisp_Object tem;
1022 char *end = (char *) base + ABLOCKS_BYTES - 1;
1023 XSETCONS (tem, end);
1024 if ((char *) XCONS (tem) != end)
1025 {
1026 lisp_malloc_loser = base;
1027 free (base);
1028 UNBLOCK_INPUT;
1029 memory_full ();
1030 }
1031 }
1032 #endif
1033
1034 /* Initialize the blocks and put them on the free list.
1035 Is `base' was not properly aligned, we can't use the last block. */
1036 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1037 {
1038 abase->blocks[i].abase = abase;
1039 abase->blocks[i].x.next_free = free_ablock;
1040 free_ablock = &abase->blocks[i];
1041 }
1042 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1043
1044 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1045 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1046 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1047 eassert (ABLOCKS_BASE (abase) == base);
1048 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1049 }
1050
1051 abase = ABLOCK_ABASE (free_ablock);
1052 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1053 val = free_ablock;
1054 free_ablock = free_ablock->x.next_free;
1055
1056 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1057 if (val && type != MEM_TYPE_NON_LISP)
1058 mem_insert (val, (char *) val + nbytes, type);
1059 #endif
1060
1061 UNBLOCK_INPUT;
1062 if (!val && nbytes)
1063 memory_full ();
1064
1065 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1066 return val;
1067 }
1068
1069 static void
1070 lisp_align_free (block)
1071 POINTER_TYPE *block;
1072 {
1073 struct ablock *ablock = block;
1074 struct ablocks *abase = ABLOCK_ABASE (ablock);
1075
1076 BLOCK_INPUT;
1077 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1078 mem_delete (mem_find (block));
1079 #endif
1080 /* Put on free list. */
1081 ablock->x.next_free = free_ablock;
1082 free_ablock = ablock;
1083 /* Update busy count. */
1084 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1085
1086 if (2 > (long) ABLOCKS_BUSY (abase))
1087 { /* All the blocks are free. */
1088 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1089 struct ablock **tem = &free_ablock;
1090 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1091
1092 while (*tem)
1093 {
1094 if (*tem >= (struct ablock *) abase && *tem < atop)
1095 {
1096 i++;
1097 *tem = (*tem)->x.next_free;
1098 }
1099 else
1100 tem = &(*tem)->x.next_free;
1101 }
1102 eassert ((aligned & 1) == aligned);
1103 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1104 free (ABLOCKS_BASE (abase));
1105 }
1106 UNBLOCK_INPUT;
1107 }
1108
1109 /* Return a new buffer structure allocated from the heap with
1110 a call to lisp_malloc. */
1111
1112 struct buffer *
1113 allocate_buffer ()
1114 {
1115 struct buffer *b
1116 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1117 MEM_TYPE_BUFFER);
1118 return b;
1119 }
1120
1121 \f
1122 #ifndef SYSTEM_MALLOC
1123
1124 /* If we released our reserve (due to running out of memory),
1125 and we have a fair amount free once again,
1126 try to set aside another reserve in case we run out once more.
1127
1128 This is called when a relocatable block is freed in ralloc.c. */
1129
1130 void
1131 refill_memory_reserve ()
1132 {
1133 if (spare_memory == 0)
1134 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
1135 }
1136
1137 \f
1138 /* Arranging to disable input signals while we're in malloc.
1139
1140 This only works with GNU malloc. To help out systems which can't
1141 use GNU malloc, all the calls to malloc, realloc, and free
1142 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1143 pair; unfortunately, we have no idea what C library functions
1144 might call malloc, so we can't really protect them unless you're
1145 using GNU malloc. Fortunately, most of the major operating systems
1146 can use GNU malloc. */
1147
1148 #ifndef SYNC_INPUT
1149
1150 #ifndef DOUG_LEA_MALLOC
1151 extern void * (*__malloc_hook) P_ ((size_t));
1152 extern void * (*__realloc_hook) P_ ((void *, size_t));
1153 extern void (*__free_hook) P_ ((void *));
1154 /* Else declared in malloc.h, perhaps with an extra arg. */
1155 #endif /* DOUG_LEA_MALLOC */
1156 static void * (*old_malloc_hook) ();
1157 static void * (*old_realloc_hook) ();
1158 static void (*old_free_hook) ();
1159
1160 /* This function is used as the hook for free to call. */
1161
1162 static void
1163 emacs_blocked_free (ptr)
1164 void *ptr;
1165 {
1166 BLOCK_INPUT_ALLOC;
1167
1168 #ifdef GC_MALLOC_CHECK
1169 if (ptr)
1170 {
1171 struct mem_node *m;
1172
1173 m = mem_find (ptr);
1174 if (m == MEM_NIL || m->start != ptr)
1175 {
1176 fprintf (stderr,
1177 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1178 abort ();
1179 }
1180 else
1181 {
1182 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1183 mem_delete (m);
1184 }
1185 }
1186 #endif /* GC_MALLOC_CHECK */
1187
1188 __free_hook = old_free_hook;
1189 free (ptr);
1190
1191 /* If we released our reserve (due to running out of memory),
1192 and we have a fair amount free once again,
1193 try to set aside another reserve in case we run out once more. */
1194 if (spare_memory == 0
1195 /* Verify there is enough space that even with the malloc
1196 hysteresis this call won't run out again.
1197 The code here is correct as long as SPARE_MEMORY
1198 is substantially larger than the block size malloc uses. */
1199 && (bytes_used_when_full
1200 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
1201 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
1202
1203 __free_hook = emacs_blocked_free;
1204 UNBLOCK_INPUT_ALLOC;
1205 }
1206
1207
1208 /* This function is the malloc hook that Emacs uses. */
1209
1210 static void *
1211 emacs_blocked_malloc (size)
1212 size_t size;
1213 {
1214 void *value;
1215
1216 BLOCK_INPUT_ALLOC;
1217 __malloc_hook = old_malloc_hook;
1218 #ifdef DOUG_LEA_MALLOC
1219 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1220 #else
1221 __malloc_extra_blocks = malloc_hysteresis;
1222 #endif
1223
1224 value = (void *) malloc (size);
1225
1226 #ifdef GC_MALLOC_CHECK
1227 {
1228 struct mem_node *m = mem_find (value);
1229 if (m != MEM_NIL)
1230 {
1231 fprintf (stderr, "Malloc returned %p which is already in use\n",
1232 value);
1233 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1234 m->start, m->end, (char *) m->end - (char *) m->start,
1235 m->type);
1236 abort ();
1237 }
1238
1239 if (!dont_register_blocks)
1240 {
1241 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1242 allocated_mem_type = MEM_TYPE_NON_LISP;
1243 }
1244 }
1245 #endif /* GC_MALLOC_CHECK */
1246
1247 __malloc_hook = emacs_blocked_malloc;
1248 UNBLOCK_INPUT_ALLOC;
1249
1250 /* fprintf (stderr, "%p malloc\n", value); */
1251 return value;
1252 }
1253
1254
1255 /* This function is the realloc hook that Emacs uses. */
1256
1257 static void *
1258 emacs_blocked_realloc (ptr, size)
1259 void *ptr;
1260 size_t size;
1261 {
1262 void *value;
1263
1264 BLOCK_INPUT_ALLOC;
1265 __realloc_hook = old_realloc_hook;
1266
1267 #ifdef GC_MALLOC_CHECK
1268 if (ptr)
1269 {
1270 struct mem_node *m = mem_find (ptr);
1271 if (m == MEM_NIL || m->start != ptr)
1272 {
1273 fprintf (stderr,
1274 "Realloc of %p which wasn't allocated with malloc\n",
1275 ptr);
1276 abort ();
1277 }
1278
1279 mem_delete (m);
1280 }
1281
1282 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1283
1284 /* Prevent malloc from registering blocks. */
1285 dont_register_blocks = 1;
1286 #endif /* GC_MALLOC_CHECK */
1287
1288 value = (void *) realloc (ptr, size);
1289
1290 #ifdef GC_MALLOC_CHECK
1291 dont_register_blocks = 0;
1292
1293 {
1294 struct mem_node *m = mem_find (value);
1295 if (m != MEM_NIL)
1296 {
1297 fprintf (stderr, "Realloc returns memory that is already in use\n");
1298 abort ();
1299 }
1300
1301 /* Can't handle zero size regions in the red-black tree. */
1302 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1303 }
1304
1305 /* fprintf (stderr, "%p <- realloc\n", value); */
1306 #endif /* GC_MALLOC_CHECK */
1307
1308 __realloc_hook = emacs_blocked_realloc;
1309 UNBLOCK_INPUT_ALLOC;
1310
1311 return value;
1312 }
1313
1314
1315 #ifdef HAVE_GTK_AND_PTHREAD
1316 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1317 normal malloc. Some thread implementations need this as they call
1318 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1319 calls malloc because it is the first call, and we have an endless loop. */
1320
1321 void
1322 reset_malloc_hooks ()
1323 {
1324 __free_hook = 0;
1325 __malloc_hook = 0;
1326 __realloc_hook = 0;
1327 }
1328 #endif /* HAVE_GTK_AND_PTHREAD */
1329
1330
1331 /* Called from main to set up malloc to use our hooks. */
1332
1333 void
1334 uninterrupt_malloc ()
1335 {
1336 #ifdef HAVE_GTK_AND_PTHREAD
1337 pthread_mutexattr_t attr;
1338
1339 /* GLIBC has a faster way to do this, but lets keep it portable.
1340 This is according to the Single UNIX Specification. */
1341 pthread_mutexattr_init (&attr);
1342 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1343 pthread_mutex_init (&alloc_mutex, &attr);
1344 #endif /* HAVE_GTK_AND_PTHREAD */
1345
1346 if (__free_hook != emacs_blocked_free)
1347 old_free_hook = __free_hook;
1348 __free_hook = emacs_blocked_free;
1349
1350 if (__malloc_hook != emacs_blocked_malloc)
1351 old_malloc_hook = __malloc_hook;
1352 __malloc_hook = emacs_blocked_malloc;
1353
1354 if (__realloc_hook != emacs_blocked_realloc)
1355 old_realloc_hook = __realloc_hook;
1356 __realloc_hook = emacs_blocked_realloc;
1357 }
1358
1359 #endif /* not SYNC_INPUT */
1360 #endif /* not SYSTEM_MALLOC */
1361
1362
1363 \f
1364 /***********************************************************************
1365 Interval Allocation
1366 ***********************************************************************/
1367
1368 /* Number of intervals allocated in an interval_block structure.
1369 The 1020 is 1024 minus malloc overhead. */
1370
1371 #define INTERVAL_BLOCK_SIZE \
1372 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1373
1374 /* Intervals are allocated in chunks in form of an interval_block
1375 structure. */
1376
1377 struct interval_block
1378 {
1379 /* Place `intervals' first, to preserve alignment. */
1380 struct interval intervals[INTERVAL_BLOCK_SIZE];
1381 struct interval_block *next;
1382 };
1383
1384 /* Current interval block. Its `next' pointer points to older
1385 blocks. */
1386
1387 struct interval_block *interval_block;
1388
1389 /* Index in interval_block above of the next unused interval
1390 structure. */
1391
1392 static int interval_block_index;
1393
1394 /* Number of free and live intervals. */
1395
1396 static int total_free_intervals, total_intervals;
1397
1398 /* List of free intervals. */
1399
1400 INTERVAL interval_free_list;
1401
1402 /* Total number of interval blocks now in use. */
1403
1404 int n_interval_blocks;
1405
1406
1407 /* Initialize interval allocation. */
1408
1409 static void
1410 init_intervals ()
1411 {
1412 interval_block = NULL;
1413 interval_block_index = INTERVAL_BLOCK_SIZE;
1414 interval_free_list = 0;
1415 n_interval_blocks = 0;
1416 }
1417
1418
1419 /* Return a new interval. */
1420
1421 INTERVAL
1422 make_interval ()
1423 {
1424 INTERVAL val;
1425
1426 if (interval_free_list)
1427 {
1428 val = interval_free_list;
1429 interval_free_list = INTERVAL_PARENT (interval_free_list);
1430 }
1431 else
1432 {
1433 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1434 {
1435 register struct interval_block *newi;
1436
1437 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1438 MEM_TYPE_NON_LISP);
1439
1440 newi->next = interval_block;
1441 interval_block = newi;
1442 interval_block_index = 0;
1443 n_interval_blocks++;
1444 }
1445 val = &interval_block->intervals[interval_block_index++];
1446 }
1447 consing_since_gc += sizeof (struct interval);
1448 intervals_consed++;
1449 RESET_INTERVAL (val);
1450 val->gcmarkbit = 0;
1451 return val;
1452 }
1453
1454
1455 /* Mark Lisp objects in interval I. */
1456
1457 static void
1458 mark_interval (i, dummy)
1459 register INTERVAL i;
1460 Lisp_Object dummy;
1461 {
1462 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1463 i->gcmarkbit = 1;
1464 mark_object (i->plist);
1465 }
1466
1467
1468 /* Mark the interval tree rooted in TREE. Don't call this directly;
1469 use the macro MARK_INTERVAL_TREE instead. */
1470
1471 static void
1472 mark_interval_tree (tree)
1473 register INTERVAL tree;
1474 {
1475 /* No need to test if this tree has been marked already; this
1476 function is always called through the MARK_INTERVAL_TREE macro,
1477 which takes care of that. */
1478
1479 traverse_intervals_noorder (tree, mark_interval, Qnil);
1480 }
1481
1482
1483 /* Mark the interval tree rooted in I. */
1484
1485 #define MARK_INTERVAL_TREE(i) \
1486 do { \
1487 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1488 mark_interval_tree (i); \
1489 } while (0)
1490
1491
1492 #define UNMARK_BALANCE_INTERVALS(i) \
1493 do { \
1494 if (! NULL_INTERVAL_P (i)) \
1495 (i) = balance_intervals (i); \
1496 } while (0)
1497
1498 \f
1499 /* Number support. If NO_UNION_TYPE isn't in effect, we
1500 can't create number objects in macros. */
1501 #ifndef make_number
1502 Lisp_Object
1503 make_number (n)
1504 int n;
1505 {
1506 Lisp_Object obj;
1507 obj.s.val = n;
1508 obj.s.type = Lisp_Int;
1509 return obj;
1510 }
1511 #endif
1512 \f
1513 /***********************************************************************
1514 String Allocation
1515 ***********************************************************************/
1516
1517 /* Lisp_Strings are allocated in string_block structures. When a new
1518 string_block is allocated, all the Lisp_Strings it contains are
1519 added to a free-list string_free_list. When a new Lisp_String is
1520 needed, it is taken from that list. During the sweep phase of GC,
1521 string_blocks that are entirely free are freed, except two which
1522 we keep.
1523
1524 String data is allocated from sblock structures. Strings larger
1525 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1526 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1527
1528 Sblocks consist internally of sdata structures, one for each
1529 Lisp_String. The sdata structure points to the Lisp_String it
1530 belongs to. The Lisp_String points back to the `u.data' member of
1531 its sdata structure.
1532
1533 When a Lisp_String is freed during GC, it is put back on
1534 string_free_list, and its `data' member and its sdata's `string'
1535 pointer is set to null. The size of the string is recorded in the
1536 `u.nbytes' member of the sdata. So, sdata structures that are no
1537 longer used, can be easily recognized, and it's easy to compact the
1538 sblocks of small strings which we do in compact_small_strings. */
1539
1540 /* Size in bytes of an sblock structure used for small strings. This
1541 is 8192 minus malloc overhead. */
1542
1543 #define SBLOCK_SIZE 8188
1544
1545 /* Strings larger than this are considered large strings. String data
1546 for large strings is allocated from individual sblocks. */
1547
1548 #define LARGE_STRING_BYTES 1024
1549
1550 /* Structure describing string memory sub-allocated from an sblock.
1551 This is where the contents of Lisp strings are stored. */
1552
1553 struct sdata
1554 {
1555 /* Back-pointer to the string this sdata belongs to. If null, this
1556 structure is free, and the NBYTES member of the union below
1557 contains the string's byte size (the same value that STRING_BYTES
1558 would return if STRING were non-null). If non-null, STRING_BYTES
1559 (STRING) is the size of the data, and DATA contains the string's
1560 contents. */
1561 struct Lisp_String *string;
1562
1563 #ifdef GC_CHECK_STRING_BYTES
1564
1565 EMACS_INT nbytes;
1566 unsigned char data[1];
1567
1568 #define SDATA_NBYTES(S) (S)->nbytes
1569 #define SDATA_DATA(S) (S)->data
1570
1571 #else /* not GC_CHECK_STRING_BYTES */
1572
1573 union
1574 {
1575 /* When STRING in non-null. */
1576 unsigned char data[1];
1577
1578 /* When STRING is null. */
1579 EMACS_INT nbytes;
1580 } u;
1581
1582
1583 #define SDATA_NBYTES(S) (S)->u.nbytes
1584 #define SDATA_DATA(S) (S)->u.data
1585
1586 #endif /* not GC_CHECK_STRING_BYTES */
1587 };
1588
1589
1590 /* Structure describing a block of memory which is sub-allocated to
1591 obtain string data memory for strings. Blocks for small strings
1592 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1593 as large as needed. */
1594
1595 struct sblock
1596 {
1597 /* Next in list. */
1598 struct sblock *next;
1599
1600 /* Pointer to the next free sdata block. This points past the end
1601 of the sblock if there isn't any space left in this block. */
1602 struct sdata *next_free;
1603
1604 /* Start of data. */
1605 struct sdata first_data;
1606 };
1607
1608 /* Number of Lisp strings in a string_block structure. The 1020 is
1609 1024 minus malloc overhead. */
1610
1611 #define STRING_BLOCK_SIZE \
1612 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1613
1614 /* Structure describing a block from which Lisp_String structures
1615 are allocated. */
1616
1617 struct string_block
1618 {
1619 /* Place `strings' first, to preserve alignment. */
1620 struct Lisp_String strings[STRING_BLOCK_SIZE];
1621 struct string_block *next;
1622 };
1623
1624 /* Head and tail of the list of sblock structures holding Lisp string
1625 data. We always allocate from current_sblock. The NEXT pointers
1626 in the sblock structures go from oldest_sblock to current_sblock. */
1627
1628 static struct sblock *oldest_sblock, *current_sblock;
1629
1630 /* List of sblocks for large strings. */
1631
1632 static struct sblock *large_sblocks;
1633
1634 /* List of string_block structures, and how many there are. */
1635
1636 static struct string_block *string_blocks;
1637 static int n_string_blocks;
1638
1639 /* Free-list of Lisp_Strings. */
1640
1641 static struct Lisp_String *string_free_list;
1642
1643 /* Number of live and free Lisp_Strings. */
1644
1645 static int total_strings, total_free_strings;
1646
1647 /* Number of bytes used by live strings. */
1648
1649 static int total_string_size;
1650
1651 /* Given a pointer to a Lisp_String S which is on the free-list
1652 string_free_list, return a pointer to its successor in the
1653 free-list. */
1654
1655 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1656
1657 /* Return a pointer to the sdata structure belonging to Lisp string S.
