]> code.delx.au - gnu-emacs/blob - src/alloc.c
Merge from trunk
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21 #include <stdio.h>
22 #include <limits.h> /* For CHAR_BIT. */
23 #include <setjmp.h>
24
25 #ifdef ALLOC_DEBUG
26 #undef INLINE
27 #endif
28
29 #include <signal.h>
30
31 #ifdef HAVE_GTK_AND_PTHREAD
32 #include <pthread.h>
33 #endif
34
35 /* This file is part of the core Lisp implementation, and thus must
36 deal with the real data structures. If the Lisp implementation is
37 replaced, this file likely will not be used. */
38
39 #undef HIDE_LISP_IMPLEMENTATION
40 #include "lisp.h"
41 #include "process.h"
42 #include "intervals.h"
43 #include "puresize.h"
44 #include "buffer.h"
45 #include "window.h"
46 #include "keyboard.h"
47 #include "frame.h"
48 #include "blockinput.h"
49 #include "character.h"
50 #include "syssignal.h"
51 #include "termhooks.h" /* For struct terminal. */
52 #include <setjmp.h>
53
54 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
55 memory. Can do this only if using gmalloc.c. */
56
57 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
58 #undef GC_MALLOC_CHECK
59 #endif
60
61 #include <unistd.h>
62 #ifndef HAVE_UNISTD_H
63 extern POINTER_TYPE *sbrk ();
64 #endif
65
66 #include <fcntl.h>
67
68 #ifdef WINDOWSNT
69 #include "w32.h"
70 #endif
71
72 #ifdef DOUG_LEA_MALLOC
73
74 #include <malloc.h>
75 /* malloc.h #defines this as size_t, at least in glibc2. */
76 #ifndef __malloc_size_t
77 #define __malloc_size_t int
78 #endif
79
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
82
83 #define MMAP_MAX_AREAS 100000000
84
85 #else /* not DOUG_LEA_MALLOC */
86
87 /* The following come from gmalloc.c. */
88
89 #define __malloc_size_t size_t
90 extern __malloc_size_t _bytes_used;
91 extern __malloc_size_t __malloc_extra_blocks;
92
93 #endif /* not DOUG_LEA_MALLOC */
94
95 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
96
97 /* When GTK uses the file chooser dialog, different backends can be loaded
98 dynamically. One such a backend is the Gnome VFS backend that gets loaded
99 if you run Gnome. That backend creates several threads and also allocates
100 memory with malloc.
101
102 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
103 functions below are called from malloc, there is a chance that one
104 of these threads preempts the Emacs main thread and the hook variables
105 end up in an inconsistent state. So we have a mutex to prevent that (note
106 that the backend handles concurrent access to malloc within its own threads
107 but Emacs code running in the main thread is not included in that control).
108
109 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
110 happens in one of the backend threads we will have two threads that tries
111 to run Emacs code at once, and the code is not prepared for that.
112 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
113
114 static pthread_mutex_t alloc_mutex;
115
116 #define BLOCK_INPUT_ALLOC \
117 do \
118 { \
119 if (pthread_equal (pthread_self (), main_thread)) \
120 BLOCK_INPUT; \
121 pthread_mutex_lock (&alloc_mutex); \
122 } \
123 while (0)
124 #define UNBLOCK_INPUT_ALLOC \
125 do \
126 { \
127 pthread_mutex_unlock (&alloc_mutex); \
128 if (pthread_equal (pthread_self (), main_thread)) \
129 UNBLOCK_INPUT; \
130 } \
131 while (0)
132
133 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
134
135 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
136 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
137
138 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
139
140 /* Value of _bytes_used, when spare_memory was freed. */
141
142 static __malloc_size_t bytes_used_when_full;
143
144 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
145 to a struct Lisp_String. */
146
147 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
148 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
149 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
150
151 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
152 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
153 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
154
155 /* Value is the number of bytes/chars of S, a pointer to a struct
156 Lisp_String. This must be used instead of STRING_BYTES (S) or
157 S->size during GC, because S->size contains the mark bit for
158 strings. */
159
160 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
161 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
162
163 /* Global variables. */
164 struct emacs_globals globals;
165
166 /* Number of bytes of consing done since the last gc. */
167
168 int consing_since_gc;
169
170 /* Similar minimum, computed from Vgc_cons_percentage. */
171
172 EMACS_INT gc_relative_threshold;
173
174 /* Minimum number of bytes of consing since GC before next GC,
175 when memory is full. */
176
177 EMACS_INT memory_full_cons_threshold;
178
179 /* Nonzero during GC. */
180
181 int gc_in_progress;
182
183 /* Nonzero means abort if try to GC.
184 This is for code which is written on the assumption that
185 no GC will happen, so as to verify that assumption. */
186
187 int abort_on_gc;
188
189 /* Number of live and free conses etc. */
190
191 static int total_conses, total_markers, total_symbols, total_vector_size;
192 static int total_free_conses, total_free_markers, total_free_symbols;
193 static int total_free_floats, total_floats;
194
195 /* Points to memory space allocated as "spare", to be freed if we run
196 out of memory. We keep one large block, four cons-blocks, and
197 two string blocks. */
198
199 static char *spare_memory[7];
200
201 /* Amount of spare memory to keep in large reserve block. */
202
203 #define SPARE_MEMORY (1 << 14)
204
205 /* Number of extra blocks malloc should get when it needs more core. */
206
207 static int malloc_hysteresis;
208
209 /* Initialize it to a nonzero value to force it into data space
210 (rather than bss space). That way unexec will remap it into text
211 space (pure), on some systems. We have not implemented the
212 remapping on more recent systems because this is less important
213 nowadays than in the days of small memories and timesharing. */
214
215 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
216 #define PUREBEG (char *) pure
217
218 /* Pointer to the pure area, and its size. */
219
220 static char *purebeg;
221 static size_t pure_size;
222
223 /* Number of bytes of pure storage used before pure storage overflowed.
224 If this is non-zero, this implies that an overflow occurred. */
225
226 static size_t pure_bytes_used_before_overflow;
227
228 /* Value is non-zero if P points into pure space. */
229
230 #define PURE_POINTER_P(P) \
231 (((PNTR_COMPARISON_TYPE) (P) \
232 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
233 && ((PNTR_COMPARISON_TYPE) (P) \
234 >= (PNTR_COMPARISON_TYPE) purebeg))
235
236 /* Index in pure at which next pure Lisp object will be allocated.. */
237
238 static EMACS_INT pure_bytes_used_lisp;
239
240 /* Number of bytes allocated for non-Lisp objects in pure storage. */
241
242 static EMACS_INT pure_bytes_used_non_lisp;
243
244 /* If nonzero, this is a warning delivered by malloc and not yet
245 displayed. */
246
247 const char *pending_malloc_warning;
248
249 /* Maximum amount of C stack to save when a GC happens. */
250
251 #ifndef MAX_SAVE_STACK
252 #define MAX_SAVE_STACK 16000
253 #endif
254
255 /* Buffer in which we save a copy of the C stack at each GC. */
256
257 static char *stack_copy;
258 static int stack_copy_size;
259
260 /* Non-zero means ignore malloc warnings. Set during initialization.
261 Currently not used. */
262
263 static int ignore_warnings;
264
265 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
266
267 /* Hook run after GC has finished. */
268
269 Lisp_Object Qpost_gc_hook;
270
271 static void mark_buffer (Lisp_Object);
272 static void mark_terminals (void);
273 extern void mark_kboards (void);
274 extern void mark_ttys (void);
275 extern void mark_backtrace (void);
276 static void gc_sweep (void);
277 static void mark_glyph_matrix (struct glyph_matrix *);
278 static void mark_face_cache (struct face_cache *);
279
280 #ifdef HAVE_WINDOW_SYSTEM
281 extern void mark_fringe_data (void);
282 #endif /* HAVE_WINDOW_SYSTEM */
283
284 static struct Lisp_String *allocate_string (void);
285 static void compact_small_strings (void);
286 static void free_large_strings (void);
287 static void sweep_strings (void);
288
289 extern int message_enable_multibyte;
290
291 /* When scanning the C stack for live Lisp objects, Emacs keeps track
292 of what memory allocated via lisp_malloc is intended for what
293 purpose. This enumeration specifies the type of memory. */
294
295 enum mem_type
296 {
297 MEM_TYPE_NON_LISP,
298 MEM_TYPE_BUFFER,
299 MEM_TYPE_CONS,
300 MEM_TYPE_STRING,
301 MEM_TYPE_MISC,
302 MEM_TYPE_SYMBOL,
303 MEM_TYPE_FLOAT,
304 /* We used to keep separate mem_types for subtypes of vectors such as
305 process, hash_table, frame, terminal, and window, but we never made
306 use of the distinction, so it only caused source-code complexity
307 and runtime slowdown. Minor but pointless. */
308 MEM_TYPE_VECTORLIKE
309 };
310
311 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
312 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
313
314
315 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
316
317 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
318 #include <stdio.h> /* For fprintf. */
319 #endif
320
321 /* A unique object in pure space used to make some Lisp objects
322 on free lists recognizable in O(1). */
323
324 static Lisp_Object Vdead;
325
326 #ifdef GC_MALLOC_CHECK
327
328 enum mem_type allocated_mem_type;
329 static int dont_register_blocks;
330
331 #endif /* GC_MALLOC_CHECK */
332
333 /* A node in the red-black tree describing allocated memory containing
334 Lisp data. Each such block is recorded with its start and end
335 address when it is allocated, and removed from the tree when it
336 is freed.
337
338 A red-black tree is a balanced binary tree with the following
339 properties:
340
341 1. Every node is either red or black.
342 2. Every leaf is black.
343 3. If a node is red, then both of its children are black.
344 4. Every simple path from a node to a descendant leaf contains
345 the same number of black nodes.
346 5. The root is always black.
347
348 When nodes are inserted into the tree, or deleted from the tree,
349 the tree is "fixed" so that these properties are always true.
350
351 A red-black tree with N internal nodes has height at most 2
352 log(N+1). Searches, insertions and deletions are done in O(log N).
353 Please see a text book about data structures for a detailed
354 description of red-black trees. Any book worth its salt should
355 describe them. */
356
357 struct mem_node
358 {
359 /* Children of this node. These pointers are never NULL. When there
360 is no child, the value is MEM_NIL, which points to a dummy node. */
361 struct mem_node *left, *right;
362
363 /* The parent of this node. In the root node, this is NULL. */
364 struct mem_node *parent;
365
366 /* Start and end of allocated region. */
367 void *start, *end;
368
369 /* Node color. */
370 enum {MEM_BLACK, MEM_RED} color;
371
372 /* Memory type. */
373 enum mem_type type;
374 };
375
376 /* Base address of stack. Set in main. */
377
378 Lisp_Object *stack_base;
379
380 /* Root of the tree describing allocated Lisp memory. */
381
382 static struct mem_node *mem_root;
383
384 /* Lowest and highest known address in the heap. */
385
386 static void *min_heap_address, *max_heap_address;
387
388 /* Sentinel node of the tree. */
389
390 static struct mem_node mem_z;
391 #define MEM_NIL &mem_z
392
393 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
394 static void lisp_free (POINTER_TYPE *);
395 static void mark_stack (void);
396 static int live_vector_p (struct mem_node *, void *);
397 static int live_buffer_p (struct mem_node *, void *);
398 static int live_string_p (struct mem_node *, void *);
399 static int live_cons_p (struct mem_node *, void *);
400 static int live_symbol_p (struct mem_node *, void *);
401 static int live_float_p (struct mem_node *, void *);
402 static int live_misc_p (struct mem_node *, void *);
403 static void mark_maybe_object (Lisp_Object);
404 static void mark_memory (void *, void *, int);
405 static void mem_init (void);
406 static struct mem_node *mem_insert (void *, void *, enum mem_type);
407 static void mem_insert_fixup (struct mem_node *);
408 static void mem_rotate_left (struct mem_node *);
409 static void mem_rotate_right (struct mem_node *);
410 static void mem_delete (struct mem_node *);
411 static void mem_delete_fixup (struct mem_node *);
412 static INLINE struct mem_node *mem_find (void *);
413
414
415 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
416 static void check_gcpros (void);
417 #endif
418
419 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
420
421 /* Recording what needs to be marked for gc. */
422
423 struct gcpro *gcprolist;
424
425 /* Addresses of staticpro'd variables. Initialize it to a nonzero
426 value; otherwise some compilers put it into BSS. */
427
428 #define NSTATICS 0x640
429 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
430
431 /* Index of next unused slot in staticvec. */
432
433 static int staticidx = 0;
434
435 static POINTER_TYPE *pure_alloc (size_t, int);
436
437
438 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
439 ALIGNMENT must be a power of 2. */
440
441 #define ALIGN(ptr, ALIGNMENT) \
442 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
443 & ~((ALIGNMENT) - 1)))
444
445
446 \f
447 /************************************************************************
448 Malloc
449 ************************************************************************/
450
451 /* Function malloc calls this if it finds we are near exhausting storage. */
452
453 void
454 malloc_warning (const char *str)
455 {
456 pending_malloc_warning = str;
457 }
458
459
460 /* Display an already-pending malloc warning. */
461
462 void
463 display_malloc_warning (void)
464 {
465 call3 (intern ("display-warning"),
466 intern ("alloc"),
467 build_string (pending_malloc_warning),
468 intern ("emergency"));
469 pending_malloc_warning = 0;
470 }
471
472
473 #ifdef DOUG_LEA_MALLOC
474 # define BYTES_USED (mallinfo ().uordblks)
475 #else
476 # define BYTES_USED _bytes_used
477 #endif
478 \f
479 /* Called if we can't allocate relocatable space for a buffer. */
480
481 void
482 buffer_memory_full (void)
483 {
484 /* If buffers use the relocating allocator, no need to free
485 spare_memory, because we may have plenty of malloc space left
486 that we could get, and if we don't, the malloc that fails will
487 itself cause spare_memory to be freed. If buffers don't use the
488 relocating allocator, treat this like any other failing
489 malloc. */
490
491 #ifndef REL_ALLOC
492 memory_full ();
493 #endif
494
495 /* This used to call error, but if we've run out of memory, we could
496 get infinite recursion trying to build the string. */
497 xsignal (Qnil, Vmemory_signal_data);
498 }
499
500
501 #ifdef XMALLOC_OVERRUN_CHECK
502
503 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
504 and a 16 byte trailer around each block.
505
506 The header consists of 12 fixed bytes + a 4 byte integer contaning the
507 original block size, while the trailer consists of 16 fixed bytes.
508
509 The header is used to detect whether this block has been allocated
510 through these functions -- as it seems that some low-level libc
511 functions may bypass the malloc hooks.
512 */
513
514
515 #define XMALLOC_OVERRUN_CHECK_SIZE 16
516
517 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
518 { 0x9a, 0x9b, 0xae, 0xaf,
519 0xbf, 0xbe, 0xce, 0xcf,
520 0xea, 0xeb, 0xec, 0xed };
521
522 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
523 { 0xaa, 0xab, 0xac, 0xad,
524 0xba, 0xbb, 0xbc, 0xbd,
525 0xca, 0xcb, 0xcc, 0xcd,
526 0xda, 0xdb, 0xdc, 0xdd };
527
528 /* Macros to insert and extract the block size in the header. */
529
530 #define XMALLOC_PUT_SIZE(ptr, size) \
531 (ptr[-1] = (size & 0xff), \
532 ptr[-2] = ((size >> 8) & 0xff), \
533 ptr[-3] = ((size >> 16) & 0xff), \
534 ptr[-4] = ((size >> 24) & 0xff))
535
536 #define XMALLOC_GET_SIZE(ptr) \
537 (size_t)((unsigned)(ptr[-1]) | \
538 ((unsigned)(ptr[-2]) << 8) | \
539 ((unsigned)(ptr[-3]) << 16) | \
540 ((unsigned)(ptr[-4]) << 24))
541
542
543 /* The call depth in overrun_check functions. For example, this might happen:
544 xmalloc()
545 overrun_check_malloc()
546 -> malloc -> (via hook)_-> emacs_blocked_malloc
547 -> overrun_check_malloc
548 call malloc (hooks are NULL, so real malloc is called).
549 malloc returns 10000.
550 add overhead, return 10016.
551 <- (back in overrun_check_malloc)
552 add overhead again, return 10032
553 xmalloc returns 10032.
554
555 (time passes).
556
557 xfree(10032)
558 overrun_check_free(10032)
559 decrease overhed
560 free(10016) <- crash, because 10000 is the original pointer. */
561
562 static int check_depth;
563
564 /* Like malloc, but wraps allocated block with header and trailer. */
565
566 POINTER_TYPE *
567 overrun_check_malloc (size)
568 size_t size;
569 {
570 register unsigned char *val;
571 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
572
573 val = (unsigned char *) malloc (size + overhead);
574 if (val && check_depth == 1)
575 {
576 memcpy (val, xmalloc_overrun_check_header,
577 XMALLOC_OVERRUN_CHECK_SIZE - 4);
578 val += XMALLOC_OVERRUN_CHECK_SIZE;
579 XMALLOC_PUT_SIZE(val, size);
580 memcpy (val + size, xmalloc_overrun_check_trailer,
581 XMALLOC_OVERRUN_CHECK_SIZE);
582 }
583 --check_depth;
584 return (POINTER_TYPE *)val;
585 }
586
587
588 /* Like realloc, but checks old block for overrun, and wraps new block
589 with header and trailer. */
590
591 POINTER_TYPE *
592 overrun_check_realloc (block, size)
593 POINTER_TYPE *block;
594 size_t size;
595 {
596 register unsigned char *val = (unsigned char *)block;
597 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
598
599 if (val
600 && check_depth == 1
601 && memcmp (xmalloc_overrun_check_header,
602 val - XMALLOC_OVERRUN_CHECK_SIZE,
603 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
604 {
605 size_t osize = XMALLOC_GET_SIZE (val);
606 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
607 XMALLOC_OVERRUN_CHECK_SIZE))
608 abort ();
609 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
610 val -= XMALLOC_OVERRUN_CHECK_SIZE;
611 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
612 }
613
614 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
615
616 if (val && check_depth == 1)
617 {
618 memcpy (val, xmalloc_overrun_check_header,
619 XMALLOC_OVERRUN_CHECK_SIZE - 4);
620 val += XMALLOC_OVERRUN_CHECK_SIZE;
621 XMALLOC_PUT_SIZE(val, size);
622 memcpy (val + size, xmalloc_overrun_check_trailer,
623 XMALLOC_OVERRUN_CHECK_SIZE);
624 }
625 --check_depth;
626 return (POINTER_TYPE *)val;
627 }
628
629 /* Like free, but checks block for overrun. */
630
631 void
632 overrun_check_free (block)
633 POINTER_TYPE *block;
634 {
635 unsigned char *val = (unsigned char *)block;
636
637 ++check_depth;
638 if (val
639 && check_depth == 1
640 && memcmp (xmalloc_overrun_check_header,
641 val - XMALLOC_OVERRUN_CHECK_SIZE,
642 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
643 {
644 size_t osize = XMALLOC_GET_SIZE (val);
645 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
646 XMALLOC_OVERRUN_CHECK_SIZE))
647 abort ();
648 #ifdef XMALLOC_CLEAR_FREE_MEMORY
649 val -= XMALLOC_OVERRUN_CHECK_SIZE;
650 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
651 #else
652 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
653 val -= XMALLOC_OVERRUN_CHECK_SIZE;
654 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
655 #endif
656 }
657
658 free (val);
659 --check_depth;
660 }
661
662 #undef malloc
663 #undef realloc
664 #undef free
665 #define malloc overrun_check_malloc
666 #define realloc overrun_check_realloc
667 #define free overrun_check_free
668 #endif
669
670 #ifdef SYNC_INPUT
671 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
672 there's no need to block input around malloc. */
673 #define MALLOC_BLOCK_INPUT ((void)0)
674 #define MALLOC_UNBLOCK_INPUT ((void)0)
675 #else
676 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
677 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
678 #endif
679
680 /* Like malloc but check for no memory and block interrupt input.. */
681
682 POINTER_TYPE *
683 xmalloc (size_t size)
684 {
685 register POINTER_TYPE *val;
686
687 MALLOC_BLOCK_INPUT;
688 val = (POINTER_TYPE *) malloc (size);
689 MALLOC_UNBLOCK_INPUT;
690
691 if (!val && size)
692 memory_full ();
693 return val;
694 }
695
696
697 /* Like realloc but check for no memory and block interrupt input.. */
698
699 POINTER_TYPE *
700 xrealloc (POINTER_TYPE *block, size_t size)
701 {
702 register POINTER_TYPE *val;
703
704 MALLOC_BLOCK_INPUT;
705 /* We must call malloc explicitly when BLOCK is 0, since some
706 reallocs don't do this. */
707 if (! block)
708 val = (POINTER_TYPE *) malloc (size);
709 else
710 val = (POINTER_TYPE *) realloc (block, size);
711 MALLOC_UNBLOCK_INPUT;
712
713 if (!val && size) memory_full ();
714 return val;
715 }
716
717
718 /* Like free but block interrupt input. */
719
720 void
721 xfree (POINTER_TYPE *block)
722 {
723 if (!block)
724 return;
725 MALLOC_BLOCK_INPUT;
726 free (block);
727 MALLOC_UNBLOCK_INPUT;
728 /* We don't call refill_memory_reserve here
729 because that duplicates doing so in emacs_blocked_free
730 and the criterion should go there. */
731 }
732
733
734 /* Like strdup, but uses xmalloc. */
735
736 char *
737 xstrdup (const char *s)
738 {
739 size_t len = strlen (s) + 1;
740 char *p = (char *) xmalloc (len);
741 memcpy (p, s, len);
742 return p;
743 }
744
745
746 /* Unwind for SAFE_ALLOCA */
747
748 Lisp_Object
749 safe_alloca_unwind (Lisp_Object arg)
750 {
751 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
752
753 p->dogc = 0;
754 xfree (p->pointer);
755 p->pointer = 0;
756 free_misc (arg);
757 return Qnil;
758 }
759
760
761 /* Like malloc but used for allocating Lisp data. NBYTES is the
762 number of bytes to allocate, TYPE describes the intended use of the
763 allcated memory block (for strings, for conses, ...). */
764
765 #ifndef USE_LSB_TAG
766 static void *lisp_malloc_loser;
767 #endif
768
769 static POINTER_TYPE *
770 lisp_malloc (size_t nbytes, enum mem_type type)
771 {
772 register void *val;
773
774 MALLOC_BLOCK_INPUT;
775
776 #ifdef GC_MALLOC_CHECK
777 allocated_mem_type = type;
778 #endif
779
780 val = (void *) malloc (nbytes);
781
782 #ifndef USE_LSB_TAG
783 /* If the memory just allocated cannot be addressed thru a Lisp
784 object's pointer, and it needs to be,
785 that's equivalent to running out of memory. */
786 if (val && type != MEM_TYPE_NON_LISP)
787 {
788 Lisp_Object tem;
789 XSETCONS (tem, (char *) val + nbytes - 1);
790 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
791 {
792 lisp_malloc_loser = val;
793 free (val);
794 val = 0;
795 }
796 }
797 #endif
798
799 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
800 if (val && type != MEM_TYPE_NON_LISP)
801 mem_insert (val, (char *) val + nbytes, type);
802 #endif
803
804 MALLOC_UNBLOCK_INPUT;
805 if (!val && nbytes)
806 memory_full ();
807 return val;
808 }
809
810 /* Free BLOCK. This must be called to free memory allocated with a
811 call to lisp_malloc. */
812
813 static void
814 lisp_free (POINTER_TYPE *block)
815 {
816 MALLOC_BLOCK_INPUT;
817 free (block);
818 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
819 mem_delete (mem_find (block));
820 #endif
821 MALLOC_UNBLOCK_INPUT;
822 }
823
824 /* Allocation of aligned blocks of memory to store Lisp data. */
825 /* The entry point is lisp_align_malloc which returns blocks of at most */
826 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
827
828 /* Use posix_memalloc if the system has it and we're using the system's
829 malloc (because our gmalloc.c routines don't have posix_memalign although
830 its memalloc could be used). */
831 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
832 #define USE_POSIX_MEMALIGN 1
833 #endif
834
835 /* BLOCK_ALIGN has to be a power of 2. */
836 #define BLOCK_ALIGN (1 << 10)
837
838 /* Padding to leave at the end of a malloc'd block. This is to give
839 malloc a chance to minimize the amount of memory wasted to alignment.
