]> code.delx.au - gnu-emacs/blob - src/keymap.c
*** empty log message ***
[gnu-emacs] / src / keymap.c
1 /* Manipulation of keymaps
2 Copyright (C) 1985, 1986, 1987, 1988, 1993 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 #include "config.h"
22 #include <stdio.h>
23 #undef NULL
24 #include "lisp.h"
25 #include "commands.h"
26 #include "buffer.h"
27 #include "keyboard.h"
28 #include "termhooks.h"
29 #include "blockinput.h"
30
31 #define min(a, b) ((a) < (b) ? (a) : (b))
32
33 /* The number of elements in keymap vectors. */
34 #define DENSE_TABLE_SIZE (0200)
35
36 /* Actually allocate storage for these variables */
37
38 Lisp_Object current_global_map; /* Current global keymap */
39
40 Lisp_Object global_map; /* default global key bindings */
41
42 Lisp_Object meta_map; /* The keymap used for globally bound
43 ESC-prefixed default commands */
44
45 Lisp_Object control_x_map; /* The keymap used for globally bound
46 C-x-prefixed default commands */
47
48 /* was MinibufLocalMap */
49 Lisp_Object Vminibuffer_local_map;
50 /* The keymap used by the minibuf for local
51 bindings when spaces are allowed in the
52 minibuf */
53
54 /* was MinibufLocalNSMap */
55 Lisp_Object Vminibuffer_local_ns_map;
56 /* The keymap used by the minibuf for local
57 bindings when spaces are not encouraged
58 in the minibuf */
59
60 /* keymap used for minibuffers when doing completion */
61 /* was MinibufLocalCompletionMap */
62 Lisp_Object Vminibuffer_local_completion_map;
63
64 /* keymap used for minibuffers when doing completion and require a match */
65 /* was MinibufLocalMustMatchMap */
66 Lisp_Object Vminibuffer_local_must_match_map;
67
68 /* Alist of minor mode variables and keymaps. */
69 Lisp_Object Vminor_mode_map_alist;
70
71 /* Keymap mapping ASCII function key sequences onto their preferred forms.
72 Initialized by the terminal-specific lisp files. See DEFVAR for more
73 documentation. */
74 Lisp_Object Vfunction_key_map;
75
76 Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii;
77
78 /* A char with the CHAR_META bit set in a vector or the 0200 bit set
79 in a string key sequence is equivalent to prefixing with this
80 character. */
81 extern Lisp_Object meta_prefix_char;
82
83 void describe_map_tree ();
84 static Lisp_Object define_as_prefix ();
85 static Lisp_Object describe_buffer_bindings ();
86 static void describe_command ();
87 static void describe_map ();
88 static void describe_map_2 ();
89 \f
90 /* Keymap object support - constructors and predicates. */
91
92 DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
93 "Construct and return a new keymap, of the form (keymap VECTOR . ALIST).\n\
94 VECTOR is a vector which holds the bindings for the ASCII\n\
95 characters. ALIST is an assoc-list which holds bindings for function keys,\n\
96 mouse events, and any other things that appear in the input stream.\n\
97 All entries in it are initially nil, meaning \"command undefined\".\n\n\
98 The optional arg STRING supplies a menu name for the keymap\n\
99 in case you use it as a menu with `x-popup-menu'.")
100 (string)
101 Lisp_Object string;
102 {
103 Lisp_Object tail;
104 if (!NILP (string))
105 tail = Fcons (string, Qnil);
106 else
107 tail = Qnil;
108 return Fcons (Qkeymap,
109 Fcons (Fmake_vector (make_number (DENSE_TABLE_SIZE), Qnil),
110 tail));
111 }
112
113 DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
114 "Construct and return a new sparse-keymap list.\n\
115 Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),\n\
116 which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),\n\
117 which binds the function key or mouse event SYMBOL to DEFINITION.\n\
118 Initially the alist is nil.\n\n\
119 The optional arg STRING supplies a menu name for the keymap\n\
120 in case you use it as a menu with `x-popup-menu'.")
121 (string)
122 Lisp_Object string;
123 {
124 if (!NILP (string))
125 return Fcons (Qkeymap, Fcons (string, Qnil));
126 return Fcons (Qkeymap, Qnil);
127 }
128
129 /* This function is used for installing the standard key bindings
130 at initialization time.
131
132 For example:
133
134 initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
135
136 void
137 initial_define_key (keymap, key, defname)
138 Lisp_Object keymap;
139 int key;
140 char *defname;
141 {
142 store_in_keymap (keymap, make_number (key), intern (defname));
143 }
144
145 void
146 initial_define_lispy_key (keymap, keyname, defname)
147 Lisp_Object keymap;
148 char *keyname;
149 char *defname;
150 {
151 store_in_keymap (keymap, intern (keyname), intern (defname));
152 }
153
154 /* Define character fromchar in map frommap as an alias for character
155 tochar in map tomap. Subsequent redefinitions of the latter WILL
156 affect the former. */
157
158 #if 0
159 void
160 synkey (frommap, fromchar, tomap, tochar)
161 struct Lisp_Vector *frommap, *tomap;
162 int fromchar, tochar;
163 {
164 Lisp_Object v, c;
165 XSET (v, Lisp_Vector, tomap);
166 XFASTINT (c) = tochar;
167 frommap->contents[fromchar] = Fcons (v, c);
168 }
169 #endif /* 0 */
170
171 DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
172 "Return t if ARG is a keymap.\n\
173 \n\
174 A keymap is a list (keymap . ALIST),\n\
175 or a symbol whose function definition is a keymap is itself a keymap.\n\
176 ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);\n\
177 a vector of densely packed bindings for small character codes\n\
178 is also allowed as an element.")
179 (object)
180 Lisp_Object object;
181 {
182 return (NILP (get_keymap_1 (object, 0, 0)) ? Qnil : Qt);
183 }
184
185 /* Check that OBJECT is a keymap (after dereferencing through any
186 symbols). If it is, return it.
187
188 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
189 is an autoload form, do the autoload and try again.
190
191 ERROR controls how we respond if OBJECT isn't a keymap.
192 If ERROR is non-zero, signal an error; otherwise, just return Qnil.
193
194 Note that most of the time, we don't want to pursue autoloads.
195 Functions like Faccessible_keymaps which scan entire keymap trees
196 shouldn't load every autoloaded keymap. I'm not sure about this,
197 but it seems to me that only read_key_sequence, Flookup_key, and
198 Fdefine_key should cause keymaps to be autoloaded. */
199
200 Lisp_Object
201 get_keymap_1 (object, error, autoload)
202 Lisp_Object object;
203 int error, autoload;
204 {
205 Lisp_Object tem;
206
207 autoload_retry:
208 tem = indirect_function (object);
209 if (CONSP (tem) && EQ (XCONS (tem)->car, Qkeymap))
210 return tem;
211
212 /* Should we do an autoload? Autoload forms for keymaps have
213 Qkeymap as their fifth element. */
214 if (autoload
215 && XTYPE (object) == Lisp_Symbol
216 && CONSP (tem)
217 && EQ (XCONS (tem)->car, Qautoload))
218 {
219 Lisp_Object tail;
220
221 tail = Fnth (make_number (4), tem);
222 if (EQ (tail, Qkeymap))
223 {
224 struct gcpro gcpro1, gcpro2;
225
226 GCPRO2 (tem, object);
227 do_autoload (tem, object);
228 UNGCPRO;
229
230 goto autoload_retry;
231 }
232 }
233
234 if (error)
235 wrong_type_argument (Qkeymapp, object);
236 else
237 return Qnil;
238 }
239
240
241 /* Follow any symbol chaining, and return the keymap denoted by OBJECT.
242 If OBJECT doesn't denote a keymap at all, signal an error. */
243 Lisp_Object
244 get_keymap (object)
245 Lisp_Object object;
246 {
247 return get_keymap_1 (object, 0, 0);
248 }
249
250
251 /* Look up IDX in MAP. IDX may be any sort of event.
252 Note that this does only one level of lookup; IDX must be a single
253 event, not a sequence.
254
255 If T_OK is non-zero, bindings for Qt are treated as default
256 bindings; any key left unmentioned by other tables and bindings is
257 given the binding of Qt.
258
259 If T_OK is zero, bindings for Qt are not treated specially.
260
261 If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */
262
263 Lisp_Object
264 access_keymap (map, idx, t_ok, noinherit)
265 Lisp_Object map;
266 Lisp_Object idx;
267 int t_ok;
268 int noinherit;
269 {
270 int noprefix = 0;
271 Lisp_Object val;
272
273 /* If idx is a list (some sort of mouse click, perhaps?),
274 the index we want to use is the car of the list, which
275 ought to be a symbol. */
276 idx = EVENT_HEAD (idx);
277
278 /* If idx is a symbol, it might have modifiers, which need to
279 be put in the canonical order. */
280 if (XTYPE (idx) == Lisp_Symbol)
281 idx = reorder_modifiers (idx);
282 else if (INTEGERP (idx))
283 /* Clobber the high bits that can be present on a machine
284 with more than 24 bits of integer. */
285 XFASTINT (idx) = XINT (idx) & (CHAR_META | (CHAR_META - 1));
286
287 {
288 Lisp_Object tail;
289 Lisp_Object t_binding = Qnil;
290
291 for (tail = map; CONSP (tail); tail = XCONS (tail)->cdr)
292 {
293 Lisp_Object binding = XCONS (tail)->car;
294
295 switch (XTYPE (binding))
296 {
297 case Lisp_Symbol:
298 /* If NOINHERIT, stop finding prefix definitions
299 after we pass a second occurrence of the `keymap' symbol. */
300 if (noinherit && EQ (binding, Qkeymap) && ! EQ (tail, map))
301 noprefix = 1;
302 break;
303
304 case Lisp_Cons:
305 if (EQ (XCONS (binding)->car, idx))
306 {
307 val = XCONS (binding)->cdr;
308 if (noprefix && CONSP (val) && EQ (XCONS (val)->car, Qkeymap))
309 return Qnil;
310 return val;
311 }
312 if (t_ok && EQ (XCONS (binding)->car, Qt))
313 t_binding = XCONS (binding)->cdr;
314 break;
315
316 case Lisp_Vector:
317 if (XTYPE (idx) == Lisp_Int
318 && XINT (idx) >= 0
319 && XINT (idx) < XVECTOR (binding)->size)
320 {
321 val = XVECTOR (binding)->contents[XINT (idx)];
322 if (noprefix && CONSP (val) && EQ (XCONS (val)->car, Qkeymap))
323 return Qnil;
324 return val;
325 }
326 break;
327 }
328
329 QUIT;
330 }
331
332 return t_binding;
333 }
334 }
335
336 /* Given OBJECT which was found in a slot in a keymap,
337 trace indirect definitions to get the actual definition of that slot.