1658 S must be live, i.e. S->data must not be null. S->data is actually
1659 a pointer to the `u.data' member of its sdata structure; the
1660 structure starts at a constant offset in front of that. */
1661
1662 #ifdef GC_CHECK_STRING_BYTES
1663
1664 #define SDATA_OF_STRING(S) \
1665 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1666 - sizeof (EMACS_INT)))
1667
1668 #else /* not GC_CHECK_STRING_BYTES */
1669
1670 #define SDATA_OF_STRING(S) \
1671 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1672
1673 #endif /* not GC_CHECK_STRING_BYTES */
1674
1675
1676 #ifdef GC_CHECK_STRING_OVERRUN
1677
1678 /* We check for overrun in string data blocks by appending a small
1679 "cookie" after each allocated string data block, and check for the
1680 presense of this cookie during GC. */
1681
1682 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1683 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1684 { 0xde, 0xad, 0xbe, 0xef };
1685
1686 #else
1687 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1688 #endif
1689
1690 /* Value is the size of an sdata structure large enough to hold NBYTES
1691 bytes of string data. The value returned includes a terminating
1692 NUL byte, the size of the sdata structure, and padding. */
1693
1694 #ifdef GC_CHECK_STRING_BYTES
1695
1696 #define SDATA_SIZE(NBYTES) \
1697 ((sizeof (struct Lisp_String *) \
1698 + (NBYTES) + 1 \
1699 + sizeof (EMACS_INT) \
1700 + sizeof (EMACS_INT) - 1) \
1701 & ~(sizeof (EMACS_INT) - 1))
1702
1703 #else /* not GC_CHECK_STRING_BYTES */
1704
1705 #define SDATA_SIZE(NBYTES) \
1706 ((sizeof (struct Lisp_String *) \
1707 + (NBYTES) + 1 \
1708 + sizeof (EMACS_INT) - 1) \
1709 & ~(sizeof (EMACS_INT) - 1))
1710
1711 #endif /* not GC_CHECK_STRING_BYTES */
1712
1713 /* Extra bytes to allocate for each string. */
1714
1715 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1716
1717 /* Initialize string allocation. Called from init_alloc_once. */
1718
1719 void
1720 init_strings ()
1721 {
1722 total_strings = total_free_strings = total_string_size = 0;
1723 oldest_sblock = current_sblock = large_sblocks = NULL;
1724 string_blocks = NULL;
1725 n_string_blocks = 0;
1726 string_free_list = NULL;
1727 }
1728
1729
1730 #ifdef GC_CHECK_STRING_BYTES
1731
1732 static int check_string_bytes_count;
1733
1734 void check_string_bytes P_ ((int));
1735 void check_sblock P_ ((struct sblock *));
1736
1737 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1738
1739
1740 /* Like GC_STRING_BYTES, but with debugging check. */
1741
1742 int
1743 string_bytes (s)
1744 struct Lisp_String *s;
1745 {
1746 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1747 if (!PURE_POINTER_P (s)
1748 && s->data
1749 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1750 abort ();
1751 return nbytes;
1752 }
1753
1754 /* Check validity of Lisp strings' string_bytes member in B. */
1755
1756 void
1757 check_sblock (b)
1758 struct sblock *b;
1759 {
1760 struct sdata *from, *end, *from_end;
1761
1762 end = b->next_free;
1763
1764 for (from = &b->first_data; from < end; from = from_end)
1765 {
1766 /* Compute the next FROM here because copying below may
1767 overwrite data we need to compute it. */
1768 int nbytes;
1769
1770 /* Check that the string size recorded in the string is the
1771 same as the one recorded in the sdata structure. */
1772 if (from->string)
1773 CHECK_STRING_BYTES (from->string);
1774
1775 if (from->string)
1776 nbytes = GC_STRING_BYTES (from->string);
1777 else
1778 nbytes = SDATA_NBYTES (from);
1779
1780 nbytes = SDATA_SIZE (nbytes);
1781 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1782 }
1783 }
1784
1785
1786 /* Check validity of Lisp strings' string_bytes member. ALL_P
1787 non-zero means check all strings, otherwise check only most
1788 recently allocated strings. Used for hunting a bug. */
1789
1790 void
1791 check_string_bytes (all_p)
1792 int all_p;
1793 {
1794 if (all_p)
1795 {
1796 struct sblock *b;
1797
1798 for (b = large_sblocks; b; b = b->next)
1799 {
1800 struct Lisp_String *s = b->first_data.string;
1801 if (s)
1802 CHECK_STRING_BYTES (s);
1803 }
1804
1805 for (b = oldest_sblock; b; b = b->next)
1806 check_sblock (b);
1807 }
1808 else
1809 check_sblock (current_sblock);
1810 }
1811
1812 #endif /* GC_CHECK_STRING_BYTES */
1813
1814 #ifdef GC_CHECK_STRING_FREE_LIST
1815
1816 /* Walk through the string free list looking for bogus next pointers.
1817 This may catch buffer overrun from a previous string. */
1818
1819 static void
1820 check_string_free_list ()
1821 {
1822 struct Lisp_String *s;
1823
1824 /* Pop a Lisp_String off the free-list. */
1825 s = string_free_list;
1826 while (s != NULL)
1827 {
1828 if ((unsigned)s < 1024)
1829 abort();
1830 s = NEXT_FREE_LISP_STRING (s);
1831 }
1832 }
1833 #else
1834 #define check_string_free_list()
1835 #endif
1836
1837 /* Return a new Lisp_String. */
1838
1839 static struct Lisp_String *
1840 allocate_string ()
1841 {
1842 struct Lisp_String *s;
1843
1844 /* If the free-list is empty, allocate a new string_block, and
1845 add all the Lisp_Strings in it to the free-list. */
1846 if (string_free_list == NULL)
1847 {
1848 struct string_block *b;
1849 int i;
1850
1851 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1852 bzero (b, sizeof *b);
1853 b->next = string_blocks;
1854 string_blocks = b;
1855 ++n_string_blocks;
1856
1857 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1858 {
1859 s = b->strings + i;
1860 NEXT_FREE_LISP_STRING (s) = string_free_list;
1861 string_free_list = s;
1862 }
1863
1864 total_free_strings += STRING_BLOCK_SIZE;
1865 }
1866
1867 check_string_free_list ();
1868
1869 /* Pop a Lisp_String off the free-list. */
1870 s = string_free_list;
1871 string_free_list = NEXT_FREE_LISP_STRING (s);
1872
1873 /* Probably not strictly necessary, but play it safe. */
1874 bzero (s, sizeof *s);
1875
1876 --total_free_strings;
1877 ++total_strings;
1878 ++strings_consed;
1879 consing_since_gc += sizeof *s;
1880
1881 #ifdef GC_CHECK_STRING_BYTES
1882 if (!noninteractive
1883 #ifdef MAC_OS8
1884 && current_sblock
1885 #endif
1886 )
1887 {
1888 if (++check_string_bytes_count == 200)
1889 {
1890 check_string_bytes_count = 0;
1891 check_string_bytes (1);
1892 }
1893 else
1894 check_string_bytes (0);
1895 }
1896 #endif /* GC_CHECK_STRING_BYTES */
1897
1898 return s;
1899 }
1900
1901
1902 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1903 plus a NUL byte at the end. Allocate an sdata structure for S, and
1904 set S->data to its `u.data' member. Store a NUL byte at the end of
1905 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1906 S->data if it was initially non-null. */
1907
1908 void
1909 allocate_string_data (s, nchars, nbytes)
1910 struct Lisp_String *s;
1911 int nchars, nbytes;
1912 {
1913 struct sdata *data, *old_data;
1914 struct sblock *b;
1915 int needed, old_nbytes;
1916
1917 /* Determine the number of bytes needed to store NBYTES bytes
1918 of string data. */
1919 needed = SDATA_SIZE (nbytes);
1920
1921 if (nbytes > LARGE_STRING_BYTES)
1922 {
1923 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1924
1925 #ifdef DOUG_LEA_MALLOC
1926 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1927 because mapped region contents are not preserved in
1928 a dumped Emacs.
1929
1930 In case you think of allowing it in a dumped Emacs at the
1931 cost of not being able to re-dump, there's another reason:
1932 mmap'ed data typically have an address towards the top of the
1933 address space, which won't fit into an EMACS_INT (at least on
1934 32-bit systems with the current tagging scheme). --fx */
1935 mallopt (M_MMAP_MAX, 0);
1936 #endif
1937
1938 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1939
1940 #ifdef DOUG_LEA_MALLOC
1941 /* Back to a reasonable maximum of mmap'ed areas. */
1942 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1943 #endif
1944
1945 b->next_free = &b->first_data;
1946 b->first_data.string = NULL;
1947 b->next = large_sblocks;
1948 large_sblocks = b;
1949 }
1950 else if (current_sblock == NULL
1951 || (((char *) current_sblock + SBLOCK_SIZE
1952 - (char *) current_sblock->next_free)
1953 < (needed + GC_STRING_EXTRA)))
1954 {
1955 /* Not enough room in the current sblock. */
1956 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1957 b->next_free = &b->first_data;
1958 b->first_data.string = NULL;
1959 b->next = NULL;
1960
1961 if (current_sblock)
1962 current_sblock->next = b;
1963 else
1964 oldest_sblock = b;
1965 current_sblock = b;
1966 }
1967 else
1968 b = current_sblock;
1969
1970 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1971 old_nbytes = GC_STRING_BYTES (s);
1972
1973 data = b->next_free;
1974 data->string = s;
1975 s->data = SDATA_DATA (data);
1976 #ifdef GC_CHECK_STRING_BYTES
1977 SDATA_NBYTES (data) = nbytes;
1978 #endif
1979 s->size = nchars;
1980 s->size_byte = nbytes;
1981 s->data[nbytes] = '\0';
1982 #ifdef GC_CHECK_STRING_OVERRUN
1983 bcopy (string_overrun_cookie, (char *) data + needed,
1984 GC_STRING_OVERRUN_COOKIE_SIZE);
1985 #endif
1986 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1987
1988 /* If S had already data assigned, mark that as free by setting its
1989 string back-pointer to null, and recording the size of the data
1990 in it. */
1991 if (old_data)
1992 {
1993 SDATA_NBYTES (old_data) = old_nbytes;
1994 old_data->string = NULL;
1995 }
1996
1997 consing_since_gc += needed;
1998 }
1999
2000
2001 /* Sweep and compact strings. */
2002
2003 static void
2004 sweep_strings ()
2005 {
2006 struct string_block *b, *next;
2007 struct string_block *live_blocks = NULL;
2008
2009 string_free_list = NULL;
2010 total_strings = total_free_strings = 0;
2011 total_string_size = 0;
2012
2013 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2014 for (b = string_blocks; b; b = next)
2015 {
2016 int i, nfree = 0;
2017 struct Lisp_String *free_list_before = string_free_list;
2018
2019 next = b->next;
2020
2021 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2022 {
2023 struct Lisp_String *s = b->strings + i;
2024
2025 if (s->data)
2026 {
2027 /* String was not on free-list before. */
2028 if (STRING_MARKED_P (s))
2029 {
2030 /* String is live; unmark it and its intervals. */
2031 UNMARK_STRING (s);
2032
2033 if (!NULL_INTERVAL_P (s->intervals))
2034 UNMARK_BALANCE_INTERVALS (s->intervals);
2035
2036 ++total_strings;
2037 total_string_size += STRING_BYTES (s);
2038 }
2039 else
2040 {
2041 /* String is dead. Put it on the free-list. */
2042 struct sdata *data = SDATA_OF_STRING (s);
2043
2044 /* Save the size of S in its sdata so that we know
2045 how large that is. Reset the sdata's string
2046 back-pointer so that we know it's free. */
2047 #ifdef GC_CHECK_STRING_BYTES
2048 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2049 abort ();
2050 #else
2051 data->u.nbytes = GC_STRING_BYTES (s);
2052 #endif
2053 data->string = NULL;
2054
2055 /* Reset the strings's `data' member so that we
2056 know it's free. */
2057 s->data = NULL;
2058
2059 /* Put the string on the free-list. */
2060 NEXT_FREE_LISP_STRING (s) = string_free_list;
2061 string_free_list = s;
2062 ++nfree;
2063 }
2064 }
2065 else
2066 {
2067 /* S was on the free-list before. Put it there again. */
2068 NEXT_FREE_LISP_STRING (s) = string_free_list;
2069 string_free_list = s;
2070 ++nfree;
2071 }
2072 }
2073
2074 /* Free blocks that contain free Lisp_Strings only, except
2075 the first two of them. */
2076 if (nfree == STRING_BLOCK_SIZE
2077 && total_free_strings > STRING_BLOCK_SIZE)
2078 {
2079 lisp_free (b);
2080 --n_string_blocks;
2081 string_free_list = free_list_before;
2082 }
2083 else
2084 {
2085 total_free_strings += nfree;
2086 b->next = live_blocks;
2087 live_blocks = b;
2088 }
2089 }
2090
2091 check_string_free_list ();
2092
2093 string_blocks = live_blocks;
2094 free_large_strings ();
2095 compact_small_strings ();
2096
2097 check_string_free_list ();
2098 }
2099
2100
2101 /* Free dead large strings. */
2102
2103 static void
2104 free_large_strings ()
2105 {
2106 struct sblock *b, *next;
2107 struct sblock *live_blocks = NULL;
2108
2109 for (b = large_sblocks; b; b = next)
2110 {
2111 next = b->next;
2112
2113 if (b->first_data.string == NULL)
2114 lisp_free (b);
2115 else
2116 {
2117 b->next = live_blocks;
2118 live_blocks = b;
2119 }
2120 }
2121
2122 large_sblocks = live_blocks;
2123 }
2124
2125
2126 /* Compact data of small strings. Free sblocks that don't contain
2127 data of live strings after compaction. */
2128
2129 static void
2130 compact_small_strings ()
2131 {
2132 struct sblock *b, *tb, *next;
2133 struct sdata *from, *to, *end, *tb_end;
2134 struct sdata *to_end, *from_end;
2135
2136 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2137 to, and TB_END is the end of TB. */
2138 tb = oldest_sblock;
2139 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2140 to = &tb->first_data;
2141
2142 /* Step through the blocks from the oldest to the youngest. We
2143 expect that old blocks will stabilize over time, so that less
2144 copying will happen this way. */
2145 for (b = oldest_sblock; b; b = b->next)
2146 {
2147 end = b->next_free;
2148 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2149
2150 for (from = &b->first_data; from < end; from = from_end)
2151 {
2152 /* Compute the next FROM here because copying below may
2153 overwrite data we need to compute it. */
2154 int nbytes;
2155
2156 #ifdef GC_CHECK_STRING_BYTES
2157 /* Check that the string size recorded in the string is the
2158 same as the one recorded in the sdata structure. */
2159 if (from->string
2160 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2161 abort ();
2162 #endif /* GC_CHECK_STRING_BYTES */
2163
2164 if (from->string)
2165 nbytes = GC_STRING_BYTES (from->string);
2166 else
2167 nbytes = SDATA_NBYTES (from);
2168
2169 if (nbytes > LARGE_STRING_BYTES)
2170 abort ();
2171
2172 nbytes = SDATA_SIZE (nbytes);
2173 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2174
2175 #ifdef GC_CHECK_STRING_OVERRUN
2176 if (bcmp (string_overrun_cookie,
2177 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2178 GC_STRING_OVERRUN_COOKIE_SIZE))
2179 abort ();
2180 #endif
2181
2182 /* FROM->string non-null means it's alive. Copy its data. */
2183 if (from->string)
2184 {
2185 /* If TB is full, proceed with the next sblock. */
2186 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2187 if (to_end > tb_end)
2188 {
2189 tb->next_free = to;
2190 tb = tb->next;
2191 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2192 to = &tb->first_data;
2193 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2194 }
2195
2196 /* Copy, and update the string's `data' pointer. */
2197 if (from != to)
2198 {
2199 xassert (tb != b || to <= from);
2200 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2201 to->string->data = SDATA_DATA (to);
2202 }
2203
2204 /* Advance past the sdata we copied to. */
2205 to = to_end;
2206 }
2207 }
2208 }
2209
2210 /* The rest of the sblocks following TB don't contain live data, so
2211 we can free them. */
2212 for (b = tb->next; b; b = next)
2213 {
2214 next = b->next;
2215 lisp_free (b);
2216 }
2217
2218 tb->next_free = to;
2219 tb->next = NULL;
2220 current_sblock = tb;
2221 }
2222
2223
2224 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2225 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2226 LENGTH must be an integer.