840 It should be tuned to the particular malloc library used.
841 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
842 posix_memalign on the other hand would ideally prefer a value of 4
843 because otherwise, there's 1020 bytes wasted between each ablocks.
844 In Emacs, testing shows that those 1020 can most of the time be
845 efficiently used by malloc to place other objects, so a value of 0 can
846 still preferable unless you have a lot of aligned blocks and virtually
847 nothing else. */
848 #define BLOCK_PADDING 0
849 #define BLOCK_BYTES \
850 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
851
852 /* Internal data structures and constants. */
853
854 #define ABLOCKS_SIZE 16
855
856 /* An aligned block of memory. */
857 struct ablock
858 {
859 union
860 {
861 char payload[BLOCK_BYTES];
862 struct ablock *next_free;
863 } x;
864 /* `abase' is the aligned base of the ablocks. */
865 /* It is overloaded to hold the virtual `busy' field that counts
866 the number of used ablock in the parent ablocks.
867 The first ablock has the `busy' field, the others have the `abase'
868 field. To tell the difference, we assume that pointers will have
869 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
870 is used to tell whether the real base of the parent ablocks is `abase'
871 (if not, the word before the first ablock holds a pointer to the
872 real base). */
873 struct ablocks *abase;
874 /* The padding of all but the last ablock is unused. The padding of
875 the last ablock in an ablocks is not allocated. */
876 #if BLOCK_PADDING
877 char padding[BLOCK_PADDING];
878 #endif
879 };
880
881 /* A bunch of consecutive aligned blocks. */
882 struct ablocks
883 {
884 struct ablock blocks[ABLOCKS_SIZE];
885 };
886
887 /* Size of the block requested from malloc or memalign. */
888 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
889
890 #define ABLOCK_ABASE(block) \
891 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
892 ? (struct ablocks *)(block) \
893 : (block)->abase)
894
895 /* Virtual `busy' field. */
896 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
897
898 /* Pointer to the (not necessarily aligned) malloc block. */
899 #ifdef USE_POSIX_MEMALIGN
900 #define ABLOCKS_BASE(abase) (abase)
901 #else
902 #define ABLOCKS_BASE(abase) \
903 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
904 #endif
905
906 /* The list of free ablock. */
907 static struct ablock *free_ablock;
908
909 /* Allocate an aligned block of nbytes.
910 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
911 smaller or equal to BLOCK_BYTES. */
912 static POINTER_TYPE *
913 lisp_align_malloc (size_t nbytes, enum mem_type type)
914 {
915 void *base, *val;
916 struct ablocks *abase;
917
918 eassert (nbytes <= BLOCK_BYTES);
919
920 MALLOC_BLOCK_INPUT;
921
922 #ifdef GC_MALLOC_CHECK
923 allocated_mem_type = type;
924 #endif
925
926 if (!free_ablock)
927 {
928 int i;
929 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
930
931 #ifdef DOUG_LEA_MALLOC
932 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
933 because mapped region contents are not preserved in
934 a dumped Emacs. */
935 mallopt (M_MMAP_MAX, 0);
936 #endif
937
938 #ifdef USE_POSIX_MEMALIGN
939 {
940 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
941 if (err)
942 base = NULL;
943 abase = base;
944 }
945 #else
946 base = malloc (ABLOCKS_BYTES);
947 abase = ALIGN (base, BLOCK_ALIGN);
948 #endif
949
950 if (base == 0)
951 {
952 MALLOC_UNBLOCK_INPUT;
953 memory_full ();
954 }
955
956 aligned = (base == abase);
957 if (!aligned)
958 ((void**)abase)[-1] = base;
959
960 #ifdef DOUG_LEA_MALLOC
961 /* Back to a reasonable maximum of mmap'ed areas. */
962 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
963 #endif
964
965 #ifndef USE_LSB_TAG
966 /* If the memory just allocated cannot be addressed thru a Lisp
967 object's pointer, and it needs to be, that's equivalent to
968 running out of memory. */
969 if (type != MEM_TYPE_NON_LISP)
970 {
971 Lisp_Object tem;
972 char *end = (char *) base + ABLOCKS_BYTES - 1;
973 XSETCONS (tem, end);
974 if ((char *) XCONS (tem) != end)
975 {
976 lisp_malloc_loser = base;
977 free (base);
978 MALLOC_UNBLOCK_INPUT;
979 memory_full ();
980 }
981 }
982 #endif
983
984 /* Initialize the blocks and put them on the free list.
985 Is `base' was not properly aligned, we can't use the last block. */
986 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
987 {
988 abase->blocks[i].abase = abase;
989 abase->blocks[i].x.next_free = free_ablock;
990 free_ablock = &abase->blocks[i];
991 }
992 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
993
994 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
995 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
996 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
997 eassert (ABLOCKS_BASE (abase) == base);
998 eassert (aligned == (long) ABLOCKS_BUSY (abase));
999 }
1000
1001 abase = ABLOCK_ABASE (free_ablock);
1002 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1003 val = free_ablock;
1004 free_ablock = free_ablock->x.next_free;
1005
1006 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1007 if (val && type != MEM_TYPE_NON_LISP)
1008 mem_insert (val, (char *) val + nbytes, type);
1009 #endif
1010
1011 MALLOC_UNBLOCK_INPUT;
1012 if (!val && nbytes)
1013 memory_full ();
1014
1015 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1016 return val;
1017 }
1018
1019 static void
1020 lisp_align_free (POINTER_TYPE *block)
1021 {
1022 struct ablock *ablock = block;
1023 struct ablocks *abase = ABLOCK_ABASE (ablock);
1024
1025 MALLOC_BLOCK_INPUT;
1026 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1027 mem_delete (mem_find (block));
1028 #endif
1029 /* Put on free list. */
1030 ablock->x.next_free = free_ablock;
1031 free_ablock = ablock;
1032 /* Update busy count. */
1033 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1034
1035 if (2 > (long) ABLOCKS_BUSY (abase))
1036 { /* All the blocks are free. */
1037 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1038 struct ablock **tem = &free_ablock;
1039 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1040
1041 while (*tem)
1042 {
1043 if (*tem >= (struct ablock *) abase && *tem < atop)
1044 {
1045 i++;
1046 *tem = (*tem)->x.next_free;
1047 }
1048 else
1049 tem = &(*tem)->x.next_free;
1050 }
1051 eassert ((aligned & 1) == aligned);
1052 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1053 #ifdef USE_POSIX_MEMALIGN
1054 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1055 #endif
1056 free (ABLOCKS_BASE (abase));
1057 }
1058 MALLOC_UNBLOCK_INPUT;
1059 }
1060
1061 /* Return a new buffer structure allocated from the heap with
1062 a call to lisp_malloc. */
1063
1064 struct buffer *
1065 allocate_buffer (void)
1066 {
1067 struct buffer *b
1068 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1069 MEM_TYPE_BUFFER);
1070 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1071 XSETPVECTYPE (b, PVEC_BUFFER);
1072 return b;
1073 }
1074
1075 \f
1076 #ifndef SYSTEM_MALLOC
1077
1078 /* Arranging to disable input signals while we're in malloc.
1079
1080 This only works with GNU malloc. To help out systems which can't
1081 use GNU malloc, all the calls to malloc, realloc, and free
1082 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1083 pair; unfortunately, we have no idea what C library functions
1084 might call malloc, so we can't really protect them unless you're
1085 using GNU malloc. Fortunately, most of the major operating systems
1086 can use GNU malloc. */
1087
1088 #ifndef SYNC_INPUT
1089 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1090 there's no need to block input around malloc. */
1091
1092 #ifndef DOUG_LEA_MALLOC
1093 extern void * (*__malloc_hook) (size_t, const void *);
1094 extern void * (*__realloc_hook) (void *, size_t, const void *);
1095 extern void (*__free_hook) (void *, const void *);
1096 /* Else declared in malloc.h, perhaps with an extra arg. */
1097 #endif /* DOUG_LEA_MALLOC */
1098 static void * (*old_malloc_hook) (size_t, const void *);
1099 static void * (*old_realloc_hook) (void *, size_t, const void*);
1100 static void (*old_free_hook) (void*, const void*);
1101
1102 static __malloc_size_t bytes_used_when_reconsidered;
1103
1104 /* This function is used as the hook for free to call. */
1105
1106 static void
1107 emacs_blocked_free (void *ptr, const void *ptr2)
1108 {
1109 BLOCK_INPUT_ALLOC;
1110
1111 #ifdef GC_MALLOC_CHECK
1112 if (ptr)
1113 {
1114 struct mem_node *m;
1115
1116 m = mem_find (ptr);
1117 if (m == MEM_NIL || m->start != ptr)
1118 {
1119 fprintf (stderr,
1120 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1121 abort ();
1122 }
1123 else
1124 {
1125 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1126 mem_delete (m);
1127 }
1128 }
1129 #endif /* GC_MALLOC_CHECK */
1130
1131 __free_hook = old_free_hook;
1132 free (ptr);
1133
1134 /* If we released our reserve (due to running out of memory),
1135 and we have a fair amount free once again,
1136 try to set aside another reserve in case we run out once more. */
1137 if (! NILP (Vmemory_full)
1138 /* Verify there is enough space that even with the malloc
1139 hysteresis this call won't run out again.
1140 The code here is correct as long as SPARE_MEMORY
1141 is substantially larger than the block size malloc uses. */
1142 && (bytes_used_when_full
1143 > ((bytes_used_when_reconsidered = BYTES_USED)
1144 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1145 refill_memory_reserve ();
1146
1147 __free_hook = emacs_blocked_free;
1148 UNBLOCK_INPUT_ALLOC;
1149 }
1150
1151
1152 /* This function is the malloc hook that Emacs uses. */
1153
1154 static void *
1155 emacs_blocked_malloc (size_t size, const void *ptr)
1156 {
1157 void *value;
1158
1159 BLOCK_INPUT_ALLOC;
1160 __malloc_hook = old_malloc_hook;
1161 #ifdef DOUG_LEA_MALLOC
1162 /* Segfaults on my system. --lorentey */
1163 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1164 #else
1165 __malloc_extra_blocks = malloc_hysteresis;
1166 #endif
1167
1168 value = (void *) malloc (size);
1169
1170 #ifdef GC_MALLOC_CHECK
1171 {
1172 struct mem_node *m = mem_find (value);
1173 if (m != MEM_NIL)
1174 {
1175 fprintf (stderr, "Malloc returned %p which is already in use\n",
1176 value);
1177 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1178 m->start, m->end, (char *) m->end - (char *) m->start,
1179 m->type);
1180 abort ();
1181 }
1182
1183 if (!dont_register_blocks)
1184 {
1185 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1186 allocated_mem_type = MEM_TYPE_NON_LISP;
1187 }
1188 }
1189 #endif /* GC_MALLOC_CHECK */
1190
1191 __malloc_hook = emacs_blocked_malloc;
1192 UNBLOCK_INPUT_ALLOC;
1193
1194 /* fprintf (stderr, "%p malloc\n", value); */
1195 return value;
1196 }
1197
1198
1199 /* This function is the realloc hook that Emacs uses. */
1200
1201 static void *
1202 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1203 {
1204 void *value;
1205
1206 BLOCK_INPUT_ALLOC;
1207 __realloc_hook = old_realloc_hook;
1208
1209 #ifdef GC_MALLOC_CHECK
1210 if (ptr)
1211 {
1212 struct mem_node *m = mem_find (ptr);
1213 if (m == MEM_NIL || m->start != ptr)
1214 {
1215 fprintf (stderr,
1216 "Realloc of %p which wasn't allocated with malloc\n",
1217 ptr);
1218 abort ();
1219 }
1220
1221 mem_delete (m);
1222 }
1223
1224 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1225
1226 /* Prevent malloc from registering blocks. */
1227 dont_register_blocks = 1;
1228 #endif /* GC_MALLOC_CHECK */
1229
1230 value = (void *) realloc (ptr, size);
1231
1232 #ifdef GC_MALLOC_CHECK
1233 dont_register_blocks = 0;
1234
1235 {
1236 struct mem_node *m = mem_find (value);
1237 if (m != MEM_NIL)
1238 {
1239 fprintf (stderr, "Realloc returns memory that is already in use\n");
1240 abort ();
1241 }
1242
1243 /* Can't handle zero size regions in the red-black tree. */
1244 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1245 }
1246
1247 /* fprintf (stderr, "%p <- realloc\n", value); */
1248 #endif /* GC_MALLOC_CHECK */
1249
1250 __realloc_hook = emacs_blocked_realloc;
1251 UNBLOCK_INPUT_ALLOC;
1252
1253 return value;
1254 }
1255
1256
1257 #ifdef HAVE_GTK_AND_PTHREAD
1258 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1259 normal malloc. Some thread implementations need this as they call
1260 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1261 calls malloc because it is the first call, and we have an endless loop. */
1262
1263 void
1264 reset_malloc_hooks ()
1265 {
1266 __free_hook = old_free_hook;
1267 __malloc_hook = old_malloc_hook;
1268 __realloc_hook = old_realloc_hook;
1269 }
1270 #endif /* HAVE_GTK_AND_PTHREAD */
1271
1272
1273 /* Called from main to set up malloc to use our hooks. */
1274
1275 void
1276 uninterrupt_malloc (void)
1277 {
1278 #ifdef HAVE_GTK_AND_PTHREAD
1279 #ifdef DOUG_LEA_MALLOC
1280 pthread_mutexattr_t attr;
1281
1282 /* GLIBC has a faster way to do this, but lets keep it portable.
1283 This is according to the Single UNIX Specification. */
1284 pthread_mutexattr_init (&attr);
1285 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1286 pthread_mutex_init (&alloc_mutex, &attr);
1287 #else /* !DOUG_LEA_MALLOC */
1288 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1289 and the bundled gmalloc.c doesn't require it. */
1290 pthread_mutex_init (&alloc_mutex, NULL);
1291 #endif /* !DOUG_LEA_MALLOC */
1292 #endif /* HAVE_GTK_AND_PTHREAD */
1293
1294 if (__free_hook != emacs_blocked_free)
1295 old_free_hook = __free_hook;
1296 __free_hook = emacs_blocked_free;
1297
1298 if (__malloc_hook != emacs_blocked_malloc)
1299 old_malloc_hook = __malloc_hook;
1300 __malloc_hook = emacs_blocked_malloc;
1301
1302 if (__realloc_hook != emacs_blocked_realloc)
1303 old_realloc_hook = __realloc_hook;
1304 __realloc_hook = emacs_blocked_realloc;
1305 }
1306
1307 #endif /* not SYNC_INPUT */
1308 #endif /* not SYSTEM_MALLOC */
1309
1310
1311 \f
1312 /***********************************************************************
1313 Interval Allocation
1314 ***********************************************************************/
1315
1316 /* Number of intervals allocated in an interval_block structure.
1317 The 1020 is 1024 minus malloc overhead. */
1318
1319 #define INTERVAL_BLOCK_SIZE \
1320 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1321
1322 /* Intervals are allocated in chunks in form of an interval_block
1323 structure. */
1324
1325 struct interval_block
1326 {
1327 /* Place `intervals' first, to preserve alignment. */
1328 struct interval intervals[INTERVAL_BLOCK_SIZE];
1329 struct interval_block *next;
1330 };
1331
1332 /* Current interval block. Its `next' pointer points to older
1333 blocks. */
1334
1335 static struct interval_block *interval_block;
1336
1337 /* Index in interval_block above of the next unused interval
1338 structure. */
1339
1340 static int interval_block_index;
1341
1342 /* Number of free and live intervals. */
1343
1344 static int total_free_intervals, total_intervals;
1345
1346 /* List of free intervals. */
1347
1348 INTERVAL interval_free_list;
1349
1350 /* Total number of interval blocks now in use. */
1351
1352 static int n_interval_blocks;
1353
1354
1355 /* Initialize interval allocation. */
1356
1357 static void
1358 init_intervals (void)
1359 {
1360 interval_block = NULL;
1361 interval_block_index = INTERVAL_BLOCK_SIZE;
1362 interval_free_list = 0;
1363 n_interval_blocks = 0;
1364 }
1365
1366
1367 /* Return a new interval. */
1368
1369 INTERVAL
1370 make_interval (void)
1371 {
1372 INTERVAL val;
1373
1374 /* eassert (!handling_signal); */
1375
1376 MALLOC_BLOCK_INPUT;
1377
1378 if (interval_free_list)
1379 {
1380 val = interval_free_list;
1381 interval_free_list = INTERVAL_PARENT (interval_free_list);
1382 }
1383 else
1384 {
1385 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1386 {
1387 register struct interval_block *newi;
1388
1389 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1390 MEM_TYPE_NON_LISP);
1391
1392 newi->next = interval_block;
1393 interval_block = newi;
1394 interval_block_index = 0;
1395 n_interval_blocks++;
1396 }
1397 val = &interval_block->intervals[interval_block_index++];
1398 }
1399
1400 MALLOC_UNBLOCK_INPUT;
1401
1402 consing_since_gc += sizeof (struct interval);
1403 intervals_consed++;
1404 RESET_INTERVAL (val);
1405 val->gcmarkbit = 0;
1406 return val;
1407 }
1408
1409
1410 /* Mark Lisp objects in interval I. */
1411
1412 static void
1413 mark_interval (register INTERVAL i, Lisp_Object dummy)
1414 {
1415 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1416 i->gcmarkbit = 1;
1417 mark_object (i->plist);
1418 }
1419
1420
1421 /* Mark the interval tree rooted in TREE. Don't call this directly;
1422 use the macro MARK_INTERVAL_TREE instead. */
1423
1424 static void
1425 mark_interval_tree (register INTERVAL tree)
1426 {
1427 /* No need to test if this tree has been marked already; this
1428 function is always called through the MARK_INTERVAL_TREE macro,
1429 which takes care of that. */
1430
1431 traverse_intervals_noorder (tree, mark_interval, Qnil);
1432 }
1433
1434
1435 /* Mark the interval tree rooted in I. */
1436
1437 #define MARK_INTERVAL_TREE(i) \
1438 do { \
1439 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1440 mark_interval_tree (i); \
1441 } while (0)
1442
1443
1444 #define UNMARK_BALANCE_INTERVALS(i) \
1445 do { \
1446 if (! NULL_INTERVAL_P (i)) \
1447 (i) = balance_intervals (i); \
1448 } while (0)
1449
1450 \f
1451 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1452 can't create number objects in macros. */
1453 #ifndef make_number
1454 Lisp_Object
1455 make_number (EMACS_INT n)
1456 {
1457 Lisp_Object obj;
1458 obj.s.val = n;
1459 obj.s.type = Lisp_Int;
1460 return obj;
1461 }
1462 #endif
1463 \f
1464 /***********************************************************************
1465 String Allocation
1466 ***********************************************************************/
1467
1468 /* Lisp_Strings are allocated in string_block structures. When a new
1469 string_block is allocated, all the Lisp_Strings it contains are
1470 added to a free-list string_free_list. When a new Lisp_String is
1471 needed, it is taken from that list. During the sweep phase of GC,
1472 string_blocks that are entirely free are freed, except two which
1473 we keep.
1474
1475 String data is allocated from sblock structures. Strings larger
1476 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1477 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1478
1479 Sblocks consist internally of sdata structures, one for each
1480 Lisp_String. The sdata structure points to the Lisp_String it
1481 belongs to. The Lisp_String points back to the `u.data' member of
1482 its sdata structure.
1483
1484 When a Lisp_String is freed during GC, it is put back on
1485 string_free_list, and its `data' member and its sdata's `string'
1486 pointer is set to null. The size of the string is recorded in the
1487 `u.nbytes' member of the sdata. So, sdata structures that are no
1488 longer used, can be easily recognized, and it's easy to compact the
1489 sblocks of small strings which we do in compact_small_strings. */
1490
1491 /* Size in bytes of an sblock structure used for small strings. This
1492 is 8192 minus malloc overhead. */
1493
1494 #define SBLOCK_SIZE 8188
1495
1496 /* Strings larger than this are considered large strings. String data
1497 for large strings is allocated from individual sblocks. */
1498
1499 #define LARGE_STRING_BYTES 1024
1500
1501 /* Structure describing string memory sub-allocated from an sblock.