338 An indirect definition is a list of the form
339 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
340 and INDEX is the object to look up in KEYMAP to yield the definition.
341
342 Also if OBJECT has a menu string as the first element,
343 remove that. Also remove a menu help string as second element. */
344
345 Lisp_Object
346 get_keyelt (object)
347 register Lisp_Object object;
348 {
349 while (1)
350 {
351 register Lisp_Object map, tem;
352
353 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
354 map = get_keymap_1 (Fcar_safe (object), 0, 0);
355 tem = Fkeymapp (map);
356 if (!NILP (tem))
357 object = access_keymap (map, Fcdr (object), 0, 0);
358
359 /* If the keymap contents looks like (STRING . DEFN),
360 use DEFN.
361 Keymap alist elements like (CHAR MENUSTRING . DEFN)
362 will be used by HierarKey menus. */
363 else if (XTYPE (object) == Lisp_Cons
364 && XTYPE (XCONS (object)->car) == Lisp_String)
365 {
366 object = XCONS (object)->cdr;
367 /* Also remove a menu help string, if any,
368 following the menu item name. */
369 if (XTYPE (object) == Lisp_Cons
370 && XTYPE (XCONS (object)->car) == Lisp_String)
371 object = XCONS (object)->cdr;
372 }
373
374 else
375 /* Anything else is really the value. */
376 return object;
377 }
378 }
379
380 Lisp_Object
381 store_in_keymap (keymap, idx, def)
382 Lisp_Object keymap;
383 register Lisp_Object idx;
384 register Lisp_Object def;
385 {
386 if (XTYPE (keymap) != Lisp_Cons
387 || ! EQ (XCONS (keymap)->car, Qkeymap))
388 error ("attempt to define a key in a non-keymap");
389
390 /* If idx is a list (some sort of mouse click, perhaps?),
391 the index we want to use is the car of the list, which
392 ought to be a symbol. */
393 idx = EVENT_HEAD (idx);
394
395 /* If idx is a symbol, it might have modifiers, which need to
396 be put in the canonical order. */
397 if (XTYPE (idx) == Lisp_Symbol)
398 idx = reorder_modifiers (idx);
399 else if (INTEGERP (idx))
400 /* Clobber the high bits that can be present on a machine
401 with more than 24 bits of integer. */
402 XFASTINT (idx) = XINT (idx) & (CHAR_META | (CHAR_META - 1));
403
404 /* Scan the keymap for a binding of idx. */
405 {
406 Lisp_Object tail;
407
408 /* The cons after which we should insert new bindings. If the
409 keymap has a table element, we record its position here, so new
410 bindings will go after it; this way, the table will stay
411 towards the front of the alist and character lookups in dense
412 keymaps will remain fast. Otherwise, this just points at the
413 front of the keymap. */
414 Lisp_Object insertion_point = keymap;
415
416 for (tail = XCONS (keymap)->cdr; CONSP (tail); tail = XCONS (tail)->cdr)
417 {
418 Lisp_Object elt = XCONS (tail)->car;
419
420 switch (XTYPE (elt))
421 {
422 case Lisp_Vector:
423 if (XTYPE (idx) == Lisp_Int
424 && XINT (idx) >= 0 && XINT (idx) < XVECTOR (elt)->size)
425 {
426 XVECTOR (elt)->contents[XFASTINT (idx)] = def;
427 return def;
428 }
429 insertion_point = tail;
430 break;
431
432 case Lisp_Cons:
433 if (EQ (idx, XCONS (elt)->car))
434 {
435 XCONS (elt)->cdr = def;
436 return def;
437 }
438 break;
439
440 case Lisp_Symbol:
441 /* If we find a 'keymap' symbol in the spine of KEYMAP,
442 then we must have found the start of a second keymap
443 being used as the tail of KEYMAP, and a binding for IDX
444 should be inserted before it. */
445 if (EQ (elt, Qkeymap))
446 goto keymap_end;
447 break;
448 }
449
450 QUIT;
451 }
452
453 keymap_end:
454 /* We have scanned the entire keymap, and not found a binding for
455 IDX. Let's add one. */
456 XCONS (insertion_point)->cdr =
457 Fcons (Fcons (idx, def), XCONS (insertion_point)->cdr);
458 }
459
460 return def;
461 }
462
463
464 DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
465 "Return a copy of the keymap KEYMAP.\n\
466 The copy starts out with the same definitions of KEYMAP,\n\
467 but changing either the copy or KEYMAP does not affect the other.\n\
468 Any key definitions that are subkeymaps are recursively copied.\n\
469 However, a key definition which is a symbol whose definition is a keymap\n\
470 is not copied.")
471 (keymap)
472 Lisp_Object keymap;
473 {
474 register Lisp_Object copy, tail;
475
476 copy = Fcopy_alist (get_keymap (keymap));
477
478 for (tail = copy; CONSP (tail); tail = XCONS (tail)->cdr)
479 {
480 Lisp_Object elt = XCONS (tail)->car;
481
482 if (XTYPE (elt) == Lisp_Vector)
483 {
484 int i;
485
486 elt = Fcopy_sequence (elt);
487 XCONS (tail)->car = elt;
488
489 for (i = 0; i < XVECTOR (elt)->size; i++)
490 if (XTYPE (XVECTOR (elt)->contents[i]) != Lisp_Symbol
491 && ! NILP (Fkeymapp (XVECTOR (elt)->contents[i])))
492 XVECTOR (elt)->contents[i] =
493 Fcopy_keymap (XVECTOR (elt)->contents[i]);
494 }
495 else if (CONSP (elt)
496 && XTYPE (XCONS (elt)->cdr) != Lisp_Symbol
497 && ! NILP (Fkeymapp (XCONS (elt)->cdr)))
498 XCONS (elt)->cdr = Fcopy_keymap (XCONS (elt)->cdr);
499 }
500
501 return copy;
502 }
503 \f
504 /* Simple Keymap mutators and accessors. */
505
506 DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
507 "Args KEYMAP, KEY, DEF. Define key sequence KEY, in KEYMAP, as DEF.\n\
508 KEYMAP is a keymap. KEY is a string or a vector of symbols and characters\n\
509 meaning a sequence of keystrokes and events.\n\
510 DEF is anything that can be a key's definition:\n\
511 nil (means key is undefined in this keymap),\n\
512 a command (a Lisp function suitable for interactive calling)\n\
513 a string (treated as a keyboard macro),\n\
514 a keymap (to define a prefix key),\n\
515 a symbol. When the key is looked up, the symbol will stand for its\n\
516 function definition, which should at that time be one of the above,\n\
517 or another symbol whose function definition is used, etc.\n\
518 a cons (STRING . DEFN), meaning that DEFN is the definition\n\
519 (DEFN should be a valid definition in its own right),\n\
520 or a cons (KEYMAP . CHAR), meaning use definition of CHAR in map KEYMAP.\n\
521 \n\
522 If KEYMAP is a sparse keymap, the pair binding KEY to DEF is added at\n\
523 the front of KEYMAP.")
524 (keymap, key, def)
525 Lisp_Object keymap;
526 Lisp_Object key;
527 Lisp_Object def;
528 {
529 register int idx;
530 register Lisp_Object c;
531 register Lisp_Object tem;
532 register Lisp_Object cmd;
533 int metized = 0;
534 int meta_bit;
535 int length;
536 struct gcpro gcpro1, gcpro2, gcpro3;
537
538 keymap = get_keymap (keymap);
539
540 if (XTYPE (key) != Lisp_Vector
541 && XTYPE (key) != Lisp_String)
542 key = wrong_type_argument (Qarrayp, key);
543
544 length = XFASTINT (Flength (key));
545 if (length == 0)
546 return Qnil;
547
548 GCPRO3 (keymap, key, def);
549
550 if (XTYPE (key) == Lisp_Vector)
551 meta_bit = meta_modifier;
552 else
553 meta_bit = 0x80;
554
555 idx = 0;
556 while (1)
557 {
558 c = Faref (key, make_number (idx));
559
560 if (XTYPE (c) == Lisp_Int
561 && (XINT (c) & meta_bit)
562 && !metized)
563 {
564 c = meta_prefix_char;
565 metized = 1;
566 }
567 else
568 {
569 if (XTYPE (c) == Lisp_Int)
570 XSETINT (c, XINT (c) & ~meta_bit);
571
572 metized = 0;
573 idx++;
574 }
575
576 if (idx == length)
577 RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
578
579 cmd = get_keyelt (access_keymap (keymap, c, 0, 1));
580
581 /* If this key is undefined, make it a prefix. */
582 if (NILP (cmd))
583 cmd = define_as_prefix (keymap, c);
584
585 keymap = get_keymap_1 (cmd, 0, 1);
586 if (NILP (keymap))
587 {
588 /* We must use Fkey_description rather than just passing key to
589 error; key might be a vector, not a string. */
590 Lisp_Object description = Fkey_description (key);
591
592 error ("Key sequence %s uses invalid prefix characters",
593 XSTRING (description)->data);
594 }
595 }
596 }
597
598 /* Value is number if KEY is too long; NIL if valid but has no definition. */
599
600 DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
601 "In keymap KEYMAP, look up key sequence KEY. Return the definition.\n\
602 nil means undefined. See doc of `define-key' for kinds of definitions.\n\
603 \n\
604 A number as value means KEY is \"too long\";\n\
605 that is, characters or symbols in it except for the last one\n\
606 fail to be a valid sequence of prefix characters in KEYMAP.\n\
607 The number is how many characters at the front of KEY\n\
608 it takes to reach a non-prefix command.\n\
609 \n\
610 Normally, `lookup-key' ignores bindings for t, which act as default\n\
611 bindings, used when nothing else in the keymap applies; this makes it\n\
612 useable as a general function for probing keymaps. However, if the\n\
613 third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will\n\
614 recognize the default bindings, just as `read-key-sequence' does.")