2227 INIT must be an integer that represents a character. */)
2228 (length, init)
2229 Lisp_Object length, init;
2230 {
2231 register Lisp_Object val;
2232 register unsigned char *p, *end;
2233 int c, nbytes;
2234
2235 CHECK_NATNUM (length);
2236 CHECK_NUMBER (init);
2237
2238 c = XINT (init);
2239 if (ASCII_CHAR_P (c))
2240 {
2241 nbytes = XINT (length);
2242 val = make_uninit_string (nbytes);
2243 p = SDATA (val);
2244 end = p + SCHARS (val);
2245 while (p != end)
2246 *p++ = c;
2247 }
2248 else
2249 {
2250 unsigned char str[MAX_MULTIBYTE_LENGTH];
2251 int len = CHAR_STRING (c, str);
2252
2253 nbytes = len * XINT (length);
2254 val = make_uninit_multibyte_string (XINT (length), nbytes);
2255 p = SDATA (val);
2256 end = p + nbytes;
2257 while (p != end)
2258 {
2259 bcopy (str, p, len);
2260 p += len;
2261 }
2262 }
2263
2264 *p = 0;
2265 return val;
2266 }
2267
2268
2269 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2270 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
2271 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2272 (length, init)
2273 Lisp_Object length, init;
2274 {
2275 register Lisp_Object val;
2276 struct Lisp_Bool_Vector *p;
2277 int real_init, i;
2278 int length_in_chars, length_in_elts, bits_per_value;
2279
2280 CHECK_NATNUM (length);
2281
2282 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2283
2284 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2285 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2286 / BOOL_VECTOR_BITS_PER_CHAR);
2287
2288 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2289 slot `size' of the struct Lisp_Bool_Vector. */
2290 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2291 p = XBOOL_VECTOR (val);
2292
2293 /* Get rid of any bits that would cause confusion. */
2294 p->vector_size = 0;
2295 XSETBOOL_VECTOR (val, p);
2296 p->size = XFASTINT (length);
2297
2298 real_init = (NILP (init) ? 0 : -1);
2299 for (i = 0; i < length_in_chars ; i++)
2300 p->data[i] = real_init;
2301
2302 /* Clear the extraneous bits in the last byte. */
2303 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2304 XBOOL_VECTOR (val)->data[length_in_chars - 1]
2305 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2306
2307 return val;
2308 }
2309
2310
2311 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2312 of characters from the contents. This string may be unibyte or
2313 multibyte, depending on the contents. */
2314
2315 Lisp_Object
2316 make_string (contents, nbytes)
2317 const char *contents;
2318 int nbytes;
2319 {
2320 register Lisp_Object val;
2321 int nchars, multibyte_nbytes;
2322
2323 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2324 if (nbytes == nchars || nbytes != multibyte_nbytes)
2325 /* CONTENTS contains no multibyte sequences or contains an invalid
2326 multibyte sequence. We must make unibyte string. */
2327 val = make_unibyte_string (contents, nbytes);
2328 else
2329 val = make_multibyte_string (contents, nchars, nbytes);
2330 return val;
2331 }
2332
2333
2334 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2335
2336 Lisp_Object
2337 make_unibyte_string (contents, length)
2338 const char *contents;
2339 int length;
2340 {
2341 register Lisp_Object val;
2342 val = make_uninit_string (length);
2343 bcopy (contents, SDATA (val), length);
2344 STRING_SET_UNIBYTE (val);
2345 return val;
2346 }
2347
2348
2349 /* Make a multibyte string from NCHARS characters occupying NBYTES
2350 bytes at CONTENTS. */
2351
2352 Lisp_Object
2353 make_multibyte_string (contents, nchars, nbytes)
2354 const char *contents;
2355 int nchars, nbytes;
2356 {
2357 register Lisp_Object val;
2358 val = make_uninit_multibyte_string (nchars, nbytes);
2359 bcopy (contents, SDATA (val), nbytes);
2360 return val;
2361 }
2362
2363
2364 /* Make a string from NCHARS characters occupying NBYTES bytes at
2365 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2366
2367 Lisp_Object
2368 make_string_from_bytes (contents, nchars, nbytes)
2369 const char *contents;
2370 int nchars, nbytes;
2371 {
2372 register Lisp_Object val;
2373 val = make_uninit_multibyte_string (nchars, nbytes);
2374 bcopy (contents, SDATA (val), nbytes);
2375 if (SBYTES (val) == SCHARS (val))
2376 STRING_SET_UNIBYTE (val);
2377 return val;
2378 }
2379
2380
2381 /* Make a string from NCHARS characters occupying NBYTES bytes at
2382 CONTENTS. The argument MULTIBYTE controls whether to label the
2383 string as multibyte. If NCHARS is negative, it counts the number of
2384 characters by itself. */
2385
2386 Lisp_Object
2387 make_specified_string (contents, nchars, nbytes, multibyte)
2388 const char *contents;
2389 int nchars, nbytes;
2390 int multibyte;
2391 {
2392 register Lisp_Object val;
2393
2394 if (nchars < 0)
2395 {
2396 if (multibyte)
2397 nchars = multibyte_chars_in_text (contents, nbytes);
2398 else
2399 nchars = nbytes;
2400 }
2401 val = make_uninit_multibyte_string (nchars, nbytes);
2402 bcopy (contents, SDATA (val), nbytes);
2403 if (!multibyte)
2404 STRING_SET_UNIBYTE (val);
2405 return val;
2406 }
2407
2408
2409 /* Make a string from the data at STR, treating it as multibyte if the
2410 data warrants. */
2411
2412 Lisp_Object
2413 build_string (str)
2414 const char *str;
2415 {
2416 return make_string (str, strlen (str));
2417 }
2418
2419
2420 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2421 occupying LENGTH bytes. */
2422
2423 Lisp_Object
2424 make_uninit_string (length)
2425 int length;
2426 {
2427 Lisp_Object val;
2428 val = make_uninit_multibyte_string (length, length);
2429 STRING_SET_UNIBYTE (val);
2430 return val;
2431 }
2432
2433
2434 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2435 which occupy NBYTES bytes. */
2436
2437 Lisp_Object
2438 make_uninit_multibyte_string (nchars, nbytes)
2439 int nchars, nbytes;
2440 {
2441 Lisp_Object string;
2442 struct Lisp_String *s;
2443
2444 if (nchars < 0)
2445 abort ();
2446
2447 s = allocate_string ();
2448 allocate_string_data (s, nchars, nbytes);
2449 XSETSTRING (string, s);
2450 string_chars_consed += nbytes;
2451 return string;
2452 }
2453
2454
2455 \f
2456 /***********************************************************************
2457 Float Allocation
2458 ***********************************************************************/
2459
2460 /* We store float cells inside of float_blocks, allocating a new
2461 float_block with malloc whenever necessary. Float cells reclaimed
2462 by GC are put on a free list to be reallocated before allocating
2463 any new float cells from the latest float_block. */
2464
2465 #define FLOAT_BLOCK_SIZE \
2466 (((BLOCK_BYTES - sizeof (struct float_block *) \
2467 /* The compiler might add padding at the end. */ \
2468 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2469 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2470
2471 #define GETMARKBIT(block,n) \
2472 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2473 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2474 & 1)
2475
2476 #define SETMARKBIT(block,n) \
2477 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2478 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2479
2480 #define UNSETMARKBIT(block,n) \
2481 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2482 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2483
2484 #define FLOAT_BLOCK(fptr) \
2485 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2486
2487 #define FLOAT_INDEX(fptr) \
2488 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2489
2490 struct float_block
2491 {
2492 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2493 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2494 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2495 struct float_block *next;
2496 };
2497
2498 #define FLOAT_MARKED_P(fptr) \
2499 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2500
2501 #define FLOAT_MARK(fptr) \
2502 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2503
2504 #define FLOAT_UNMARK(fptr) \
2505 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2506
2507 /* Current float_block. */
2508
2509 struct float_block *float_block;
2510
2511 /* Index of first unused Lisp_Float in the current float_block. */
2512
2513 int float_block_index;
2514
2515 /* Total number of float blocks now in use. */
2516
2517 int n_float_blocks;
2518
2519 /* Free-list of Lisp_Floats. */
2520
2521 struct Lisp_Float *float_free_list;
2522
2523
2524 /* Initialize float allocation. */
2525
2526 void
2527 init_float ()
2528 {
2529 float_block = NULL;
2530 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2531 float_free_list = 0;
2532 n_float_blocks = 0;
2533 }
2534
2535
2536 /* Explicitly free a float cell by putting it on the free-list. */
2537
2538 void
2539 free_float (ptr)
2540 struct Lisp_Float *ptr;
2541 {
2542 *(struct Lisp_Float **)&ptr->data = float_free_list;
2543 float_free_list = ptr;
2544 }
2545
2546
2547 /* Return a new float object with value FLOAT_VALUE. */
2548
2549 Lisp_Object
2550 make_float (float_value)
2551 double float_value;
2552 {
2553 register Lisp_Object val;
2554
2555 if (float_free_list)
2556 {
2557 /* We use the data field for chaining the free list
2558 so that we won't use the same field that has the mark bit. */
2559 XSETFLOAT (val, float_free_list);
2560 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2561 }
2562 else
2563 {
2564 if (float_block_index == FLOAT_BLOCK_SIZE)
2565 {
2566 register struct float_block *new;
2567
2568 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2569 MEM_TYPE_FLOAT);
2570 new->next = float_block;
2571 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2572 float_block = new;
2573 float_block_index = 0;
2574 n_float_blocks++;
2575 }
2576 XSETFLOAT (val, &float_block->floats[float_block_index]);
2577 float_block_index++;
2578 }
2579
2580 XFLOAT_DATA (val) = float_value;
2581 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2582 consing_since_gc += sizeof (struct Lisp_Float);
2583 floats_consed++;
2584 return val;
2585 }
2586
2587
2588 \f
2589 /***********************************************************************
2590 Cons Allocation
2591 ***********************************************************************/
2592
2593 /* We store cons cells inside of cons_blocks, allocating a new
2594 cons_block with malloc whenever necessary. Cons cells reclaimed by
2595 GC are put on a free list to be reallocated before allocating
2596 any new cons cells from the latest cons_block. */
2597
2598 #define CONS_BLOCK_SIZE \
2599 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2600 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2601
2602 #define CONS_BLOCK(fptr) \
2603 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2604
2605 #define CONS_INDEX(fptr) \
2606 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2607
2608 struct cons_block
2609 {
2610 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2611 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2612 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2613 struct cons_block *next;
2614 };
2615
2616 #define CONS_MARKED_P(fptr) \
2617 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2618
2619 #define CONS_MARK(fptr) \
2620 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2621
2622 #define CONS_UNMARK(fptr) \
2623 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2624
2625 /* Current cons_block. */
2626
2627 struct cons_block *cons_block;
2628
2629 /* Index of first unused Lisp_Cons in the current block. */
2630
2631 int cons_block_index;
2632
2633 /* Free-list of Lisp_Cons structures. */
2634
2635 struct Lisp_Cons *cons_free_list;
2636
2637 /* Total number of cons blocks now in use. */
2638
2639 int n_cons_blocks;
2640
2641
2642 /* Initialize cons allocation. */
2643
2644 void
2645 init_cons ()
2646 {
2647 cons_block = NULL;
2648 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2649 cons_free_list = 0;
2650 n_cons_blocks = 0;
2651 }
2652
2653
2654 /* Explicitly free a cons cell by putting it on the free-list. */
2655
2656 void
2657 free_cons (ptr)
2658 struct Lisp_Cons *ptr;
2659 {
2660 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2661 #if GC_MARK_STACK
2662 ptr->car = Vdead;
2663 #endif
2664 cons_free_list = ptr;
2665 }
2666
2667 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2668 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2669 (car, cdr)
2670 Lisp_Object car, cdr;
2671 {
2672 register Lisp_Object val;
2673
2674 if (cons_free_list)
2675 {
2676 /* We use the cdr for chaining the free list
2677 so that we won't use the same field that has the mark bit. */
2678 XSETCONS (val, cons_free_list);
2679 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2680 }
2681 else
2682 {
2683 if (cons_block_index == CONS_BLOCK_SIZE)
2684 {
2685 register struct cons_block *new;
2686 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2687 MEM_TYPE_CONS);
2688 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2689 new->next = cons_block;
2690 cons_block = new;
2691 cons_block_index = 0;
2692 n_cons_blocks++;
2693 }
2694 XSETCONS (val, &cons_block->conses[cons_block_index]);
2695 cons_block_index++;
2696 }
2697
2698 XSETCAR (val, car);
2699 XSETCDR (val, cdr);
2700 eassert (!CONS_MARKED_P (XCONS (val)));
2701 consing_since_gc += sizeof (struct Lisp_Cons);
2702 cons_cells_consed++;
2703 return val;
2704 }
2705
2706 /* Get an error now if there's any junk in the cons free list. */
2707 void
2708 check_cons_list ()
2709 {
2710 #ifdef GC_CHECK_CONS_LIST
2711 struct Lisp_Cons *tail = cons_free_list;
2712
2713 while (tail)
2714 tail = *(struct Lisp_Cons **)&tail->cdr;
2715 #endif
2716 }
2717
2718 /* Make a list of 2, 3, 4 or 5 specified objects. */
2719
2720 Lisp_Object
2721 list2 (arg1, arg2)
2722 Lisp_Object arg1, arg2;
2723 {
2724 return Fcons (arg1, Fcons (arg2, Qnil));
2725 }
2726
2727
2728 Lisp_Object
2729 list3 (arg1, arg2, arg3)
2730 Lisp_Object arg1, arg2, arg3;
2731 {
2732 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2733 }
2734
2735
2736 Lisp_Object
2737 list4 (arg1, arg2, arg3, arg4)
2738 Lisp_Object arg1, arg2, arg3, arg4;
2739 {
2740 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2741 }
2742
2743
2744 Lisp_Object
2745 list5 (arg1, arg2, arg3, arg4, arg5)
2746 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2747 {
2748 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2749 Fcons (arg5, Qnil)))));
2750 }
2751
2752
2753 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2754 doc: /* Return a newly created list with specified arguments as elements.
2755 Any number of arguments, even zero arguments, are allowed.
2756 usage: (list &rest OBJECTS) */)
2757 (nargs, args)
2758 int nargs;
2759 register Lisp_Object *args;
2760 {
2761 register Lisp_Object val;
2762 val = Qnil;
2763
2764 while (nargs > 0)
2765 {
2766 nargs--;
2767 val = Fcons (args[nargs], val);
2768 }
2769 return val;
2770 }
2771
2772
2773 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2774 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2775 (length, init)
2776 register Lisp_Object length, init;
2777 {
2778 register Lisp_Object val;
2779 register int size;
2780
2781 CHECK_NATNUM (length);
2782 size = XFASTINT (length);
2783
2784 val = Qnil;
2785 while (size > 0)
2786 {
2787 val = Fcons (init, val);
2788 --size;
2789
2790 if (size > 0)
2791 {
2792 val = Fcons (init, val);
2793 --size;
2794
2795 if (size > 0)
2796 {
2797 val = Fcons (init, val);
2798 --size;
2799
2800 if (size > 0)
2801 {
2802 val = Fcons (init, val);
2803 --size;
2804
2805 if (size > 0)
2806 {
2807 val = Fcons (init, val);
2808 --size;
2809 }
2810 }
2811 }
2812 }
2813
2814 QUIT;
2815 }
2816
2817 return val;
2818 }
2819
2820
2821 \f
2822 /***********************************************************************
2823 Vector Allocation
2824 ***********************************************************************/
2825
2826 /* Singly-linked list of all vectors. */
2827
2828 struct Lisp_Vector *all_vectors;
2829
2830 /* Total number of vector-like objects now in use. */
2831
2832 int n_vectors;
2833
2834
2835 /* Value is a pointer to a newly allocated Lisp_Vector structure
2836 with room for LEN Lisp_Objects. */
2837
2838 static struct Lisp_Vector *
2839 allocate_vectorlike (len, type)
2840 EMACS_INT len;
2841 enum mem_type type;
2842 {
2843 struct Lisp_Vector *p;
2844 size_t nbytes;
2845
2846 #ifdef DOUG_LEA_MALLOC
2847 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2848 because mapped region contents are not preserved in
2849 a dumped Emacs. */
2850 BLOCK_INPUT;
2851 mallopt (M_MMAP_MAX, 0);
2852 UNBLOCK_INPUT;
2853 #endif
2854
2855 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2856 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2857
2858 #ifdef DOUG_LEA_MALLOC
2859 /* Back to a reasonable maximum of mmap'ed areas. */
2860 BLOCK_INPUT;
2861 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2862 UNBLOCK_INPUT;
2863 #endif
2864
2865 consing_since_gc += nbytes;
2866 vector_cells_consed += len;
2867
2868 p->next = all_vectors;
2869 all_vectors = p;
2870 ++n_vectors;
2871 return p;
2872 }
2873
2874
2875 /* Allocate a vector with NSLOTS slots. */
2876
2877 struct Lisp_Vector *
2878 allocate_vector (nslots)
2879 EMACS_INT nslots;
2880 {
2881 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2882 v->size = nslots;
2883 return v;
2884 }
2885
2886
2887 /* Allocate other vector-like structures. */
2888
2889 struct Lisp_Hash_Table *
2890 allocate_hash_table ()
2891 {
2892 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2893 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2894 EMACS_INT i;
2895
2896 v->size = len;
2897 for (i = 0; i < len; ++i)
2898 v->contents[i] = Qnil;
2899
2900 return (struct Lisp_Hash_Table *) v;
2901 }
2902
2903
2904 struct window *
2905 allocate_window ()
2906 {
2907 EMACS_INT len = VECSIZE (struct window);
2908 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2909 EMACS_INT i;
2910
2911 for (i = 0; i < len; ++i)
2912 v->contents[i] = Qnil;
2913 v->size = len;
2914
2915 return (struct window *) v;
2916 }
2917
2918
2919 struct frame *
2920 allocate_frame ()
2921 {
2922 EMACS_INT len = VECSIZE (struct frame);
2923 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2924 EMACS_INT i;
2925
2926 for (i = 0; i < len; ++i)
2927 v->contents[i] = make_number (0);
2928 v->size = len;
2929 return (struct frame *) v;
2930 }
2931
2932
2933 struct Lisp_Process *
2934 allocate_process ()
2935 {
2936 EMACS_INT len = VECSIZE (struct Lisp_Process);
2937 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2938 EMACS_INT i;
2939
2940 for (i = 0; i < len; ++i)
2941 v->contents[i] = Qnil;
2942 v->size = len;
2943
2944 return (struct Lisp_Process *) v;
2945 }
2946
2947
2948 struct Lisp_Vector *
2949 allocate_other_vector (len)
2950 EMACS_INT len;
2951 {
2952 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2953 EMACS_INT i;
2954
2955 for (i = 0; i < len; ++i)
2956 v->contents[i] = Qnil;
2957 v->size = len;
2958
2959 return v;
2960 }
2961
2962
2963 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2964 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2965 See also the function `vector'. */)
2966 (length, init)
2967 register Lisp_Object length, init;
2968 {
2969 Lisp_Object vector;
2970 register EMACS_INT sizei;
2971 register int index;
2972 register struct Lisp_Vector *p;
2973
2974 CHECK_NATNUM (length);
2975 sizei = XFASTINT (length);
2976
2977 p = allocate_vector (sizei);
2978 for (index = 0; index < sizei; index++)
2979 p->contents[index] = init;
2980
2981 XSETVECTOR (vector, p);
2982 return vector;
2983 }
2984
2985
2986 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2987 doc: /* Return a newly created vector with specified arguments as elements.