1502 This is where the contents of Lisp strings are stored. */
1503
1504 struct sdata
1505 {
1506 /* Back-pointer to the string this sdata belongs to. If null, this
1507 structure is free, and the NBYTES member of the union below
1508 contains the string's byte size (the same value that STRING_BYTES
1509 would return if STRING were non-null). If non-null, STRING_BYTES
1510 (STRING) is the size of the data, and DATA contains the string's
1511 contents. */
1512 struct Lisp_String *string;
1513
1514 #ifdef GC_CHECK_STRING_BYTES
1515
1516 EMACS_INT nbytes;
1517 unsigned char data[1];
1518
1519 #define SDATA_NBYTES(S) (S)->nbytes
1520 #define SDATA_DATA(S) (S)->data
1521
1522 #else /* not GC_CHECK_STRING_BYTES */
1523
1524 union
1525 {
1526 /* When STRING in non-null. */
1527 unsigned char data[1];
1528
1529 /* When STRING is null. */
1530 EMACS_INT nbytes;
1531 } u;
1532
1533
1534 #define SDATA_NBYTES(S) (S)->u.nbytes
1535 #define SDATA_DATA(S) (S)->u.data
1536
1537 #endif /* not GC_CHECK_STRING_BYTES */
1538 };
1539
1540
1541 /* Structure describing a block of memory which is sub-allocated to
1542 obtain string data memory for strings. Blocks for small strings
1543 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1544 as large as needed. */
1545
1546 struct sblock
1547 {
1548 /* Next in list. */
1549 struct sblock *next;
1550
1551 /* Pointer to the next free sdata block. This points past the end
1552 of the sblock if there isn't any space left in this block. */
1553 struct sdata *next_free;
1554
1555 /* Start of data. */
1556 struct sdata first_data;
1557 };
1558
1559 /* Number of Lisp strings in a string_block structure. The 1020 is
1560 1024 minus malloc overhead. */
1561
1562 #define STRING_BLOCK_SIZE \
1563 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1564
1565 /* Structure describing a block from which Lisp_String structures
1566 are allocated. */
1567
1568 struct string_block
1569 {
1570 /* Place `strings' first, to preserve alignment. */
1571 struct Lisp_String strings[STRING_BLOCK_SIZE];
1572 struct string_block *next;
1573 };
1574
1575 /* Head and tail of the list of sblock structures holding Lisp string
1576 data. We always allocate from current_sblock. The NEXT pointers
1577 in the sblock structures go from oldest_sblock to current_sblock. */
1578
1579 static struct sblock *oldest_sblock, *current_sblock;
1580
1581 /* List of sblocks for large strings. */
1582
1583 static struct sblock *large_sblocks;
1584
1585 /* List of string_block structures, and how many there are. */
1586
1587 static struct string_block *string_blocks;
1588 static int n_string_blocks;
1589
1590 /* Free-list of Lisp_Strings. */
1591
1592 static struct Lisp_String *string_free_list;
1593
1594 /* Number of live and free Lisp_Strings. */
1595
1596 static int total_strings, total_free_strings;
1597
1598 /* Number of bytes used by live strings. */
1599
1600 static EMACS_INT total_string_size;
1601
1602 /* Given a pointer to a Lisp_String S which is on the free-list
1603 string_free_list, return a pointer to its successor in the
1604 free-list. */
1605
1606 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1607
1608 /* Return a pointer to the sdata structure belonging to Lisp string S.
1609 S must be live, i.e. S->data must not be null. S->data is actually
1610 a pointer to the `u.data' member of its sdata structure; the
1611 structure starts at a constant offset in front of that. */
1612
1613 #ifdef GC_CHECK_STRING_BYTES
1614
1615 #define SDATA_OF_STRING(S) \
1616 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1617 - sizeof (EMACS_INT)))
1618
1619 #else /* not GC_CHECK_STRING_BYTES */
1620
1621 #define SDATA_OF_STRING(S) \
1622 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1623
1624 #endif /* not GC_CHECK_STRING_BYTES */
1625
1626
1627 #ifdef GC_CHECK_STRING_OVERRUN
1628
1629 /* We check for overrun in string data blocks by appending a small
1630 "cookie" after each allocated string data block, and check for the
1631 presence of this cookie during GC. */
1632
1633 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1634 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1635 { 0xde, 0xad, 0xbe, 0xef };
1636
1637 #else
1638 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1639 #endif
1640
1641 /* Value is the size of an sdata structure large enough to hold NBYTES
1642 bytes of string data. The value returned includes a terminating
1643 NUL byte, the size of the sdata structure, and padding. */
1644
1645 #ifdef GC_CHECK_STRING_BYTES
1646
1647 #define SDATA_SIZE(NBYTES) \
1648 ((sizeof (struct Lisp_String *) \
1649 + (NBYTES) + 1 \
1650 + sizeof (EMACS_INT) \
1651 + sizeof (EMACS_INT) - 1) \
1652 & ~(sizeof (EMACS_INT) - 1))
1653
1654 #else /* not GC_CHECK_STRING_BYTES */
1655
1656 #define SDATA_SIZE(NBYTES) \
1657 ((sizeof (struct Lisp_String *) \
1658 + (NBYTES) + 1 \
1659 + sizeof (EMACS_INT) - 1) \
1660 & ~(sizeof (EMACS_INT) - 1))
1661
1662 #endif /* not GC_CHECK_STRING_BYTES */
1663
1664 /* Extra bytes to allocate for each string. */
1665
1666 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1667
1668 /* Initialize string allocation. Called from init_alloc_once. */
1669
1670 static void
1671 init_strings (void)
1672 {
1673 total_strings = total_free_strings = total_string_size = 0;
1674 oldest_sblock = current_sblock = large_sblocks = NULL;
1675 string_blocks = NULL;
1676 n_string_blocks = 0;
1677 string_free_list = NULL;
1678 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1679 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1680 }
1681
1682
1683 #ifdef GC_CHECK_STRING_BYTES
1684
1685 static int check_string_bytes_count;
1686
1687 static void check_string_bytes (int);
1688 static void check_sblock (struct sblock *);
1689
1690 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1691
1692
1693 /* Like GC_STRING_BYTES, but with debugging check. */
1694
1695 EMACS_INT
1696 string_bytes (struct Lisp_String *s)
1697 {
1698 EMACS_INT nbytes =
1699 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1700
1701 if (!PURE_POINTER_P (s)
1702 && s->data
1703 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1704 abort ();
1705 return nbytes;
1706 }
1707
1708 /* Check validity of Lisp strings' string_bytes member in B. */
1709
1710 static void
1711 check_sblock (b)
1712 struct sblock *b;
1713 {
1714 struct sdata *from, *end, *from_end;
1715
1716 end = b->next_free;
1717
1718 for (from = &b->first_data; from < end; from = from_end)
1719 {
1720 /* Compute the next FROM here because copying below may
1721 overwrite data we need to compute it. */
1722 EMACS_INT nbytes;
1723
1724 /* Check that the string size recorded in the string is the
1725 same as the one recorded in the sdata structure. */
1726 if (from->string)
1727 CHECK_STRING_BYTES (from->string);
1728
1729 if (from->string)
1730 nbytes = GC_STRING_BYTES (from->string);
1731 else
1732 nbytes = SDATA_NBYTES (from);
1733
1734 nbytes = SDATA_SIZE (nbytes);
1735 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1736 }
1737 }
1738
1739
1740 /* Check validity of Lisp strings' string_bytes member. ALL_P
1741 non-zero means check all strings, otherwise check only most
1742 recently allocated strings. Used for hunting a bug. */
1743
1744 static void
1745 check_string_bytes (all_p)
1746 int all_p;
1747 {
1748 if (all_p)
1749 {
1750 struct sblock *b;
1751
1752 for (b = large_sblocks; b; b = b->next)
1753 {
1754 struct Lisp_String *s = b->first_data.string;
1755 if (s)
1756 CHECK_STRING_BYTES (s);
1757 }
1758
1759 for (b = oldest_sblock; b; b = b->next)
1760 check_sblock (b);
1761 }
1762 else
1763 check_sblock (current_sblock);
1764 }
1765
1766 #endif /* GC_CHECK_STRING_BYTES */
1767
1768 #ifdef GC_CHECK_STRING_FREE_LIST
1769
1770 /* Walk through the string free list looking for bogus next pointers.
1771 This may catch buffer overrun from a previous string. */
1772
1773 static void
1774 check_string_free_list ()
1775 {
1776 struct Lisp_String *s;
1777
1778 /* Pop a Lisp_String off the free-list. */
1779 s = string_free_list;
1780 while (s != NULL)
1781 {
1782 if ((unsigned long)s < 1024)
1783 abort();
1784 s = NEXT_FREE_LISP_STRING (s);
1785 }
1786 }
1787 #else
1788 #define check_string_free_list()
1789 #endif
1790
1791 /* Return a new Lisp_String. */
1792
1793 static struct Lisp_String *
1794 allocate_string (void)
1795 {
1796 struct Lisp_String *s;
1797
1798 /* eassert (!handling_signal); */
1799
1800 MALLOC_BLOCK_INPUT;
1801
1802 /* If the free-list is empty, allocate a new string_block, and
1803 add all the Lisp_Strings in it to the free-list. */
1804 if (string_free_list == NULL)
1805 {
1806 struct string_block *b;
1807 int i;
1808
1809 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1810 memset (b, 0, sizeof *b);
1811 b->next = string_blocks;
1812 string_blocks = b;
1813 ++n_string_blocks;
1814
1815 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1816 {
1817 s = b->strings + i;
1818 NEXT_FREE_LISP_STRING (s) = string_free_list;
1819 string_free_list = s;
1820 }
1821
1822 total_free_strings += STRING_BLOCK_SIZE;
1823 }
1824
1825 check_string_free_list ();
1826
1827 /* Pop a Lisp_String off the free-list. */
1828 s = string_free_list;
1829 string_free_list = NEXT_FREE_LISP_STRING (s);
1830
1831 MALLOC_UNBLOCK_INPUT;
1832
1833 /* Probably not strictly necessary, but play it safe. */
1834 memset (s, 0, sizeof *s);
1835
1836 --total_free_strings;
1837 ++total_strings;
1838 ++strings_consed;
1839 consing_since_gc += sizeof *s;
1840
1841 #ifdef GC_CHECK_STRING_BYTES
1842 if (!noninteractive)
1843 {
1844 if (++check_string_bytes_count == 200)
1845 {
1846 check_string_bytes_count = 0;
1847 check_string_bytes (1);
1848 }
1849 else
1850 check_string_bytes (0);
1851 }
1852 #endif /* GC_CHECK_STRING_BYTES */
1853
1854 return s;
1855 }
1856
1857
1858 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1859 plus a NUL byte at the end. Allocate an sdata structure for S, and
1860 set S->data to its `u.data' member. Store a NUL byte at the end of
1861 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1862 S->data if it was initially non-null. */
1863
1864 void
1865 allocate_string_data (struct Lisp_String *s,
1866 EMACS_INT nchars, EMACS_INT nbytes)
1867 {
1868 struct sdata *data, *old_data;
1869 struct sblock *b;
1870 EMACS_INT needed, old_nbytes;
1871
1872 /* Determine the number of bytes needed to store NBYTES bytes
1873 of string data. */
1874 needed = SDATA_SIZE (nbytes);
1875 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1876 old_nbytes = GC_STRING_BYTES (s);
1877
1878 MALLOC_BLOCK_INPUT;
1879
1880 if (nbytes > LARGE_STRING_BYTES)
1881 {
1882 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1883
1884 #ifdef DOUG_LEA_MALLOC
1885 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1886 because mapped region contents are not preserved in
1887 a dumped Emacs.
1888
1889 In case you think of allowing it in a dumped Emacs at the
1890 cost of not being able to re-dump, there's another reason:
1891 mmap'ed data typically have an address towards the top of the
1892 address space, which won't fit into an EMACS_INT (at least on
1893 32-bit systems with the current tagging scheme). --fx */
1894 mallopt (M_MMAP_MAX, 0);
1895 #endif
1896
1897 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1898
1899 #ifdef DOUG_LEA_MALLOC
1900 /* Back to a reasonable maximum of mmap'ed areas. */
1901 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1902 #endif
1903
1904 b->next_free = &b->first_data;
1905 b->first_data.string = NULL;
1906 b->next = large_sblocks;
1907 large_sblocks = b;
1908 }
1909 else if (current_sblock == NULL
1910 || (((char *) current_sblock + SBLOCK_SIZE
1911 - (char *) current_sblock->next_free)
1912 < (needed + GC_STRING_EXTRA)))
1913 {
1914 /* Not enough room in the current sblock. */
1915 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1916 b->next_free = &b->first_data;
1917 b->first_data.string = NULL;
1918 b->next = NULL;
1919
1920 if (current_sblock)
1921 current_sblock->next = b;
1922 else
1923 oldest_sblock = b;
1924 current_sblock = b;
1925 }
1926 else
1927 b = current_sblock;
1928
1929 data = b->next_free;
1930 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1931
1932 MALLOC_UNBLOCK_INPUT;
1933
1934 data->string = s;
1935 s->data = SDATA_DATA (data);
1936 #ifdef GC_CHECK_STRING_BYTES
1937 SDATA_NBYTES (data) = nbytes;
1938 #endif
1939 s->size = nchars;
1940 s->size_byte = nbytes;
1941 s->data[nbytes] = '\0';
1942 #ifdef GC_CHECK_STRING_OVERRUN
1943 memcpy (data + needed, string_overrun_cookie, GC_STRING_OVERRUN_COOKIE_SIZE);
1944 #endif
1945
1946 /* If S had already data assigned, mark that as free by setting its
1947 string back-pointer to null, and recording the size of the data
1948 in it. */
1949 if (old_data)
1950 {
1951 SDATA_NBYTES (old_data) = old_nbytes;
1952 old_data->string = NULL;
1953 }
1954
1955 consing_since_gc += needed;
1956 }
1957
1958
1959 /* Sweep and compact strings. */
1960
1961 static void
1962 sweep_strings (void)
1963 {
1964 struct string_block *b, *next;
1965 struct string_block *live_blocks = NULL;
1966
1967 string_free_list = NULL;
1968 total_strings = total_free_strings = 0;
1969 total_string_size = 0;
1970
1971 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1972 for (b = string_blocks; b; b = next)
1973 {
1974 int i, nfree = 0;
1975 struct Lisp_String *free_list_before = string_free_list;
1976
1977 next = b->next;
1978
1979 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1980 {
1981 struct Lisp_String *s = b->strings + i;
1982
1983 if (s->data)
1984 {
1985 /* String was not on free-list before. */
1986 if (STRING_MARKED_P (s))
1987 {
1988 /* String is live; unmark it and its intervals. */
1989 UNMARK_STRING (s);
1990
1991 if (!NULL_INTERVAL_P (s->intervals))
1992 UNMARK_BALANCE_INTERVALS (s->intervals);
1993
1994 ++total_strings;
1995 total_string_size += STRING_BYTES (s);
1996 }
1997 else
1998 {
1999 /* String is dead. Put it on the free-list. */
2000 struct sdata *data = SDATA_OF_STRING (s);
2001
2002 /* Save the size of S in its sdata so that we know
2003 how large that is. Reset the sdata's string
2004 back-pointer so that we know it's free. */
2005 #ifdef GC_CHECK_STRING_BYTES
2006 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2007 abort ();
2008 #else
2009 data->u.nbytes = GC_STRING_BYTES (s);
2010 #endif
2011 data->string = NULL;
2012
2013 /* Reset the strings's `data' member so that we
2014 know it's free. */
2015 s->data = NULL;
2016
2017 /* Put the string on the free-list. */
2018 NEXT_FREE_LISP_STRING (s) = string_free_list;
2019 string_free_list = s;
2020 ++nfree;
2021 }
2022 }
2023 else
2024 {
2025 /* S was on the free-list before. Put it there again. */
2026 NEXT_FREE_LISP_STRING (s) = string_free_list;
2027 string_free_list = s;
2028 ++nfree;
2029 }
2030 }
2031
2032 /* Free blocks that contain free Lisp_Strings only, except
2033 the first two of them. */
2034 if (nfree == STRING_BLOCK_SIZE
2035 && total_free_strings > STRING_BLOCK_SIZE)
2036 {
2037 lisp_free (b);
2038 --n_string_blocks;
2039 string_free_list = free_list_before;
2040 }
2041 else
2042 {
2043 total_free_strings += nfree;
2044 b->next = live_blocks;
2045 live_blocks = b;
2046 }
2047 }
2048
2049 check_string_free_list ();
2050
2051 string_blocks = live_blocks;
2052 free_large_strings ();
2053 compact_small_strings ();
2054
2055 check_string_free_list ();
2056 }
2057
2058
2059 /* Free dead large strings. */
2060
2061 static void
2062 free_large_strings (void)
2063 {
2064 struct sblock *b, *next;
2065 struct sblock *live_blocks = NULL;
2066
2067 for (b = large_sblocks; b; b = next)
2068 {
2069 next = b->next;
2070
2071 if (b->first_data.string == NULL)
2072 lisp_free (b);
2073 else
2074 {
2075 b->next = live_blocks;
2076 live_blocks = b;
2077 }
2078 }
2079
2080 large_sblocks = live_blocks;
2081 }
2082
2083
2084 /* Compact data of small strings. Free sblocks that don't contain
2085 data of live strings after compaction. */
2086
2087 static void
2088 compact_small_strings (void)
2089 {
2090 struct sblock *b, *tb, *next;
2091 struct sdata *from, *to, *end, *tb_end;
2092 struct sdata *to_end, *from_end;
2093
2094 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2095 to, and TB_END is the end of TB. */
2096 tb = oldest_sblock;
2097 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2098 to = &tb->first_data;
2099
2100 /* Step through the blocks from the oldest to the youngest. We
2101 expect that old blocks will stabilize over time, so that less
2102 copying will happen this way. */
2103 for (b = oldest_sblock; b; b = b->next)
2104 {
2105 end = b->next_free;
2106 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2107
2108 for (from = &b->first_data; from < end; from = from_end)
2109 {
2110 /* Compute the next FROM here because copying below may
2111 overwrite data we need to compute it. */
2112 EMACS_INT nbytes;
2113
2114 #ifdef GC_CHECK_STRING_BYTES
2115 /* Check that the string size recorded in the string is the
2116 same as the one recorded in the sdata structure. */
2117 if (from->string
2118 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2119 abort ();
2120 #endif /* GC_CHECK_STRING_BYTES */
2121
2122 if (from->string)
2123 nbytes = GC_STRING_BYTES (from->string);
2124 else
2125 nbytes = SDATA_NBYTES (from);
2126
2127 if (nbytes > LARGE_STRING_BYTES)
2128 abort ();
2129
2130 nbytes = SDATA_SIZE (nbytes);
2131 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2132
2133 #ifdef GC_CHECK_STRING_OVERRUN
2134 if (memcmp (string_overrun_cookie,
2135 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2136 GC_STRING_OVERRUN_COOKIE_SIZE))
2137 abort ();
2138 #endif
2139
2140 /* FROM->string non-null means it's alive. Copy its data. */
2141 if (from->string)
2142 {
2143 /* If TB is full, proceed with the next sblock. */
2144 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2145 if (to_end > tb_end)
2146 {
2147 tb->next_free = to;
2148 tb = tb->next;
2149 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2150 to = &tb->first_data;
2151 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2152 }
2153
2154 /* Copy, and update the string's `data' pointer. */
2155 if (from != to)
2156 {
2157 xassert (tb != b || to <= from);
2158 memmove (to, from, nbytes + GC_STRING_EXTRA);
2159 to->string->data = SDATA_DATA (to);
2160 }
2161
2162 /* Advance past the sdata we copied to. */
2163 to = to_end;
2164 }
2165 }
2166 }
2167
2168 /* The rest of the sblocks following TB don't contain live data, so
2169 we can free them. */
2170 for (b = tb->next; b; b = next)
2171 {
2172 next = b->next;
2173 lisp_free (b);
2174 }
2175
2176 tb->next_free = to;
2177 tb->next = NULL;
2178 current_sblock = tb;
2179 }
2180
2181
2182 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2183 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2184 LENGTH must be an integer.