615 (keymap, key, accept_default)
616 register Lisp_Object keymap;
617 Lisp_Object key;
618 Lisp_Object accept_default;
619 {
620 register int idx;
621 register Lisp_Object tem;
622 register Lisp_Object cmd;
623 register Lisp_Object c;
624 int metized = 0;
625 int length;
626 int t_ok = ! NILP (accept_default);
627 int meta_bit;
628
629 keymap = get_keymap (keymap);
630
631 if (XTYPE (key) != Lisp_Vector
632 && XTYPE (key) != Lisp_String)
633 key = wrong_type_argument (Qarrayp, key);
634
635 length = XFASTINT (Flength (key));
636 if (length == 0)
637 return keymap;
638
639 if (XTYPE (key) == Lisp_Vector)
640 meta_bit = meta_modifier;
641 else
642 meta_bit = 0x80;
643
644 idx = 0;
645 while (1)
646 {
647 c = Faref (key, make_number (idx));
648
649 if (XTYPE (c) == Lisp_Int
650 && (XINT (c) & meta_bit)
651 && !metized)
652 {
653 c = meta_prefix_char;
654 metized = 1;
655 }
656 else
657 {
658 if (XTYPE (c) == Lisp_Int)
659 XSETINT (c, XINT (c) & ~meta_bit);
660
661 metized = 0;
662 idx++;
663 }
664
665 cmd = get_keyelt (access_keymap (keymap, c, t_ok, 0));
666 if (idx == length)
667 return cmd;
668
669 keymap = get_keymap_1 (cmd, 0, 0);
670 if (NILP (keymap))
671 return make_number (idx);
672
673 QUIT;
674 }
675 }
676
677 /* Make KEYMAP define event C as a keymap (i.e., as a prefix).
678 Assume that currently it does not define C at all.
679 Return the keymap. */
680
681 static Lisp_Object
682 define_as_prefix (keymap, c)
683 Lisp_Object keymap, c;
684 {
685 Lisp_Object inherit, cmd;
686
687 cmd = Fmake_sparse_keymap (Qnil);
688 /* If this key is defined as a prefix in an inherited keymap,
689 make it a prefix in this map, and make its definition
690 inherit the other prefix definition. */
691 inherit = access_keymap (keymap, c, 0, 0);
692 if (NILP (inherit))
693 {
694 /* If there's an inherited keymap
695 and it doesn't define this key,
696 make it define this key. */
697 Lisp_Object tail;
698
699 for (tail = Fcdr (keymap); CONSP (tail); tail = XCONS (tail)->cdr)
700 if (EQ (XCONS (tail)->car, Qkeymap))
701 break;
702
703 if (!NILP (tail))
704 inherit = define_as_prefix (tail, c);
705 }
706
707 cmd = nconc2 (cmd, inherit);
708 store_in_keymap (keymap, c, cmd);
709
710 return cmd;
711 }
712
713 /* Append a key to the end of a key sequence. We always make a vector. */
714
715 Lisp_Object
716 append_key (key_sequence, key)
717 Lisp_Object key_sequence, key;
718 {
719 Lisp_Object args[2];
720
721 args[0] = key_sequence;
722
723 args[1] = Fcons (key, Qnil);
724 return Fvconcat (2, args);
725 }
726
727 \f
728 /* Global, local, and minor mode keymap stuff. */
729
730 /* We can't put these variables inside current_minor_maps, since under
731 some systems, static gets macro-defined to be the empty string.
732 Ickypoo. */
733 static Lisp_Object *cmm_modes, *cmm_maps;
734 static int cmm_size;
735
736 /* Store a pointer to an array of the keymaps of the currently active
737 minor modes in *buf, and return the number of maps it contains.
738
739 This function always returns a pointer to the same buffer, and may
740 free or reallocate it, so if you want to keep it for a long time or
741 hand it out to lisp code, copy it. This procedure will be called
742 for every key sequence read, so the nice lispy approach (return a
743 new assoclist, list, what have you) for each invocation would
744 result in a lot of consing over time.
745
746 If we used xrealloc/xmalloc and ran out of memory, they would throw
747 back to the command loop, which would try to read a key sequence,
748 which would call this function again, resulting in an infinite
749 loop. Instead, we'll use realloc/malloc and silently truncate the
750 list, let the key sequence be read, and hope some other piece of
751 code signals the error. */
752 int
753 current_minor_maps (modeptr, mapptr)
754 Lisp_Object **modeptr, **mapptr;
755 {
756 int i = 0;
757 Lisp_Object alist, assoc, var, val;
758
759 for (alist = Vminor_mode_map_alist;
760 CONSP (alist);
761 alist = XCONS (alist)->cdr)
762 if (CONSP (assoc = XCONS (alist)->car)
763 && XTYPE (var = XCONS (assoc)->car) == Lisp_Symbol
764 && ! EQ ((val = find_symbol_value (var)), Qunbound)
765 && ! NILP (val))
766 {
767 if (i >= cmm_size)
768 {
769 Lisp_Object *newmodes, *newmaps;
770
771 if (cmm_maps)
772 {
773 BLOCK_INPUT;
774 newmodes = (Lisp_Object *) realloc (cmm_modes, cmm_size *= 2);
775 newmaps = (Lisp_Object *) realloc (cmm_maps, cmm_size);
776 UNBLOCK_INPUT;
777 }
778 else
779 {
780 BLOCK_INPUT;
781 newmodes = (Lisp_Object *) malloc (cmm_size = 30);
782 newmaps = (Lisp_Object *) malloc (cmm_size);
783 UNBLOCK_INPUT;
784 }
785
786 if (newmaps && newmodes)
787 {
788 cmm_modes = newmodes;
789 cmm_maps = newmaps;
790 }
791 else
792 break;
793 }
794 cmm_modes[i] = var;
795 cmm_maps [i] = Findirect_function (XCONS (assoc)->cdr);
796 i++;
797 }
798
799 if (modeptr) *modeptr = cmm_modes;
800 if (mapptr) *mapptr = cmm_maps;
801 return i;
802 }
803
804 DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 2, 0,
805 "Return the binding for command KEY in current keymaps.\n\
806 KEY is a string or vector, a sequence of keystrokes.\n\
807 The binding is probably a symbol with a function definition.\n\
808 \n\
809 Normally, `key-binding' ignores bindings for t, which act as default\n\
810 bindings, used when nothing else in the keymap applies; this makes it\n\
811 useable as a general function for probing keymaps. However, if the\n\
812 third optional argument ACCEPT-DEFAULT is non-nil, `key-binding' will\n\
813 recognize the default bindings, just as `read-key-sequence' does.")
814 (key, accept_default)
815 Lisp_Object key;
816 {
817 Lisp_Object *maps, value;
818 int nmaps, i;
819
820 nmaps = current_minor_maps (0, &maps);
821 for (i = 0; i < nmaps; i++)
822 if (! NILP (maps[i]))
823 {
824 value = Flookup_key (maps[i], key, accept_default);
825 if (! NILP (value) && XTYPE (value) != Lisp_Int)
826 return value;
827 }
828
829 if (! NILP (current_buffer->keymap))
830 {
831 value = Flookup_key (current_buffer->keymap, key, accept_default);
832 if (! NILP (value) && XTYPE (value) != Lisp_Int)
833 return value;
834 }
835
836 value = Flookup_key (current_global_map, key, accept_default);
837 if (! NILP (value) && XTYPE (value) != Lisp_Int)
838 return value;
839
840 return Qnil;
841 }
842
843 DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
844 "Return the binding for command KEYS in current local keymap only.\n\
845 KEYS is a string, a sequence of keystrokes.\n\
846 The binding is probably a symbol with a function definition.\n\
847 \n\
848 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
849 bindings; see the description of `lookup-key' for more details about this.")
850 (keys, accept_default)
851 Lisp_Object keys, accept_default;
852 {
853 register Lisp_Object map;
854 map = current_buffer->keymap;
855 if (NILP (map))
856 return Qnil;
857 return Flookup_key (map, keys, accept_default);
858 }
859
860 DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
861 "Return the binding for command KEYS in current global keymap only.\n\
862 KEYS is a string, a sequence of keystrokes.\n\
863 The binding is probably a symbol with a function definition.\n\
864 This function's return values are the same as those of lookup-key\n\
865 (which see).\n\
866 \n\
867 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
868 bindings; see the description of `lookup-key' for more details about this.")
869 (keys, accept_default)
870 Lisp_Object keys, accept_default;
871 {
872 return Flookup_key (current_global_map, keys, accept_default);
873 }
874
875 DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
876 "Find the visible minor mode bindings of KEY.\n\
877 Return an alist of pairs (MODENAME . BINDING), where MODENAME is the\n\
878 the symbol which names the minor mode binding KEY, and BINDING is\n\
879 KEY's definition in that mode. In particular, if KEY has no\n\
880 minor-mode bindings, return nil. If the first binding is a\n\
881 non-prefix, all subsequent bindings will be omitted, since they would\n\
882 be ignored. Similarly, the list doesn't include non-prefix bindings\n\
883 that come after prefix bindings.\n\
884 \n\
885 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
886 bindings; see the description of `lookup-key' for more details about this.")