2988 Any number of arguments, even zero arguments, are allowed.
2989 usage: (vector &rest OBJECTS) */)
2990 (nargs, args)
2991 register int nargs;
2992 Lisp_Object *args;
2993 {
2994 register Lisp_Object len, val;
2995 register int index;
2996 register struct Lisp_Vector *p;
2997
2998 XSETFASTINT (len, nargs);
2999 val = Fmake_vector (len, Qnil);
3000 p = XVECTOR (val);
3001 for (index = 0; index < nargs; index++)
3002 p->contents[index] = args[index];
3003 return val;
3004 }
3005
3006
3007 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3008 doc: /* Create a byte-code object with specified arguments as elements.
3009 The arguments should be the arglist, bytecode-string, constant vector,
3010 stack size, (optional) doc string, and (optional) interactive spec.
3011 The first four arguments are required; at most six have any
3012 significance.
3013 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3014 (nargs, args)
3015 register int nargs;
3016 Lisp_Object *args;
3017 {
3018 register Lisp_Object len, val;
3019 register int index;
3020 register struct Lisp_Vector *p;
3021
3022 XSETFASTINT (len, nargs);
3023 if (!NILP (Vpurify_flag))
3024 val = make_pure_vector ((EMACS_INT) nargs);
3025 else
3026 val = Fmake_vector (len, Qnil);
3027
3028 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3029 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3030 earlier because they produced a raw 8-bit string for byte-code
3031 and now such a byte-code string is loaded as multibyte while
3032 raw 8-bit characters converted to multibyte form. Thus, now we
3033 must convert them back to the original unibyte form. */
3034 args[1] = Fstring_as_unibyte (args[1]);
3035
3036 p = XVECTOR (val);
3037 for (index = 0; index < nargs; index++)
3038 {
3039 if (!NILP (Vpurify_flag))
3040 args[index] = Fpurecopy (args[index]);
3041 p->contents[index] = args[index];
3042 }
3043 XSETCOMPILED (val, p);
3044 return val;
3045 }
3046
3047
3048 \f
3049 /***********************************************************************
3050 Symbol Allocation
3051 ***********************************************************************/
3052
3053 /* Each symbol_block is just under 1020 bytes long, since malloc
3054 really allocates in units of powers of two and uses 4 bytes for its
3055 own overhead. */
3056
3057 #define SYMBOL_BLOCK_SIZE \
3058 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3059
3060 struct symbol_block
3061 {
3062 /* Place `symbols' first, to preserve alignment. */
3063 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3064 struct symbol_block *next;
3065 };
3066
3067 /* Current symbol block and index of first unused Lisp_Symbol
3068 structure in it. */
3069
3070 struct symbol_block *symbol_block;
3071 int symbol_block_index;
3072
3073 /* List of free symbols. */
3074
3075 struct Lisp_Symbol *symbol_free_list;
3076
3077 /* Total number of symbol blocks now in use. */
3078
3079 int n_symbol_blocks;
3080
3081
3082 /* Initialize symbol allocation. */
3083
3084 void
3085 init_symbol ()
3086 {
3087 symbol_block = NULL;
3088 symbol_block_index = SYMBOL_BLOCK_SIZE;
3089 symbol_free_list = 0;
3090 n_symbol_blocks = 0;
3091 }
3092
3093
3094 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3095 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3096 Its value and function definition are void, and its property list is nil. */)
3097 (name)
3098 Lisp_Object name;
3099 {
3100 register Lisp_Object val;
3101 register struct Lisp_Symbol *p;
3102
3103 CHECK_STRING (name);
3104
3105 if (symbol_free_list)
3106 {
3107 XSETSYMBOL (val, symbol_free_list);
3108 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
3109 }
3110 else
3111 {
3112 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3113 {
3114 struct symbol_block *new;
3115 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3116 MEM_TYPE_SYMBOL);
3117 new->next = symbol_block;
3118 symbol_block = new;
3119 symbol_block_index = 0;
3120 n_symbol_blocks++;
3121 }
3122 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3123 symbol_block_index++;
3124 }
3125
3126 p = XSYMBOL (val);
3127 p->xname = name;
3128 p->plist = Qnil;
3129 p->value = Qunbound;
3130 p->function = Qunbound;
3131 p->next = NULL;
3132 p->gcmarkbit = 0;
3133 p->interned = SYMBOL_UNINTERNED;
3134 p->constant = 0;
3135 p->indirect_variable = 0;
3136 consing_since_gc += sizeof (struct Lisp_Symbol);
3137 symbols_consed++;
3138 return val;
3139 }
3140
3141
3142 \f
3143 /***********************************************************************
3144 Marker (Misc) Allocation
3145 ***********************************************************************/
3146
3147 /* Allocation of markers and other objects that share that structure.
3148 Works like allocation of conses. */
3149
3150 #define MARKER_BLOCK_SIZE \
3151 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3152
3153 struct marker_block
3154 {
3155 /* Place `markers' first, to preserve alignment. */
3156 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3157 struct marker_block *next;
3158 };
3159
3160 struct marker_block *marker_block;
3161 int marker_block_index;
3162
3163 union Lisp_Misc *marker_free_list;
3164
3165 /* Total number of marker blocks now in use. */
3166
3167 int n_marker_blocks;
3168
3169 void
3170 init_marker ()
3171 {
3172 marker_block = NULL;
3173 marker_block_index = MARKER_BLOCK_SIZE;
3174 marker_free_list = 0;
3175 n_marker_blocks = 0;
3176 }
3177
3178 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3179
3180 Lisp_Object
3181 allocate_misc ()
3182 {
3183 Lisp_Object val;
3184
3185 if (marker_free_list)
3186 {
3187 XSETMISC (val, marker_free_list);
3188 marker_free_list = marker_free_list->u_free.chain;
3189 }
3190 else
3191 {
3192 if (marker_block_index == MARKER_BLOCK_SIZE)
3193 {
3194 struct marker_block *new;
3195 new = (struct marker_block *) lisp_malloc (sizeof *new,
3196 MEM_TYPE_MISC);
3197 new->next = marker_block;
3198 marker_block = new;
3199 marker_block_index = 0;
3200 n_marker_blocks++;
3201 total_free_markers += MARKER_BLOCK_SIZE;
3202 }
3203 XSETMISC (val, &marker_block->markers[marker_block_index]);
3204 marker_block_index++;
3205 }
3206
3207 --total_free_markers;
3208 consing_since_gc += sizeof (union Lisp_Misc);
3209 misc_objects_consed++;
3210 XMARKER (val)->gcmarkbit = 0;
3211 return val;
3212 }
3213
3214 /* Free a Lisp_Misc object */
3215
3216 void
3217 free_misc (misc)
3218 Lisp_Object misc;
3219 {
3220 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
3221 XMISC (misc)->u_free.chain = marker_free_list;
3222 marker_free_list = XMISC (misc);
3223
3224 total_free_markers++;
3225 }
3226
3227 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3228 INTEGER. This is used to package C values to call record_unwind_protect.
3229 The unwind function can get the C values back using XSAVE_VALUE. */
3230
3231 Lisp_Object
3232 make_save_value (pointer, integer)
3233 void *pointer;
3234 int integer;
3235 {
3236 register Lisp_Object val;
3237 register struct Lisp_Save_Value *p;
3238
3239 val = allocate_misc ();
3240 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3241 p = XSAVE_VALUE (val);
3242 p->pointer = pointer;
3243 p->integer = integer;
3244 p->dogc = 0;
3245 return val;
3246 }
3247
3248 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3249 doc: /* Return a newly allocated marker which does not point at any place. */)
3250 ()
3251 {
3252 register Lisp_Object val;
3253 register struct Lisp_Marker *p;
3254
3255 val = allocate_misc ();
3256 XMISCTYPE (val) = Lisp_Misc_Marker;
3257 p = XMARKER (val);
3258 p->buffer = 0;
3259 p->bytepos = 0;
3260 p->charpos = 0;
3261 p->next = NULL;
3262 p->insertion_type = 0;
3263 return val;
3264 }
3265
3266 /* Put MARKER back on the free list after using it temporarily. */
3267
3268 void
3269 free_marker (marker)
3270 Lisp_Object marker;
3271 {
3272 unchain_marker (XMARKER (marker));
3273 free_misc (marker);
3274 }
3275
3276 \f
3277 /* Return a newly created vector or string with specified arguments as
3278 elements. If all the arguments are characters that can fit
3279 in a string of events, make a string; otherwise, make a vector.
3280
3281 Any number of arguments, even zero arguments, are allowed. */
3282
3283 Lisp_Object
3284 make_event_array (nargs, args)
3285 register int nargs;
3286 Lisp_Object *args;
3287 {
3288 int i;
3289
3290 for (i = 0; i < nargs; i++)
3291 /* The things that fit in a string
3292 are characters that are in 0...127,
3293 after discarding the meta bit and all the bits above it. */
3294 if (!INTEGERP (args[i])
3295 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3296 return Fvector (nargs, args);
3297
3298 /* Since the loop exited, we know that all the things in it are
3299 characters, so we can make a string. */
3300 {
3301 Lisp_Object result;
3302
3303 result = Fmake_string (make_number (nargs), make_number (0));
3304 for (i = 0; i < nargs; i++)
3305 {
3306 SSET (result, i, XINT (args[i]));
3307 /* Move the meta bit to the right place for a string char. */
3308 if (XINT (args[i]) & CHAR_META)
3309 SSET (result, i, SREF (result, i) | 0x80);
3310 }
3311
3312 return result;
3313 }
3314 }
3315
3316
3317 \f
3318 /************************************************************************
3319 C Stack Marking
3320 ************************************************************************/
3321
3322 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3323
3324 /* Conservative C stack marking requires a method to identify possibly
3325 live Lisp objects given a pointer value. We do this by keeping
3326 track of blocks of Lisp data that are allocated in a red-black tree
3327 (see also the comment of mem_node which is the type of nodes in
3328 that tree). Function lisp_malloc adds information for an allocated
3329 block to the red-black tree with calls to mem_insert, and function
3330 lisp_free removes it with mem_delete. Functions live_string_p etc
3331 call mem_find to lookup information about a given pointer in the
3332 tree, and use that to determine if the pointer points to a Lisp
3333 object or not. */
3334
3335 /* Initialize this part of alloc.c. */
3336
3337 static void
3338 mem_init ()
3339 {
3340 mem_z.left = mem_z.right = MEM_NIL;
3341 mem_z.parent = NULL;
3342 mem_z.color = MEM_BLACK;
3343 mem_z.start = mem_z.end = NULL;
3344 mem_root = MEM_NIL;
3345 }
3346
3347
3348 /* Value is a pointer to the mem_node containing START. Value is
3349 MEM_NIL if there is no node in the tree containing START. */
3350
3351 static INLINE struct mem_node *
3352 mem_find (start)
3353 void *start;
3354 {
3355 struct mem_node *p;
3356
3357 if (start < min_heap_address || start > max_heap_address)
3358 return MEM_NIL;
3359
3360 /* Make the search always successful to speed up the loop below. */
3361 mem_z.start = start;
3362 mem_z.end = (char *) start + 1;
3363
3364 p = mem_root;
3365 while (start < p->start || start >= p->end)
3366 p = start < p->start ? p->left : p->right;
3367 return p;
3368 }
3369
3370
3371 /* Insert a new node into the tree for a block of memory with start
3372 address START, end address END, and type TYPE. Value is a
3373 pointer to the node that was inserted. */
3374
3375 static struct mem_node *
3376 mem_insert (start, end, type)
3377 void *start, *end;
3378 enum mem_type type;
3379 {
3380 struct mem_node *c, *parent, *x;
3381
3382 if (start < min_heap_address)
3383 min_heap_address = start;
3384 if (end > max_heap_address)
3385 max_heap_address = end;
3386
3387 /* See where in the tree a node for START belongs. In this
3388 particular application, it shouldn't happen that a node is already
3389 present. For debugging purposes, let's check that. */
3390 c = mem_root;
3391 parent = NULL;
3392
3393 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3394
3395 while (c != MEM_NIL)
3396 {
3397 if (start >= c->start && start < c->end)
3398 abort ();
3399 parent = c;
3400 c = start < c->start ? c->left : c->right;
3401 }
3402
3403 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3404
3405 while (c != MEM_NIL)
3406 {
3407 parent = c;
3408 c = start < c->start ? c->left : c->right;
3409 }
3410
3411 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3412
3413 /* Create a new node. */
3414 #ifdef GC_MALLOC_CHECK
3415 x = (struct mem_node *) _malloc_internal (sizeof *x);
3416 if (x == NULL)
3417 abort ();
3418 #else
3419 x = (struct mem_node *) xmalloc (sizeof *x);
3420 #endif
3421 x->start = start;
3422 x->end = end;
3423 x->type = type;
3424 x->parent = parent;
3425 x->left = x->right = MEM_NIL;
3426 x->color = MEM_RED;
3427
3428 /* Insert it as child of PARENT or install it as root. */
3429 if (parent)
3430 {
3431 if (start < parent->start)
3432 parent->left = x;
3433 else
3434 parent->right = x;
3435 }
3436 else
3437 mem_root = x;
3438
3439 /* Re-establish red-black tree properties. */
3440 mem_insert_fixup (x);
3441
3442 return x;
3443 }
3444
3445
3446 /* Re-establish the red-black properties of the tree, and thereby
3447 balance the tree, after node X has been inserted; X is always red. */
3448
3449 static void
3450 mem_insert_fixup (x)
3451 struct mem_node *x;
3452 {
3453 while (x != mem_root && x->parent->color == MEM_RED)
3454 {
3455 /* X is red and its parent is red. This is a violation of
3456 red-black tree property #3. */
3457
3458 if (x->parent == x->parent->parent->left)
3459 {
3460 /* We're on the left side of our grandparent, and Y is our
3461 "uncle". */
3462 struct mem_node *y = x->parent->parent->right;
3463
3464 if (y->color == MEM_RED)
3465 {
3466 /* Uncle and parent are red but should be black because
3467 X is red. Change the colors accordingly and proceed
3468 with the grandparent. */
3469 x->parent->color = MEM_BLACK;
3470 y->color = MEM_BLACK;
3471 x->parent->parent->color = MEM_RED;
3472 x = x->parent->parent;
3473 }
3474 else
3475 {
3476 /* Parent and uncle have different colors; parent is
3477 red, uncle is black. */
3478 if (x == x->parent->right)
3479 {
3480 x = x->parent;
3481 mem_rotate_left (x);
3482 }
3483
3484 x->parent->color = MEM_BLACK;
3485 x->parent->parent->color = MEM_RED;
3486 mem_rotate_right (x->parent->parent);
3487 }
3488 }
3489 else
3490 {
3491 /* This is the symmetrical case of above. */
3492 struct mem_node *y = x->parent->parent->left;
3493
3494 if (y->color == MEM_RED)
3495 {
3496 x->parent->color = MEM_BLACK;
3497 y->color = MEM_BLACK;
3498 x->parent->parent->color = MEM_RED;
3499 x = x->parent->parent;
3500 }
3501 else
3502 {
3503 if (x == x->parent->left)
3504 {
3505 x = x->parent;
3506 mem_rotate_right (x);
3507 }
3508
3509 x->parent->color = MEM_BLACK;
3510 x->parent->parent->color = MEM_RED;
3511 mem_rotate_left (x->parent->parent);
3512 }
3513 }
3514 }
3515
3516 /* The root may have been changed to red due to the algorithm. Set
3517 it to black so that property #5 is satisfied. */
3518 mem_root->color = MEM_BLACK;
3519 }
3520
3521
3522 /* (x) (y)
3523 / \ / \
3524 a (y) ===> (x) c
3525 / \ / \
3526 b c a b */
3527
3528 static void
3529 mem_rotate_left (x)
3530 struct mem_node *x;
3531 {
3532 struct mem_node *y;
3533
3534 /* Turn y's left sub-tree into x's right sub-tree. */
3535 y = x->right;
3536 x->right = y->left;
3537 if (y->left != MEM_NIL)
3538 y->left->parent = x;
3539
3540 /* Y's parent was x's parent. */
3541 if (y != MEM_NIL)
3542 y->parent = x->parent;
3543
3544 /* Get the parent to point to y instead of x. */
3545 if (x->parent)
3546 {
3547 if (x == x->parent->left)
3548 x->parent->left = y;
3549 else
3550 x->parent->right = y;
3551 }
3552 else
3553 mem_root = y;
3554
3555 /* Put x on y's left. */
3556 y->left = x;
3557 if (x != MEM_NIL)
3558 x->parent = y;
3559 }
3560
3561
3562 /* (x) (Y)
3563 / \ / \
3564 (y) c ===> a (x)
3565 / \ / \
3566 a b b c */
3567
3568 static void
3569 mem_rotate_right (x)
3570 struct mem_node *x;
3571 {
3572 struct mem_node *y = x->left;
3573
3574 x->left = y->right;
3575 if (y->right != MEM_NIL)
3576 y->right->parent = x;
3577
3578 if (y != MEM_NIL)
3579 y->parent = x->parent;
3580 if (x->parent)
3581 {
3582 if (x == x->parent->right)
3583 x->parent->right = y;
3584 else
3585 x->parent->left = y;
3586 }
3587 else
3588 mem_root = y;
3589
3590 y->right = x;
3591 if (x != MEM_NIL)
3592 x->parent = y;