2185 INIT must be an integer that represents a character. */)
2186 (Lisp_Object length, Lisp_Object init)
2187 {
2188 register Lisp_Object val;
2189 register unsigned char *p, *end;
2190 int c;
2191 EMACS_INT nbytes;
2192
2193 CHECK_NATNUM (length);
2194 CHECK_NUMBER (init);
2195
2196 c = XINT (init);
2197 if (ASCII_CHAR_P (c))
2198 {
2199 nbytes = XINT (length);
2200 val = make_uninit_string (nbytes);
2201 p = SDATA (val);
2202 end = p + SCHARS (val);
2203 while (p != end)
2204 *p++ = c;
2205 }
2206 else
2207 {
2208 unsigned char str[MAX_MULTIBYTE_LENGTH];
2209 int len = CHAR_STRING (c, str);
2210 EMACS_INT string_len = XINT (length);
2211
2212 if (string_len > MOST_POSITIVE_FIXNUM / len)
2213 error ("Maximum string size exceeded");
2214 nbytes = len * string_len;
2215 val = make_uninit_multibyte_string (string_len, nbytes);
2216 p = SDATA (val);
2217 end = p + nbytes;
2218 while (p != end)
2219 {
2220 memcpy (p, str, len);
2221 p += len;
2222 }
2223 }
2224
2225 *p = 0;
2226 return val;
2227 }
2228
2229
2230 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2231 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2232 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2233 (Lisp_Object length, Lisp_Object init)
2234 {
2235 register Lisp_Object val;
2236 struct Lisp_Bool_Vector *p;
2237 int real_init, i;
2238 EMACS_INT length_in_chars, length_in_elts;
2239 int bits_per_value;
2240
2241 CHECK_NATNUM (length);
2242
2243 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2244
2245 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2246 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2247 / BOOL_VECTOR_BITS_PER_CHAR);
2248
2249 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2250 slot `size' of the struct Lisp_Bool_Vector. */
2251 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2252
2253 /* Get rid of any bits that would cause confusion. */
2254 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2255 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2256 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2257
2258 p = XBOOL_VECTOR (val);
2259 p->size = XFASTINT (length);
2260
2261 real_init = (NILP (init) ? 0 : -1);
2262 for (i = 0; i < length_in_chars ; i++)
2263 p->data[i] = real_init;
2264
2265 /* Clear the extraneous bits in the last byte. */
2266 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2267 p->data[length_in_chars - 1]
2268 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2269
2270 return val;
2271 }
2272
2273
2274 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2275 of characters from the contents. This string may be unibyte or
2276 multibyte, depending on the contents. */
2277
2278 Lisp_Object
2279 make_string (const char *contents, EMACS_INT nbytes)
2280 {
2281 register Lisp_Object val;
2282 EMACS_INT nchars, multibyte_nbytes;
2283
2284 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2285 if (nbytes == nchars || nbytes != multibyte_nbytes)
2286 /* CONTENTS contains no multibyte sequences or contains an invalid
2287 multibyte sequence. We must make unibyte string. */
2288 val = make_unibyte_string (contents, nbytes);
2289 else
2290 val = make_multibyte_string (contents, nchars, nbytes);
2291 return val;
2292 }
2293
2294
2295 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2296
2297 Lisp_Object
2298 make_unibyte_string (const char *contents, EMACS_INT length)
2299 {
2300 register Lisp_Object val;
2301 val = make_uninit_string (length);
2302 memcpy (SDATA (val), contents, length);
2303 STRING_SET_UNIBYTE (val);
2304 return val;
2305 }
2306
2307
2308 /* Make a multibyte string from NCHARS characters occupying NBYTES
2309 bytes at CONTENTS. */
2310
2311 Lisp_Object
2312 make_multibyte_string (const char *contents,
2313 EMACS_INT nchars, EMACS_INT nbytes)
2314 {
2315 register Lisp_Object val;
2316 val = make_uninit_multibyte_string (nchars, nbytes);
2317 memcpy (SDATA (val), contents, nbytes);
2318 return val;
2319 }
2320
2321
2322 /* Make a string from NCHARS characters occupying NBYTES bytes at
2323 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2324
2325 Lisp_Object
2326 make_string_from_bytes (const char *contents,
2327 EMACS_INT nchars, EMACS_INT nbytes)
2328 {
2329 register Lisp_Object val;
2330 val = make_uninit_multibyte_string (nchars, nbytes);
2331 memcpy (SDATA (val), contents, nbytes);
2332 if (SBYTES (val) == SCHARS (val))
2333 STRING_SET_UNIBYTE (val);
2334 return val;
2335 }
2336
2337
2338 /* Make a string from NCHARS characters occupying NBYTES bytes at
2339 CONTENTS. The argument MULTIBYTE controls whether to label the
2340 string as multibyte. If NCHARS is negative, it counts the number of
2341 characters by itself. */
2342
2343 Lisp_Object
2344 make_specified_string (const char *contents,
2345 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2346 {
2347 register Lisp_Object val;
2348
2349 if (nchars < 0)
2350 {
2351 if (multibyte)
2352 nchars = multibyte_chars_in_text (contents, nbytes);
2353 else
2354 nchars = nbytes;
2355 }
2356 val = make_uninit_multibyte_string (nchars, nbytes);
2357 memcpy (SDATA (val), contents, nbytes);
2358 if (!multibyte)
2359 STRING_SET_UNIBYTE (val);
2360 return val;
2361 }
2362
2363
2364 /* Make a string from the data at STR, treating it as multibyte if the
2365 data warrants. */
2366
2367 Lisp_Object
2368 build_string (const char *str)
2369 {
2370 return make_string (str, strlen (str));
2371 }
2372
2373
2374 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2375 occupying LENGTH bytes. */
2376
2377 Lisp_Object
2378 make_uninit_string (EMACS_INT length)
2379 {
2380 Lisp_Object val;
2381
2382 if (!length)
2383 return empty_unibyte_string;
2384 val = make_uninit_multibyte_string (length, length);
2385 STRING_SET_UNIBYTE (val);
2386 return val;
2387 }
2388
2389
2390 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2391 which occupy NBYTES bytes. */
2392
2393 Lisp_Object
2394 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2395 {
2396 Lisp_Object string;
2397 struct Lisp_String *s;
2398
2399 if (nchars < 0)
2400 abort ();
2401 if (!nbytes)
2402 return empty_multibyte_string;
2403
2404 s = allocate_string ();
2405 allocate_string_data (s, nchars, nbytes);
2406 XSETSTRING (string, s);
2407 string_chars_consed += nbytes;
2408 return string;
2409 }
2410
2411
2412 \f
2413 /***********************************************************************
2414 Float Allocation
2415 ***********************************************************************/
2416
2417 /* We store float cells inside of float_blocks, allocating a new
2418 float_block with malloc whenever necessary. Float cells reclaimed
2419 by GC are put on a free list to be reallocated before allocating
2420 any new float cells from the latest float_block. */
2421
2422 #define FLOAT_BLOCK_SIZE \
2423 (((BLOCK_BYTES - sizeof (struct float_block *) \
2424 /* The compiler might add padding at the end. */ \
2425 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2426 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2427
2428 #define GETMARKBIT(block,n) \
2429 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2430 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2431 & 1)
2432
2433 #define SETMARKBIT(block,n) \
2434 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2435 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2436
2437 #define UNSETMARKBIT(block,n) \
2438 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2439 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2440
2441 #define FLOAT_BLOCK(fptr) \
2442 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2443
2444 #define FLOAT_INDEX(fptr) \
2445 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2446
2447 struct float_block
2448 {
2449 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2450 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2451 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2452 struct float_block *next;
2453 };
2454
2455 #define FLOAT_MARKED_P(fptr) \
2456 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2457
2458 #define FLOAT_MARK(fptr) \
2459 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2460
2461 #define FLOAT_UNMARK(fptr) \
2462 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2463
2464 /* Current float_block. */
2465
2466 struct float_block *float_block;
2467
2468 /* Index of first unused Lisp_Float in the current float_block. */
2469
2470 int float_block_index;
2471
2472 /* Total number of float blocks now in use. */
2473
2474 int n_float_blocks;
2475
2476 /* Free-list of Lisp_Floats. */
2477
2478 struct Lisp_Float *float_free_list;
2479
2480
2481 /* Initialize float allocation. */
2482
2483 static void
2484 init_float (void)
2485 {
2486 float_block = NULL;
2487 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2488 float_free_list = 0;
2489 n_float_blocks = 0;
2490 }
2491
2492
2493 /* Return a new float object with value FLOAT_VALUE. */
2494
2495 Lisp_Object
2496 make_float (double float_value)
2497 {
2498 register Lisp_Object val;
2499
2500 /* eassert (!handling_signal); */
2501
2502 MALLOC_BLOCK_INPUT;
2503
2504 if (float_free_list)
2505 {
2506 /* We use the data field for chaining the free list
2507 so that we won't use the same field that has the mark bit. */
2508 XSETFLOAT (val, float_free_list);
2509 float_free_list = float_free_list->u.chain;
2510 }
2511 else
2512 {
2513 if (float_block_index == FLOAT_BLOCK_SIZE)
2514 {
2515 register struct float_block *new;
2516
2517 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2518 MEM_TYPE_FLOAT);
2519 new->next = float_block;
2520 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2521 float_block = new;
2522 float_block_index = 0;
2523 n_float_blocks++;
2524 }
2525 XSETFLOAT (val, &float_block->floats[float_block_index]);
2526 float_block_index++;
2527 }
2528
2529 MALLOC_UNBLOCK_INPUT;
2530
2531 XFLOAT_INIT (val, float_value);
2532 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2533 consing_since_gc += sizeof (struct Lisp_Float);
2534 floats_consed++;
2535 return val;
2536 }
2537
2538
2539 \f
2540 /***********************************************************************
2541 Cons Allocation
2542 ***********************************************************************/
2543
2544 /* We store cons cells inside of cons_blocks, allocating a new
2545 cons_block with malloc whenever necessary. Cons cells reclaimed by
2546 GC are put on a free list to be reallocated before allocating
2547 any new cons cells from the latest cons_block. */
2548
2549 #define CONS_BLOCK_SIZE \
2550 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2551 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2552
2553 #define CONS_BLOCK(fptr) \
2554 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2555
2556 #define CONS_INDEX(fptr) \
2557 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2558
2559 struct cons_block
2560 {
2561 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2562 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2563 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2564 struct cons_block *next;
2565 };
2566
2567 #define CONS_MARKED_P(fptr) \
2568 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2569
2570 #define CONS_MARK(fptr) \
2571 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2572
2573 #define CONS_UNMARK(fptr) \
2574 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2575
2576 /* Current cons_block. */
2577
2578 struct cons_block *cons_block;
2579
2580 /* Index of first unused Lisp_Cons in the current block. */
2581
2582 int cons_block_index;
2583
2584 /* Free-list of Lisp_Cons structures. */
2585
2586 struct Lisp_Cons *cons_free_list;
2587
2588 /* Total number of cons blocks now in use. */
2589
2590 static int n_cons_blocks;
2591
2592
2593 /* Initialize cons allocation. */
2594
2595 static void
2596 init_cons (void)
2597 {
2598 cons_block = NULL;
2599 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2600 cons_free_list = 0;
2601 n_cons_blocks = 0;
2602 }
2603
2604
2605 /* Explicitly free a cons cell by putting it on the free-list. */
2606
2607 void
2608 free_cons (struct Lisp_Cons *ptr)
2609 {
2610 ptr->u.chain = cons_free_list;
2611 #if GC_MARK_STACK
2612 ptr->car = Vdead;
2613 #endif
2614 cons_free_list = ptr;
2615 }
2616
2617 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2618 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2619 (Lisp_Object car, Lisp_Object cdr)
2620 {
2621 register Lisp_Object val;
2622
2623 /* eassert (!handling_signal); */
2624
2625 MALLOC_BLOCK_INPUT;
2626
2627 if (cons_free_list)
2628 {
2629 /* We use the cdr for chaining the free list
2630 so that we won't use the same field that has the mark bit. */
2631 XSETCONS (val, cons_free_list);
2632 cons_free_list = cons_free_list->u.chain;
2633 }
2634 else
2635 {
2636 if (cons_block_index == CONS_BLOCK_SIZE)
2637 {
2638 register struct cons_block *new;
2639 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2640 MEM_TYPE_CONS);
2641 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2642 new->next = cons_block;
2643 cons_block = new;
2644 cons_block_index = 0;
2645 n_cons_blocks++;
2646 }
2647 XSETCONS (val, &cons_block->conses[cons_block_index]);
2648 cons_block_index++;
2649 }
2650
2651 MALLOC_UNBLOCK_INPUT;
2652
2653 XSETCAR (val, car);
2654 XSETCDR (val, cdr);
2655 eassert (!CONS_MARKED_P (XCONS (val)));
2656 consing_since_gc += sizeof (struct Lisp_Cons);
2657 cons_cells_consed++;
2658 return val;
2659 }
2660
2661 /* Get an error now if there's any junk in the cons free list. */
2662 void
2663 check_cons_list (void)
2664 {
2665 #ifdef GC_CHECK_CONS_LIST
2666 struct Lisp_Cons *tail = cons_free_list;
2667
2668 while (tail)
2669 tail = tail->u.chain;
2670 #endif
2671 }
2672
2673 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2674
2675 Lisp_Object
2676 list1 (Lisp_Object arg1)
2677 {
2678 return Fcons (arg1, Qnil);
2679 }
2680
2681 Lisp_Object
2682 list2 (Lisp_Object arg1, Lisp_Object arg2)
2683 {
2684 return Fcons (arg1, Fcons (arg2, Qnil));
2685 }
2686
2687
2688 Lisp_Object
2689 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2690 {
2691 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2692 }
2693
2694
2695 Lisp_Object
2696 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2697 {
2698 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2699 }
2700
2701
2702 Lisp_Object
2703 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2704 {
2705 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2706 Fcons (arg5, Qnil)))));
2707 }
2708
2709
2710 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2711 doc: /* Return a newly created list with specified arguments as elements.
2712 Any number of arguments, even zero arguments, are allowed.
2713 usage: (list &rest OBJECTS) */)
2714 (int nargs, register Lisp_Object *args)
2715 {
2716 register Lisp_Object val;
2717 val = Qnil;
2718
2719 while (nargs > 0)
2720 {
2721 nargs--;
2722 val = Fcons (args[nargs], val);
2723 }
2724 return val;
2725 }
2726
2727
2728 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2729 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2730 (register Lisp_Object length, Lisp_Object init)
2731 {
2732 register Lisp_Object val;
2733 register EMACS_INT size;
2734
2735 CHECK_NATNUM (length);
2736 size = XFASTINT (length);
2737
2738 val = Qnil;
2739 while (size > 0)
2740 {
2741 val = Fcons (init, val);
2742 --size;
2743
2744 if (size > 0)
2745 {
2746 val = Fcons (init, val);
2747 --size;
2748
2749 if (size > 0)
2750 {
2751 val = Fcons (init, val);
2752 --size;
2753
2754 if (size > 0)
2755 {
2756 val = Fcons (init, val);
2757 --size;
2758
2759 if (size > 0)
2760 {
2761 val = Fcons (init, val);
2762 --size;
2763 }
2764 }
2765 }
2766 }
2767
2768 QUIT;
2769 }
2770
2771 return val;
2772 }
2773
2774
2775 \f
2776 /***********************************************************************
2777 Vector Allocation
2778 ***********************************************************************/
2779
2780 /* Singly-linked list of all vectors. */
2781
2782 static struct Lisp_Vector *all_vectors;
2783
2784 /* Total number of vector-like objects now in use. */
2785
2786 static int n_vectors;
2787
2788
2789 /* Value is a pointer to a newly allocated Lisp_Vector structure
2790 with room for LEN Lisp_Objects. */
2791
2792 static struct Lisp_Vector *
2793 allocate_vectorlike (EMACS_INT len)
2794 {
2795 struct Lisp_Vector *p;
2796 size_t nbytes;
2797
2798 MALLOC_BLOCK_INPUT;
2799
2800 #ifdef DOUG_LEA_MALLOC
2801 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2802 because mapped region contents are not preserved in
2803 a dumped Emacs. */
2804 mallopt (M_MMAP_MAX, 0);
2805 #endif
2806
2807 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2808 /* eassert (!handling_signal); */
2809
2810 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2811 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2812
2813 #ifdef DOUG_LEA_MALLOC
2814 /* Back to a reasonable maximum of mmap'ed areas. */
2815 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2816 #endif
2817
2818 consing_since_gc += nbytes;
2819 vector_cells_consed += len;
2820
2821 p->next = all_vectors;
2822 all_vectors = p;
2823
2824 MALLOC_UNBLOCK_INPUT;
2825
2826 ++n_vectors;
2827 return p;
2828 }
2829
2830
2831 /* Allocate a vector with NSLOTS slots. */
2832
2833 struct Lisp_Vector *
2834 allocate_vector (EMACS_INT nslots)
2835 {
2836 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2837 v->size = nslots;
2838 return v;
2839 }
2840
2841
2842 /* Allocate other vector-like structures. */
2843
2844 struct Lisp_Vector *
2845 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2846 {
2847 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2848 EMACS_INT i;
2849
2850 /* Only the first lisplen slots will be traced normally by the GC. */
2851 v->size = lisplen;
2852 for (i = 0; i < lisplen; ++i)
2853 v->contents[i] = Qnil;
2854
2855 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2856 return v;
2857 }
2858
2859 struct Lisp_Hash_Table *
2860 allocate_hash_table (void)
2861 {
2862 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2863 }
2864
2865
2866 struct window *
2867 allocate_window (void)
2868 {
2869 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2870 }
2871
2872
2873 struct terminal *
2874 allocate_terminal (void)
2875 {
2876 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2877 next_terminal, PVEC_TERMINAL);
2878 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2879 memset (&t->next_terminal, 0,
2880 (char*) (t + 1) - (char*) &t->next_terminal);
2881
2882 return t;
2883 }
2884
2885 struct frame *
2886 allocate_frame (void)
2887 {
2888 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2889 face_cache, PVEC_FRAME);
2890 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2891 memset (&f->face_cache, 0,
2892 (char *) (f + 1) - (char *) &f->face_cache);
2893 return f;
2894 }
2895
2896
2897 struct Lisp_Process *
2898 allocate_process (void)
2899 {
2900 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2901 }
2902
2903
2904 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2905 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2906 See also the function `vector'. */)
2907 (register Lisp_Object length, Lisp_Object init)
2908 {
2909 Lisp_Object vector;
2910 register EMACS_INT sizei;
2911 register EMACS_INT index;
2912 register struct Lisp_Vector *p;
2913
2914 CHECK_NATNUM (length);
2915 sizei = XFASTINT (length);
2916
2917 p = allocate_vector (sizei);
2918 for (index = 0; index < sizei; index++)
2919 p->contents[index] = init;
2920
2921 XSETVECTOR (vector, p);
2922 return vector;
2923 }
2924
2925
2926 /* Return a new `function vector' containing KIND as the first element,
2927 followed by NUM_NIL_SLOTS nil elements, and further elements copied from
2928 the vector PARAMS of length NUM_PARAMS (so the total length of the
2929 resulting vector is 1 + NUM_NIL_SLOTS + NUM_PARAMS).
2930
2931 If NUM_PARAMS is zero, then PARAMS may be NULL.
2932
2933 A `function vector', a.k.a. `funvec', is a funcallable vector in Emacs Lisp.
2934 See the function `funvec' for more detail. */
2935
2936 Lisp_Object
2937 make_funvec (Lisp_Object kind, int num_nil_slots, int num_params,
2938 Lisp_Object *params)
2939 {
2940 int param_index;
2941 Lisp_Object funvec;
2942
2943 funvec = Fmake_vector (make_number (1 + num_nil_slots + num_params), Qnil);
2944
2945 ASET (funvec, 0, kind);
2946
2947 for (param_index = 0; param_index < num_params; param_index++)
2948 ASET (funvec, 1 + num_nil_slots + param_index, params[param_index]);
2949
2950 XSETPVECTYPE (XVECTOR (funvec), PVEC_FUNVEC);
2951 XSETFUNVEC (funvec, XVECTOR (funvec));
2952
2953 return funvec;
2954 }
2955
2956
2957 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2958 doc: /* Return a newly created vector with specified arguments as elements.
2959 Any number of arguments, even zero arguments, are allowed.
2960 usage: (vector &rest OBJECTS) */)
2961 (register int nargs, Lisp_Object *args)
2962 {
2963 register Lisp_Object len, val;
2964 register int index;
2965 register struct Lisp_Vector *p;
2966
2967 XSETFASTINT (len, nargs);
2968 val = Fmake_vector (len, Qnil);
2969 p = XVECTOR (val);
2970 for (index = 0; index < nargs; index++)
2971 p->contents[index] = args[index];
2972 return val;
2973 }
2974
2975
2976 DEFUN ("funvec", Ffunvec, Sfunvec, 1, MANY, 0,
2977 doc: /* Return a newly created `function vector' of type KIND.
2978 A `function vector', a.k.a. `funvec', is a funcallable vector in Emacs Lisp.
2979 KIND indicates the kind of funvec, and determines its behavior when called.
2980 The meaning of the remaining arguments depends on KIND. Currently
2981 implemented values of KIND, and their meaning, are:
2982
2983 A list -- A byte-compiled function. See `make-byte-code' for the usual
2984 way to create byte-compiled functions.
2985
2986 `curry' -- A curried function. Remaining arguments are a function to
2987 call, and arguments to prepend to user arguments at the
2988 time of the call; see the `curry' function.
2989
2990 usage: (funvec KIND &rest PARAMS) */)
2991 (int nargs, Lisp_Object *args)
2992 {
2993 return make_funvec (args[0], 0, nargs - 1, args + 1);
2994 }
2995
2996
2997 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2998 doc: /* Create a byte-code object with specified arguments as elements.
2999 The arguments should be the arglist, bytecode-string, constant vector,
3000 stack size, (optional) doc string, and (optional) interactive spec.
3001 The first four arguments are required; at most six have any
3002 significance.
3003 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3004 (register int nargs, Lisp_Object *args)
3005 {
3006 register Lisp_Object len, val;
3007 register int index;
3008 register struct Lisp_Vector *p;
3009
3010 /* Make sure the arg-list is really a list, as that's what's used to
3011 distinguish a byte-compiled object from other funvecs. */
3012 CHECK_LIST (args[0]);
3013
3014 XSETFASTINT (len, nargs);
3015 if (!NILP (Vpurify_flag))
3016 val = make_pure_vector ((EMACS_INT) nargs);
3017 else
3018 val = Fmake_vector (len, Qnil);
3019
3020 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3021 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3022 earlier because they produced a raw 8-bit string for byte-code
3023 and now such a byte-code string is loaded as multibyte while
3024 raw 8-bit characters converted to multibyte form. Thus, now we
3025 must convert them back to the original unibyte form. */
3026 args[1] = Fstring_as_unibyte (args[1]);
3027
3028 p = XVECTOR (val);
3029 for (index = 0; index < nargs; index++)
3030 {
3031 if (!NILP (Vpurify_flag))
3032 args[index] = Fpurecopy (args[index]);
3033 p->contents[index] = args[index];
3034 }
3035 XSETPVECTYPE (p, PVEC_FUNVEC);
3036 XSETFUNVEC (val, p);
3037 return val;
3038 }
3039
3040
3041 \f
3042 /***********************************************************************
3043 Symbol Allocation
3044 ***********************************************************************/
3045
3046 /* Each symbol_block is just under 1020 bytes long, since malloc
3047 really allocates in units of powers of two and uses 4 bytes for its
3048 own overhead. */
3049
3050 #define SYMBOL_BLOCK_SIZE \
3051 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3052
3053 struct symbol_block
3054 {
3055 /* Place `symbols' first, to preserve alignment. */
3056 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3057 struct symbol_block *next;
3058 };
3059
3060 /* Current symbol block and index of first unused Lisp_Symbol
3061 structure in it. */
3062
3063 static struct symbol_block *symbol_block;
3064 static int symbol_block_index;
3065
3066 /* List of free symbols. */
3067
3068 static struct Lisp_Symbol *symbol_free_list;
3069
3070 /* Total number of symbol blocks now in use. */
3071
3072 static int n_symbol_blocks;
3073
3074
3075 /* Initialize symbol allocation. */
3076
3077 static void
3078 init_symbol (void)
3079 {
3080 symbol_block = NULL;
3081 symbol_block_index = SYMBOL_BLOCK_SIZE;
3082 symbol_free_list = 0;
3083 n_symbol_blocks = 0;
3084 }
3085
3086
3087 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3088 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3089 Its value and function definition are void, and its property list is nil. */)
3090 (Lisp_Object name)
3091 {
3092 register Lisp_Object val;
3093 register struct Lisp_Symbol *p;
3094
3095 CHECK_STRING (name);
3096
3097 /* eassert (!handling_signal); */
3098
3099 MALLOC_BLOCK_INPUT;
3100
3101 if (symbol_free_list)
3102 {
3103 XSETSYMBOL (val, symbol_free_list);
3104 symbol_free_list = symbol_free_list->next;
3105 }
3106 else
3107 {
3108 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3109 {
3110 struct symbol_block *new;
3111 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3112 MEM_TYPE_SYMBOL);
3113 new->next = symbol_block;
3114 symbol_block = new;
3115 symbol_block_index = 0;
3116 n_symbol_blocks++;
3117 }
3118 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3119 symbol_block_index++;
3120 }
3121
3122 MALLOC_UNBLOCK_INPUT;
3123
3124 p = XSYMBOL (val);
3125 p->xname = name;
3126 p->plist = Qnil;
3127 p->redirect = SYMBOL_PLAINVAL;
3128 SET_SYMBOL_VAL (p, Qunbound);
3129 p->function = Qunbound;
3130 p->next = NULL;
3131 p->gcmarkbit = 0;
3132 p->interned = SYMBOL_UNINTERNED;
3133 p->constant = 0;
3134 p->declared_special = 0;
3135 consing_since_gc += sizeof (struct Lisp_Symbol);
3136 symbols_consed++;
3137 return val;
3138 }
3139
3140
3141 \f
3142 /***********************************************************************
3143 Marker (Misc) Allocation
3144 ***********************************************************************/
3145
3146 /* Allocation of markers and other objects that share that structure.