887 (key, accept_default)
888 Lisp_Object key, accept_default;
889 {
890 Lisp_Object *modes, *maps;
891 int nmaps;
892 Lisp_Object binding;
893 int i, j;
894
895 nmaps = current_minor_maps (&modes, &maps);
896
897 for (i = j = 0; i < nmaps; i++)
898 if (! NILP (maps[i])
899 && ! NILP (binding = Flookup_key (maps[i], key, accept_default))
900 && XTYPE (binding) != Lisp_Int)
901 {
902 if (! NILP (get_keymap (binding)))
903 maps[j++] = Fcons (modes[i], binding);
904 else if (j == 0)
905 return Fcons (Fcons (modes[i], binding), Qnil);
906 }
907
908 return Flist (j, maps);
909 }
910
911 DEFUN ("global-set-key", Fglobal_set_key, Sglobal_set_key, 2, 2,
912 "kSet key globally: \nCSet key %s to command: ",
913 "Give KEY a global binding as COMMAND.\n\
914 COMMAND is a symbol naming an interactively-callable function.\n\
915 KEY is a key sequence (a string or vector of characters or event types).\n\
916 Note that if KEY has a local binding in the current buffer\n\
917 that local binding will continue to shadow any global binding.")
918 (keys, function)
919 Lisp_Object keys, function;
920 {
921 if (XTYPE (keys) != Lisp_Vector
922 && XTYPE (keys) != Lisp_String)
923 keys = wrong_type_argument (Qarrayp, keys);
924
925 Fdefine_key (current_global_map, keys, function);
926 return Qnil;
927 }
928
929 DEFUN ("local-set-key", Flocal_set_key, Slocal_set_key, 2, 2,
930 "kSet key locally: \nCSet key %s locally to command: ",
931 "Give KEY a local binding as COMMAND.\n\
932 COMMAND is a symbol naming an interactively-callable function.\n\
933 KEY is a key sequence (a string or vector of characters or event types).\n\
934 The binding goes in the current buffer's local map,\n\
935 which is shared with other buffers in the same major mode.")
936 (keys, function)
937 Lisp_Object keys, function;
938 {
939 register Lisp_Object map;
940 map = current_buffer->keymap;
941 if (NILP (map))
942 {
943 map = Fmake_sparse_keymap (Qnil);
944 current_buffer->keymap = map;
945 }
946
947 if (XTYPE (keys) != Lisp_Vector
948 && XTYPE (keys) != Lisp_String)
949 keys = wrong_type_argument (Qarrayp, keys);
950
951 Fdefine_key (map, keys, function);
952 return Qnil;
953 }
954
955 DEFUN ("global-unset-key", Fglobal_unset_key, Sglobal_unset_key,
956 1, 1, "kUnset key globally: ",
957 "Remove global binding of KEY.\n\
958 KEY is a string representing a sequence of keystrokes.")
959 (keys)
960 Lisp_Object keys;
961 {
962 return Fglobal_set_key (keys, Qnil);
963 }
964
965 DEFUN ("local-unset-key", Flocal_unset_key, Slocal_unset_key, 1, 1,
966 "kUnset key locally: ",
967 "Remove local binding of KEY.\n\
968 KEY is a string representing a sequence of keystrokes.")
969 (keys)
970 Lisp_Object keys;
971 {
972 if (!NILP (current_buffer->keymap))
973 Flocal_set_key (keys, Qnil);
974 return Qnil;
975 }
976
977 DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 2, 0,
978 "Define COMMAND as a prefix command. COMMAND should be a symbol.\n\
979 A new sparse keymap is stored as COMMAND's function definition and its value.\n\
980 If a second optional argument MAPVAR is given, the map is stored as\n\
981 its value instead of as COMMAND's value; but COMMAND is still defined\n\
982 as a function.")
983 (name, mapvar)
984 Lisp_Object name, mapvar;
985 {
986 Lisp_Object map;
987 map = Fmake_sparse_keymap (Qnil);
988 Ffset (name, map);
989 if (!NILP (mapvar))
990 Fset (mapvar, map);
991 else
992 Fset (name, map);
993 return name;
994 }
995
996 DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
997 "Select KEYMAP as the global keymap.")
998 (keymap)
999 Lisp_Object keymap;
1000 {
1001 keymap = get_keymap (keymap);
1002 current_global_map = keymap;
1003 return Qnil;
1004 }
1005
1006 DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
1007 "Select KEYMAP as the local keymap.\n\
1008 If KEYMAP is nil, that means no local keymap.")
1009 (keymap)
1010 Lisp_Object keymap;
1011 {
1012 if (!NILP (keymap))
1013 keymap = get_keymap (keymap);
1014
1015 current_buffer->keymap = keymap;
1016
1017 return Qnil;
1018 }
1019
1020 DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
1021 "Return current buffer's local keymap, or nil if it has none.")
1022 ()
1023 {
1024 return current_buffer->keymap;
1025 }
1026
1027 DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
1028 "Return the current global keymap.")
1029 ()
1030 {
1031 return current_global_map;
1032 }
1033
1034 DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
1035 "Return a list of keymaps for the minor modes of the current buffer.")
1036 ()
1037 {
1038 Lisp_Object *maps;
1039 int nmaps = current_minor_maps (0, &maps);
1040
1041 return Flist (nmaps, maps);
1042 }
1043 \f
1044 /* Help functions for describing and documenting keymaps. */
1045
1046 DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
1047 1, 2, 0,
1048 "Find all keymaps accessible via prefix characters from KEYMAP.\n\
1049 Returns a list of elements of the form (KEYS . MAP), where the sequence\n\
1050 KEYS starting from KEYMAP gets you to MAP. These elements are ordered\n\
1051 so that the KEYS increase in length. The first element is (\"\" . KEYMAP).\n\
1052 An optional argument PREFIX, if non-nil, should be a key sequence;\n\
1053 then the value includes only maps for prefixes that start with PREFIX.")
1054 (startmap, prefix)
1055 Lisp_Object startmap, prefix;
1056 {
1057 Lisp_Object maps, good_maps, tail;
1058 int prefixlen = 0;
1059
1060 if (!NILP (prefix))
1061 prefixlen = XINT (Flength (prefix));
1062
1063 maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil),
1064 get_keymap (startmap)),
1065 Qnil);
1066
1067 /* For each map in the list maps,
1068 look at any other maps it points to,
1069 and stick them at the end if they are not already in the list.
1070
1071 This is a breadth-first traversal, where tail is the queue of
1072 nodes, and maps accumulates a list of all nodes visited. */
1073
1074 for (tail = maps; CONSP (tail); tail = XCONS (tail)->cdr)
1075 {
1076 register Lisp_Object thisseq = Fcar (Fcar (tail));
1077 register Lisp_Object thismap = Fcdr (Fcar (tail));
1078 Lisp_Object last = make_number (XINT (Flength (thisseq)) - 1);
1079
1080 /* Does the current sequence end in the meta-prefix-char? */
1081 int is_metized = (XINT (last) >= 0
1082 && EQ (Faref (thisseq, last), meta_prefix_char));
1083
1084 for (; CONSP (thismap); thismap = XCONS (thismap)->cdr)
1085 {
1086 Lisp_Object elt = XCONS (thismap)->car;
1087
1088 QUIT;
1089
1090 if (XTYPE (elt) == Lisp_Vector)
1091 {
1092 register int i;
1093
1094 /* Vector keymap. Scan all the elements. */
1095 for (i = 0; i < XVECTOR (elt)->size; i++)
1096 {
1097 register Lisp_Object tem;
1098 register Lisp_Object cmd;
1099
1100 cmd = get_keyelt (XVECTOR (elt)->contents[i]);
1101 if (NILP (cmd)) continue;
1102 tem = Fkeymapp (cmd);
1103 if (!NILP (tem))
1104 {
1105 cmd = get_keymap (cmd);
1106 /* Ignore keymaps that are already added to maps. */
1107 tem = Frassq (cmd, maps);
1108 if (NILP (tem))
1109 {
1110 /* If the last key in thisseq is meta-prefix-char,
1111 turn it into a meta-ized keystroke. We know
1112 that the event we're about to append is an
1113 ascii keystroke since we're processing a
1114 keymap table. */
1115 if (is_metized)
1116 {
1117 int meta_bit = meta_modifier;
1118 tem = Fcopy_sequence (thisseq);
1119
1120 Faset (tem, last, make_number (i | meta_bit));
1121
1122 /* This new sequence is the same length as
1123 thisseq, so stick it in the list right
1124 after this one. */
1125 XCONS (tail)->cdr
1126 = Fcons (Fcons (tem, cmd), XCONS (tail)->cdr);
1127 }
1128 else
1129 {
1130 tem = append_key (thisseq, make_number (i));
1131 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1132 }
1133 }
1134 }
1135 }
1136 }
1137 else if (CONSP (elt))
1138 {
1139 register Lisp_Object cmd = get_keyelt (XCONS (elt)->cdr);
1140 register Lisp_Object tem, filter;
1141
1142 /* Ignore definitions that aren't keymaps themselves. */
1143 tem = Fkeymapp (cmd);
1144 if (!NILP (tem))
1145 {
1146 /* Ignore keymaps that have been seen already. */
1147 cmd = get_keymap (cmd);
1148 tem = Frassq (cmd, maps);
1149 if (NILP (tem))
1150 {
1151 /* Let elt be the event defined by this map entry. */
1152 elt = XCONS (elt)->car;
1153
1154 /* If the last key in thisseq is meta-prefix-char, and
1155 this entry is a binding for an ascii keystroke,
1156 turn it into a meta-ized keystroke. */
1157 if (is_metized && XTYPE (elt) == Lisp_Int)
1158 {
1159 tem = Fcopy_sequence (thisseq);
1160 Faset (tem, last,
1161 make_number (XINT (elt) | meta_modifier));
1162
1163 /* This new sequence is the same length as
1164 thisseq, so stick it in the list right
1165 after this one. */
1166 XCONS (tail)->cdr
1167 = Fcons (Fcons (tem, cmd), XCONS (tail)->cdr);
1168 }
1169 else
1170 nconc2 (tail,
1171 Fcons (Fcons (append_key (thisseq, elt), cmd),
1172 Qnil));
1173 }
1174 }
1175 }
1176 }
1177 }
1178
1179 if (NILP (prefix))
1180 return maps;
1181
1182 /* Now find just the maps whose access prefixes start with PREFIX. */
1183
1184 good_maps = Qnil;
1185 for (; CONSP (maps); maps = XCONS (maps)->cdr)
1186 {
1187 Lisp_Object elt, thisseq;
1188 elt = XCONS (maps)->car;
1189 thisseq = XCONS (elt)->car;
1190 /* The access prefix must be at least as long as PREFIX,
1191 and the first elements must match those of PREFIX. */
1192 if (XINT (Flength (thisseq)) >= prefixlen)
1193 {
1194 int i;
1195 for (i = 0; i < prefixlen; i++)
1196 {
1197 Lisp_Object i1;
1198 XFASTINT (i1) = i;
1199 if (!EQ (Faref (thisseq, i1), Faref (prefix, i1)))
1200 break;
1201 }
1202 if (i == prefixlen)
1203 good_maps = Fcons (elt, good_maps);
1204 }
1205 }
1206
1207 return Fnreverse (good_maps);
1208 }
1209
1210 Lisp_Object Qsingle_key_description, Qkey_description;
1211
1212 DEFUN ("key-description", Fkey_description, Skey_description, 1, 1, 0,
1213 "Return a pretty description of key-sequence KEYS.\n\
1214 Control characters turn into \"C-foo\" sequences, meta into \"M-foo\"\n\
1215 spaces are put between sequence elements, etc.")