3593 }
3594
3595
3596 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3597
3598 static void
3599 mem_delete (z)
3600 struct mem_node *z;
3601 {
3602 struct mem_node *x, *y;
3603
3604 if (!z || z == MEM_NIL)
3605 return;
3606
3607 if (z->left == MEM_NIL || z->right == MEM_NIL)
3608 y = z;
3609 else
3610 {
3611 y = z->right;
3612 while (y->left != MEM_NIL)
3613 y = y->left;
3614 }
3615
3616 if (y->left != MEM_NIL)
3617 x = y->left;
3618 else
3619 x = y->right;
3620
3621 x->parent = y->parent;
3622 if (y->parent)
3623 {
3624 if (y == y->parent->left)
3625 y->parent->left = x;
3626 else
3627 y->parent->right = x;
3628 }
3629 else
3630 mem_root = x;
3631
3632 if (y != z)
3633 {
3634 z->start = y->start;
3635 z->end = y->end;
3636 z->type = y->type;
3637 }
3638
3639 if (y->color == MEM_BLACK)
3640 mem_delete_fixup (x);
3641
3642 #ifdef GC_MALLOC_CHECK
3643 _free_internal (y);
3644 #else
3645 xfree (y);
3646 #endif
3647 }
3648
3649
3650 /* Re-establish the red-black properties of the tree, after a
3651 deletion. */
3652
3653 static void
3654 mem_delete_fixup (x)
3655 struct mem_node *x;
3656 {
3657 while (x != mem_root && x->color == MEM_BLACK)
3658 {
3659 if (x == x->parent->left)
3660 {
3661 struct mem_node *w = x->parent->right;
3662
3663 if (w->color == MEM_RED)
3664 {
3665 w->color = MEM_BLACK;
3666 x->parent->color = MEM_RED;
3667 mem_rotate_left (x->parent);
3668 w = x->parent->right;
3669 }
3670
3671 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3672 {
3673 w->color = MEM_RED;
3674 x = x->parent;
3675 }
3676 else
3677 {
3678 if (w->right->color == MEM_BLACK)
3679 {
3680 w->left->color = MEM_BLACK;
3681 w->color = MEM_RED;
3682 mem_rotate_right (w);
3683 w = x->parent->right;
3684 }
3685 w->color = x->parent->color;
3686 x->parent->color = MEM_BLACK;
3687 w->right->color = MEM_BLACK;
3688 mem_rotate_left (x->parent);
3689 x = mem_root;
3690 }
3691 }
3692 else
3693 {
3694 struct mem_node *w = x->parent->left;
3695
3696 if (w->color == MEM_RED)
3697 {
3698 w->color = MEM_BLACK;
3699 x->parent->color = MEM_RED;
3700 mem_rotate_right (x->parent);
3701 w = x->parent->left;
3702 }
3703
3704 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3705 {
3706 w->color = MEM_RED;
3707 x = x->parent;
3708 }
3709 else
3710 {
3711 if (w->left->color == MEM_BLACK)
3712 {
3713 w->right->color = MEM_BLACK;
3714 w->color = MEM_RED;
3715 mem_rotate_left (w);
3716 w = x->parent->left;
3717 }
3718
3719 w->color = x->parent->color;
3720 x->parent->color = MEM_BLACK;
3721 w->left->color = MEM_BLACK;
3722 mem_rotate_right (x->parent);
3723 x = mem_root;
3724 }
3725 }
3726 }
3727
3728 x->color = MEM_BLACK;
3729 }
3730
3731
3732 /* Value is non-zero if P is a pointer to a live Lisp string on
3733 the heap. M is a pointer to the mem_block for P. */
3734
3735 static INLINE int
3736 live_string_p (m, p)
3737 struct mem_node *m;
3738 void *p;
3739 {
3740 if (m->type == MEM_TYPE_STRING)
3741 {
3742 struct string_block *b = (struct string_block *) m->start;
3743 int offset = (char *) p - (char *) &b->strings[0];
3744
3745 /* P must point to the start of a Lisp_String structure, and it
3746 must not be on the free-list. */
3747 return (offset >= 0
3748 && offset % sizeof b->strings[0] == 0
3749 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3750 && ((struct Lisp_String *) p)->data != NULL);
3751 }
3752 else
3753 return 0;
3754 }
3755
3756
3757 /* Value is non-zero if P is a pointer to a live Lisp cons on
3758 the heap. M is a pointer to the mem_block for P. */
3759
3760 static INLINE int
3761 live_cons_p (m, p)
3762 struct mem_node *m;
3763 void *p;
3764 {
3765 if (m->type == MEM_TYPE_CONS)
3766 {
3767 struct cons_block *b = (struct cons_block *) m->start;
3768 int offset = (char *) p - (char *) &b->conses[0];
3769
3770 /* P must point to the start of a Lisp_Cons, not be
3771 one of the unused cells in the current cons block,
3772 and not be on the free-list. */
3773 return (offset >= 0
3774 && offset % sizeof b->conses[0] == 0
3775 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3776 && (b != cons_block
3777 || offset / sizeof b->conses[0] < cons_block_index)
3778 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3779 }
3780 else
3781 return 0;
3782 }
3783
3784
3785 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3786 the heap. M is a pointer to the mem_block for P. */
3787
3788 static INLINE int
3789 live_symbol_p (m, p)
3790 struct mem_node *m;
3791 void *p;
3792 {
3793 if (m->type == MEM_TYPE_SYMBOL)
3794 {
3795 struct symbol_block *b = (struct symbol_block *) m->start;
3796 int offset = (char *) p - (char *) &b->symbols[0];
3797
3798 /* P must point to the start of a Lisp_Symbol, not be
3799 one of the unused cells in the current symbol block,
3800 and not be on the free-list. */
3801 return (offset >= 0
3802 && offset % sizeof b->symbols[0] == 0
3803 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3804 && (b != symbol_block
3805 || offset / sizeof b->symbols[0] < symbol_block_index)
3806 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3807 }
3808 else
3809 return 0;
3810 }
3811
3812
3813 /* Value is non-zero if P is a pointer to a live Lisp float on
3814 the heap. M is a pointer to the mem_block for P. */
3815
3816 static INLINE int
3817 live_float_p (m, p)
3818 struct mem_node *m;
3819 void *p;
3820 {
3821 if (m->type == MEM_TYPE_FLOAT)
3822 {
3823 struct float_block *b = (struct float_block *) m->start;
3824 int offset = (char *) p - (char *) &b->floats[0];
3825
3826 /* P must point to the start of a Lisp_Float and not be
3827 one of the unused cells in the current float block. */
3828 return (offset >= 0
3829 && offset % sizeof b->floats[0] == 0
3830 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3831 && (b != float_block
3832 || offset / sizeof b->floats[0] < float_block_index));
3833 }
3834 else
3835 return 0;
3836 }
3837
3838
3839 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3840 the heap. M is a pointer to the mem_block for P. */
3841
3842 static INLINE int
3843 live_misc_p (m, p)
3844 struct mem_node *m;
3845 void *p;
3846 {
3847 if (m->type == MEM_TYPE_MISC)
3848 {
3849 struct marker_block *b = (struct marker_block *) m->start;
3850 int offset = (char *) p - (char *) &b->markers[0];
3851
3852 /* P must point to the start of a Lisp_Misc, not be
3853 one of the unused cells in the current misc block,
3854 and not be on the free-list. */
3855 return (offset >= 0
3856 && offset % sizeof b->markers[0] == 0
3857 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3858 && (b != marker_block
3859 || offset / sizeof b->markers[0] < marker_block_index)
3860 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3861 }
3862 else
3863 return 0;
3864 }
3865
3866
3867 /* Value is non-zero if P is a pointer to a live vector-like object.
3868 M is a pointer to the mem_block for P. */
3869
3870 static INLINE int
3871 live_vector_p (m, p)
3872 struct mem_node *m;
3873 void *p;
3874 {
3875 return (p == m->start
3876 && m->type >= MEM_TYPE_VECTOR
3877 && m->type <= MEM_TYPE_WINDOW);
3878 }
3879
3880
3881 /* Value is non-zero if P is a pointer to a live buffer. M is a
3882 pointer to the mem_block for P. */
3883
3884 static INLINE int
3885 live_buffer_p (m, p)
3886 struct mem_node *m;
3887 void *p;
3888 {
3889 /* P must point to the start of the block, and the buffer
3890 must not have been killed. */
3891 return (m->type == MEM_TYPE_BUFFER
3892 && p == m->start
3893 && !NILP (((struct buffer *) p)->name));
3894 }
3895
3896 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3897
3898 #if GC_MARK_STACK
3899
3900 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3901
3902 /* Array of objects that are kept alive because the C stack contains
3903 a pattern that looks like a reference to them . */
3904
3905 #define MAX_ZOMBIES 10
3906 static Lisp_Object zombies[MAX_ZOMBIES];
3907
3908 /* Number of zombie objects. */
3909
3910 static int nzombies;
3911
3912 /* Number of garbage collections. */
3913
3914 static int ngcs;
3915
3916 /* Average percentage of zombies per collection. */
3917
3918 static double avg_zombies;
3919
3920 /* Max. number of live and zombie objects. */
3921
3922 static int max_live, max_zombies;
3923
3924 /* Average number of live objects per GC. */
3925
3926 static double avg_live;
3927
3928 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3929 doc: /* Show information about live and zombie objects. */)
3930 ()
3931 {
3932 Lisp_Object args[8], zombie_list = Qnil;
3933 int i;
3934 for (i = 0; i < nzombies; i++)
3935 zombie_list = Fcons (zombies[i], zombie_list);
3936 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3937 args[1] = make_number (ngcs);
3938 args[2] = make_float (avg_live);
3939 args[3] = make_float (avg_zombies);
3940 args[4] = make_float (avg_zombies / avg_live / 100);
3941 args[5] = make_number (max_live);
3942 args[6] = make_number (max_zombies);
3943 args[7] = zombie_list;
3944 return Fmessage (8, args);
3945 }
3946
3947 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3948
3949
3950 /* Mark OBJ if we can prove it's a Lisp_Object. */
3951
3952 static INLINE void
3953 mark_maybe_object (obj)
3954 Lisp_Object obj;
3955 {
3956 void *po = (void *) XPNTR (obj);
3957 struct mem_node *m = mem_find (po);
3958
3959 if (m != MEM_NIL)
3960 {
3961 int mark_p = 0;
3962
3963 switch (XGCTYPE (obj))
3964 {
3965 case Lisp_String:
3966 mark_p = (live_string_p (m, po)
3967 && !STRING_MARKED_P ((struct Lisp_String *) po));
3968 break;
3969
3970 case Lisp_Cons:
3971 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3972 break;
3973
3974 case Lisp_Symbol:
3975 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3976 break;
3977
3978 case Lisp_Float:
3979 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3980 break;
3981
3982 case Lisp_Vectorlike:
3983 /* Note: can't check GC_BUFFERP before we know it's a
3984 buffer because checking that dereferences the pointer
3985 PO which might point anywhere. */
3986 if (live_vector_p (m, po))
3987 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3988 else if (live_buffer_p (m, po))
3989 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3990 break;
3991
3992 case Lisp_Misc:
3993 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
3994 break;
3995
3996 case Lisp_Int:
3997 case Lisp_Type_Limit:
3998 break;
3999 }
4000
4001 if (mark_p)
4002 {
4003 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4004 if (nzombies < MAX_ZOMBIES)
4005 zombies[nzombies] = obj;
4006 ++nzombies;
4007 #endif
4008 mark_object (obj);
4009 }
4010 }
4011 }
4012
4013
4014 /* If P points to Lisp data, mark that as live if it isn't already
4015 marked. */
4016
4017 static INLINE void
4018 mark_maybe_pointer (p)
4019 void *p;
4020 {
4021 struct mem_node *m;
4022
4023 /* Quickly rule out some values which can't point to Lisp data. We
4024 assume that Lisp data is aligned on even addresses. */
4025 if ((EMACS_INT) p & 1)
4026 return;
4027
4028 m = mem_find (p);
4029 if (m != MEM_NIL)
4030 {
4031 Lisp_Object obj = Qnil;
4032
4033 switch (m->type)
4034 {
4035 case MEM_TYPE_NON_LISP:
4036 /* Nothing to do; not a pointer to Lisp memory. */
4037 break;
4038
4039 case MEM_TYPE_BUFFER:
4040 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4041 XSETVECTOR (obj, p);
4042 break;
4043
4044 case MEM_TYPE_CONS:
4045 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4046 XSETCONS (obj, p);
4047 break;
4048
4049 case MEM_TYPE_STRING:
4050 if (live_string_p (m, p)
4051 && !STRING_MARKED_P ((struct Lisp_String *) p))
4052 XSETSTRING (obj, p);
4053 break;
4054
4055 case MEM_TYPE_MISC:
4056 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4057 XSETMISC (obj, p);
4058 break;
4059
4060 case MEM_TYPE_SYMBOL:
4061 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4062 XSETSYMBOL (obj, p);
4063 break;
4064
4065 case MEM_TYPE_FLOAT:
4066 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4067 XSETFLOAT (obj, p);
4068 break;
4069
4070 case MEM_TYPE_VECTOR:
4071 case MEM_TYPE_PROCESS:
4072 case MEM_TYPE_HASH_TABLE:
4073 case MEM_TYPE_FRAME:
4074 case MEM_TYPE_WINDOW:
4075 if (live_vector_p (m, p))
4076 {
4077 Lisp_Object tem;
4078 XSETVECTOR (tem, p);
4079 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4080 obj = tem;
4081 }
4082 break;
4083
4084 default:
4085 abort ();
4086 }
4087
4088 if (!GC_NILP (obj))
4089 mark_object (obj);
4090 }
4091 }
4092
4093
4094 /* Mark Lisp objects referenced from the address range START..END. */
4095
4096 static void
4097 mark_memory (start, end)
4098 void *start, *end;
4099 {
4100 Lisp_Object *p;
4101 void **pp;
4102
4103 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4104 nzombies = 0;
4105 #endif
4106
4107 /* Make START the pointer to the start of the memory region,
4108 if it isn't already. */
4109 if (end < start)
4110 {
4111 void *tem = start;
4112 start = end;
4113 end = tem;
4114 }
4115
4116 /* Mark Lisp_Objects. */
4117 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
4118 mark_maybe_object (*p);
4119
4120 /* Mark Lisp data pointed to. This is necessary because, in some
4121 situations, the C compiler optimizes Lisp objects away, so that
4122 only a pointer to them remains. Example:
4123
4124 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4125 ()
4126 {
4127 Lisp_Object obj = build_string ("test");
4128 struct Lisp_String *s = XSTRING (obj);
4129 Fgarbage_collect ();
4130 fprintf (stderr, "test `%s'\n", s->data);
4131 return Qnil;
4132 }
4133
4134 Here, `obj' isn't really used, and the compiler optimizes it
4135 away. The only reference to the life string is through the
4136 pointer `s'. */
4137
4138 for (pp = (void **) start; (void *) pp < end; ++pp)
4139 mark_maybe_pointer (*pp);
4140 }
4141
4142 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4143 the GCC system configuration. In gcc 3.2, the only systems for
4144 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4145 by others?) and ns32k-pc532-min. */
4146
4147 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4148
4149 static int setjmp_tested_p, longjmps_done;
4150
4151 #define SETJMP_WILL_LIKELY_WORK "\
4152 \n\
4153 Emacs garbage collector has been changed to use conservative stack\n\
4154 marking. Emacs has determined that the method it uses to do the\n\
4155 marking will likely work on your system, but this isn't sure.\n\
4156 \n\
4157 If you are a system-programmer, or can get the help of a local wizard\n\
4158 who is, please take a look at the function mark_stack in alloc.c, and\n\
4159 verify that the methods used are appropriate for your system.\n\
4160 \n\
4161 Please mail the result to <emacs-devel@gnu.org>.\n\
4162 "
4163
4164 #define SETJMP_WILL_NOT_WORK "\
4165 \n\
4166 Emacs garbage collector has been changed to use conservative stack\n\
4167 marking. Emacs has determined that the default method it uses to do the\n\
4168 marking will not work on your system. We will need a system-dependent\n\
4169 solution for your system.\n\
4170 \n\
4171 Please take a look at the function mark_stack in alloc.c, and\n\
4172 try to find a way to make it work on your system.\n\
4173 \n\
4174 Note that you may get false negatives, depending on the compiler.\n\
4175 In particular, you need to use -O with GCC for this test.\n\
4176 \n\
4177 Please mail the result to <emacs-devel@gnu.org>.\n\
4178 "
4179
4180
4181 /* Perform a quick check if it looks like setjmp saves registers in a
4182 jmp_buf. Print a message to stderr saying so. When this test
4183 succeeds, this is _not_ a proof that setjmp is sufficient for
4184 conservative stack marking. Only the sources or a disassembly
4185 can prove that. */
4186
4187 static void
4188 test_setjmp ()
4189 {
4190 char buf[10];
4191 register int x;
4192 jmp_buf jbuf;
4193 int result = 0;
4194
4195 /* Arrange for X to be put in a register. */
4196 sprintf (buf, "1");
4197 x = strlen (buf);
4198 x = 2 * x - 1;
4199
4200 setjmp (jbuf);
4201 if (longjmps_done == 1)
4202 {
4203 /* Came here after the longjmp at the end of the function.
4204
4205 If x == 1, the longjmp has restored the register to its
4206 value before the setjmp, and we can hope that setjmp
4207 saves all such registers in the jmp_buf, although that
4208 isn't sure.