3147 Works like allocation of conses. */
3148
3149 #define MARKER_BLOCK_SIZE \
3150 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3151
3152 struct marker_block
3153 {
3154 /* Place `markers' first, to preserve alignment. */
3155 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3156 struct marker_block *next;
3157 };
3158
3159 static struct marker_block *marker_block;
3160 static int marker_block_index;
3161
3162 static union Lisp_Misc *marker_free_list;
3163
3164 /* Total number of marker blocks now in use. */
3165
3166 static int n_marker_blocks;
3167
3168 static void
3169 init_marker (void)
3170 {
3171 marker_block = NULL;
3172 marker_block_index = MARKER_BLOCK_SIZE;
3173 marker_free_list = 0;
3174 n_marker_blocks = 0;
3175 }
3176
3177 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3178
3179 Lisp_Object
3180 allocate_misc (void)
3181 {
3182 Lisp_Object val;
3183
3184 /* eassert (!handling_signal); */
3185
3186 MALLOC_BLOCK_INPUT;
3187
3188 if (marker_free_list)
3189 {
3190 XSETMISC (val, marker_free_list);
3191 marker_free_list = marker_free_list->u_free.chain;
3192 }
3193 else
3194 {
3195 if (marker_block_index == MARKER_BLOCK_SIZE)
3196 {
3197 struct marker_block *new;
3198 new = (struct marker_block *) lisp_malloc (sizeof *new,
3199 MEM_TYPE_MISC);
3200 new->next = marker_block;
3201 marker_block = new;
3202 marker_block_index = 0;
3203 n_marker_blocks++;
3204 total_free_markers += MARKER_BLOCK_SIZE;
3205 }
3206 XSETMISC (val, &marker_block->markers[marker_block_index]);
3207 marker_block_index++;
3208 }
3209
3210 MALLOC_UNBLOCK_INPUT;
3211
3212 --total_free_markers;
3213 consing_since_gc += sizeof (union Lisp_Misc);
3214 misc_objects_consed++;
3215 XMISCANY (val)->gcmarkbit = 0;
3216 return val;
3217 }
3218
3219 /* Free a Lisp_Misc object */
3220
3221 void
3222 free_misc (Lisp_Object misc)
3223 {
3224 XMISCTYPE (misc) = Lisp_Misc_Free;
3225 XMISC (misc)->u_free.chain = marker_free_list;
3226 marker_free_list = XMISC (misc);
3227
3228 total_free_markers++;
3229 }
3230
3231 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3232 INTEGER. This is used to package C values to call record_unwind_protect.
3233 The unwind function can get the C values back using XSAVE_VALUE. */
3234
3235 Lisp_Object
3236 make_save_value (void *pointer, int integer)
3237 {
3238 register Lisp_Object val;
3239 register struct Lisp_Save_Value *p;
3240
3241 val = allocate_misc ();
3242 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3243 p = XSAVE_VALUE (val);
3244 p->pointer = pointer;
3245 p->integer = integer;
3246 p->dogc = 0;
3247 return val;
3248 }
3249
3250 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3251 doc: /* Return a newly allocated marker which does not point at any place. */)
3252 (void)
3253 {
3254 register Lisp_Object val;
3255 register struct Lisp_Marker *p;
3256
3257 val = allocate_misc ();
3258 XMISCTYPE (val) = Lisp_Misc_Marker;
3259 p = XMARKER (val);
3260 p->buffer = 0;
3261 p->bytepos = 0;
3262 p->charpos = 0;
3263 p->next = NULL;
3264 p->insertion_type = 0;
3265 return val;
3266 }
3267
3268 /* Put MARKER back on the free list after using it temporarily. */
3269
3270 void
3271 free_marker (Lisp_Object marker)
3272 {
3273 unchain_marker (XMARKER (marker));
3274 free_misc (marker);
3275 }
3276
3277 \f
3278 /* Return a newly created vector or string with specified arguments as
3279 elements. If all the arguments are characters that can fit
3280 in a string of events, make a string; otherwise, make a vector.
3281
3282 Any number of arguments, even zero arguments, are allowed. */
3283
3284 Lisp_Object
3285 make_event_array (register int nargs, Lisp_Object *args)
3286 {
3287 int i;
3288
3289 for (i = 0; i < nargs; i++)
3290 /* The things that fit in a string
3291 are characters that are in 0...127,
3292 after discarding the meta bit and all the bits above it. */
3293 if (!INTEGERP (args[i])
3294 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3295 return Fvector (nargs, args);
3296
3297 /* Since the loop exited, we know that all the things in it are
3298 characters, so we can make a string. */
3299 {
3300 Lisp_Object result;
3301
3302 result = Fmake_string (make_number (nargs), make_number (0));
3303 for (i = 0; i < nargs; i++)
3304 {
3305 SSET (result, i, XINT (args[i]));
3306 /* Move the meta bit to the right place for a string char. */
3307 if (XINT (args[i]) & CHAR_META)
3308 SSET (result, i, SREF (result, i) | 0x80);
3309 }
3310
3311 return result;
3312 }
3313 }
3314
3315
3316 \f
3317 /************************************************************************
3318 Memory Full Handling
3319 ************************************************************************/
3320
3321
3322 /* Called if malloc returns zero. */
3323
3324 void
3325 memory_full (void)
3326 {
3327 int i;
3328
3329 Vmemory_full = Qt;
3330
3331 memory_full_cons_threshold = sizeof (struct cons_block);
3332
3333 /* The first time we get here, free the spare memory. */
3334 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3335 if (spare_memory[i])
3336 {
3337 if (i == 0)
3338 free (spare_memory[i]);
3339 else if (i >= 1 && i <= 4)
3340 lisp_align_free (spare_memory[i]);
3341 else
3342 lisp_free (spare_memory[i]);
3343 spare_memory[i] = 0;
3344 }
3345
3346 /* Record the space now used. When it decreases substantially,
3347 we can refill the memory reserve. */
3348 #ifndef SYSTEM_MALLOC
3349 bytes_used_when_full = BYTES_USED;
3350 #endif
3351
3352 /* This used to call error, but if we've run out of memory, we could
3353 get infinite recursion trying to build the string. */
3354 xsignal (Qnil, Vmemory_signal_data);
3355 }
3356
3357 /* If we released our reserve (due to running out of memory),
3358 and we have a fair amount free once again,
3359 try to set aside another reserve in case we run out once more.
3360
3361 This is called when a relocatable block is freed in ralloc.c,
3362 and also directly from this file, in case we're not using ralloc.c. */
3363
3364 void
3365 refill_memory_reserve (void)
3366 {
3367 #ifndef SYSTEM_MALLOC
3368 if (spare_memory[0] == 0)
3369 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3370 if (spare_memory[1] == 0)
3371 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3372 MEM_TYPE_CONS);
3373 if (spare_memory[2] == 0)
3374 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3375 MEM_TYPE_CONS);
3376 if (spare_memory[3] == 0)
3377 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3378 MEM_TYPE_CONS);
3379 if (spare_memory[4] == 0)
3380 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3381 MEM_TYPE_CONS);
3382 if (spare_memory[5] == 0)
3383 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3384 MEM_TYPE_STRING);
3385 if (spare_memory[6] == 0)
3386 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3387 MEM_TYPE_STRING);
3388 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3389 Vmemory_full = Qnil;
3390 #endif
3391 }
3392 \f
3393 /************************************************************************
3394 C Stack Marking
3395 ************************************************************************/
3396
3397 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3398
3399 /* Conservative C stack marking requires a method to identify possibly
3400 live Lisp objects given a pointer value. We do this by keeping
3401 track of blocks of Lisp data that are allocated in a red-black tree
3402 (see also the comment of mem_node which is the type of nodes in
3403 that tree). Function lisp_malloc adds information for an allocated
3404 block to the red-black tree with calls to mem_insert, and function
3405 lisp_free removes it with mem_delete. Functions live_string_p etc
3406 call mem_find to lookup information about a given pointer in the
3407 tree, and use that to determine if the pointer points to a Lisp
3408 object or not. */
3409
3410 /* Initialize this part of alloc.c. */
3411
3412 static void
3413 mem_init (void)
3414 {
3415 mem_z.left = mem_z.right = MEM_NIL;
3416 mem_z.parent = NULL;
3417 mem_z.color = MEM_BLACK;
3418 mem_z.start = mem_z.end = NULL;
3419 mem_root = MEM_NIL;
3420 }
3421
3422
3423 /* Value is a pointer to the mem_node containing START. Value is
3424 MEM_NIL if there is no node in the tree containing START. */
3425
3426 static INLINE struct mem_node *
3427 mem_find (void *start)
3428 {
3429 struct mem_node *p;
3430
3431 if (start < min_heap_address || start > max_heap_address)
3432 return MEM_NIL;
3433
3434 /* Make the search always successful to speed up the loop below. */
3435 mem_z.start = start;
3436 mem_z.end = (char *) start + 1;
3437
3438 p = mem_root;
3439 while (start < p->start || start >= p->end)
3440 p = start < p->start ? p->left : p->right;
3441 return p;
3442 }
3443
3444
3445 /* Insert a new node into the tree for a block of memory with start
3446 address START, end address END, and type TYPE. Value is a
3447 pointer to the node that was inserted. */
3448
3449 static struct mem_node *
3450 mem_insert (void *start, void *end, enum mem_type type)
3451 {
3452 struct mem_node *c, *parent, *x;
3453
3454 if (min_heap_address == NULL || start < min_heap_address)
3455 min_heap_address = start;
3456 if (max_heap_address == NULL || end > max_heap_address)
3457 max_heap_address = end;
3458
3459 /* See where in the tree a node for START belongs. In this
3460 particular application, it shouldn't happen that a node is already
3461 present. For debugging purposes, let's check that. */
3462 c = mem_root;
3463 parent = NULL;
3464
3465 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3466
3467 while (c != MEM_NIL)
3468 {
3469 if (start >= c->start && start < c->end)
3470 abort ();
3471 parent = c;
3472 c = start < c->start ? c->left : c->right;
3473 }
3474
3475 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3476
3477 while (c != MEM_NIL)
3478 {
3479 parent = c;
3480 c = start < c->start ? c->left : c->right;
3481 }
3482
3483 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3484
3485 /* Create a new node. */
3486 #ifdef GC_MALLOC_CHECK
3487 x = (struct mem_node *) _malloc_internal (sizeof *x);
3488 if (x == NULL)
3489 abort ();
3490 #else
3491 x = (struct mem_node *) xmalloc (sizeof *x);
3492 #endif
3493 x->start = start;
3494 x->end = end;
3495 x->type = type;
3496 x->parent = parent;
3497 x->left = x->right = MEM_NIL;
3498 x->color = MEM_RED;
3499
3500 /* Insert it as child of PARENT or install it as root. */
3501 if (parent)
3502 {
3503 if (start < parent->start)
3504 parent->left = x;
3505 else
3506 parent->right = x;
3507 }
3508 else
3509 mem_root = x;
3510
3511 /* Re-establish red-black tree properties. */
3512 mem_insert_fixup (x);
3513
3514 return x;
3515 }
3516
3517
3518 /* Re-establish the red-black properties of the tree, and thereby
3519 balance the tree, after node X has been inserted; X is always red. */
3520
3521 static void
3522 mem_insert_fixup (struct mem_node *x)
3523 {
3524 while (x != mem_root && x->parent->color == MEM_RED)
3525 {
3526 /* X is red and its parent is red. This is a violation of
3527 red-black tree property #3. */
3528
3529 if (x->parent == x->parent->parent->left)
3530 {
3531 /* We're on the left side of our grandparent, and Y is our
3532 "uncle". */
3533 struct mem_node *y = x->parent->parent->right;
3534
3535 if (y->color == MEM_RED)
3536 {
3537 /* Uncle and parent are red but should be black because
3538 X is red. Change the colors accordingly and proceed
3539 with the grandparent. */
3540 x->parent->color = MEM_BLACK;
3541 y->color = MEM_BLACK;
3542 x->parent->parent->color = MEM_RED;
3543 x = x->parent->parent;
3544 }
3545 else
3546 {
3547 /* Parent and uncle have different colors; parent is
3548 red, uncle is black. */
3549 if (x == x->parent->right)
3550 {
3551 x = x->parent;
3552 mem_rotate_left (x);
3553 }
3554
3555 x->parent->color = MEM_BLACK;
3556 x->parent->parent->color = MEM_RED;
3557 mem_rotate_right (x->parent->parent);
3558 }
3559 }
3560 else
3561 {
3562 /* This is the symmetrical case of above. */
3563 struct mem_node *y = x->parent->parent->left;
3564
3565 if (y->color == MEM_RED)
3566 {
3567 x->parent->color = MEM_BLACK;
3568 y->color = MEM_BLACK;
3569 x->parent->parent->color = MEM_RED;
3570 x = x->parent->parent;
3571 }
3572 else
3573 {
3574 if (x == x->parent->left)
3575 {
3576 x = x->parent;
3577 mem_rotate_right (x);
3578 }
3579
3580 x->parent->color = MEM_BLACK;
3581 x->parent->parent->color = MEM_RED;
3582 mem_rotate_left (x->parent->parent);
3583 }
3584 }
3585 }
3586
3587 /* The root may have been changed to red due to the algorithm. Set
3588 it to black so that property #5 is satisfied. */
3589 mem_root->color = MEM_BLACK;
3590 }
3591
3592
3593 /* (x) (y)
3594 / \ / \
3595 a (y) ===> (x) c
3596 / \ / \
3597 b c a b */
3598
3599 static void
3600 mem_rotate_left (struct mem_node *x)
3601 {
3602 struct mem_node *y;
3603
3604 /* Turn y's left sub-tree into x's right sub-tree. */
3605 y = x->right;
3606 x->right = y->left;
3607 if (y->left != MEM_NIL)
3608 y->left->parent = x;
3609
3610 /* Y's parent was x's parent. */
3611 if (y != MEM_NIL)
3612 y->parent = x->parent;
3613
3614 /* Get the parent to point to y instead of x. */
3615 if (x->parent)
3616 {
3617 if (x == x->parent->left)
3618 x->parent->left = y;
3619 else
3620 x->parent->right = y;
3621 }
3622 else
3623 mem_root = y;
3624
3625 /* Put x on y's left. */
3626 y->left = x;
3627 if (x != MEM_NIL)
3628 x->parent = y;
3629 }
3630
3631
3632 /* (x) (Y)
3633 / \ / \
3634 (y) c ===> a (x)
3635 / \ / \
3636 a b b c */
3637
3638 static void
3639 mem_rotate_right (struct mem_node *x)
3640 {
3641 struct mem_node *y = x->left;
3642
3643 x->left = y->right;
3644 if (y->right != MEM_NIL)
3645 y->right->parent = x;
3646
3647 if (y != MEM_NIL)
3648 y->parent = x->parent;
3649 if (x->parent)
3650 {
3651 if (x == x->parent->right)
3652 x->parent->right = y;
3653 else
3654 x->parent->left = y;
3655 }
3656 else
3657 mem_root = y;
3658
3659 y->right = x;
3660 if (x != MEM_NIL)
3661 x->parent = y;
3662 }
3663
3664
3665 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3666
3667 static void
3668 mem_delete (struct mem_node *z)
3669 {
3670 struct mem_node *x, *y;
3671
3672 if (!z || z == MEM_NIL)
3673 return;
3674
3675 if (z->left == MEM_NIL || z->right == MEM_NIL)
3676 y = z;
3677 else
3678 {
3679 y = z->right;
3680 while (y->left != MEM_NIL)
3681 y = y->left;
3682 }
3683
3684 if (y->left != MEM_NIL)
3685 x = y->left;
3686 else
3687 x = y->right;
3688
3689 x->parent = y->parent;
3690 if (y->parent)
3691 {
3692 if (y == y->parent->left)
3693 y->parent->left = x;
3694 else
3695 y->parent->right = x;
3696 }
3697 else
3698 mem_root = x;
3699
3700 if (y != z)
3701 {
3702 z->start = y->start;
3703 z->end = y->end;
3704 z->type = y->type;
3705 }
3706
3707 if (y->color == MEM_BLACK)
3708 mem_delete_fixup (x);
3709
3710 #ifdef GC_MALLOC_CHECK
3711 _free_internal (y);
3712 #else
3713 xfree (y);
3714 #endif
3715 }
3716
3717
3718 /* Re-establish the red-black properties of the tree, after a
3719 deletion. */
3720
3721 static void
3722 mem_delete_fixup (struct mem_node *x)
3723 {
3724 while (x != mem_root && x->color == MEM_BLACK)
3725 {
3726 if (x == x->parent->left)
3727 {
3728 struct mem_node *w = x->parent->right;
3729
3730 if (w->color == MEM_RED)
3731 {
3732 w->color = MEM_BLACK;
3733 x->parent->color = MEM_RED;
3734 mem_rotate_left (x->parent);
3735 w = x->parent->right;
3736 }
3737
3738 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3739 {
3740 w->color = MEM_RED;
3741 x = x->parent;
3742 }
3743 else
3744 {
3745 if (w->right->color == MEM_BLACK)
3746 {
3747 w->left->color = MEM_BLACK;
3748 w->color = MEM_RED;
3749 mem_rotate_right (w);
3750 w = x->parent->right;
3751 }
3752 w->color = x->parent->color;
3753 x->parent->color = MEM_BLACK;
3754 w->right->color = MEM_BLACK;
3755 mem_rotate_left (x->parent);
3756 x = mem_root;
3757 }
3758 }
3759 else
3760 {
3761 struct mem_node *w = x->parent->left;
3762
3763 if (w->color == MEM_RED)
3764 {
3765 w->color = MEM_BLACK;
3766 x->parent->color = MEM_RED;
3767 mem_rotate_right (x->parent);
3768 w = x->parent->left;
3769 }
3770
3771 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3772 {
3773 w->color = MEM_RED;
3774 x = x->parent;
3775 }
3776 else
3777 {
3778 if (w->left->color == MEM_BLACK)
3779 {
3780 w->right->color = MEM_BLACK;
3781 w->color = MEM_RED;
3782 mem_rotate_left (w);
3783 w = x->parent->left;
3784 }
3785
3786 w->color = x->parent->color;
3787 x->parent->color = MEM_BLACK;
3788 w->left->color = MEM_BLACK;
3789 mem_rotate_right (x->parent);
3790 x = mem_root;
3791 }
3792 }
3793 }
3794
3795 x->color = MEM_BLACK;
3796 }
3797
3798
3799 /* Value is non-zero if P is a pointer to a live Lisp string on
3800 the heap. M is a pointer to the mem_block for P. */
3801
3802 static INLINE int
3803 live_string_p (struct mem_node *m, void *p)
3804 {
3805 if (m->type == MEM_TYPE_STRING)
3806 {
3807 struct string_block *b = (struct string_block *) m->start;
3808 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3809
3810 /* P must point to the start of a Lisp_String structure, and it
3811 must not be on the free-list. */
3812 return (offset >= 0
3813 && offset % sizeof b->strings[0] == 0
3814 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3815 && ((struct Lisp_String *) p)->data != NULL);
3816 }
3817 else
3818 return 0;
3819 }
3820
3821
3822 /* Value is non-zero if P is a pointer to a live Lisp cons on
3823 the heap. M is a pointer to the mem_block for P. */
3824
3825 static INLINE int
3826 live_cons_p (struct mem_node *m, void *p)
3827 {
3828 if (m->type == MEM_TYPE_CONS)
3829 {
3830 struct cons_block *b = (struct cons_block *) m->start;
3831 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3832
3833 /* P must point to the start of a Lisp_Cons, not be
3834 one of the unused cells in the current cons block,
3835 and not be on the free-list. */
3836 return (offset >= 0
3837 && offset % sizeof b->conses[0] == 0
3838 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3839 && (b != cons_block
3840 || offset / sizeof b->conses[0] < cons_block_index)
3841 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3842 }
3843 else
3844 return 0;
3845 }
3846
3847
3848 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3849 the heap. M is a pointer to the mem_block for P. */
3850
3851 static INLINE int
3852 live_symbol_p (struct mem_node *m, void *p)
3853 {
3854 if (m->type == MEM_TYPE_SYMBOL)
3855 {
3856 struct symbol_block *b = (struct symbol_block *) m->start;
3857 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3858
3859 /* P must point to the start of a Lisp_Symbol, not be
3860 one of the unused cells in the current symbol block,
3861 and not be on the free-list. */
3862 return (offset >= 0
3863 && offset % sizeof b->symbols[0] == 0
3864 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3865 && (b != symbol_block
3866 || offset / sizeof b->symbols[0] < symbol_block_index)
3867 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3868 }
3869 else
3870 return 0;
3871 }
3872
3873
3874 /* Value is non-zero if P is a pointer to a live Lisp float on
3875 the heap. M is a pointer to the mem_block for P. */
3876
3877 static INLINE int
3878 live_float_p (struct mem_node *m, void *p)
3879 {
3880 if (m->type == MEM_TYPE_FLOAT)
3881 {
3882 struct float_block *b = (struct float_block *) m->start;
3883 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3884
3885 /* P must point to the start of a Lisp_Float and not be
3886 one of the unused cells in the current float block. */
3887 return (offset >= 0
3888 && offset % sizeof b->floats[0] == 0
3889 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3890 && (b != float_block
3891 || offset / sizeof b->floats[0] < float_block_index));
3892 }
3893 else
3894 return 0;
3895 }
3896
3897
3898 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3899 the heap. M is a pointer to the mem_block for P. */
3900
3901 static INLINE int
3902 live_misc_p (struct mem_node *m, void *p)
3903 {
3904 if (m->type == MEM_TYPE_MISC)
3905 {
3906 struct marker_block *b = (struct marker_block *) m->start;
3907 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3908
3909 /* P must point to the start of a Lisp_Misc, not be
3910 one of the unused cells in the current misc block,
3911 and not be on the free-list. */
3912 return (offset >= 0
3913 && offset % sizeof b->markers[0] == 0
3914 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3915 && (b != marker_block
3916 || offset / sizeof b->markers[0] < marker_block_index)
3917 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3918 }
3919 else
3920 return 0;
3921 }
3922
3923
3924 /* Value is non-zero if P is a pointer to a live vector-like object.