1216 (keys)
1217 Lisp_Object keys;
1218 {
1219 if (XTYPE (keys) == Lisp_String)
1220 {
1221 Lisp_Object vector;
1222 int i;
1223 vector = Fmake_vector (Flength (keys), Qnil);
1224 for (i = 0; i < XSTRING (keys)->size; i++)
1225 {
1226 if (XSTRING (keys)->data[i] & 0x80)
1227 XFASTINT (XVECTOR (vector)->contents[i])
1228 = meta_modifier | (XSTRING (keys)->data[i] & ~0x80);
1229 else
1230 XFASTINT (XVECTOR (vector)->contents[i])
1231 = XSTRING (keys)->data[i];
1232 }
1233 keys = vector;
1234 }
1235 return Fmapconcat (Qsingle_key_description, keys, build_string (" "));
1236 }
1237
1238 char *
1239 push_key_description (c, p)
1240 register unsigned int c;
1241 register char *p;
1242 {
1243 /* Clear all the meaningless bits above the meta bit. */
1244 c &= meta_modifier | ~ - meta_modifier;
1245
1246 if (c & alt_modifier)
1247 {
1248 *p++ = 'A';
1249 *p++ = '-';
1250 c -= alt_modifier;
1251 }
1252 if (c & ctrl_modifier)
1253 {
1254 *p++ = 'C';
1255 *p++ = '-';
1256 c -= ctrl_modifier;
1257 }
1258 if (c & hyper_modifier)
1259 {
1260 *p++ = 'H';
1261 *p++ = '-';
1262 c -= hyper_modifier;
1263 }
1264 if (c & meta_modifier)
1265 {
1266 *p++ = 'M';
1267 *p++ = '-';
1268 c -= meta_modifier;
1269 }
1270 if (c & shift_modifier)
1271 {
1272 *p++ = 'S';
1273 *p++ = '-';
1274 c -= shift_modifier;
1275 }
1276 if (c & super_modifier)
1277 {
1278 *p++ = 's';
1279 *p++ = '-';
1280 c -= super_modifier;
1281 }
1282 if (c < 040)
1283 {
1284 if (c == 033)
1285 {
1286 *p++ = 'E';
1287 *p++ = 'S';
1288 *p++ = 'C';
1289 }
1290 else if (c == '\t')
1291 {
1292 *p++ = 'T';
1293 *p++ = 'A';
1294 *p++ = 'B';
1295 }
1296 else if (c == Ctl('J'))
1297 {
1298 *p++ = 'L';
1299 *p++ = 'F';
1300 *p++ = 'D';
1301 }
1302 else if (c == Ctl('M'))
1303 {
1304 *p++ = 'R';
1305 *p++ = 'E';
1306 *p++ = 'T';
1307 }
1308 else
1309 {
1310 *p++ = 'C';
1311 *p++ = '-';
1312 if (c > 0 && c <= Ctl ('Z'))
1313 *p++ = c + 0140;
1314 else
1315 *p++ = c + 0100;
1316 }
1317 }
1318 else if (c == 0177)
1319 {
1320 *p++ = 'D';
1321 *p++ = 'E';
1322 *p++ = 'L';
1323 }
1324 else if (c == ' ')
1325 {
1326 *p++ = 'S';
1327 *p++ = 'P';
1328 *p++ = 'C';
1329 }
1330 else if (c < 256)
1331 *p++ = c;
1332 else
1333 {
1334 *p++ = '\\';
1335 *p++ = (7 & (c >> 15)) + '0';
1336 *p++ = (7 & (c >> 12)) + '0';
1337 *p++ = (7 & (c >> 9)) + '0';
1338 *p++ = (7 & (c >> 6)) + '0';
1339 *p++ = (7 & (c >> 3)) + '0';
1340 *p++ = (7 & (c >> 0)) + '0';
1341 }
1342
1343 return p;
1344 }
1345
1346 DEFUN ("single-key-description", Fsingle_key_description, Ssingle_key_description, 1, 1, 0,
1347 "Return a pretty description of command character KEY.\n\
1348 Control characters turn into C-whatever, etc.")
1349 (key)
1350 Lisp_Object key;
1351 {
1352 char tem[20];
1353
1354 key = EVENT_HEAD (key);
1355
1356 switch (XTYPE (key))
1357 {
1358 case Lisp_Int: /* Normal character */
1359 *push_key_description (XUINT (key), tem) = 0;
1360 return build_string (tem);
1361
1362 case Lisp_Symbol: /* Function key or event-symbol */
1363 return Fsymbol_name (key);
1364
1365 default:
1366 error ("KEY must be an integer, cons, or symbol.");
1367 }
1368 }
1369
1370 char *
1371 push_text_char_description (c, p)
1372 register unsigned int c;
1373 register char *p;
1374 {
1375 if (c >= 0200)
1376 {
1377 *p++ = 'M';
1378 *p++ = '-';
1379 c -= 0200;
1380 }
1381 if (c < 040)
1382 {
1383 *p++ = '^';
1384 *p++ = c + 64; /* 'A' - 1 */
1385 }
1386 else if (c == 0177)
1387 {
1388 *p++ = '^';
1389 *p++ = '?';
1390 }
1391 else
1392 *p++ = c;
1393 return p;
1394 }
1395
1396 DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
1397 "Return a pretty description of file-character CHAR.\n\
1398 Control characters turn into \"^char\", etc.")
1399 (chr)
1400 Lisp_Object chr;
1401 {
1402 char tem[6];
1403
1404 CHECK_NUMBER (chr, 0);
1405
1406 *push_text_char_description (XINT (chr) & 0377, tem) = 0;
1407
1408 return build_string (tem);
1409 }
1410
1411 /* Return non-zero if SEQ contains only ASCII characters, perhaps with
1412 a meta bit. */
1413 static int
1414 ascii_sequence_p (seq)
1415 Lisp_Object seq;
1416 {
1417 Lisp_Object i;
1418 int len = XINT (Flength (seq));
1419
1420 for (XFASTINT (i) = 0; XFASTINT (i) < len; XFASTINT (i)++)
1421 {
1422 Lisp_Object elt = Faref (seq, i);
1423
1424 if (XTYPE (elt) != Lisp_Int
1425 || (XUINT (elt) & ~CHAR_META) >= 0x80)
1426 return 0;
1427 }
1428
1429 return 1;
1430 }
1431
1432 \f
1433 /* where-is - finding a command in a set of keymaps. */
1434
1435 DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 5, 0,
1436 "Return list of keys that invoke DEFINITION in KEYMAP or KEYMAP1.\n\
1437 If KEYMAP is nil, search only KEYMAP1.\n\
1438 If KEYMAP1 is nil, use the current global map.\n\
1439 \n\
1440 If optional 4th arg FIRSTONLY is non-nil, return a string representing\n\
1441 the first key sequence found, rather than a list of all possible key\n\
1442 sequences. If FIRSTONLY is t, avoid key sequences which use non-ASCII\n\
1443 keys and therefore may not be usable on ASCII terminals. If FIRSTONLY\n\
1444 is the symbol `non-ascii', return the first binding found, no matter\n\
1445 what its components.\n\
1446 \n\
1447 If optional 5th arg NOINDIRECT is non-nil, don't follow indirections\n\
1448 to other keymaps or slots. This makes it possible to search for an\n\
1449 indirect definition itself.")