4209
4210 For other values of X, either something really strange is
4211 taking place, or the setjmp just didn't save the register. */
4212
4213 if (x == 1)
4214 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4215 else
4216 {
4217 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4218 exit (1);
4219 }
4220 }
4221
4222 ++longjmps_done;
4223 x = 2;
4224 if (longjmps_done == 1)
4225 longjmp (jbuf, 1);
4226 }
4227
4228 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4229
4230
4231 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4232
4233 /* Abort if anything GCPRO'd doesn't survive the GC. */
4234
4235 static void
4236 check_gcpros ()
4237 {
4238 struct gcpro *p;
4239 int i;
4240
4241 for (p = gcprolist; p; p = p->next)
4242 for (i = 0; i < p->nvars; ++i)
4243 if (!survives_gc_p (p->var[i]))
4244 /* FIXME: It's not necessarily a bug. It might just be that the
4245 GCPRO is unnecessary or should release the object sooner. */
4246 abort ();
4247 }
4248
4249 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4250
4251 static void
4252 dump_zombies ()
4253 {
4254 int i;
4255
4256 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4257 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4258 {
4259 fprintf (stderr, " %d = ", i);
4260 debug_print (zombies[i]);
4261 }
4262 }
4263
4264 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4265
4266
4267 /* Mark live Lisp objects on the C stack.
4268
4269 There are several system-dependent problems to consider when
4270 porting this to new architectures:
4271
4272 Processor Registers
4273
4274 We have to mark Lisp objects in CPU registers that can hold local
4275 variables or are used to pass parameters.
4276
4277 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4278 something that either saves relevant registers on the stack, or
4279 calls mark_maybe_object passing it each register's contents.
4280
4281 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4282 implementation assumes that calling setjmp saves registers we need
4283 to see in a jmp_buf which itself lies on the stack. This doesn't
4284 have to be true! It must be verified for each system, possibly
4285 by taking a look at the source code of setjmp.
4286
4287 Stack Layout
4288
4289 Architectures differ in the way their processor stack is organized.
4290 For example, the stack might look like this
4291
4292 +----------------+
4293 | Lisp_Object | size = 4
4294 +----------------+
4295 | something else | size = 2
4296 +----------------+
4297 | Lisp_Object | size = 4
4298 +----------------+
4299 | ... |
4300
4301 In such a case, not every Lisp_Object will be aligned equally. To
4302 find all Lisp_Object on the stack it won't be sufficient to walk
4303 the stack in steps of 4 bytes. Instead, two passes will be
4304 necessary, one starting at the start of the stack, and a second
4305 pass starting at the start of the stack + 2. Likewise, if the
4306 minimal alignment of Lisp_Objects on the stack is 1, four passes
4307 would be necessary, each one starting with one byte more offset
4308 from the stack start.
4309
4310 The current code assumes by default that Lisp_Objects are aligned
4311 equally on the stack. */
4312
4313 static void
4314 mark_stack ()
4315 {
4316 int i;
4317 jmp_buf j;
4318 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4319 void *end;
4320
4321 /* This trick flushes the register windows so that all the state of
4322 the process is contained in the stack. */
4323 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4324 needed on ia64 too. See mach_dep.c, where it also says inline
4325 assembler doesn't work with relevant proprietary compilers. */
4326 #ifdef sparc
4327 asm ("ta 3");
4328 #endif
4329
4330 /* Save registers that we need to see on the stack. We need to see
4331 registers used to hold register variables and registers used to
4332 pass parameters. */
4333 #ifdef GC_SAVE_REGISTERS_ON_STACK
4334 GC_SAVE_REGISTERS_ON_STACK (end);
4335 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4336
4337 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4338 setjmp will definitely work, test it
4339 and print a message with the result
4340 of the test. */
4341 if (!setjmp_tested_p)
4342 {
4343 setjmp_tested_p = 1;
4344 test_setjmp ();
4345 }
4346 #endif /* GC_SETJMP_WORKS */
4347
4348 setjmp (j);
4349 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4350 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4351
4352 /* This assumes that the stack is a contiguous region in memory. If
4353 that's not the case, something has to be done here to iterate
4354 over the stack segments. */
4355 #ifndef GC_LISP_OBJECT_ALIGNMENT
4356 #ifdef __GNUC__
4357 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4358 #else
4359 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4360 #endif
4361 #endif
4362 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4363 mark_memory ((char *) stack_base + i, end);
4364 /* Allow for marking a secondary stack, like the register stack on the
4365 ia64. */
4366 #ifdef GC_MARK_SECONDARY_STACK
4367 GC_MARK_SECONDARY_STACK ();
4368 #endif
4369
4370 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4371 check_gcpros ();
4372 #endif
4373 }
4374
4375
4376 #endif /* GC_MARK_STACK != 0 */
4377
4378
4379 \f
4380 /***********************************************************************
4381 Pure Storage Management
4382 ***********************************************************************/
4383
4384 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4385 pointer to it. TYPE is the Lisp type for which the memory is
4386 allocated. TYPE < 0 means it's not used for a Lisp object.
4387
4388 If store_pure_type_info is set and TYPE is >= 0, the type of
4389 the allocated object is recorded in pure_types. */
4390
4391 static POINTER_TYPE *
4392 pure_alloc (size, type)
4393 size_t size;
4394 int type;
4395 {
4396 POINTER_TYPE *result;
4397 #ifdef USE_LSB_TAG
4398 size_t alignment = (1 << GCTYPEBITS);
4399 #else
4400 size_t alignment = sizeof (EMACS_INT);
4401
4402 /* Give Lisp_Floats an extra alignment. */
4403 if (type == Lisp_Float)
4404 {
4405 #if defined __GNUC__ && __GNUC__ >= 2
4406 alignment = __alignof (struct Lisp_Float);
4407 #else
4408 alignment = sizeof (struct Lisp_Float);
4409 #endif
4410 }
4411 #endif
4412
4413 again:
4414 result = ALIGN (purebeg + pure_bytes_used, alignment);
4415 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4416
4417 if (pure_bytes_used <= pure_size)
4418 return result;
4419
4420 /* Don't allocate a large amount here,
4421 because it might get mmap'd and then its address
4422 might not be usable. */
4423 purebeg = (char *) xmalloc (10000);
4424 pure_size = 10000;
4425 pure_bytes_used_before_overflow += pure_bytes_used - size;
4426 pure_bytes_used = 0;
4427 goto again;
4428 }
4429
4430
4431 /* Print a warning if PURESIZE is too small. */
4432
4433 void
4434 check_pure_size ()
4435 {
4436 if (pure_bytes_used_before_overflow)
4437 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4438 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4439 }
4440
4441
4442 /* Return a string allocated in pure space. DATA is a buffer holding
4443 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4444 non-zero means make the result string multibyte.
4445
4446 Must get an error if pure storage is full, since if it cannot hold
4447 a large string it may be able to hold conses that point to that
4448 string; then the string is not protected from gc. */
4449
4450 Lisp_Object
4451 make_pure_string (data, nchars, nbytes, multibyte)
4452 char *data;
4453 int nchars, nbytes;
4454 int multibyte;
4455 {
4456 Lisp_Object string;
4457 struct Lisp_String *s;
4458
4459 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4460 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4461 s->size = nchars;
4462 s->size_byte = multibyte ? nbytes : -1;
4463 bcopy (data, s->data, nbytes);
4464 s->data[nbytes] = '\0';
4465 s->intervals = NULL_INTERVAL;
4466 XSETSTRING (string, s);
4467 return string;
4468 }
4469
4470
4471 /* Return a cons allocated from pure space. Give it pure copies
4472 of CAR as car and CDR as cdr. */
4473
4474 Lisp_Object
4475 pure_cons (car, cdr)
4476 Lisp_Object car, cdr;
4477 {
4478 register Lisp_Object new;
4479 struct Lisp_Cons *p;
4480
4481 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4482 XSETCONS (new, p);
4483 XSETCAR (new, Fpurecopy (car));
4484 XSETCDR (new, Fpurecopy (cdr));
4485 return new;
4486 }
4487
4488
4489 /* Value is a float object with value NUM allocated from pure space. */
4490
4491 Lisp_Object
4492 make_pure_float (num)
4493 double num;
4494 {
4495 register Lisp_Object new;
4496 struct Lisp_Float *p;
4497
4498 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4499 XSETFLOAT (new, p);
4500 XFLOAT_DATA (new) = num;
4501 return new;
4502 }
4503
4504
4505 /* Return a vector with room for LEN Lisp_Objects allocated from
4506 pure space. */
4507
4508 Lisp_Object
4509 make_pure_vector (len)
4510 EMACS_INT len;
4511 {
4512 Lisp_Object new;
4513 struct Lisp_Vector *p;
4514 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4515
4516 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4517 XSETVECTOR (new, p);
4518 XVECTOR (new)->size = len;
4519 return new;
4520 }
4521
4522
4523 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4524 doc: /* Make a copy of OBJECT in pure storage.
4525 Recursively copies contents of vectors and cons cells.
4526 Does not copy symbols. Copies strings without text properties. */)
4527 (obj)
4528 register Lisp_Object obj;
4529 {
4530 if (NILP (Vpurify_flag))
4531 return obj;
4532
4533 if (PURE_POINTER_P (XPNTR (obj)))
4534 return obj;
4535
4536 if (CONSP (obj))
4537 return pure_cons (XCAR (obj), XCDR (obj));
4538 else if (FLOATP (obj))
4539 return make_pure_float (XFLOAT_DATA (obj));
4540 else if (STRINGP (obj))
4541 return make_pure_string (SDATA (obj), SCHARS (obj),
4542 SBYTES (obj),
4543 STRING_MULTIBYTE (obj));
4544 else if (COMPILEDP (obj) || VECTORP (obj))
4545 {
4546 register struct Lisp_Vector *vec;
4547 register int i;
4548 EMACS_INT size;
4549
4550 size = XVECTOR (obj)->size;
4551 if (size & PSEUDOVECTOR_FLAG)
4552 size &= PSEUDOVECTOR_SIZE_MASK;
4553 vec = XVECTOR (make_pure_vector (size));
4554 for (i = 0; i < size; i++)
4555 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4556 if (COMPILEDP (obj))
4557 XSETCOMPILED (obj, vec);
4558 else
4559 XSETVECTOR (obj, vec);
4560 return obj;
4561 }
4562 else if (MARKERP (obj))
4563 error ("Attempt to copy a marker to pure storage");
4564
4565 return obj;
4566 }
4567
4568
4569 \f
4570 /***********************************************************************
4571 Protection from GC
4572 ***********************************************************************/
4573
4574 /* Put an entry in staticvec, pointing at the variable with address
4575 VARADDRESS. */
4576
4577 void
4578 staticpro (varaddress)
4579 Lisp_Object *varaddress;
4580 {
4581 staticvec[staticidx++] = varaddress;
4582 if (staticidx >= NSTATICS)
4583 abort ();
4584 }
4585
4586 struct catchtag
4587 {
4588 Lisp_Object tag;
4589 Lisp_Object val;
4590 struct catchtag *next;
4591 };
4592
4593 \f
4594 /***********************************************************************
4595 Protection from GC
4596 ***********************************************************************/
4597
4598 /* Temporarily prevent garbage collection. */
4599
4600 int
4601 inhibit_garbage_collection ()
4602 {
4603 int count = SPECPDL_INDEX ();
4604 int nbits = min (VALBITS, BITS_PER_INT);
4605
4606 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4607 return count;
4608 }
4609
4610
4611 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4612 doc: /* Reclaim storage for Lisp objects no longer needed.
4613 Garbage collection happens automatically if you cons more than
4614 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4615 `garbage-collect' normally returns a list with info on amount of space in use:
4616 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4617 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4618 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4619 (USED-STRINGS . FREE-STRINGS))
4620 However, if there was overflow in pure space, `garbage-collect'
4621 returns nil, because real GC can't be done. */)
4622 ()
4623 {
4624 register struct specbinding *bind;
4625 struct catchtag *catch;
4626 struct handler *handler;
4627 char stack_top_variable;
4628 register int i;
4629 int message_p;
4630 Lisp_Object total[8];
4631 int count = SPECPDL_INDEX ();
4632 EMACS_TIME t1, t2, t3;
4633
4634 if (abort_on_gc)
4635 abort ();
4636
4637 /* Can't GC if pure storage overflowed because we can't determine
4638 if something is a pure object or not. */
4639 if (pure_bytes_used_before_overflow)
4640 return Qnil;
4641
4642 /* Don't keep undo information around forever.
4643 Do this early on, so it is no problem if the user quits. */
4644 {
4645 register struct buffer *nextb = all_buffers;
4646
4647 while (nextb)
4648 {
4649 /* If a buffer's undo list is Qt, that means that undo is
4650 turned off in that buffer. Calling truncate_undo_list on
4651 Qt tends to return NULL, which effectively turns undo back on.
4652 So don't call truncate_undo_list if undo_list is Qt. */
4653 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
4654 truncate_undo_list (nextb);
4655
4656 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4657 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4658 {
4659 /* If a buffer's gap size is more than 10% of the buffer
4660 size, or larger than 2000 bytes, then shrink it
4661 accordingly. Keep a minimum size of 20 bytes. */
4662 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4663
4664 if (nextb->text->gap_size > size)
4665 {
4666 struct buffer *save_current = current_buffer;
4667 current_buffer = nextb;
4668 make_gap (-(nextb->text->gap_size - size));
4669 current_buffer = save_current;
4670 }
4671 }
4672
4673 nextb = nextb->next;
4674 }
4675 }
4676
4677 EMACS_GET_TIME (t1);
4678
4679 /* In case user calls debug_print during GC,
4680 don't let that cause a recursive GC. */
4681 consing_since_gc = 0;
4682
4683 /* Save what's currently displayed in the echo area. */
4684 message_p = push_message ();
4685 record_unwind_protect (pop_message_unwind, Qnil);
4686
4687 /* Save a copy of the contents of the stack, for debugging. */
4688 #if MAX_SAVE_STACK > 0
4689 if (NILP (Vpurify_flag))
4690 {
4691 i = &stack_top_variable - stack_bottom;
4692 if (i < 0) i = -i;
4693 if (i < MAX_SAVE_STACK)
4694 {
4695 if (stack_copy == 0)
4696 stack_copy = (char *) xmalloc (stack_copy_size = i);
4697 else if (stack_copy_size < i)
4698 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4699 if (stack_copy)
4700 {
4701 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4702 bcopy (stack_bottom, stack_copy, i);
4703 else
4704 bcopy (&stack_top_variable, stack_copy, i);
4705 }
4706 }
4707 }
4708 #endif /* MAX_SAVE_STACK > 0 */
4709
4710 if (garbage_collection_messages)
4711 message1_nolog ("Garbage collecting...");
4712
4713 BLOCK_INPUT;
4714
4715 shrink_regexp_cache ();
4716
4717 gc_in_progress = 1;
4718
4719 /* clear_marks (); */
4720
4721 /* Mark all the special slots that serve as the roots of accessibility. */
4722
4723 for (i = 0; i < staticidx; i++)
4724 mark_object (*staticvec[i]);
4725
4726 for (bind = specpdl; bind != specpdl_ptr; bind++)
4727 {
4728 mark_object (bind->symbol);
4729 mark_object (bind->old_value);
4730 }
4731 mark_kboards ();
4732
4733 #ifdef USE_GTK
4734 {
4735 extern void xg_mark_data ();
4736 xg_mark_data ();
4737 }
4738 #endif
4739
4740 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4741 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4742 mark_stack ();
4743 #else
4744 {
4745 register struct gcpro *tail;
4746 for (tail = gcprolist; tail; tail = tail->next)
4747 for (i = 0; i < tail->nvars; i++)
4748 mark_object (tail->var[i]);
4749 }
4750 #endif
4751
4752 mark_byte_stack ();
4753 for (catch = catchlist; catch; catch = catch->next)
4754 {
4755 mark_object (catch->tag);
4756 mark_object (catch->val);
4757 }
4758 for (handler = handlerlist; handler; handler = handler->next)
4759 {
4760 mark_object (handler->handler);
4761 mark_object (handler->var);
4762 }
4763 mark_backtrace ();
4764
4765 #ifdef HAVE_WINDOW_SYSTEM
4766 mark_fringe_data ();
4767 #endif
4768
4769 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4770 mark_stack ();
4771 #endif
4772
4773 /* Everything is now marked, except for the things that require special
4774 finalization, i.e. the undo_list.