3925 M is a pointer to the mem_block for P. */
3926
3927 static INLINE int
3928 live_vector_p (struct mem_node *m, void *p)
3929 {
3930 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3931 }
3932
3933
3934 /* Value is non-zero if P is a pointer to a live buffer. M is a
3935 pointer to the mem_block for P. */
3936
3937 static INLINE int
3938 live_buffer_p (struct mem_node *m, void *p)
3939 {
3940 /* P must point to the start of the block, and the buffer
3941 must not have been killed. */
3942 return (m->type == MEM_TYPE_BUFFER
3943 && p == m->start
3944 && !NILP (((struct buffer *) p)->name));
3945 }
3946
3947 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3948
3949 #if GC_MARK_STACK
3950
3951 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3952
3953 /* Array of objects that are kept alive because the C stack contains
3954 a pattern that looks like a reference to them . */
3955
3956 #define MAX_ZOMBIES 10
3957 static Lisp_Object zombies[MAX_ZOMBIES];
3958
3959 /* Number of zombie objects. */
3960
3961 static int nzombies;
3962
3963 /* Number of garbage collections. */
3964
3965 static int ngcs;
3966
3967 /* Average percentage of zombies per collection. */
3968
3969 static double avg_zombies;
3970
3971 /* Max. number of live and zombie objects. */
3972
3973 static int max_live, max_zombies;
3974
3975 /* Average number of live objects per GC. */
3976
3977 static double avg_live;
3978
3979 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3980 doc: /* Show information about live and zombie objects. */)
3981 (void)
3982 {
3983 Lisp_Object args[8], zombie_list = Qnil;
3984 int i;
3985 for (i = 0; i < nzombies; i++)
3986 zombie_list = Fcons (zombies[i], zombie_list);
3987 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3988 args[1] = make_number (ngcs);
3989 args[2] = make_float (avg_live);
3990 args[3] = make_float (avg_zombies);
3991 args[4] = make_float (avg_zombies / avg_live / 100);
3992 args[5] = make_number (max_live);
3993 args[6] = make_number (max_zombies);
3994 args[7] = zombie_list;
3995 return Fmessage (8, args);
3996 }
3997
3998 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3999
4000
4001 /* Mark OBJ if we can prove it's a Lisp_Object. */
4002
4003 static INLINE void
4004 mark_maybe_object (Lisp_Object obj)
4005 {
4006 void *po;
4007 struct mem_node *m;
4008
4009 if (INTEGERP (obj))
4010 return;
4011
4012 po = (void *) XPNTR (obj);
4013 m = mem_find (po);
4014
4015 if (m != MEM_NIL)
4016 {
4017 int mark_p = 0;
4018
4019 switch (XTYPE (obj))
4020 {
4021 case Lisp_String:
4022 mark_p = (live_string_p (m, po)
4023 && !STRING_MARKED_P ((struct Lisp_String *) po));
4024 break;
4025
4026 case Lisp_Cons:
4027 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4028 break;
4029
4030 case Lisp_Symbol:
4031 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4032 break;
4033
4034 case Lisp_Float:
4035 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4036 break;
4037
4038 case Lisp_Vectorlike:
4039 /* Note: can't check BUFFERP before we know it's a
4040 buffer because checking that dereferences the pointer
4041 PO which might point anywhere. */
4042 if (live_vector_p (m, po))
4043 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4044 else if (live_buffer_p (m, po))
4045 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4046 break;
4047
4048 case Lisp_Misc:
4049 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4050 break;
4051
4052 default:
4053 break;
4054 }
4055
4056 if (mark_p)
4057 {
4058 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4059 if (nzombies < MAX_ZOMBIES)
4060 zombies[nzombies] = obj;
4061 ++nzombies;
4062 #endif
4063 mark_object (obj);
4064 }
4065 }
4066 }
4067
4068
4069 /* If P points to Lisp data, mark that as live if it isn't already
4070 marked. */
4071
4072 static INLINE void
4073 mark_maybe_pointer (void *p)
4074 {
4075 struct mem_node *m;
4076
4077 /* Quickly rule out some values which can't point to Lisp data. */
4078 if ((EMACS_INT) p %
4079 #ifdef USE_LSB_TAG
4080 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4081 #else
4082 2 /* We assume that Lisp data is aligned on even addresses. */
4083 #endif
4084 )
4085 return;
4086
4087 m = mem_find (p);
4088 if (m != MEM_NIL)
4089 {
4090 Lisp_Object obj = Qnil;
4091
4092 switch (m->type)
4093 {
4094 case MEM_TYPE_NON_LISP:
4095 /* Nothing to do; not a pointer to Lisp memory. */
4096 break;
4097
4098 case MEM_TYPE_BUFFER:
4099 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4100 XSETVECTOR (obj, p);
4101 break;
4102
4103 case MEM_TYPE_CONS:
4104 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4105 XSETCONS (obj, p);
4106 break;
4107
4108 case MEM_TYPE_STRING:
4109 if (live_string_p (m, p)
4110 && !STRING_MARKED_P ((struct Lisp_String *) p))
4111 XSETSTRING (obj, p);
4112 break;
4113
4114 case MEM_TYPE_MISC:
4115 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4116 XSETMISC (obj, p);
4117 break;
4118
4119 case MEM_TYPE_SYMBOL:
4120 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4121 XSETSYMBOL (obj, p);
4122 break;
4123
4124 case MEM_TYPE_FLOAT:
4125 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4126 XSETFLOAT (obj, p);
4127 break;
4128
4129 case MEM_TYPE_VECTORLIKE:
4130 if (live_vector_p (m, p))
4131 {
4132 Lisp_Object tem;
4133 XSETVECTOR (tem, p);
4134 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4135 obj = tem;
4136 }
4137 break;
4138
4139 default:
4140 abort ();
4141 }
4142
4143 if (!NILP (obj))
4144 mark_object (obj);
4145 }
4146 }
4147
4148
4149 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4150 or END+OFFSET..START. */
4151
4152 static void
4153 mark_memory (void *start, void *end, int offset)
4154 {
4155 Lisp_Object *p;
4156 void **pp;
4157
4158 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4159 nzombies = 0;
4160 #endif
4161
4162 /* Make START the pointer to the start of the memory region,
4163 if it isn't already. */
4164 if (end < start)
4165 {
4166 void *tem = start;
4167 start = end;
4168 end = tem;
4169 }
4170
4171 /* Mark Lisp_Objects. */
4172 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4173 mark_maybe_object (*p);
4174
4175 /* Mark Lisp data pointed to. This is necessary because, in some
4176 situations, the C compiler optimizes Lisp objects away, so that
4177 only a pointer to them remains. Example:
4178
4179 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4180 ()
4181 {
4182 Lisp_Object obj = build_string ("test");
4183 struct Lisp_String *s = XSTRING (obj);
4184 Fgarbage_collect ();
4185 fprintf (stderr, "test `%s'\n", s->data);
4186 return Qnil;
4187 }
4188
4189 Here, `obj' isn't really used, and the compiler optimizes it
4190 away. The only reference to the life string is through the
4191 pointer `s'. */
4192
4193 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4194 mark_maybe_pointer (*pp);
4195 }
4196
4197 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4198 the GCC system configuration. In gcc 3.2, the only systems for
4199 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4200 by others?) and ns32k-pc532-min. */
4201
4202 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4203
4204 static int setjmp_tested_p, longjmps_done;
4205
4206 #define SETJMP_WILL_LIKELY_WORK "\
4207 \n\
4208 Emacs garbage collector has been changed to use conservative stack\n\
4209 marking. Emacs has determined that the method it uses to do the\n\
4210 marking will likely work on your system, but this isn't sure.\n\
4211 \n\
4212 If you are a system-programmer, or can get the help of a local wizard\n\
4213 who is, please take a look at the function mark_stack in alloc.c, and\n\
4214 verify that the methods used are appropriate for your system.\n\
4215 \n\
4216 Please mail the result to <emacs-devel@gnu.org>.\n\
4217 "
4218
4219 #define SETJMP_WILL_NOT_WORK "\
4220 \n\
4221 Emacs garbage collector has been changed to use conservative stack\n\
4222 marking. Emacs has determined that the default method it uses to do the\n\
4223 marking will not work on your system. We will need a system-dependent\n\
4224 solution for your system.\n\
4225 \n\
4226 Please take a look at the function mark_stack in alloc.c, and\n\
4227 try to find a way to make it work on your system.\n\
4228 \n\
4229 Note that you may get false negatives, depending on the compiler.\n\
4230 In particular, you need to use -O with GCC for this test.\n\
4231 \n\
4232 Please mail the result to <emacs-devel@gnu.org>.\n\
4233 "
4234
4235
4236 /* Perform a quick check if it looks like setjmp saves registers in a
4237 jmp_buf. Print a message to stderr saying so. When this test
4238 succeeds, this is _not_ a proof that setjmp is sufficient for
4239 conservative stack marking. Only the sources or a disassembly
4240 can prove that. */
4241
4242 static void
4243 test_setjmp (void)
4244 {
4245 char buf[10];
4246 register int x;
4247 jmp_buf jbuf;
4248 int result = 0;
4249
4250 /* Arrange for X to be put in a register. */
4251 sprintf (buf, "1");
4252 x = strlen (buf);
4253 x = 2 * x - 1;
4254
4255 setjmp (jbuf);
4256 if (longjmps_done == 1)
4257 {
4258 /* Came here after the longjmp at the end of the function.
4259
4260 If x == 1, the longjmp has restored the register to its
4261 value before the setjmp, and we can hope that setjmp
4262 saves all such registers in the jmp_buf, although that
4263 isn't sure.
4264
4265 For other values of X, either something really strange is
4266 taking place, or the setjmp just didn't save the register. */
4267
4268 if (x == 1)
4269 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4270 else
4271 {
4272 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4273 exit (1);
4274 }
4275 }
4276
4277 ++longjmps_done;
4278 x = 2;
4279 if (longjmps_done == 1)
4280 longjmp (jbuf, 1);
4281 }
4282
4283 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4284
4285
4286 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4287
4288 /* Abort if anything GCPRO'd doesn't survive the GC. */
4289
4290 static void
4291 check_gcpros (void)
4292 {
4293 struct gcpro *p;
4294 int i;
4295
4296 for (p = gcprolist; p; p = p->next)
4297 for (i = 0; i < p->nvars; ++i)
4298 if (!survives_gc_p (p->var[i]))
4299 /* FIXME: It's not necessarily a bug. It might just be that the
4300 GCPRO is unnecessary or should release the object sooner. */
4301 abort ();
4302 }
4303
4304 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4305
4306 static void
4307 dump_zombies (void)
4308 {
4309 int i;
4310
4311 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4312 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4313 {
4314 fprintf (stderr, " %d = ", i);
4315 debug_print (zombies[i]);
4316 }
4317 }
4318
4319 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4320
4321
4322 /* Mark live Lisp objects on the C stack.
4323
4324 There are several system-dependent problems to consider when
4325 porting this to new architectures:
4326
4327 Processor Registers
4328
4329 We have to mark Lisp objects in CPU registers that can hold local
4330 variables or are used to pass parameters.
4331
4332 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4333 something that either saves relevant registers on the stack, or
4334 calls mark_maybe_object passing it each register's contents.
4335
4336 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4337 implementation assumes that calling setjmp saves registers we need
4338 to see in a jmp_buf which itself lies on the stack. This doesn't
4339 have to be true! It must be verified for each system, possibly
4340 by taking a look at the source code of setjmp.
4341
4342 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4343 can use it as a machine independent method to store all registers
4344 to the stack. In this case the macros described in the previous
4345 two paragraphs are not used.
4346
4347 Stack Layout
4348
4349 Architectures differ in the way their processor stack is organized.
4350 For example, the stack might look like this
4351
4352 +----------------+
4353 | Lisp_Object | size = 4
4354 +----------------+
4355 | something else | size = 2
4356 +----------------+
4357 | Lisp_Object | size = 4
4358 +----------------+
4359 | ... |
4360
4361 In such a case, not every Lisp_Object will be aligned equally. To
4362 find all Lisp_Object on the stack it won't be sufficient to walk
4363 the stack in steps of 4 bytes. Instead, two passes will be
4364 necessary, one starting at the start of the stack, and a second
4365 pass starting at the start of the stack + 2. Likewise, if the
4366 minimal alignment of Lisp_Objects on the stack is 1, four passes
4367 would be necessary, each one starting with one byte more offset
4368 from the stack start.
4369
4370 The current code assumes by default that Lisp_Objects are aligned
4371 equally on the stack. */
4372
4373 static void
4374 mark_stack (void)
4375 {
4376 int i;
4377 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4378 union aligned_jmpbuf {
4379 Lisp_Object o;
4380 jmp_buf j;
4381 } j;
4382 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4383 void *end;
4384
4385 #ifdef HAVE___BUILTIN_UNWIND_INIT
4386 /* Force callee-saved registers and register windows onto the stack.
4387 This is the preferred method if available, obviating the need for
4388 machine dependent methods. */
4389 __builtin_unwind_init ();
4390 end = &end;
4391 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4392 /* This trick flushes the register windows so that all the state of
4393 the process is contained in the stack. */
4394 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4395 needed on ia64 too. See mach_dep.c, where it also says inline
4396 assembler doesn't work with relevant proprietary compilers. */
4397 #ifdef __sparc__
4398 #if defined (__sparc64__) && defined (__FreeBSD__)
4399 /* FreeBSD does not have a ta 3 handler. */
4400 asm ("flushw");
4401 #else
4402 asm ("ta 3");
4403 #endif
4404 #endif
4405
4406 /* Save registers that we need to see on the stack. We need to see
4407 registers used to hold register variables and registers used to
4408 pass parameters. */
4409 #ifdef GC_SAVE_REGISTERS_ON_STACK
4410 GC_SAVE_REGISTERS_ON_STACK (end);
4411 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4412
4413 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4414 setjmp will definitely work, test it
4415 and print a message with the result
4416 of the test. */
4417 if (!setjmp_tested_p)
4418 {
4419 setjmp_tested_p = 1;
4420 test_setjmp ();
4421 }
4422 #endif /* GC_SETJMP_WORKS */
4423
4424 setjmp (j.j);
4425 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4426 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4427 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4428
4429 /* This assumes that the stack is a contiguous region in memory. If
4430 that's not the case, something has to be done here to iterate
4431 over the stack segments. */
4432 #ifndef GC_LISP_OBJECT_ALIGNMENT
4433 #ifdef __GNUC__
4434 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4435 #else
4436 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4437 #endif
4438 #endif
4439 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4440 mark_memory (stack_base, end, i);
4441 /* Allow for marking a secondary stack, like the register stack on the
4442 ia64. */
4443 #ifdef GC_MARK_SECONDARY_STACK
4444 GC_MARK_SECONDARY_STACK ();
4445 #endif
4446
4447 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4448 check_gcpros ();
4449 #endif
4450 }
4451
4452 #endif /* GC_MARK_STACK != 0 */
4453
4454
4455 /* Determine whether it is safe to access memory at address P. */
4456 static int
4457 valid_pointer_p (void *p)
4458 {
4459 #ifdef WINDOWSNT
4460 return w32_valid_pointer_p (p, 16);
4461 #else
4462 int fd;
4463
4464 /* Obviously, we cannot just access it (we would SEGV trying), so we
4465 trick the o/s to tell us whether p is a valid pointer.
4466 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4467 not validate p in that case. */
4468
4469 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4470 {
4471 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4472 emacs_close (fd);
4473 unlink ("__Valid__Lisp__Object__");
4474 return valid;
4475 }
4476
4477 return -1;
4478 #endif
4479 }
4480
4481 /* Return 1 if OBJ is a valid lisp object.
4482 Return 0 if OBJ is NOT a valid lisp object.
4483 Return -1 if we cannot validate OBJ.
4484 This function can be quite slow,
4485 so it should only be used in code for manual debugging. */
4486
4487 int
4488 valid_lisp_object_p (Lisp_Object obj)
4489 {
4490 void *p;
4491 #if GC_MARK_STACK
4492 struct mem_node *m;
4493 #endif
4494
4495 if (INTEGERP (obj))
4496 return 1;
4497
4498 p = (void *) XPNTR (obj);
4499 if (PURE_POINTER_P (p))
4500 return 1;
4501
4502 #if !GC_MARK_STACK
4503 return valid_pointer_p (p);
4504 #else
4505
4506 m = mem_find (p);
4507
4508 if (m == MEM_NIL)
4509 {
4510 int valid = valid_pointer_p (p);
4511 if (valid <= 0)
4512 return valid;
4513
4514 if (SUBRP (obj))
4515 return 1;
4516
4517 return 0;
4518 }
4519
4520 switch (m->type)
4521 {
4522 case MEM_TYPE_NON_LISP:
4523 return 0;
4524
4525 case MEM_TYPE_BUFFER:
4526 return live_buffer_p (m, p);
4527
4528 case MEM_TYPE_CONS:
4529 return live_cons_p (m, p);
4530
4531 case MEM_TYPE_STRING:
4532 return live_string_p (m, p);
4533
4534 case MEM_TYPE_MISC:
4535 return live_misc_p (m, p);
4536
4537 case MEM_TYPE_SYMBOL:
4538 return live_symbol_p (m, p);
4539
4540 case MEM_TYPE_FLOAT:
4541 return live_float_p (m, p);
4542
4543 case MEM_TYPE_VECTORLIKE:
4544 return live_vector_p (m, p);
4545
4546 default:
4547 break;
4548 }
4549
4550 return 0;
4551 #endif
4552 }
4553
4554
4555
4556 \f
4557 /***********************************************************************
4558 Pure Storage Management
4559 ***********************************************************************/
4560
4561 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4562 pointer to it. TYPE is the Lisp type for which the memory is
4563 allocated. TYPE < 0 means it's not used for a Lisp object. */
4564
4565 static POINTER_TYPE *
4566 pure_alloc (size_t size, int type)
4567 {
4568 POINTER_TYPE *result;
4569 #ifdef USE_LSB_TAG
4570 size_t alignment = (1 << GCTYPEBITS);
4571 #else
4572 size_t alignment = sizeof (EMACS_INT);
4573
4574 /* Give Lisp_Floats an extra alignment. */
4575 if (type == Lisp_Float)
4576 {
4577 #if defined __GNUC__ && __GNUC__ >= 2
4578 alignment = __alignof (struct Lisp_Float);
4579 #else
4580 alignment = sizeof (struct Lisp_Float);
4581 #endif
4582 }
4583 #endif
4584
4585 again:
4586 if (type >= 0)
4587 {
4588 /* Allocate space for a Lisp object from the beginning of the free
4589 space with taking account of alignment. */
4590 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4591 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4592 }
4593 else
4594 {
4595 /* Allocate space for a non-Lisp object from the end of the free
4596 space. */
4597 pure_bytes_used_non_lisp += size;
4598 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4599 }
4600 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4601
4602 if (pure_bytes_used <= pure_size)
4603 return result;
4604
4605 /* Don't allocate a large amount here,
4606 because it might get mmap'd and then its address
4607 might not be usable. */
4608 purebeg = (char *) xmalloc (10000);
4609 pure_size = 10000;
4610 pure_bytes_used_before_overflow += pure_bytes_used - size;
4611 pure_bytes_used = 0;
4612 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4613 goto again;
4614 }
4615
4616
4617 /* Print a warning if PURESIZE is too small. */
4618
4619 void
4620 check_pure_size (void)
4621 {
4622 if (pure_bytes_used_before_overflow)
4623 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4624 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4625 }
4626
4627
4628 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4629 the non-Lisp data pool of the pure storage, and return its start
4630 address. Return NULL if not found. */
4631
4632 static char *
4633 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4634 {
4635 int i;
4636 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4637 const unsigned char *p;
4638 char *non_lisp_beg;
4639
4640 if (pure_bytes_used_non_lisp < nbytes + 1)
4641 return NULL;
4642
4643 /* Set up the Boyer-Moore table. */
4644 skip = nbytes + 1;
4645 for (i = 0; i < 256; i++)
4646 bm_skip[i] = skip;
4647
4648 p = (const unsigned char *) data;
4649 while (--skip > 0)
4650 bm_skip[*p++] = skip;
4651
4652 last_char_skip = bm_skip['\0'];
4653
4654 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4655 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4656
4657 /* See the comments in the function `boyer_moore' (search.c) for the
4658 use of `infinity'. */
4659 infinity = pure_bytes_used_non_lisp + 1;
4660 bm_skip['\0'] = infinity;
4661
4662 p = (const unsigned char *) non_lisp_beg + nbytes;
4663 start = 0;
4664 do
4665 {
4666 /* Check the last character (== '\0'). */
4667 do
4668 {
4669 start += bm_skip[*(p + start)];
4670 }
4671 while (start <= start_max);
4672
4673 if (start < infinity)
4674 /* Couldn't find the last character. */
4675 return NULL;
4676
4677 /* No less than `infinity' means we could find the last
4678 character at `p[start - infinity]'. */
4679 start -= infinity;
4680
4681 /* Check the remaining characters. */
4682 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4683 /* Found. */
4684 return non_lisp_beg + start;
4685
4686 start += last_char_skip;
4687 }
4688 while (start <= start_max);
4689
4690 return NULL;
4691 }
4692
4693
4694 /* Return a string allocated in pure space. DATA is a buffer holding
4695 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4696 non-zero means make the result string multibyte.
4697
4698 Must get an error if pure storage is full, since if it cannot hold
4699 a large string it may be able to hold conses that point to that
4700 string; then the string is not protected from gc. */
4701
4702 Lisp_Object
4703 make_pure_string (const char *data,
4704 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4705 {
4706 Lisp_Object string;
4707 struct Lisp_String *s;
4708
4709 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4710 s->data = find_string_data_in_pure (data, nbytes);
4711 if (s->data == NULL)
4712 {
4713 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4714 memcpy (s->data, data, nbytes);
4715 s->data[nbytes] = '\0';
4716 }
4717 s->size = nchars;
4718 s->size_byte = multibyte ? nbytes : -1;
4719 s->intervals = NULL_INTERVAL;
4720 XSETSTRING (string, s);
4721 return string;
4722 }
4723
4724 /* Return a string a string allocated in pure space. Do not allocate
4725 the string data, just point to DATA. */
4726
4727 Lisp_Object
4728 make_pure_c_string (const char *data)
4729 {
4730 Lisp_Object string;
4731 struct Lisp_String *s;
4732 EMACS_INT nchars = strlen (data);
4733
4734 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4735 s->size = nchars;
4736 s->size_byte = -1;
4737 s->data = (unsigned char *) data;
4738 s->intervals = NULL_INTERVAL;
4739 XSETSTRING (string, s);
4740 return string;
4741 }
4742
4743 /* Return a cons allocated from pure space. Give it pure copies
4744 of CAR as car and CDR as cdr. */
4745
4746 Lisp_Object
4747 pure_cons (Lisp_Object car, Lisp_Object cdr)
4748 {
4749 register Lisp_Object new;
4750 struct Lisp_Cons *p;
4751
4752 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4753 XSETCONS (new, p);
4754 XSETCAR (new, Fpurecopy (car));
4755 XSETCDR (new, Fpurecopy (cdr));
4756 return new;
4757 }
4758
4759
4760 /* Value is a float object with value NUM allocated from pure space. */
4761
4762 static Lisp_Object
4763 make_pure_float (double num)
4764 {
4765 register Lisp_Object new;
4766 struct Lisp_Float *p;
4767
4768 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4769 XSETFLOAT (new, p);
4770 XFLOAT_INIT (new, num);
4771 return new;
4772 }
4773
4774
4775 /* Return a vector with room for LEN Lisp_Objects allocated from
4776 pure space. */
4777
4778 Lisp_Object
4779 make_pure_vector (EMACS_INT len)
4780 {
4781 Lisp_Object new;
4782 struct Lisp_Vector *p;
4783 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4784
4785 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4786 XSETVECTOR (new, p);
4787 XVECTOR (new)->size = len;
4788 return new;
4789 }
4790
4791
4792 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4793 doc: /* Make a copy of object OBJ in pure storage.