1450 (definition, local_keymap, global_keymap, firstonly, noindirect)
1451 Lisp_Object definition, local_keymap, global_keymap;
1452 Lisp_Object firstonly, noindirect;
1453 {
1454 register Lisp_Object maps;
1455 Lisp_Object found;
1456
1457 if (NILP (global_keymap))
1458 global_keymap = current_global_map;
1459
1460 if (!NILP (local_keymap))
1461 maps = nconc2 (Faccessible_keymaps (get_keymap (local_keymap), Qnil),
1462 Faccessible_keymaps (get_keymap (global_keymap), Qnil));
1463 else
1464 maps = Faccessible_keymaps (get_keymap (global_keymap), Qnil);
1465
1466 found = Qnil;
1467
1468 for (; !NILP (maps); maps = Fcdr (maps))
1469 {
1470 /* Key sequence to reach map */
1471 register Lisp_Object this = Fcar (Fcar (maps));
1472
1473 /* The map that it reaches */
1474 register Lisp_Object map = Fcdr (Fcar (maps));
1475
1476 /* If Fcar (map) is a VECTOR, the current element within that vector. */
1477 int i = 0;
1478
1479 /* In order to fold [META-PREFIX-CHAR CHAR] sequences into
1480 [M-CHAR] sequences, check if last character of the sequence
1481 is the meta-prefix char. */
1482 Lisp_Object last = make_number (XINT (Flength (this)) - 1);
1483 int last_is_meta = (XINT (last) >= 0
1484 && EQ (Faref (this, last), meta_prefix_char));
1485
1486 QUIT;
1487
1488 while (CONSP (map))
1489 {
1490 /* Because the code we want to run on each binding is rather
1491 large, we don't want to have two separate loop bodies for
1492 sparse keymap bindings and tables; we want to iterate one
1493 loop body over both keymap and vector bindings.
1494
1495 For this reason, if Fcar (map) is a vector, we don't
1496 advance map to the next element until i indicates that we
1497 have finished off the vector. */
1498
1499 Lisp_Object elt = XCONS (map)->car;
1500 Lisp_Object key, binding, sequence;
1501
1502 QUIT;
1503
1504 /* Set key and binding to the current key and binding, and
1505 advance map and i to the next binding. */
1506 if (XTYPE (elt) == Lisp_Vector)
1507 {
1508 /* In a vector, look at each element. */
1509 binding = XVECTOR (elt)->contents[i];
1510 XFASTINT (key) = i;
1511 i++;
1512
1513 /* If we've just finished scanning a vector, advance map
1514 to the next element, and reset i in anticipation of the
1515 next vector we may find. */
1516 if (i >= XVECTOR (elt)->size)
1517 {
1518 map = XCONS (map)->cdr;
1519 i = 0;
1520 }
1521 }
1522 else if (CONSP (elt))
1523 {
1524 key = Fcar (Fcar (map));
1525 binding = Fcdr (Fcar (map));
1526
1527 map = XCONS (map)->cdr;
1528 }
1529 else
1530 /* We want to ignore keymap elements that are neither
1531 vectors nor conses. */
1532 {
1533 map = XCONS (map)->cdr;
1534 continue;
1535 }
1536
1537 /* Search through indirections unless that's not wanted. */
1538 if (NILP (noindirect))
1539 binding = get_keyelt (binding);
1540
1541 /* End this iteration if this element does not match
1542 the target. */
1543
1544 if (XTYPE (definition) == Lisp_Cons)
1545 {
1546 Lisp_Object tem;
1547 tem = Fequal (binding, definition);
1548 if (NILP (tem))
1549 continue;
1550 }
1551 else
1552 if (!EQ (binding, definition))
1553 continue;
1554
1555 /* We have found a match.
1556 Construct the key sequence where we found it. */
1557 if (XTYPE (key) == Lisp_Int && last_is_meta)
1558 {
1559 sequence = Fcopy_sequence (this);
1560 Faset (sequence, last, make_number (XINT (key) | meta_modifier));
1561 }
1562 else
1563 sequence = append_key (this, key);
1564
1565 /* Verify that this key binding is not shadowed by another
1566 binding for the same key, before we say it exists.
1567
1568 Mechanism: look for local definition of this key and if
1569 it is defined and does not match what we found then
1570 ignore this key.
1571
1572 Either nil or number as value from Flookup_key
1573 means undefined. */
1574 if (!NILP (local_keymap))
1575 {
1576 binding = Flookup_key (local_keymap, sequence, Qnil);
1577 if (!NILP (binding) && XTYPE (binding) != Lisp_Int)
1578 {
1579 if (XTYPE (definition) == Lisp_Cons)
1580 {
1581 Lisp_Object tem;
1582 tem = Fequal (binding, definition);
1583 if (NILP (tem))
1584 continue;
1585 }
1586 else
1587 if (!EQ (binding, definition))
1588 continue;
1589 }
1590 }
1591
1592 /* It is a true unshadowed match. Record it. */
1593 found = Fcons (sequence, found);
1594
1595 /* If firstonly is Qnon_ascii, then we can return the first
1596 binding we find. If firstonly is not Qnon_ascii but not
1597 nil, then we should return the first ascii-only binding
1598 we find. */
1599 if (EQ (firstonly, Qnon_ascii))
1600 return sequence;
1601 else if (! NILP (firstonly) && ascii_sequence_p (sequence))
1602 return sequence;
1603 }
1604 }
1605
1606 found = Fnreverse (found);
1607
1608 /* firstonly may have been t, but we may have gone all the way through
1609 the keymaps without finding an all-ASCII key sequence. So just
1610 return the best we could find. */
1611 if (! NILP (firstonly))
1612 return Fcar (found);
1613
1614 return found;
1615 }
1616
1617 /* Return a string listing the keys and buttons that run DEFINITION. */
1618
1619 static Lisp_Object
1620 where_is_string (definition)
1621 Lisp_Object definition;
1622 {
1623 register Lisp_Object keys, keys1;
1624
1625 keys = Fwhere_is_internal (definition,
1626 current_buffer->keymap, Qnil, Qnil, Qnil);
1627 keys1 = Fmapconcat (Qkey_description, keys, build_string (", "));
1628
1629 return keys1;
1630 }
1631
1632 DEFUN ("where-is", Fwhere_is, Swhere_is, 1, 1, "CWhere is command: ",
1633 "Print message listing key sequences that invoke specified command.\n\
1634 Argument is a command definition, usually a symbol with a function definition.")
1635 (definition)
1636 Lisp_Object definition;
1637 {
1638 register Lisp_Object string;
1639
1640 CHECK_SYMBOL (definition, 0);
1641 string = where_is_string (definition);
1642
1643 if (XSTRING (string)->size)
1644 message ("%s is on %s", XSYMBOL (definition)->name->data,
1645 XSTRING (string)->data);
1646 else
1647 message ("%s is not on any key", XSYMBOL (definition)->name->data);
1648 return Qnil;
1649 }
1650 \f
1651 /* describe-bindings - summarizing all the bindings in a set of keymaps. */
1652
1653 DEFUN ("describe-bindings", Fdescribe_bindings, Sdescribe_bindings, 0, 1, "",
1654 "Show a list of all defined keys, and their definitions.\n\
1655 The list is put in a buffer, which is displayed.\n\
1656 An optional argument PREFIX, if non-nil, should be a key sequence;\n\
1657 then we display only bindings that start with that prefix.")
1658 (prefix)
1659 Lisp_Object prefix;
1660 {
1661 register Lisp_Object thisbuf;
1662 XSET (thisbuf, Lisp_Buffer, current_buffer);
1663 internal_with_output_to_temp_buffer ("*Help*",
1664 describe_buffer_bindings,
1665 Fcons (thisbuf, prefix));
1666 return Qnil;
1667 }
1668
1669 /* ARG is (BUFFER . PREFIX). */
1670
1671 static Lisp_Object
1672 describe_buffer_bindings (arg)
1673 Lisp_Object arg;
1674 {
1675 Lisp_Object descbuf, prefix, shadow;
1676 register Lisp_Object start1, start2;
1677
1678 char *alternate_heading
1679 = "\
1680 Alternate Characters (use anywhere the nominal character is listed):\n\
1681 nominal alternate\n\
1682 ------- ---------\n";
1683
1684 descbuf = XCONS (arg)->car;
1685 prefix = XCONS (arg)->cdr;
1686
1687 Fset_buffer (Vstandard_output);
1688
1689 /* Report on alternates for keys. */
1690 if (XTYPE (Vkeyboard_translate_table) == Lisp_String)
1691 {
1692 int c;
1693 unsigned char *translate = XSTRING (Vkeyboard_translate_table)->data;
1694 int translate_len = XSTRING (Vkeyboard_translate_table)->size;
1695
1696 for (c = 0; c < translate_len; c++)
1697 if (translate[c] != c)
1698 {
1699 char buf[20];
1700 char *bufend;
1701
1702 if (alternate_heading)
1703 {
1704 insert_string (alternate_heading);
1705 alternate_heading = 0;
1706 }
1707
1708 bufend = push_key_description (translate[c], buf);
1709 insert (buf, bufend - buf);
1710 Findent_to (make_number (16), make_number (1));
1711 bufend = push_key_description (c, buf);
1712 insert (buf, bufend - buf);
1713
1714 insert ("\n", 1);
1715 }
1716
1717 insert ("\n", 1);
1718 }
1719
1720 {
1721 int i, nmaps;
1722 Lisp_Object *modes, *maps;
1723 Lisp_Object shadow;
1724
1725 shadow = Qnil;
1726
1727 /* Temporarily switch to descbuf, so that we can get that buffer's
1728 minor modes correctly. */
1729 Fset_buffer (descbuf);
1730 nmaps = current_minor_maps (&modes, &maps);
1731 Fset_buffer (Vstandard_output);
1732
1733 shadow = Qnil;
1734
1735 /* Print the minor mode maps. */
1736 for (i = 0; i < nmaps; i++)
1737 {
1738 /* Tht title for a minor mode keymap
1739 is constructed at run time.