4775 Look thru every buffer's undo list
4776 for elements that update markers that were not marked,
4777 and delete them. */
4778 {
4779 register struct buffer *nextb = all_buffers;
4780
4781 while (nextb)
4782 {
4783 /* If a buffer's undo list is Qt, that means that undo is
4784 turned off in that buffer. Calling truncate_undo_list on
4785 Qt tends to return NULL, which effectively turns undo back on.
4786 So don't call truncate_undo_list if undo_list is Qt. */
4787 if (! EQ (nextb->undo_list, Qt))
4788 {
4789 Lisp_Object tail, prev;
4790 tail = nextb->undo_list;
4791 prev = Qnil;
4792 while (CONSP (tail))
4793 {
4794 if (GC_CONSP (XCAR (tail))
4795 && GC_MARKERP (XCAR (XCAR (tail)))
4796 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4797 {
4798 if (NILP (prev))
4799 nextb->undo_list = tail = XCDR (tail);
4800 else
4801 {
4802 tail = XCDR (tail);
4803 XSETCDR (prev, tail);
4804 }
4805 }
4806 else
4807 {
4808 prev = tail;
4809 tail = XCDR (tail);
4810 }
4811 }
4812 }
4813 /* Now that we have stripped the elements that need not be in the
4814 undo_list any more, we can finally mark the list. */
4815 mark_object (nextb->undo_list);
4816
4817 nextb = nextb->next;
4818 }
4819 }
4820
4821 gc_sweep ();
4822
4823 /* Clear the mark bits that we set in certain root slots. */
4824
4825 unmark_byte_stack ();
4826 VECTOR_UNMARK (&buffer_defaults);
4827 VECTOR_UNMARK (&buffer_local_symbols);
4828
4829 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4830 dump_zombies ();
4831 #endif
4832
4833 UNBLOCK_INPUT;
4834
4835 /* clear_marks (); */
4836 gc_in_progress = 0;
4837
4838 consing_since_gc = 0;
4839 if (gc_cons_threshold < 10000)
4840 gc_cons_threshold = 10000;
4841
4842 if (garbage_collection_messages)
4843 {
4844 if (message_p || minibuf_level > 0)
4845 restore_message ();
4846 else
4847 message1_nolog ("Garbage collecting...done");
4848 }
4849
4850 unbind_to (count, Qnil);
4851
4852 total[0] = Fcons (make_number (total_conses),
4853 make_number (total_free_conses));
4854 total[1] = Fcons (make_number (total_symbols),
4855 make_number (total_free_symbols));
4856 total[2] = Fcons (make_number (total_markers),
4857 make_number (total_free_markers));
4858 total[3] = make_number (total_string_size);
4859 total[4] = make_number (total_vector_size);
4860 total[5] = Fcons (make_number (total_floats),
4861 make_number (total_free_floats));
4862 total[6] = Fcons (make_number (total_intervals),
4863 make_number (total_free_intervals));
4864 total[7] = Fcons (make_number (total_strings),
4865 make_number (total_free_strings));
4866
4867 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4868 {
4869 /* Compute average percentage of zombies. */
4870 double nlive = 0;
4871
4872 for (i = 0; i < 7; ++i)
4873 if (CONSP (total[i]))
4874 nlive += XFASTINT (XCAR (total[i]));
4875
4876 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4877 max_live = max (nlive, max_live);
4878 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4879 max_zombies = max (nzombies, max_zombies);
4880 ++ngcs;
4881 }
4882 #endif
4883
4884 if (!NILP (Vpost_gc_hook))
4885 {
4886 int count = inhibit_garbage_collection ();
4887 safe_run_hooks (Qpost_gc_hook);
4888 unbind_to (count, Qnil);
4889 }
4890
4891 /* Accumulate statistics. */
4892 EMACS_GET_TIME (t2);
4893 EMACS_SUB_TIME (t3, t2, t1);
4894 if (FLOATP (Vgc_elapsed))
4895 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4896 EMACS_SECS (t3) +
4897 EMACS_USECS (t3) * 1.0e-6);
4898 gcs_done++;
4899
4900 return Flist (sizeof total / sizeof *total, total);
4901 }
4902
4903
4904 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4905 only interesting objects referenced from glyphs are strings. */
4906
4907 static void
4908 mark_glyph_matrix (matrix)
4909 struct glyph_matrix *matrix;
4910 {
4911 struct glyph_row *row = matrix->rows;
4912 struct glyph_row *end = row + matrix->nrows;
4913
4914 for (; row < end; ++row)
4915 if (row->enabled_p)
4916 {
4917 int area;
4918 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4919 {
4920 struct glyph *glyph = row->glyphs[area];
4921 struct glyph *end_glyph = glyph + row->used[area];
4922
4923 for (; glyph < end_glyph; ++glyph)
4924 if (GC_STRINGP (glyph->object)
4925 && !STRING_MARKED_P (XSTRING (glyph->object)))
4926 mark_object (glyph->object);
4927 }
4928 }
4929 }
4930
4931
4932 /* Mark Lisp faces in the face cache C. */
4933
4934 static void
4935 mark_face_cache (c)
4936 struct face_cache *c;
4937 {
4938 if (c)
4939 {
4940 int i, j;
4941 for (i = 0; i < c->used; ++i)
4942 {
4943 struct face *face = FACE_FROM_ID (c->f, i);
4944
4945 if (face)
4946 {
4947 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4948 mark_object (face->lface[j]);
4949 }
4950 }
4951 }
4952 }
4953
4954
4955 #ifdef HAVE_WINDOW_SYSTEM
4956
4957 /* Mark Lisp objects in image IMG. */
4958
4959 static void
4960 mark_image (img)
4961 struct image *img;
4962 {
4963 mark_object (img->spec);
4964
4965 if (!NILP (img->data.lisp_val))
4966 mark_object (img->data.lisp_val);
4967 }
4968
4969
4970 /* Mark Lisp objects in image cache of frame F. It's done this way so
4971 that we don't have to include xterm.h here. */
4972
4973 static void
4974 mark_image_cache (f)
4975 struct frame *f;
4976 {
4977 forall_images_in_image_cache (f, mark_image);
4978 }
4979
4980 #endif /* HAVE_X_WINDOWS */
4981
4982
4983 \f
4984 /* Mark reference to a Lisp_Object.
4985 If the object referred to has not been seen yet, recursively mark
4986 all the references contained in it. */
4987
4988 #define LAST_MARKED_SIZE 500
4989 Lisp_Object last_marked[LAST_MARKED_SIZE];
4990 int last_marked_index;
4991
4992 /* For debugging--call abort when we cdr down this many
4993 links of a list, in mark_object. In debugging,
4994 the call to abort will hit a breakpoint.
4995 Normally this is zero and the check never goes off. */
4996 int mark_object_loop_halt;
4997
4998 void
4999 mark_object (arg)
5000 Lisp_Object arg;
5001 {
5002 register Lisp_Object obj = arg;
5003 #ifdef GC_CHECK_MARKED_OBJECTS
5004 void *po;
5005 struct mem_node *m;
5006 #endif
5007 int cdr_count = 0;
5008
5009 loop:
5010
5011 if (PURE_POINTER_P (XPNTR (obj)))
5012 return;
5013
5014 last_marked[last_marked_index++] = obj;
5015 if (last_marked_index == LAST_MARKED_SIZE)
5016 last_marked_index = 0;
5017
5018 /* Perform some sanity checks on the objects marked here. Abort if
5019 we encounter an object we know is bogus. This increases GC time
5020 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5021 #ifdef GC_CHECK_MARKED_OBJECTS
5022
5023 po = (void *) XPNTR (obj);
5024
5025 /* Check that the object pointed to by PO is known to be a Lisp
5026 structure allocated from the heap. */
5027 #define CHECK_ALLOCATED() \
5028 do { \
5029 m = mem_find (po); \
5030 if (m == MEM_NIL) \
5031 abort (); \
5032 } while (0)
5033
5034 /* Check that the object pointed to by PO is live, using predicate
5035 function LIVEP. */
5036 #define CHECK_LIVE(LIVEP) \
5037 do { \
5038 if (!LIVEP (m, po)) \
5039 abort (); \
5040 } while (0)
5041
5042 /* Check both of the above conditions. */
5043 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5044 do { \
5045 CHECK_ALLOCATED (); \
5046 CHECK_LIVE (LIVEP); \
5047 } while (0) \
5048
5049 #else /* not GC_CHECK_MARKED_OBJECTS */
5050
5051 #define CHECK_ALLOCATED() (void) 0
5052 #define CHECK_LIVE(LIVEP) (void) 0
5053 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5054
5055 #endif /* not GC_CHECK_MARKED_OBJECTS */
5056
5057 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
5058 {
5059 case Lisp_String:
5060 {
5061 register struct Lisp_String *ptr = XSTRING (obj);
5062 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5063 MARK_INTERVAL_TREE (ptr->intervals);
5064 MARK_STRING (ptr);
5065 #ifdef GC_CHECK_STRING_BYTES
5066 /* Check that the string size recorded in the string is the
5067 same as the one recorded in the sdata structure. */
5068 CHECK_STRING_BYTES (ptr);
5069 #endif /* GC_CHECK_STRING_BYTES */
5070 }
5071 break;
5072
5073 case Lisp_Vectorlike:
5074 #ifdef GC_CHECK_MARKED_OBJECTS
5075 m = mem_find (po);
5076 if (m == MEM_NIL && !GC_SUBRP (obj)
5077 && po != &buffer_defaults
5078 && po != &buffer_local_symbols)
5079 abort ();
5080 #endif /* GC_CHECK_MARKED_OBJECTS */
5081
5082 if (GC_BUFFERP (obj))
5083 {
5084 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5085 {
5086 #ifdef GC_CHECK_MARKED_OBJECTS
5087 if (po != &buffer_defaults && po != &buffer_local_symbols)
5088 {
5089 struct buffer *b;
5090 for (b = all_buffers; b && b != po; b = b->next)
5091 ;
5092 if (b == NULL)
5093 abort ();
5094 }
5095 #endif /* GC_CHECK_MARKED_OBJECTS */
5096 mark_buffer (obj);
5097 }
5098 }
5099 else if (GC_SUBRP (obj))
5100 break;
5101 else if (GC_COMPILEDP (obj))
5102 /* We could treat this just like a vector, but it is better to
5103 save the COMPILED_CONSTANTS element for last and avoid
5104 recursion there. */
5105 {
5106 register struct Lisp_Vector *ptr = XVECTOR (obj);
5107 register EMACS_INT size = ptr->size;
5108 register int i;
5109
5110 if (VECTOR_MARKED_P (ptr))
5111 break; /* Already marked */
5112
5113 CHECK_LIVE (live_vector_p);
5114 VECTOR_MARK (ptr); /* Else mark it */
5115 size &= PSEUDOVECTOR_SIZE_MASK;
5116 for (i = 0; i < size; i++) /* and then mark its elements */
5117 {
5118 if (i != COMPILED_CONSTANTS)
5119 mark_object (ptr->contents[i]);
5120 }
5121 obj = ptr->contents[COMPILED_CONSTANTS];
5122 goto loop;
5123 }
5124 else if (GC_FRAMEP (obj))
5125 {
5126 register struct frame *ptr = XFRAME (obj);
5127
5128 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5129 VECTOR_MARK (ptr); /* Else mark it */
5130
5131 CHECK_LIVE (live_vector_p);
5132 mark_object (ptr->name);
5133 mark_object (ptr->icon_name);
5134 mark_object (ptr->title);
5135 mark_object (ptr->focus_frame);
5136 mark_object (ptr->selected_window);
5137 mark_object (ptr->minibuffer_window);
5138 mark_object (ptr->param_alist);
5139 mark_object (ptr->scroll_bars);
5140 mark_object (ptr->condemned_scroll_bars);
5141 mark_object (ptr->menu_bar_items);
5142 mark_object (ptr->face_alist);
5143 mark_object (ptr->menu_bar_vector);
5144 mark_object (ptr->buffer_predicate);
5145 mark_object (ptr->buffer_list);
5146 mark_object (ptr->menu_bar_window);
5147 mark_object (ptr->tool_bar_window);
5148 mark_face_cache (ptr->face_cache);
5149 #ifdef HAVE_WINDOW_SYSTEM
5150 mark_image_cache (ptr);
5151 mark_object (ptr->tool_bar_items);
5152 mark_object (ptr->desired_tool_bar_string);
5153 mark_object (ptr->current_tool_bar_string);
5154 #endif /* HAVE_WINDOW_SYSTEM */
5155 }
5156 else if (GC_BOOL_VECTOR_P (obj))
5157 {
5158 register struct Lisp_Vector *ptr = XVECTOR (obj);
5159
5160 if (VECTOR_MARKED_P (ptr))
5161 break; /* Already marked */
5162 CHECK_LIVE (live_vector_p);
5163 VECTOR_MARK (ptr); /* Else mark it */
5164 }
5165 else if (GC_WINDOWP (obj))
5166 {
5167 register struct Lisp_Vector *ptr = XVECTOR (obj);
5168 struct window *w = XWINDOW (obj);
5169 register int i;
5170
5171 /* Stop if already marked. */
5172 if (VECTOR_MARKED_P (ptr))
5173 break;
5174
5175 /* Mark it. */
5176 CHECK_LIVE (live_vector_p);
5177 VECTOR_MARK (ptr);
5178
5179 /* There is no Lisp data above The member CURRENT_MATRIX in
5180 struct WINDOW. Stop marking when that slot is reached. */
5181 for (i = 0;
5182 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
5183 i++)
5184 mark_object (ptr->contents[i]);
5185
5186 /* Mark glyphs for leaf windows. Marking window matrices is
5187 sufficient because frame matrices use the same glyph
5188 memory. */
5189 if (NILP (w->hchild)
5190 && NILP (w->vchild)
5191 && w->current_matrix)
5192 {
5193 mark_glyph_matrix (w->current_matrix);
5194 mark_glyph_matrix (w->desired_matrix);
5195 }
5196 }
5197 else if (GC_HASH_TABLE_P (obj))
5198 {
5199 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5200
5201 /* Stop if already marked. */
5202 if (VECTOR_MARKED_P (h))
5203 break;
5204
5205 /* Mark it. */
5206 CHECK_LIVE (live_vector_p);
5207 VECTOR_MARK (h);
5208
5209 /* Mark contents. */
5210 /* Do not mark next_free or next_weak.
5211 Being in the next_weak chain
5212 should not keep the hash table alive.
5213 No need to mark `count' since it is an integer. */
5214 mark_object (h->test);
5215 mark_object (h->weak);
5216 mark_object (h->rehash_size);
5217 mark_object (h->rehash_threshold);
5218 mark_object (h->hash);
5219 mark_object (h->next);
5220 mark_object (h->index);
5221 mark_object (h->user_hash_function);
5222 mark_object (h->user_cmp_function);
5223
5224 /* If hash table is not weak, mark all keys and values.
5225 For weak tables, mark only the vector. */
5226 if (GC_NILP (h->weak))
5227 mark_object (h->key_and_value);
5228 else
5229 VECTOR_MARK (XVECTOR (h->key_and_value));
5230 }
5231 else
5232 {
5233 register struct Lisp_Vector *ptr = XVECTOR (obj);
5234 register EMACS_INT size = ptr->size;
5235 register int i;
5236
5237 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5238 CHECK_LIVE (live_vector_p);
5239 VECTOR_MARK (ptr); /* Else mark it */
5240 if (size & PSEUDOVECTOR_FLAG)
5241 size &= PSEUDOVECTOR_SIZE_MASK;
5242
5243 for (i = 0; i < size; i++) /* and then mark its elements */
5244 mark_object (ptr->contents[i]);
5245 }
5246 break;
5247
5248 case Lisp_Symbol:
5249 {
5250 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5251 struct Lisp_Symbol *ptrx;
5252
5253 if (ptr->gcmarkbit) break;
5254 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5255 ptr->gcmarkbit = 1;
5256 mark_object (ptr->value);
5257 mark_object (ptr->function);
5258 mark_object (ptr->plist);
5259
5260 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5261 MARK_STRING (XSTRING (ptr->xname));
5262 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5263
5264 /* Note that we do not mark the obarray of the symbol.
5265 It is safe not to do so because nothing accesses that
5266 slot except to check whether it is nil. */
5267 ptr = ptr->next;
5268 if (ptr)
5269 {
5270 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5271 XSETSYMBOL (obj, ptrx);
5272 goto loop;
5273 }
5274 }
5275 break;
5276
5277 case Lisp_Misc:
5278 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5279 if (XMARKER (obj)->gcmarkbit)
5280 break;
5281 XMARKER (obj)->gcmarkbit = 1;
5282
5283 switch (XMISCTYPE (obj))
5284 {
5285 case Lisp_Misc_Buffer_Local_Value:
5286 case Lisp_Misc_Some_Buffer_Local_Value:
5287 {
5288 register struct Lisp_Buffer_Local_Value *ptr
5289 = XBUFFER_LOCAL_VALUE (obj);
5290 /* If the cdr is nil, avoid recursion for the car. */
5291 if (EQ (ptr->cdr, Qnil))
5292 {
5293 obj = ptr->realvalue;
5294 goto loop;
5295 }
5296 mark_object (ptr->realvalue);
5297 mark_object (ptr->buffer);
5298 mark_object (ptr->frame);
5299 obj = ptr->cdr;
5300 goto loop;
5301 }
5302
5303 case Lisp_Misc_Marker:
5304 /* DO NOT mark thru the marker's chain.
5305 The buffer's markers chain does not preserve markers from gc;
5306 instead, markers are removed from the chain when freed by gc. */
5307 break;
5308
5309 case Lisp_Misc_Intfwd:
5310 case Lisp_Misc_Boolfwd:
5311 case Lisp_Misc_Objfwd:
5312 case Lisp_Misc_Buffer_Objfwd:
5313 case Lisp_Misc_Kboard_Objfwd:
5314 /* Don't bother with Lisp_Buffer_Objfwd,
5315 since all markable slots in current buffer marked anyway. */
5316 /* Don't need to do Lisp_Objfwd, since the places they point
5317 are protected with staticpro. */
5318 break;
5319
5320 case Lisp_Misc_Save_Value:
5321 #if GC_MARK_STACK
5322 {
5323 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5324 /* If DOGC is set, POINTER is the address of a memory
5325 area containing INTEGER potential Lisp_Objects. */
5326 if (ptr->dogc)
5327 {
5328 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5329 int nelt;
5330 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5331 mark_maybe_object (*p);
5332 }
5333 }
5334 #endif
5335 break;
5336
5337 case Lisp_Misc_Overlay:
5338 {
5339 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5340 mark_object (ptr->start);
5341 mark_object (ptr->end);
5342 mark_object (ptr->plist);
5343 if (ptr->next)
5344 {
5345 XSETMISC (obj, ptr->next);
5346 goto loop;
5347 }
5348 }
5349 break;
5350
5351 default:
5352 abort ();
5353 }
5354 break;
5355
5356 case Lisp_Cons:
5357 {
5358 register struct Lisp_Cons *ptr = XCONS (obj);
5359 if (CONS_MARKED_P (ptr)) break;
5360 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5361 CONS_MARK (ptr);
5362 /* If the cdr is nil, avoid recursion for the car. */
5363 if (EQ (ptr->cdr, Qnil))
5364 {
5365 obj = ptr->car;
5366 cdr_count = 0;
5367 goto loop;
5368 }
5369 mark_object (ptr->car);
5370 obj = ptr->cdr;
5371 cdr_count++;
5372 if (cdr_count == mark_object_loop_halt)
5373 abort ();
5374 goto loop;
5375 }
5376
5377 case Lisp_Float:
5378 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5379 FLOAT_MARK (XFLOAT (obj));
5380 break;
5381
5382 case Lisp_Int:
5383 break;
5384
5385 default:
5386 abort ();
5387 }
5388
5389 #undef CHECK_LIVE
5390 #undef CHECK_ALLOCATED
5391 #undef CHECK_ALLOCATED_AND_LIVE
5392 }
5393
5394 /* Mark the pointers in a buffer structure. */
5395
5396 static void
5397 mark_buffer (buf)
5398 Lisp_Object buf;
5399 {
5400 register struct buffer *buffer = XBUFFER (buf);
5401 register Lisp_Object *ptr, tmp;
5402 Lisp_Object base_buffer;
5403
5404 VECTOR_MARK (buffer);
5405
5406 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5407
5408 /* For now, we just don't mark the undo_list. It's done later in
5409 a special way just before the sweep phase, and after stripping
5410 some of its elements that are not needed any more. */
5411
5412 if (buffer->overlays_before)
5413 {
5414 XSETMISC (tmp, buffer->overlays_before);
5415 mark_object (tmp);
5416 }
5417 if (buffer->overlays_after)
5418 {
5419 XSETMISC (tmp, buffer->overlays_after);
5420 mark_object (tmp);
5421 }
5422
5423 for (ptr = &buffer->name;
5424 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5425 ptr++)
5426 mark_object (*ptr);
5427
5428 /* If this is an indirect buffer, mark its base buffer. */
5429 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5430 {
5431 XSETBUFFER (base_buffer, buffer->base_buffer);
5432 mark_buffer (base_buffer);
5433 }
5434 }
5435
5436
5437 /* Value is non-zero if OBJ will survive the current GC because it's
5438 either marked or does not need to be marked to survive. */
5439
5440 int
5441 survives_gc_p (obj)
5442 Lisp_Object obj;
5443 {
5444 int survives_p;
5445
5446 switch (XGCTYPE (obj))
5447 {
5448 case Lisp_Int:
5449 survives_p = 1;
5450 break;
5451
5452 case Lisp_Symbol:
5453 survives_p = XSYMBOL (obj)->gcmarkbit;
5454 break;
5455
5456 case Lisp_Misc:
5457 survives_p = XMARKER (obj)->gcmarkbit;
5458 break;
5459
5460 case Lisp_String:
5461 survives_p = STRING_MARKED_P (XSTRING (obj));
5462 break;
5463
5464 case Lisp_Vectorlike:
5465 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5466 break;
5467
5468 case Lisp_Cons:
5469 survives_p = CONS_MARKED_P (XCONS (obj));
5470 break;
5471
5472 case Lisp_Float:
5473 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5474 break;
5475
5476 default:
5477 abort ();
5478 }
5479
5480 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5481 }
5482
5483
5484 \f
5485 /* Sweep: find all structures not marked, and free them. */
5486
5487 static void
5488 gc_sweep ()
5489 {
5490 /* Remove or mark entries in weak hash tables.