4794 Recursively copies contents of vectors and cons cells.
4795 Does not copy symbols. Copies strings without text properties. */)
4796 (register Lisp_Object obj)
4797 {
4798 if (NILP (Vpurify_flag))
4799 return obj;
4800
4801 if (PURE_POINTER_P (XPNTR (obj)))
4802 return obj;
4803
4804 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4805 {
4806 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4807 if (!NILP (tmp))
4808 return tmp;
4809 }
4810
4811 if (CONSP (obj))
4812 obj = pure_cons (XCAR (obj), XCDR (obj));
4813 else if (FLOATP (obj))
4814 obj = make_pure_float (XFLOAT_DATA (obj));
4815 else if (STRINGP (obj))
4816 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
4817 SBYTES (obj),
4818 STRING_MULTIBYTE (obj));
4819 else if (FUNVECP (obj) || VECTORP (obj))
4820 {
4821 register struct Lisp_Vector *vec;
4822 register EMACS_INT i;
4823 EMACS_INT size;
4824
4825 size = XVECTOR (obj)->size;
4826 if (size & PSEUDOVECTOR_FLAG)
4827 size &= PSEUDOVECTOR_SIZE_MASK;
4828 vec = XVECTOR (make_pure_vector (size));
4829 for (i = 0; i < size; i++)
4830 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4831 if (FUNVECP (obj))
4832 {
4833 XSETPVECTYPE (vec, PVEC_FUNVEC);
4834 XSETFUNVEC (obj, vec);
4835 }
4836 else
4837 XSETVECTOR (obj, vec);
4838 }
4839 else if (MARKERP (obj))
4840 error ("Attempt to copy a marker to pure storage");
4841 else
4842 /* Not purified, don't hash-cons. */
4843 return obj;
4844
4845 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4846 Fputhash (obj, obj, Vpurify_flag);
4847
4848 return obj;
4849 }
4850
4851
4852 \f
4853 /***********************************************************************
4854 Protection from GC
4855 ***********************************************************************/
4856
4857 /* Put an entry in staticvec, pointing at the variable with address
4858 VARADDRESS. */
4859
4860 void
4861 staticpro (Lisp_Object *varaddress)
4862 {
4863 staticvec[staticidx++] = varaddress;
4864 if (staticidx >= NSTATICS)
4865 abort ();
4866 }
4867
4868 \f
4869 /***********************************************************************
4870 Protection from GC
4871 ***********************************************************************/
4872
4873 /* Temporarily prevent garbage collection. */
4874
4875 int
4876 inhibit_garbage_collection (void)
4877 {
4878 int count = SPECPDL_INDEX ();
4879 int nbits = min (VALBITS, BITS_PER_INT);
4880
4881 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4882 return count;
4883 }
4884
4885
4886 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4887 doc: /* Reclaim storage for Lisp objects no longer needed.
4888 Garbage collection happens automatically if you cons more than
4889 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4890 `garbage-collect' normally returns a list with info on amount of space in use:
4891 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4892 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4893 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4894 (USED-STRINGS . FREE-STRINGS))
4895 However, if there was overflow in pure space, `garbage-collect'
4896 returns nil, because real GC can't be done. */)
4897 (void)
4898 {
4899 register struct specbinding *bind;
4900 struct catchtag *catch;
4901 struct handler *handler;
4902 char stack_top_variable;
4903 register int i;
4904 int message_p;
4905 Lisp_Object total[8];
4906 int count = SPECPDL_INDEX ();
4907 EMACS_TIME t1, t2, t3;
4908
4909 if (abort_on_gc)
4910 abort ();
4911
4912 /* Can't GC if pure storage overflowed because we can't determine
4913 if something is a pure object or not. */
4914 if (pure_bytes_used_before_overflow)
4915 return Qnil;
4916
4917 CHECK_CONS_LIST ();
4918
4919 /* Don't keep undo information around forever.
4920 Do this early on, so it is no problem if the user quits. */
4921 {
4922 register struct buffer *nextb = all_buffers;
4923
4924 while (nextb)
4925 {
4926 /* If a buffer's undo list is Qt, that means that undo is
4927 turned off in that buffer. Calling truncate_undo_list on
4928 Qt tends to return NULL, which effectively turns undo back on.
4929 So don't call truncate_undo_list if undo_list is Qt. */
4930 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
4931 truncate_undo_list (nextb);
4932
4933 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4934 if (nextb->base_buffer == 0 && !NILP (nextb->name)
4935 && ! nextb->text->inhibit_shrinking)
4936 {
4937 /* If a buffer's gap size is more than 10% of the buffer
4938 size, or larger than 2000 bytes, then shrink it
4939 accordingly. Keep a minimum size of 20 bytes. */
4940 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4941
4942 if (nextb->text->gap_size > size)
4943 {
4944 struct buffer *save_current = current_buffer;
4945 current_buffer = nextb;
4946 make_gap (-(nextb->text->gap_size - size));
4947 current_buffer = save_current;
4948 }
4949 }
4950
4951 nextb = nextb->next;
4952 }
4953 }
4954
4955 EMACS_GET_TIME (t1);
4956
4957 /* In case user calls debug_print during GC,
4958 don't let that cause a recursive GC. */
4959 consing_since_gc = 0;
4960
4961 /* Save what's currently displayed in the echo area. */
4962 message_p = push_message ();
4963 record_unwind_protect (pop_message_unwind, Qnil);
4964
4965 /* Save a copy of the contents of the stack, for debugging. */
4966 #if MAX_SAVE_STACK > 0
4967 if (NILP (Vpurify_flag))
4968 {
4969 i = &stack_top_variable - stack_bottom;
4970 if (i < 0) i = -i;
4971 if (i < MAX_SAVE_STACK)
4972 {
4973 if (stack_copy == 0)
4974 stack_copy = (char *) xmalloc (stack_copy_size = i);
4975 else if (stack_copy_size < i)
4976 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4977 if (stack_copy)
4978 {
4979 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4980 memcpy (stack_copy, stack_bottom, i);
4981 else
4982 memcpy (stack_copy, &stack_top_variable, i);
4983 }
4984 }
4985 }
4986 #endif /* MAX_SAVE_STACK > 0 */
4987
4988 if (garbage_collection_messages)
4989 message1_nolog ("Garbage collecting...");
4990
4991 BLOCK_INPUT;
4992
4993 shrink_regexp_cache ();
4994
4995 gc_in_progress = 1;
4996
4997 /* clear_marks (); */
4998
4999 /* Mark all the special slots that serve as the roots of accessibility. */
5000
5001 for (i = 0; i < staticidx; i++)
5002 mark_object (*staticvec[i]);
5003
5004 for (bind = specpdl; bind != specpdl_ptr; bind++)
5005 {
5006 mark_object (bind->symbol);
5007 mark_object (bind->old_value);
5008 }
5009 mark_terminals ();
5010 mark_kboards ();
5011 mark_ttys ();
5012
5013 #ifdef USE_GTK
5014 {
5015 extern void xg_mark_data (void);
5016 xg_mark_data ();
5017 }
5018 #endif
5019
5020 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5021 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5022 mark_stack ();
5023 #else
5024 {
5025 register struct gcpro *tail;
5026 for (tail = gcprolist; tail; tail = tail->next)
5027 for (i = 0; i < tail->nvars; i++)
5028 mark_object (tail->var[i]);
5029 }
5030 #endif
5031
5032 mark_byte_stack ();
5033 for (catch = catchlist; catch; catch = catch->next)
5034 {
5035 mark_object (catch->tag);
5036 mark_object (catch->val);
5037 }
5038 for (handler = handlerlist; handler; handler = handler->next)
5039 {
5040 mark_object (handler->handler);
5041 mark_object (handler->var);
5042 }
5043 mark_backtrace ();
5044
5045 #ifdef HAVE_WINDOW_SYSTEM
5046 mark_fringe_data ();
5047 #endif
5048
5049 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5050 mark_stack ();
5051 #endif
5052
5053 /* Everything is now marked, except for the things that require special
5054 finalization, i.e. the undo_list.
5055 Look thru every buffer's undo list
5056 for elements that update markers that were not marked,
5057 and delete them. */
5058 {
5059 register struct buffer *nextb = all_buffers;
5060
5061 while (nextb)
5062 {
5063 /* If a buffer's undo list is Qt, that means that undo is
5064 turned off in that buffer. Calling truncate_undo_list on
5065 Qt tends to return NULL, which effectively turns undo back on.
5066 So don't call truncate_undo_list if undo_list is Qt. */
5067 if (! EQ (nextb->undo_list, Qt))
5068 {
5069 Lisp_Object tail, prev;
5070 tail = nextb->undo_list;
5071 prev = Qnil;
5072 while (CONSP (tail))
5073 {
5074 if (CONSP (XCAR (tail))
5075 && MARKERP (XCAR (XCAR (tail)))
5076 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5077 {
5078 if (NILP (prev))
5079 nextb->undo_list = tail = XCDR (tail);
5080 else
5081 {
5082 tail = XCDR (tail);
5083 XSETCDR (prev, tail);
5084 }
5085 }
5086 else
5087 {
5088 prev = tail;
5089 tail = XCDR (tail);
5090 }
5091 }
5092 }
5093 /* Now that we have stripped the elements that need not be in the
5094 undo_list any more, we can finally mark the list. */
5095 mark_object (nextb->undo_list);
5096
5097 nextb = nextb->next;
5098 }
5099 }
5100
5101 gc_sweep ();
5102
5103 /* Clear the mark bits that we set in certain root slots. */
5104
5105 unmark_byte_stack ();
5106 VECTOR_UNMARK (&buffer_defaults);
5107 VECTOR_UNMARK (&buffer_local_symbols);
5108
5109 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5110 dump_zombies ();
5111 #endif
5112
5113 UNBLOCK_INPUT;
5114
5115 CHECK_CONS_LIST ();
5116
5117 /* clear_marks (); */
5118 gc_in_progress = 0;
5119
5120 consing_since_gc = 0;
5121 if (gc_cons_threshold < 10000)
5122 gc_cons_threshold = 10000;
5123
5124 if (FLOATP (Vgc_cons_percentage))
5125 { /* Set gc_cons_combined_threshold. */
5126 EMACS_INT total = 0;
5127
5128 total += total_conses * sizeof (struct Lisp_Cons);
5129 total += total_symbols * sizeof (struct Lisp_Symbol);
5130 total += total_markers * sizeof (union Lisp_Misc);
5131 total += total_string_size;
5132 total += total_vector_size * sizeof (Lisp_Object);
5133 total += total_floats * sizeof (struct Lisp_Float);
5134 total += total_intervals * sizeof (struct interval);
5135 total += total_strings * sizeof (struct Lisp_String);
5136
5137 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5138 }
5139 else
5140 gc_relative_threshold = 0;
5141
5142 if (garbage_collection_messages)
5143 {
5144 if (message_p || minibuf_level > 0)
5145 restore_message ();
5146 else
5147 message1_nolog ("Garbage collecting...done");
5148 }
5149
5150 unbind_to (count, Qnil);
5151
5152 total[0] = Fcons (make_number (total_conses),
5153 make_number (total_free_conses));
5154 total[1] = Fcons (make_number (total_symbols),
5155 make_number (total_free_symbols));
5156 total[2] = Fcons (make_number (total_markers),
5157 make_number (total_free_markers));
5158 total[3] = make_number (total_string_size);
5159 total[4] = make_number (total_vector_size);
5160 total[5] = Fcons (make_number (total_floats),
5161 make_number (total_free_floats));
5162 total[6] = Fcons (make_number (total_intervals),
5163 make_number (total_free_intervals));
5164 total[7] = Fcons (make_number (total_strings),
5165 make_number (total_free_strings));
5166
5167 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5168 {
5169 /* Compute average percentage of zombies. */
5170 double nlive = 0;
5171
5172 for (i = 0; i < 7; ++i)
5173 if (CONSP (total[i]))
5174 nlive += XFASTINT (XCAR (total[i]));
5175
5176 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5177 max_live = max (nlive, max_live);
5178 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5179 max_zombies = max (nzombies, max_zombies);
5180 ++ngcs;
5181 }
5182 #endif
5183
5184 if (!NILP (Vpost_gc_hook))
5185 {
5186 int count = inhibit_garbage_collection ();
5187 safe_run_hooks (Qpost_gc_hook);
5188 unbind_to (count, Qnil);
5189 }
5190
5191 /* Accumulate statistics. */
5192 EMACS_GET_TIME (t2);
5193 EMACS_SUB_TIME (t3, t2, t1);
5194 if (FLOATP (Vgc_elapsed))
5195 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5196 EMACS_SECS (t3) +
5197 EMACS_USECS (t3) * 1.0e-6);
5198 gcs_done++;
5199
5200 return Flist (sizeof total / sizeof *total, total);
5201 }
5202
5203
5204 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5205 only interesting objects referenced from glyphs are strings. */
5206
5207 static void
5208 mark_glyph_matrix (struct glyph_matrix *matrix)
5209 {
5210 struct glyph_row *row = matrix->rows;
5211 struct glyph_row *end = row + matrix->nrows;
5212
5213 for (; row < end; ++row)
5214 if (row->enabled_p)
5215 {
5216 int area;
5217 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5218 {
5219 struct glyph *glyph = row->glyphs[area];
5220 struct glyph *end_glyph = glyph + row->used[area];
5221
5222 for (; glyph < end_glyph; ++glyph)
5223 if (STRINGP (glyph->object)
5224 && !STRING_MARKED_P (XSTRING (glyph->object)))
5225 mark_object (glyph->object);
5226 }
5227 }
5228 }
5229
5230
5231 /* Mark Lisp faces in the face cache C. */
5232
5233 static void
5234 mark_face_cache (struct face_cache *c)
5235 {
5236 if (c)
5237 {
5238 int i, j;
5239 for (i = 0; i < c->used; ++i)
5240 {
5241 struct face *face = FACE_FROM_ID (c->f, i);
5242
5243 if (face)
5244 {
5245 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5246 mark_object (face->lface[j]);
5247 }
5248 }
5249 }
5250 }
5251
5252
5253 \f
5254 /* Mark reference to a Lisp_Object.
5255 If the object referred to has not been seen yet, recursively mark
5256 all the references contained in it. */
5257
5258 #define LAST_MARKED_SIZE 500
5259 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5260 int last_marked_index;
5261
5262 /* For debugging--call abort when we cdr down this many
5263 links of a list, in mark_object. In debugging,
5264 the call to abort will hit a breakpoint.
5265 Normally this is zero and the check never goes off. */
5266 static int mark_object_loop_halt;
5267
5268 static void
5269 mark_vectorlike (struct Lisp_Vector *ptr)
5270 {
5271 register EMACS_UINT size = ptr->size;
5272 register EMACS_UINT i;
5273
5274 eassert (!VECTOR_MARKED_P (ptr));
5275 VECTOR_MARK (ptr); /* Else mark it */
5276 if (size & PSEUDOVECTOR_FLAG)
5277 size &= PSEUDOVECTOR_SIZE_MASK;
5278
5279 /* Note that this size is not the memory-footprint size, but only
5280 the number of Lisp_Object fields that we should trace.
5281 The distinction is used e.g. by Lisp_Process which places extra
5282 non-Lisp_Object fields at the end of the structure. */
5283 for (i = 0; i < size; i++) /* and then mark its elements */
5284 mark_object (ptr->contents[i]);
5285 }
5286
5287 /* Like mark_vectorlike but optimized for char-tables (and
5288 sub-char-tables) assuming that the contents are mostly integers or
5289 symbols. */
5290
5291 static void
5292 mark_char_table (struct Lisp_Vector *ptr)
5293 {
5294 register EMACS_UINT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5295 register EMACS_UINT i;
5296
5297 eassert (!VECTOR_MARKED_P (ptr));
5298 VECTOR_MARK (ptr);
5299 for (i = 0; i < size; i++)
5300 {
5301 Lisp_Object val = ptr->contents[i];
5302
5303 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5304 continue;
5305 if (SUB_CHAR_TABLE_P (val))
5306 {
5307 if (! VECTOR_MARKED_P (XVECTOR (val)))
5308 mark_char_table (XVECTOR (val));
5309 }
5310 else
5311 mark_object (val);
5312 }
5313 }
5314
5315 void
5316 mark_object (Lisp_Object arg)
5317 {
5318 register Lisp_Object obj = arg;
5319 #ifdef GC_CHECK_MARKED_OBJECTS
5320 void *po;
5321 struct mem_node *m;
5322 #endif
5323 int cdr_count = 0;
5324
5325 loop:
5326
5327 if (PURE_POINTER_P (XPNTR (obj)))
5328 return;
5329
5330 last_marked[last_marked_index++] = obj;
5331 if (last_marked_index == LAST_MARKED_SIZE)
5332 last_marked_index = 0;
5333
5334 /* Perform some sanity checks on the objects marked here. Abort if
5335 we encounter an object we know is bogus. This increases GC time
5336 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5337 #ifdef GC_CHECK_MARKED_OBJECTS
5338
5339 po = (void *) XPNTR (obj);
5340
5341 /* Check that the object pointed to by PO is known to be a Lisp
5342 structure allocated from the heap. */
5343 #define CHECK_ALLOCATED() \
5344 do { \
5345 m = mem_find (po); \
5346 if (m == MEM_NIL) \
5347 abort (); \
5348 } while (0)
5349
5350 /* Check that the object pointed to by PO is live, using predicate
5351 function LIVEP. */
5352 #define CHECK_LIVE(LIVEP) \
5353 do { \
5354 if (!LIVEP (m, po)) \
5355 abort (); \
5356 } while (0)
5357
5358 /* Check both of the above conditions. */
5359 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5360 do { \
5361 CHECK_ALLOCATED (); \
5362 CHECK_LIVE (LIVEP); \
5363 } while (0) \
5364
5365 #else /* not GC_CHECK_MARKED_OBJECTS */
5366
5367 #define CHECK_ALLOCATED() (void) 0
5368 #define CHECK_LIVE(LIVEP) (void) 0
5369 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5370
5371 #endif /* not GC_CHECK_MARKED_OBJECTS */
5372
5373 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5374 {
5375 case Lisp_String:
5376 {
5377 register struct Lisp_String *ptr = XSTRING (obj);
5378 if (STRING_MARKED_P (ptr))
5379 break;
5380 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5381 MARK_INTERVAL_TREE (ptr->intervals);
5382 MARK_STRING (ptr);
5383 #ifdef GC_CHECK_STRING_BYTES
5384 /* Check that the string size recorded in the string is the
5385 same as the one recorded in the sdata structure. */
5386 CHECK_STRING_BYTES (ptr);
5387 #endif /* GC_CHECK_STRING_BYTES */
5388 }
5389 break;
5390
5391 case Lisp_Vectorlike:
5392 if (VECTOR_MARKED_P (XVECTOR (obj)))
5393 break;
5394 #ifdef GC_CHECK_MARKED_OBJECTS
5395 m = mem_find (po);
5396 if (m == MEM_NIL && !SUBRP (obj)
5397 && po != &buffer_defaults
5398 && po != &buffer_local_symbols)
5399 abort ();
5400 #endif /* GC_CHECK_MARKED_OBJECTS */
5401
5402 if (BUFFERP (obj))
5403 {
5404 #ifdef GC_CHECK_MARKED_OBJECTS
5405 if (po != &buffer_defaults && po != &buffer_local_symbols)
5406 {
5407 struct buffer *b;
5408 for (b = all_buffers; b && b != po; b = b->next)
5409 ;
5410 if (b == NULL)
5411 abort ();
5412 }
5413 #endif /* GC_CHECK_MARKED_OBJECTS */
5414 mark_buffer (obj);
5415 }
5416 else if (SUBRP (obj))
5417 break;
5418 else if (FUNVECP (obj) && FUNVEC_COMPILED_P (obj))
5419 /* We could treat this just like a vector, but it is better to
5420 save the COMPILED_CONSTANTS element for last and avoid
5421 recursion there. */
5422 {
5423 register struct Lisp_Vector *ptr = XVECTOR (obj);
5424 register EMACS_UINT size = ptr->size;
5425 register EMACS_UINT i;
5426
5427 CHECK_LIVE (live_vector_p);
5428 VECTOR_MARK (ptr); /* Else mark it */
5429 size &= PSEUDOVECTOR_SIZE_MASK;
5430 for (i = 0; i < size; i++) /* and then mark its elements */
5431 {
5432 if (i != COMPILED_CONSTANTS)
5433 mark_object (ptr->contents[i]);
5434 }
5435 obj = ptr->contents[COMPILED_CONSTANTS];
5436 goto loop;
5437 }
5438 else if (FRAMEP (obj))
5439 {
5440 register struct frame *ptr = XFRAME (obj);
5441 mark_vectorlike (XVECTOR (obj));
5442 mark_face_cache (ptr->face_cache);
5443 }
5444 else if (WINDOWP (obj))
5445 {
5446 register struct Lisp_Vector *ptr = XVECTOR (obj);
5447 struct window *w = XWINDOW (obj);
5448 mark_vectorlike (ptr);
5449 /* Mark glyphs for leaf windows. Marking window matrices is
5450 sufficient because frame matrices use the same glyph
5451 memory. */
5452 if (NILP (w->hchild)
5453 && NILP (w->vchild)
5454 && w->current_matrix)
5455 {
5456 mark_glyph_matrix (w->current_matrix);
5457 mark_glyph_matrix (w->desired_matrix);
5458 }
5459 }
5460 else if (HASH_TABLE_P (obj))
5461 {
5462 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5463 mark_vectorlike ((struct Lisp_Vector *)h);
5464 /* If hash table is not weak, mark all keys and values.
5465 For weak tables, mark only the vector. */
5466 if (NILP (h->weak))
5467 mark_object (h->key_and_value);
5468 else
5469 VECTOR_MARK (XVECTOR (h->key_and_value));
5470 }
5471 else if (CHAR_TABLE_P (obj))
5472 mark_char_table (XVECTOR (obj));
5473 else
5474 mark_vectorlike (XVECTOR (obj));
5475 break;
5476
5477 case Lisp_Symbol:
5478 {
5479 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5480 struct Lisp_Symbol *ptrx;
5481
5482 if (ptr->gcmarkbit)
5483 break;
5484 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5485 ptr->gcmarkbit = 1;
5486 mark_object (ptr->function);
5487 mark_object (ptr->plist);
5488 switch (ptr->redirect)
5489 {
5490 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5491 case SYMBOL_VARALIAS:
5492 {
5493 Lisp_Object tem;
5494 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5495 mark_object (tem);
5496 break;
5497 }
5498 case SYMBOL_LOCALIZED:
5499 {
5500 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5501 /* If the value is forwarded to a buffer or keyboard field,
5502 these are marked when we see the corresponding object.
5503 And if it's forwarded to a C variable, either it's not
5504 a Lisp_Object var, or it's staticpro'd already. */
5505 mark_object (blv->where);
5506 mark_object (blv->valcell);
5507 mark_object (blv->defcell);
5508 break;
5509 }
5510 case SYMBOL_FORWARDED:
5511 /* If the value is forwarded to a buffer or keyboard field,
5512 these are marked when we see the corresponding object.