1740 We let describe_map_tree do the actual insertion
1741 because it takes care of other features when doing so. */
1742 char *title = (char *) alloca (40 + XSYMBOL (modes[i])->name->size);
1743 char *p = title;
1744
1745 if (XTYPE (modes[i]) == Lisp_Symbol)
1746 {
1747 *p++ = '`';
1748 bcopy (XSYMBOL (modes[i])->name->data, p,
1749 XSYMBOL (modes[i])->name->size);
1750 p += XSYMBOL (modes[i])->name->size;
1751 *p++ = '\'';
1752 }
1753 else
1754 {
1755 bcopy ("Strangely Named", p, sizeof ("Strangely Named"));
1756 p += sizeof ("Strangely Named");
1757 }
1758 bcopy (" Minor Mode Bindings", p, sizeof (" Minor Mode Bindings"));
1759 p += sizeof (" Minor Mode Bindings");
1760 *p = 0;
1761
1762 describe_map_tree (maps[i], 0, shadow, prefix, title);
1763 shadow = Fcons (maps[i], shadow);
1764 }
1765 }
1766
1767 /* Print the (major mode) local map. */
1768 start1 = XBUFFER (descbuf)->keymap;
1769 if (!NILP (start1))
1770 {
1771 describe_map_tree (start1, 0, shadow, prefix,
1772 "Major Mode Bindings");
1773 shadow = Fcons (start1, shadow);
1774 }
1775
1776 describe_map_tree (current_global_map, 0, shadow, prefix,
1777 "Global Bindings");
1778
1779 Fset_buffer (descbuf);
1780 return Qnil;
1781 }
1782
1783 /* Insert a desription of the key bindings in STARTMAP,
1784 followed by those of all maps reachable through STARTMAP.
1785 If PARTIAL is nonzero, omit certain "uninteresting" commands
1786 (such as `undefined').
1787 If SHADOW is non-nil, it is a list of maps;
1788 don't mention keys which would be shadowed by any of them.
1789 PREFIX, if non-nil, says mention only keys that start with PREFIX.
1790 TITLE, if not 0, is a string to insert at the beginning.
1791 TITLE should not end with a colon or a newline; we supply that. */
1792
1793 void
1794 describe_map_tree (startmap, partial, shadow, prefix, title)
1795 Lisp_Object startmap, shadow, prefix;
1796 int partial;
1797 char *title;
1798 {
1799 Lisp_Object maps;
1800 struct gcpro gcpro1;
1801 int something = 0;
1802 char *key_heading
1803 = "\
1804 key binding\n\
1805 --- -------\n";
1806
1807 maps = Faccessible_keymaps (startmap, prefix);
1808 GCPRO1 (maps);
1809
1810 if (!NILP (maps))
1811 {
1812 if (title)
1813 {
1814 insert_string (title);
1815 if (!NILP (prefix))
1816 {
1817 insert_string (" Starting With ");
1818 insert1 (Fkey_description (prefix));
1819 }
1820 insert_string (":\n");
1821 }
1822 insert_string (key_heading);
1823 something = 1;
1824 }
1825
1826 for (; !NILP (maps); maps = Fcdr (maps))
1827 {
1828 register Lisp_Object elt, prefix, sub_shadows, tail;
1829
1830 elt = Fcar (maps);
1831 prefix = Fcar (elt);
1832
1833 sub_shadows = Qnil;
1834
1835 for (tail = shadow; CONSP (tail); tail = XCONS (tail)->cdr)
1836 {
1837 Lisp_Object shmap;
1838
1839 shmap = XCONS (tail)->car;
1840
1841 /* If the sequence by which we reach this keymap is zero-length,
1842 then the shadow map for this keymap is just SHADOW. */
1843 if ((XTYPE (prefix) == Lisp_String
1844 && XSTRING (prefix)->size == 0)
1845 || (XTYPE (prefix) == Lisp_Vector
1846 && XVECTOR (prefix)->size == 0))
1847 ;
1848 /* If the sequence by which we reach this keymap actually has
1849 some elements, then the sequence's definition in SHADOW is
1850 what we should use. */
1851 else
1852 {
1853 shmap = Flookup_key (shadow, Fcar (elt), Qt);
1854 if (XTYPE (shmap) == Lisp_Int)
1855 shmap = Qnil;
1856 }
1857
1858 /* If shmap is not nil and not a keymap,
1859 it completely shadows this map, so don't
1860 describe this map at all. */
1861 if (!NILP (shmap) && NILP (Fkeymapp (shmap)))
1862 goto skip;
1863
1864 if (!NILP (shmap))
1865 sub_shadows = Fcons (shmap, sub_shadows);
1866 }
1867
1868 describe_map (Fcdr (elt), Fcar (elt), partial, sub_shadows);
1869
1870 skip: ;
1871 }
1872
1873 if (something)
1874 insert_string ("\n");
1875
1876 UNGCPRO;
1877 }
1878
1879 static void
1880 describe_command (definition)
1881 Lisp_Object definition;
1882 {
1883 register Lisp_Object tem1;
1884
1885 Findent_to (make_number (16), make_number (1));
1886
1887 if (XTYPE (definition) == Lisp_Symbol)
1888 {
1889 XSET (tem1, Lisp_String, XSYMBOL (definition)->name);
1890 insert1 (tem1);
1891 insert_string ("\n");
1892 }
1893 else
1894 {
1895 tem1 = Fkeymapp (definition);
1896 if (!NILP (tem1))
1897 insert_string ("Prefix Command\n");
1898 else
1899 insert_string ("??\n");
1900 }
1901 }
1902
1903 /* Describe the contents of map MAP, assuming that this map itself is
1904 reached by the sequence of prefix keys KEYS (a string or vector).
1905 PARTIAL, SHADOW is as in `describe_map_tree' above. */
1906
1907 static void
1908 describe_map (map, keys, partial, shadow)
1909 Lisp_Object map, keys;
1910 int partial;
1911 Lisp_Object shadow;
1912 {
1913 register Lisp_Object keysdesc;
1914
1915 if (!NILP (keys) && XFASTINT (Flength (keys)) > 0)
1916 {
1917 Lisp_Object tem;
1918 /* Call Fkey_description first, to avoid GC bug for the other string. */
1919 tem = Fkey_description (keys);
1920 keysdesc = concat2 (tem, build_string (" "));
1921 }
1922 else
1923 keysdesc = Qnil;
1924
1925 describe_map_2 (map, keysdesc, describe_command, partial, shadow);
1926 }
1927
1928 /* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map.
1929 Returns the first non-nil binding found in any of those maps. */
1930
1931 static Lisp_Object
1932 shadow_lookup (shadow, key, flag)
1933 Lisp_Object shadow, key, flag;
1934 {
1935 Lisp_Object tail, value;
1936
1937 for (tail = shadow; CONSP (tail); tail = XCONS (tail)->cdr)
1938 {
1939 value = Flookup_key (XCONS (tail)->car, key, flag);
1940 if (!NILP (value))
1941 return value;
1942 }
1943 return Qnil;
1944 }
1945
1946 /* Insert a description of KEYMAP into the current buffer. */
1947
1948 static void
1949 describe_map_2 (keymap, elt_prefix, elt_describer, partial, shadow)
1950 register Lisp_Object keymap;
1951 Lisp_Object elt_prefix;
1952 int (*elt_describer) ();
1953 int partial;
1954 Lisp_Object shadow;
1955 {
1956 Lisp_Object tail, definition, event;
1957 Lisp_Object tem;
1958 Lisp_Object suppress;
1959 Lisp_Object kludge;
1960 int first = 1;
1961 struct gcpro gcpro1, gcpro2, gcpro3;
1962
1963 if (partial)
1964 suppress = intern ("suppress-keymap");
1965
1966 /* This vector gets used to present single keys to Flookup_key. Since
1967 that is done once per keymap element, we don't want to cons up a
1968 fresh vector every time. */
1969 kludge = Fmake_vector (make_number (1), Qnil);
1970 definition = Qnil;
1971
1972 GCPRO3 (elt_prefix, definition, kludge);
1973
1974 for (tail = XCONS (keymap)->cdr; CONSP (tail); tail = Fcdr (tail))
1975 {
1976 QUIT;
1977
1978 if (XTYPE (XCONS (tail)->car) == Lisp_Vector)
1979 describe_vector (XCONS (tail)->car,
1980 elt_prefix, elt_describer, partial, shadow);
1981 else
1982 {
1983 event = Fcar_safe (Fcar (tail));
1984 definition = get_keyelt (Fcdr_safe (Fcar (tail)));
1985
1986 /* Don't show undefined commands or suppressed commands. */
1987 if (NILP (definition)) continue;
1988 if (XTYPE (definition) == Lisp_Symbol && partial)
1989 {
1990 tem = Fget (definition, suppress);
1991 if (!NILP (tem))
1992 continue;
1993 }
1994
1995 /* Don't show a command that isn't really visible
1996 because a local definition of the same key shadows it. */
1997
1998 XVECTOR (kludge)->contents[0] = event;
1999 if (!NILP (shadow))
2000 {
2001 tem = shadow_lookup (shadow, kludge, Qt);
2002 if (!NILP (tem)) continue;
2003 }
2004
2005 tem = Flookup_key (keymap, kludge, Qt);
2006 if (! EQ (tem, definition)) continue;
2007
2008 if (first)
2009 {
2010 insert ("\n", 1);
2011 first = 0;
2012 }
2013
2014 if (!NILP (elt_prefix))
2015 insert1 (elt_prefix);
2016
2017 /* THIS gets the string to describe the character EVENT. */
2018 insert1 (Fsingle_key_description (event));
2019
2020 /* Print a description of the definition of this character.