5491 This must be done before any object is unmarked. */
5492 sweep_weak_hash_tables ();
5493
5494 sweep_strings ();
5495 #ifdef GC_CHECK_STRING_BYTES
5496 if (!noninteractive)
5497 check_string_bytes (1);
5498 #endif
5499
5500 /* Put all unmarked conses on free list */
5501 {
5502 register struct cons_block *cblk;
5503 struct cons_block **cprev = &cons_block;
5504 register int lim = cons_block_index;
5505 register int num_free = 0, num_used = 0;
5506
5507 cons_free_list = 0;
5508
5509 for (cblk = cons_block; cblk; cblk = *cprev)
5510 {
5511 register int i;
5512 int this_free = 0;
5513 for (i = 0; i < lim; i++)
5514 if (!CONS_MARKED_P (&cblk->conses[i]))
5515 {
5516 this_free++;
5517 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5518 cons_free_list = &cblk->conses[i];
5519 #if GC_MARK_STACK
5520 cons_free_list->car = Vdead;
5521 #endif
5522 }
5523 else
5524 {
5525 num_used++;
5526 CONS_UNMARK (&cblk->conses[i]);
5527 }
5528 lim = CONS_BLOCK_SIZE;
5529 /* If this block contains only free conses and we have already
5530 seen more than two blocks worth of free conses then deallocate
5531 this block. */
5532 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5533 {
5534 *cprev = cblk->next;
5535 /* Unhook from the free list. */
5536 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5537 lisp_align_free (cblk);
5538 n_cons_blocks--;
5539 }
5540 else
5541 {
5542 num_free += this_free;
5543 cprev = &cblk->next;
5544 }
5545 }
5546 total_conses = num_used;
5547 total_free_conses = num_free;
5548 }
5549
5550 /* Put all unmarked floats on free list */
5551 {
5552 register struct float_block *fblk;
5553 struct float_block **fprev = &float_block;
5554 register int lim = float_block_index;
5555 register int num_free = 0, num_used = 0;
5556
5557 float_free_list = 0;
5558
5559 for (fblk = float_block; fblk; fblk = *fprev)
5560 {
5561 register int i;
5562 int this_free = 0;
5563 for (i = 0; i < lim; i++)
5564 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5565 {
5566 this_free++;
5567 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5568 float_free_list = &fblk->floats[i];
5569 }
5570 else
5571 {
5572 num_used++;
5573 FLOAT_UNMARK (&fblk->floats[i]);
5574 }
5575 lim = FLOAT_BLOCK_SIZE;
5576 /* If this block contains only free floats and we have already
5577 seen more than two blocks worth of free floats then deallocate
5578 this block. */
5579 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5580 {
5581 *fprev = fblk->next;
5582 /* Unhook from the free list. */
5583 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5584 lisp_align_free (fblk);
5585 n_float_blocks--;
5586 }
5587 else
5588 {
5589 num_free += this_free;
5590 fprev = &fblk->next;
5591 }
5592 }
5593 total_floats = num_used;
5594 total_free_floats = num_free;
5595 }
5596
5597 /* Put all unmarked intervals on free list */
5598 {
5599 register struct interval_block *iblk;
5600 struct interval_block **iprev = &interval_block;
5601 register int lim = interval_block_index;
5602 register int num_free = 0, num_used = 0;
5603
5604 interval_free_list = 0;
5605
5606 for (iblk = interval_block; iblk; iblk = *iprev)
5607 {
5608 register int i;
5609 int this_free = 0;
5610
5611 for (i = 0; i < lim; i++)
5612 {
5613 if (!iblk->intervals[i].gcmarkbit)
5614 {
5615 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5616 interval_free_list = &iblk->intervals[i];
5617 this_free++;
5618 }
5619 else
5620 {
5621 num_used++;
5622 iblk->intervals[i].gcmarkbit = 0;
5623 }
5624 }
5625 lim = INTERVAL_BLOCK_SIZE;
5626 /* If this block contains only free intervals and we have already
5627 seen more than two blocks worth of free intervals then
5628 deallocate this block. */
5629 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5630 {
5631 *iprev = iblk->next;
5632 /* Unhook from the free list. */
5633 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5634 lisp_free (iblk);
5635 n_interval_blocks--;
5636 }
5637 else
5638 {
5639 num_free += this_free;
5640 iprev = &iblk->next;
5641 }
5642 }
5643 total_intervals = num_used;
5644 total_free_intervals = num_free;
5645 }
5646
5647 /* Put all unmarked symbols on free list */
5648 {
5649 register struct symbol_block *sblk;
5650 struct symbol_block **sprev = &symbol_block;
5651 register int lim = symbol_block_index;
5652 register int num_free = 0, num_used = 0;
5653
5654 symbol_free_list = NULL;
5655
5656 for (sblk = symbol_block; sblk; sblk = *sprev)
5657 {
5658 int this_free = 0;
5659 struct Lisp_Symbol *sym = sblk->symbols;
5660 struct Lisp_Symbol *end = sym + lim;
5661
5662 for (; sym < end; ++sym)
5663 {
5664 /* Check if the symbol was created during loadup. In such a case
5665 it might be pointed to by pure bytecode which we don't trace,
5666 so we conservatively assume that it is live. */
5667 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5668
5669 if (!sym->gcmarkbit && !pure_p)
5670 {
5671 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5672 symbol_free_list = sym;
5673 #if GC_MARK_STACK
5674 symbol_free_list->function = Vdead;
5675 #endif
5676 ++this_free;
5677 }
5678 else
5679 {
5680 ++num_used;
5681 if (!pure_p)
5682 UNMARK_STRING (XSTRING (sym->xname));
5683 sym->gcmarkbit = 0;
5684 }
5685 }
5686
5687 lim = SYMBOL_BLOCK_SIZE;
5688 /* If this block contains only free symbols and we have already
5689 seen more than two blocks worth of free symbols then deallocate
5690 this block. */
5691 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5692 {
5693 *sprev = sblk->next;
5694 /* Unhook from the free list. */
5695 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5696 lisp_free (sblk);
5697 n_symbol_blocks--;
5698 }
5699 else
5700 {
5701 num_free += this_free;
5702 sprev = &sblk->next;
5703 }
5704 }
5705 total_symbols = num_used;
5706 total_free_symbols = num_free;
5707 }
5708
5709 /* Put all unmarked misc's on free list.
5710 For a marker, first unchain it from the buffer it points into. */
5711 {
5712 register struct marker_block *mblk;
5713 struct marker_block **mprev = &marker_block;
5714 register int lim = marker_block_index;
5715 register int num_free = 0, num_used = 0;
5716
5717 marker_free_list = 0;
5718
5719 for (mblk = marker_block; mblk; mblk = *mprev)
5720 {
5721 register int i;
5722 int this_free = 0;
5723
5724 for (i = 0; i < lim; i++)
5725 {
5726 if (!mblk->markers[i].u_marker.gcmarkbit)
5727 {
5728 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5729 unchain_marker (&mblk->markers[i].u_marker);
5730 /* Set the type of the freed object to Lisp_Misc_Free.
5731 We could leave the type alone, since nobody checks it,
5732 but this might catch bugs faster. */
5733 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5734 mblk->markers[i].u_free.chain = marker_free_list;
5735 marker_free_list = &mblk->markers[i];
5736 this_free++;
5737 }
5738 else
5739 {
5740 num_used++;
5741 mblk->markers[i].u_marker.gcmarkbit = 0;
5742 }
5743 }
5744 lim = MARKER_BLOCK_SIZE;
5745 /* If this block contains only free markers and we have already
5746 seen more than two blocks worth of free markers then deallocate
5747 this block. */
5748 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5749 {
5750 *mprev = mblk->next;
5751 /* Unhook from the free list. */
5752 marker_free_list = mblk->markers[0].u_free.chain;
5753 lisp_free (mblk);
5754 n_marker_blocks--;
5755 }
5756 else
5757 {
5758 num_free += this_free;
5759 mprev = &mblk->next;
5760 }
5761 }
5762
5763 total_markers = num_used;
5764 total_free_markers = num_free;
5765 }
5766
5767 /* Free all unmarked buffers */
5768 {
5769 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5770
5771 while (buffer)
5772 if (!VECTOR_MARKED_P (buffer))
5773 {
5774 if (prev)
5775 prev->next = buffer->next;
5776 else
5777 all_buffers = buffer->next;
5778 next = buffer->next;
5779 lisp_free (buffer);
5780 buffer = next;
5781 }
5782 else
5783 {
5784 VECTOR_UNMARK (buffer);
5785 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5786 prev = buffer, buffer = buffer->next;
5787 }
5788 }
5789
5790 /* Free all unmarked vectors */
5791 {
5792 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5793 total_vector_size = 0;
5794
5795 while (vector)
5796 if (!VECTOR_MARKED_P (vector))
5797 {
5798 if (prev)
5799 prev->next = vector->next;
5800 else
5801 all_vectors = vector->next;
5802 next = vector->next;
5803 lisp_free (vector);
5804 n_vectors--;
5805 vector = next;
5806
5807 }
5808 else
5809 {
5810 VECTOR_UNMARK (vector);
5811 if (vector->size & PSEUDOVECTOR_FLAG)
5812 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5813 else
5814 total_vector_size += vector->size;
5815 prev = vector, vector = vector->next;
5816 }
5817 }
5818
5819 #ifdef GC_CHECK_STRING_BYTES
5820 if (!noninteractive)
5821 check_string_bytes (1);
5822 #endif
5823 }
5824
5825
5826
5827 \f
5828 /* Debugging aids. */
5829
5830 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5831 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5832 This may be helpful in debugging Emacs's memory usage.
5833 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5834 ()
5835 {
5836 Lisp_Object end;
5837
5838 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5839
5840 return end;
5841 }
5842
5843 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5844 doc: /* Return a list of counters that measure how much consing there has been.
5845 Each of these counters increments for a certain kind of object.
5846 The counters wrap around from the largest positive integer to zero.
5847 Garbage collection does not decrease them.
5848 The elements of the value are as follows:
5849 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5850 All are in units of 1 = one object consed
5851 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5852 objects consed.
5853 MISCS include overlays, markers, and some internal types.
5854 Frames, windows, buffers, and subprocesses count as vectors
5855 (but the contents of a buffer's text do not count here). */)
5856 ()
5857 {
5858 Lisp_Object consed[8];
5859
5860 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5861 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5862 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5863 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5864 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5865 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5866 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5867 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5868
5869 return Flist (8, consed);
5870 }
5871
5872 int suppress_checking;
5873 void
5874 die (msg, file, line)
5875 const char *msg;
5876 const char *file;
5877 int line;
5878 {
5879 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5880 file, line, msg);
5881 abort ();
5882 }
5883 \f
5884 /* Initialization */
5885
5886 void
5887 init_alloc_once ()
5888 {
5889 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5890 purebeg = PUREBEG;
5891 pure_size = PURESIZE;
5892 pure_bytes_used = 0;
5893 pure_bytes_used_before_overflow = 0;
5894
5895 /* Initialize the list of free aligned blocks. */
5896 free_ablock = NULL;
5897
5898 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5899 mem_init ();
5900 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5901 #endif
5902
5903 all_vectors = 0;
5904 ignore_warnings = 1;
5905 #ifdef DOUG_LEA_MALLOC
5906 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5907 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5908 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5909 #endif
5910 init_strings ();
5911 init_cons ();
5912 init_symbol ();
5913 init_marker ();
5914 init_float ();
5915 init_intervals ();
5916
5917 #ifdef REL_ALLOC
5918 malloc_hysteresis = 32;
5919 #else
5920 malloc_hysteresis = 0;
5921 #endif
5922
5923 spare_memory = (char *) malloc (SPARE_MEMORY);
5924
5925 ignore_warnings = 0;
5926 gcprolist = 0;
5927 byte_stack_list = 0;
5928 staticidx = 0;
5929 consing_since_gc = 0;
5930 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5931 #ifdef VIRT_ADDR_VARIES
5932 malloc_sbrk_unused = 1<<22; /* A large number */
5933 malloc_sbrk_used = 100000; /* as reasonable as any number */
5934 #endif /* VIRT_ADDR_VARIES */
5935 }
5936
5937 void
5938 init_alloc ()
5939 {
5940 gcprolist = 0;
5941 byte_stack_list = 0;
5942 #if GC_MARK_STACK
5943 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5944 setjmp_tested_p = longjmps_done = 0;
5945 #endif
5946 #endif
5947 Vgc_elapsed = make_float (0.0);
5948 gcs_done = 0;
5949 }
5950
5951 void
5952 syms_of_alloc ()
5953 {
5954 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5955 doc: /* *Number of bytes of consing between garbage collections.
5956 Garbage collection can happen automatically once this many bytes have been
5957 allocated since the last garbage collection. All data types count.
5958
5959 Garbage collection happens automatically only when `eval' is called.
5960
5961 By binding this temporarily to a large number, you can effectively
5962 prevent garbage collection during a part of the program. */);
5963
5964 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
5965 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
5966
5967 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
5968 doc: /* Number of cons cells that have been consed so far. */);
5969
5970 DEFVAR_INT ("floats-consed", &floats_consed,
5971 doc: /* Number of floats that have been consed so far. */);
5972
5973 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
5974 doc: /* Number of vector cells that have been consed so far. */);
5975
5976 DEFVAR_INT ("symbols-consed", &symbols_consed,
5977 doc: /* Number of symbols that have been consed so far. */);
5978
5979 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
5980 doc: /* Number of string characters that have been consed so far. */);
5981
5982 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
5983 doc: /* Number of miscellaneous objects that have been consed so far. */);
5984
5985 DEFVAR_INT ("intervals-consed", &intervals_consed,
5986 doc: /* Number of intervals that have been consed so far. */);
5987
5988 DEFVAR_INT ("strings-consed", &strings_consed,
5989 doc: /* Number of strings that have been consed so far. */);
5990
5991 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
5992 doc: /* Non-nil means loading Lisp code in order to dump an executable.
5993 This means that certain objects should be allocated in shared (pure) space. */);
5994
5995 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
5996 doc: /* Non-nil means display messages at start and end of garbage collection. */);
5997 garbage_collection_messages = 0;
5998
5999 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6000 doc: /* Hook run after garbage collection has finished. */);
6001 Vpost_gc_hook = Qnil;
6002 Qpost_gc_hook = intern ("post-gc-hook");
6003 staticpro (&Qpost_gc_hook);
6004
6005 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6006 doc: /* Precomputed `signal' argument for memory-full error. */);
6007 /* We build this in advance because if we wait until we need it, we might
6008 not be able to allocate the memory to hold it. */
6009 Vmemory_signal_data
6010 = list2 (Qerror,
6011 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6012
6013 DEFVAR_LISP ("memory-full", &Vmemory_full,
6014 doc: /* Non-nil means we are handling a memory-full error. */);
6015 Vmemory_full = Qnil;
6016
6017 staticpro (&Qgc_cons_threshold);
6018 Qgc_cons_threshold = intern ("gc-cons-threshold");
6019
6020 staticpro (&Qchar_table_extra_slots);
6021 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6022
6023 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6024 doc: /* Accumulated time elapsed in garbage collections.
6025 The time is in seconds as a floating point value. */);
6026 DEFVAR_INT ("gcs-done", &gcs_done,
6027 doc: /* Accumulated number of garbage collections done. */);
6028
6029 defsubr (&Scons);
6030 defsubr (&Slist);
6031 defsubr (&Svector);
6032 defsubr (&Smake_byte_code);
6033 defsubr (&Smake_list);
6034 defsubr (&Smake_vector);
6035 defsubr (&Smake_string);
6036 defsubr (&Smake_bool_vector);
6037 defsubr (&Smake_symbol);
6038 defsubr (&Smake_marker);
6039 defsubr (&Spurecopy);
6040 defsubr (&Sgarbage_collect);
6041 defsubr (&Smemory_limit);
6042 defsubr (&Smemory_use_counts);
6043
6044 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6045 defsubr (&Sgc_status);
6046 #endif
6047 }
6048
6049 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6050 (do not change this comment) */