5513 And if it's forwarded to a C variable, either it's not
5514 a Lisp_Object var, or it's staticpro'd already. */
5515 break;
5516 default: abort ();
5517 }
5518 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5519 MARK_STRING (XSTRING (ptr->xname));
5520 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5521
5522 ptr = ptr->next;
5523 if (ptr)
5524 {
5525 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5526 XSETSYMBOL (obj, ptrx);
5527 goto loop;
5528 }
5529 }
5530 break;
5531
5532 case Lisp_Misc:
5533 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5534 if (XMISCANY (obj)->gcmarkbit)
5535 break;
5536 XMISCANY (obj)->gcmarkbit = 1;
5537
5538 switch (XMISCTYPE (obj))
5539 {
5540
5541 case Lisp_Misc_Marker:
5542 /* DO NOT mark thru the marker's chain.
5543 The buffer's markers chain does not preserve markers from gc;
5544 instead, markers are removed from the chain when freed by gc. */
5545 break;
5546
5547 case Lisp_Misc_Save_Value:
5548 #if GC_MARK_STACK
5549 {
5550 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5551 /* If DOGC is set, POINTER is the address of a memory
5552 area containing INTEGER potential Lisp_Objects. */
5553 if (ptr->dogc)
5554 {
5555 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5556 int nelt;
5557 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5558 mark_maybe_object (*p);
5559 }
5560 }
5561 #endif
5562 break;
5563
5564 case Lisp_Misc_Overlay:
5565 {
5566 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5567 mark_object (ptr->start);
5568 mark_object (ptr->end);
5569 mark_object (ptr->plist);
5570 if (ptr->next)
5571 {
5572 XSETMISC (obj, ptr->next);
5573 goto loop;
5574 }
5575 }
5576 break;
5577
5578 default:
5579 abort ();
5580 }
5581 break;
5582
5583 case Lisp_Cons:
5584 {
5585 register struct Lisp_Cons *ptr = XCONS (obj);
5586 if (CONS_MARKED_P (ptr))
5587 break;
5588 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5589 CONS_MARK (ptr);
5590 /* If the cdr is nil, avoid recursion for the car. */
5591 if (EQ (ptr->u.cdr, Qnil))
5592 {
5593 obj = ptr->car;
5594 cdr_count = 0;
5595 goto loop;
5596 }
5597 mark_object (ptr->car);
5598 obj = ptr->u.cdr;
5599 cdr_count++;
5600 if (cdr_count == mark_object_loop_halt)
5601 abort ();
5602 goto loop;
5603 }
5604
5605 case Lisp_Float:
5606 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5607 FLOAT_MARK (XFLOAT (obj));
5608 break;
5609
5610 case_Lisp_Int:
5611 break;
5612
5613 default:
5614 abort ();
5615 }
5616
5617 #undef CHECK_LIVE
5618 #undef CHECK_ALLOCATED
5619 #undef CHECK_ALLOCATED_AND_LIVE
5620 }
5621
5622 /* Mark the pointers in a buffer structure. */
5623
5624 static void
5625 mark_buffer (Lisp_Object buf)
5626 {
5627 register struct buffer *buffer = XBUFFER (buf);
5628 register Lisp_Object *ptr, tmp;
5629 Lisp_Object base_buffer;
5630
5631 eassert (!VECTOR_MARKED_P (buffer));
5632 VECTOR_MARK (buffer);
5633
5634 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5635
5636 /* For now, we just don't mark the undo_list. It's done later in
5637 a special way just before the sweep phase, and after stripping
5638 some of its elements that are not needed any more. */
5639
5640 if (buffer->overlays_before)
5641 {
5642 XSETMISC (tmp, buffer->overlays_before);
5643 mark_object (tmp);
5644 }
5645 if (buffer->overlays_after)
5646 {
5647 XSETMISC (tmp, buffer->overlays_after);
5648 mark_object (tmp);
5649 }
5650
5651 /* buffer-local Lisp variables start at `undo_list',
5652 tho only the ones from `name' on are GC'd normally. */
5653 for (ptr = &buffer->name;
5654 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5655 ptr++)
5656 mark_object (*ptr);
5657
5658 /* If this is an indirect buffer, mark its base buffer. */
5659 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5660 {
5661 XSETBUFFER (base_buffer, buffer->base_buffer);
5662 mark_buffer (base_buffer);
5663 }
5664 }
5665
5666 /* Mark the Lisp pointers in the terminal objects.
5667 Called by the Fgarbage_collector. */
5668
5669 static void
5670 mark_terminals (void)
5671 {
5672 struct terminal *t;
5673 for (t = terminal_list; t; t = t->next_terminal)
5674 {
5675 eassert (t->name != NULL);
5676 #ifdef HAVE_WINDOW_SYSTEM
5677 /* If a terminal object is reachable from a stacpro'ed object,
5678 it might have been marked already. Make sure the image cache
5679 gets marked. */
5680 mark_image_cache (t->image_cache);
5681 #endif /* HAVE_WINDOW_SYSTEM */
5682 if (!VECTOR_MARKED_P (t))
5683 mark_vectorlike ((struct Lisp_Vector *)t);
5684 }
5685 }
5686
5687
5688
5689 /* Value is non-zero if OBJ will survive the current GC because it's
5690 either marked or does not need to be marked to survive. */
5691
5692 int
5693 survives_gc_p (Lisp_Object obj)
5694 {
5695 int survives_p;
5696
5697 switch (XTYPE (obj))
5698 {
5699 case_Lisp_Int:
5700 survives_p = 1;
5701 break;
5702
5703 case Lisp_Symbol:
5704 survives_p = XSYMBOL (obj)->gcmarkbit;
5705 break;
5706
5707 case Lisp_Misc:
5708 survives_p = XMISCANY (obj)->gcmarkbit;
5709 break;
5710
5711 case Lisp_String:
5712 survives_p = STRING_MARKED_P (XSTRING (obj));
5713 break;
5714
5715 case Lisp_Vectorlike:
5716 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5717 break;
5718
5719 case Lisp_Cons:
5720 survives_p = CONS_MARKED_P (XCONS (obj));
5721 break;
5722
5723 case Lisp_Float:
5724 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5725 break;
5726
5727 default:
5728 abort ();
5729 }
5730
5731 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5732 }
5733
5734
5735 \f
5736 /* Sweep: find all structures not marked, and free them. */
5737
5738 static void
5739 gc_sweep (void)
5740 {
5741 /* Remove or mark entries in weak hash tables.
5742 This must be done before any object is unmarked. */
5743 sweep_weak_hash_tables ();
5744
5745 sweep_strings ();
5746 #ifdef GC_CHECK_STRING_BYTES
5747 if (!noninteractive)
5748 check_string_bytes (1);
5749 #endif
5750
5751 /* Put all unmarked conses on free list */
5752 {
5753 register struct cons_block *cblk;
5754 struct cons_block **cprev = &cons_block;
5755 register int lim = cons_block_index;
5756 register int num_free = 0, num_used = 0;
5757
5758 cons_free_list = 0;
5759
5760 for (cblk = cons_block; cblk; cblk = *cprev)
5761 {
5762 register int i = 0;
5763 int this_free = 0;
5764 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5765
5766 /* Scan the mark bits an int at a time. */
5767 for (i = 0; i <= ilim; i++)
5768 {
5769 if (cblk->gcmarkbits[i] == -1)
5770 {
5771 /* Fast path - all cons cells for this int are marked. */
5772 cblk->gcmarkbits[i] = 0;
5773 num_used += BITS_PER_INT;
5774 }
5775 else
5776 {
5777 /* Some cons cells for this int are not marked.
5778 Find which ones, and free them. */
5779 int start, pos, stop;
5780
5781 start = i * BITS_PER_INT;
5782 stop = lim - start;
5783 if (stop > BITS_PER_INT)
5784 stop = BITS_PER_INT;
5785 stop += start;
5786
5787 for (pos = start; pos < stop; pos++)
5788 {
5789 if (!CONS_MARKED_P (&cblk->conses[pos]))
5790 {
5791 this_free++;
5792 cblk->conses[pos].u.chain = cons_free_list;
5793 cons_free_list = &cblk->conses[pos];
5794 #if GC_MARK_STACK
5795 cons_free_list->car = Vdead;
5796 #endif
5797 }
5798 else
5799 {
5800 num_used++;
5801 CONS_UNMARK (&cblk->conses[pos]);
5802 }
5803 }
5804 }
5805 }
5806
5807 lim = CONS_BLOCK_SIZE;
5808 /* If this block contains only free conses and we have already
5809 seen more than two blocks worth of free conses then deallocate
5810 this block. */
5811 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5812 {
5813 *cprev = cblk->next;
5814 /* Unhook from the free list. */
5815 cons_free_list = cblk->conses[0].u.chain;
5816 lisp_align_free (cblk);
5817 n_cons_blocks--;
5818 }
5819 else
5820 {
5821 num_free += this_free;
5822 cprev = &cblk->next;
5823 }
5824 }
5825 total_conses = num_used;
5826 total_free_conses = num_free;
5827 }
5828
5829 /* Put all unmarked floats on free list */
5830 {
5831 register struct float_block *fblk;
5832 struct float_block **fprev = &float_block;
5833 register int lim = float_block_index;
5834 register int num_free = 0, num_used = 0;
5835
5836 float_free_list = 0;
5837
5838 for (fblk = float_block; fblk; fblk = *fprev)
5839 {
5840 register int i;
5841 int this_free = 0;
5842 for (i = 0; i < lim; i++)
5843 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5844 {
5845 this_free++;
5846 fblk->floats[i].u.chain = float_free_list;
5847 float_free_list = &fblk->floats[i];
5848 }
5849 else
5850 {
5851 num_used++;
5852 FLOAT_UNMARK (&fblk->floats[i]);
5853 }
5854 lim = FLOAT_BLOCK_SIZE;
5855 /* If this block contains only free floats and we have already
5856 seen more than two blocks worth of free floats then deallocate
5857 this block. */
5858 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5859 {
5860 *fprev = fblk->next;
5861 /* Unhook from the free list. */
5862 float_free_list = fblk->floats[0].u.chain;
5863 lisp_align_free (fblk);
5864 n_float_blocks--;
5865 }
5866 else
5867 {
5868 num_free += this_free;
5869 fprev = &fblk->next;
5870 }
5871 }
5872 total_floats = num_used;
5873 total_free_floats = num_free;
5874 }
5875
5876 /* Put all unmarked intervals on free list */
5877 {
5878 register struct interval_block *iblk;
5879 struct interval_block **iprev = &interval_block;
5880 register int lim = interval_block_index;
5881 register int num_free = 0, num_used = 0;
5882
5883 interval_free_list = 0;
5884
5885 for (iblk = interval_block; iblk; iblk = *iprev)
5886 {
5887 register int i;
5888 int this_free = 0;
5889
5890 for (i = 0; i < lim; i++)
5891 {
5892 if (!iblk->intervals[i].gcmarkbit)
5893 {
5894 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5895 interval_free_list = &iblk->intervals[i];
5896 this_free++;
5897 }
5898 else
5899 {
5900 num_used++;
5901 iblk->intervals[i].gcmarkbit = 0;
5902 }
5903 }
5904 lim = INTERVAL_BLOCK_SIZE;
5905 /* If this block contains only free intervals and we have already
5906 seen more than two blocks worth of free intervals then
5907 deallocate this block. */
5908 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5909 {
5910 *iprev = iblk->next;
5911 /* Unhook from the free list. */
5912 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5913 lisp_free (iblk);
5914 n_interval_blocks--;
5915 }
5916 else
5917 {
5918 num_free += this_free;
5919 iprev = &iblk->next;
5920 }
5921 }
5922 total_intervals = num_used;
5923 total_free_intervals = num_free;
5924 }
5925
5926 /* Put all unmarked symbols on free list */
5927 {
5928 register struct symbol_block *sblk;
5929 struct symbol_block **sprev = &symbol_block;
5930 register int lim = symbol_block_index;
5931 register int num_free = 0, num_used = 0;
5932
5933 symbol_free_list = NULL;
5934
5935 for (sblk = symbol_block; sblk; sblk = *sprev)
5936 {
5937 int this_free = 0;
5938 struct Lisp_Symbol *sym = sblk->symbols;
5939 struct Lisp_Symbol *end = sym + lim;
5940
5941 for (; sym < end; ++sym)
5942 {
5943 /* Check if the symbol was created during loadup. In such a case
5944 it might be pointed to by pure bytecode which we don't trace,
5945 so we conservatively assume that it is live. */
5946 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5947
5948 if (!sym->gcmarkbit && !pure_p)
5949 {
5950 if (sym->redirect == SYMBOL_LOCALIZED)
5951 xfree (SYMBOL_BLV (sym));
5952 sym->next = symbol_free_list;
5953 symbol_free_list = sym;
5954 #if GC_MARK_STACK
5955 symbol_free_list->function = Vdead;
5956 #endif
5957 ++this_free;
5958 }
5959 else
5960 {
5961 ++num_used;
5962 if (!pure_p)
5963 UNMARK_STRING (XSTRING (sym->xname));
5964 sym->gcmarkbit = 0;
5965 }
5966 }
5967
5968 lim = SYMBOL_BLOCK_SIZE;
5969 /* If this block contains only free symbols and we have already
5970 seen more than two blocks worth of free symbols then deallocate
5971 this block. */
5972 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5973 {
5974 *sprev = sblk->next;
5975 /* Unhook from the free list. */
5976 symbol_free_list = sblk->symbols[0].next;
5977 lisp_free (sblk);
5978 n_symbol_blocks--;
5979 }
5980 else
5981 {
5982 num_free += this_free;
5983 sprev = &sblk->next;
5984 }
5985 }
5986 total_symbols = num_used;
5987 total_free_symbols = num_free;
5988 }
5989
5990 /* Put all unmarked misc's on free list.
5991 For a marker, first unchain it from the buffer it points into. */
5992 {
5993 register struct marker_block *mblk;
5994 struct marker_block **mprev = &marker_block;
5995 register int lim = marker_block_index;
5996 register int num_free = 0, num_used = 0;
5997
5998 marker_free_list = 0;
5999
6000 for (mblk = marker_block; mblk; mblk = *mprev)
6001 {
6002 register int i;
6003 int this_free = 0;
6004
6005 for (i = 0; i < lim; i++)
6006 {
6007 if (!mblk->markers[i].u_any.gcmarkbit)
6008 {
6009 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
6010 unchain_marker (&mblk->markers[i].u_marker);
6011 /* Set the type of the freed object to Lisp_Misc_Free.
6012 We could leave the type alone, since nobody checks it,
6013 but this might catch bugs faster. */
6014 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6015 mblk->markers[i].u_free.chain = marker_free_list;
6016 marker_free_list = &mblk->markers[i];
6017 this_free++;
6018 }
6019 else
6020 {
6021 num_used++;
6022 mblk->markers[i].u_any.gcmarkbit = 0;
6023 }
6024 }
6025 lim = MARKER_BLOCK_SIZE;
6026 /* If this block contains only free markers and we have already
6027 seen more than two blocks worth of free markers then deallocate
6028 this block. */
6029 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6030 {
6031 *mprev = mblk->next;
6032 /* Unhook from the free list. */
6033 marker_free_list = mblk->markers[0].u_free.chain;
6034 lisp_free (mblk);
6035 n_marker_blocks--;
6036 }
6037 else
6038 {
6039 num_free += this_free;
6040 mprev = &mblk->next;
6041 }
6042 }
6043
6044 total_markers = num_used;
6045 total_free_markers = num_free;
6046 }
6047
6048 /* Free all unmarked buffers */
6049 {
6050 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6051
6052 while (buffer)
6053 if (!VECTOR_MARKED_P (buffer))
6054 {
6055 if (prev)
6056 prev->next = buffer->next;
6057 else
6058 all_buffers = buffer->next;
6059 next = buffer->next;
6060 lisp_free (buffer);
6061 buffer = next;
6062 }
6063 else
6064 {
6065 VECTOR_UNMARK (buffer);
6066 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6067 prev = buffer, buffer = buffer->next;
6068 }
6069 }
6070
6071 /* Free all unmarked vectors */
6072 {
6073 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6074 total_vector_size = 0;
6075
6076 while (vector)
6077 if (!VECTOR_MARKED_P (vector))
6078 {
6079 if (prev)
6080 prev->next = vector->next;
6081 else
6082 all_vectors = vector->next;
6083 next = vector->next;
6084 lisp_free (vector);
6085 n_vectors--;
6086 vector = next;
6087
6088 }
6089 else
6090 {
6091 VECTOR_UNMARK (vector);
6092 if (vector->size & PSEUDOVECTOR_FLAG)
6093 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6094 else
6095 total_vector_size += vector->size;
6096 prev = vector, vector = vector->next;
6097 }
6098 }
6099
6100 #ifdef GC_CHECK_STRING_BYTES
6101 if (!noninteractive)
6102 check_string_bytes (1);
6103 #endif
6104 }
6105
6106
6107
6108 \f
6109 /* Debugging aids. */
6110
6111 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6112 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6113 This may be helpful in debugging Emacs's memory usage.
6114 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6115 (void)
6116 {
6117 Lisp_Object end;
6118
6119 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6120
6121 return end;
6122 }
6123
6124 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6125 doc: /* Return a list of counters that measure how much consing there has been.
6126 Each of these counters increments for a certain kind of object.
6127 The counters wrap around from the largest positive integer to zero.
6128 Garbage collection does not decrease them.
6129 The elements of the value are as follows:
6130 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6131 All are in units of 1 = one object consed
6132 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6133 objects consed.
6134 MISCS include overlays, markers, and some internal types.
6135 Frames, windows, buffers, and subprocesses count as vectors
6136 (but the contents of a buffer's text do not count here). */)
6137 (void)
6138 {
6139 Lisp_Object consed[8];
6140
6141 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6142 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6143 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6144 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6145 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6146 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6147 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6148 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6149
6150 return Flist (8, consed);
6151 }
6152
6153 int suppress_checking;
6154
6155 void
6156 die (const char *msg, const char *file, int line)
6157 {
6158 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6159 file, line, msg);
6160 abort ();
6161 }
6162 \f
6163 /* Initialization */
6164
6165 void
6166 init_alloc_once (void)
6167 {
6168 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6169 purebeg = PUREBEG;
6170 pure_size = PURESIZE;
6171 pure_bytes_used = 0;
6172 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6173 pure_bytes_used_before_overflow = 0;
6174
6175 /* Initialize the list of free aligned blocks. */
6176 free_ablock = NULL;
6177
6178 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6179 mem_init ();
6180 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6181 #endif
6182
6183 all_vectors = 0;
6184 ignore_warnings = 1;
6185 #ifdef DOUG_LEA_MALLOC
6186 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6187 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6188 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6189 #endif
6190 init_strings ();
6191 init_cons ();
6192 init_symbol ();
6193 init_marker ();
6194 init_float ();
6195 init_intervals ();
6196 init_weak_hash_tables ();
6197
6198 #ifdef REL_ALLOC
6199 malloc_hysteresis = 32;
6200 #else
6201 malloc_hysteresis = 0;
6202 #endif
6203
6204 refill_memory_reserve ();
6205
6206 ignore_warnings = 0;
6207 gcprolist = 0;
6208 byte_stack_list = 0;
6209 staticidx = 0;
6210 consing_since_gc = 0;
6211 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6212 gc_relative_threshold = 0;
6213 }
6214
6215 void
6216 init_alloc (void)
6217 {
6218 gcprolist = 0;
6219 byte_stack_list = 0;
6220 #if GC_MARK_STACK
6221 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6222 setjmp_tested_p = longjmps_done = 0;
6223 #endif
6224 #endif
6225 Vgc_elapsed = make_float (0.0);
6226 gcs_done = 0;
6227 }
6228
6229 void
6230 syms_of_alloc (void)
6231 {
6232 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6233 doc: /* *Number of bytes of consing between garbage collections.
6234 Garbage collection can happen automatically once this many bytes have been
6235 allocated since the last garbage collection. All data types count.
6236
6237 Garbage collection happens automatically only when `eval' is called.
6238
6239 By binding this temporarily to a large number, you can effectively
6240 prevent garbage collection during a part of the program.
6241 See also `gc-cons-percentage'. */);
6242
6243 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6244 doc: /* *Portion of the heap used for allocation.
6245 Garbage collection can happen automatically once this portion of the heap
6246 has been allocated since the last garbage collection.
6247 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6248 Vgc_cons_percentage = make_float (0.1);
6249
6250 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6251 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6252
6253 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6254 doc: /* Number of cons cells that have been consed so far. */);
6255
6256 DEFVAR_INT ("floats-consed", floats_consed,
6257 doc: /* Number of floats that have been consed so far. */);
6258
6259 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6260 doc: /* Number of vector cells that have been consed so far. */);
6261
6262 DEFVAR_INT ("symbols-consed", symbols_consed,
6263 doc: /* Number of symbols that have been consed so far. */);
6264
6265 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6266 doc: /* Number of string characters that have been consed so far. */);
6267
6268 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6269 doc: /* Number of miscellaneous objects that have been consed so far. */);
6270
6271 DEFVAR_INT ("intervals-consed", intervals_consed,
6272 doc: /* Number of intervals that have been consed so far. */);
6273
6274 DEFVAR_INT ("strings-consed", strings_consed,
6275 doc: /* Number of strings that have been consed so far. */);
6276
6277 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6278 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6279 This means that certain objects should be allocated in shared (pure) space.
6280 It can also be set to a hash-table, in which case this table is used to
6281 do hash-consing of the objects allocated to pure space. */);
6282
6283 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6284 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6285 garbage_collection_messages = 0;
6286
6287 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6288 doc: /* Hook run after garbage collection has finished. */);
6289 Vpost_gc_hook = Qnil;
6290 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6291 staticpro (&Qpost_gc_hook);
6292
6293 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6294 doc: /* Precomputed `signal' argument for memory-full error. */);
6295 /* We build this in advance because if we wait until we need it, we might
6296 not be able to allocate the memory to hold it. */
6297 Vmemory_signal_data
6298 = pure_cons (Qerror,
6299 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6300
6301 DEFVAR_LISP ("memory-full", Vmemory_full,
6302 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6303 Vmemory_full = Qnil;
6304
6305 staticpro (&Qgc_cons_threshold);
6306 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6307
6308 staticpro (&Qchar_table_extra_slots);
6309 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6310
6311 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6312 doc: /* Accumulated time elapsed in garbage collections.
6313 The time is in seconds as a floating point value. */);
6314 DEFVAR_INT ("gcs-done", gcs_done,
6315 doc: /* Accumulated number of garbage collections done. */);
6316
6317 defsubr (&Scons);
6318 defsubr (&Slist);
6319 defsubr (&Svector);
6320 defsubr (&Sfunvec);
6321 defsubr (&Smake_byte_code);
6322 defsubr (&Smake_list);
6323 defsubr (&Smake_vector);
6324 defsubr (&Smake_string);
6325 defsubr (&Smake_bool_vector);
6326 defsubr (&Smake_symbol);
6327 defsubr (&Smake_marker);
6328 defsubr (&Spurecopy);
6329 defsubr (&Sgarbage_collect);
6330 defsubr (&Smemory_limit);
6331 defsubr (&Smemory_use_counts);
6332
6333 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6334 defsubr (&Sgc_status);
6335 #endif
6336 }