2021 elt_describer will take care of spacing out far enough
2022 for alignment purposes. */
2023 (*elt_describer) (definition);
2024 }
2025 }
2026
2027 UNGCPRO;
2028 }
2029
2030 static int
2031 describe_vector_princ (elt)
2032 Lisp_Object elt;
2033 {
2034 Findent_to (make_number (16), make_number (1));
2035 Fprinc (elt, Qnil);
2036 Fterpri (Qnil);
2037 }
2038
2039 DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 1, 0,
2040 "Insert a description of contents of VECTOR.\n\
2041 This is text showing the elements of vector matched against indices.")
2042 (vector)
2043 Lisp_Object vector;
2044 {
2045 int count = specpdl_ptr - specpdl;
2046
2047 specbind (Qstandard_output, Fcurrent_buffer ());
2048 CHECK_VECTOR (vector, 0);
2049 describe_vector (vector, Qnil, describe_vector_princ, 0, Qnil);
2050
2051 return unbind_to (count, Qnil);
2052 }
2053
2054 describe_vector (vector, elt_prefix, elt_describer, partial, shadow)
2055 register Lisp_Object vector;
2056 Lisp_Object elt_prefix;
2057 int (*elt_describer) ();
2058 int partial;
2059 Lisp_Object shadow;
2060 {
2061 Lisp_Object this;
2062 Lisp_Object dummy;
2063 Lisp_Object tem1, tem2;
2064 register int i;
2065 Lisp_Object suppress;
2066 Lisp_Object kludge;
2067 int first = 1;
2068 struct gcpro gcpro1, gcpro2, gcpro3;
2069
2070 tem1 = Qnil;
2071
2072 /* This vector gets used to present single keys to Flookup_key. Since
2073 that is done once per vector element, we don't want to cons up a
2074 fresh vector every time. */
2075 kludge = Fmake_vector (make_number (1), Qnil);
2076 GCPRO3 (elt_prefix, tem1, kludge);
2077
2078 if (partial)
2079 suppress = intern ("suppress-keymap");
2080
2081 for (i = 0; i < XVECTOR (vector)->size; i++)
2082 {
2083 QUIT;
2084 tem1 = get_keyelt (XVECTOR (vector)->contents[i]);
2085
2086 if (NILP (tem1)) continue;
2087
2088 /* Don't mention suppressed commands. */
2089 if (XTYPE (tem1) == Lisp_Symbol && partial)
2090 {
2091 this = Fget (tem1, suppress);
2092 if (!NILP (this))
2093 continue;
2094 }
2095
2096 /* If this command in this map is shadowed by some other map,
2097 ignore it. */
2098 if (!NILP (shadow))
2099 {
2100 Lisp_Object tem;
2101
2102 XVECTOR (kludge)->contents[0] = make_number (i);
2103 tem = shadow_lookup (shadow, kludge, Qt);
2104
2105 if (!NILP (tem)) continue;
2106 }
2107
2108 if (first)
2109 {
2110 insert ("\n", 1);
2111 first = 0;
2112 }
2113
2114 /* Output the prefix that applies to every entry in this map. */
2115 if (!NILP (elt_prefix))
2116 insert1 (elt_prefix);
2117
2118 /* Get the string to describe the character I, and print it. */
2119 XFASTINT (dummy) = i;
2120
2121 /* THIS gets the string to describe the character DUMMY. */
2122 this = Fsingle_key_description (dummy);
2123 insert1 (this);
2124
2125 /* Find all consecutive characters that have the same definition. */
2126 while (i + 1 < XVECTOR (vector)->size
2127 && (tem2 = get_keyelt (XVECTOR (vector)->contents[i+1]),
2128 EQ (tem2, tem1)))
2129 i++;
2130
2131 /* If we have a range of more than one character,
2132 print where the range reaches to. */
2133
2134 if (i != XINT (dummy))
2135 {
2136 insert (" .. ", 4);
2137 if (!NILP (elt_prefix))
2138 insert1 (elt_prefix);
2139
2140 XFASTINT (dummy) = i;
2141 insert1 (Fsingle_key_description (dummy));
2142 }
2143
2144 /* Print a description of the definition of this character.
2145 elt_describer will take care of spacing out far enough
2146 for alignment purposes. */
2147 (*elt_describer) (tem1);
2148 }
2149
2150 UNGCPRO;
2151 }
2152 \f
2153 /* Apropos - finding all symbols whose names match a regexp. */
2154 Lisp_Object apropos_predicate;
2155 Lisp_Object apropos_accumulate;
2156
2157 static void
2158 apropos_accum (symbol, string)
2159 Lisp_Object symbol, string;
2160 {
2161 register Lisp_Object tem;
2162
2163 tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
2164 if (!NILP (tem) && !NILP (apropos_predicate))
2165 tem = call1 (apropos_predicate, symbol);
2166 if (!NILP (tem))
2167 apropos_accumulate = Fcons (symbol, apropos_accumulate);
2168 }
2169
2170 DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
2171 "Show all symbols whose names contain match for REGEXP.\n\
2172 If optional 2nd arg PRED is non-nil, (funcall PRED SYM) is done\n\
2173 for each symbol and a symbol is mentioned only if that returns non-nil.\n\
2174 Return list of symbols found.")
2175 (string, pred)
2176 Lisp_Object string, pred;
2177 {
2178 struct gcpro gcpro1, gcpro2;
2179 CHECK_STRING (string, 0);
2180 apropos_predicate = pred;
2181 GCPRO2 (apropos_predicate, apropos_accumulate);
2182 apropos_accumulate = Qnil;
2183 map_obarray (Vobarray, apropos_accum, string);
2184 apropos_accumulate = Fsort (apropos_accumulate, Qstring_lessp);
2185 UNGCPRO;
2186 return apropos_accumulate;
2187 }
2188 \f
2189 syms_of_keymap ()
2190 {
2191 Lisp_Object tem;
2192
2193 Qkeymap = intern ("keymap");
2194 staticpro (&Qkeymap);
2195
2196 /* Initialize the keymaps standardly used.
2197 Each one is the value of a Lisp variable, and is also
2198 pointed to by a C variable */
2199
2200 global_map = Fcons (Qkeymap,
2201 Fcons (Fmake_vector (make_number (0400), Qnil), Qnil));
2202 Fset (intern ("global-map"), global_map);
2203
2204 meta_map = Fmake_keymap (Qnil);
2205 Fset (intern ("esc-map"), meta_map);
2206 Ffset (intern ("ESC-prefix"), meta_map);
2207
2208 control_x_map = Fmake_keymap (Qnil);
2209 Fset (intern ("ctl-x-map"), control_x_map);
2210 Ffset (intern ("Control-X-prefix"), control_x_map);
2211
2212 DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map,
2213 "Default keymap to use when reading from the minibuffer.");
2214 Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
2215
2216 DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map,
2217 "Local keymap for the minibuffer when spaces are not allowed.");
2218 Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
2219
2220 DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map,
2221 "Local keymap for minibuffer input with completion.");
2222 Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil);
2223
2224 DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map,
2225 "Local keymap for minibuffer input with completion, for exact match.");
2226 Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil);
2227
2228 current_global_map = global_map;
2229
2230 DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist,
2231 "Alist of keymaps to use for minor modes.\n\
2232 Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read\n\
2233 key sequences and look up bindings iff VARIABLE's value is non-nil.\n\
2234 If two active keymaps bind the same key, the keymap appearing earlier\n\
2235 in the list takes precedence.");
2236 Vminor_mode_map_alist = Qnil;
2237
2238 DEFVAR_LISP ("function-key-map", &Vfunction_key_map,
2239 "Keymap mapping ASCII function key sequences onto their preferred forms.\n\
2240 This allows Emacs to recognize function keys sent from ASCII\n\
2241 terminals at any point in a key sequence.\n\
2242 \n\
2243 The read-key-sequence function replaces subsequences bound by\n\
2244 function-key-map with their bindings. When the current local and global\n\
2245 keymaps have no binding for the current key sequence but\n\
2246 function-key-map binds a suffix of the sequence to a vector or string,\n\
2247 read-key-sequence replaces the matching suffix with its binding, and\n\
2248 continues with the new sequence.\n\
2249 \n\
2250 For example, suppose function-key-map binds `ESC O P' to [f1].\n\
2251 Typing `ESC O P' to read-key-sequence would return [f1]. Typing\n\
2252 `C-x ESC O P' would return [?\\C-x f1]. If [f1] were a prefix\n\
2253 key, typing `ESC O P x' would return [f1 x].");
2254 Vfunction_key_map = Fmake_sparse_keymap (Qnil);
2255
2256 Qsingle_key_description = intern ("single-key-description");
2257 staticpro (&Qsingle_key_description);
2258
2259 Qkey_description = intern ("key-description");
2260 staticpro (&Qkey_description);
2261
2262 Qkeymapp = intern ("keymapp");
2263 staticpro (&Qkeymapp);
2264
2265 Qnon_ascii = intern ("non-ascii");
2266 staticpro (&Qnon_ascii);
2267
2268 defsubr (&Skeymapp);
2269 defsubr (&Smake_keymap);
2270 defsubr (&Smake_sparse_keymap);
2271 defsubr (&Scopy_keymap);
2272 defsubr (&Skey_binding);
2273 defsubr (&Slocal_key_binding);
2274 defsubr (&Sglobal_key_binding);
2275 defsubr (&Sminor_mode_key_binding);
2276 defsubr (&Sglobal_set_key);
2277 defsubr (&Slocal_set_key);
2278 defsubr (&Sdefine_key);
2279 defsubr (&Slookup_key);
2280 defsubr (&Sglobal_unset_key);
2281 defsubr (&Slocal_unset_key);
2282 defsubr (&Sdefine_prefix_command);
2283 defsubr (&Suse_global_map);
2284 defsubr (&Suse_local_map);
2285 defsubr (&Scurrent_local_map);
2286 defsubr (&Scurrent_global_map);
2287 defsubr (&Scurrent_minor_mode_maps);
2288 defsubr (&Saccessible_keymaps);
2289 defsubr (&Skey_description);
2290 defsubr (&Sdescribe_vector);
2291 defsubr (&Ssingle_key_description);
2292 defsubr (&Stext_char_description);
2293 defsubr (&Swhere_is_internal);
2294 defsubr (&Swhere_is);
2295 defsubr (&Sdescribe_bindings);
2296 defsubr (&Sapropos_internal);
2297 }
2298
2299 keys_of_keymap ()
2300 {
2301 Lisp_Object tem;
2302
2303 initial_define_key (global_map, 033, "ESC-prefix");
2304 initial_define_key (global_map, Ctl('X'), "Control-X-prefix");
2305 }